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ABSTRACT

Metal-organic frameworks (MOFs) have been evaluated as potential nanocarriers for intra-ocular 

incorporation of brimonidine tartrate to treat chronic glaucoma. Experimental results show that 

UiO-67 and MIL-100 (Fe) exhibit the highest loading capacity with values up to 50-60 wt.%, 

while the performance is quite limited for MOFs with narrow cavities (below 0.8 nm, e.g. UiO-

66 and HKUST-1). The large loading capacity in UiO-67 is accompanied by an irreversible 

structural amorphization in aqueous and physiological media that promotes extended release 

kinetics above 12 days. Compared to the traditional drawbacks associated with the sudden 

release of the commercial drugs (e.g., ALPHAGAN), these results anticipate UiO-67 as a 

potential nanocarrier for drug delivery in intra-ocular therapeutics. These promising results are 

further supported by cytotoxicity tests using retinal photoreceptor cells (661W). Toxicity of these 

structures (including the metal nodes and organic ligands) for retinal cells is rather low for all 

samples evaluated, except for HKUST-1.   

1. INTRODUCTION

Glaucoma is the second leading cause of irreversible blindness worldwide with millions of 

people, aged 40 and older, affected by its common form, open-angle glaucoma.1 After an initial 

diagnosis, medication is the main treatment nowadays to halt further loss of vision. Glaucoma is 

a multifactorial disease, usually associated to an increased pressure within the eye, and the 

associated damage in the optical nerve, resulting in vision impairment and even blindness. 

Among the different drugs available in the market, brimonidine is one of the most widely 

applied.2 Brimonidine is an alpha adrenergic receptor agonist that, upon topical administration, 

can reduce intraocular pressure (IOP) by reducing aqueous humour production and increasing 
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uveoscleral outflow. Recent studies have shown that brimonidine has no adverse effects on 

different retinal cells, but rather it shows neuroprotective effects on retinal ganglion cell 

degeneration in glaucoma.3,4 In fact, these and other results together with clinical trials have 

derived in the commercialization of brimonidine for the treatment of glaucoma under European 

medication agency (EMA) mandate (REF: EMA/366180/2017). Despite the high benefits of the 

drug, topical administration is usually associated with important drawbacks such as poor 

bioavailability (only 5% of the administered drug reaches the interior of the eye), side effects due 

to rapid drainage through nasolacrimal duct, and the necessity for multiple administration (2-3 

eye drops daily for many years). Taking into account the low compliance of patients to strictly 

follow the treatment and the detrimental effects in case of breach, new therapies are required to 

improve the quality of life in patients and to decrease their dependence on external medication.

One of the most promising alternatives for a long-term treatment of glaucoma consist in the 

incorporation of the drug in platforms or vehicles able to concentrate the drug and release it at 

the target in a controlled way, increasing the bioavailability and avoiding the traditional “burst 

effects”. These delivery systems include hydrogels5, microspheres6, nano-vesicles7, 

nanoparticles8, microfilms9, among others. Unfortunately, these formulations based on 

macromolecules or polymers suffer from low loading capacity (gravimetric < 1 wt. % and/or 

volumetric <0.1 wt./vol. %) and fast release of the drug (within minutes/hours).10-12 These 

numbers can be improved through the incorporation of denser inorganic matrices in the 

formulation, for instance montmorillonite clay and layered double hydroxides (LDH).13,14 

Montmorillonite/chitosan nanoparticles have been evaluated as delivery systems for betaxolol 

hydrochloride, a selective beta-adrenergic blocking agent, with excellent values of drug loading 

capacity (up to 14.5 wt.%) and delivery kinetics between 6-10h.13 Sun et al. reported the 
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synthesis of composites using a thermogel incorporated with brimonidine-loaded LDH 

nanoparticles with a significant loading capacity (up to 0.125 mg/g), although lower than the 

original LDH (25.0 mg/g or 2.5%), and an improved release profile (up to 2 days are required to 

release 75%) compared to the original LDH.14 These studies mainly focused in pre-corneal 

administration, thus keeping the concerns about bioavailability in the interior of the eye (low 

penetration of the drug through the cornea; < 1-7%).    

