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Abstract 
 

Hematopoiesis is a complex process that gives rise to hematopoietic stem cells (HSCs) and 

progenitors responsible for the production of all blood cells in the organism. This process is 

defined by two major waves: primitive and definitive haematopoiesis. In the primitive 

haematopoiesis, the yolk sac gives rise to erythrocytes, macrophages and megakaryocytes 

during early embryonic development. This wave is transitory and contribute to the survival of 

the early embryo. In the definitive haematopoiesis that occurs in the mid-gestation of mouse 

embryos hematopoietic stem cells are generated from hemogenic endothelial cells found in the 

aortic wall. These are adult-type HSCs, that are multilineage, are able to reconstitute 

hematopoietic system of both primary and secondary host irradiated mice upon transplantation 

in vivo. It is unclear how these HSCs born in the aorta. The microenvironment surrounding the 

dorsal aorta was shown to influence their birth. However, what are the exact cell types 

involved in this process remains unclear. We here found that the dorsal aorta is surrounded by 

three layers of perivascular cells, including pericytes, that are phenotypically and genetically 

distinct. Recent work showed that pericytes support adult HSCs but whether they also support 

their birth is not known. The proximal layers express PDGFRβ, known to be involved in 

pericyte recruitment and to control smooth muscle cell proliferation. Our general hypothesis is 

that PDGFRβ is required to generate HSCs in the mouse embryo. To address this, we used the 

PDGFRβ knock-out mouse model. The deletion of this receptor in mice leads to a reduced 

number of pericytes and vascular smooth muscle cells in the developing embryo following by 

death before birth. In this study, we performed in vitro and in vivo hematopoietic assays, as 

well as flow cytometry and immunohistochemistry to characterise wild-type and PDGFRβ 

mutant embryos at the time of HSC generation. Our preliminary data indicate that both 

hematopoietic progenitor and stem cell activities are impaired in mutant embryos. Blood 

vessel integrity is not affected at this stage. However, we found that the percentage of 

hemogenic endothelial cells, which are HSC precursors significantly decrease in the mutant 

embryos. Altogether, my data demonstrate that PDGFRβ signalling is required to generate the 

first HSCs in the mouse embryo. This study is of high importance for the understanding of 

how hematopoietic cells are generated in vivo and for the identification of the key cells in its 

surrounding environment responsible for its production, so that this process can be transposed 

into in vitro assays for its production. 

 

Key words 
PDGFRβ, hematopoietic stem cell, hemogenic endothelial cell, niche, mouse embryo 
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Resumo 
 

Hematopoiese é o processo responsável pela formação e maturação de células 

sanguíneas no organismo desde o desenvolvimento embrionário e durante toda a sua vida. 

Células estaminais hematopoéticas (HSCs) são primeiro geradas no embrião. Estas células 

apresentam três propriedades principais: 1) são multipotentes e dão origem a todos os tipos de 

células do sangue, 2) reconstituem o sistema hematopoiético a longo-termo quando 

transplantadas in vivo em recipientes irradiados e 3) têm capacidade de autorrenovação. 

Assim, HSCs irão dar origem a células-filhas idênticas a si mesmas e a progenitores, que irão 

diferenciar-se em células sanguíneas adultas. 

 Em vertebrados, a hematopoiese embrionária é caracterizada por duas fases principais: 

primitiva e definitiva. Hematopoiese primitiva ocorre no embrião no sétimo dia de 

desenvolvimento (E7) onde células sanguíneas, macrófagos e megacariócitos emergem do 

saco amniótico e entram em circulação. Estas células são imaturas e com um tempo de vida 

curto, não sendo capazes de sustentar a contínua produção de células hematopoiéticas. No dia 

E10.5 do desenvolvimento HSCs são geradas na região da aorta-gonadas-mesonefros (AGM), 

definindo o início da hematopoiese definitiva. Aqui, HSCs resultantes têm características de 

células adultas com as propriedades definidas anteriormente. Estas são produzidas a partir da 

diferenciação de células endoteliais com potencial hematopoiético (HECs) na parte ventral da 

aorta dorsal e formam aglomerados celulares (clusters) intra-aórticos. Contudo, os 

mecanismos que levam a esta formação estão por esclarecer. 

 Estudos recentes mostram que a interação entre células endoteliais e o mesenquima 

adjacente controla o comportamento de HECs em embriões de galinha aquando do 

aparecimento de HSCs. Estudos do nosso laboratório e outros mostram que o microambiente 

tem um papel importante na formação de HSCs; contudo, ainda não se sabe que células 

desempenham este papel, nem que sinais estão envolvidos. Vários estudos mostram que na 

medula óssea adulta, células do estroma, e em particular pericitos, têm um papel crucial no 

suporte e manutenção de HSCs, mas nada se sabe sobre o papel de pericitos em tecidos 

hematopoiéticos em embriões de ratinhos. A fim de abordar esta questão, neste projeto foi 

utilizado um modelo de ratinho onde PDGFRβ é eliminado (PDGFRβ-KO).  Para 

entender se o knock-out do sinal de PDGFRβ em embriões E11 afeta o aparecimento de 

progenitores hematopoiéticos e células estaminais, ensaios in vitro e in vivo, assim como 

análises de citometria de fluxo e técnicas de imunohistoquímica foram feitos ao longo do 

estudo realizado. 

 Primeiro, através de imunohistoquímica, foram identificadas quais as células que 

compõem o microambiente envolvente da aorta. Três camadas celulares principais foram 

identificadas devido aos seus distintos fenótipos. A primeira camada é composta por pericitos, 

que se encontram adjacentes ao endotélio da aorta e embebidos na membrana basal (Coll IV
+
), 

estes foram definidos como CD31
-
C-kit

-
CD45

-
NG2

+
PDGFRβ

+
. À volta destas células estão 

células PDGFRβ
+
 (nomeadas de sub-pericitos), CD31

-
C-kit

-
CD45

-
NG2

-
PDGFRβ

+
, que são por 

sua vez rodeadas por outras células mesenquimais do estroma (CD31
-
C-kit

-
CD45

-
NG2

-

PDGFRβ
‾
). Estas células foram isoladas por FACS (Fluorescence-activated Cell Sorting), e o 

RNA foi sequenciado, para descrever os seus perfis genéticos. 

A ausência da expressão de PDGFRβ é confirmada por citometria de fluxo e por 

imunohistoquímica nos embriões mutantes, validando assim o modelo utilizado. Ensaios 

hematopoiéticos in vivo e in vitro foram feitos para testar a ausência deste fator de crescimento 

na atividade hematopoiética. Com estes ensaios foi possível verificar que progenitores 

hematopoiéticos são afetados na região da AGM. Em contraste, o número de células 

progenitoras noutros órgãos hematopoiéticos como a placenta, o saco amniótico, cabeça e 

fígado fetal não são afetados, sugerindo que o papel de PDGFRβ na produção de progenitores 

hematopoiéticos é dependente do tecido. 
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De seguida quisemos saber se células estaminais hematopoiéticas também eram 

afetadas na ausência de PDGFRβ. Para tal, foram feitos ensaios in vivo, onde a região da 

AGM de E11 embriões, tanto selvagens (wild-type, WT) como de mutantes, foram injetadas 

em ratinhos recetores que foram irradiados sub-letalmente. Os resultados preliminares obtidos 

mostram que a formação de HSCs é dependente de PDGFRβ, já que não há reconstituição do 

sistema hematopoiético de ratinhos hospedeiros aquando do transplante de AGM mutantes, em 

comparação com os controlos WT positivos. 

