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Resumo

A Esclerose Lateral Amiotrófica (ELA) é uma Doença Neurodegenerativa caracterizada pela
perda progressiva de neurónios motores, que causam inervação e comprometimento muscular.
Pacientes que sofrem de ELA não têm geralmente um prognóstico promissor, morrendo entre de
3 a 5 anos após o início da doença. A causa mais comum de morte é a insuficiência respiratória.
Não havendo uma cura para a ELA, muitos esforços estão concentrados na elaboração de mel-
hores tratamentos para prevenir a progressão da doença. Tem sido comprovado que a Ventilação
Não Invásiva (VNI) melhora o prognóstico quando administrado atempadamente. Esta disser-
tação propõe abordagens de aprendizagem automática para criar modelos capazes de prever a
necessidade de VNI em pacientes com ELA dentro de um intervalo de tempo de k dias, possibili-
tando assim aos médicos antecipar a prescrição de VNI. No entanto, a heterogeneidade da doença
apresenta um desafio para encontrar tratamentos e soluções que possam ser utilizadas para todos
os pacientes. Com isso em mente, propomos duas abordagens de estratificação de pacientes, com
o objetivo de criar modelos especializados que possam prever melhor a necessidade de VNI para
cada um dos grupos criados. A primeira abordagem consiste em criar grupos com base na taxa
de progressão do paciente, e a segunda consiste em criar perfis de pacientes agrupando avaliações
de pacientes mais semelhantes usando métodos de agrupamento e perfis clínicos baseados em
subconjuntos de características (Geral, Prognóstico, Respiratório e Funcional). Também testa-
mos um conjunto de seleção de atributos, para avaliar o valor preditivo dos mesmos, bem como
uma abordagem de imputação de valores ausentes para lidar com a alta proporção dos mes-
mos, característica comum para dados clínicos. Os modelos prognósticos propostos mostraram
ser uma boa solução para a previsão da necessidade do uso de NIV, apresentando resultados
geralmente promissores. Além disso, mostramos que o uso de estratificação de pacientes para
criar modelos especializados, melhorando assim o desempenho dos modelos prognósticos, pode
contribuir para um acompanhamento mais personalizado de acordo com as necessidades de cada
paciente, melhorando assim o seu prognóstico e qualidade de vida.

Palavras Chave: Esclerose Lateral Amiotrófica, Aprendizagem Supervisionada, Estratificação
de Pacientes, Grupos de Progressão da Doença, Perfis de Pacientes, Ventilação Não-Invásiva





Abstract

Amyotrophic Lateral Sclerosis (ALS) is a Neurodegenerative Disease characterized by the pro-
gressive loss of motor neurons, which cause muscular innervation and impairment. Patients who
suffer from ALS usually do not have a promising prognosis, dying within 3-5 years from the
disease onset. The most common cause of death is respiratory failure. With the lack of a cure
for ALS, many efforts are focused in designing better treatments to prevent disease progression.
Non-Invasive Ventilation (NIV) has been proven to improve prognosis when administered earlier
on. This dissertation proposes machine learning approaches to create learning models capable to
predict the need for NIV in ALS patients within a time window of k days, enabling clinicians to
anticipate NIV prescription beforehand. However, the heterogeneity of the disease presents as a
challenge to find treatments and solutions that can be used for all patients. With that in mind,
we proposed two patient stratification approaches, with the aim of creating specialized models
that can better predict the need for NIV for each of the created groups. The first approach
consists in creating groups based on the patient’s progression rate, and the second approach
consists in creating patient profiles by grouping patient evaluations that are more similar using
clustering and clinical profiles based on subset of features (General, Prognostic, Respiratory, and
Functional). We also tested a feature selection ensemble, to evaluate the predictive value of the
features, as well as a Missing value imputation approach to deal with the high proportion of
missing values, common characteristic for clinical data. The proposed prognostic models showed
to be a good solution for prognostic prediction of NIV outcome, presenting overall promising
results. Furthermore, we show that the use of patient stratification to create specialized models,
thus improving performance in prognostic models that can contribute to a better-personalized
care according to each patient needs, thus improving their prognostic and quality of life.

Keywords: Amyotrophic Lateral Sclerosis, Supervised Learning, Patient Stratification, Disease
Progression Groups, Patient Profiles, Non-Invasive Ventilation





Resumo Alargado

A Esclerose Lateral Amiotrófica (ELA) é uma doença neurodegenerativa caracterizada pela morte
dos neurónios motores que controlam os movimentos voluntários. Isto leva à perda progressiva
de movimento nos pacientes, sendo que os primeiros sintomas são geralmente a falta de força nos
membros inferiores ou superiores. Em relação a outras doenças neurodegenerativas, a progressão
da ELA é geralmente mais rápida, resultando na morte dos pacientes num período entre 3 a
5 anos. É uma doença que se manifesta essencialmente em idades mais avançadas (58 a 65
anos), no entanto pacientes com histórico familiar de ELA têm um aparecimento da doença mais
precoce (43-63 anos).