Taking into account the limited volume of the ocular cavity (< 3-4 cm3) and the limited 

allowance of fluid (human eye can hold only 7-10 l of fluid), any intraocular delivery platform 

for ocular therapeutics needs to fulfil even more stringent requirements compared to pre-corneal 

devices such as i) extremely large loading capacity (in gravimetric (wt.%) and volumetric (w/v 

%) basis) to mitigate any interference in the visual field after dosing, ii) slow delivery kinetics 

(within days or weeks) to allow long-term therapy, iii) high biocompatibility for retinal cells and, 

last but not least, iv) structural instability once the material has completed the job. 

Potential candidates able to fulfil these requirements are metal-organic frameworks (MOFs). 

The proper combination of metallic nodes or clusters and organic ligands allows to design a wide 

variety of 1-3D networks characterized by an extremely large surface area and pore volume.15 

Previous studies described in the literature have shown that MOFs are potential candidates for 

drug delivery with excellent results for a wide variety of drugs such as antitumoral, retroviral, 

etc.16,17 Furthermore, in vitro and in vivo cytotoxicity assays have anticipated a promising 

performance with low toxicity and inflammatory activity.16-18 To our knowledge, MOFs have 

never been tested as potential drug delivery platforms for ocular therapeutics. 

Based on these premises, the main goal of the present study is the evaluation of several MOFs 

in the adsorption and release of brimonidine for glaucoma treatment, the evaluation of their 
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structural stability in the charging/discharging media and, last but not least, the evaluation of the 

cytotoxicity of the different components (bulk MOF, linker and metallic precursors) in retinal 

photoreceptor culture cells (661W).

2. EXPERIMENTAL SECTION

2.1. Synthesis and characterization of MOFs

UiO-66, UiO-67 and MIL-100(Fe) MOFs have been synthetized based in previous works 

reported in the literature. UiO-66 and UiO-67 were synthetized based in the procedure reported 

by Katz et al.19 For UiO-66, 0.5 g of ZrCl4 were dissolved in 20 mL of DMF and 4 mL of 

concentrated HCl. In a second vessel, 0.492 g of terephthalic acid (BDC) were dissolved in 40 

mL of DMF. The two solutions were mixed and maintain under stirring for 30 min. The 

transparent final solution was transferred to a 200 mL jar, closed tightly and kept at 353 K 

overnight. The synthesis procedure for UiO-67 was similar to the one described for UiO-66. 

Briefly, 0.360 g of 4,4’-biphenyldicarboxylic acid (BDPC) were added to a mixture of 20/2 mL 

of DMF/concentrated HCl and 0.268 g of ZrCl4 were dissolved into 40 mL of DMF. The two 

solutions were mixed and stirred for 30 min. The white coloured final solution was placed into a 

200 mL jar, closed tightly and kept at 353 K overnight. The resulting solid was filtered and 

washed first with DMF (2x30 mL) and then with ethanol (2x30 mL). Samples were activated 

under low vacuum (13·103 Pa) until a temperature of 363 K was reached. The samples were then 

subjected to an outgassing treatment at 423 K for 3 h under ultra-high vacuum conditions. MIL-

100 (Fe) was prepared using the facile low temperature synthesis procedure reported in the 

literature by Zhang et al.20 Briefly, 4.04 g of Fe(NO3)3·9H2O and 1.89 g of trimesic acid 

(H3BTC) were dissolved in 6 mL of distillate water and kept under reflux at 368 K overnight. 
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The solid was purified three times using a solvent extraction treatment with deionized water (350 

ml) and ethanol (350 ml) at 343 K for 24 h, and finally dried in vacuum at 423 K for 10 h. 

HKUST-1 (Cu) has been used as received from the Sigma-Aldrich, labelled and commercialize 

as Basolite C 300.

X-ray diffraction patterns of the samples were recorded using a Bruker D8-Advance equipment 

with mirror Goebel with high temperature Chamber and a generator of X-ray 

KRISTALLOFLEX K 760-80F with a tube of RX with copper anode. Spectra were registered 

between 3 and 80° (2θ) with a step of 0.05° and a time per step of 3 s.

Textural properties of the samples were evaluated by gas physisorption of nitrogen at 77 K. 