A questão que surge após a análise destes resultados é se o decréscimo do número de 

progenitores e a ausência de HSCs se deve a alterações da aorta dorsal, visto que os pericitos 

desempenham um papel importante na integridade dos vasos sanguíneos. Com o objetivo de 

esclarecer  esta questão, foi feito um three-dimensional whole mount immunostaining, técnica 

de imunohistoquímica onde todo o embrião é corado e é possível visualizar toda a região da 

aorta nos embriões. Em mutantes de PDGFRβ verifica-se que não há alterações na morfologia 

da aorta, e os clusters intra-aórticos hematopoiéticos não são afetados em comparação com 

embriões WT. Por citometria de fluxo, estes resultados são confirmados: as percentagens de 

células endoteliais (CD31
+
) e de clusters hematopoiéticos (C-kit

+
CD31

+
) não alteram em 

embriões mutantes, confirmando que a integridade da dorsal aorta não é afetada com a 

eliminação de PDGFRβ neste estádio de desenvolvimento, entre E10.5-11. 

Um estudo feito por Richard et al. em 2013, demonstra que a comunicação entre 

células endoteliais e mesenquimais adjacentes em embriões de galinha, controlam a expressão 

de Runx1, um fator de transcrição necessário para gerar HSCs no embrião, expresso por HECs. 

Para testar se a expressão de Runx1 é afetada pela ausência de PDGFRβ, ratinhos PDGFRβ-

KO foram cruzados com ratinhos que expressam Runx1-GFP, a fim de detetar GFP nos 

embriões aquando da expressão de Runx1. Por citometria de fluxo, os resultados obtidos 

mostram que em embriões onde PDGFRβ foi eliminado as percentagens de HECs decrescem 

significativamente em comparação com embriões WT e heterozigóticos, sugerindo que a 

sinalização através de PDGFRβ tem um papel no controlo do aparecimento de células 

estaminais hematopoiéticas num estádio de desenvolvimento anterior a estas serem 

produzidas. 

Ainda fica por esclarecer se células PDGFRβ
+
 são células do nicho ou precursores 

hematopoiéticos. Dados preliminares obtidos no laboratório mostram que células 

perivasculares PDGFRβ
+
 isoladas da aorta embriónica têm potencial hematopoiético in vitro. 

Trabalhos em curso visam testar se células provenientes de células PDGFRβ
+
 dão origem a 

células hematopoiéticas, a fim de concluir qual o papel destas como células no nicho. Será 

também importante confirmar quais das células que exprimem PDGFRβ, pericitos, sub-

pericitos e/ou estroma, são responsáveis pelo efeito observado na atividade hematopoiética. 

Co-culturas com cada uma destas três populações perivasculares, em conjunto com células 

endoteliais, vão determinar quais as células capazes de potenciar a formação de células 

hematopoiéticas. 

 

 

 

Palavras-chave 
PDGFRβ, célula estaminal hematopoiética, célula endothelial hemogénica, nicho, embrião de 

ratinho 
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Introduction 
 Hematopoiesis is the process responsible for the generation and maturation of blood 

cells in the organism (Jagannathan-Bogdan and Zon, 2013). Hematopoietic stem cells (HSCs) 

are first generated in the embryo. These cells have three major characteristics: 1) they are 

multipotent and give rise to all blood cell types, 2) they reconstitute the hematopoietic system at 

long-term when transplanted in vivo into irradiated recipients and 3) they self-renew (Cumano 

and Godin, 2007). Thus, HSCs give rise to daughter cells that are identical to themselves and to 

progenitors, that are committed cells that differentiate toward mature blood cells including T 

and B lymphocytes, plasma cells, erythrocytes, megakaryocytes, platelets, eosinophil, 

macrophages and basophil cells (Cumano and Godin, 2007; Metcalf, 2007). 

In vertebrates, embryonic hematopoiesis is characterised by two major waves: primitive 

and definitive (Palis et al., 1999). The primitive hematopoiesis occurs at embryonic day (E)7 

where blood cells emerge from the yolk sac (YS) and enter the circulation. Primitive 

erythrocytes, macrophages and megakaryocyte progenitors arise from the first hematopoietic 

wave (Kingsley et al., 2004, 2006). These cells are immature and with short lifespan (Metcalf  

2007; Lassila et al. 1982). However, they have an important role, providing the growing embryo 

with oxygen and phagocytosis during tissue remodelling processes (Kauts, Vink and Dzierzak, 

2016).  At E10.5 the first hematopoietic stem cells are generated in the aorta-gonads-

mesonephros (AGM) (Medvinsky et al., 1993; Müller et al., 1994; Medvinsky and Dzierzak, 

1996), setting the beginning of the definitive hematopoiesis (Godin, Dieterlen-Lièvre and 

Cumano, 1995; Travnickova et al., 2015). Arising HSCs have adult-like features (Godin, 

Dieterlen-Lièvre and Cumano, 1995; Godin et al., 1999). They originate from hemogenic 

endothelial cells from the ventral aspect of the dorsal aorta and form intra-aortic clusters (Kauts, 

Vink and Dzierzak, 2016). Hemogenic endothelial cells and HSCs share markers that include 

VE Cadherin, C-kit and CD31 (Oberlin et al., 2002; Jaffredo et al., 2005; Bruijn and Dzierzak, 

2017a). This was further confirmed in 2010 by several groups using time lapse confocal 

imaging of a E10.5 dorsal aorta, where  the transition from endothelial cells to hematopoietic 

cells was visualised in vivo (Boisset et al., 2010; Kauts, Vink and Dzierzak, 2016). The AGM is 

not the only hematopoietic site from which HSCs arise. Whilst discrepancies exist as to whether 

the YS can generate adult-type HSCs (Cumano et al. 1996; Godin et al. 1995; Yokota et al. 

2006, Rodriguez-Fraticelli et al. 2018), both placenta (Gekas et al., 2005; Ottersbach and 

Dzierzak, 2005) and the embryonic head (Li et al. 2012) can also generate HSCs. Additionally, 

HSCs can be found in the fetal liver from E11 on (Frame, McGrath and Palis, 2013). Indeed, 

HSCs from all hematopoietic sites migrate to the liver where they highly expand (Ema and 

Nakauchi, 2000; Dzierzak and Bigas, 2018). Before birth, HSCs migrate to the bone marrow 

(Mendelson and Frenette, 2014; Crisan and Dzierzak, 2016), where are maintained throughout 

the organism life time. 

Hematopoiesis is controlled by both intrinsic and extrinsic factors (Kaimakis et al, 

2013). As intrinsic factors, Scl, Gata2 and Runx1 are essential transcription factors in the early 

embryo. Deficiency in one of those intrinsic factors leads to early embryonic lethality and 

severe anaemia. Runx1 is part of the family of DNA binding proteins, including also Runx2 and 

Runx3, where the dimerization with Cbfβ increases their DNA affinity. This factor has a pivotal 

role in the generation of the HSC and hematopoietic progenitor cells (Bruijn & Dzierzak 2017). 

Deficiency of this factor results in the complete absence of the definitive hematopoietic wave in 

the yolk sac, fetal liver and AGM at mid stage of development, as well as the complete lacking 

of hematopoietic clusters (North et al., 1999; Yokomizo et al., 2001; Chen et al., 2009). 

Additionally, the expression of Runx1 one day before the emergence of HSCs and progenitor 

cells in the aorta, suggest its crucial role in the endothelial to hematopoietic transition. However, 
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this process cannot be justified by the only presence of transcription factors at the time of HSC 

generation. Other cells must indirectly guide the HSC fate by releasing extrinsic factors.  

 The aorta surrounding microenvironment has been an extensive matter of study by our 

lab and others, to identify and describe extrinsic factors that influence HSC generation 

(Oostendorp et al., 2002; Mendes, Robin and Dzierzak, 2005; Durand, Robin and Dzierzak, 

2006; Durand et al., 2007; Peeters et al., 2009; Crisan et al., 2015, 2016; Monteiro et al., 2016). 

In the embryo, hematopoiesis is controlled by TGFβ, BMP, Hedgehog, Wnt and Notch 

signalling pathways. Since HSCs are born exclusively in the ventral part of the dorsal aorta, it is 

thought that the adjacent mesenchyme is responsible for the production of signalling molecules 

that will have a direct or indirect impact in its emergence (Cai et al., 2000). However, what are 

the particular cells in its surrounding environment responsible for this process remains unclear. 

