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Abstract

We give a complete characterization of the classes of weight func-
tions for which the Haar wavelet system form-dilations, m = 2, 3, . . . is
an unconditional basis in Lp(R, w). Particulary it follows that higher
rank Haar wavelets are unconditional bases in the weighted norm
spaces Lp(R, w), where w(x) = |x|r, r > p−1. These weights can have
very strong zeros at the origin. Which shows that the class of weight
functions for which higher rank Haar wavelets are unconditional bases
is much richer than it was supposed. One of main purposes of our
study is to show that weights with strong zeros should be considered
if somebody is studying basis properties of a given wavelet system in
a weighted norm space.

1 Introduction

The wavelet analysis, since its creation, has been used in many areas
of applied mathematics. The main idea is as simple as to find a function
(wavelet or wavelet function) defined in R or in Rd so that the system of its
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dilations and translations constitute a complete orthonormal system (ONS)
in L2(R) or in L2(Rd). In fact this idea was used by A. Haar for constructing
a complete ONS in L2([0, 1]) such that the expansion with respect the system
of any continuous function on [0, 1] converges uniformly. In the univariate
case the simplest dilation is the dyadic dilation. In this case a function
g ∈ L2(R) is a wavelet if {gk,j : k, j ∈ Z}, where gk,j(x) := 2k/2g(2kx− j) is
a complete ONS in the space L2(R).

If we want to study the class of weight functions w ≥ 0 for which a
given wavelet system {gk,j : k, j ∈ Z} is a basis in a certain sense in the
weighted norm space Lp(R, w), 1 ≤ p < ∞ then we have to consider a new
phenomenon which does not arise in the case of a finite interval. In recent
years several papers were published where the above question was studied.
Unfortunately in the majority of those papers the phenomenon which we are
going to describe is not considered. To give a preliminary idea about the
main subject of our study suppose that for a given weight function w there
exist some functions h such that

(a)
∫
R
gk,j(x)h(x)dx = 0 for all k, j ∈ Z;

(b) h
w
∈ Lp′(R, w), 1/p+ 1/p′ = 1.

Then any non trivial function h
w
as linear continuous functional will be a non

trivial element in the dual space Lp′(R, w). Moreover, this functional vanishes
on all gk,j : k, j ∈ Z . Hence our wavelet system is not complete in the
space Lp(R, w). A necessary condition for completeness of the system {gk,j :
k, j ∈ Z} in the space Lp(R, w) is the following condition: h

w
/∈ Lp′(R, w).

Thus if we are going to describe all weight functions w for which the system
{gk,j : k, j ∈ Z} is a basis in a certain sense in Lp(R, w), we have to consider
all those weight functions w for which the condition (b) is not true. For our
study we will use the technique by which similar questions were studied for
incomplete systems in the weighted norm spaces (see [15],[16], [17]). We also
will show that the conditions (a) and (b) are not hypothetical cases. We tried
to produce a readable text of our study. The authors are conscious that some
results of the present paper can be proved by other methods. In those cases
we have opted for more classical tools with the hope to present a text which
will be accessible to a wider range of readers.

Usually in concrete examples one has that the wavelet g ∈ L1(R)
⋂
L2(R).

Moreover, if we are going to study the wavelet system in Lp(R, w) it will be
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natural to suppose that

g ∈ L1(R)
⋂

Lmax(p,p′)(R).

On the other hand the purpose of the present paper is not to obtain the most
general results. Hence, instead of the last restriction we will suppose that
g ∈ L1(R)

⋂
L∞(R). It is well known that if a wavelet g ∈ L1(R)

⋂
L2(R)

then its Fourier transform ĝ should vanish at the origin and thus the con-
stant functions satisfy to condition (a). Which means that if someone has
studied the formulated question without describing the class of functions
for which the condition (a) holds and without considering weighted norm
spaces Lp(R, w) with weights w which does not satisfy the condition (b),
then his proof is not complete. In [7](see also [6]) was given a complete char-
acterization of weight functions w for which the Haar wavelet system is an
unconditional basis in Lp(R, w), 1 ≤ p < ∞. It was given without detailed
proof because the technical details were similar with the proof given in [17].
Almost at the same time was published the paper [23]. In the last paper the
described phenomenon was not considered. It is understandable that we will
not cite all papers where similar questions have been studied.

In order to show that the question under consideration is not a technical
problem which has only theoretical interest, we characterize the classes of
weight functions for which the Haar wavelet system for m-dilations, m =
2, 3, . . . is an unconditional basis in Lp(R, w). From the corollary of the main
theorem of the last section it follows that higher rank Haar wavelets are
unconditional bases in the weighted norm spaces Lp(R, w), where w(x) =
|x|r, r > p − 1. Which shows that the class of weight functions for which
higher rank Haar wavelets are unconditional bases is much richer than it
was supposed (see for example [20], where this question was studied). In
Section 2 we prove an inequality for the orthogonal wavelet systems which
particularly shows that in the case of general orthogonal wavelet systems the
set of nontrivial functions h for which the condition (a) holds is not empty.
In Section 3 we give all preliminary results which will be used for our study.
Next two sections are dedicated to the mth rank Haar system on [0, 1]. The
results of these sections have certain interest. It should be mentioned that
they are used for proofs given in the last section, where the main results for
the higher rank Haar wavelets are obtained.
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2 An inequality for wavelet type systems

If w ≥ 0 be a weight function on R, i.e. a non negative locally integrable
function then we write φ ∈ Lp(R, w), 1 ≤ p < ∞ if φ : R → C is measurable
on R and the norm is defined by

‖φ‖Lp(R,w) :=

(∫

R

|φ(t)|pw(t)dt

) 1
p

< +∞.

For a g ∈ L2(R) and m = 2, 3, . . . we will denote

gk,j,m(x) := mk/2g(mkx− j), k, j ∈ Z. (2.1)

In this paper we will use a slightly modified version of the classical definition
of the Fourier transform. For a function f ∈ L1(R) ∩ L2(R) we put

f̂(y) =

∫

R

f(x)e−2πixydx.

The characteristic function of a set E is denoted by χE and N0 = N
⋃
{0}.

The following lemma is a well known result (cf. [4], p. 132; [12], p. 71).

Lemma 2.1. The system {h(· − j) : j ∈ Z}, where h ∈ L2(R), is an or-
thonormal system if and only if

∑

j∈Z

|ĥ(t + j)|2 = 1 for a.e. t ∈ R.

As an obvious corollary of the above lemma we have that if g ∈ L2(R) is
a wavelet then |ĝ(t)| ≤ 1 a.e. on R.

Theorem 2.1. Let g ∈ L2(R) and m = 2, 3, . . . . Suppose that the system
{gk,j,m : k ∈ N0, j ∈ Z} is orthonormal. Then

∞∑

k=0

|ĝ(m−kx)|2 ≤ 1. (2.2)

Proof. It is easy to check that

ĝk,j,m(y) = m−k/2ĝ(m−ky)e−2πijm−ky. (2.3)
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It is well known that for any interval I ⊂ R, |I| = 1 the trigonometric
system {e−2πijy}j∈Z is a complete orthonormal system in L2(I). Hence, for

any k ∈ Z and ∆ ⊂ R, |∆| = mk the system {m−k/2e−2πijm−ky}j∈Z will be a
complete orthonormal system in L2(∆). Thus for any f ∈ L2(R) such that

suppf̂ ⊆ I, |I| = 1 we will have that

S0(f, x) =
∑

j∈Z

∫

R

f(t)g0,j,m(t)dtg0,j,m(x) =
∑

j∈Z

∫

I

f̂(t)ĝ(t)e2πijtdt g0,j,m(x).

Which yields

Ŝ0(f, ·)(y) =
∑

j∈Z

∫

I

f̂(t)ĝ(t)e2πijtdt ĝ(y)e−2πijy = f̂(y)|ĝ(y)|2

if y ∈ I. It should be observed that the last equality holds because f̂(·)ĝ(·) ∈
L2(I) which is true because of Lemma 2.1. If for any k ∈ N we put

Sk(f, x) =
∑

j∈Z

∫

R

f(t)gk,j,m(t)dtgk,j,m(x)

in a same way we obtain that

Ŝk(f, ·)(y) = f̂(y)|ĝ(m−ky)|2 if y ∈ I. (2.4)

By the orthogonality of the system {gk,j : k ∈ N0, j ∈ Z} we have that

Sk(f, ·)⊥Sk′(f, ·) in L2(R) if k 6= k′.

Hence,

∫

R

|
l∑

k=0

Sk(f, x)|
2dx =

l∑

k=0

∫

R

|Sk(f, x)|
2dx =

l∑

k=0

∫

R

|Ŝk(f, ·)(y)|
2dy

=

∫

R

l∑

k=0

|Ŝk(f, ·)(y)|
2dy =

∫

R

|f̂(y)|2
∣∣∣∣

l∑

k=0

|ĝ(m−ky)|2
∣∣∣∣
2

dy.

By (2.4) we have that

∫

I

|f̂(y)|2
∣∣∣∣

l∑

k=0

|ĝ(m−ky)|2
∣∣∣∣
2

dy =

∫

I

l∑

k=0

|Ŝk(f, ·)(y)|
2dy
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≤

∫

R

l∑

k=0

|Ŝk(f, ·)(y)|
2dy.

By the above relations and Bessel’s inequality we obtain that

∫

I

|f̂(y)|2
∣∣∣∣

l∑

k=0

|ĝ(m−ky)|2
∣∣∣∣
2

dy ≤

∫

R

|
l∑

k=0

Sk(f, x)|
2dx

≤ ‖f‖2 =

∫

I

|f̂(y)|2dy.

The last inequality can be interpreted as follows. Let

µl(y) =
l∑

k=0

|ĝ(m−ky)|2 if y ∈ I.

Then for any l ∈ N the multiplicative operator Tl(φ)(y) = µl(y)φ(y) is a
bounded operator L2(I) → L2(I) with the norm less than or equal to 1.
Which is true if and only if µl(y) ≤ 1.

By a simple modification of the last part, related with the application of
the Bessel inequality and the proof of Theorem 2.1 we obtain the following

Theorem 2.2. Let h(ν) ∈ L2(R), 1 ≤ ν ≤ µ and m = 2, 3, . . . . Suppose that

the system {h
(ν)
k,j,m : k ∈ N0, j ∈ Z, 1 ≤ ν ≤ µ} is orthonormal. Then

∞∑

k=0

µ∑

ν=1

|ĥ(ν)(m−kx)|2 ≤ 1.

We formulate the following corollary for g ∈ L1(R)
⋂
L2(R). In the gen-

eral case a similar result can be proved using the concept of points of ap-
proximate continuity (cf. [1], [2]).

Corollary 2.1. Let g ∈ L1(R)
⋂
L2(R) and m = 2, 3, . . . . Suppose that the

system {gk,j,m : k ∈ N0, j ∈ Z} is orthonormal. Then the continuous function
ĝ vanishes at the origin, ĝ(0) = 0.

Proof. Let ĝ(0) 6= 0.Without loss in generality we can suppose that ĝ(0) > 0.
Which yields that ĝ(y) is greater than ĝ(0)/2 in a neighborhood of the origin.
The last condition contradicts to (2.2).

6



By Corollary 2.1 we have that when for g ∈ L1(R)
⋂
L2(R) and m =

2, 3, . . . the system {gk,j,m : k ∈ N0, j ∈ Z} is orthonormal then the set of
nontrivial functions h defined on R such that

(a)m

∫

R

gk,j,m(x)h(x)dx = 0 for all k, j ∈ Z.

is not empty. Hence, having in mind that the constant function belongs to
L∞(R) we obtain

Corollary 2.2. Let {g(ν)}µν=1 ⊂ L1(R)
⋂
L2(R) and m = 2, 3, . . . . If the

system {g
(ν)
k,j,m : k ∈ Z, j ∈ Z, 1 ≤ ν ≤ µ} is orthonormal then it cannot be

complete in L1(R).

