
Distance-Preserving Mapping with Euclidean
Distance for 4-ary PAM

Thokozani Shongwe
Department of Electrical and

Electronic Engineering Technology,
University of Johannesburg,

P.O. Box 17011, Doornfontein, 2028,
Johannesburg, South Africa
Email: tshongwe@uj.ac.za

Theo G. Swart
Department of Electrical and

Electronic Engineering Science,
University of Johannesburg,

P.O. Box 524, Auckland Park, 2006,
Johannesburg, South Africa

Email: tgswart@uj.ac.za

Hendrik C. Ferreira
Department of Electrical and

Electronic Engineering Science,
University of Johannesburg,

P.O. Box 524, Auckland Park, 2006,
Johannesburg, South Africa
Email: hcferreira@uj.ac.za

Abstract—In this article we give: (a) a new construction for
mapping binary sequences to permutation sequences formed
from a 4-PAM constellation, and call the resulting codebooks
mappings; (b) a metric for assessing the performance of
mappings from our construction; (c) performance results
comparing mappings from our construction against the con-
ventional mappings in the literature. The results show that our
mappings outperform the conventional mappings. Against
conventional soft-decision decoded 4-PAM, our mapping
showed 2.4 dB and 3.2 dB improvement over (R = 1/3,
K = 4, dfree = 10) and (R = 1/3, K = 3, dfree = 6)
convolutional codes, respectively.

Index Terms—Distance-preserving mappings, Hamming
distance, Euclidean distance, Pulse Amplitude Modulation.

I. INTRODUCTION

Distance-preserving mapping (DPM) is not a new topic,
it was investigated in 1989 by Ferreira et al. [1]. Ferreira et
al. [1] mapped a binary convolutional code to a runlength
constrained or balanced trellis code. The mapping was such
that the free distance of the convolutional code was pre-
served or increased in the resulting runlength constrained
or balanced trellis code.

In [2], [3] and [4] the authors considered convolutional
codes mapped to permutation codes of length M . In
the mapping, n-tuples taken from the output of a binary
convolutional encoder were mapped to M -tuples of a
permutation code such that the Hamming distance of
the n-tuples was preserved in the M -tuple permutation
codewords. The permutation codes constructed this way
were termed permutation trellis codes. By “preserving the
Hamming distance” of the n-tuples, the authors meant
that the Hamming distance was either kept the same or
increased in the M -tuple permutation codewords. Preserv-
ing the Hamming distances in the M -tuple permutation
codewords meant that the error correcting capabilities of
the permutation code was as good as (or better than)
the corresponding binary codes (from which they were
mapped).

The previous work on mapping binary sequences to
permutation sequences dealt with creating mappings (sets
of sequences) that preserve the Hamming distances of
the corresponding binary sequences (see [1] – [8]). These

types of mappings were termed Distance-Preserving Map-
pings (DPMs). By “a mapping” we mean the set of
sequences (codebook) resulting from the DPM procedure,
which maps binary n-tuples to non-binary M -tuples. In
this article we make use of the DPM procedure in [8],
of mapping binary n-tuples to permutation M -tuples, to
develop a new way of mapping that can be used in M -
ary PAM (Pulse Amplitude Modulation). We shall consider
the case of M = 4 (4-PAM). Work that studied DPMs and
PAM was presented in [9]. However, that work discussed
the generation of PAM signals with spectral nulls and
only considered the Hamming distance, which makes the
mapping methods used in [9] different from the methods
used in this article. The encoding process of the mappings
generated from a PAM constellation can be the same as
that of the permutation trellis codes in [3] shown by Fig.
1.

n-tuples
information

DPM
procedure

Convolutional
encoder

k-tuples

Permutation

M -tuples
codewords

Fig. 1. Encoding process, converting n-tuples from the convolutional
encoder into M -tuples, which are permutation sequences.

II. DISTANCE-PRESERVING MAPPING PROCEDURE

We first give a brief background discussion about DPMs
and the algorithm used to generate DPMs in the next
subsection. Then, in Section II-B, we give our new way of
generating DPMs which considers the Euclidean distance.

A. Hamming distance to Hamming distance DPM

The existing mapping of binary n-tuples to permutation
M -tuples in the literature considers permutations of the set
A = {1, 2, . . . ,M}, where the elements of A are permuted
according to unique binary n-tuples ([3], [4] and [8]). We
use the following DPM algorithm found in [8], together
with Example 1 to illustrate the DPM procedure.

