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ABSTRACT The stabilization problem of singular fractional-order systems with fractional commensurate
order 0 < α < 2 via static output feedback is studied in this paper. For the 0 < α < 1 case, two methods for
the static output feedback control design are provided. In the first method, the controller is designed without
decomposing the system matrix, and less variables are within the second method. Furthermore, a method
that is similar to the second method of the 0 < α < 1 case is provided for the 1 ≤ α < 2 case. The controller
parameters are computed by solving matrix inequalities, and efficient iterative algorithms are built to solve
the resultant matrix inequalities. Numerical examples are provided to show the effectiveness of the proposed
results.
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INDEX TERMS Singular fractional-order systems, linear matrix inequality (LMI), static output feedback,
iterative algorithm.

I. INTRODUCTION
In control theory, the static output feedback stabilization for
linear system which is one of the most attractive research
topics has important practical and theoretical values. Many
researchers have studied static output feedback problems for
a variety of types of systems [1]–[5]. Various ways of stabi-
lizing control design have been developed, among which a
successful approach is the LMI method. On the basis of LMI,
structured Lyapunov matrix method [4], two-step method [6],
and iterative algorithm [7] have been advanced.

Many complex dynamical systems, such as electromag-
netic systems [8], dielectric polarization [9], viscoelastic
systems [10], [11], can be represented by fractional-order sys-
tems. Considering the applicability in engineering science,
fractional-order systems have been attracted more attention
[12]–[14]. The stability and stabilization conditions have
been given for a continuous fractional-order systems with
fractional-order 0 < α ≤ 1 and 1 ≤ α < 2 [15]–[20].

Recently, some results on stability and stabilization
problems of fractional-order control systems have been
extended to singular fractional-order systems [21]–[29]. The
admissibility of singular fractional-order systems has been

investigated in [21]–[24]. For the stabilization of singular
fractional-order systems with order 0 < α < 2, the
Weierstrass canonical decomposition method is used in [25].
The normalization problem and the stabilization of singular
fractional-order systems as well as the uncertain case are
investigated in [26] and [27]. Necessary and sufficient con-
ditions of observer-based stabilization are presented in [28].
By using singular value decomposition, the results of sta-
bilization for uncertain fractional-order systems are derived
in [29]. In order to solve the related matrix inequalities more
effectively, an iterative algorithm is built in [30].

In this paper, we focus on the stabilization problem via
static output feedback for singular fractional-order systems.
Based on matrix inequalities, we propose controller design
methods without normalizing the singular matrix. We also
extend the methods to robust stabilization controller design
for uncertain singular fractional-order systems. The static
output feedback controllers are designed in terms of bilinear
matrix inequalities (BMI), and efficient algorithms are estab-
lished to deal with thesematrix inequalities. Numerical exam-
ples are provided to show the advantages of the proposed
results.
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The paper is organized as follows. In Section 2, we provide
the definition of fractional derivative, the problem formula-
tion and useful lemmas. In Section 3, the main results are
presented. Section 4 gives numerical examples to illustrate
our proposed results. Section 5 is the conclusion.
Notation: Throughout this paper, X−1 and XT denotes,

respectively, the inverse and the transpose of X . A > 0
(A < 0) denotes a positive definite (negative defi-
nite)symmetric matrix. sym{T } stands for T + T T . The sym-
metric term in a matrix is denoted by ∗. ⊗ is the Kronecker

product, 2=
[
sinα π2 − cosα π2
cosα π2 sinα π2

]
.

II. PROBLEM FORMULATION
In this paper, we use the Caputo fractional derivative
definition.
Definition 2.1 [12]: The Caputo derivative of order α for a

function f (t) is defined as:

Dαf (t) =
1

0(Z − α)

∫ t

0

f (Z )(s)
(t − s)α−Z+1

ds, (1)

where Z is a positive integer satisfying Z − 1 < α ≤ Z ,
and 0(·) is the Gamma function.
Consider the following unforced linear singular fractional-

order system:

EDαx(t) = Ax(t), 0 < α < 2, (2)

where x(t) ∈ Rn is the pseudo semi-state vector, A ∈ Rn×n

is the system matrix, E ∈ Rn×n is the system singular matrix
and rank(E) = m ≤ n, Dα denotes the Caputo derivative
operator. We denote system (2) with (E,A, α).
Definition 2.2 [23]: The triple (E,A, α) is called regular

if det(sαE − A) 6≡ 0. The triple (E,A, α) is called impulse
free if deg(det(sE − A)) = rank(E). The triple (E,A, α) is
called stable if all the roots of det(sαE − A) = 0 satisfy
|arg(spec(E,A, α))| > α π2 , where spec(E,A, α) is the spec-
trum of det(sαE−A) = 0. The system (2) is called admissible
if (E,A, α) is regular, impulse-free and stable.
The following lemmas are useful for the development.
Lemma 2.1 [22]: Suppose the triple (E,A, α) is reg-

ular. Then fractional-order singular system EDαx(t) =
Ax(t)with 0 < α < 1 is admissible, if and only if there exists

P = kX+Y ,X ,Y ∈ Rn×n,

[
X Y
−Y X

]
> 0, k = tan(απ2 ) and

Q ∈ R(n−m)×n such that

sym{APET + AE0Q} < 0, (3)

where E0 ∈ Rn×(n−m) is of full column rank and satisfies
EE0 = 0.
Regardless of the regularity of the triple (E,A, α), we can

always find nonsingular matrices M and N such that

MEN =
[
Im 0
0 0

]
, MAN =

[
A1 A2
A3 A4

]
. (4)

Lemma 2.2 [23]: The system EDαx(t) = Ax(t) with
0 < α < 1 is admissible if and only if there exist matrices

X1,X2 ∈ Rm×m, X3 ∈ R(n−m)×m and X4 ∈ R(n−m)×(n−m)

such that [
X1 X2
−X2 X1

]
> 0, (5)

sym{aMANX − bMANY } < 0, (6)

where

X =
[
X1 0
X3 X4

]
, Y =

[
X2 0
0 0

]
, (7)

m = rank(E), a = sin(απ2 ), b = cos(απ2 ),M ,N ∈ Rn×n are
arbitrary nonsingular matrices satisfying(4).
Lemma 2.3: The system EDαx(t) = Ax(t), 1 ≤ α < 2

is admissible if and only if there exist matrices P1 ∈ Rm×m,
P1 > 0, P2 ∈ R(n−m)×m and P3 ∈ R(n−m)×(n−m) such that

sym{2⊗MANP} < 0, (8)

where

P =
[
P1 0
P2 P3

]
, (9)

m = rank(E),M ,N ∈ Rn×n are arbitrary nonsingular
matrices satisfying(4).

Proof: The course of proof is similar to Lemma2.2
in [23], so it is omitted here.
Lemma 2.4 [31]: The following statements in (10) and (11)

are equivalent, and matrices�, F ,5, andW have appropriate
dimensions, [

� ∗

5+WFT −W −W T

]
< 0, (10)

� < 0, �+ F5+5TFT < 0. (11)

Lemma 2.5 [30]: There exists matrix G > 0 such that
the following statements in (12) and (13) are equivalent for
matrices �, F , and ϒ with appropriate dimensions,[

�− FGFT ∗

GFT + ϒ −G

]
< 0, (12)

�+ Fϒ + ϒTFT < 0. (13)

Consider the following singular fractional-order system:{
EDαx(t) = Ax(t)+ Bu(t)
y(t) = Cx(t),

(14)

and uncertain singular fractional-order system:{
EDαx(t) = (A+1A)x(t)+ Bu(t)
y(t) = Cx(t),

(15)

where 0 < α < 2 is the fractional commensurate order,
x(t) ∈ Rn, u(t) ∈ Rl and y(t) ∈ Rp are the state vector,
the control input vector and output vector, respectively.
A ∈ Rn×n, B ∈ Rn×l , C ∈ Rp×n are constant matrices,
E ∈ Rn×n is the system singular matrix with
rank(E) = m ≤ n. 1A is uncertainty and it is assumed that
1A = RFS, where R and S are known constant matrices,
F is unknown matrix satisfying FFT ≤ I .
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In this paper, we consider the static output feedback con-
troller for systems (14) and (15) as follows:

u(t) = Ky(t), (16)

where K ∈ Rl×p is the gain matrix. Then the closed-loop
control systems can be expressed, respectively, as

EDαx(t) = (A+ BKC)x(t), (17)

and
EDαx(t) = (A+ BKC + RFS)x(t). (18)

Our purpose is to find static output feedback controllers
such that the closed-loop control systems (17)–(18) are,
respectively, admissible and robust admissible.