Dado não existir uma cura conhecida para ELA, o Riluzole é o único fármaco disponível para
controlar a progressão da doença. Assim, o acompanhamento médico desta doença é geralmente
baseado em tratamentos que aliviam os sintomas e tentam retardar a progressão da doença, de
forma a melhorar a qualidade de vida dos pacientes e o seu prognóstico.

A causa mais comum de morte em ELA é a paragem respiratória, e por isso um dos tratamen-
tos mais comuns em ELA é a Ventilação Não Invásiva (VNI), de forma a controlar os sintomas
associados com a perda de função respiratória e evitar complicações. O uso desta terapêutica é
no entanto mais eficaz quando colocado em estágios iniciais da doença. Quando aplicado atem-
padamente, o uso de VNI pode prolongar a sobrevivência dos pacientes de ELA em alguns casos
por mais de um ano.

Tendo isto em conta, definimos então o principal objetivo desta dissertação: Criar modelos
preditivos de prognóstico que nos permitam prever a necessidade de uso de VNI em pacientes
com ELA. Para ir de encontro a esse objetivos, usámos dados de 1220 pacientes de ELA, seguidos
no Hospital de Santa Maria, em Lisboa, que depois de processados são utilizados como input
num conjunto de classificadores de forma a criar modelos preditivos capazes de prever se um
paciente que chega à consulta vai ou não necessitar de VNI. Uma vez que a aplicação antecipada
de VNI é benéfica para o prognóstico dos pacientes, e uma vez que os pacientes são geralmente
observados a cada três meses, decidimos então usar janelas temporais que nos permitam também
antecipar a necessidade desta terapêutica. As janelas temporais escolhidas foram então 90, 180,
e 365 dias (3, 6, e 12 meses). Assim, no conjunto de dados usado ao longo desta dissertação, cada
instância pode ser vista como um tuplo constituído por um vetor de atributos que descrevem a
condição de um paciente num determinado ponto no tempo, e uma classe Evolução que expressa



a informação sobre a necessidade ou não do uso de VNI para aquele paciente, num intervalo de
k dias entre a ultima consulta e esse ponto no tempo.

Nesta primeira abordagem foram obtidos modelos preditivos com resultados promissores,
especialmente quando usadas as janelas temporais mais longas, uma vez que estas são geralmente
mais balanceadas e o que contribui para uma melhor performance.

A ELA é uma doença complexa e altamente heterogénea e apesar da sobrevivência média ser
de três a cinco anos, existem pacientes que cuja sobrevivência pode ser menos de um ano, e outros
que podem viver mais de 10 anos com a doença. Um dos problemas comummente associados a
estudos de ELA é a incapacidade de criar tratamentos e desenvolver medicamentos que sejam
benéficos para todos estes doentes. Assim, a estratificação de pacientes tem sido uma ferramenta
útil para tentar contornar este problema, promovendo o desenvolvimento de terapêuticas mais
personalizadas e mais eficazes de acordo com as necessidades de cada paciente.

Nesta dissertação, propomos o uso de duas abordagens de estratificação em pacientes de
ELA, de forma a criar modelos com maior nivel de especialização. Na primeira estratificamos os
pacientes em grupos de acordo com a sua progressão da doença e na segunda estratificamos os
pacientes de acordo com a sua condição em cada consulta, de acordo com um dado perfil clinico,
criando assim perfis de pacientes.

Para a primeira abordagem foi calculado o declínio na Escala de Classificação Funcional de
ELA (ALS Functional Rating Scale) de cada doente, e a partir da distribuição conjunta de todos
os pacientes foram criados 3 grupos de progressão: Lentos, Neutros e Rápidos. A informação
sobre cada grupo foi depois usada para criar conjuntos de dados contendo apenas os doentes de
cada grupo e novos modelos mais especializados foram treinados. À primeira vista os resultados
obtidos nesta abordagem não são benéficos para os modelos e no caso dos progressores rápidos
parecem mesmo ser prejudiciais. No entanto, para verificar a sua veracidade, voltámos a correr
os classificadores com todos os pacientes, e analisando cada predição feita conseguimos obter
uma noção de como se comporta o modelo geral a prever cada grupo. Com essa análise pudemos
verificar que na verdade os modelos gerais apenas classificam com sucesso os progressores neutros
(grupo mais representativo da população geral), e para os dois grupos mais extremos limita-se a
prever pela classe maioritária desse grupo. Com isto conseguimos então provar que a utilização
destes modelos especializados em cada grupo de progressão, são mais eficazes a prever do que os
modelos que usam toda a população disponível.