Gas adsorption measurements were performed in a homemade fully automated manometric 

equipment designed and constructed by the Advanced Materials Group (LMA), now 

commercialized as N2GSorb-6 (Gas to Materials Technologies; www.g2mtech.com). The 

samples were previously degassed for 8 h at 423 K under vacuum (10-3 Pa). Nitrogen adsorption 

data were used to determine: (i) the total pore volume (Vt) at a relative pressure of 0.95, (ii) the 

BET specific surface area (SBET) and (iii) the micropore volume (VN2) by application of Dubinin-

Radushkevich equation. The difference between Vt and VN2 is considered to be the mesopore 

volume (Vmeso).

The size and shape of the synthesized crystals was evaluated using field emission scanning 

electron microcopy (FESEM). These analyses were performed in a Merlin VP Compact system 

from ZEISS with a resolution of 0.8 nm at 15 kV and 1.6 nm at 1 kV. FTIR spectra were 

recorded on a JASCO FTIR 4700 spectrometer with a resolution of 2 cm-1.

Structural stability of the MOFs was evaluated by immersing 0.1 g of each MOF in 50 mL of 

an aqueous solution or a phosphate-based solution (PBS) for 1h, 1 day, 7 days and 30 days. After 
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7

this time intervals, the material was washed with ultrapure water and filtered in vacuum. After an 

evacuation at 393 K for 8 h, the crystallinity of the materials was checked using XRD analysis.

 

2.2. Loading and release experiments

Brimonidine tartrate quantification was done based on the spectrometric method developed by 

Bhagav et al.21 A 1500 ppm stock solution of brimonidine tartrate was prepared dissolving 1.5 g 

of brimonidine tartrate in 1000 mL of ultrapure water. The calibration curve was constructed 

measuring concentrations from 2 to 15 ppm using a UV-Vis spectrophotometer (double-beam 

spectrophotometer with a photomultiplier tube detector JASCO V-650 UV-VIS) at wavelengths 

of 1= 247 nm and 2= 320 nm. High performance liquid chromatography (HPLC) was used to 

certify the precision of the UV-Vis method in brimonidine quantification.22 Both methods gave 

an accuracy above 97%, thus confirming the validity of the UV-vis technique for brimonidine 

determination. 

2.2.1. Brimonidine loading experiments 

For the loading tests, a group of aqueous solutions with an initial concentration of 200 ppm, 

500 ppm, 750 ppm, 1000 ppm and 1500 ppm of brimonidine tartrate were prepared from the 

stock solution. The MOFs samples were outgassed at 423 K overnight prior to the adsorption 

measurement. 100 mg of each MOF were placed in contact with 50 mL of each concentration 

and left under stirring until equilibrium was reached. Aliquots were taken in different periods of 

time in order to evaluate the kinetic behaviour of each MOF. All samples reached complete 

equilibrium after 7 h.
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The quantification of brimonidine tartrate was determined by UV-Vis spectrophotometry 

diluting each aliquot 1:100 and using the method described above. A MOF-loaded blank 

experiment was measured to determine possible interferences in the UV-vis signal due to the 

MOF degradation. However, no interferences were observed at the wavelengths selected for 

brimonidine for all MOFs evaluated.

2.2.2. Brimonidine release experiments

In an initial step the MOFs were loaded by contacting 100 mg of a degassed MOF with 50 mL 

of a 500 ppm brimonidine tartrate aqueous solution. The system was left under stirring for 7 h to 

ensure full equilibrium. After this time, the sample was collected by filtration and an aliquot was 

saved to determine the maximum loading amount. The brimonidine-loaded MOF was washed 

several times with ultrapure water and dried under vacuum at 333 K for 6 h. The dried 

brimonidine-loaded MOF was immersed in 50 mL of physiological solution (PBS) and aliquots 

were taken at different times up to 12 days. Brimonidine determination has been performed in a 

similar procedure to that described above. All the dilutions (1:100) and calibration curve were 

measured using PBS as a solvent instead of ultrapure water. 

