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Staphylococcus epidermidis is a significant opportunistic pathogen of humans. The ST2 lineage is frequently multidrug-resis-

tant and accounts for most of the clinical disease worldwide. However, there are no publically available, closed ST2

genomes and pathogenesis studies have not focused on these strains. We report the complete genome and methylome of

BPH0662, a multidrug-resistant, hospital-adapted, ST2 S. epidermidis, and describe the correlation between resistome and

phenotype, as well as demonstrate its relationship to publically available, international ST2 isolates. Furthermore, we delin-

eate the methylome determined by the two type I restriction modification systems present in BPH0662 through heterologous

expression in Escherichia coli, allowing the assignment of each system to its corresponding target recognition motif. As the

first, to our knowledge, complete ST2 S. epidermidis genome, BPH0662 provides a valuable reference for future genomic

studies of this clinically relevant lineage. Defining the methylome and the construction of these E. coli hosts provides the

foundation for the development of molecular tools to bypass restriction modification systems in this lineage that has hitherto

proven intractable.
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Data Summary

All raw sequence data (reads and assembled genomes) for
the S. epidermidis genomes analysed in this publication are
publically available in the European Nucleotide Archive
(ENA) under study accession numbers PRJEB12090 and
PRJEB13975.

http://www.ebi.ac.uk/ena/data/view/PRJEB12090

1. S. epidermidis BPH0662 Illumina reads (ERS1019848)

http://www.ebi.ac.uk/ena/data/view/ERS1019848

2. S. epidermidis BPH0663 Illumina reads (ERS1019849)

http://www.ebi.ac.uk/ena/data/view/ERS1019849

http://www.ebi.ac.uk/ena/data/view/PRJEB13975

3. S. epidermidis BPH0662 PacBio reads (ERS1153932)

http://www.ebi.ac.uk/ena/data/view/ERS1153932

4. E. coli DC10B-MS1 PacBio reads (ERS1153933)

http://www.ebi.ac.uk/ena/data/view/ERS1153933

5. E. coli DC10B-MS2 PacBio reads (ERS1153934)

http://www.ebi.ac.uk/ena/data/view/ERS1153934

6. S. epidermidis BPH0662 complete genome assembly
(GCA_900086615.1)

http://www.ebi.ac.uk/ena/data/view/GCA_900086615

Introduction

Staphylococcus epidermidis is a significant nosocomial patho-
gen, particularly in the setting of high-acuity medicine and
prosthetic devices, where the presence of a foreign body
provides a platform for bacterial colonisation. Identified by
the Centers for Disease Control and Prevention as the lead-
ing cause of central-line-associated bloodstream infections,
second ranked cause of surgical site infections and third
most reported pathogen for hospital-acquired infections
(Sievert et al., 2013), S. epidermidis and other coagulase-neg-
ative staphylococci (CoNS) are estimated to cost $2 billion a
year in the USA alone (Otto, 2009). Despite this significant
burden imposed on healthcare systems, relatively little is
understood about the mechanisms of pathogenesis and
optimal treatment of S. epidermidis, with many assumptions
extrapolated from Staphylococcus aureus-based studies.

S. epidermidis is the most genetically diverse species within
the genus Staphylococcus (Becker et al., 2014), with diversity
also reported within the colonising strains of individual
human hosts (Conlan et al., 2012). In spite of this, hospital-
based investigations utilising pulsed-field gel electrophoresis
or multilocus sequence typing (MLST) typically demon-
strate the predominance of one or two multidrug-resistant
clones of S. epidermidis within the institutions studied (Gor-
don et al., 2012; Krediet et al., 2004; Widerström et al.,
2012). A single lineage, clonal complex 2, for which ST2 is
the founder, accounts for 74 % of nosocomial isolates inter-
nationally (Miragaia et al., 2007). The global dissemination

of the ST2 lineage suggests its successful adaptation to the
hospital environment in which favourable circumstances
enable opportunistic infections. Knowledge of the genomics
of ST2 strains has been limited by the lack of a closed ST2
reference genome, and the inability to genetically manipu-
late this lineage. The dearth of dedicated molecular tools
and tractable clinical S. epidermidis strains has meant that
pathogenesis studies have been performed on isolates that
do not represent this clinically relevant clone that dominates
worldwide.

The proportion of methicillin resistance in S. epidermidis
has been reported to be as high as 92 % in some institutions
(Krediet et al., 2004), and is frequently associated with co-
resistance to other antibiotic classes (Conlan et al., 2012;
Mendes et al., 2012). Due to limited treatment options, van-
comycin, a glycopeptide antibiotic considered one of the
last-line agents for the treatment of staphylococci, is often
utilised for serious infections.