Distance-Preserving Mapping algorithm: A binary
sequence (x1, x2, . . . , xn) is mapped to the permutation
sequence (y1, y2, . . . , yM ). Let swap (yi,yj) denote the
swapping of symbols yi and yj in a sequence.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Johannesburg Institutional Repository

https://core.ac.uk/display/186354498?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Let n = 3 and M = 4. Then the (n = 3) → (M = 4)
DPM algorithm is defined as follows:

Input: (x1, x2, x3)

Output: (y1, y2, y3, y4)

begin

(y1, y2, y3, y4)← (1, 2, 3, 4)

if x3 = 1 then swap(y2, y4)

if x2 = 1 then swap(y1, y2)

if x1 = 1 then swap(y3, y4)

end.

Example 1 By applying the (n = 3) → (M = 4) DPM
algorithm we obtain:

{000, 001, 010, 011, 100, 101, 110, 111} →
{1234, 1432, 2134, 4132, 1243, 1342, 2143, 2341}. (1)

As was done in [4], we set up the Hamming distance
matrices for the binary sequences and the permutation
sequences which are D = [dij ] and E = [eij ], respectively,
for the mapping in (1) as follows:

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

D =

000
001
010
011
100
101
110
111



0 1 1 2 1 2 2 3
1 0 2 1 2 1 3 2
1 2 0 1 2 3 1 2
2 1 1 0 3 2 2 1
1 2 2 3 0 1 1 2
2 1 3 2 1 0 2 1
2 3 1 2 1 2 0 1
3 2 2 1 2 1 1 0


,

12
34

14
32

21
34

41
32

12
43

13
42

21
43

23
41

E =

1234
1432
2134
4132
1243
1342
2143
2341



0 2 2 3 2 3 4 4
2 0 3 2 3 2 4 4
2 3 0 2 4 4 2 3
3 2 2 0 4 3 3 4
2 3 4 4 0 2 2 3
3 2 4 3 2 0 3 2
4 4 2 3 2 3 0 2
4 4 3 4 3 2 2 0


.

Note that dij and eij are the entries of D and E, respec-
tively. 2

In general, the matrices D and E can be used to verify
the distance-preserving property of DPMs, that is, the
corresponding distance entries in E are at least as large
as the ones in D (eij ≥ dij) for i, j = 1, 2, . . . , 2n as can
be seen in Example 1.

In [8], the sum of Hamming distances of E, where all
the entries in E are summed up (

∑2n

j=1

∑2n

i=1 eij) was used
to determine the distance optimality of distance-preserving
mappings. The higher the sum of Hamming distances of
E, the better the mapping in terms of error correcting
capabilities.

B. Hamming distance to Euclidean distance DPM
Our new mapping procedure maps the 2n binary

n-tuples to permutation M -tuples taken from a set,
A = {−M + 1,−M + 3, . . . ,−1,+1, . . . ,M − 3,M −
1}, for M even; A = {(−M + 1)/2, (−M +
3)/2, . . . ,−1, 0,+1, . . . , (M − 3)/2, (M − 1)/2}, for M
odd. In this article, we will focus the application of our
new mapping procedure to the case of M = 4, that is
A = {−3,−1,+1,+3}. Now, instead of the Hamming
distance metric we will use the Euclidean distance metric
for our E matrix. However, we still consider the Hamming
distance for our D matrix.

Our goals are to: (a) “preserve” the D distances in E,
that is eij ≥ dij , and (b) make sure that the maximum
Euclidean distances are on the minor diagonal of E. Goals
(a) and (b) are a systematic way to guarantee that the map-
pings are distance-preserving, and optimal (or sub-optimal,
if not optimal). Since we are now dealing with different
distance metrics in D and E to assess the mappings, we
propose the use of a sum of the product of distances
(SOPD) of D and E, which is

∑2n

j=1

∑2n

i=1 dij × eij ,
where dij and eij denote the entries of D and E, respec-
tively. The higher the SOPD, the better the mapping. We
will later give justification for the use of SOPD as measure
of the performance for our mappings, in Section IV.