2.3. Cytotoxicity tests

661W cell line, derived from mouse retinoblastoma and considered a photoreceptor cell line, 

was employed in the cytotoxicity tests. To assess MOFs toxicity in retinal cells, 611W cells were 

incubated with MOFs and MOFs components at different concentrations for 24h or 48h. A death 

control was also included in each study to be sure that cells die with a noxious stimulus (0.4 mM 

sodium nitroprusside, SNP; 228710, Sigma-Aldrich, St Louis, MO, USA).    
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9

First, for cell viability assays at 24h or 48h after adding the MOFs, cells were plated in 96-well 

plates at a density of 10000 or 4000 cells per well respectively. They were incubated in 

Dulbecco’s modified Eagle’s medium (DMEM High Glucose; L0106, Biowest, Nuaillé, France) 

supplemented with 10% fetal bovine serum (FBS; SV30160, GE Healthcare, Pasching, Austria), 

1% penicillin/streptomycin (P9781, Sigma-Aldrich) and 1% L-Glutamine (25030-081, Gibco, 

Paisley, UK), and maintained during the whole experiment at 310 K in a humidified atmosphere 

with 5% CO2. 24 h after seeding, medium was replaced and 0.4 mM SNP or MOF concentrations 

of 0, 10, 20, 30, 40 and 50 g/ml in supplemented DMEM were added. Each condition was done 

at eight replicates per plate. MOFs and their respective components were maintained in the 

medium and cell viability was assessed at 24 and 48 hours using the XTT cell viability assay 

(X4626, Sigma-Aldrich). Briefly, this kit consists of a colorimetric assay dependent of a redox 

reaction that measures mitochondrial activity and thus is an estimate of cell quantity. 100 l of 

XTT was added to each well, incubated at 310 K and 5% CO2 for 2 hours and absorbance 

measured at 492 nm in a Beckman Coulter AD340 plate reader (Beckman Coulter Inc., Nyon, 

Switzerland). Absorbance was transformed into viability percentage considering the value of the 

0 g/ml concentration (positive control) as 100% cell viability. All these procedures were done 

in sterile conditions, using sterile materials and solutions, and MOFs were heat-sterilized at 423 

K for 3 hours prior to use.  

3. RESULTS AND DISCUSSION

Four different MOFs have been selected for this study, i.e. HKUST-1, MIL-100 (Fe), UiO-66 

and UiO-67. The main goal is to evaluate systems with a different porous structure (from purely 

microporous to micro/mesoporous systems) and different surface chemistry to evaluate the role 
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of these parameters in the loading and delivery performance. Furthermore, these MOFs have 

been selected based in the a priori low toxicity of the metal species incorporated: zirconium 

chloride lethal dose LD50  3500 mg/kg (for UiO-66 and UiO-67), and iron nitrate lethal dose 

LD50 3250 mg/kg (for MIL-100(Fe)), except HKUST-1 with a potential toxicity due to the 

cupper nitrate used (LD50 940 mg/kg).23 The selection of HKUST-1 is based on the excellent 

performance that has been reported in the literature for this material for a wide range of 

applications, e.g. methane and hydrogen storage,24-26 hydrocarbon separation,27 etc. Briefly, 

HKUST-1 is assembled from Cu2(H2O)2 dimer units and tridentate trimesate groups to form 3D 

channels with alternating cavities of diameter 1.4 nm and 1.1 nm connected through pore 

windows of 1.0 nm.28 There are also smaller diameter cavities of 0.5 nm between the larger 

cavities. MIL-100 (Fe) consist on trimers of metal octahedra and trimesic acid as a linker.16 This 

material possesses cages in the mesoporous range (diameter 2.5 and 2.9 nm), accessible 

through pore windows of 0.48 x 0.58 nm, for the small cage, and 0.86 nm, for the larger one. 

Finally, UiO-66 and UiO-67 are constituted by clusters of Zr6O4(OH)4(CO2)12 connected through 

benzene-dicarboxylate and biphenyl-dicarboxilate linkers, respectively. The longer linker in the 

last case gives rise to larger tetrahedral and octahedral microporous cages, i.e. 0.75 nm and 1.2 

nm, for UiO-66, and 1.2 nm and 1.6 nm, for UiO-67. Figure S1 shows a schematic drawing of 

the evaluated MOFs.     
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Table 1. Textural properties of the synthesized MOFs.