The phenomenon of vancomycin intermediate heteroresist-
ance is well described in S. aureus and is characterised by
the presence of bacterial subpopulations capable of growth
within the intermediate range despite testing as vancomy-
cin-susceptible by standard laboratory methods. Such iso-
lates are recognised as precursors to vancomycin
intermediate S. aureus (VISA) and are associated with treat-
ment failure (Tenover & Moellering, 2007). Unlike S.
aureus, the definition and clinical implications of heteroge-
nous vancomycin resistance in S. epidermidis is poorly
understood. A limited number of studies have described the
phenomena in S. epidermidis specifically (Gazzola et al.,
2013; Sieradzki et al., 1999) or CoNS in general (Ma et al.,

Impact Statement

Staphylococcus epidermidis is a major nosocomial
pathogen in humans, responsible for a significant
proportion of implant- and device-associated infec-
tions that globally pose a significant burden on
health-care systems. One multilocus sequence type,
ST2, which is often multidrug-resistant, dominates
S. epidermidis hospital-associated infections. How-
ever, the genetic structure and content of this clone
are poorly understood. Additionally, because of lim-
ited understanding of the genetic barriers to the
transformation of ST2 isolates, no molecular tools
are available to manipulate and study this clone.
Through in-depth genomic analysis of ST2 S. epider-
midis we provide important insights into the genome
structure, resistance mechanisms and barriers to
DNA transformation and their relationship to other
S. epidermidis clones. The generation of E. coli strains
expressing ST2 S. epidermidis adenine methylation
profiles provides the basis for the development of
tools to genetically manipulate this globally domi-
nant clone in the laboratory.
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2011; Nakipoglu et al., 2005; Sieradzki et al., 1998), however
the mechanisms behind this resistance are unknown.

Restriction–modification (RM) systems are proposed to have
evolved as a form of bacterial immunity that targets and
degrades incoming DNA from viruses and other foreign
donors (Casadesús & Low, 2006). Type I and type IV RM sys-
tems in particular, present strong barriers to the exchange of
DNA in both S. epidermidis and S. aureus (Monk et al., 2012).
Type I RM systems are comprised of three host specificity of
DNA (hsd) genes, that encode a specificity protein (HsdS), a
modification protein (HsdM) and a restriction endonuclease
(HsdR). The presence of adenine methylation on DNA
sequences, determined by HsdS, termed target recognition
motifs (TRMs), inhibits the restriction endonuclease complex.
Unless methylated at appropriate sites, DNA is recognised as
foreign and restricted (Murray, 2000). The type IV RM
system of S. epidermidis consists of a single restriction endonu-
clease (formerly mcrR, now renamed SepRPI) that recognises
cytosine-methylated DNA (Monk et al., 2012). Plasmid artifi-
cial modification (PAM) is a means to overcome the barrier
imposed by these RM systems, whereby vectors are con-
structed to express hsdMS genes that mimic the DNAmethyl-
ation pattern of the bacterium into which they are
transformed. A method of PAM in which hsdMS genes from
S. aureus strains of interest were chromosomally integrated
into a DC10B E. coli background, deficient of cytosine methyl-
ation, was recently described (Monk et al., 2015). Plasmids
isolated from the resulting E. coli mutants were capable of
bypassing both type I and type IV RM systems of S. aureus
strains from which their hsdMS genes were cloned.

In 2012, a case of persistent, post-neurosurgical infection
with a strain of S. epidermidis exhibiting multidrug resistance,
manifesting as a cerebral abscess associated with an external
ventricular drain (EVD), occurred at our institution. Other
than a single intraoperative dose of prophylactic cephazolin,
the patient had no prior history of antibiotic therapy or rele-
vant hospitalisation. Resistant to commonly encountered
agents including flucloxacillin, erythromycin, clindamycin
and cotrimoxazole; it was of concern that the isolate also
demonstrated resistance to rifampicin, fusidic acid, ciproflox-
acin and teicoplanin (a glycopeptide). Extended glycopep-
tide-susceptibility testing performed in the context of failing
vancomycin therapy, showed that the isolate was vancomycin
heteroresistant, prompting investigations to further character-
ise this hospital adapted strain.

Here we use Pacific Biosciences single molecule real-time
(SMRT) sequencing to describe the first complete ST2 S.
epidermidis genome sequence and its methylome, and dem-
onstrate its function as an improved reference for the bioin-
formatic analysis of international strains belonging to this
clinically relevant lineage.

Methods

Media and reagents. S. epidermidis and S. aureus were rou-
tinely cultured at 37 oC in brain heart infusion (BHI) broth
(Difco). E. coli was routinely cultured in L broth (1 %

tryptone, 0.5 % yeast extract, 0.5 % NaCl). Broth microdi-
lution (BMD) MICs were performed in cation-adjusted
Mueller–Hinton (Difco) medium. For growth on agar, BHI
or L broth were solidified with 1.5 % agar, to yield BHIA
and L agar, respectively. The following antibiotics were pur-
chased from Sigma Aldrich and used at the specified con-
centrations: chloramphenicol (Cm) 15 mg ml�1 in E. coli;
ampicillin (Amp) 100 mg ml�1 in E. coli; kanamycin (Kan)
50 mg ml�1 in E. coli. The following antibiotics were used at
variable concentrations for susceptibility testing: rifampicin
(Rif) (Sigma Aldrich); vancomycin (Hospira).