Na segunda abordagem agrupamos as observações de pacientes mais similares, de acordo
com um conjunto predefinido de features (perfil clinico), de forma a obter grupos de observações
parecidas a que chamamos perfis de pacientes. Usámos 4 conjuntos diferentes de perfis clinicos:
Geral, Prognóstico, Respiratório e Funcional, que diferem de acordo com o conjunto de atributos



usado para os criar. Depois dos perfis de pacientes gerados, vamos mais uma vez treinar novos
modelos especializados em cada perfil. Os conjuntos de perfis que mostraram melhores resultados
foram o Geral e o de Prognóstico, alcançando resultados melhores que os modelos base. Provamos
novamente os potenciais da estratificação para criar modelos especializados mais capazes de
prever a necessidade de uso de VNI, que por sua vez permitem um melhor acompanhamento do
paciente.

Numa tentativa de melhorar os modelos, testámos o uso de um método de seleção de variáveis
nos nossos modelos, que apesar de não mostrar melhorias em relação aos modelos anteriores, se
tornou bastante útil por dele conseguirmos extrair a informação de que testes são mais impor-
tantes para a esta previsão. Ter esse conhecimento é uma mais valia para os clínicos, uma vez
que permite fazer um melhor planeamento dos testes e exames a efectuar para grupos especificos
de pacientes, o que resulta numa melhor gestão de tempo (vital quando falamos de pacientes
com ELA).

Em cada abordagem presente neste documento testámos ainda um método de preenchimento
de valores em falta, denominado de Última Observação Levada Adiante, onde os valores em falta
são preenchidos de com o valor da observação anterior, caso esta esteja presente. Esta técnica
permite-nos obter um conjunto de dados mais preenchidos, o que é benéfico para os modelos. De
facto, o uso deste método, provou ser benéfico para todas as abordagens desta dissertação.

Para os modelos base e grupos de progressão experimentámos também criar modelos que
usassem informação histórica do paciente (múltiplas observações) como input, no entanto, apesar
de alguns modelos mostrarem resultados semelhantes aos modelos usando apenas a condição atual
do paciente, na sua maioria estes modelos demonstraram ter pior performance em relação aos
anteriores.

Por fim, o trabalho apresentado nesta dissertação resulta na proposta de duas abordagens
de estratificação de pacientes para a criação de modelos personalizados a grupos de pacientes o
que possibilita um melhor acompanhamento dos pacientes por parte dos clínicos, e por sua vez,
melhora o prognóstico e a qualidade de vida.
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Chapter 1

Introduction

1.1 Motivation

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by the pro-

gressive loss of motor neurons in the brain and spinal cord, which leads to muscular weakness

and ultimately ends in death (van Es et al. (2017)). The life expectancy of an ALS patient is 3

to 5 years after disease onset (Brown & Al-Chalabi (2017)). There is no cure or known causes

for ALS, and the heterogeneity of the disease makes it difficult to understand its underlying

mechanisms. Thus finding solutions to cure or slow disease progression is a challenge. Therefore,

efforts must be taken to find solutions that can improve patient’s prognosis and help to maintain

the patients quality of life.

ALS studies focus mainly on patient survival (Georgoulopoulou et al., 2013; Pastula et al.,

2009; Traynor et al., 2003), exploring the impact of diagnostic delay (Gupta et al. (2012)), un-

derstanding and defining ALS sub-types (Chiò et al. (2011)), or finding relevant clinical features

that can be used both as diagnostic or as prognostic predictors (Creemers et al. (2015)).

With the rapid advance in the fields of computer science, genetics, imaging, and other tech-

nologies came the promise of a new form of medicine, so-called precision medicine. It can be

defined as targeted treatments for individual patients based on their genetic, phenotypic or psy-

chological characteristics (Larry Jameson & Longo (2015)). Although this approach has already

shown promising results in areas such as cancer, it is only now beginning to be used in ALS

studies (Zou et al. (2016)).

In recent years there has been increasing attention to patient stratification in ALS. By group-

ing patients either by their progression level (Westeneng et al. (2018)) or by a set of prognostic

features (Ganesalingam et al. (2009)), it has been shown to be possible to design new treatments
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or disease management strategies which are specialized for a specific group of patients that has

something in common.