3 Preliminary results

3.1 On M-sets

Further in this section we will consider that m ≥ 2 is a fixed natural number.
Let M = M(m) := {[ j−1

mk ,
j

mk ] : k ∈ Z, j ∈ Z}. Further, the parameter
m will be omitted to make the notation understandable. We will assume
that any m−adic rational point ξ = j

mk , k ∈ Z, j ∈ Z is “split” into two
distinct points ξl and ξr characterized by the following conditions: for any
−∞ < a < ξ < b < +∞ we have

ξl ∈ (a, ξ], ξl /∈ [ξ, b), and ξr ∈ [ξ, b), ξr /∈ (a, ξ].

Hence, there can be easily established one to one correspondence between
any y ∈ R and the sequences {∆j(y)}

∞
j=−∞ ⊂ M such that

∆j+1(y) ⊂ ∆j(y) for all j ∈ Z and |∆j(y)| = m−j.

When talking about the neighborhoods of the points ξl and ξr, we will un-
derstand some intervals (a, ξ) and (ξ, b), respectively. The measure of the set
of all m−adic rational points is equal to zero, hence, this assumption will not
affect the results that we are going to consider. In the last section we need
concept of M-neighborhoods of +∞ and −∞. For j ∈ N0 we put

∆j(+∞) = R+ \ [0, mj ], and ∆j(−∞) = R− \ [−mj , 0],

where R+ = [0,+∞) and R− = (∞, 0].
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3.1.1 Maximal function

Let

MMf(x) = sup
x∈∆,∆∈M

1

|∆|

∫

∆

|f(t)|dt, f ∈ L1
loc(R). (3.1)

Let us consider also a maximal function with respect to a weight function
ω defined by the following equation

MM,ωf(x) = sup
x∈∆,∆∈M

1

ω(∆)

∫

∆

|f(t)|ω(t)dt, f ∈ L1
loc(R, ω), (3.2)

where ω(∆) =
∫
∆
ω(t)dt.

Proposition 3.1. Let ω(x) ≥ 0 for x ∈ R, ω ∈ L1
loc
(R) and let f ∈

L1
loc
(R, ω). Then for any λ > 0

ω({t ∈ R :MM,ωf(t) > λ}) ≤
1

λ

∫

R

|f(t)|ω(t)dt. (3.3)

Proof. If x ∈ Ωλ(f) := {t ∈ R : MM,ωf(t) > λ} then for some ∆ ∈ M such
that x ∈ ∆

1

ω(∆)

∫

∆

|f(t)|ω(t)dt > λ.

Observe that among all intervals which have the above properties there ex-
ists ∆x ∈ M with maximal ω−measure. Thus, having in mind that M is
numerable we can find a sequence of mutually disjoint intervals {∆ν} ⊂ M
so that Ωλ =

⋃∞
ν=1∆ν .

We also have

Proposition 3.2. Let ω(x) ≥ 0 for x ∈ R, ω ∈ L1
loc
(R). Then for any

f ∈ Lp
loc
(R, ω), p > 1

∫

R

MM,ωf(t)
pω(t)dt ≤

2pp

p− 1

∫

R

|f(t)|pω(t)dt. (3.4)

Proof. Following the proof of the corresponding result for the Lebesgue mea-
sure (see [27], p.7) we split f into two parts, f = f1+ f2, where f1(x) = f(x)
if |f(x)| ≥ λ

2
and f1(x) = 0 otherwise. Then we have |f(x)| ≤ |f1(x)| +

λ
2
.
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Hence, MM,ωf(x) ≤MM,ωf1(x) +
λ
2
and Ωλ(f) ⊆ Ωλ

2
(f1). Thus by Proposi-

tion 3.1 we have that

ω(Ωλ(f)) ≤
2

λ

∫

R

|f1(t)|ω(t)dt =
2

λ

∫

Ωλ
2
(f)

|f(t)|ω(t)dt. (3.5)

Afterwards we have to use the following equality for any measurable function
g : R → R ∫

R

|g(t)|pω(t)dt = p

∫

R

∫

[0,|g(t)| ]

λp−1dλω(t)dt

= p

∫ +∞

0

λp−1ω({t : |g(t)| > λ})dλ.

Hence, by (3.5) we obtain

∫

R

MM,ωf(t)
pω(t)dt ≤ 2p

∫ +∞

0

λp−2

∫

Ωλ
2
(f)

|f(t)|ω(t)dtdλ =

2p

∫

R

|f(t)|ω(t)

∫ 2|f(t)|

0

λp−2dλ dt =
2pp

p− 1

∫

R

|f(t)|pω(t)dt

3.1.2 Calderon-Zygmund decomposition for m−adic intervals

We need a modified version for the Calderon-Zygmund decomposition (see
[28]) for the m−adic intervals. Let f ∈ L1[0, 1], f ≥ 0 and let λ > 0 is such
that ∫

[0,1]

f(t)dt < λ.

At the first step we take m intervals {Ik}
m
k=1 ⊂ M

⋂
[0, 1] such that |Ik| =

1
m
, 1 ≤ k ≤ m and

⋃m
k=1 Ik = [0, 1]. Let {Ikl}

m1

l=1 ⊂ {Ik}
m
k=1 be all those

intervals for which ηIkl > λ, 1 ≤ l ≤ m1 < m, where

1

|I|

∫

I

f(t)dt := ηI .

Those intervals are renamed G1, . . . , Gm1 . Clearly,

λ <
1

|Gl|

∫

Gl

f(t)dt ≤ mλ. (3.6)
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If ηIk ≤ λ for all 1 ≤ k ≤ m then we put m1 = 0. On the next step we
repeat the same procedure on any of those intervals that were not renamed.
The collection of all m−adic intervals which are separated on the second step
are renamed Gm1+1, . . . , Gm2 . For those intervals the condition (3.6) holds
again. On the νth step all m−adic intervals which are separated are renamed
Gmν−1+1, . . . , Gmν

. If no any interval is separated then we put mν+1 = mν .
This procedure produces a collection of disjoint m−adic intervals {Gl} for
which the condition (3.6) holds and

|Ω| =
∑

l

|Gl| <
1

λ

∑

l

∫

Gl

f(t)dt ≤
1

λ

∫

[0,1]

f(t)dt, (3.7)

where Ω =
⋃

lGl and for any I ∈ M
⋂
[0, 1], I ⊂ Ωc := [0, 1] \ Ω we have

that ηI ≤ λ. The collection {Gl} will be called Calderon-Zygmund m−adic
decomposition at level λ. Let

g(x) = f(x)χΩc(x) +
∑

l

ηGl
χGl

(x) and b(x) = f(x)− g(x). (3.8)

We skip the details of the proof of the following

Proposition 3.3. Let f ∈ L1[0, 1], and let λ > 0 be such that
∫
[0,1]

|f(t)|dt <

λ. Then there exists a family of disjoint sets {Gl}l∈Υ ⊂ M such that

|f(x)| ≤ λ a.e. on Ωc, where Ω =
⋃

l∈Υ

Gl, (3.9)

(3.7) is true and for any l ∈ Υ holds (3.6). Moreover, f(x) = g(x) + b(x),
where g is defined by (3.8) and the following conditions hold:

|g(x)| ≤ mλ a.e. on [0, 1]; (3.10)

‖g(x)‖pp ≤ (mλ)p−1‖f‖1 for all 1 ≤ p <∞; (3.11)
∫

Gl

b(t)dt = 0 for all l ∈ Υ. (3.12)

For dyadic intervals a similar result was obtained by C. Watari [29].
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3.1.3 Classes of Mp, p ≥ 1 weights

Definition 3.1. We say that a non negative locally integrable function ω
satisfies the condition Mp, p ≥ 1 if

ω(∆)

[ ∫

∆

ω− 1
p−1 (t)dt

]p−1

≤ Cp|∆|p ∀∆ ∈ M, (3.13)

where Cp > 0 is independent of ∆ ∈ M. For p = 1 it is understood that[ ∫
∆
ω− 1

p−1 (t)dt

]p−1

:= ‖ω−1‖L∞(∆).

We say that ω satisfies the condition Mp(G), where G ⊂ R if (3.13) holds
for all ∆ ∈ M

⋂
G. The reader should observe that the conditions Mp([0, 1])

and Mp((0, 1]) are distinct. In the second case the intervals [0, 2−j], j ∈ N

should be excluded when one checks the inequality (3.13).
The following lemma is obvious.

Lemma 3.1. Let ω satisfies the conditionMp, p > 1 then ψ = ω− 1
p−1 satisfies

the condition Mp′, where
1
p
+ 1

p′
= 1.

We follow the ideas given in [3] to prove the following result.

Proposition 3.4. Let ω(x) ≥ 0 for x ∈ R, ω ∈ L1
loc
(R). Then for any

f ∈ Lp
loc
(R, ω), p > 1

∫

R

MMf(t)pω(t)dt ≤ Bp

∫

R

|f(t)|pω(t)dt, (3.14)

for some Bp > 0 independent of f if and only if ω satisfies the condition Mp.

Proof. Suppose that (3.14) is true. For any ∆ ∈ M we have by (3.1) that

1

|∆|

∫

∆

|f(t)|dtχ∆(x) ≤ MMf(x).

Hence, by (3.14) we have that
(

1

|∆|

∫

∆

|f(t)|dt

)p

ω(∆) ≤ Bp

∫

R

|f(t)|pω(t)dt.

Letting f(t) = ω− 1
p−1 (t)χ∆(t) we obtain (3.13) with Cp = Bp. To prove the

opposite assertion one has to use Proposition 3.1 and the following
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Lemma 3.2. Let ω satisfies the condition Mp, p > 1 then there exists ε > 0
such that ω satisfies the condition Mp−ε.

We skip the rest of the proof because the proof in [3] works with small
changes.

Definition 3.2. We say that a non negative locally integrable function ω
satisfies the condition M∞ if there exists C > 0 and δ > 0 such that for any
∆ ∈ M and any measurable subset E ⊆ ∆

ω(E)

ω(∆)
≤ C

(
|E|

|∆|

)δ

. (3.15)

We skip the detailed proofs of the following two lemmas because the
corresponding proofs in [3] for Ap weights work with obvious changes.

Lemma 3.3. Let ω satisfies the condition Mp, p > 1 then there exist r > 0
and C > 0 such that

(
1

|∆|

∫

∆

ω(x)1+r

) 1
1+r

≤ C
ω(∆)

|∆|
∀∆ ∈ M. (3.16)

Lemma 3.4. Let ω satisfies the condition Mp for some p > 1 then ω satisfies
the condition M∞.

We need also the following

Lemma 3.5. Let ω satisfies the condition Mp for some p > 1 then

ω /∈ L(∆j(+∞)), ω /∈ L(∆j(−∞)), ∀j ∈ N0.

Proof. We prove the assertion for the neighborhoods of +∞. For this purpose
we observe that there exists Cp > 0 such that for any j ∈ N0

ω(∆−j−1) ≤ Cpω(∆−j−1 \∆−j). (3.17)

For any j ∈ N0 and any locally integrable function f ≥ 0 we have that
MMf(x) ≥ m−j

∫
[0,mj ]

f(t)dt if x ∈ [0, mj]. By Proposition 3.4 we obtain

that (
m−j

∫

[0,mj ]

f(t)dt

)p

ω([0, mj]) ≤ Bp

∫

[0,mj ]

f(t)pω(t)dt.
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Putting j + 1 instead of j in the above inequality and letting f be the char-
acteristic function of the set ∆−j−1 \∆−j we obtain the inequality (3.17). If
ω ∈ L(∆j0(+∞)) then for any ε > 0 there exists N ∈ N such that

∫

[mN ,+∞)

ω(t)dt < ε.

Which leads to a contradiction with the condition (3.17). Evidently the proof
for the neighborhoods of −∞ is similar.