Proximal to endothelial cells are found cells called pericytes. Pericytes were first 

described by Charles Rouget in 1883 (Rouget, 1883). They surround capillaries and 

microvessels and are in direct contact with endothelial cells with whom they share the basement 

membrane (Allt and Lawrenson, 2001). They are morphologically, phenotypically and 

functionally heterogeneous (Allt and Lawrenson, 2001; Dias Moura Prazeres et al., 2017; Sá da 

Bandeira, Casamitjana and Crisan, 2017). The main characteristic attributed to these cells is 

their contractile property (Sims, 1986), however, pericytes are also tightly correlated with 

microvessel architectural features, having an important role in vascular permeability and 

integrity (Mathiisen et al., 2010), regulating capillary barriers and diameter (Hellström et al., 

2001), blood flow (Pallone and Silldorff, 2001) and endothelial proliferation (Armulik, 

Abramsson and Betsholtz, 2005). Importantly, our lab has previously demonstrated that 

pericytes give rise to mesenchymal stem cells (Crisan et al., 2008) known to support HSCs in 

adult.  

There are several molecular markers’ combinations that can be used to determine 

pericytes phenotypically (Armulik, Abramsson and Betsholtz, 2005; Krueger and Bechmann, 

2010; Armulik, Genové and Betsholtz, 2011). The most common makers are NG2 (Huang et al., 

2010), CD146 (Crisan et al., 2008), αSMA (Armulik, Genové and Betsholtz, 2011) and 

PDGFRβ (Lindahl et al., 1997). The presence of PDGFRβ on these cells is important for their 

recruitment during development. Indeed, pericytes are recruited and stimulated to proliferate 

through PDGFB paracrine signalling released by endothelial cells (Lindahl et al., 1997). This 

process is disrupted in the complete absence of the PDGFRβ or PDGFB leading to a severe 

phenotype and death at later stages (Hellström et al. 1999; Soriano 1994).   

Lately, pericytes have been shown to support adult HSCs (Sá da Bandeira et al, 2017). 

However, their roles during development have been not questioned yet. Whether pericytes 

influence the generation of HSCs or their maintenance was never documented. To address this 

question, I used the PDGFRβ germline knock out mouse model described by Soriano in 1994. 

These mice die between E17.5 and birth due to severe complications (Table 1). To understand 

whether the knocked out of PDGFRβ signalling in E11 embryos affects the generation of 

hematopoietic progenitors and stem cells, in vitro and in vivo assays, along with analysis in flow 

cytometry and immunohistochemistry were performed in this project. By flow cytometry and 

immunohistochemistry, it is possible to confirm our mouse model, where the absence of 

PDGFRβ expression is noticeable. We found that the numbers of hematopoietic progenitors are 

affected in the AGM. PDGFRβ KO AGMs injected in sub-lethal irradiated recipients do not 

reconstitute the host hematopoietic system, in comparison with positive control, WT AGMs, 

although this need to be further confirmed with more mice. Interestingly, hemogenic endothelial 

cell percentages significantly decrease in the PDGFRβ KO AGMs. More in vitro and in vivo 
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experiments are ongoing in order to understand the effect that PDGFRβ signalling has on the 

hematopoietic stem cell activity. 

 

Hypothesis and Aims 

 

In this project it is hypothesised that pericytes, along with others PDGFRβ
+
 perivascular cells 

are required to generate hematopoietic stem cells in the mouse embryo. 

 

To study this hypothesis different aims were addressed: 

1. Characterise dorsal aorta surrounding’ microenvironment; 

2. Investigate whether hematopoietic progenitors are affected in mutant mice; 

3. Test whether PDGFRβ is required to generate long-term HSCs; 

4. Investigate if blood vessel integrity is impaired in mutant embryos; 

5. Characterise hemogenic endothelial cells frequency. 

 

Materials and Methods 

 

Model organism 

Mice used for breeding in all experiments were maintained in animal facilities at the University 

of Edinburgh in conformity with UK Home Office Regulations. Mus musculus embryos, at 

developmental day (E)10 (30-38 somite pairs) and E11 (41-45 somite pairs) were obtained from 

intercrossing heterozygous PDGFRβ (PDGFRβ
+/-

) male and female mice or PDGFRβ
+/-

Runx1
+/GFP

 with PDGFRβ
+/-

Runx1
GFP/

. All experiments were pre-approved under Veterinary 

Scientific Services Project License from University of Edinburgh according to the ethical 

guidelines applied at the University. 

 

Genotyping  

DNA from all tissues was extracted using DNA Extraction Kit (Sigma). PCR was performed 

using HotStart Taq Plus Buffer Set Kit (Qiagen), involving different primers for each mouse 

model used (Table S2). Agarose gel electrophoresis, 1.5% (w/v) agarose (Bioline) with 1x TAE 

Buffer (Invitrogen), was performed at 115v for 1h30 mins. Wild type, knock-out and GFP bands 

were revealed due to SYBR® Safe DNA Gel Stain (Invitrogen) and identified in comparison 

with Easy Ladder (Bioline) - DNA molecular weight marker. 

 

Colonies Forming Unit-Culture assay 

Cell suspension from hematopoietic tissues including placenta, yolk sac, head, AGM and fetal 

liver were obtained after dissection and enzymatic dissociation with collagenase type 1 (Sigma) 

for 45 min (AGM and head) or 1h15min (Placenta and Yolk sac) in the waterbath at 37C with 

the exception of the liver which was mechanically disrupted. Dissociated cells were washed 

with Dulbecco’s PBS buffer (Sigma) enriched with 10% FCS (Life Tech) and 1%PS 

(Invitrogen) and centrifuged at 2000 rpm for 10 mins at 4C. Cell pellet was resuspended in the 

same buffer enriched with fetal calf serum and the cells were plated in methylcellulose medium 

with cytokines (MethoCult - Stem Cell Technology), 1%PS and incubated in small petri dishes 

for 10 to 12 days at 37C, 5% CO2 and humid atmosphere. Each tissue is seeded in different 

proportion: AGM is 0.33 ee/dish (times 3 dishes – all AGM is seeded), placenta, yolk sac and 

head are seeded in the proportion of 0.33 ee/dish and the fetal liver is seeded at 0.05 ee/dish. 

After incubation period progenitors’ numbers were counted based on their morphology that 

allows to distinguish between blast forming unit erythroid progenitors (BFU-E), colony forming 

unit granulocyte progenitors (CFU-G), macrophages (CFU-M), granulocytes-macrophage 

progenitors (CFU-GM) and the most immature multipotent hematopoietic progenitors, 

granulocyte-erythroid-megakaryocyte-macrophage progenitors (GEMM) also called CFU-Mix.  
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Transplantation assay 

Donor cells were prepared from E11 AGM of different PDGFRβ genotypes. AGM region was 

dissected and enzymatic dissociated with collagenase type I, as explained above. Cells were 

washed, centrifuged at 2000 rpm for 10 mins, resuspended in 300µL of PBS-10%FCS-1%PS 

and injected intravenously into recipient Ly5.1 Heterozygous (Het) mice. Mice injected are first 

sub-lethally irradiated. Irradiations are split in two steps of 4.8Gy (9.6Gy in total), using 33% of 

attenuator, with 3 hours break between them. To avoid stress due to irradiation, 20.000 bone 

marrow helper cells from Ly5.1 homozygous (Homo) mice where co-transplanted. Following 

transplantation, recipient mice received antibiotic containing water for 30 days. Short and long-

term hematopoietic reconstitution by donor cells was analysed in the peripheral blood, 4 and 16 

weeks after transplantation. Peripheral blood was collected from the cheek into tubes with K3 

EDTA (Sarstedt) to avoid coagulation. Blood was first treated with red cell lysis buffer - 

Ammonium Chloride Solution (Stem Cell Technologies) - for 12 mins at room temperature. 