Since respiratory failure is responsible for the majority of deaths in ALS patients, there

is a need to prevent the decline in respiratory capacity as earlier as possible. Non-invasive

ventilation (NIV) is the standard treatment for respiratory impairment in ALS patients and has

proven to prolong survival and improve quality of life, especially when administered in earlier

stages (Georges et al. (2014)).

1.2 Problem Formulation and Original Contributions

This dissertation is the follow-up to the work developed in André Carreiro’s PhD Thesis (Carreiro

(2016)) in which he proposes an integrative approach combining supervised learning, clinical

data of ALS patients and the insights from ALS experts, to develop prognostic models to predict

changes in the clinical state of patients according to a given time window.

In this dissertation we will revisit and explore further some of the addressed questions, using

an updated dataset containing more data and some approach alterations. Those questions being

revisited are:

• Given a patient evaluation, can we predict if a given patient will require NIV within a certain

time window?

• Given a set of consecutive patient evaluations (T1, T2,..., Tk) can we predict if the patient

will require NIV within a certain time window after evaluation Tk?

The dataset used to answer the questions above is the Portuguese ALS dataset presented

in Section 2.5. Furthermore, to the questions above (also tackeld by Carreiro et al), and whose

results obtained with the updated data we use as baseline, we propose two different approaches to

stratify patients: according to disease progression and patient profiles (Sections 2.4.1 and 2.4.2).

We also investigate whether using these groups in specialized models for each group yields better

results when answering the questions above.

Part of the contribution in this thesis we presented at The Sixth Workshop on Data Mining

in Biomedical Informatics and Healthcare, held in conjunction with the IEEE International

Conference on Data Mining (ICDM’18). The publication is presented in Appendix A.

2



1.3 Thesis Outline

1.3 Thesis Outline

Other than the current, this thesis is outlined over 5 additional chapters:

• Chapter 2 presents the background regarding ALS, Patient Stratification, Prognostic Pre-
diction as well as concepts of Machine Learning and Data Mining techniques used in this
dissertation. It also provides an overview of the dataset used in this work;

• Chapter 3 tackles the two questions proposed above, and presents the baseline results for this
dissertation;

• Chapter 4 explores the first approach to patient stratification, presenting the results of the
prognostic models using disease progression groups;

• Chapter 5 explores the second approach to patient stratification, presenting the results of the
prognostic models using patient profiles;

• Chapter 6 presents the conclusions and future work.
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Chapter 2

Background

2.1 Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS), also known as Motor Neuron Disease (MND) is a complex

neurodegenerative disease characterized by the progressive loss of motor neurons in the brain

and spinal cord (van Es et al. (2017)).

The prevalence of the disease is approximately 3-5 cases per 100.000 individuals. Although

this is a seemingly low number for the general population, the risk of developing ALS increases

in the latter years of life, reaching a risk of 1:300 at the age of 85 (Martin et al. (2017)).

Around 10% of ALS cases are familial (patients which have/had relatives with ALS) and

the remaining 90% are considered sporadic. Although there are no major differences in the

presentation and progression, familial ALS patients present an earlier disease onset than the

ones with sporadic ALS (Brown & Al-Chalabi (2017)). The disease onset is within 58-63 years

for sporadic ALS, and within 43-63 years for familial ALS (Andersen et al. (2012)).

With recent advances in genetics, more information about the disease is being discovered,

providing new insights into what causes ALS and what are the risk factors. More than 20 genes

related to ALS have been discovered in recent years, three of them seem to be more relevant

than the others (Martin et al. (2017)). The SOD1 gene was the first gene identified as being

associated with ALS and for a long time the only gene known to be related with this disease (van

Es et al. (2017)). SOD1 mutations are present in approximately 20% of familial ALS patients

and 5% of sporadic ALS patients. The second gene, TARDBP, represents approximately 5-10%

of familial ALS mutations (Zarei et al. (2015)). The last gene, C9orf72, is responsible for 30%

of familial ALS and up to 10% of sporadic ALS, being the gene with the biggest association to

ALS (Martin et al. (2017)). Around 50-60% of the familial ALS patients have mutations in the

described genes. However, there are still 40-50% (Zarei et al. (2015)) of the familial ALS cases
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that are not linked to any gene, and an even greater percentage regarding sporadic ALS cases.
The Mine project (Mine & Sequencing (2018)) launched a large-scale whole-genome sequencing
study using 15 000 ALS patients and 7500 controls. The aim of this project is to discover new
genetic risk factors and further elucidating the genetic basis of ALS. The ONWebDUALS project
(ONtology-based Web Database for Understanding Amyotrophic Lateral Sclerosis) aims to create
a standardized European database, with genetic and phenotypic information of ALS patients, in
order to identify relevant risk and prognostic factors in ALS.