We use the following observation and knowledge to
achieve goals (a) and (b): to achieve goal (a), note that
the existing mapping mentioned in (1) builds/increases the
Hamming distance between the permutation sequences by
swapping the positions of the permutation sequence ac-
cording to the corresponding binary sequence. In our new
set A, building/increasing the Hamming distance implies
building/increasing the Euclidean distance. To achieve
goal (b), we observe that for a given permutation sequence,
Pk (k = 1, 2, . . . ,M !) from the set of M ! permutation se-
quences, there can only be one permutation sequence with
which it can give the maximum Euclidean distance. That
permutation sequence is the one that whose symbols are
the complements of the symbols of Pk, which we denote
by P̄k. For example, for M = 4, A = {−3,−1,+1,+3},
if Pk = +1 −1 +3 −3, then P̄k = −1 +1 −3 +3.

To achieve goal (a), we apply the DPM algorithm pre-
sented earlier to obtain the first half of the permutation se-
quences with symbols taken from A = {−3,−1,+1,+3}.
To illustrate this we use the mapping in Example 1 and
obtain:

{000, 001, 010, 011} →
{−3 −1 +1 +3,−3 +3 +1 −1,−1 −3 +1 +3,+3 −3 +1 −1},

or
{000, 001, 010, 011} → {P1, P2, P3, P4}

in short notation. Then the other half of the permutation
sequences will be the mirrored opposites of the first half of
the permutation sequences, hence achieving goal (b). This
results in the complete DPM, which we call DPM1 as:

DPM1 : {000, 001, 010, 011, 100, 101, 110, 111} →
{−3 −1 +1 +3,−3 +3 +1 −1,−1 −3 +1 +3,+3 −3 +1 −1,
−3 +3 −1 +1,+1 +3 −1 −3,+3 −3 −1 +1,+3 +1 −1 −3},



or

{000, 001, 010, 011, 100, 101, 110, 111} →
{P1, P2, P3, P4, P̄4, P̄3, P̄2, P̄1}.

Note that the third symbol in the first half of the permu-
tation sequences is the same, due to the DPM algorithm.
This is used here to guarantee that Pk and P̄k do not appear
together in the first half of the permutation sequences. The
E matrix of Euclidean distances for DPM1 is

E =



0 5.7 2.8 7.5 4.9 8.5 6.9 8.9
5.7 0 7.5 8.5 2.8 4.9 8.9 6.9
2.8 7.5 0 5.7 6.9 8.9 4.9 8.5
7.5 8.5 5.7 0 8.9 6.9 2.8 4.9
4.9 2.8 6.9 8.9 0 5.7 8.5 7.5
8.5 4.9 8.9 6.9 5.7 0 7.5 2.8
6.9 8.9 4.9 2.8 8.5 7.5 0 5.7
8.9 6.9 8.5 4.9 7.5 2.8 5.7 0


.

(2)
Using the D matrix in Example 1 we obtain the SOPD for
DPM1, which is 665.4580. By computer search, we found
the highest SOPD to be 665.4580 and DPM1 attains this
SOPD.

In general, the mappings we are creating are of the
form {P1, P2, . . . , P2n/2, P̄2n/2, . . . , P̄2, P̄1}, where the
first half of this set, {P1, P2, . . . , P2n/2} is obtained using
a DPM algorithm that guarantees that Pk and P̄k do not
appear in that set.

For comparison purposes, we use the DPM algorithm
applied in Example 1 without modification, to obtain a
mapping using the set A = {−3,−1,+1,+3}. This results
in a mapping, which we call DPM2 as:

DPM2 : {000, 001, 010, 011, 100, 101, 110, 111} →
{−3 −1 +1 +3,−3 +3 +1 −1,−1 −3 +1 +3,+3 −3 +1 −1,
−3 −1 +3 +1,−3 +1 +3 −1,−1 −3 +3 +1,−1 +1 +3 −3},

which has the E matrix of Euclidean distances

E =



0 5.7 2.8 7.5 2.8 4.9 4.0 6.9
5.7 0 7.5 8.5 4.9 2.8 6.9 4.0
2.8 7.5 0 5.7 4.0 6.3 2.8 7.5
7.5 8.5 5.7 0 6.9 7.5 4.9 6.3
2.8 4.9 4.0 6.9 0 2.8 2.8 4.9
4.9 2.8 6.3 7.5 2.8 0 4.9 2.8
4.0 6.9 2.8 4.9 2.8 4.9 0 5.7
6.9 4.0 7.5 6.3 4.9 2.8 5.7 0


.

(3)
Using the D matrix in Example 1 we obtain the SOPD

for DPM2, which is 531.5264. It can be seen that the SOPD
for DPM2 is lower than that for DPM1 which is 665.4580.
We will show the significance of this difference in SOPD
in Section IV.