Cells were then washed and incubated with CD45.1-FITC (BioLegend, clone A20, 1:1000), 

CD45.2-Pacific Blue (BioLegend, 104, 1:1000), CD4-PE (BioLegend, clone H129.19, 1:5000), 

CD8a (BioLegend, clone 53-6.7, 1:500), CD11b/Mac-1 – APC (BioLegend. Clone M1/70, 

1:1000), CD19 – APC-Cy7 (BioLegend, clone 6D5, 1:1000) and Gr1/Ly-6G/C – PE-Cy7 

(BioLegend, clone RB6-8C5, 1:2000). Cells were incubated for 30 mins, at 4C. Flow 

cytometry analysis was carried in BD LSR Fortessa 4 laser with Diva software (8.0.1). All data 

were analysed using FlowJo software. Recipient mice with more than 4% donor 

CD45.2
+
CD45.1

- 
cells in the peripheral blood reconstitute. Primary reconstituted mice were next 

tested in secondary transplantation assay. Bone marrow of the reconstituted mice was harvest 

with PBS-10%FCS-1%PS supplemented with 2mM EDTA (Lonza). Cells were centrifuged at 

2000 rpm for 10 mins and resuspended in red cell lysis buffer. After being washed with PBS-

10%FCS-1%PS-2mM EDTA and centrifuged, cells were resuspended in the same supplemented 

buffer and injected intravenously into Ly5.1 Het sub-lethally irradiated mice. The ratio of 

injection was 1 bone marrow into 2 secondary recipient mice. Peripheral blood analysis was 

made 4 and 16 weeks after injections. 

 

Flow Cytometry 

AGMs were dissected and enzymatic dissociated as described above. Cells were incubated for 

30 mins at 4C with anti-NG2-AF488 (Millipore, 1:100), PDGFRβ/CD140b-PE (eBioscience, 

clone APB5,1:250), CD31– PECy7 (eBioscience, 1:4000), CD45-PerCPCy5.5 (BD Pharmigen, 

clone 30-F11/RUO,1:400), CD117/C-kit-BV421 (BD Horizon, clone 2B8, 1:500) and 

PDGFRα/CD140a-APC (BioLegend, 1:100). PDGFRβ-KO Runx1GFP embryos were stained 

with the same antibodies’ panel, except for NG2 (anti-NG2-Cy3, Millipore, 1:100) – and 

PDGFRβ (PDGFRβ/CD140b-APC, Bioscience, clone APB5, 1:250). Sytox-7AAD (Invitrogen, 

1:10000), was used for cell viability and added before analysis. Flow cytometry analysis was 

carried using BD LSR Frotessa 4 laser with Diva software (8.0.1). All data were analysed with 

FlowJo X software. Endothelial cells (CD31
+
C-kit

-
CD45

-
NG2

-
PDGFRβ

-
), hematopoietic cells 

(CD31
+
C-kit

+
CD45

+
NG2

-
PDGFRβ

-
), pericytes (CD31

-
C-kit

-
CD45

-
NG2

+
PDGFRβ

+
), sub-

pericytic layer (CD31
-
C-kit

-
CD45

-
NG2

-
PDGFRβ

+
) and other stromal cells (CD31

-
C-kit

-
CD45

-

NG2
-
PDGFRβ

-
) percentages were compared between the wild-type, heterozygous and knock-

out AGMs.  

 

Three-dimensional (3D) whole-mount immunostaining  

Placenta and yolk sac were removed from E10.5 embryos. The embryonic body was then fixed 

in 2%PFA for 20 mins and dehydrated in consecutive dilutions of MetOH/PBS (50%, 75% then 

100%). Embryos were then stored in 100% methanol at -20C or directly immunostained. Prior 

to immunostaining, embryos were trimmed – limb buds and body wall removed – exposing the 

aorta and leaving both umbilical and vitelline arteries intact, as described (Yokomizo et al., 
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2012). After rehydration in 50% and 75% methanol and washed in PBS (Mili-Q), embryos were 

blocked with Avidin/Biotin blocking Kit (Invitrogen) followed by protein blocking with PBS-

MT 0.2%BSA. For staining, the embryos were incubated sequentially overnight: rat anti mouse 

C-kit unconjugated (BD Biosciences, clone 2B8, 1:500), CD31 Biotin (BD Pharmigen, clone 

MEC13.3, 1:500) and mouse anti mouse αSMA–FITC (Sigma, clone 1A, 1:500) were used. 

AF594 goat anti mouse (Invitrogen, 1:2500); Alexa647 chicken anti rat (Invitrogen, 1:2500) and 

Streptavidin Cy3 (Sigma, 1:2500), were used as secondary antibodies. Embryos were washed in 

PBS, dehydrated with methanol and cleared with BABB solution (solution ratio 1:2), as 

described (Yokomizo & Dzierzak 2010). Samples’ imaging was performed with Leica TCS SP8 

Confocal and Digital LightSheet (DLS.). Images were analysed using FIJI 1.51n software. 

 

Immunohistochemistry 

E11 embryos, placenta and yolk sac, were harvest and fixed with 2% PFA for 20 mins at 4°C  

then washed twice with PBS and dehydrated in 20% (w/v) sucrose (Sigma) overnight at 4°C. 

Tissues were next embedded in OCT compound (CellPath) and frozen using dry ice and 100% 

EtOH. Sections of 10 µm thickness were cut with the cryostat (ThermoFischer). After fixation 

with 100% cold MetOH, slides were blocked with Avidin/Biotin Kit (Invitrogen) and protein 

block (Spring-Bioscience) for 30 mins each.  The following unconjugated primary rabbit anti 

mouse antibodies were used: NG2 (Millipore, ab5320, 1:100); PDGFRβ (Cell Signalling, 

3169S, 1:250); PDGFRβ (Abcam, Y92, 1:250); Collagen IV (Bioconnect, 2150-1470, 1:250); as 

well as the goat anti mouse CD45 (R&D Systems, AF114, 1:50). Conjugated rat anti mouse 

antibodies such as CD31 Biotin (BD Pharmigen, 553371, 1:50) and CD146 AF488 (Biolegend, 

134707, 1:100), as well as the mouse anti mouse αSMA Cy3 (Sigma, C6198.2ml, 1:100) were 

also tested. With exception of αSMA, that had incubation time of 1hour at RT, all the primary 

antibodies were incubated overnight at 4˚C and humid atmosphere. The following secondary 

antibodies were next used:  goat anti rabbit AF488 (Invitrogen, A11008, 1:500) and Cy3 

(Millipore, AP132C, 1:250); donkey anti goat AF488 (Invitrogen, A-11055 1:500); and 

Streptavidin Cy3 (Sigma, S6402.1ml, 1:250) and Streptavidin FITC (BD Pharmigen, 554060, 

1:100) that were incubated for 1 hour at RT and humid atmosphere. To reveal nuclei, DAPI 

staining was used on all slides (1:1000, 15 mins, RT and humid atmosphere). Slides were mount 

with mounting medium – fluoromount - (Southern Biotech) and cover slips. For imaging, 

Widefield Zeiss observer was used and images were captured with Hamamatsu camera. Images 

from both wild type and knock out embryos were acquired with the same exposure time. All 

images were captured with 63x oil immersion lens in tiles 2x2 and Z-stack. Images were then 

deconvolved with Huygens Professional version 18.04 (Scientific Volume Imaging, The 

Netherlands, http://svi.nl), stitched and treated in FIJI 1.51n software. 

 

RNA sequencing and analysis 

Cells were sorted and collected directly into 20µl of lysis buffer containing Nuclease-free water 

(Ambion AM9930) 0.2% Triton and 1/20 RNAse inhibitor. Full-length cDNA was generated 

from 3.4 ul of this cell lysate using the Smarter2 procedure as described (Picelli et al. 2013). 