Oligonucleotides were purchased from Integrated DNA
Technologies and are listed in Table 1. Genomic DNA for
routine use was isolated with the DNeasy Blood and Tissue
Kit (Qiagen). To weaken the cell wall of S. epidermidis prior
to DNA extraction, harvested cells were washed with PBS,
lysostaphin (Ambi) was added to the Gram-positive lysis
buffer (final concentration 100 mg ml�1) and incubated at
37 oC for 30 min. Genomic DNA for SMRT sequencing
was isolated using the Qiagen Genomic-tip 100 G (Qiagen).
Plasmids were purified with a QIAprep Spin Miniprep Kit
(Qiagen). PCR products and gel extractions were purified
using a QIAquick Gel Extraction Kit (Qiagen). Restriction
enzymes and Phusion DNA polymerase were purchased
from New England Biolabs. Phire Hotstart DNA polymerase
was purchased from Thermofisher. Colony PCR was per-
formed as previously described (Monk et al., 2012).

Bacterial isolates. Bacterial strains used in this study are
listed in Table 1. Phenotypic comparator strains consisted
of three reference strains: S. epidermidis ATCC 12228, S.
aureus ATCC 700698 [Mu3] and ATCC 700699 [Mu50].

Antibiotic susceptibility testing. Vitek 2 (bioMerieux)
susceptibilities were tested as per the manufacturer’s
instructions. BMD MICs for vancomycin and rifampicin
were determined as recommended by the Clinical and Labo-
ratory Standards Institute (CLSI, 2012). Extended glycopep-
tide susceptibilities were determined by the macromethod
Etest (MET) with vancomycin and teicoplanin Etest strips
(bioMerieux) using a 2.0 McFarland inoculum and pro-
longed incubation time of 48 h; vancomycin population
analysis profiles (PAPs) were performed as previously
described (Wootton et al., 2001). With the exception of
Vitek 2 and Etests, all antibiotic-susceptibility testing of
strains was performed in triplicate.

Genome sequencing. Sequencing of BPH0662 and
BPH0663 was performed using the Illumina MiSeq plat-
form with Nextera XT libraries constructed as per the man-
ufacturer’s instructions. SMRT sequencing on a PacBio RS
instrument with subsequent de novo assembly using HGAP2
algorithm, and base modification and motif detection for
methylome analysis using SMRT Analysis v1.3.1 was per-
formed for S. epidermidis BPH0662. E. coli mutants DC10B-
MS1 and DC10B-MS2 were assembled and analysed as pre-
viously described (Monk et al., 2015). RP62a was used as
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the methylation reference for BPH0662, while DH10B was
used as a reference for the E. coli strains. Final assembly was
validated by reference to a high-resolution NcoI chromo-
some optical map using MapSolver (v3.2.0, OpGen), as pre-
viously described (Gao et al., 2015). BPH0662 Illumina
reads were used to correct homopolymer errors in the Pac-
Bio assembled BPH0662 genome. BPH0662 Illumina reads
were assembled using SPAdes v3.7.1 (Bankevich et al.,

2012) and the resulting contigs were screened for small plas-
mids that would be lost during PacBio size selection.

Genome analysis. Variant calling between the closed
BPH0662 genome and BPH0663 Illumina reads was con-
firmed by two methods, using Snippy v3.0 (Seemann,
2016a) and Nesoni (Harrison, 2014). A one-way compari-
son of gene content between each of the four published,

Table 1. Strains, plasmids and oligonucleotides used in this study

Bacterial strain,

plasmid or

oligonucleotide

Description Reference or source

E. coli strains

DC10B DH10B with Ddcm mutation Monk et al. (2015)

DC10B-MS1 DC10B with SepiBPH0662I hsdMS integrated between ybbD and ylbG This study

DC10B-MS2 DC10B with SepiBPH0662II hsdMS integrated between essQ and cspB This study

S. epidermidis strains

ATCC 12228 Non-clinical reference strain Zhang et al. (2003)

BPH0662 Clinical strain. Index patient, isolated day 12 This study

BPH0663 Clinical strain. Index patient, isolated day 23 This study

S. aureus strains

Mu3 Heteroresistant vancomycin intermediate S. aureus reference strain Hiramatsu et al. (1997a)

Mu50 Vancomycin intermediate S. aureus reference strain Hiramatsu et al. (1997b)

Plasmids

pKD4 Plasmid for amplification of FRT-kan-FRT; AmpR, KanR Datsenko &

Wanner (2000)

pKD46 E. coli temperature-sensitive plasmid containing l red recombinase genes under the control of

an arabinose-inducible promoter; AmpR
Datsenko &

Wanner (2000)

pCP20 E. coli temperature-sensitive plasmid expressing flp enzyme for flp-catalysed excision of kan

marker; AmpR, CmR

Cherepanov &

Wackernagel (1995)