III. SYSTEM MODEL

The system model to be used for the simulation of
mappings is described in Fig 3. The system employs a
convolutional code of rate R = k/n, constraint length
K and free-distance dfree, and an M -PAM modulator as
follows: at point a the system takes in information bits
in k-tuples, and produces n bits for every k information

bit, at point b. Every n-tuple of bits is mapped to an M -
tuple permutation codeword by the DPM procedure. The
permutation codewords at point c are of length M taken
from an M -PAM constellation. The receiver accepts sym-
bols corrupted by AWGN (additive white Gaussian noise)
at point d. Then the symbols are demodulated, resulting in
a stream of noise-corrupted permutation codewords (taken
from an M -PAM constellation) at point e. The decoder
takes in the received symbols at point e in M -tuples,
and performs soft-decision decoding using the Viterbi
algorithm to produce an estimate of the information bits
at point f . For the soft-decision decoding, every received
M -tuple is compared with M -tuples on the branches of
the trellis using the squared Euclidean distance. The M -
tuples on the branches of the trellis are the codewords of
the mapping. In Figure 2 we used the codewords (4-tuples)
of DPM1 and a convolutional code of R = 1/3, K = 4,
dfree = 10 to illustrate how the 4-tuples appear on the
branches of the trellis. The circled numbers (0 to 7) are
the states of the decoder.

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

-3 -1 1 3

-3 -1 1 3

3 1 -1 -3
3 1 -1 -3

3 -3 -1 1

-3 3 1 -1

-3 3 1 -1

3 -3 -1 1

-1 -3 1 3

1 3 -1 -3

1 3 -1 -3

-1 -3 1 3

3 -3 1 -1

-3 3 -1 1
-3 3 -1 1

3 -3 1 -1

Fig. 2. Trellis diagram for the R = 1/3, K = 4, dfree = 10
convolutional code with codewords from DPM1 on the branches.

The 4-tuples on the branches of the trellis are the
codewords of the mapping, hence this step of the decoding
process is equivalent to comparing the received 4-tuple
with each of the codewords of the mapping to find the
codeword that was transmitted.

IV. PERFORMANCE RESULTS

In addition to DPM1 and DPM2, we introduce DPM3,
DPM4, DPM5 and DPM6. DPM3, DPM4, DPM5 and
DPM6 are as follows:



n-tuples

Information

DPM
procedure

Convolutional
encoder

k-tuples

Permutation

M -tuples
codewords

a cb

de

AWGN

f

Convolutional
decoder

Noise-corrupted

codewords

Information
bits Permutation

bits

k-tuples

Demodulator
M -PAM

M -PAM
Modulator

Fig. 3. System model used for the simulations.

Fig. 4. Performance comparison results of six different mappings:
DPM1, DPM2, DPM3, DPM4, DPM5 and DPM6. Uncoded 4-PAM
and convolutional encoded soft-decision decoded 4-PAM results are also
displayed. An (R = 1/3, K = 4, dfree = 10) convolutional code was
used.

DPM3 : {000, 001, 010, 011, 100, 101, 110, 111} →
{−3 −1 +1 +3,−3 −1 +3 +1,−3 +1 −1 +3,−3 +1 +3 −1,
−1 −3 +3 +1,−1 −3 +1 +3,−1 +1 −3 +3,−1 +1 +3 −3},

DPM4 : {000, 001, 010, 011, 100, 101, 110, 111} →
{−3 −1 +1 +3,+1 −1 −3 +3,−3 +3 +1 −1,+1 +3 −3 −1,
−1 −3 +1 +3,+1 −3 −1 +3,−1 +3 +1 −3,+1 +3 −1 −3},

DPM5 : {000, 001, 010, 011, 100, 101, 110, 111} →
{−3 −1 +1 +3,−3 +3 +1 −1,−1 −3 +1 +3,+3 −3 +1 −1,
−3 +3 −1 +1,+1 +3 −1 −3,+3 +1 −1 −3,+3 −3 −1 +1},

DPM6 : {000, 001, 010, 011, 100, 101, 110, 111} →
{−3 +3 +1 −1,−3 −1 +1 +3,+3 −3 +1 −1,−1 −3 +1 +3,

+1 +3 −1 −3,−3 +3 −1 +1,+3 +1 −1 −3,+3 −3 −1 +1}.