Sequencing libraries were generated from 500pg of cDNA with Illumina's Nextera XT sample 

prep kit (Illumina Inc., U.S.A) and sequenced for single-read 43bp on Illumina HiSeq2000 

using the Truseq v3 sequencing chemistry (Illumina Inc., U.S.A). Reads were aligned against 

the mouse reference genome (mm10) with tophat2 version 2.0.10 (Kim et al., 2013). Gene 

expression values have been called using Cufflinks (version 2.1.1) (Trapnell et al., 2011). 

  

Statistical Analysis 

All data were analysed using one-way ANOVA statistical test, along with Tuckey’s multiple 

comparison test to compare wild type, heterozygous and knock out embryos.  
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Results 

 
The dorsal aorta is surrounded by phenotypically and genetically distinct 

perivascular cell layers at the time of hematopoietic stem cell  generation  

Frozen sections of E11 wild-type (WT) embryos were stained by 

immunohistochemistry with different marker combinations to identify and characterise 

perivascular mesenchymal stromal cells (PV-MSCs) that surround the dorsal aorta at the time of 

hematopoietic stem cell (HSC) generation. The following markers were used to detect 

perivascular cells - NG2, PDGFRβ and αSMA -, endothelial cells - CD31- and basement 

membrane - Collagen IV (Figure 1A). We identified the aorta lumen delimited by endothelial 

cells expressing CD31 (dotted line), and close to the endothelium, NG2
+
 perivascular cells 

(arrowheads) surrounding the aorta (first row). In the second row, the basement membrane 

expressing Collagen IV (arrowheads) surrounds the dorsal aorta. Perivascular cells expressing 

αSMA are proximal to the aorta (third row). They co-express NG2 (arrow heads). Few αSMA
+
 

cells that do not express NG2 can be also observed (arrows). The fourth combination includes 

αSMA and PDGFRβ, were cells expressing both markers are identified by the arrowheads; they 

are further surrounded by cells expressing only PDGFRβ (arrows). Altogether, these data show 

that pericytes can be identified as being NG2
+
PDGFRβ

+
αSMA

+
. They closely surround CD31

+ 

endothelial cells with whom they share the same basement membrane. This was further 

confirmed by immunolocalization of both Collagen IV and αSMA (Supplementary Figure 1, 

second column, arrowheads). Our laboratory and others also identified CD146 as pericyte 

marker in both human and mouse organs.  I tested this marker on frozen sections of E11 AGM 

and confirmed that indeed, CD146
 
is also

 
perivascular in the mouse embryo (Supplementary 

Figure 1, first column, arrowheads).  We next performed immunostaining using the 

hematopoietic marker CD45. Our data show that CD45
+
 cells are present in the mesenchyme 

that surrounds the endothelium (third column, Supplementary Figure 1 arrowheads).  

To further characterize and quantify the variety of vascular and perivascular cells that 

surround the dorsal aorta, we performed flow cytometry analysis using the surface marker 

combinations we defined by immunohistochemistry. We combined perivascular cell markers 

(NG2, PDGFRβ), endothelial and hematopoietic cells marker (CD31) and hematopoietic 

markers (CD45, C-kit). In the Figure 1B we show an example of the gating used to define the 

perivascular cell subsets. Populations of cells of interest are selected, along with single and 

viable cells, from those, hematopoietic and endothelial markers are discarded (CD45, C-kit and 

CD31), remaining perivascular cell markers, where four different populations can be identified: 

NG2
+
PDGFRβ

- 
cells, pericytes NG2

+
PDGFRβ

+
, sub-pericytes NG2

-
PDGFRβ

+
 and other stromal 

cells NG2
-
PDGFRβ

-
. These data clearly demonstrate that perivascular cells are phenotypically 

distinct.  

We next wanted to know whether these cells are also genetically different. To address 

this question, we isolated these perivascular cells based on these markers (Figure 2A) and 

performed RNA sequencing. We found that the three layers of perivascular cells have distinct 

transcriptomic profiles (Figure 2B). A post-sorting analysis was made and shows that the 

distinct cell populations analysed are not contaminated by other markers (Figure 2C). Our data 

further confirm that our choice of antibodies to isolate these cells is correct. Indeed, the 

NG2
+
PDGFRβ

+
CD31

-
CD45

-
C-kit

-
 purified cells are enriched in genes expected to be found in 

pericytes (Figure 2D). They are known to express genes encoding structural proteins such as the 

Vimentin and also cell adhesion, growth, migration and differentiation (Fibronectin), along with 

proteins important for the formation of the extra cellular matrix and the basement membrane 

(Pcolce and Coll1a1, Col4 a1, Coll4a2, Coll5a1 and Coll6a1). These cells are also enriched in 

αSMA and Calponin genes involved in the structure and integrity of the blood vessels.   

 



 
 

   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. E11 AGM is surrounded by distinct perivascular cell subsets. (A) Immunohistochemistry of E11 WT AGM 

(40-42 sp) cryo-sections with different marker combinations, allowing to distinguish different vascular and perivascular cell 

subsets: CD31 and NG2; CD31 and Coll IV; αSMA and NG2; αSMA and PDGFRβ. DAPI stains all nuclei (blue). In the first 

two rows CD31+ cells are identified with a dotted line that delimits the dorsal aorta, in order to locate the lumen (N=1). D: 

Dorsal and V: Ventral side of the embryo. Scale bars: 20µm. (B) Example of a flow cytometry gating strategy used to 

identify different perivascular cell subsets that surround the wild-type AGM at day 11 of development. Populations of interest 

were selected in the first gate, following by single cells and live cells. Endothelial and hematopoietic markers were next 

excluded (CD31-CD45-C-kit-). Within this gate, different cell populations were identified: a) NG2+PDGFRβ-; b) 

NG2+PDGFRβ+ c) NG2-PDGFRβ+ 
and d) NG2-PDGFRβ-.
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Figure 2. Purified perivascular cells from E11 WT AGM are phenotypically and genetically distinct. (A) 

Schematic representation of part of the dorsal aorta. Hematopoietic and endothelial cells are shown. In contact with 

endothelial cells are pericytes that are embedded in the basement membrane, followed by a sub-pericytic layer of 

PDGFRβ cells and other stromal cells. (B) Heatmap showing distinct expression patterns of pericytes, sub-pericytic 

PDGFRβ cells and stroma for top 50 varying genes obtained from RNA sequencing. (C) RNA sequencing showing 

the separation efficiency of E11 WT AGM sub-populations (D).  Selected genes involved in the basement membrane 

formation are enriched in the pericyte/vascular smooth muscle cell fraction thus validating their cell identity and 

location (N=1). 
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Hematopoietic progenitor activity in the PDGFRβ
- / -

 AGM is impaired 

Perivascular cells, proximal to the blood vessel wall, express PDGFRβ. We aim here to 

investigate whether this receptor plays a role in the aortic haematopoiesis. We used a mouse 

model where PDGFRβ is knock-out.  

First, as proof of the model, immunohistochemistry was performed in sections of 

PDGFRβ
-/- 

E11 embryos as well as on the PDGFRβ
+/+

 wild-type control. As it is shown in figure 

3A, in the the WT embryos, CD31
+
 endothelial cells (dotted line) are surrounded by PDGFRβ

+
 

cells (arrows), whilist on the section of the PDGFRβ-KO embryo, PDGFRβ
 
expression is 

absent. The same pattern can be seen with the immunostaining of αSMA and PDGFRβ in 

Supplementary Figure 2 (third row). The absence of PDGFRβ was further confirmed by flow 

cytometry analysis (Figure 3B). 