Definition 3.3. Let ω ≥ 0 be a weight function defined on R+. We will say
that ω satisfies the condition My

p(R
+), p ≥ 1 for some y ∈ R+ if

ω(∆j(y))

[∫

R+\∆j(y)

ω− 1
p−1 (t)dt

]p−1

≤ Cp|∆j(y)|
p ∀j ∈ Z, (3.18)

where Cp > 0 is independent of j ∈ Z.

We will not formulate the definition of the condition My
p(R

−) because it
is clear from the context.

Definition 3.4. Let ω ≥ 0 be a weight function defined on ∆, where ∆ ∈ M,
|∆| = ml. We will say that ω satisfies the condition My

p(∆), p ≥ 1 for some
y ∈ ∆ if

ω(∆j(y))

[ ∫

∆\∆j(y)

ω− 1
p−1 (t)dt

]p−1

≤ Cp|∆j(y)|
p ∀j > l, (3.19)

where Cp > 0 is independent of j.

Lemma 3.6. Let w ≥ 0 be a weight function defined on [0, 1] such that w
satisfies the condition My

p([0, 1]) for some y ∈ [0, 1] and 1 < p < ∞. Then
there exists qp > 1 such that

∫

[0,1]\∆j+1(y)

w− 1
p−1 (t)dt

(∫

[0,1]\∆j(y)

w− 1
p−1 (t)dt

)−1

≥ qp

for all j ∈ N.
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Proof. For any j ∈ N we have that

∫

[0,1]\∆j+1(y)

w− 1
p−1 (t)dt

(∫

[0,1]\∆j(y)

w− 1
p−1 (t)dt

)−1

≥ 1 +

∫

∆j(y)\∆j+1(y)

w− 1
p−1 (t)dt

(∫

[0,1]\∆j(y)

w− 1
p−1 (t)dt

)−1

≥ 1 +

∫

∆j(y)\∆j+1(y)

w− 1
p−1 (t)dt

(
w(∆j(y))

) 1
p−1

C
− 1

p−1
p |∆j(y)|

− p

p−1

≥ 1 + |∆j(y) \∆j+1(y)|
p

p−1C
− 1

p−1
p |∆j(y)|

− p

p−1 ≥ 1 + C
− 1

p−1
p

(
m− 1

m

) p

p−1

.

Putting qp = 1 + C
− 1

p−1
p (m−1

m
)

p
p−1 we finish the proof.

Following three lemmas will be used in the last section. In the proofs we
will use the following notation: aE = {at : t ∈ E}.

Lemma 3.7. Let ω ≥ 0 satisfies the condition Mp(R
+), p > 1 with a con-

stant Cp > 0. Then for any N ∈ N the weight function ωN(x) := ω(mNx)
satisfies the condition Mp([0, 1]) with the same constant Cp.

Proof. For any E ∈ M
⋂
[0, 1] we have

ωN(E)

[ ∫

E

ω
− 1

p−1

N (t)dt

]p−1

= m−N

∫

mNE

ω(x)dx

[
m−N

∫

mNE

ω− 1
p−1 (x)dx

]p−1

≤ m−pNCp |m
NE|p = Cp|E|

p.

We have used that mNE ∈ M.

Lemma 3.8. Let N ∈ N and let y ∈ [0, mN ]. Suppose that ω ≥ 0 satisfies
the condition Mp([0, m

N ] \ {y}), p > 1 with a constant Cp > 0. Then the
weight function ωN(x) := ω(mNx) satisfies the condition Mp([0, 1] \ {yN})
with the same constant Cp, where yN = m−Ny.

Proof. For any E ∈ M
⋂(

[0, 1]\{yN}

)
we observe that the interval mNE ∈

M
⋂(

[0, mN ] \ {y}

)
. The rest of the proof is the same as above.
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Lemma 3.9. Let N ∈ N and let y ∈ [0, mN ]. Suppose that ω ≥ 0 satisfies
the condition My

p([0, m
N ]), p > 1 with a constant Cp > 0. Then the weight

function ωN(x) := ω(mNx) satisfies the condition MyN
p ([0, 1]) with the same

constant Cp, where yN = m−Ny.

Proof. For any j ∈ N we have

ωN(∆j(yN))

[ ∫

[0,1]\∆j(yN )

ω
− 1

p−1

N (t)dt

]p−1

= m−N

∫

∆j−N (y)

ω(x)dx

×

[
m−N

∫

[0,mN ]\∆j−N (y)

ω− 1
p−1 (x)dx

]p−1

≤ m−pNCp |∆j−N(y)|
p = Cp|∆j(y)|

p.

3.2 Higher rank Haar wavelets

We bring the definition of higher rank Haar wavelets without recalling the
general theory of multiresolution analysis. For relations of these type of
wavelets with p−adic analysis see [21]. Let ϕ(x) = χ[0,1](x) and let

V (m) = span{ϕ1,j,m(x) : 0 ≤ j ≤ m− 1} (3.20)

for any m = 2, 3, . . .. Afterwards, let {h(ν)(x) : 0 ≤ ν ≤ m − 1} be an
orthonormal basis in V (m) such that h(0)(x) = ϕ(x). The system

H(m) = {h
(ν)
k,j,m(x) : k ∈ Z; j ∈ Z; 1 ≤ ν ≤ m− 1}, (3.21)

where
h
(ν)
k,j,m(x) = mk/2h(ν)(mkx− j) (3.22)

will be calledmth rank Haar system. Sometimes we will use also the following
notation

h
(ν)
∆ := h

(ν)
k,j,m(x) when ∆ = [

j

mk
,
j + 1

mk
]. (3.23)

The orthogonality of the system (3.21) is obvious.

Theorem 3.1. The system H(m) is complete in Lp(R), 1 < p <∞.

15



Proof. Let p, 1 < p < ∞ be fixed. It is easy to observe that the proof will
be finished if we show that for any ϕ1,j,m(x), 0 ≤ j ≤ m − 1 and any ε > 0
there exists a finite linear combination Pj of functions

{h
(ν)
k,l,m(x) : k ∈ Z\N0; l ∈ Z; 1 ≤ ν ≤ m−1} such that ‖ϕ1,j,m−Pj‖Lp(R) < ε.

Let l ∈ N be such that m1/2ml(1/p−1) < ε. We set

V (l)(m) = span{ϕ1,j,m(x) : 0 ≤ j ≤ ml+1 − 1}.

It is clear that dimV (l)(m) = ml+1. Let us show by induction that there are
exactly ml+1 − 1 functions from the system
{h

(ν)
k,j,m(x) : 1 ≥ k ≥ −l + 1; j ∈ Z; 1 ≤ ν ≤ m− 1} with supports in [0, ml].
If l = 0 then it is obvious. Suppose that for some µ ∈ N we have that the

number of functions from the system

{h
(ν)
k,j,m(x) : 1 ≥ k ≥ −µ+ 1; j ∈ Z; 1 ≤ ν ≤ m− 1} (3.24)

with supports in [0, mµ] is equal to mµ+1 − 1. Then it is clear that there
are (mµ+1 − 1)m functions from the system (3.24) that have their supports

in [0, mµ+1]. Note that the functions {h
(ν)
−µ,0,m(x) : 1 ≤ ν ≤ m − 1} vanish

outside the closed interval [0, mµ+1]. Thus we have (mµ+1 − 1)m+m− 1 =
mµ+2 − 1 mutually orthogonal functions in (3.24) which have their supports
in [0, mµ+1].

Let {gi}
ml+1−1
i=1 be all functions from the system

{h
(ν)
k,j,m(x) : 1 ≥ k ≥ −l + 1; j ∈ Z; 1 ≤ ν ≤ m− 1}

that have their supports in [0, ml]. Evidently {gi}
ml+1−1
i=1 ⊂ V (l)(m).

Let g0(x) = χ[0,ml](x). Then g0 ∈ V (l)(m) and g0 is orthogonal to all elements

of {gi}
ml+1−1
i=1 . Hence, {gi}

ml+1−1
i=0 is a basis in V (l)(m) and

ϕ1,j,m =
ml+1−1∑

i=0

a
(j)
i gi, where a

(j)
0 = m−l

∫

[0,ml]

ϕ1,j,m(t)dt.

Thus we obtain that for any 0 ≤ j ≤ m− 1

∥∥∥∥ϕ1,j,m −
ml+1−1∑

i=1

a
(j)
i gi

∥∥∥∥
Lp(R)

=

∥∥∥∥a
(j)
0 g0

∥∥∥∥
Lp(R)

= m1/2ml(1/p−1) < ε.
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4 mth rank Haar system on [0, 1]

Let h0(x) ≡ 1 for x ∈ [0, 1]. For any n ∈ N we have a unique representation

n = mk + j − 1, where k ∈ N, 1 ≤ j ≤ mk, (4.1)

and
mk = 1 +m+m2 + · · ·+mk−1, m1 = 1. (4.2)

For any 1 ≤ ν ≤ m− 1 we put

h
(ν)
n (x) = h

(ν)
k,j−1,m(x) forx ∈ [0, 1].

Afterwards we enumerate the functions in the following way

hl(x) = h(l)(x) for 1 ≤ l ≤ m− 1; (4.3)

hl(x) = h
(ν)
n (x) for l = ν + n(m− 1), n ∈ N. (4.4)

We denote the mth rank Haar system by H(m) = {hl(x)}
∞
l=0. We also let

µ0 = 0, µ1 = µ0 +m− 1, · · · , µk+1 = µk + (m− 1)mk, · · · . (4.5)

The following lemma is the analogue of Schauder’s lemma for the classical
Haar system (see [26]). For any f ∈ L1[0, 1] and for any 1 ≤ j ≤ mk, k ∈ N

we put

Θµk+j(m−1)(f, x) =

µk∑

l=0

al(f)hl(x) +

j−1∑

s=0

m−1∑

ν=1

a
(ν)
k,s,m(f)h

(ν)
k,s,m(x),

where

al(f) =

∫

[0,1]

f(t)hl(t)dt; a
(ν)
k,s,m(f) =

∫

[0,1]

f(t)h
(ν)
k,s,m(t)dt.

Lemma 4.1. Let f ∈ L1[0, 1] and let 1 ≤ j ≤ mk, k ∈ N0. Then the partial
sum Θµk+j(m−1)(f, x) is constant on any interval from the collection of sets

{[
s

mk+1
,
s+ 1

mk+1

]
: 0 ≤ s ≤ jm− 1

}
, (4.6)

{[
l

mk
,
l + 1

mk

]
: j ≤ l ≤ mk − 1

}
. (4.7)

Moreover, for any ∆ from (4.6) or from (4.7)

Θµk+j(m−1)(f, x) =
1

|∆|

∫

∆

f(t)dt for x ∈ ∆. (4.8)
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Proof. At first we show that the assertion of the lemma is true for Θµk
(f, x),

k ∈ N0. Indeed,
span{hl, 0 ≤ l ≤ mk − 1} = V (m),

where V (m) is defined by (3.20). Hence, for any ∆ from (4.7) with j = 1 we
have that for x ∈ ∆

Θµk
(f, x) =

mk−1∑

l=0

∫

[0,1]

f(t)ϕk,l,m(t)dt ϕk,l,m(x) =
1

|∆|

∫

∆

f(t)dt.

Afterwards we observe that in the general case

Θµk+j(m−1)(f, x) = Θµk+1
(f, x) if x ∈ [0,

j

mk
]

and

Θµk+j(m−1)(f, x) = Θµk
(f, x) if x ∈ [

j

mk
, 1].

Which finishes the proof.

By Lemma 4.1 we obtain the following corollaries.

Corollary 4.1. For any m = 2, 3, . . . the system H(m) is a basis in any
space Lp[0, 1], 1 ≤ p <∞.

Proof. By Lemma 4.1 as in the case of the classical Haar system we have
that

‖Θµk+j(m−1)‖Lp→Lp ≤ 1 for all 1 ≤ j ≤ mk, k ∈ N.

To finish the proof we have to check that liml→∞ |al(f)|‖hl‖Lp[0,1] = 0. We
skip the technical details because afterwards we are going to return to the
similar question in the weighted norm case.