These new mappings, DPM3, DPM4, DPM5 and DPM6

were constructed as follows: DPM3 and DPM4 were con-
structed using the type of DPM algorithm used for DPM2,
but these algorithms are different from the one specifically
used to generate DPM2. DPM5 was constructed by simply
interchanging the positions of the last two permutation

sequences in DPM1. DPM6 was constructed using our new
construction of DPMs, similary to DPM1. To verify that
the mappings are distance-preserving, the reader can create
the D and E matrices for each mapping as was done in
Example 1.

Before we give simulation results for all the mappings
(DPM1–DPM6), we discuss the use of SOPD as a perfor-
mance measure. Given a fixed, positive number, say N , the
conventional way to measure the improvement from N to
another number, say Ni (where Ni ≥ N ) is to find the
difference between the two numbers, Ni −N . The larger
the difference, the larger the improvement. Another way of
finding the improvement from N to Ni would be to find
the product of the two numbers, N × Ni. The larger the
product, the larger the improvement.

The measure of the performance of the mappings is
captured in the relationship between the corresponding
elements of the D and E matrices. As mentioned in the
definition of a DPM, the distances (or elements) in the
E matrix should be at least as large as the corresponding
distances in the D matrix. To compare the improvement
from one distance (D distances) to the other distance (E
distances), we can either subtract the two corresponding
distances and pay attention to the value of their difference
or multiply the two corresponding distances and pay atten-
tion to the value of their product. We need to remember that
the D matrix will be the same for different E matrices.
For example, D × E1 and D × E2 which are element-
wise multiplication, can be compared because in each case
we are multiplying the elements of an E matrix with
fixed elements of a D matrix. After performing either a
subtraction or multiplication of the D and E matrices, a
new matrix is obtained which is the difference of distances
(DD) or product of distances (PD), respectively. Summing
up the entries of the DD or PD matrix we obtain a value
which we call the sum of difference of distance (SODD)
or sum of product of distances (SOPD), respectively. The
SOPD is maximised when a large value is multiplied by
another large value in the D and E matrices. Whereas the
SODD is maximised when the two entries being subtracted
are very different in value, that is a large value minus a
small value. We observed that for the viterbi decoder to
give good performance, the larger distance in the D matrix
must correspond to a larger distance value in the E matrix;
the smaller distance in the D matrix must correspond to a
smaller distance value in the E matrix. This is equivalent
to keeping the original distances arrangement of the trellis
unchanged and only scaling the values of the distances
for better performance. This is best captured by a SOPD
metric instead of a SODD metric.

Fig. 4 shows the simulation results comparing the
following: the six different mappings (DPM1–DPM6);
uncoded 4-PAM; the theoretical bound on conventional
soft-decision decoding of 4-PAM where the (R = 1/3,
K = 4, dfree = 10) convolutional code is employed.
The mappings (DPM1 and DPM6) obtained from our new
construction have equal performance and their performance



is the best against all other mappings. Our mappings,
DPM1 and DPM6 also show a 5.5 dB coding gain when
compared with the conventional soft-decision decoding of
the (R = 1/3, K = 4, dfree = 10) convolutional coded
data.

From Fig. 4 it can be seen that the higher the SOPD,
the better the mapping’s performance. This shows that the
SOPD is a good metric for judging the performance of the
mappings. However, when considering the SODD in Table
I and the corresponding performance results in Fig. 4 of
the mappings, it is evident that the SODD cannot be used
to judge the performance of the mappings.

Looking at the E matrices for DPM1 and DPM2 in
(2) and (3), respectively we can see that the minimum
Euclidean distance is the same, 2.8. It is interesting that
even though DPM1 and DPM2 have the same minimum
Euclidean distance, their performance in Fig. 4 is different.
This difference in performance is due to their different
SOPD.

TABLE I
MAPPINGS AND THEIR SUM OF DISTANCES: SUM OF THE HAMMING
DISTANCES OF E , SUM OF THE EUCLIDEAN DISTANCES OF E AND

SUM OF THE PRODUCT OF DISTANCES FROM D AND E (SOPD).