 Embryos from this mouse line were harvested and all E11 hematopoietic organs – 

placenta, yolk sac, head, fetal liver and AGM – were separated (Figure 3C). Two independent 

experiments were performed. Our data show that in the AGM, the total number of colonies per 

tissue (CFU-C) is affected, decreasing significantly in PDGFRβ
-/-

 embryos in comparison with 

wild type (Figure 3D).  There is also a significant decrease between PDGFRβ
+/+

 and PDGFRβ
+/-

 

hematopoietic progenitor numbers. This difference in the total number of progenitors is due to 

the variation between the number of colonies forming unit of granulocytes (CFU-G) and, more 

immature progenitors responsible for the formation of granulocytes, erythrocytes, monocytes 

and megakaryocytes (CFU-GEMM), where AGM PDGFRβ
-/-

 show lower numbers. Other 

progenitors, such as burst-forming unit erythroid (BFU-E), macrophages (CFU-M) and 

granulocyte-macrophages (CFU-GM) are not significantly affected at this stage of development. 

 In other hematopoietic organs – placenta, yolk-sac, head and fetal liver - there are no 

significant differences between the total number CFU-C per tissue, neither between each 

individual hematopoietic progenitor type at E11 (Supplementary Figure 3) suggesting a tissue-

dependent role of PDGFRβ to control hematopoiesis at this developmental stage.  

 

PDGFRβ is required to generate long-term aortic HSCs  

To test if the lack of PDGFRβ expression affects the generation of the first 

hematopoietic stem cells in vivo, E11 AGM cells harversted from wild-type and mutant 

embryos were injected into sub-lethaly irradiated primary recipient mice. Four month later, 

reconstituted primary recipient mice were further tested in secondary transplantation (Figure 

4A). In both primary and secondary transplantated mice, the peripheral blood is used to confirm 

the presence or the absence of donor hematopoietic cells that can be identified with CD45.1
 
and 

CD45.2 antibodies (Supplementary Figure 4). Our data show that, compare to the positive 

control (PDGFRβ
+/+

 transplanted AGMs) in which 6 out of 24 mice reconstituted, mice injected 

with PDGFRβ
+/- 

or PDGFRβ
-/-

 AGMs showed low (1/9) or no reconstitution (0/4) over the long-

term (Figure 4B). Data from the peripheral blood analysis of the secondary transplanted 

recipient mice, show that both WT (3/6) and heterozygous (2/2) derived donor cells self-renew. 

More experiments are ongoing and are expected to give us insight of the role of these cells in 

HSC generation in vivo. 
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Figure 3. AGM derived hematopoietic progenitor numbers are affected in PDGFRβ-/- embryos. (A) 

Immunohistochemistry of the dorsal aorta from WT and KO E11 embryos. Endothelial cells (CD31+, dotted line) are 

surrounded by PDGFRβ+ cells (arrows) in WT embryos, while PDGFRβ expression is absent in the KO embryos 

(N=1). Scale bar: 20μm. (B) Flow cytometry analysis of WT (+/+), heterozygous (+/-) and KO (-/-) AGMs for 

PDGFRβ. * p <0.05, ****p <0.00001 (N=2, WT=19; Het=21; KO=15, 42-46sp) (C) Schema of Hematopoietic 

Progenitors assay. AGM is dissected from E11 embryos, digested and cultured in methylcellulose. Each AGM is 

seeded in three plates with a ratio of 0.33ee/dish. After 10-12 days of incubation at 37ºC, different progenitor 

colonies can be identified and counted in the microscope by their different morphologic features. (D) Colony number 

per embryo equivalent (CFU-C/ee) from AGM region is shown, where different colony types were distinguished: 

BFU-E, burst-forming unit erythroid; CFU-G, (colony forming unit) granulocytes; CFU-M, macrophages; CFU-GM, 

granulocyte-macrophages; CFU-GEMM, granulocytes, erythroid, macrophages, megakaryocytes. The data represent 
the mean ± SEM * p <0.05, **p <0.001, ***p <0.0001 (N=2) (WT=10; Het=6; KO=3, 40-42sp).  
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Figure 4. PDGFRβ is required to generate HSCs in the AGM in vivo. (A) Simplified representation of HSCs 

transplantation assay. AGM is collected, digested into single cells and injected into a sub-lethal irradiated mouse – 

primary transplantation. Four and 16 weeks after injections, few drops of peripheral blood (PB) are collected and 

analysed. Bone marrow of primary reconstituted mice is harvested and injected into two secondary sub-lethal 

irradiated recipients, from which PB is analysed. Percentage of donor chimerism 4 and 16 weeks after primary (B) 

and secondary (C) transplantation is analysed by flow cytometry. (B and C) show the percentage donor chimerism 

found in transplanted mice over total number of mice injected (N=4). Dotted base line represents the limit of 

reconstitution. Recipients with donor chimerism >4% in the PB are considered reconstituted. 

 

The integrity of the dorsal aorta and intra-aortic hematopoietic clusters are 

not affected in PDGFRβ
- / -

 AGM 

We next wanted to test whether the absence of HSCs in mutant AGMs was due to an 

abnormal formation of the dorsal aorta. To this end, we analysed the full aorta using three-

dimensional (3D) whole mount immunostaining technology on E10.5 old mouse embryos. 

Endothelial and pericytes/vascular smooth muscle cells were stained with CD31 and αSMA, 

respectively (Figure 5A). The dorsal aorta, the intersomitic vessels and umbilical and vitelline 

arteries appear to be normal in both WT and KO embryos as shown by CD31 expression (in the 

KO embryo vitelline and umbilical arteries are disrupted due to the embryo manipulation during 

the assay). In cyan, C-kit expressing hematopoietic cells can be identified. Intra-aortic 

hematopoietic clusters co-express C-kit and CD31 (Supplementary Figure 5) with no clear 

differences between PDGFRβ
+/+

 and PDGFRβ
-/- 

embryos. However, we could note that 

hematopoietic clusters are more dispersed in the WT than in the KO embryos, where they look 

more compacted between each other.  

To support this immunostaing results, we next quantified hematopoietic and vascular 

cells by flow cytometry and confirmed that the percentage of both endothelial cells and HPSCs 

does not change in mutant AGM compare to control (Figure 5B). The percentage of  cells 

expressing CD31, CD45, C-kit, NG2, PDGFRα were also analysed (Supplementary Figure 6, 

7). We found that, endothelial and hematopoietic cell frequencies are not affected in the mutant 

AGMs. We next tested whether PDGFRα expression change in these mutants and found that, by 

flow cytometry, there are no clear differences between the embryos.  
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Figure 5. Blood vessel integrity and intra-aortic hematopoietic clusters (IAHCs) are not affected in PDGFRβ-/- 

embryos. (A) Confocal images of 3D whole mount stained WT (PDGFRβ+/+) and KO (PDGFRβ-/-) E10.5 embryo 

(34 sp). This staining includes markers of endothelial and hematopoietic cells (CD31), perivascular vascular smooth 

muscle cells (αSMA) and hematopoietic cells (C-kit). In both embryos, it is possible to identify the dorsal aorta (DA), 

umbilical and vitelline arteries (UVA), along with intersomitic vessels. Scale bar 50 µm. (B) Percentage of cell 

subsets found in the E11 wild-type (+/+), heterozygous (+/-) and PDGFRβ knock out (-/-) AGMs, analysed by flow 

cytometry. Percentage of endothelial cells is shown. Hematopoietic progenitors and stem cells, pericytes, sub-

pericytes and stromal cells were also analysed. The data represent the mean ± SEM of independent embryos tested 

(WT=21; Het=19; KO=15, N=6). One-way ANOVA along with Tuckey’s multiple comparison test was used. * p 

<0.05, sp: 42-46. 
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The frequency of hemogenic endothelial cells is altered in the absence of 