Corollary 4.2. For any f ∈ L1[0, 1] the Fourier series of f with respect to
the system H(m), m = 2, 3, . . . converges almost everywhere to f on [0, 1].

Proof. For every x ∈ [0, 1] which is a Lebesgue point of f we have that

lim
k→∞

Θµk
(f, x) = f(x).

Afterwards we observe that |al(f)||hl(x)| ≤ CMM(f, x) which finishes the
proof.
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For any k ∈ N0 and any 1 ≤ j ≤ mk consider the kernel

Kkj(t, x) =

µk∑

l=0

hl(t)hl(x) +

j−1∑

s=0

m−1∑

ν=1

h
(ν)
k,s,m(t)h

(ν)
k,s,m(x). (4.9)

Let {Gi : 1 ≤ i ≤ mk + j(m − 1)} be mutually disjoint sets from (4.6) and
(4.7). Further in the paper we will need the following result.

Lemma 4.2. Let k ∈ N0 and 1 ≤ j ≤ mk. Then the kernel

Kkj(t, x) =
1

|Gi|
for (t, x) ∈ G2

i , 1 ≤ i ≤ mk + j(m− 1); (4.10)

and

Kkj(t, x) = 0, if (t, x) ∈ [0, 1]2 \

mk+j(m−1)⋃

i=1

G2
i .

Proof. We have that {|Gi|
−1/2χGi

(x)}
mk+j(m−1)
i=1 is an orthonormal system of

functions. From Lemma 4.1 it follows that the orthonormal system of func-
tions {hl(x)}

µk

l=0

⋃
{h

(ν)
k,s,m(x) : 0 ≤ s ≤ j − 1, 1 ≤ ν ≤ m− 1} can be obtained

from the set of functions {|Gi|
−1/2χGi

(x)}
mk+j(m−1)
i=1 by an orthogonal trans-

formation. Hence,

Kkj(t, x) =

mk+j(m−1)∑

i=1

|Gi|
−1/2χGi

(t)|Gi|
−1/2χGi

(x)

=

mk+j(m−1)∑

i=1

|Gi|
−1χGi

(t)χGi
(x).

Definition 4.1. We say that a system of functions {φk}
∞
k=1 ⊂ L∞[0, 1] is

total with respect to L1[0, 1] if

∫

[0,1]

f(t)φk(t)dt = 0 for all k ∈ N for some f ∈ L1[0, 1] (4.11)

if and only if f = 0 a.e. on [0, 1].
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By Lemma 4.1 it follows immediately

Corollary 4.3. The system H(m), m = 2, 3, . . . is total with respect to
L1[0, 1].

Theorem 4.1. For any m = 2, 3, . . . the system H(m) is an unconditional
basis in any space Lp[0, 1], 1 < p <∞.

The reader can find well known facts about unconditional bases in [24].
For any sequence ǫ = {ǫl}

∞
l=0, where ǫ = ±1 we consider an operator Iǫ :

L1[0, 1] → L0[0, 1] defined as follows Iǫ(f, x) =
∑∞

l=0 ǫlal(f)hl.

Proposition 4.1. The operator Iǫ is of weak-(1, 1) type.

Proof. We adopt the idea of the proof given in [29]. Let f ∈ L∞[0, 1] and
suppose that λ > ‖f‖1. Without loss in generality we can suppose that
f ≥ 0 (see [27], pp. 21–22). By Proposition 3.3 we write f(x) = g(x) +
b(x), where g satisfies the condition (3.10). The system H(m) is a complete
orthonormal system. Hence, Iǫ : L

2[0, 1] → L2[0, 1] is an isometry. Thus by
the Tchebychev inequality we will have

|{x ∈ [0, 1] : |Iǫ(g, x)| > λ}| ≤
1

λ2

∫

[0,1]

g2(x)dx ≤
m

λ
‖g‖1 ≤

m

λ
‖f‖1, (4.12)

where the last inequality follows by (3.11).Afterwards, we apply the following
property of m−adic intervals. If ∆1,∆2 ⊂ M then only two relations are
possible or ∆1

⋂
∆2 = ∅ or one of those intervals is a subset of another

interval. By the definition of the system H(m) and by (3.12) it is easy to
deduce that Iǫ(b, x) = 0 for x ∈ Ωc. Thus by (3.7) and (4.12) we obtain

|{x ∈ [0, 1] : |Iǫ(f, x)| > λ}| ≤
m+ 1

λ
‖f‖1. (4.13)

From the last inequality readily follows that for any f ∈ L1[0, 1] the series∑∞
l=0 ǫlal(f)hl converges in measure on [0, 1]. Observe that in the proof of

the inequality (4.13) the condition f ∈ L∞[0, 1] was used only to claim the
existence of Iǫ(f, x). Hence, the proof is complete.

The analogue of Proposition 4.1 for the Haar system was obtained by S.
Yano [31].
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Proof. By Proposition 4.1 and the Marcinkiewicz interpolation theorem (see
[32]) we obtain that H(m) is an unconditional basis in Lp[0, 1], 1 < p ≤ 2.
Afterwards by duality we finish the proof of Theorem 4.1.

For the system H(m) we put

Gm(f, x) =

( ∞∑

l=0

|al(f)hl(x)|
2

) 1
2

, where f ∈ L1[0, 1].

For the operator Gm : L1[0, 1] → L0[0, 1] the following proposition holds.

Proposition 4.2. The operator Gm is of weak-(1, 1) type.

Proof. Let f =
∑N

l=0 alhl be any polynomial with respect to the systemH(m)
and let ǫ = {ǫl}

N
l=0 be any Rademacher sequence. By a well known inequality

(see [14],p.8) we have that for any 0 < α < 1 and and any x ∈ [0, 1]

P(Iǫ(f, x) > αGm(f, x)) >
1

3
(1− α)2.

Observe that Gm(Iǫ(f, ·), x) = Gm(f, x) for any Rademacher sequence ǫ. For
any λ > 0 we have that if the following two events {Iǫ(f, x) > αGm(f, x)},
{Gm(f, x) >

λ
α
} then {Iǫ(f, x) > λ}. Hence, by Proposition 4.1 we finish the

proof for the polynomials with respect to the system H(m).
For arbitrary f ∈ L1[0, 1] we have that the sequence Gm(Θn(f, ·), x) is an

increasing sequence which a.e. converges to Gm(f, x). Hence,

|{Gm(f, x) > λ}| = lim
n→+∞

|{Gm(Θn(f, ·), x) > λ}|

<
C

λ
sup
n

‖Θn(f, ·)‖L1[0,1] ≤
C1

λ
‖f‖L1[0,1]

By standard arguments (see [30]) one can derive from Theorem 4.1 that
for all 1 < p <∞

‖Gm(f, ·)‖Lp[0,1] ≃ ‖f‖Lp[0,1]. (4.14)
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4.1 Haar wavelet systems as unconditional bases in

Lp(R), 1 < p < ∞.

From Theorem 4.1 we easily derive

Theorem 4.2. For any m = 2, 3, . . . the system H(m) is an unconditional
basis in any space Lp(R), 1 < p <∞.

Further we will use the following notations: R+ = [0,+∞), R− = (−∞, 0]
and Z+ = R+

⋂
Z having in mind the agreement introduced in Section 3.1.

For technical reasons we divide the system H(m) into two parts:

H+(m) = {h
(ν)
k,j,m(x) : k ∈ Z; j ≥ 0; 1 ≤ ν ≤ m− 1}, (4.15)

H−(m) = {h
(ν)
k,j,m(x) : k ∈ Z; j ≤ −1; 1 ≤ ν ≤ m− 1}. (4.16)

We are going to show that the systems H+(m), H−(m) are unconditional
bases respectively in the spaces Lp(R+) and Lp(R−), 1 < p < ∞. Let us
prove the following

Theorem 4.3. For any m = 2, 3, . . . the system H+(m) is an unconditional
basis in any space Lp(R+), 1 < p <∞.

Proof. Let f ∈ Lp(R+) and let Ω ⊂ Z× Z+ be a finite set. For any 1 ≤ ν ≤
m− 1 consider the sum

S
(ν)
Ω (f, x) =

∑

(k,j)∈Ω

c
(ν)
kj (f)h

(ν)
k,j,m(x),

where

c
(ν)
kj (f) =

∫

R+

f(t)h
(ν)
k,j,m(t)dt.

Let N ∈ N be such that for all (k, j) ∈ Ω h
(ν)
k,j,m(x) = 0 if x ∈ [mN ,+∞).

Consider the dilation operator DN (φ)(x) = m
N
2 φ(mNx). It is clear that

DN(h
(ν)
k,j,m) ∈ H(m) for any h

(ν)
k,j,m which satisfies to the above conditions if

we consider the restriction on [0, 1] of the image of the operator. Thus

DN(S
(ν)
Ω (f, ·))(x) =

∑

(k,j)∈Ω

c
(ν)
kj (f)DN(h

(ν)
k,j,m)(x)
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on [0, 1] is a finite linear combination of elements from H(m). We also have
that if (k, j) ∈ Ω

c
(ν)
kj (f) =

∫

[0,mN ]

f(t)h
(ν)
k,j,m(t)dt =

∫

[0,1]

DN(f)(t)DN(h
(ν)
k,j,m)(t)dt.

Hence, DN(S
(ν)
Ω (f, ·))(x) on [0, 1] coincides with the sum of a subsequence of

the expansion of the function DN(f) with respect to the system H(m). By
Theorem 4.2 we obtain that there exists Cp > 0 which depends only on p
such that

∫

[0,1]

|DN(S
(ν)
Ω (f, ·))(t)|pdt ≤ Cp

p

∫

[0,1]

|DN(f)(t)|
pdt

which yields
‖S

(ν)
Ω (f, ·)‖Lp(R+) ≤ Cp‖f‖Lp(R+).

It is clear that in a similar way we can check that H−(m) is an uncondi-
tional basis in any space Lp(R−), 1 < p <∞. Thus we the proof of Theorem
4.2 is finished.

4.2 mth rank Haar system in Lp([0, 1], w), 1 ≤ p < ∞.

Theorem 4.4. For any m = 2, 3, . . . the system H(m) is a basis in the
weighted norm space Lp([0, 1], w), 1 ≤ p < ∞ if and only if w satisfies the
condition Mp([0, 1]).

Proof. By Corollary 4.3 we easily obtain that the system H(m) is complete in
Lp([0, 1], w), 1 ≤ p < ∞. Suppose that w satisfies the condition Mp([0, 1]).
Then it is evident that

χ[0,1]

w
∈ Lp′([0, 1], w), where

1

p
+

1

p′
= 1.

Hence, the system H(m) = {hl(x)}
∞
l=0 is minimal in Lp([0, 1], w) and its

conjugate system is the system H∗(m) = { 1
w(x)

hl(x)}
∞
l=0. Thus for any f ∈
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Lp([0, 1], w), the coefficients of its expansion with respect to the system H(m)
are equal to

bl(f) =

∫

[0,1]

f(t)
1

w(t)
hl(t)w(t)dt =

∫

[0,1]

f(t)hl(t)dt = al(f).

Hence, for any k ∈ N and 1 ≤ j ≤ mk the partial sums of the mentioned
expansion with indices µk + j(m − 1) coincide with Θµk+j(m−1)(f, x) (see
subsection 4). By Lemma 4.1 it follows easily that

‖Θµk+j(m−1)(f, ·)‖Lp([0,1],w) ≤ C‖f‖Lp([0,1],w), (4.17)

where C = C(w, p,m) is independent of f . If we prove that

lim
l→+∞

|bl(f)|‖hl‖Lp([0,1],w) = 0 (4.18)

then it will follow that (4.17) holds for all n ∈ N. Which yields that the sys-
temH(m) is a basis Lp([0, 1], w).We have that bl(f) =

∫
[0,1]

[f(t)−P (t)]hl(t)dt

for any P (t) =
∑l−1

k=0 dkhk(t). If hl(x) = h
(ν)
k,j,m(x) forx ∈ [0, 1] and ∆ =

[ j
mk ,

j+1
mk ] then

|bl(f)|‖hl‖Lp([0,1],w) ≤

≤ ‖f − P‖Lp([0,1],w)

∥∥∥∥
h
(ν)
k,j,m

w
1
p

∥∥∥∥
Lp′ (∆)

‖h(ν)‖L∞([0,1])m
k
2 [w(∆)]

1
p

≤ ‖f − P‖Lp([0,1],w)‖h
(ν)‖2L∞([0,1])m

k[w(∆)]
1
p

[ ∫

∆

w− 1
p−1

] 1
p′

≤ ‖f − P‖Lp([0,1],w)‖h
(ν)‖2L∞([0,1])C

1
p
p .