Sample SBET 
(m2/g)

V0 
(cm3/g)

Vt 
(cm3/g)

HKUST-1 1690 0.65 0.72

MIL-100 (Fe) 1360 0.42 0.79

UiO-66 1465 0.53 0.69

UiO-67 2620 1.02 1.24

The textural characteristics of the synthesized materials have been evaluated using nitrogen 

adsorption at cryogenic temperatures. These measurements are mandatory to certify the validity 

of the synthesis method applied and to confirm the quality of the synthesized nanocrystals. 

Figure S2 shows the N2 adsorption/desorption isotherms at 77 K for the four samples evaluated. 

The nitrogen adsorption capacity for samples HKUST-1, MIL-100 (Fe) and UiO-66 is rather 

similar, i.e. around 350-400 cm3/g, although with some differences in the shape of the isotherm 

(knee at low relative pressures). While it is narrower for HKUST-1 and UiO-66 as corresponds 

to purely microporous materials, the knee is wider and associated with a significant slope in the 

mid-pressure region in the specific case of the micro/mesoporous MIL-100 (Fe). Compared to 

UiO-66, longer linkers in UiO-67 give rise to a two-fold increase in the adsorption capacity up to 

800 cm3/g. The presence of larger cages (1.6 nm) in the case of UiO-67 can be clearly 

appreciated by a sudden jump in the nitrogen adsorption isotherm at p/p0  0.2 (right after the 

filling of the narrow cages). The textural characteristics obtained after application of the BET 

and the Dubinin-Radushkevich (DR) equations are collected in Table 1. The reported values are 

in close agreement with the literature, thus validating the synthesis procedure.
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Figure 1. X-ray diffraction pattern of the different MOFs evaluated.

In addition to the textural properties, the crystallinity of the synthesized MOFs has been 

evaluated using X-ray diffraction. Figure 1 shows the XRD pattern for each of the four MOFs 

evaluated in the 2 range 2-50º. These patterns perfectly match those described in the literature 

for these materials, thus confirming the quality of the synthesized metal-organic frameworks.  

The size and shape of the synthesized nanocrystals have been evaluated using FESEM. The 

morphology of the synthesized nanocarriers, preferentially the crystal size, is of paramount 

importance in ophthalmological applications to minimize potential disruption in the visual field 

upon injection and/or undesired sedimentation in the ocular cavity. Figure S3 shows 

representative images for the MOFs evaluated. As it can be observed, MIL-100 (Fe), UiO-66 and 

UiO-67 are constituted by nanometer size crystals (average crystal size 140  30 nm, 80  10 nm 

and 120  20 nm, respectively). Only HKUST-1 exhibits larger crystals in the micrometer size 

range (average crystal size 3  1 m). 
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Last but not least, the vibrational modes of the synthesized MOFs have been evaluated using 

FTIR (Figure S4). FTIR spectra constitute a fingerprint to further certify the quality of the 

synthesized MOFs, including the surface functional characteristics. The four samples evaluated 

exhibit similar vibrational bands in the 1300-1700 cm1 range attributed to the structural 

carboxylate groups in the linkers.29 More specifically, the peaks around 1368 cm-1 and 1448 cm-1 

corresponds to symmetric stretching vibrations of the carboxylate group (O-C-O groups), 

whereas the asymmetric vibrations in the carboxylate appears close to 1550-1650 cm-1.30 

Vibration peaks corresponding to the aromatic ring (C=C) are shown at ca. 1500 cm-1, whereas 

bands attributed to the metal cluster and the linkers appear at lower wavenumbers (1000-500 cm-

1).31 UiO-66 and UiO-67 exhibit longitudinal and transverse modes of Zr-O vibrations between 

660 and 540 cm-1 and the OH and CH bending modes at 770-740 cm-1. MIL-100(Fe) exhibits 

sharp peaks at 760 cm-1 and 709 cm-1 due to the linker bending modes and Fe-O cluster 

vibrations, while HKUST-1 shows a band at 727 cm-1 attributed to the Cu-O mode.32,30 Last but 

not least, the absence of significant peaks at 1710-1720 cm-1 attributed to the C=O stretching 

vibration of residual trimesic acid suggest the proper purification of the synthesized MOFs.      