PDGFRβ  

To understand how PDGFRβ control the generation of hematopoietic stem cells, Runx1 

signalling was traced in mutant embryos. For that, a double transgenic mice model was created 

by breeding PDGFRβ-KO mice with mice from Runx1GFP line (Lorsbach et al., 2004) were 

embryos PDGFRβ
-/-

, PDGFRβ
-/+

 and PDGFRβ
+/+

 expressed Runx1GFP (Figure 6A). Cell 

populations were selected from single live cells and the gates were defined based on the 

unstained sample (Supplementary Figure 7).  The absence of PDGFRβ by flow cytometry was 

first confirmed in the KO embryos (Supplementary Figure 8). Additionally, it is also possible to 

see a major decrease in pericytes population and, in contrast, a significant increase in the 

stromal cell population (Supplementary Figure 8). By flow cytometry, we found that the 

percentage of GFP
+
 (Runx1) cells is not different in mutant embryos although more experiments 

need to be done (Figure 6A). The same occurs with the population of non-hemogenic 

endothelial cells and hematopoietic progenitors and stem cells (Figure 6B). However, there is a 

significant decrease of the rare population of hemogenic endothelial cells, HSC precursors, in 

PDGFRβ
-/-

 in comparison with wild-type and heterozygous embryos, suggesting a role for 

PDGFRβ in the HSC fate.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Hemogenic endothelial cell frequency significantly decreases in the absence of PDGFRβ. (A) 

PDGFRβ-KO mice were recombined with Runx1GFP mice and double transgenic mice were used to obtain mouse 

embryos. All embryos were GFP (PDGFRβ +/+, +/- and -/-). GFP+ cell frequency in the AGM is not affected 

between embryos with different PDGFRβ genotypes. (B) Hemogenic endothelial cell percentage (HEC, NG2-

PDGFRβ-CD45-C-kit-CD31+Runx1+) decreases significantly in PDGFRβ-/- embryos in comparison with PDGFRβ+/- 

and PDGFRβ+/+ AGM controls. The non-HECs and HPSC or GFP+HPSC numbers are not affected. The data 

represent the mean ± SEM (WT=12; Het =25; KO =18, N=7). One-way ANOVA along with Tuckey’s multiple 

comparison test was made in order to analyse significance between WT, Het and KO embryos. * p <0.05, **p 

<0.001. sp: 42-46. 
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Discussion 
  

Understanding the native specification of hematopoietic stem cells in vivo, to uncover 

pivotal signals that might help improve in vitro directed differentiation protocols, has been a 

long-standing biomedical goal. The current impossibility of specifying true HSCs in vitro 

suggests that key signals remain unknown. We speculated that such signals might be presented 

by surrounding niche cells, but no such cells have been defined. In this study, we aimed to 

reveal the particular cells from the microenvironment that have a supportive role to generate 

HSCs, either because they are in direct cell contact with hemogenic endothelial cells or may 

release decisive fate factors. The microenvironment is highly heterogeneous, and we here 

showed that there are several cell layers adjacent to the dorsal aorta that can be prospectively 

isolated and analysed. We found that the proximal layers express PDGFRβ and we used a 

knock-out model where PDGFRβ is absent to test whether this is required to generate HSCs.  

Our preliminary data show that at E11, the dorsal aorta is surrounded by three distinct 

perivascular cell layers that can be purified to homogeneity: - pericytes/vSMCs (vascular 

smooth muscle cells) that co-express NG2, αSMA and PDGFRβ, but lack CD31 and CD45 

expression, - non-pericyte PDGFRβ
+
cells (we also called them sub-pericytes being adjacent to 

pericytes) that do not express NG2 or αSMA nor CD31 or CD45 and - stromal cells which do 

not express any of these markers. Expression of the basal membrane marker collagen type IV 

confirmed the pericyte status of the mural cells. Importantly, pericytes do not share markers 

with intra-aortic hematopoietic clusters co-expressing CD31 and C-kit and lacking αSMA. Our 

RNA sequencing preliminary data further show that pericytes have a distinct expression pattern 

compared to other two layers and are highly enriched in genes related to basement membrane 

formation such as vimentin, fibronectin, αSMA, Coll1a1, Coll4a1, Coll4a2, Coll5a1 and 

Coll6a1 expected to be found in pericytes. Importantly, we also confirmed the presence of other 

markers for pericytes that are enriched at the RNA level such as CD146 (MCAM) and nestin 

which were shown to be involved in the HSC niche in adult (Sacchetti et al., 2007; Ding et al., 

2012; Corselli et al., 2013; Morrison et al., 2014). 

We next checked whether described associated HSC niche related transcripts found to 

support adult HSCs are also found in the embryonic generating niche. Interestingly, our RNA 

sequencing data showed that genes such as Jagged-1 (Notch ligand), N-cadherin, CXCL12, 

VCam-1 and Opn3, implicated in the maintenance of adult HSCs, are also enriched in 

embryonic aortic pericytes suggesting a predetermined developmental role for these cells to 

maintain HSCs. Whether these gene expressions are altered in our PDGFRβ
-/-

 embryos need to 

be tested. However, in these mice, PDGFRβ is absent which pose difficulties to isolate the 

different cell subsets and thus, these genes could then be tested by in situ hybridisation on fixed 

sections from KO animals. Our flow cytometric data suggest that NG2 expression is not 

affected in KO embryos. However, this was analysed in one experiment and thus, this 

observation requires further confirmation. Using NG2 as only marker for pericytes would not 

allow to separate all three perivascular fractions. However, it would be interesting to test 

whether a combination of markers, other than PDGFRβ such as CD146 or PDGFRα in mutant 

embryos would allow to separate these perivascular layers for further analysis of stromal cells in 

PDGFRβ KO embryos. Altogether, these data demonstrate that perivascular cells found in the 

embryonic HSC generating niche are highly heterogeneous and that perivascular cells proximal 

to endothelial cells are enriched in hematopoietic niche related genes. Whether these cells are 

HSC supportive is unknown.  

Previous in vivo and in vitro studies showed that PDGF family plays an important role 

in haematopoiesis, enhancing the production of a variety of factors that act directly in the 

production of hematopoietic progenitor cells. PDGF was shown to be important in 

erythropoiesis (Dainiak et al., 1983; Delwiche et al., 1985; Sytkowski et al., 1990; Keutzer and 

Sytkowski, 1995), promoting the in vitro proliferation of erythropoietic progenitors (Keutzer 

and Sytkowski, 1995) and in the stimulation of primitive hematopoietic progenitors cells in 
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mixed marrow cultures (Michalevicz, Francis and Price, 1985; Michalevicz et al., 1986; 

Sytkowski et al., 1990).  

Importantly, PDGF signalling was also shown to be involved in HSC specification 

niche in zebrafish model (Damm and Clements, 2017). We tested whether this is the case in the 

mouse embryo. We found that some hematopoietic progenitor types including the most 

immature ones were affected. This led us to hypothesise that HSC themselves will be impaired. 

Indeed, we found that HSCs are completely absent in the AGM of PDGFRβ
-/-

 embryos. This is 

not due to alteration of the blood vessel structure. Using sophisticated technology to visualise 

the full aorta by confocal imaging and quantification of vascular cells by flow cytometry, we 

here demonstrated that the blood vessel is intact.  Altogether, these data show that PDGFRβ 

plays a key role in the generation of the first adult-type HSCs in the mouse embryo in vivo. 

However, the mechanism remains unclear. 

PDGFRβ may be involved during the hemogenic endothelium specification prior to 

HSC generation or at later stages during endothelial to hematopoietic transition after the 

hemogenic endothelial cells are already in place. Hemogenic endothelial cell phenotype was 

defined previously (Chen et al., 2009). They express Runx1 GFP besides other markers. To 

answer this mechanistic question, we recombined the PDGFRβ mice with Runx1GFP mice. In 

these mice, when Runx1 is expressed, GFP is also expressed.  This allow to compare hemogenic 

endothelial cell phenotype and number between WT and PDGFRβ mutant embryos. Our data 

show that in the absence of PDGFRβ, hemogenic endothelial cell number significantly 

decreases, whilst the non-hemogenic endothelial cell number remains unchanged. There are in 

vitro studies showing that in the presence or absence of  vascular endothelial growth factor 

(VEGF), cells from the blastocyst  form endothelial or hematopoietic cells, respectively 

(Jaffredo et al., 2005). A different study shows that PDGF family members are closely related 

with VEGF (Ball et al, 2007). It would be interesting to understand if VEGF regulation is 

correlated with PDGFRβ and whether this changes in the PDGFRβ mutants. Our data here 

suggest that PDGFRβ plays a role to control HSCs prior to their birth. 