Non-genetic factors have also been linked to ALS, such as exposure to toxins, smoking, exces-
sive physical activity, occupation, dietary factors and changes in immunity, especially regarding
sporadic ALS patients (Zou et al. (2016)).

The initial symptoms of the disease are muscle weakness, twitching, and cramping, which
can later lead to muscle impairment. These usually start in the limbs. However, a third of
the ALS patients have a bulbar onset, characterized by difficulty in swallowing, chewing, and
speaking (Brown & Al-Chalabi (2017)). Dyspnea and dysphagia are usually developed in more
advanced stages of the disease (Zarei et al. (2015)). The eye and bladder muscles are usually
the less affected, showing signs of impairment only in the latest stages of the disease (Brown &
Al-Chalabi (2017)).

Regarding diagnosis, there is usually a delay of 13–18 months from the onset of a patient’s
symptoms to confirmation of the diagnosis (Zarei et al. (2015)). This can be a consequence of
the low prevalence of the disease, meaning it is not common for a primary care physician to
have many patients with ALS. Moreover, the overlap with other neurodegenerative diseases may
difficult and delay the diagnosis (Hardiman et al. (2011)). These delays can worsen the prognosis
of the patients since therapies have usually better outcomes when applied in the early stages of
the disease. There is not yet a single test to directly diagnose ALS. Therefore, the initial steps
towards diagnosis are the exclusion of other neurodegenerative diseases as well as other limb
dysfunction causers. Then, Electrodiagnostic tests, neuroimaging, or laboratory tests can be
used to find a final diagnosis(Zarei et al. (2015)).

There is no definitive cure for ALS. Thus, available treatments are focused on slowing the
disease rather than stopping it. Riluzole is the only approved drug treatment, showing an
increase in survival up to 14.8 months (van Es et al. (2017)). Other available treatments consist
in symptom relief and progression. Symptomatic intervention and supporting care for ALS
patients include the provision of ventilatory support, nasogastric feeding, and prevention of
aspiration (Brown & Al-Chalabi (2017)). The latter consists in control of salivary secretions
and use of cough-assist devices. Moreover, Nasogastric feeding helps preventing malnutrition,
common in ALS patients, which improves survival and quality of life (van Es et al. (2017).
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The majority of ALS patients usually die of respiratory failure within 3-5 years from disease
onset (Brown & Al-Chalabi (2017)). Thus, preventive treatments to maintain respiratory muscle
function are vital for these patients. Non-Invasive Ventilation (NIV) is the only treatment to
prevent respiratory failure in ALS patients (Georges et al. (2014)). The use of NIV, when
administrated in earlier stages of the disease, has shown to improve survival in ALS patients and
their quality of life.

With no definitive cure available, the focus in ALS patients’ care is to slow disease progression,
improve prognosis, and maintain the quality of life. To achieve these objectives, a multidisci-
plinary team of clinicians, together with the caregivers, is imperative to ensure the patient has
the best care, resulting in increasing survival (Brown & Al-Chalabi (2017)). In this context, dur-
ing clinical follow-up, the patient’s condition is evaluated using ALS related functional scores,
Respiratory and Neurophysiological tests, as well as other physical values. These Longitudinal
data together with the static data collected at disease diagnosis is used for prognostic prediction.

2.2 Data Mining Techniques

Data Mining is a multidisciplinary subject that combines domains such as statistics, machine
learning, pattern recognition, database and data warehouse systems, information retrieval, visu-
alization, algorithms and high-performance computing (Han et al. (2012)). Its main purpose is
to extract new and useful information from collections of data (Laxman & Sastry (2006)). Data
Mining techniques allow us to find patterns and relationships in data which could go unnoticed
to the human eye (Sharma et al. (2018)). It has applications in many fields such as science,
marketing, finance, healthcare or retail (Fayyad et al. (1996)).

2.2.1 Data Preprocessing

2.2.1.1 Feature Selection

It is common in Machine Learning (ML) problems, to have a dataset that has a very high number
of features (dimensions). With high dimensionality, the amount of data needed to build reliable
models is also very high. Without enough learning instances the performance of the classifiers
can be hindered (Bolón-Canedo et al. (2014)).

Having too many features can be detrimental for the model’s performance, and this is a
known problem, commonly called by "The curse of dimensionality" (Somorjai et al. (2003)).
Dimensionality Reduction is one of the most popular techniques to deal with this issue. It
can be divided into Feature Extraction and Feature selection. Feature extraction combines the
original features into a new set of feature with reduced dimensionality (Tang et al. (2014)). As
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for Feature Selection (FS), it selects a subset of features which better describe the data and
reduce the effects of noisy and irrelevant features (Chandrashekar & Sahin (2014)).