Once the crystallographic structure and morphology of the different MOFs has been validated 

and the textural properties confirmed, these materials have been evaluated in the adsorption of 

brimonidine tartrate. Liquid phase adsorption isotherms have been quantified at 298 K and at 

ranging concentrations using ultra-pure water as charging media. As it can be appreciated in 

Figure 2 the amount of drug loaded increases with the concentration of brimonidine in the 

aqueous solution, except for HKUST-1 and UiO-66 materials where saturation is already reached 

at concentrations above 800 mg/L. Apparently, MOFs with narrow micropores become quickly 

saturated, the final loading capacity being around 0.16 g/g. The scenario changes completely for 
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MOFs with larger micropores/small mesopores such as UiO67 and MIL-100 (Fe). In this specific 

case, the loading capacity increases with concentration with a loading capacity at 1400 mg/L as 

high as 0.31 g/g (31 wt.%), for MIL-100 (Fe), and 0.44 g/g (44 wt.%), for UiO-67. Previous 

studies described in literature for ibuprofen adsorption in MIL-100 (Cr) reported adsorption 

values around 0.35 g/g, in close agreement with our data.16 Extrapolation of the adsorption data 

reported in Figure 2 using the Langmuir equation (dotted line) gives loading values at saturation 

as high as 0.49 g/g, for MIL-100 (Fe), and 0.63 g/g, for UiO-67. To our knowledge, these are 

among the best values described in the literature for the adsorption of drugs using metal-organic 

frameworks.   
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Figure 2. Liquid-phase adsorption isotherms for brimonidine tartrate at 298 K. Fitting to 

Langmuir equation is included (dotted line).

Adsorption results clearly show that UiO-67, with the larger BET surface area and pore 

volume (above 1 cc/g), is the best performing material over the whole concentration range 
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evaluated with a loading capacity superior to the majority of MOFs reported in the literature so 

far for similar drugs. Despite the significant surface area in HKUST-1, this material becomes 

saturated immediately with a poor performance at high concentrations. Last but not least, 

although MIL-100 (Fe) and UiO-66 exhibit similar textural properties (in terms of BET surface 

area and micropore volume), the presence of mesopores in the former MOF play a crucial role 

with a loading capacity more than double that of UiO-66. Consequently, these results clearly 

anticipate that microporous MOFs with a pore size below 0.8 nm are not appropriate for 

brimonidine adsorption due to the limited accessibility of the drug to the interior cavities. This 

can also be the reason for the lower loading in MIL-100 (Fe) compared to UiO-67 due to the 

limited accessibility of the small cages in the former (pore windows of 0.48 x 0.58 nm). In 

addition to the loading capacity, adsorption kinetics are also relevant. As it can be observed in 

Figure S5, for an initial concentration of 500 ppm, saturation is reached within 4-5 h, except for 

UiO-66 with narrow but accessible cavities with adsorption kinetics slightly above 5h. These 

results are very promising since only a few hours are required to load the materials before 

injection into the eye.  

One of the most relevant issues in medical therapies, not frequently addressed in the literature, 

concerns the stability of the host structures in the loading and discharging media, i.e. in aqueous 

solutions or physiological media (PBS). It is well-known in the literature that several MOFs 

exhibit structural deterioration upon exposure to a humid environment.33, 34 The instability has 

been traditionally attributed to the nuclearity, coordination number of the metal, functionality of 

linker and framework dimensionality. In our case, we have evaluated the structural stability of 

the different MOFs at different time intervals from 1 day until 30 days using an aqueous solution 

as a charging media (see Figure S6). At this point it is important to highlight that similar results 
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have been observed in the presence of a physiological solution of PBS as discharging media. As 

it can be appreciated, the structural stability highly depends on the nature of the metal-organic 

network. While HKUST-1 and UiO-67 exhibit a rapid deterioration in the first 24 hours, samples 

UiO-66 and MIL-100 (Fe) remain stable even after 30 days. The irreversible instability of 

HKUST-1 is in close agreement with previous findings in the literature in liquid and gas phase.35, 