III. MAIN RESULT
Here, we present the main results.
Theorem 3.1: If there exist matrix P ∈ {kX + Y ,

X ∈ Rn×n,Y ∈ Rn×n,

[
X Y
−Y X

]
> 0, k = tan(απ2 )} and

matricesK (i),1K ,U ,W andQwith appropriate dimensions,
such that

6(i) ,

611 ∗ ∗

621 −U ∗

631 1KT
−W −W T

 < 0, (19)

where
611 = sym

{
APET + AE0Q

}
− BUBT , (20)

621 = UBT + K (i)(CPET + CE0Q)+1KC, (21)

631 = CPET + CE0Q−W TC, (22)

and A,B,C,E0 are fixed matrices, then the closed-loop sys-
tem (17) with order 0 < α < 1 is admissible. And the output
feedback gain matrix can be obtained by

K = K (i)+1KW−T . (23)

Proof: If 6(i) < 0, by Lemma 2.4, it is equivalent to[
sym

{
APET + AE0Q

}
− BUBT ∗

UBT + K (i)(CPET + CE0Q)+1KC −U

]
+

[
0

1KW−T

] [
CPET + CE0Q−W TC 0

]
+
[
CPET+CE0Q−W TC 0

]T [ 0
1KW−T

]T
< 0,

that is[
sym

{
APET + AE0Q

}
− BUBT ∗

UBT + K (CPET + CE0Q) −U

]
< 0.

By Lemma 2.5, we obtain
sym{(A+ BKC)PET + (A+ BKC)E0Q} < 0.

By Lemma 2.1, (17) is admissible, which completes the
proof.
Remark 3.1: The methods in [26] and [27] normalize the

singular matrix firstly, then design controllers for the normal
systems. Theorem 3.1 presents a stabilizing design method
for the fractional-order singular system without normalizing
the singular matrix.

Remark 3.2: To deal with BMI in Theorem 3.1, we let
K = K (i) + 1KW−T , and introduce the slack matrix W to
reduce the conservatism. When K (i) is fixed, 6(i) becomes
LMI. Next we will introduce an iterative method in which,
in each iteration, a newK (i) is generated to be the initial value
for the next iteration. This is an effective way to get the gain
matrix.

To deal with the BMI in Theorem 3.1, the following
LMI-based algorithm is constructed.
Algorithm 3.1:
Step 1: Set K (i) = 0. Solve the following optimization

problem OP1 with respect to matrices P,1K ,U ,W ,Q and ε.

(OP1) : min ε

s.t. 6(i) < ε,

Let K = 1KW−T . If ε < 0, stop, and K is the gain matrix.
Else, set i = 0, K (0) = K .
Step 2: Solve OP1 with respect to matrices P, 1K , U , W ,

Q and ε.
Step 3: Set K (i+ 1) = K (i)+1KW−T .
If ε < 0, stop, and K = K (i + 1) is the gain matrix. Else,

if ε is smaller than ε (a prescribed tolerance), that means the
algorithm fails finding out the gain matrix. Else, let i = i+1,
and go to Step 2.

On the basis of Lemma 2.2, we propose the following
theorem with less variables than Theorem 3.1.
Theorem 3.2: For the singular fractional system (14), there

exists an output feedback controller (16) such that the closed-
loop system (17) with order 0 < α < 1 is admissible, if there
exist K (i), 1K , U and W with appropriate dimensions, and
X ,Y ∈ Rn×n, such that

�(i) ,

�11 ∗ ∗

�21 −U ∗

�31 1KT
−W −W T

 < 0, (24)

where

�11 = sym {MAN (aX − bY )} −MBUBTMT , (25)

�21 = UBTMT
+ K (i)CN (aX − bY )+1KC, (26)

�31 = CN (aX − bY )−W TC, (27)

and matrices X ,Y are constructed as in Lemma 2.2, the gain
matrix K = K (i)+1KW−T .

Proof: The proof is analogous to that of Theorem 3.1,
and it is omitted here.

To deal with the BMI in Theorem 3.2, we have the follow-
ing Algorithm 3.2.
Algorithm 3.2:
Step 1: Set K (i) = 0. Solve the following optimization

problem (OP2) with respect to matrices X , Y , 1K , U , W
and ε.

(OP2) min ε

s.t. �(i) < ε,

Let K = 1KW−T . If ε < 0, stop, and K is the gain matrix.
Else, set i = 0, K (0) = K .
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Step 2: Solve OP2 with respect to matrices X , Y , 1K ,
U , W and ε.
Step 3: Set K (i+ 1) = K (i)+1KW−T .
If ε < 0, stop, and K = K (i + 1) is the gain matrix. Else,

if ε is smaller than ε (a prescribed tolerance), that means the
algorithm fails finding out the gain matrix. Else, let i = i+1,
and go to Step 2.
Remark 3.3: The matrices M and N satisfying (4 ) can be

easily obtained by using the function reff in MATLAB. The
inequalities in Theorem 3.2 contain less variables than those
in Theorem 3.1, so its related computational complexity is
reduced.