Cloning hsdMS genes

IM199 CCCAAACTGCACCCAAGAGTCAGAACACAGTTTTTCAAGAGTACAAAGGGGTAAAC

TAAAATAAATATTGACACTCTATCATTG

This study

IM200 AAACTAAAATAAATATTGACACTCTATCATTGATAGAGTATAATTAAAATAAGGAG-

GAAATTAATGGCAACTATTGGATTTGAAG

This study

IM201 TTAAATTGAAAGTTCATCACTATTCACCTC This study

IM202 GGTGAATAGTGATGAACTTTCAATTTAAGTGTAGGCTGGAGCTGCTTC This study

IM203 GCTAACCATTGTGGTGAAGTGCAGGTTTGCTGCATGAATAGTTTTACGGTCCATATGAA

TATCCTCCTTAG

This study

IM204 ACTGAGAAAAGACATGTCGGCTATTGTGTAAAGCCATATAGCTCAGACGACATAAAAAA

TTTATTTGCTTTCAGG

This study

IM205 CATAAAAAATTTATTTGCTTTCAGGAAAATTTTTCTGTATAATAGATTCATAAATTTGA-

GAGAGGAGTTATGTCAACGACGGAAAAACAAAGAC

This study

IM206 CTACACAAACATCTTCTGTAAAAAGCC This study

IM207 GCTTTTTACAGAAGATGTTTGTGTAGGTGTAGGCTGGAGCTGCTTCG This study

IM208 TTCTATGTAAACTCTCTGACTGTTCATTTTATTTGTTGTTTCAGGGTCGGGGTCCATA

TGAATATCCTCCTTAG

This study

Recombineering

IM177 TCGAAGTCGTCAACTTCGTAGTGAGG This study

IM178 TGCCGCTGGTTTTCCGCTAATGG This study

IM179 CGGCCATTTATACAGGAAAAGCCTA This study

IM180 GTTACCTTCTCTATAGAGAGTGGTG This study

AmpR, ampicillin resistant; KanR, kanamycin resistant; CmR, chloramphenicol resistant
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closed S. epidermidis genomes and BPH0662 was performed
using Blast Ring Image Generator (BRIG) (Alikhan et al.,
2011). Annotated prophages in BPH0662 were identified
using PHage Search Tool (PHAST) (Zhou et al., 2011). The
presence of CRISPRs was screened for with CRISPRfinder
(Grissa et al., 2007). In silico MLST was performed on the
de novo assemblies (Seemann, 2016b).

All publically available, assembled S. epidermidis genomes in
NCBI GenBank were downloaded and analysed (4th April
2016). Selection criteria for inclusion as a comparator strain
were as follows: in silico MLST categorisation as ST2. The
exclusion criteria were: sequencing performed on a Roche
454 or Ion Torrent platform (per GenBank metadata); Illu-
mina sequencing with depth <25� (per GenBank meta-
data); assembled genome size >120 % of the BPH0662
genome (surrogate marker for mixed bacterial samples);
organism not S. epidermidis determined by Kraken
v0.10.5beta (Wood & Salzberg, 2014). This resulted in selec-
tion of 32 potential comparator genomes from 307 assem-
blies. For isolates where core-SNP phylogeny of the 32
strains indicated clonal groupings, a single representative
isolate from each group was included. The resulting 15
unique comparator genomes with metadata are listed in
Table S1 (available in the online Supplementary Material).

Genome annotation was performed with Prokka v1.12 (See-
mann, 2014). Maximum-likelihood core-SNP phylogeny of
S. epidermidis isolates using the newly closed BPH0662
genome as a reference, was determined using Snippy v3.0
(Seemann, 2016a) to generate an alignment of core SNPs,
PhyML v3.1 (Guindon et al., 2010) was then used to recon-
struct a maximum-likelihood tree. Pairwise SNP analysis
was performed using pairwise_snp_differences (Goncalves
da Silva, 2015). For pangenome analysis, protein ortholog
clustering was performed using Proteinortho v5.11(Lechner
et al., 2011), alignment of the resultant CDS orthologs to
BPH0662 and visualisation of the pangenome was per-
formed using FriPan (Powell, 2015).

Construction of E. coli DC10B-MS1 and DC10B-MS2. E.
coli mutants expressing the BPH0662 type I RM systems in
a DC10B background were created using the method previ-
ously described by Monk et al. (2015). E. coli DC10B-MS1,
which expressed SepiBPH0662I hsdMS (hsdMS1) was con-
structed as follows (Fig. S1). The hsdMS1 system from
BPH0662 was amplified with primers IM205 (incorporating
PN25 promoter)/IM206. Plasmid pKD4 (Datsenko & Wan-
ner, 2000) was used as a template for the amplification of
the Kan resistance marker flanked by flippase recognition
target (FRT) sites with primers IM207/IM208 (product
pKD4-1). The hsdMS1 and pKD4-1 products were gel-
extracted and joined by spliced overlap extension (SOE)
PCR using primers IM204/208 (primer tails contained 50
bp homology for integration into the intergenic region
between ybbD and ylbG in the DC10B chromosome). The
hsdMS1–pKD4-1 linear amplicon was pellet paint (Nova-
gen) precipitated and electroporated into DC10B containing
pKD46 (Datsenko & Wanner, 2000), made competent as

previously described (Monk et al., 2012). Transformants
were selected for on L agar Cm10. Colony PCR with pri-
mers IM177/IM178 was used to screen for recombination at
the integration site, positive clones were grown overnight at
43 oC to promote loss of pKD46. To excise the pKD4-1
product, strains were transformed with pCP20 (Cherepanov
& Wackernagel, 1995) at 28 oC, single-colony purified at
28 oC, then grown overnight at 43 oC to promote plasmid
loss. To confirm excision of the Kan resistance marker and
the loss of pCP20, cells were patch plated on L agar Kan
and L agar Cm, respectively. The resulting KanS, CmS strain
containing hsdMS1 (with PN25 promoter) was named
DC10B-MS1.