The last inequality yields (4.18) because the system H(m) is complete in
Lp([0, 1], w).

To prove the necessity suppose that the system H(m) is a basis in the
weighted norm space Lp([0, 1], w), where 1 ≤ p <∞.
Let H∗(m) = {h∗l (x)}

∞
l=0 be the conjugate system of the basis H(m). Then

we have that
∫

[0,1]

[h∗0(t)w(t)− 1]hl(t)dt = 0 for all l ∈ N0.
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Hence, h∗0(t) =
1

w(t)
∈ Lp′([0, 1], w). Thus we obtain that

h
∗
l (x) =

hl(x)

w(x)
for all l ∈ N0.

Thus for any f ∈ Lp([0, 1], w) nth partial sums of its expansion with respect
to the basis H(m) coincide with Θn(f, x). By Lemma 4.1 it follows that for
some C ≥ 1 such that for any ∆ ∈ M

sup
1

|∆|p

∣∣∣∣
∫

∆

f(t)dt

∣∣∣∣
p

w(∆) ≤ Cp,

where the supremum is taken over all ‖f‖Lp([0,1],w) ≤ 1. The last inequality
easily yields (3.13) with Cp = Cp.

The prove of the following result technically is much more complicated.
The main line of our proof is close to the one given in [10](see also [3] and
[17],[5]).

Theorem 4.5. For any m = 2, 3, . . . the system H(m) is an unconditional
basis in the weighted norm space Lp([0, 1], w), 1 < p < ∞ if and only if w
satisfies the condition Mp([0, 1]).

Lemma 4.3. Suppose that w is a weight function which satisfies the condition
M∞([0, 1]). Then for any λ > 0, any 0 < γ < 1 and for any f ∈ L1[0, 1]

w({x ∈ [0, 1] : Gm(f, x) >2λ and MMf(x) ≤ γλ})

≤ Cγδw({x ∈ [0, 1] : Gm(f, x) > λ}),

where C > 0 is independent of f , λ > 0 and γ > 0, while δ > 0 is the
corresponding constant from Definition 3.2.

In the formulation of the following assertion we use the agreement formu-
lated in the Section 3.1 .

Lemma 4.4. For any f ∈ L1[0, 1] and any λ > 0 there exists a finite or
denumerable set of disjoint closed intervals {∆k}k∈Υ such that the set

Eλ(f) = {x ∈ [0, 1] : Gm(f, x) > λ} =
⋃

k∈Υ

∆k. (4.19)
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Proof. According to our agreement for any x ∈ [0, 1] there exists a unique
sequence of closed intervals Γk(x) ⊂ M such that Γk(x) ⊂ Γk−1(x) for all
k ∈ N and |Γk(x)| = m−k,

⋂∞
k=0 Γk(x) = x. For any x0 ∈ Eλ(f) there exists

k(x0) ∈ N0 so that Γk(x0)(x0) ⊆ Eλ(f) and Γk(x0)−1(x0) at least contains a
point which does not belong to Eλ(f). Indeed, if Gm(f, x0) > λ then there
exists N ∈ N such that

[Gm(f, x0)]
2 ≥

N∑

l=0

|al(f)hl(x0)|
2 > λ2.

Hence, for some ν ∈ N the sum
∑N

l=0 |al(f)hl(x0)|
2 is constant on Γν(x0).

Which means that Γν(x0) ⊆ Eλ(f). The number k(x0) will be the small-
est index for which the last relation holds. Afterwards, one observes that
maxx∈Eλ(f) |Γk(x)(x)| := µ0 exists. There exist only finitely many disjoint
intervals in the set {Γk(x)(x) : x ∈ Eλ(f)} with length equal to µ0. Let
∆j(1 ≤ j ≤ n1) be all such intervals. Let E2 = Eλ(f) \ (

⋃n1

j=1∆j) and re-
peat the same procedure taking E2 instead of Eλ(f). Thus step by step we
construct the finite or denumerable set of disjoint closed intervals {∆k}k∈Υ
which satisfy the conditions of lemma.

Proof of Lemma 4.3. Let ∆l be an arbitrary closed interval from (4.19). At
the first step we have to prove the following relation

∣∣∣∣
{
x ∈ ∆l : Gm(f, x) > 2λ and MMf(x) ≤ γλ

}∣∣∣∣ ≤ Cγ|∆l|, (4.20)

where C > 0 is independent of f ,λ,γ and ∆l. Suppose that there is at least
a point yl ∈ ∆l such that MMf(yl) ≤ γλ. Otherwise there is nothing to
prove. Let ∆∗

l ∈ M be the interval which satisfies the following conditions:
∆∗

l ⊃ ∆l, |∆
∗
l | = m|∆l|. Let f(x) = f1(x) + f2(x), where

f1(x) =

(
f(x)− f∆∗

l

)
χ∆∗

l
(x), f∆ =

1

|∆|

∫

∆

f(t)dt, ∆ ∈ M

and f2(x) = f(x)− f1(x). By Proposition 4.2 we have that
∣∣∣∣
{
Gm(f1, x) >

λ

2

}∣∣∣∣ ≤
2C1

λ
‖f1‖L1[0,1] =

4C1

λ

∫

∆∗
l

|f(t)|dt (4.21)

≤
4mC1

λ
|∆l|MMf(yl) ≤ 4mC1γ|∆l|.
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On the other hand we have that |∆∗
l | = m−κ for some κ ∈ N0. Thus for all 0 ≤

l ≤ µκ we have that al(f) = al(f2), which yields Gm(f2, x) = Gm(Θµκ
(f, ·), x)

if x ∈ ∆∗
l . There exists at least one point zl ∈ ∆∗

l such that Gm(f, zl) ≤ λ.
Thus if x ∈ ∆∗

l then

Gm(f2, x) = Gm(Θµκ
(f, ·), x) ≤ Gm(f, zl) ≤ λ.

We have that if x ∈ ∆∗
l then

Gm(f, x) ≤ Gm(f1, x) +Gm(f2, x) ≤ Gm(f1, x) + λ.

Hence, by (4.21) we finish the proof of (4.20).
We have that the weight function w satisfies the condition M∞([0, 1]).

Thus we obtain that

w({x ∈ ∆l : Gm(f, x) > 2λ andMMf(x) ≤ γλ}) ≤ Cγδw(∆l)

where C > 0 is independent of f , λ > 0, γ > 0 and ∆l. Hence, by Lemma
4.19 we finish the proof.

Proof of Theorem 4.5. The necessity follows from Theorem 4.4. Suppose
that w satisfies the condition Mp([0, 1]). By Lemma 4.3 we derive

∫

[0,1]

Gp
m(f, x)w(x)dx =p2p

∫ +∞

0

λp−1w({x ∈ [0, 1] : Gm(f, x) > 2λ})dλ

≤ Kp

∫ +∞

0

λp−1w({x ∈ [0, 1] :MMf(x) > γλ})dλ

+KpCγ
δ

∫ +∞

0

λp−1w({x ∈ [0, 1] : Gm(f, x) > λ})dλ

Let γ0 > 0 be such that KpCγ
δ
0 <

1
2
. Then we obtain that

∫

[0,1]

Gp
m(f, x)w(x)dx ≤ 2Kpγ

−p
0

∫

[0,1]

Mp
Mf(x)w(x)dx.

By Proposition 3.4 we finish the proof.
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5 The system H0(m) = {hl(x)}∞l=1 in Lp([0, 1], w)

In this section we will use the following result (see [15]–[18])

Theorem 5.1. Let {fn}
∞
n=1 ⊆ L∞(E) be an orthonormal system of real-

valued functions defined on a measurable set E, 0 < |E| < +∞ and suppose
that {fn}

∞
n=1 is total with respect to L1(E). Let, furthermore, N ∈ N and

w ∈ L1(E) be a weight function. For the system {fn}
∞
n=N+1 to be closed

and/or minimal it is necessary and sufficient that the following conditions 1)
and/or 2), respectively, are satisfied:

1) any function of the form (w)−1
∑N

n=1 cnfn, where cn(1 ≤ n ≤ N) are
real numbers, belongs to Lp′(E,w) if and only if every cn is zero;

2) for every k (k = N + 1, N + 2, ...) there exist uniquely determined real

numbers b
(k)
n (1 ≤ n ≤ N) such that the function

gk =
1

w

[ N∑

n=1

b(k)n fn + fk

]

belongs to Lp′(E,w) (1
p
+ 1

p′
= 1).

The following two lemmas are easy consequences of Theorem 5.1. We
skip the details of the proofs because they are similar to the case of the Haar
system [19].

Lemma 5.1. For any m = 2, 3, . . . the system H0(m) is complete in a
weighted norm space Lp([0, 1], w), 1 ≤ p < ∞ if and only if there exists
at least one point y ∈ [0, 1] such that

1

w
/∈ L

1
p−1 (∆j(y)) for all j ∈ N. (5.1)

Lemma 5.2. For any m = 2, 3, . . . the system H0(m) is minimal in a
weighted norm space Lp([0, 1], w), 1 ≤ p <∞ if and only if 1

w
∈ L1([0, 1]) or

for a point y ∈ [0, 1]

1

w
∈ L

1
p−1 ([0, 1] \∆j(y)) for all j ∈ N. (5.2)

By Lemmas 5.1 and 5.2 it follows easily
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Lemma 5.3. For any m = 2, 3, . . . the system H0(m) is complete and min-
imal in a weighted norm space Lp([0, 1], w), 1 ≤ p < ∞ if and only if there
exists only one point y ∈ [0, 1] such that the conditions (5.1), (5.2) hold.

Further in this section we will suppose that the weight function w satisfies
the conditions (5.1) and (5.2). Hence, the system H0(m) is complete and
minimal in the weighted norm space Lp([0, 1], w), 1 ≤ p < ∞ with the
unique conjugate system H∗

0(m). By Theorem 5.1 applied for our case it is
easy to see that the system H∗

0(m) = {h∗l (x)}
∞
l=1 is defined by the following

equations:

h
∗
l (x) =

hl(x)− hl(y)

w(x)
. (5.3)

For any f ∈ Lp([0, 1], w) and for any 1 ≤ j ≤ mk, k ∈ N we put

Θ
(0)
µk+j(m−1)(f, x) =

µk∑

l=1

cl(f)hl(x) +

j−1∑

s=0

m−1∑

ν=1

c
(ν)
k,s,m(f)h

(ν)
k,s,m(x), (5.4)

where

cl(f) =

∫

[0,1]

f(t)h∗l (t)dt; c
(ν)
k,s,m(f) =

∫

[0,1]

f(t)[h
(ν)
k,s,m(t)− h

(ν)
k,s,m(y)]dt.

Let ∆kj(y) be the interval from the collection of sets (4.6), (4.7) such that
y ∈ ∆kj(y).