Mapping Sum of the Sum of the Sum of the Sum of the
Hamming Euclidean difference of product of
Distances Distances distances distances

(SODD) (SOPD)
DPM1 168 361.8 265.8 665.5
DPM2 162 290.2 194.2 531.5
DPM3 156 283.8 187.3 506.8
DPM4 160 347.9 251.9 650.5
DPM5 168 361.8 265.8 647.1
DPM6 168 361.8 265.8 665.5

The sum of the Hamming distances of the E matrices
was considered as a metric for assessing the performance
of the mappings in [8], and was found to be a good
metric. The same idea can be applied to the mappings in
this article to obtain the sum of the Euclidean distances
of the E matrices. However, the sum of the Euclidean
distances of E fails to capture the performance of the
mappings (that are using the Euclidean distances in their
E matrices). This failure of the sum of the Euclidean
distances of E as a metric for judging the performance
of the mappings is evident when looking at the sum of the
Euclidean distances of the E matrices of DPM1 and DPM5

in Table I, together with the performances of DPM1 and
DPM5 in Fig. 4. DPM1 and DPM5 have the same sum of
Euclidean distances, 361.8, but Fig. 4 shows that DPM1

performs better than DPM5.
To further show the consistency of the SOPD as a metric

for assessing the performance of DPMs, we present other
performance results in Fig. 5, where we use a different
convolutional code (R = 1/3, K = 3, dfree = 6) than the
one used for the results in Fig. 4. The system set-up in
Fig. 5 is the same as the one used to get the results in Fig.
4; the only thing that was changed was the convolutional
code.

Fig. 5. Performance comparison results of four different mappings:
DPM1, DPM2, DPM3 and DPM4. Uncoded 4-PAM and convolutional
encoded soft-decision decoded 4-PAM results are also displayed. An
(R = 1/3, K = 3, dfree = 6) convolutional code was used.

In Fig. 5 we have used a subset of the mappings used for
Fig. 4, and the same trend of performance as in Fig. 4 is
observed. We show results for only DPM1, DPM2, DPM3

and DPM4 because they suffice to show the relationship
between the performance of the mappings and SOPD.

V. CONCLUSION

A distance-preserving mapping construction for map-
ping binary sequences to permutation sequences for 4-
PAM constellation was presented. A mapping from our
construction was presented and resulted in the best per-
formance compared to mappings from the conventional
DPM procedure. We have shown that the sum of the
product of distances (SOPD) is a good metric for assessing
the performance of the mappings. We have also shown
that both the sum of the Euclidean distances and the
minimum Euclidean distance are not appropriate metrics
for assessing the performance of mappings. Having found
mappings that outperform conventional mappings, we still
need to find a general construction for M -ary PAM and
proof that mappings from our construction are optimal.

REFERENCES

[1] H. C. Ferreira, D. A. Wright, and A. L. Nel, “Hamming distance
preserving mappings and trellis codes with constrained binary sym-
bols,” IEEE Transactions on Information Theory, vol. 35, no. 5, pp.
1098–1103, Sept. 1989.

[2] H. C. Ferreira and A. J. H. Vinck, “Interference cancellation with
permutation trellis codes,” in Proceedings of the 2000 IEEE Vehicular
Technology Conference, Boston, MA, USA, Sept. 24–28, 2000, pp.
2401–2407.

[3] A. J. H. Vinck and H. C. Ferreira, “Permutation trellis codes,” in Pro-
ceedings of the 2001 IEEE International Symposium on Information
Theory, Washington, DC, USA, June 24–29, 2001, p. 279.

[4] H. C. Ferreira, A. J. H. Vinck, T. G. Swart, and I. de Beer,
“Permutation trellis codes,” IEEE Transactions on Communications,
vol. 53, no. 11, pp. 1782–1789, Nov. 2005.

[5] C. A. French, “Distance preserving run-length limited codes,” IEEE
Transactions on Magnetics, vol. 25, no. 5, pp. 4093–4095, Sept.
1989.



[6] J.-C. Chang, R.-J. Chen, T. Kløve, and S.-C. Tsai, “Distance-
preserving mappings from binary vectors to permutations,” IEEE
Transactions on Information Theory, vol. 49, no. 4, pp. 1054–1059,
Apr. 2003.

[7] K. Lee, “New distance-preserving mappings of odd length,” IEEE
Transactions on Information Theory, vol. 50, no. 10, pp. 2539–2543,
Oct. 2004.

[8] T. G. Swart and H. C. Ferreira, “A generalized upper bound and
a multilevel construction for distance-preserving mappings,” IEEE
Transactions on Information Theory, vol. 52, no. 8, pp. 3685–3695,
Aug. 2006.

[9] K. Ouahada, T. G. Swart, and H. C. Ferreira, “Permutation sequences
and coded PAM signals with spectral nulls at rational submultiples of
the symbol frequency,” Cryptography and Communications, vol. 3,
no. 2, pp. 87–108, 2011.