Using the same protocol, the E. coli DC10B-MS2 mutant
was constructed from E. coli DC10B using the following
primer sets: IM200 (incorporating Pxyl/tetO promoter)/
IM201 for the amplification of SepiBPH0662II hsdMS
(hsdMS2); IM202/IM203 for amplification of FRT-kan-FRT
from pKD4 (product named pKD4-2); IM199/IM203 (con-
taining tails with 50 bp homology for integration into the
intergenic region between essQ and cspB in the DC10B
chromosome) for SOE PCR of hsdMS2-pKD4-2; IM179/
IM180 to confirm recombination at integration site.

Results & Discussion

Identification of a clinical multidrug-resistant S.

epidermidis displaying vancomycin

heteroresistance

While multidrug resistance in clinical isolates of S. epidermi-
dis is increasingly common, standard antimicrobial suscep-
tibility testing demonstrated BPH0662 was more broadly
resistant than usually reported (resistant to rifampicin, fusi-
dic acid and teicoplanin). Despite testing as susceptible to
vancomycin with a MIC of 2 mg ml�1 using the gold stan-
dard method of BMD, the patient failed vancomycin ther-
apy (Fig. 1d). Phenotypically identical S. epidermidis were
repeatedly isolated from both EVD cerebrospinal fluid
(CSF) and sterile surgical site samples from the patient, on
12 occasions over 13 days (Fig. 1a, d). To investigate the
mechanism of treatment failure, extended glycopeptide sus-
ceptibility testing using vancomycin and teicoplanin METs
and vancomycin PAPs was performed. Although no diag-
nostic criteria has been defined for the classification of van-
comycin heteroresistance in S. epidermidis, if the criteria
used for S. aureus were applied (>8 mg ml�1 for both vanco-
mycin and teicoplanin MET, or >12 mg ml�1 for teicoplanin
MET regardless of vancomycin MET; PAP:AUC of >0.9
compared with Mu3 standard for vancomycin PAP) then all
of the patient’s S. epidermidis isolates were found to be van-
comycin-heteroresistant by both testing methods (Fig. 1c,
d). This demonstrated that the true antibiogram of
BPH0662 was more complex than initially appreciated, with
the isolates approaching pan-drug resistance. Vancomycin
is a last-line agent in the treatment of staphylococci, there-
fore evolution of resistance to this antimicrobial left no con-
ventional therapeutic options. In spite of this, the patient
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Fig. 1. BPH0662 - a clinically significant, multidrug-resistant S. epidermidis. (a) Summary of case patient’s clinical course. (b) Magnetic
resonance imaging (MRI) slices of the patient’s brain, demonstrating a large cerebral abscess (red arrow) formed around the tip of an exter-

nal ventricular drain (EVD) device (yellow arrow). (c) Vancomycin population analysis profile of three S. epidermidis isolates from the case
patient compared with reference strains Mu3 [heterogeneous vancomycin intermediate S. aureus (hVISA)] and Mu50 [vancomycin interme-
diate S. aureus (VISA)]. (d) Correlation of phenotypic susceptibility testing for case patient isolates with the BPH0662 resistome. L, left; R,
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was successfully treated with a combination of surgical
source control and change in therapy to linezolid, followed
by life-long suppressive minocycline therapy.

Establishing a complete ST2 reference genome

To confirm that these isolates represented persistent infection
with the same strain and to further investigate the molecular
characteristics underlying the near pan-resistant phenotype of
these isolates, we initially performed Illumina whole-genome
sequencing of BPH0662 (initial CSF isolate, day 12 of admis-
sion) and BPH0663 (intraoperative isolate from EVD device,
day 23). Analysis indicated that both were ST2 S. epidermidis.
Despite being the globally dominant hospital lineage, no com-
plete reference sequence of an ST2 S. epidermidis strain was
available. Therefore, the genome of BPH0662 was analysed
using SMRT sequencing (Fig. 2), and validated by compari-
son to an optical map generated for the same isolate (Fig. 3a).
The S. epidermidis BPH0662 genome comprises a 2 793 003

bp circular chromosome with 32.0 % DNA G+C content,
and three circular plasmids. The largest plasmid (pBPH0662-
01) is 45 807 bp with 30.0 % DNA G+C content, the second
(pBPH0662-02) only 2366 bp with 31.1 % DNA G+C con-
tent, and the third (pBPH0662-03) is 13 569 bp with 28.6 %
DNA G+C content. The chromosome was predicted to con-
tain 2653 coding genes, with an additional 40 genes located
on pBPH0662-01. Containing only two coding regions, repL
and ermC, pBPH0662-02 shared 99 % DNA sequence simi-
larity with the naturally occurring, 2355 bp plasmid pNE131
(Genbank M12730.1) previously described in clinical S. epi-
dermidis strains (Lampson & Parisi, 1986a). Notably,

pBPH0662-02 possesses the 107 bp deletion in the 5¢ regula-
tory region of ermC to which the constitutive expression of
macrolide–lincosamide–streptogramin B resistance in
pNE131 has been attributed (Lampson & Parisi, 1986b). Fur-
thermore, plasmids genetically identical (Genbank
AB982225.1) to pBPH0662-02 have been described in Rus-
sian, ST8, community-acquired methicillin-resistant S. aureus