In order to study the static output feedback stabilization
for the uncertain singular fractional-order system, we have
the following theorem.
Theorem 3.3: If there exist matrices X , Y ,K (i),1K ,U and

W with appropriate dimensions and real scalar ε > 0, such
that

4(i) ,


411 ∗ ∗ ∗

421 −U ∗ ∗

431 1KT
−W −W T

∗

441 0 0 −εI

 < 0, (28)

where

411 = sym {MAN (aX − bY )} −MBUBTMT

+ εMRRTMT , (29)

421 = UBTMT
+ K (i)CN (aX − bY )+1KC, (30)

431 = CN (aX − bY )−W TC, (31)

441 = SN (aX − bY ), (32)

matrices A,B,C,R,L are fixed, X ,Y are constructed as in
Lemma 2.2, then the closed-loop system (18) with order
0 < α < 1 is robust admissible. And the output feedback
gain matrix can be obtained by

K = K (i)+1KW−T . (33)

Proof: By Lemma2.2, the system (18) is robust admissi-
ble if and only if there exist matrices X and Y are constructed
as in Lemma 2.2, such that

sym{M (A+ BKC +1A)N (aX − bY )} < 0. (34)

By applying the inequality

HTV + V TH ≤ εHTH +
1
ε
V TV , (35)

H and V are arbitrary matrices and FFT ≤ I ,

sym{M1AN (aX − bY )}

≤ εMRRTMT
+
1
ε
(aX − bY )TNT ST SN (aX − bY ). (36)

That is, if

sym{M (A+ BKC)N (aX − bY )} + εMRRTMT

+
1
ε
(aX − bY )TNT ST SN (aX − bY ) < 0, (37)

then the closed-loop system (18) is robust admissible.
By Lemma 2.4, Lemma 2.5 and Schur complement, the
inequality (37) is equivalent to (28).

To deal with the BMI in Theorem 3.3, we propose the
following Algorithm 3.3.
Algorithm 3.3:
Step 1: Set K (i) = 0. Solve the following optimization

problem (OP3) with respect to matrices X , Y , 1K , U , W
and τ , ε.

(OP3) min ε

s.t. 4(i) < ε,

Let K = 1KW−T . If ε < 0, stop, and K is the gain matrix.
Else, set i = 0, K (0) = K .
Step 2: Solve OP3 with respect to matrices X , Y , 1K , U ,

W and τ , ε.
Step 3: Set K (i+ 1) = K (i)+1KW−T .
If ε < 0, stop, and K = K (i + 1) is the gain matrix. Else,

if ε is smaller than ε (a prescribed tolerance), that means the
algorithm fails finding out the gain matrix. Else, let i = i+1,
and go to Step 2.
Remark 3.4: For solving static output feedback stabiliza-

tion problem, the controller design in [29] requires additional
constraints, that increases the conservatism, as explained in
Example 4.2.
For the 1 ≤ α < 2 case, with the stable condition in

Lemma 2.4, we have the following theorem.
Theorem 3.4: If there exist matrices P,1K , U , W with

appropriate dimensions, such that

5(i) ,

511 ∗ ∗

521 −I ⊗ U ∗

531 I ⊗1KT I ⊗ (−W −W T )

 < 0,

(38)

where

511 = sym {2⊗MANP} − I ⊗MBUBTMT , (39)

521 = 2
T
⊗ UBTMT

+I ⊗ [K (i)CNP+1KC], (40)

531 = I ⊗ (CNP−W TC), (41)

and matrix P is constructed as in Lemma 2.3, then
closed-loop system (17) is admissible, the gain matrix
K = K (i)+1KW−T .
The proof course is similar to that of Theorem 3.1, so it is

omitted here. The corresponding algorithm which solves the
BMI in Theorem 3.4 is similar to Algorithm 3.1
For the uncertain singular fractional-order system with

1 ≤ α < 2, we have the following corollary.
Corollary 3.5: If there exist matrices P,1K , U , W with

appropriate dimensions real scalar ε > 0, P is constructed as
in Lemma 2.3, such that