Using FS to downsize the number of features in a dataset, can bring several benefits: data
visualization becomes easier due to the lower dimensionality, reduces storage requirements as
well as reduced training and utilization times (Guyon & Elisseeff (2003)).

For a recent survey on FS see (Li et al. (2017)). In this survey the authors divide the methods
in filter, wrapper, and embedded methods.

2.2.1.2 Missing Value Imputation

Missing data is common in almost all real datasets. However, missing data means lack of infor-
mation, which can be problematic as some data mining methods rely on complete datasets to
work.

There are 3 types of missing data: missing completely at random (MCAR), missing at random
(MAR) and missing not at random (MNAR) (Newgard & Lewis (2015)). MCAR is the least
common and also the least problematic since it yields less biased results. MAR is a more realistic
version on MCAR, but can lead to biased results. Lastly, MNAR is the most problematic of the
three, making almost impossible to find a statistically approach to deal with this type.

There are mainly two ways to deal with missing data: deletion and imputation (Cheema
(2014)). Deletion methods consist in removing either instances or columns with missing values.
However, in datasets with low quantities of data or with many missing data this can lead to a
considerable loss of information. On the other hand, imputation methods do not remove any
instances or columns, but rather replace the missing values with predicted values obtained from
the study of the whole dataset.

Missing Value Imputation (MVI) methods can be divided into two groups: Single Imputa-
tion (SI) or Multiple Imputation (MI). Single imputation methods replace the missing value with
plausible values by observing the characteristics of the population. The most common method
is Mean Imputation which imputes missing values using the population mean for the variable.
However, when performed in datasets with large quantities of missing data, it leads to a loss of
feature variance and correlation distortion that can lead to a biased dataset (Josse & Husson
(2012)). Last Observation Carried Forward (LOCF) presents as an alternative to Mean Impu-
tation, by assuming that the value does not change from the last observation (Newgard & Lewis
(2015)). This methodology is especially common in clinical datasets, where longitudinal data is
available.

MI methods consist in imputing multiple versions of the same dataset, each with a different
imputation methodology (Donders et al. (2006)).
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2.2.1.3 Dealing with Imbalanced Data

Having an imbalanced data, means having a dataset where there are more instances for one of
the class values than the other. In imbalanced data the number of available instances for each
of the classes to be learned is not the same.

Dealing with imbalanced datasets presents a challenge for some machine learning problems,
as most machine learning algorithms assume that classes are balanced. However, in real-life
problems, this is seldom the case (Krawczyk (2016)).

Undersampling and Oversampling are two opposite alternatives to deal with class imbalance.
The first consists in removing instances from the majority class and the latter on adding instances
for the minority class, both of them ensuring a balanced dataset (Rahman & Davis (2013)).
In undersampling techniques, instances of the majority class are randomly removed until the
number of instances for each class is equalized. Problems with this method lie in the possible
loss of information from the removed instances and the resulting low number of overall instances
when the minority class has only a few instances (He & Garcia (2009)). Oversampling techniques
overcome these problems by keeping all instances and resampling minority class instances until
class balance is achieved. This can be done by simply resampling the minority instances, however,
this easily can lead to a biased dataset (He & Garcia (2009)).

Synthetic Minority Over-sampling Technique (SMOTE) proposes an oversampling alterna-
tive, as it creates synthetic learning instances for the minority class by using k-Nearest Neighbors
method to find similar k instances to one of the minority class examples, ans use them to create
a new instance (Chawla et al. (2002)).

2.2.2 Machine Learning

2.2.2.1 Supervised Learning

Supervised Learning algorithms consist in learning a function from a set of training data able to
predict the desired output. Each training instance consists of a vector with information on each
variable in the data, and a truth value for the outcome we are trying to predict (lable/class).
After training, the model should be able to receive the feature vector as input, and according to
the function learned by the model, output a prediction for the outcome.

These algorithms can be divided into two groups: classification and regression. The first
outputs the prediction in a discrete value, usually binary, and the latter outputs a continuous
value for the prediction.
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Decision Trees

Decision Tree (DT) is a simple and powerful statistical tool that can be used in classification,
prediction or even data manipulation (Song & Lu (2015)). The features are represented as
internal nodes of the tree, and each one of its resulting branches are possible values (discrete) or
ranges (continuous) of each feature. The final nodes, or leaves, are the predictions (Han et al.
(2012)). In Figure 2.1 we show a DT example used to predict if a customer will or will not buy
a computer.