right; VP, ventriculoperitoneal; CSF, cerebrospinal fluid; PEN, penicillin; FLX, flucloxacillin; COT, cotrimixazole; GEN, gentamicin; CIP, cipro-
floxacin; ERY, erythromycin; CLI, clindamycin; FA, fusidic acid; RIF, rifampicin; TEC, tecoplanin; VAN, vancomycin; DAP, daptomycin;
TET, tetracycline; LZD, linezolid; BMD, broth microdilution; MET, macromethod Etest; PAP/AUC, population analysis profile/ area under the

curve (compared with Mu3 hVISA reference).
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Fig. 2. Hospital-evolved strain BPH0662 possesses novel gene content acquired through horizontal gene transfer. A one-way comparison
of gene content between the four published S. epidermidis genomes and BPH0662 was generated using BRIG (Alikhan et al., 2011).
Prophages are annotated in the outermost ring.
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strains (Khokhlova et al., 2015). A further 14 predicted coding
genes were on pBPH0662-03, including the antiseptic resis-
tance gene qacA and its regulator. Analysis of the Illumina-
sequenced BPH0663 genome compared with the closed
BPH0662 genome indicated that the isolates were clonal, with
no detectable SNPs between them.

Comparisons between BPH0662 and the four existing, com-
plete, S. epidermidis genomes are shown in (Fig. 2) and
Table 2. Similar to the biofilm-forming, drug-resistant clini-
cal strain RP62a (Gill et al., 2005), BPH0662 possessed the
icaADBC operon and mecA. Analysis indicated that the
majority of novel gene content in BPH0662 was acquired by
horizontal gene transfer. Three complete and three partial
prophages were detected, accounting for 9.3 % of the
genome. Further novel content was concentrated in the
regions flanking the origin of replication, which contained
multiple resistance determinants, drug transporters and

regulatory genes, interspersed between numerous insertion-

sequence (IS) elements (particularly IS431) and transpo-

sases. No clustered regularly interspaced short palindromic

repeat (CRISPR) loci were identified in the genome. The

phenotypic susceptibility testing of BPH0662 correlated

with the resistome is shown in (Fig. 1d). Genetic determi-

nants accounting for the phenotypic resistance observed for

BPH0662 were identified for all antimicrobial agents with

the exception of teicoplanin and vancomycin, both glyco-

peptide antibiotics. In the related species S. aureus, rifampi-

cin-resistance mutations in rpoB have been demonstrated to

result in vancomycin heteroresistance (Gao et al., 2013;

Matsuo et al., 2011), leading us to speculate that the same

phenomenon may also occur in S. epidermidis. Dual D471E

and I527M mutations were identified in the BPH0662

RpoB, associated with rifampicin resistance (MIC of

64 mg ml�1). The same dual substitutions have previously
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been described as the RpoB mutations most commonly

associated with high-level rifampicin resistance in a S. epi-

dermidis prosthetic joint infection study (Hellmark et al.,

2009).

BPH0662 contained an unusual variant of staphylococcal
cassette chromosome mec (SCCmec) type III, as it was
located in reverse orientation in the region upstream of the
origin of replication (Fig. 3b). The element was not associ-
ated with the typical integration site orfX [corresponding to
the last 15 nucleotides of the coding sequence of the rRNA
large subunit methytransferase (Boundy et al., 2013)],
located approximately 32 kb downstream from the origin of
replication in BPH0662. Despite the unexpected location on
the chromosome, the BPH0662 SCCmec element contained
ccrA3B3 and a prototypical class A mec complex, with 34.4
kb of the element sharing 99.8 % nucleotide homology with
the previously described, 37 kb type III SCCmec of ST239 S.
aureus strains JKD6008 (GenBank CP0021020) and Sa0059
(GenBank JQ412578), including the integrated plasmid
pUB110 (harbouring genes encoding kanamycin and bleo-
mycin resistance). Based on the orfX sequence in BPH0662,
a perfect inverted repeat, and imperfect direct repeat, were
present in the distal (upstream) end of the SCCmec element
in reverse orientation, in keeping with the reverse orienta-
tion of the entire element (Fig. S2), suggesting initial inte-
gration of the SCCmec element at orfX with subsequent
chromosomal rearrangement. Two 1.4 kb regions of DNA
homology potentially explained this rearrangement. These
regions mirrored one another on either side of the origin of
replication: one located 59.7 kb downstream; the other 71.8
kb at the reverse flank, which incorporated the upstream
direct repeat of the SCCmec element (Fig. 3b).

Located 20 kb upstream of SCCmec was a ccrC7 in close prox-
imity to a complete type I RM, flanked at both ends by IS431
[also known as IS257 (Rouch & Skurray, 1989)] elements.
The carriage of hsdRMS genes in association with ccrC is
described in both type V and VII SCCmec in S. aureus [Ber-
glund et al., 2008; International Working Group on the Clas-
sification of Staphylococcal Cassette Chromosome Elements
(IWG-SCC), 2009]. Indeed, 11.5 kb of this region in
BPH0662, encompassing ccrC7 extending into hsdR2,

displayed 98 % homology with joining regions 2 and 3 and
the ccr gene complex of the prototypical, type VII SCCmec
described in S. aureus strain JCSC6082 (GenBank AB373032).
Forward of the origin of replication, another chimeric SCC
element was present, containing a ccrA4B4 complex as well as
one complete and a truncated type I RM system, in the
absence of a mec complex (see Fig. 3b). Remnants of an addi-
tional truncated ccr gene were in close proximity.