Lemma 5.4. For any f ∈ Lp([0, 1], w) and for any 1 ≤ j ≤ mk, k ∈ N we

have that Θ
(0)
µk+j(m−1)(f, x) is constant on any interval from the collection of

sets (4.6), (4.7). Moreover,

Θ
(0)
µk+j(m−1)(f, x) = −

1

|∆kj(y)|

∫

[0,1]\∆kj(y)

f(t)dt for x ∈ ∆kj(y), (5.5)

and for any ∆ from (4.6) or from (4.7) which does not coincide with ∆kj(y)

Θ
(0)
µk+j(m−1)(f, x) =

1

|∆|

∫

∆

f(t)dt for x ∈ ∆. (5.6)

Proof. In the proof we use the notation of Lemma 4.2. Let ∆ be any interval
from the collection of sets (4.6), 4.7) such that ∆

⋂
∆kj(y) = ∅. Then we

have that

Θ
(0)
µk+j(m−1)(f, x) =

∫

[0,1]

f(t)[K̃kj(t, x)− K̃kj(y, x)]dt
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=

mk+j(m−1)∑

i=1

∫

Gi

f(t)[Kkj(t, x)−Kkj(y, x)]dt,

where K̃kj(t, x) = Kkj(t, x) − 1, hence, K̃kj(t, x) − K̃kj(y, x) = Kkj(t, x) −
Kkj(y, x). Suppose that Gν = ∆kj(y) and take any i0 6= ν, 1 ≤ i0 ≤ mk +
j(m− 1). Then by Lemma 4.2 we obtain that for x ∈ Gi0 we obtain that

mk+j(m−1)∑

i=1

∫

Gi

f(t)[Kkj(t, x)−Kkj(y, x)]dt =

∫

Gi0

f(t)Kkj(t, x)dt

=
1

|Gi0 |

∫

Gi0

f(t)dt.

On the other hand if x ∈ Gν by Lemma 4.2 we will have that

Θ
(0)
µk+j(m−1)(f, x) =

mk+j(m−1)∑

i=1,i 6=ν

∫

Gi

f(t)[Kkj(t, x)−Kkj(y, x)]dt

= −
1

|Gν |

mk+j(m−1)∑

i=1,i 6=ν

∫

Gi

f(t)dt = −
1

|Gν |

∫

[0,1]\Gν

f(t)dt.

Lemma 3.6 and Lemma 5.3 easily yield

Lemma 5.5. Let w ≥ 0 be a weight function defined on [0, 1] such that
w satisfies the condition My

p([0, 1]) for some y ∈ [0, 1] and 1 < p < ∞.
Then the conditions (5.1), (5.2) hold and the system H0(m) is complete and
minimal in a weighted norm space Lp([0, 1], w).

Theorem 5.2. For any m = 2, 3, . . . the system H0(m) is a basis in the
weighted norm space Lp([0, 1], w), 1 < p < ∞ if and only if there exists
a point y ∈ [0, 1] such that w satisfies the conditions Mp([0, 1] \ {y}) and
My

p([0, 1]).

Proof. Necessity. If the system H0(m) is a basis in the weighted norm space
Lp([0, 1], w) then it is a complete minimal system in Lp([0, 1], w). Then we
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will have that for any f ∈ Lp([0, 1], w) and for any 1 ≤ j ≤ mk, k ∈ N the
partial sum operators are uniformly bounded

sup
1≤j≤mk,k∈N

‖Θ
(0)
µk+j(m−1)‖Lp([0,1],w)→Lp([0,1],w) :=M0 ≤ Bp,

where Bp > 0. We have that

M0 ≥ max
1≤i≤mk+j(m−1)

sup
‖f‖Lp(Gi,w)≤1

‖Θ
(0)
µk+j(m−1)‖Lp([0,1],w)

If Gi

⋂
∆kj(y) = ∅ then by Lemma 5.4 we will have that

sup
‖f‖Lp(Gi,w)≤1

‖Θ
(0)
µk+j(m−1)‖Lp(Gi,w) =

1

|Gi|
sup

‖f‖Lp(Gi,w)≤1

∣∣∣∣
∫

Gi

f(t)dt

∣∣∣∣w(Gi)
1
p

= |Gi|
−1w(Gi)

1
p‖w− 1

p‖Lp′ (Gi)
.

If Gν = ∆kj(y) then in the same way as above we obtain that

|∆kj(y)|
−pw(∆kj(y))

(∫

∆kj(y)

w− 1
p−1dt

)p−1

≤ Bp
p .

Sufficiency. By Lemma 5.5 we have that the system H0(m) is complete and
minimal in a weighted norm space Lp([0, 1], w). Hence, by Lemma 5.4 we
obtain that for any f ∈ Lp([0, 1], w) and for any 1 ≤ j ≤ mk, k ∈ N

∫

[0,1]

|Θ
(0)
µk+j(m−1)(f, t)|

pw(t)dt =
∑

1≤i≤mk+j(m−1)

i 6=ν

∣∣∣∣
1

|Gi|

∫

Gi

f(t)dt

∣∣∣∣
p ∫

Gi

w(t)dt

+

∣∣∣∣
1

|Gν |

∫

[0,1]\Gν

f(t)dt

∣∣∣∣
p ∫

Gν

w(t)dt ≤ Bp
p

∫

[0,1]

|f(t)|pw(t)dt.

The last inequality follows because w satisfies the conditions Mp([0, 1]\{y})
and My

p([0, 1]). To finish the proof we have to show that
liml→∞ |cl(f)|‖hl(·)‖Lp([0,1],w) = 0.We skip the details because a similar result
we have proved for the proof of Theorem 4.4.

In the case p = 1 we have the following result.
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Theorem 5.3. For any m = 2, 3, . . . the system H0(m) is a basis in the
weighted norm space L1([0, 1], w), if and only if 1

w
/∈ L∞([0, 1]) and there

exists a point y ∈ [0, 1] such that w satisfies the conditions M1([0, 1] \ {y})
and My

1([0, 1]).

We will not give the details of the proof because it is similar to the proof
of Theorem 5.2. The main theorem of this section is the following

Theorem 5.4. If the system H0(m), m = 2, 3, . . . is a basis in the weighted
norm space Lp([0, 1], w), 1 < p <∞ then H0(m) is an unconditional basis in
the same space.

Proof. By Theorem 5.2 we have that there exists y ∈ [0, 1] such that the
weight function w satisfies the conditions Mp([0, 1] \ {y}) and My

p([0, 1]).
For any f ∈ Lp([0, 1], w) there exists a unique sequence {al(f)}

∞
l=1 such that

f =
∞∑

l=1

al(f)hl. (5.7)

The coefficients which correspond to the functions h
(ν)
∆j(y)

in the series (5.7)

we denote by bjν . We split formally the series (5.7) into two parts

∞∑

l=1

al(f)hl =

∞∑

j=0

m−1∑

ν=1

bjν(f)h
(ν)
∆j(y)

+
∑

′

al(f)hl, (5.8)

where by
∑′ we have denoted the series obtained after excluding the terms

which are present in the first series.
For any k ∈ N0 let Gkl ⊂ M, 1 ≤ l ≤ m−1 be mutually disjoint intervals

such that |Gkl| = m−k−1, 1 ≤ l ≤ m− 1 and ∆k(y) = ∆k+1(y)
⋃⋃m−1

l=1 Gkl.
By Theorem 4.5 we easily obtain that the series

∑ ′

al(f)hl converges
unconditionally in Lp(Gkl, w) for any k ∈ N and for all 1 ≤ l ≤ m − 1.
Hence, if we check that the series

∑ ′

al(f)hl converges in Lp([0, 1], w) we
will have that it converges unconditionally in Lp([0, 1], w). Thus the proof
of theorem will be finished if we prove that the first series on the right hand
side of the equality (5.8) converges unconditionally in Lp([0, 1], w). Recall
that we are using the notation introduced in (3.23). Let

F (x) =

∞∑

j=0

m−1∑

ν=1

bjν(f)h
(ν)
∆j(y)

(x) = dlk if x ∈ Gkl. (5.9)
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for all k ∈ N0 and 1 ≤ l ≤ m− 1. By Lemma 5.4 we have that

dlk =
1

|Gkl|

∫

Gkl

f(t)dt, for x ∈ Gkl.

The weight function w satisfies the condition Mp([0, 1] \ {y}). Hence,

∫

[0,1]

|F (x)|pw(x)dx =
∞∑

k=0

m−1∑

l=1

|dlk|
pw(Gkl)

≤
∞∑

k=0

m−1∑

l=1

|Gkl|
−p

∫

Gkl

|f(t)|pw(t)dt

(∫

Gkl

w(t)−
1

p−1dt

)p−1

w(Gkl)

≤ Cp

∫

[0,1]

|f(t)|pw(t)dt.

The system H0(m) is a basis in the weighted norm space Lp([0, 1], w). Hence,
the first series in the right hand side of the equality (5.8) converges in
Lp([0, 1], w). Thus to finish the proof of Theorem 5.4 we have to prove that
the series in (5.9) converge unconditionally in Lp([0, 1], w).

For any j ∈ N0 we have that

m−1∑

ν=1

bjν(f)h
(ν)
∆j(y)

(x) = dlj =
1

|Gjl|

∫

Gjl

f(t)dt,

for x ∈ Gjl, 1 ≤ l ≤ m− 1 and

m−1∑

ν=1

bjν(f)h
(ν)
∆j(y)

(x) := −cj = −
m−1∑

l=1

dlj, for x ∈ ∆j+1(y).

Let {γl}
m−1
l=0 be a collection of numbers such that

m−1∑

l=0

γ2l = 1 and

m−1∑

l=0

γl = 0. (5.10)

We put

ξj(x) = |∆j+1(y)|
− 1

2 [γ0χ∆j+1(y)(x) +
m−1∑

l=1

γlχGjl
(x)] (5.11)
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and

αj(f) =

∫

[0,1]

f(t)[ξj(t)− |∆j+1(y)|
− 1

2γ0]dt (5.12)

= −
γ0√

|∆j+1(y)|

∫

[0,1]\∆j+1(y)

f(t)dt+

∫

[0,1]\∆j+1(y)

f(t)ξj(t)dt

= |∆j+1(y)|
1
2

m−1∑

l=1

(γl − γ0)d
l
j −

γ0√
|∆j+1(y)|

∫

[0,1]\∆j(y)

f(t)dt.

= |∆j+1(y)|
1
2

(m−1∑

l=1

(γl − γ0)d
l
j − γ0

j−1∑

s=0

mj−s−1cs

)
.

Lemma 5.6. For any ε = {ǫj}
∞
j=0 let

F ∗
ε (x) =

∞∑

j=0

ǫjαjξj(x). (5.13)

Then for all k ∈ N and x ∈ ∆k(y) \∆k+1(y)

|F ∗
ε (x)| ≤ 2

k∑

s=0

m−1∑

l=1

|dls|+
1

m− 1

k−1∑

s=0

mk−s|cs|.

Proof. By (5.11) and (5.12) we obtain that for x ∈ Gkν , 1 ≤ ν ≤ m− 1

|F ∗
ε (x)| ≤

k∑

j=0

|αjξj(x)| = |γ0|
k−1∑

s=0

m−1∑

l=1

|γl − γ0||d
l
s|+ |γν |

m−1∑

l=1

|γl − γ0||d
l
k|

+
k−1∑

j=1

j−1∑

s=0

mj−s−1|cs| ≤ 2
k∑

s=0

m−1∑

l=1

|dls|+
k−1∑

j=1

j−1∑

s=0

mj−s−1|cs|

≤ 2

k∑

s=0

m−1∑

l=1

|dls|+
1

m− 1

k−1∑

s=0

mk−s|cs|.

Lemma 5.7. For any f ∈ Lp([0, 1], w), 1 < p <∞ and any ε = {ǫj}
∞
j=0 the

function F ∗
ε ∈ Lp([0, 1], w) and

‖F ∗
ε ‖Lp([0,1],w) ≤ C ′

p‖f‖Lp([0,1],w),

where C ′
p > 0 is independent of f and ε.
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Proof. By Lemma 5.6 we have that

∫

∆k(y)\∆k+1(y)

|F ∗(x)|pw(t)dt ≤ 4p
( k∑

s=0

m−1∑

l=1

|dls|

)p

w(∆k(y))

+
2p

(m− 1)p

(
[w(∆k(y))]

1
p

k−1∑

s=0

mk−s|cs|

)p

.