Figure 2.1: Example of a Decision Tree for the following problem: "Will the customer buy or
not buy a computer?". Rectangle boxes are the attributes, branches are the possible values and
oval boxes the predictions. Adapted from Han et al. (2012)

The top of the DT is the feature which better separates data, according to the class values
of each instance. The next internal node for each branch will be the best describing feature for
the data subset that follows each branch. This last step is repeated until either all features have
been used, or all the final branches lead to a prediction. When we reach at a feature in which
each value leads to a single prediction, then there is no need to look further in the remaining
features and the branches of that feature will lead to the leaves (final predictions) of the tree.
In situations where even with all available features, there is no combination that allows reaching
single predictions, we have to resort to majority voting. This consists in choosing the prediction
value for each branch according to the most popular value (Hu et al. (2012)).

The simplicity allied with easy understanding, interpretation, and visualization are some of
the advantages of using this algorithm (Song & Lu (2015)). However, for datasets with high
dimensionality, visualization and interpretation may be challenging when using DT.
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Random Forests

Random Forests (RF) is an ensemble learning method that combines several Decision Trees
to make a prediction. Each DT is trained with a random subset of features available.

This method has shown improvement in classification problems as the final prediction is de-
cided by the majority vote of each singular tree prediction (Breiman (2001)).

K-Nearest Neighbors

The k-Nearest Neighbor (kNN) algorithm is a commonly used classifier among many classifi-
cation problems, in which the output is computed by accessing the outcomes for a given number
of learning instances (k) closer to the input instance. It is considered a lazy learner since the
classifier is not really trained before its use, but rather trained at the moment of use (Han et al.
(2012)).

When a new instance is fed to the classifier, the algorithm finds its k-nearest instances. The
most common metric to compute the distances between instances is the Euclidean distance,
however, other distances can be used (Liu et al. (2004)). In order to classify the new instance,
the classifier looks at to the outcome of each neighbor and choses according to the majority class
of the neighbors. When using kNN, it is advised to use an odd number of neighbors to prevent
ties in classification. However, one solution to solve the tie would be using the majority class of
the entire dataset or the class of the nearest neighbor. Moreover, to avoid overfitting its advised
against using a larger k.

An example of the described algorithm can be seen in Figure 2.2

Figure 2.2: Example of a k-Nearest Neighbor classifier using 3 neighbors (k=3). The blue
rectangles are instances for one class and green circles instances for the other. The orange
triangle is the new instance.

Support Vector Machines
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Support Vector Machines (SVM) are powerful models commonly used in nonlinear classifica-
tion, regression and outliers detection (Aha et al. (1991)).

In this algorithm, data is mapped in a multidimensional space (one dimension per feature).
Then, the SVM tries to find linear hyperplanes that separate the classes with maximal margins,
called support vectors (Hsu et al. (2008)). Figure 2.3 shows an example of how support vectors are
created. When linear separation is not possible, SVM uses the kernel technique to automatically
release non-linear mappings in the feature space (Furey et al. (2000)). The most common kernels
used are linear, polynomial, radial basis function (RBF), and sigmoid. All support vectors
computed are then combined into a function that receives a feature vector as input and outputs
a prediction for the outcome in the study.

Figure 2.3: Example of a SVM. Figure adapted from Aha et al. (1991).

Although SVMs are very robust, they usually work best for problems with fewer features,
since a higher number of features translates to a higher number of dimensions and a higher
number of support vectors to be computed, which can be detrimental to the performance of the
classifier. To use SVM in high dimensional problems it is advised to build the classifiers with
only a subset of the features (Hsu et al. (2008)).

Naive Bayes

The Naive Bayes (NB) classifier is a simple, probabilistic and easy to use algorithm that has
been showing promising results in several applications. It is called Naive because it is based on
the assumption that the features are independent of the class (Rish (2001)).

Let C = (c1, ..., ck) be the class variable we are trying to predict and let X be a vector
representing the attribute values of each instance, X = (x1, ..., xn). Given a random vector X,
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the classifier predicts its class according to the highest posterior probabilities that are conditioned

on X (Han et al. (2012)). The posterior probability for each value i = 1, ..., k is obtained by:

p(C = ci|X = x) =
p(C = ci)p(X = x|C = ci)

p(X = x)
. (2.1)

As NB follows the assumption that all variables are independent, then, 2.1 can also be defined

by the sum the conditional probabilities of each variable, according to a class value:

p(X|C = ci) =
Y

n

p(X = xj |C = ci). (2.2)

Another assumption followed by the NB classifier is that all numeric attributes follow a

Gaussian/Normal distribution. Thus there is a need to estimate a set of parameters from the

training data (mean and standard deviation). Density estimation methods have explored ways

to overcome the problems with this last assumption. These methods work by averaging over a

set of Gaussian kernels:

p(X|C = ci) =
1

n

X

i

G(X,µ,�), (2.3)

where i ranges each training point in class ci, µ = xi and � = 1p
ni

, where ni is the number of

instances with class value c1.