The assortment of ccr genes observed in BPH0662 was in
keeping with the reported diversity in coagulase-negative
staphylococci (Hanssen & Sollid, 2007), suggested to be the
donor species in which novel and composite SCC elements
arise and are then transferred to the more genetically con-
served S. aureus (Barbier et al., 2010). The presence of a
near complete type III SCCmec in BPH0662, identical to
that previously described in ST239 S. aureus [a globally dis-
seminated, healthcare-associated, clonal lineage of methicil-
lin-resistant S. aureus (Harris et al., 2010)] reinforces the
probable role of these recombinases in the horizontal trans-
fer of DNA between staphylococcal species.

Compared with the closed reference genome of S. epidermi-
dis ATCC 12228, the overall structure of BPH0662 was sug-
gestive of chromosomal rearrangement resulting from two
inversions around the origin of replication (Fig. 3b). The
inversion points closest to the origin, potentially attributable
to homologous recombination between the regions of self-
homology as described above, and the medial inversions,
possibly explained by the nearby presence of tRNA genes,
which have been demonstrated to be associated with chro-
mosomal inversions in other bacterial species (DeBoy et al.,
2006). Relative to ATCC 12228, RP62a demonstrates a sin-
gle inversion around the origin of replication (Gill et al.,
2005; Lindsay & Holden, 2007), corresponding to the
most medial inversions observed in BPH0662 (with a series
of tRNA genes and an adjacent ISSep element at one inver-
sion point, and a lone tRNA-Thr adjacent to the icaADBC
operon at the other). Large-scale chromosomal inversions
and deletions near the origin of replication have also been
described in other CoNS, associated with homologous
recombination of IS elements (Watanabe et al., 2007).
While this arrangement around the origin with a double

Table 2. Comparison of completed S. epidermidis genomes

Strain Chromosome (Mb) Plasmids GC % Genes Source In silico

MLST

Reference

BPH0662 2.79 3 32.0 2709 Clinical 2 This study

RP62a/

ATCC 35984

2.61 1 32.2 2662 Clinical 10 Gill et al. (2005)

SEI/

ATCC 49134

2.50 1 32.0 2397 Non-clinical *- Zhang et al. (2012)

ATCC 12228 2.50 6 32.1 2558 Non-clinical 8 Zhang et al. (2003)

PM221 2.49 4 31.9 2461 Bovine mastitis 184 Savijoki et al. (2014)

*Published reference strain SEI was not classifiable by existing multi-locus sequence type (MLST) schema.
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inversion is unusual, the chromosome assembly of
BPH0662 was confirmed to be correct by optical mapping
(Fig. 3a). The importance of independent verification of
genome assembly for the identification of large chromo-
somal rearrangements associated with biological consequen-
ces has recently been described (Gao et al., 2015).
Furthermore, the value of a closely related reference genome
for comparative genomics is becoming increasingly evident
(Pightling et al., 2014). In view of the global dominance of
the ST2 lineage within the hospital environment, as the first,
to our knowledge, completed ST2 genome, BPH0662 will
be invaluable for future genomic studies of clinically rele-
vant S. epidermidis isolates.

The BPH0662 methylome

The pattern of adenine-methylated DNA detected by SMRT
sequencing of BPH0662 indicated the presence of two func-
tional type I RM systems, corresponding with two

independent TRMs (Fig. 4a), formally named SepiB-
PH0662I and SepiBPH0662II, as per standard nomenclature
(Roberts et al., 2003). An incomplete third system with a
predicted non-functional partial hsdS was noted in the
genome. To determine the assignment of each hsdMS sys-
tem with its associated TRM, two DC10B-derived E. coli
hosts were constructed, each containing an individual
hsdMS system from BPH0662 (DC10B-MS1 and DC10B-
MS2). Integration of the BPH0662 hsdMS systems into
DC10B at the expected sites was confirmed by SMRT
sequencing of DC10B-MS1 and DC10B-MS2. Functional
expression of the systems by the E. coli hosts was demon-
strated by the acquisition of chromosomal adenine methyla-
tion at a high proportion (89.65–99.90 %) of predicted
target recognition domains (TRDs) determined by the inte-

grated BPH0662 hsdS (Fig. 4b). Notably, the 5¢-

GATNNNNCTG-3¢ TRM of DC10B-MS2 was predicted to

overlap with endogenous dam (5¢-GATC-3¢) methylation at
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968 sites in the E. coli genome, SMRT sequencing indicated
that 967 of these sites were appropriately methylated. Con-
struction of these two E. coli hosts sets the groundwork for
future experiments where a second integration event (either
SepiBPH0662II hsdMS into DC10B-MS1 or SepiBPH0662I
hsdMS into DC10B-MS2), resulting in a single E. coli host
expressing both BPH0662 type I RM systems, should enable
utilisation of plasmid artificial modification to overcome the
strong restriction barrier present in S. epidermidis isolates
from the ST2 lineage, facilitating the genetic manipulation
of these clinically relevant clones that have hitherto proven
refractory.