36 HKUST-1 suffers degradation due to the strong interaction between the open Cu(II) sites (the 

coordinatively unsaturated sites from the copper paddlewheel) and water molecules. This 

irreversible instability can explain the low loading capacity for HKUST-1 (see Figure 2), despite 

the presence of a significant BET surface area in the as-synthesized material. However, the 

presence of limited accessibility for brimonidine to the inner micropores must also be considered 

to explain the adsorption results. Contrary to HKUST-1, the results for UiO-67 are more 

surprising since this material exhibits the best adsorption performance, despite the drastic 

instability observed in the first few hours. To confirm the potential role of brimonidine within the 

structure as a stabilizer, we have performed XRD analysis of the loaded material under aqueous 

solution right after complete saturation, i.e. after 24h. Figure S7 compares the original XRD 

pattern and the ones after 24h in the presence and absence of the drug. As expected, although the 

XRD pattern of the loaded MOF already anticipates an important crystallographic deterioration 

(amorphization), this damage is lower than the one observed in the absence of the drug, i.e. the 

presence of the brimonidine within the structure seems to be crucial to preserve a certain 

crystallinity in UiO-67, thus explaining the excellent adsorption results achieved. Upon loading, 

the second open question concerns the delivery kinetics. Previous studies described in the 

literature for MOFs have shown that 3-5 days release is a common number for this kind of 

drugs.16-18 The main question at this point is the role that instability can exhibit in the release 
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kinetics. Release kinetics were not evaluated for HKUST-1 due to the strong structural 

deterioration even in the presence of the drug. Figure 3 shows the amount of brimonidine 

released in PBS (discharging media) versus time for the loaded UiO-66, UiO-67 and MIL-100 

(Fe) materials (loading performed using a 500 ppm brimonidine aqueous solution). As it can be 

observed, all materials exhibit two regimes related to the location of the drug in the structure. An 

initial release for 3 days associated with brimonidine weakly bonded within the MOF structure 

(ca. 70-80% delivery for MIL-100 (Fe) and UiO-66) and a subsequent slow release of 

brimonidine, although quite limited up to 75-85% during next 6-8 days. The absence of complete 

release in these two MOFs clearly denotes the presence of brimonidine strongly interacting with 

the structural framework. Interestingly, the scenario changes completely in the specific case of 

UiO-67. The structural instability in aqueous and PBS media gives rise to an initial release 

within 4 days of around 43% and a subsequent and progressive release with time up to a 56% 

after 12 days. An extrapolation of these values suggest potentially more than 30 days of 

continuous release with the associated benefits for a chronic ocular disorder such as glaucoma. 

The beneficial role of the partial amorphization of MOFs in the release kinetics was recently 

described by Orellana-Tavra et al. for calcein released in mechanically deteriorated UiO-66.37 

More than 30 days controlled release could be obtained versus 2 days in the crystalline 

counterpart.    
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Figure 3. Brimonidine tartrate release kinetics at 298 K in physiological media PBS (loading 

concentration 500 ppm).

    

As described in the introduction, the final goal of this study is the design of metal-organic 

frameworks with a high potential to be applied in glaucoma treatment after injection in the intra-

ocular cavity. From this perspective, the progressive deterioration of the MOF within the eye 

while releasing the drug can be anticipated as an optimum performance to promote the complete 

clearance of the ocular cavity (absence of disruptions in the visual field) upon completion of the 

job. To this end, there is a major issue that must be fulfilled, i.e. the MOFs and their respective 

components (metal nodes and organic linkers) must exhibit a low toxicity towards ocular tissues. 

In vitro models based in cell cultures, instead of in vivo models, are the first choice to test 

toxicity of new compounds or nanoparticles, because of their low cost, time efficiency, their 

trustworthy results, and because they involve no ethical issues.38 
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The 661W cell line (kindly provided by Dr. Muayyad Al-Ubaidi; University of Oklahoma) is 

derived from retinoblastoma, a mouse retinal tumour.39 This cell line expresses several markers 

of photoreceptor cells,40 that made them one of the most widely used cell line to screen safety 

and efficacy in a great number of drugs for ocular treatments.41-44 In fact, Januschowski et. al. 

suggest that cell lines derived from retinal cells such 661W or ARPE19 cells are the most 

accurate to evaluate retinal toxicity.45 Thus, cytotoxicity of MOFs and their components was 

assessed in 661W cells (Figure 4). As it can be appreciated in Figure 4, except in the specific 

case of HKUST-1, the cell viability evaluated after 48h exposure is, in all cases, very close to 

100 %. These results anticipate that MIL-100 (Fe), UiO-66 and UiO-67 materials do not affect 

retinal photoreceptor cells viability. Only sample HKUST-1 is toxic for retinal photoreceptor 

cells (cell viability below 50 %), most probably due to the presence of copper and the important 

structural deterioration associated. 