 

Future directions 
It is important to understand the identity, the origin and the biology of PDGFRβ

+
 cells that are 

important for HSCs in vivo. Which of the PDGFRβ
+
 cells are required? Pericytes or sub-

pericytes or both? Is the cell contact with endothelial cells required? Which factors do they 

release? Are they hematopoietic, hematopoietic precursors or are they acting as only niche 

cells? Ongoing work in the lab aims to address these questions. Preliminary data show that these 

cells are not hematopoietic. Indeed, purified PDGFRβ
+
 cells from the AGM do not contain 

hematopoietic progenitors when seeded in methylcellulose assay. To test whether PDGFRβ
+
 

cells are hematopoietic precursors we will recombine PDGFRβ-Cre transgenic mice with 

tdTomato floxed mice and sorted Tomato
+
 cells will be tested in hematopoietic assays.

 
To 

answer whether PDGFRβ
+
 cells are niche cells, we will co-culture them with OP9 bone marrow 

supportive stromal cell line and endothelial cells and test their ability to contribute to HEC 

maturation toward various hematopoietic lineages both in vivo and in vitro. 

 

Conclusions 
In conclusion, our results, although preliminary at this stage, define PDGFRβ signalling as key 

component of the HSC specification niche in vivo that can be tested in vitro to derive HSCs 

from hematopoietic and non-hematopoietic cell sources for cell therapy to treat patients with 

blood diseases.  
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Supplementary Material 
 

 

Supplementary Table 1. Phenotype of PDGFRβ-/- mutant mouse embryos. 

 

 

 

 

 

 Supplementary Table 2. Primers used to genotype both PDGFRβ-KO and PDGFRβ-KO Runx1GFP mouse lines. 

Mouse 

model 
Phenotype 

Literature 

Reference 

P
D

G
F

R
β

-K
O

 

Death 
- Between embryonic day 17.5 (E.17.5) and birth 

 
(Soriano, 

1994) 

Heart 

- Microaneurisms 

- Failure of vSMC recruitment to small arteries in 

heart (lack of αSMA staining) 

- Thinning of ventricular myocardium 

 

(Hellström et 

al., 1999) 

(Van Den 

Akker et al., 

2005) 

 

Large vessels 
- Appear normal 

 
(Soriano, 

1994) 

Kidney 

- Abnormal glomeruli 

- Lack of capillary tuft (podocytes and mesangial 

cells) 

- Decreased number of capillaries Microaneurysm 

- Endothelial cell hyperplasia 

- Regional dilations 

 

(Soriano, 

1994) 

(Hellström et 

al., 1999)  

(Hellström et 

al., 2001) 

 

Brain 
- Microaneurisms 

 
(Hellström et 

al., 1999) 

Haemorrhage/ 

anaemia 

- Significantly anaemic at E18 with elevated 

number of nucleated erythrocytes 

- Fatal haemorrhages perinatally 

(Soriano, 

1994) 

 

 

Genotype Primer Primer Sequence (5’-3’) 
PCR product 

(bp) 

PDGFRβ KO 

Rb-1 (wt rev) AAA AGT ACC AGT GAA ACC TCG CTG 

Wt= 114 bp 

KO= 320 bp 
Rb-2 (fw) ACA ATT CCG TGC CGA GTG ACA G 

Rb-3 (ko rev) ATC AGC CTC GAC TGT GCC TTC TAG 

Runx1 GFP 

Runx1 WT F CAC CTG TCT CTG CAT CGC AGG ACT 
Wt= 400bp 

Runx1 WT R CCA TCC GTG ACA GAT ACG CAC CTC  

AML1- GFP USA F GTC CAG GAG CGC ACC ATC TTC TTC 
GFP= 434bp 

AML1- GFP USA R GTA CAG CTC GTC CAT GCC GAG AGT 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 1. Immunohistochemistry of E11 PDGFRβ WT (+/+) and KO (-/-) embryos.  

Sections from E11 WT and KO embryos were stained with endothelial cell marker (CD31, CD146), 

perivascular and smooth muscle cell markers (CD146, αSMA), basement membrane marker (collagen IV) 

and hematopoietic cell marker (CD31, CD45).  
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Supplementary Figure 2. E11 KO AGM immunohistochemistry. E11 PDGFRβ-/- embryos sections of the 

dorsal aorta were immunostained with different marker combinations to determine the expression of 

endothelial (CD31), perivascular and smooth muscle cells (NG2, PDGFRβ and αSMA) and basement 

membrane (collagen IV). DAPI staining is nuclear (blue). First column corresponds to the merge images, 

second column to the correspondent red channel – CD31 or αSMA -, and third column corresponds to green 

channel – NG2, Coll IV or PDGFRβ signalling. Scale bars: 20μm. 
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Supplementary Figure 3. Hematopoietic progenitor numbers are not affected in others hematopoietic 

organs in E11 PDGFRβ mutant (+/- and -/-) embryos. Total numbers of colony-forming unit-culture 

(CFU-C) from all hematopoietic tissues, with all distinct progenitors discriminated. Hematopoietic organs – 

placenta, yolk-sac, head, fetal liver – were dissected, digested and seeded in methyl cellulose for 10-12 days 

at 37ºC, 5%CO2. The numbers of hematopoietic progenitors in these embryonic hematopoietic tissues are not 

affected with the deletion of PDGFRβ signalling. The data represent the mean ± SEM (WT=10; Het=6; 

KO=3, N=3). One-way ANOVA along with Tukey’s multiple comparison test was made to analyse the data 

significance between WT, Het and KO embryos. * p <0.05, **p <0.001, sp: 41-43. 

 

Supplementary Figure 4. Flow cytometry peripheral blood analysis gating. From the cell population 

selected, following single and live cells, CD45.1 and CD45.2 marker expressions are analysed. An example 

of a recipient that did not reconstituted (left) and a reconstituted recipient mouse (right). Cell population 

highlighted in blue is CD45.1+CD45.2+ - recipient cells; cell population highlighted in yellow is CD45.1-

CD45.2+ - donor cells. 
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Supplementary Figure 5. Confocal images of a 3D whole mount immunostained WT (+/+) and KO (-/-) 

E10.5 dorsal aorta. Clusters that express C-kit also express CD31 and they can be found in the lumen next to 

the dorsal aorta wall (arrowheads). Scale bar: 50μm.   

 

 

 

Supplementary Figure 6. Flow cytometry analysis of single markers in PDGFRβ-KO E11 AGMs. 

Single stained cell populations are shown in wild-type (+/+), heterozygous (+/-) and KO (-/-) AGMs 

(WT=21; Het=19; KO=15, sp: 42-46, N=6).  
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Supplementary Figure 7. Gating used in flow cytometry analysis. From the total cell population, single 

and live cells were selected. From live single cells all populations analysed were selected: single markers (A), 

total number of cells expressing C-kit, NG2, CD45, PDGFRβ, CD31, PDGFRα and Runx1GFP; (B) 

endothelial cells (NG2-PDGFRβ-CD45-C-kit-CD31+); (C) hematopoietic progenitors and stem cells -gate 

highlight in orange (NG2-PDGFRβ-CD31+C-kit+) and (D) non-hemogenic (blue, NG2-PDGFRβ-CD45-C-kit-

CD31+GFP-) and hemogenic endothelial cells (yellow, NG2-PDGFRβ-CD45-C-kit-CD31+GFP+). All gates 

were made based on the unstained sample shown. 
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Supplementary Figure 8. Flow cytometry analysis in PDGFRβ-KO Runx1GFP mouse line embryos. 

PDGFRβ, sub-pericytes (sub-PCs) and pericytes cell populations are shown as well as single cell marker 

expressions (WT=12; Het =25; KO =18, N=7. sp: 42-46) 

 