ϒ(i) ,


ϒ11 ∗ ∗ ∗

ϒ21 −I ⊗ U ∗ ∗

ϒ31 ϒ32 ϒ33 ∗

ϒ41 0 0 −εI

 < 0, (42)
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FIGURE 1. State curves for Example 4.1 without controller.

where

ϒ11 = sym {2⊗MANP} (43)

+I ⊗ (−MBUBTMT
+ εMRRTMT ), (44)

ϒ21 = 2
T
⊗ UBTMT

+I ⊗ [K (i)CNP+1KC], (45)

ϒ31 = I ⊗ (CNP−W TC), ϒ32 = I ⊗1KT , (46)

ϒ33 = I ⊗ (−W −W T ), ϒ41 = I ⊗ SNP, (47)

then the closed-loop system (18) is robust admissible and the
gain matrix K = K (i)+1KW−T .

IV. NUMERICAL EXAMPLES
In this section, three numerical examples are presented to
verify our proposed results.
Example 4.1: Consider the system (14) with parameters:

α = 0.5, and

E =

 1 0 0
0 1 2
1 0 0

, A =

−1.8 −1 1
1 0.5 1
1 1 0

 ,
B =

 0 1
1 0
1 1

, C =
[
1 1 0
1 0 1

]
. (48)

Obviously, the system is not admissible. Setting the initial
states x0 = (0.6,−0.35, 0.45), the simulation result is shown
in Figure 1. The method in [27] fails to find the controller.

In order to use Theorem 3.1, let E0 =

 0
2
−1

 satisfying

EE0 = 0. By Algorithm 3.1, after 3 iterations, the gain matrix
can be found as

K =
[
−1.0935 −0.0857
−0.9231 −2.9448

]
. (49)

The simulation result (Figure 2) shows that the closed-loop
control system (17) with controller (16) is asymptotically sta-
ble. Furthermore, the method in Theorem 3.2 is also feasible
to design the controller.

FIGURE 2. State curves for Example 4.1 with controller.

Example 4.2: Consider system (15) with parameters:
α = 0.8, and

E =

 1 0 0
1 1 −1
0 0 0

, A =

−1.1 0 1
0.9 −1 1.1
4.8 1.2 −2.3

,
B =

 1
0.9
0

, C =

 1.1 0 2
1.1 −1 0.9
1 1 1

,
R =

 0.19 0.42 0.5
0.28 0.21 0.1
0.19 0.38 0.58

,
S =

 0.28 0.31 0.15
0.11 0.32 0.43
0.11 0.28 0.42

. (50)

We can’t find a feasible solution for Example 4.2 by using the
method in [29]. In order to use Theorem 3.3, we can get M
and N satisfying (4) by using the function reff in MATLAB.

M =

 1 0 0
−1 1 0
0 0 1

, N =

 1 0 0
0 0 1
0 −1 1

. (51)

Solving the LMI in Algorithm 3.3, we obtain the gain matrix

K =
[
−0.0951 −0.2992 −0.7455

]
, (52)

which stabilizes the system in Example 4.2. Setting the
initial states x0 = (−0.35, 0.18,−0.19), when F =

diag{sin(0.1π ), cos(0.2π ), sin(0.1π )}, the simulation result
(Figure 3) shows that the closed-loop control system (18)with
controller (16) is asymptotically stable.
Example 4.3: Consider a normal system (14) with E = I ,

parameters: α = 1.2, and

A =
[
0 −3
5 1

]
, B =

[
1
−1

]
, C =

[
1 0

]
. (53)

This system is open-loop unstable. The static output feed-
back stabilization method in of [16, Th. 3.7] requires that
CP = P̄C, P > 0 for some P̄, and this restriction leads to the
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FIGURE 3. State curves for Example 4.2 with controller.

FIGURE 4. State curves for Example 4.3 with controller.

matrix P being a diagonal matrix. The method is infeasible
for this system because 811 = 822 therein are not negative
definite. By the result in Theorem 3.4, the system can be
stabilized with static output feedback control and the gain
matrix K = −4.0009. Simulation result (Figure 4) with the
initial states x0 = (0.8,−0.6) confirms the effectiveness of
the method.

V. CONCLUSION
The stabilization problem via static output feedback control
of the singular fractional-order systems has been investigated.
The output feedback gain matrix can be obtained by solving
matrix inequalities. Effective algorithms are built to compute
the relevant matrix inequalities. Numerical examples are pro-
vided to show the effectiveness of the proposed results.
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