To confirm this point, the cytotoxicity assays have been extended to the different components 

of the MOF, i.e. metallic precursors and organic linkers (see Figures S8-S11). These experiments 

confirm that, with the exception of HKUST-1, cell viability is not affected by any of the MOF 

components. In addition, the effect of MIL-100 (Fe), UiO-66 and UiO-67 on cells is rather 

similar with different time incubations, i.e. the viability is maintained at 24h and 48h. This 

observation suggests that a prolonged interaction between MOFs and cells after intra-ocular 

injection will not be harmful for cell viability or proliferation. On the contrary, HKUST-1 

present time-dependent effects, as a prolonged contact with cells drops cell viability at 48h, when 

compared to 24h (Figures S8). An evaluation of the HKUST-1 components clearly show that the 

metal precursor (copper nitrate) is the one responsible for the high toxicity of the MOF.  
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Figure 4. Cytotoxicity tests for the different MOFs evaluated using a retinal photoreceptor cell 

line (661 W) at 48h.

In summary, metal-organic frameworks can be anticipated as potential nanocarriers for drug 

delivery in ocular therapeutics. The proper selection of the metallic node and the organic linker 

allows to improve the loading capacity to values above 50 wt.%, in the specific case of UiO-67 

and MIL-100 (Fe). Furthermore, the associated amorphization observed for UiO-67 in aqueous 

media becomes an advantage to extend the delivery kinetics up to 12 days or above. Taking into 

account that a patient with glaucoma requires 2-3 drops of brimonidine per day (2 mg/mL 

solution- ALPHAGAN), this corresponds to 0.3 mg per day or 4.5 mg every 15 days. Assuming 

a loading capacity for UiO-67 of 630 mg/g, patients will require the injection of 7 mg of loaded 

MOF every 15 days, i.e. 10 l of MOF (considering the crystallographic density of 0.708 g/cm3). 
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Interestingly, these numbers are a priori within the theoretical threshold that human eye can 

hold. However, as the bioavailability of the drops is quite low (< 10%), these numbers could be 

even reduced for an intra-ocular administration (considering 100% bioavailability) up to 1 order 

of magnitude, thus validating the potential of the proposed approach.

Furthermore, in vitro cytotoxicity results confirm the validity of our approach for drug delivery 

in intraocular treatments without inducing damage in photoreceptor retinal cells. These results 

are encouraging in terms of drug dosage and long-term delivery. However further experiments in 

vivo would be useful to assess the possible reaction of retinal tissue to MOFs, such as microglial 

activation or gliosis, due to an eventual accumulation of MOF metal nodes during long-term 

treatments.

CONCLUSIONS

Metal-organic frameworks (MOFs) can be anticipated as promising nanodevices for drug 

delivery in ocular therapeutics. Experimental results have shown that samples combining wide 

micropores and/or small mesopores are able to achieve a high loading capacity, above 50 wt.% 

(MIL-100(Fe) and UiO-67), for an alpha adrenergic receptor agonist such as brimonidine. 

Furthermore, delivery kinetics have shown that the associated amorphization in the case of UiO-

67 upon ultrapure water or PBS exposure, as suggested by XRD measurements, can be very 

helpful to extends the delivery kinetic up to 12 days or above. Last but not least, cytotoxicity 

assays using retinal photoreceptor cells show a high biocompatibility for the MOFs evaluated, 

except HKUST-1, thus paving the way towards the application of MOFs in intra-ocular 

therapeutics.  
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ASSOCIATED CONTENT

Physico-chemical characterization of the MOFs (nitrogen adsorption isotherms, F-SEM, FTIR 

analysis), structural stability of MOFs in aqueous solution, brimonidine tartrate loading kinetics 

and cytotoxicity evaluation of MOFs, linkers and metal precursors are included in the Supporting 

Information. 
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