Afterwards write

|∆s+1(y)|
m−1∑

l=1

|dls| [w(∆k(y))]
1
p

≤

(∫

∆s(y)\∆s+1(y)

|f(t)|pw(t)dt

) 1
p
(∫

∆s(y)\∆s+1(y)

w(t)−
1

p−1dt

) 1
p′

[w(∆k(y))]
1
p .

≤ C
1
p
p

(∫

∆s(y)\∆s+1(y)

|f(t)|pw(t)dt

) 1
p

|∆k(y)|.

Hence, we obtain that

k∑

s=0

m−1∑

l=1

|dls| [w(∆k(y))]
1
p ≤ C

1
p
p

(∫

∆s(y)\∆s+1(y)

|f(t)|pw(t)dt

) 1
p 1

mk−s

Now we apply the following lemma which is a consequence of Theorem 274
from [11].

Lemma 5.8. Let u = {uj}
∞
j=0 and v = {vj}

∞
j=0 be numerical sequences such

that u ∈ l1 and v ∈ lp, p > 1. Then the Cauchy product w = {wn}
∞
n=0,

wn =
∑n

j=0 un−jvj of the sequences u and v belongs to lp. Moreover
‖w‖lp ≤ ‖u‖l1‖v‖lp.

Which gives us the convergence of the series

∞∑

k=1

( k∑

s=0

m−1∑

l=1

|dls|

)p

w(∆k(y)) ≤ 2pCp

∫

[0,1]

|f(t)|pw(t)dt.

To finish the proof of Lemma 5.7 we have to show that

∞∑

k=1

(
[w(∆k(y))]

1
p

k−1∑

s=0

mk−s|cs|

)p

< +∞ (5.14)
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We have that

(

k−1∑

s=0

m−s−1|cs|)
p

≤

( k−1∑

s=0

m−1∑

l=1

(∫

Gsl

|f(t)|pw(t)dt

) 1
p
(∫

Gsl

w(t)−
1

p−1dt

) 1
p′
)p

≤

( k−1∑

s=0

(∫

∆s(y)\∆s+1(y)

|f(t)|pw(t)dt

) 1
p

×

(∫

∆s(y)\∆s+1(y)

w(t)−
1

p−1dt

) 1
p′
)p

.

Recall that w satisfies My
p([0, 1]). By Lemma 3.6 we obtain that

mk

(∫

∆s(y)\∆s+1(y)

w(t)−
1

p−1dt

) 1
p′

w(Gkl)
1
p

≤ C
1
p
p

(∫

∆s(y)\∆s+1(y)

w(t)−
1

p−1dt

) 1
p′
[ ∫

[0,1]\∆k(y)

ω− 1
p−1 (t)dt

]− 1
p′

≤ C
1
p
p q

− k−s
p

p .

If we write
k−1∑

s=0

mk−s−1|cs|w(Gkl)
1
p

≤ C
1
p
p

k−1∑

s=0

(∫

∆s(y)\∆s+1(y)

|f(t)|pw(t)dt

) 1
p

q
− k−s

p
p

and put vj = (
∫
∆j(y)\∆j+1(y)

|f(t)|pw(t)dt)
1
p , uj = q

− j

p
p then by Lemma 5.8 we

will obtain

∞∑

k=1

( k−1∑

s=0

mk−s−1|cs|

)p

w(Gkl) ≤ CpBp

∫

[0,1]

|f(t)|pw(t)dt.
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Lemma 5.7 yields the convergence of the series

∞∑

j=0

ǫ
(ν)
j bjν(f)h

(ν)
∆j(y)

for any 1 ≤ ν ≤ m− 1 and ∀ε(ν) = {ǫ
(ν)
j }∞j=0, where ǫ

(ν)
j = ±1. Moreover, we

obtain that for some Bp > 0

∥∥∥∥
∞∑

j=0

m−1∑

ν=1

ǫ
(ν)
j bjν(f)h

(ν)
∆j(y)

∥∥∥∥
Lp([0,1],w)

≤ Bp‖f‖Lp([0,1],w).

6 Higher rank Haar wavelets in Lp(R, ω)

Let ω ≥ 0 be a locally integrable function defined on R. In this section
we study the phenomenon described in the introduction with respect to the
higher rank Haar wavelet systems H(m), m = 2, 3, . . . . Let χ−(x) = χR−(x)
and χ+(x) = χR+(x). The following result is the first step in that direction.

Lemma 6.1. For any m = 2, 3, . . . let H(m) be the wavelet system defined
by (3.21) and (3.22). Let Um be the linear subspace of locally integrable
functions ξ on R such that

∫

R

ξ(t)h
(ν)
k,j,m(x)(t)dt = 0 ∀j, k ∈ Z, 1 ≤ ν ≤ m− 1. (6.1)

Then dimUm = 2 and χ−, χ+ as vectors constitute a basis in Um.

Proof. It is clear that if we prove that a locally integrable function ξ such
that ξ(x) = 0 if x ∈ R− and holds (6.1) if and only if ξ = cχ+ for some c ∈ R

then the proof will be finished. By Corollary 4.3 we have that the system
H(m), m = 2, 3, . . . is total with respect to L1[0, 1]. Hence, by definition of
the system H(m) and by (6.1) it follows that

∫

[0.1]

ξ(t)hl(t)dt = 0 for all l ∈ N.

Which yields that ξ(x) = c h0(x) for x ∈ [0, 1]. We finish the proof by
induction. Suppose that for some N ∈ N it is true that if ξ is a locally
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integrable function such that ξ(x) = 0 if x ∈ R− and (6.1) is true then
ξ(x) = c0 if x ∈ [0, mN ], where c0 ∈ R. If ξ is a function which satisfies to all
mentioned conditions then by definition of the system H(m) it follows that
the functions ξν(x) = ξ(x− νmN ), 1 ≤ ν ≤ m− 1. Thus by our supposition
it follows that ξν(x) = cν if x ∈ [0, mN ], where cν ∈ R. Hence, ξ(x) = cν
if x ∈ [νmN , (ν + 1)mN ], 0 ≤ ν ≤ m − 1. Afterwards we observe that the
functions h(ν)(mN+1x), 1 ≤ ν ≤ m − 1 belong to the system H(m), which
yields

∫ mN+1

0

ξ(x)h(ν)(mN+1x)dx = 0 for all 1 ≤ ν ≤ m− 1.

After a change of the variable we have that

∫ 1

0

ξ(m−N−1t)h(ν)(t)dt = 0 for all 1 ≤ ν ≤ m− 1.

By definition of the functions h(ν), 1 ≤ ν ≤ m−1 we obtain that ξ(m−N−1x) =
c if x ∈ [0, 1].

It is convenient to continue our study considering the systems H+(m),
H−(m) respectively in the spaces Lp(R+, ω) and Lp(R−, ω). It is easy to see
some sort of symmetry between those systems. Thus it would be sufficient
to study the system H+(m) in the space Lp(R+). In fact we have proved the
analogue of the above lemma for the system H+(m) which is formulated as
follows.

Lemma 6.2. Let U+
m be the linear subspace of locally integrable functions ξ

on R+ such that
∫

R+

ξ(t)h
(ν)
k,j,m(x)(t)dt = 0 ∀k ∈ Z, ∀j ∈ Z+, 1 ≤ ν ≤ m− 1. (6.2)

Then dimU+
m = 1 and χ+ ∈ U+

m.

We need the analogues of Lemmas 5.1, 5.2 for this case.

Lemma 6.3. The system H+(m) is complete in Lp(R+, ω), 1 ≤ p < ∞ if
and only if

χ+

ω
/∈ L

1
p−1 (R+). (6.3)
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Proof. Suppose that H+(m) is complete in Lp(R+, ω). If g = χ+

ω
∈ L

1
p−1 (R+)

then g ∈ Lp′(R+, ω), where 1
p
+ 1

p′
= 1. Thus

∫

R+

g(t)h
(ν)
k,j,m(x)(t)ω(t)dt = 0 ∀k ∈ Z, ∀j ∈ Z+, 1 ≤ ν ≤ m− 1. (6.4)

Which yields that H+(m) is not complete in Lp(R+, ω). Which is a contra-
diction.

Suppose that χ+

ω
/∈ L

1
p−1 (R+). If H+(m) is not complete in Lp(R+, ω)

then there exists g ∈ Lp′(R+, ω) such that (6.4) holds. By Lemma 6.3 it
follows that g(t)ω(t) = cχ+(t) a.e. on R+, where c ∈ R. We came to a
contradiction which finishes the proof.

From Lemma 6.3 follows

Lemma 6.4. The system H+(m) is complete in Lp(R+, ω), 1 ≤ p < ∞ if
and only if there exists at least one point y ∈ [0,+∞] such that

1

w
/∈ L

1
p−1 (∆j(y)) for all j ∈ N. (6.5)

We also have

Lemma 6.5. The system H+(m) is minimal in Lp(R+, ω), 1 ≤ p < ∞ if
and only if

For any h
(ν)
k,j,m(x) ∈ H+(m) there exists a coefficient a

(ν)
k,j,m

such that

g
(ν)
k,j,m =

a
(ν)
k,j,mχ

+ + h
(ν)
k,j,m

ω
∈ L

1
p−1 (R+).

(M)

Proof. Suppose that the system H+(m) is minimal in Lp(R+, ω). Then there

exists a system {g
(ν)
k,j,m : k ∈ Z, j ∈ Z+, 1 ≤ ν ≤ m − 1} biorthogonal to

H+(m). Hence, if for some ν0, 1 ≤ ν0 ≤ m − 1 we fix any l ∈ Z and any
µ ∈ Z+ then for all k ∈ Z, j ∈ Z+ and 1 ≤ ν ≤ m− 1

∫

R+

[g
(ν0)
l,µ,m(x)ω(x)− h

(ν0)
l,µ,m(x)]h

(ν)
k,j,m(x)dx = 0. (6.6)
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By Lemma 6.2 we obtain that

g
(ν0)
l,µ,m =

a
(ν0)
l,µ,mχ

+ + h
(ν0)
l,µ,m

ω
∈ L

1
p−1 (R+).

The proof of sufficiency is direct. We easily check that the system
{g

(ν)
k,j,m : k ∈ Z, j ∈ Z+, 1 ≤ ν ≤ m− 1} is biorthogonal to H+(m).

From Lemma 6.5 easily follows

Lemma 6.6. The system H+(m) is minimal in Lp(R+, ω), 1 ≤ p < ∞ if
and only if there exists at most one point y ∈ [0,+∞] such that (6.5) holds.

By Lemmas 6.3 and 6.5 we obtain immediately

Lemma 6.7. The system H+(m) is complete and minimal in Lp(R+, ω),
1 ≤ p <∞ if and only if conditions (6.3) and (M) hold.

Lemmas 6.4 and 6.6 yield

Lemma 6.8. The system H+(m) is complete and minimal in Lp(R+, ω),
1 ≤ p < ∞ if and only if there exists a unique point y ∈ [0,+∞] such that
the condition (6.5) holds.

If we analyze the proofs of results which brought us the last lemma then
it is not hard to see that the following result also holds.

Lemma 6.9. The system H−(m) is complete minimal in Lp(R−, ω), 1 ≤
p < ∞ if and only if there exists a unique point y ∈ [−∞, 0] such that the
condition (6.5) holds.

Lemma 6.8 and Lemma 6.9 easily yield

Lemma 6.10. The system H(m) is complete and minimal in Lp(R, ω), 1 ≤
p < ∞ if and only if there exists a unique point y+ ∈ [0,+∞] and a unique
point y− ∈ [−∞, 0] such that the condition (6.5) holds for both of those points.

The following lemma will be used in the proof of the main result of the
present section.
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Lemma 6.11. Let {φj}
µ
j=1, {ψj}

µ
j=1 be some measurable functions defined on

a measurable set E and let

K(x, t) =

µ∑

j=1

φj(x)ψj(t) (x, t) ∈ E × E.