BPH0662 in relation to international ST2

S. epidermidis

At the time of analysis, 307 partially assembled S. epidermidis
genomes were publically available from NCBI Genbank. In
silico MLST identified 87 of these as ST2 isolates. Due to the

large number of genomes that were sequenced as part of
microbiome projects, a large proportion had poor sequencing
coverage and/or contained reads mixed with other species,

both of which resulted in questionable assemblies. Further-
more, some genomes represented other bacterial species

incorrectly classified as S. epidermidis. Using the outlined
selection/exclusion criteria, a curated list of 15 genomes from

three different projects [two published (Roach et al., 2015;
Walsh et al., 2015), one unpublished PRJNA246628] was

obtained (Table S1). To determine how the newly closed
BPH0662 isolate related to international ST2 strains, analysis
of these 15 representative, publically available, draft ST2

genomes together with the four existing complete S. epidermi-
dis genomes was performed using BPH0662 as a reference

(Fig. 5a). A maximum-likelihood core-SNP-based phylogeny
for these 20 strains was performed, aligned with their respec-

tive complete coding sequence content (pangenome analysis)
(Fig. 5b). Phylogenetically, the BPH0662 reference sits within
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the characterised, international ST2 S. epidermidis clade, with

an observed 559 median SNPs difference within the ST2

intragroup (Fig. 5c). The icaADBC operon was observed to be

present in all ST2 strains and RP62a, but none of the non-

human-host reference strains (Fig. 5b). Methicillin-resistance

determinant mecA, was present in 14 of the 15 ST2 clinical

comparators, with the exception of 642_SEPI.

Interestingly, five of the 15 international ST2 isolates grouped
closely to BPH0662 when coding sequence ortholog pres-
ence/absence was analysed by multidimensional scaling
(Fig. 5d). While the exact structures of these isolates could
not be determined from their draft assemblies, detailed analy-
ses of contigs of interest revealed that all five possessed over
27.5 kb of the BPH0662 type III SCCmec core region, span-
ning the class A mec, J2 region and ccrA3B3 (Fig. S2c). Due to
contig breaks corresponding with an IS431 insertion sequence
in the BPH0662 SCCmec, it is not known whether these five
isolates also possessed the same J3 region, with an integrated
pUB110. However, all but one (102_SEPI) contained pUB110
as a single contig. Intriguingly, the J1 region of three of the
isolates (1190_SEPI, 678_SEPI and 102_SEPI) spanned 15 kb
containing the full SepiBPH0662I type I RM system with
identical downstream genes to BPH0662 (Fig. S2a, c). Fur-
thermore, two of these isolates (1190_SEPI and 678_SEPI)
also possessed a 26 kb contig composed of the SepiBPH0662II
system associated with ccrC7, with identical intervening gene
arrangement as BPH0662 (Fig. S2c). A single isolate,
100_SEPI, possessed only the SepiBPH0662I system, in the
same position as BPH0662, adjacent to orfX. While 973_SEPI
contained only SepiBPH0662II (Fig. S2c). Despite similar
total content, the composite structure of these ST2 compara-
tors highlights the role of mobile elements in the translocation
and horizontal transfer of novel gene clusters.

Like BPH0662, these five ST2 isolates were all collected
from critically ill patients in intensive care (Roach et al.,
2015). In view of the gene content common to these strains,
including resistance determinants such mecA, aadD and aac

(6¢)-aph(2¢¢) together with the same type I RM systems, and
the circumstances in which they were collected, it could be
proposed that BPH0662 and the closely clustered isolates
may represent a successful hospital-adapted sublineage of
ST2. This reinforces the relevance of BPH0662 as a repre-
sentative ST2 strain and the potential applicability of the
constructed E. coli hosts for manipulation of international
ST2 S. epidermidis isolates.

Notably, RP62a, a ST10 strain frequently utilised as a refer-
ence isolate in S. epidermidis studies was observed to be par-
ticularly divergent from ST2 isolates based on median
pairwise SNP difference, with a predicted 10 8612 SNPs
between the groups (Fig. 5c). Furthermore, shared ortholog
clustering indicated that RP62a and the other three existing
reference genomes are divergent from ST2 isolates (Fig. 5d),
overall indicating that RP62a may not be the most appropri-
ate reference strain for studies of clinically relevant
phenotypes.

Conclusions

Evolving within the hospital environment, analysis of the
BPH0662 genome indicates that this isolate has undergone
chromosomal rearrangements and multiple horizontal gene
transfer events resulting in the accumulation of a broad
range of resistance determinants enabling its establishment
as a successful multidrug-resistant hospital clone. Further-
more, the likely role of S. epidermidis as a potential donor
species for the generation and transfer of resistance ele-
ments to other staphylococci is highlighted by the structure
of the BPH0662 genome, which contains multiple examples
of chimeric mobile genetic elements. As the first complete
genome of an ST2 S. epidermidis strain, BPH0662 provides
an ideal reference genome for future bioinformatic analysis
of clinical S. epidermidis isolates, which worldwide are dom-
inated by the ST2 lineage. Characterisation of the BPH0662
methylome, which has been demonstrated to be representa-
tive of the ST2 lineage internationally, and construction of
E. coli hosts that express the type I RM systems of BPH0662
will assist the development of molecular methods to bypass
the restriction barrier in clinical ST2 S. epidermidis isolates.
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