Furthermore, for a given real valued orthogonal matrix

A =

(
aij

)

1≤i≤µ
1≤j≤µ

let fk(x) =
∑µ

i=1 aikφi(x), gk(x) =
∑µ

i=1 aikψi(t). If we consider a new kernel
Φ(x, t) =

∑µ
k=1 fk(x)gk(t) then

K(x, t) = Φ(x, t) for (x, t) ∈ E × E.

Proof. We have

Φ(x, t) =

µ∑

k=1

µ∑

i=1

aikφi(x)

µ∑

ν=1

aνkψν(t)

=

µ∑

i=1

µ∑

ν=1

φi(x)ψν(t)

µ∑

k=1

aνkaik

=

µ∑

ν=1

φν(x)ψν(t) = K(x, t).

We are going to apply Lemma 6.11 in the proof of the next theorem. As
{φj}

µ
j=1 and {fk}

µ
k=1 we will take two orthonormal bases in V (m) considered

in Section 3.2. Concretely we will consider the following orthonormal bases
of V (m) : {h(ν)(x) : 0 ≤ ν ≤ m− 1} and {ϕ1,j,m(x) : 0 ≤ j ≤ m− 1}.

Theorem 6.1. For any m = 2, 3, . . . the system H+(m) is an unconditional
basis in the weighted norm space Lp(R+, ω), 1 < p < ∞ if and only if there
exists a point y ∈ [0,+∞] such that:
If y 6= +∞ then ω satisfies the condition Mp(R

+ \ {y}) and the condition
My

p(R
+);

If y = +∞ then ω satisfies the condition Mp(R
+).
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Proof. Suppose that H+(m) is an unconditional basis in the weighted norm
space Lp(R+, ω), 1 < p <∞. Then H+(m) is complete minimal in Lp(R+, ω)
and there exists a unique point y ∈ [0,+∞] such that the condition (6.5)
holds. First consider the case y = +∞. In this case the uniqueness of the
point y means that for any h

(ν)
k,j,m(x) ∈ H+(m)

g
(ν)
k,j,m =

h
(ν)
k,j,m

ω
∈ L

1
p−1 (R+). (6.7)

The proof of the necessity can be easily completed following the scheme of
the proof of Theorem 4.4.
If y ∈ [0,+∞) then by Lemma 6.5 the system biorthogonal to H+(m) is
defined by the following equations:

g
(ν)
k,j,m(t) =

h
(ν)
k,j,m(t)− h

(ν)
k,j,m(y)χ

+(t)

ω(t)
(6.8)

for all k ∈ Z, j ∈ Z+ and 1 ≤ ν ≤ m− 1.
Let ∆ = ∆l+1(y) and let ∆l(y) = ∆l(0) + jym

−l, where jy ∈ N0. For
f ∈ Lp(R+, w), consider the sum

m−1∑

ν=1

c
(ν)
l,jy,m

(f) h
(ν)
l,jy,m

(x)

=

m−1∑

ν=0

∫

R+

f(t)g
(ν)
k,jy,m

(t)ω(t)dt h
(ν)
l,jy,m

(x)− c
(0)
l,jy,m

(f) h
(0)
l,jy,m

(x)

=

∫

R+

f(t)

m−1∑

ν=0

g
(ν)
k,jy,m

(t)h
(ν)
l,jy,m

(x)ω(t)dt− c
(0)
l,jy,m

(f) h
(0)
l,jy,m

(x),

where h
(0)
l,jy,m

(x) = χ∆l(y)(x) and

g
(0)
k,j,m(t) =

h
(0)
k,j,m(t)− h

(0)
k,j,m(y)χ

+(t)

ω(t)
.

By Lemma 6.11 follows that
∫

R+

f(t)

m−1∑

ν=0

g
(ν)
k,jy,m

(t)h
(ν)
l,jy,m

(x)ω(t)dt (6.9)

=

∫

R+

f(t)

m−1∑

j=0

ϕl+1,jy+j,m(x)ψl,j,m(t)ω(t)dt, (6.10)
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where

ψl,j,m(t) =
ϕl+1,jy+j,m(t)− ϕl+1,jy+j,m(y)χ

+(t)

ω(t)
.

Thus we obtain that if x ∈ ∆l+1(y) then

m−1∑

ν=1

c
(ν)
l,jy,m

(f) h
(ν)
l,jy,m

(x) = −ml+1

∫

R+\∆l+1(y)

f(t)dt−ml

∫

R+\∆l(y)

f(t)dt.

If f(t) ≥ 0 for t ∈ R+ then it follows that for x ∈ ∆l+1(y)

|
m−1∑

ν=1

c
(ν)
l,jy,m

(f) h
(ν)
l,jy,m

(x)| ≥ |∆l+1(y)|
−1|

∫

R+\∆l+1(y)

f(t)dt|.

Afterwards in the same way as in the proof of Theorem 5.2 we obtain that
for some Bp > 0 and for all l ∈ Z

|∆l(y)|
−pω(∆l(y))

(∫

R+\∆l(y)

ω− 1
p−1dt

)p−1

≤ Bp
p .

Let Elj ∈ M, 1 ≤ j ≤ m− 1 be mutually disjoint intervals such that |Elj| =
m−1|∆l(y)|, 1 ≤ l ≤ m − 1 and ∆l(y) = ∆l+1(y)

⋃⋃m−1
j=1 Elj. By (6.9) we

obtain that if f(t) = 0 when x ∈ R+ \∆l(y) then

m−1∑

ν=1

c
(ν)
l,jy,m

(f) h
(ν)
l,jy,m

(x) = |Elj|
−1

∫

Elj

f(t)dt if x ∈ Elj(1 ≤ j ≤ m− 1).

Which yields

|Elj|
−pω(Elj)

(∫

Elj

ω− 1
p−1dt

)p−1

≤ Bp
p for any l ∈ Z and 1 ≤ j ≤ m− 1.

Let ∆ ∈ M, |∆| = m−l−1 be such that ∆
⋂

∆l(y) = ∅. We consider the
interval ∆∗ ∈ M, |∆∗| = m−l be such that ∆ ⊂ ∆∗. Let = ∆l(0) + k∗m−l,
where k∗ ∈ N0.

For f ∈ Lp(R+, w) consider the sum

m−1∑

ν=1

c
(ν)
l,k∗,m(f) h

(ν)
l,k∗,m(x).

43



Using the same idea as above we show that if x ∈ ∆ then

m−1∑

ν=1

c
(ν)
l,k∗,m(f) h

(ν)
l,k∗,m(x) = |∆|−1

∫

∆

f(t)dt− |∆∗|−1

∫

∆∗

f(t)dt.

Thus if f(t) = 0 for t ∈ R+ \∆ it follows that

m−1∑

ν=1

c
(ν)
l,k∗,m(f) h

(ν)
l,k∗,m(x) =

m− 1

m
|∆|−1

∫

∆

f(t)dt

and the proof of the necessity is completed easily.
The proof of the sufficiency will be given following the same idea as in

proof of Theorem 4.2. By Lemma 6.8 we have that the system H+(m) is

complete and minimal in Lp(R+, ω). Let G+(m) = {g
(ν)
k,j,m : k ∈ Z, j ∈

Z+, 1 ≤ ν ≤ m − 1} be the conjugate system of the basis H+(m). Suppose
that ω satisfies the condition Mp(R

+). Then the system G+(m) is defined
by the equations (6.7). Let f ∈ Lp(R+, ω) and let Ω ⊂ Z × Z+ be a finite

set. Moreover, let N ∈ N be such that h
(ν)
k,j,m(x) = 0 if x ∈ [mN ,+∞) for all

(k, j) ∈ Ω. For any 1 ≤ ν ≤ m− 1 consider the sum

S
(ν)
Ω (f, x) =

∑

(k,j)∈Ω

c
(ν)
kj (f)h

(ν)
k,j,m(x), (6.11)

where

c
(ν)
kj (f) =

∫

R+

f(t)h
(ν)
k,j,m(t)dt.

Applying Lemma 3.7 as in the proof of Theorem 4.2 we obtain that for some

‖S
(ν)
Ω (f, ·)‖Lp(R+,ω) ≤ Bp‖f‖Lp(R+,ω),

where Bp > 0 is independent of f and Ω.

If y ∈ [0,+∞) then we take N ∈ N so that h
(ν)
k,j,m(x) = 0 if x ∈ [mN ,+∞) for

all (k, j) ∈ Ω and y ∈ [0, mN ]. By Lemma 6.5 the system G+(m) is defined
by the equations (6.8). In this case the coefficients of the sum (6.11) are
defined as follows:

c
(ν)
kj (f) =

∫

R+

f(t)[h
(ν)
k,j,m(t)− h

(ν)
k,j,m(y)]dt.
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We write f(t) = f1(t) + f2(t), where f1(t) = f(t)χ[0,mN ](t). By Lemma 3.8
and Lemma 3.9 in the same way as above we obtain that

‖S
(ν)
Ω (f1, ·)‖Lp(R+,ω) ≤ Bp‖f1‖Lp(R+,ω),

where Bp > 0 is independent of f1 and Ω. The proof will be complete if we
show that

‖S
(ν)
Ω (f2, ·)‖Lp(R+,ω) ≤ B∗

p‖f2‖Lp(R+,ω),

where B∗
p > 0 is independent of f2 and Ω. We have that

S
(ν)
Ω (f2, x) =

∑

(k,j)∈Ω

c
(ν)
kj (f2)h

(ν)
k,j,m(x)

= −

∫

[mN ,+∞)

f(t)dt
∑

(k,j)∈Ω

h
(ν)
k,j,m(y)h

(ν)
k,j,m(x).

Let f ∗
N(t) = m−Nχ[0,mN ](t) then

∑

(k,j)∈Ω

h
(ν)
k,j,m(y)h

(ν)
k,j,m(x) =

∑

(k,j)∈Ω

∫

R+

f ∗
N (t)[h

(ν)
k,j,m(t)− h

(ν)
k,j,m(y)]dt h

(ν)
k,j,m(x)

= S
(ν)
Ω (f ∗

N , x).

Thus we have that

‖S
(ν)
Ω (f2, ·)‖Lp(R+,ω) =

∣∣∣∣
∫

[mN ,+∞)

f(t)dt

∣∣∣∣‖S
(ν)
Ω (f ∗

N , ·)‖Lp(R+,ω)

≤ ‖f2‖Lp(R+,ω)

[ ∫

[mN ,+∞)

ω(t)−
1

p−1dt

] 1
p′

Bp‖f
∗
N‖Lp(R+,ω)

= Bpm
−N

[ ∫

[mN ,+∞)

ω(t)−
1

p−1dt

] 1
p′
[ ∫

[0,mN ]

ω(t)dt

] 1
p

‖f2‖Lp(R+,ω).

Using that ω satisfies the condition My
p(R

+) we complete the proof.

It is easy to check that any function ωr(x) = xr if r > p− 1 satisfies the
condition M0

p(R
+) and the condition Mp((0,+∞)).

Corollary 6.1. Let 1 < p < ∞ and let ωr(x) = |x|r if r > p − 1. Then
the system H+(m) is an unconditional basis in the weighted norm space
Lp(R+, ωr).
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Theorem 6.2. For any m = 2, 3, . . . the system H(m) is an unconditional
basis in the weighted norm space Lp(R, ω), 1 < p < ∞ if and only if there
exist two points y1 ∈ [0,+∞], y2 ∈ [−∞, 0] such that:
If y1 6= +∞ then ω satisfies the condition Mp(R

+ \ {y1}) and the condition
My1

p (R+);
If y1 = +∞ then ω satisfies the condition Mp(R

+);
If y2 6= +∞ then ω satisfies the condition Mp(R

− \ {y2}) and the condition
My2

p (R−);
If y2 = −∞ then ω satisfies the condition Mp(R

−);

Corollary 6.2. Let 1 < p < ∞ and let ωr(x) = |x|r if r > p − 1. Then the
system H(m) is an unconditional basis in the weighted norm space Lp(R, ωr).
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