Logistic Regression

Regression methods are popular in data analysis due to their capability to describe relation-

ships between the target variable and one or more explanatory variables. When using a discrete

target, Logistic Regression (LR) is the standard method used (Hosmer & Lemeshow (2000)) and

is based on the following logistic function:

f(z) =
ez

ez + 1
= (1 + ez)�1. (2.4)

One of the advantages of using LR is that the classifier outputs a real predicted value for

each class value, between 0 and 1, that allows to look not only to the prediction but also to its

probability (Naive Bayes also does that). The input of the classifier z, usually called logit, is a

representation of the explanatory variables of the problem and can be defined as:

z = �0 + �1x1 + �2x2 + ...+ �kxk, (2.5)
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where �i is the regression coefficient for the variable xi and �0 is the probability of the outcome
if all variables do not contribute to the problem.

The threshold to determine the predicted class is usually 0.5 in binary classes, meaning that
if the probability for a given class value is superior to 0.5 the makes the prediction for that value,
and if the probability is lower than 0.5, the classifier prediction is made for the other value.

2.2.2.2 Unsupervised Learning

As opposed to Supervised Learning, Unsupervised Learning methods learn from unlabeled data
to find functions that describe it. These methods are usually used to find groups and stratify
data and to find hidden patterns. Clustering, Anomaly Detection, Neural Networks and latent
variable models are some of the different fields.

Clustering is one of the most popular fields, in which the algorithms partition the data in
subsets (clusters) according to the similarities and dissimilarities between instances. The clusters
created can be helpful to retrieve new information from the similarity in each cluster but also
from the differences between the clusters.

k-Means

K-Means is the simplest and most popular among all clustering algorithms. In this method
the number of clusters (k) is defined apriori (Krishna & Murty (1999)).

In order to create the clusters, k random instances of data are chosen to be the initial centroids
(points in the middle of each cluster). Then, the remaining instances are individually compared
to each of the centroids and assigned to the cluster of the closest one.

After the first iteration, new centroids are computed using the mean of all instances inside
one cluster. Then, all instances are once more compared to each centroid and assigned to the
closest centroid. This process repeats until the point of conversion (when there is no change in
the composition of the centroids between iterations) or until they reach the maximum number
of iterations.

Although being simple and presenting overall acceptable results, there are some disadvantages
to this method. One, is the need to have prior knowledge of the number of groups to be created.
Another disadvantage lies in the number of iterations that change with the number of instances,
the number of clusters, and the complexity of the problem, which can make computationally
expensive (Alsabti et al. (1997)).
Hierarchical Clustering

Hierarchical Clustering (HC) methods create clusters according to a hierarchy and can be
divided in two groups: divisive and agglomerative, the latter being the most popular.
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Agglomerative Hierarchical Clustering (AHC) methods, work by interactively combining the

two closest objects or clusters until all data falls in the same cluster. An opposite approach is

used when using the divisive methods.

In the first step of the AHC process, the number of clusters is equal to the number of

instances. Then, a proximity matrix is computed to register the distances between each two

points of data. The two closest points are then combined in the same cluster and the proximity

matrix is recalculated swapping the two instances for the cluster centroid and computing its

distance to each of the left over instances. This process repeats itself until achieving one cluster

with all instances in it.

When dealing with a relative low number of instances, the results of the AHC can be shown

by a dendogram, which provides an easy visualization (see Figure 2.4). A different number of

clusters can be derived by choosing different cut-off in the similarity value.

Figure 2.4: Example of a Agglomerative Hierarchical Clustering.

2.2.2.3 Model Evaluation and Selection

Cross-Validation

Cross-Validation (CV) is a popular method for model selection and parameter estimation

in supervised learning. It works by splitting data a number of times, in order estimate the

performance of each classifier. A subset of data, called training set, is used to train the classifiers,

while the rest, testing set, is then used to assess its performance (Arlot & Celisse (2009)).

There are many ways of splitting the data, but the most popular are: Leave-one-out (LOO),

Leave-p-out (LPO) and K-Fold (VF). The first two approaches are considered exhaustive splitters

and the latter a partial splitter. In LOO, each instance is successively remove from the sample
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and used for model validation, as for LPO, each possible subset of p instances is left out for

validation.

In k-Fold CV data is partitioned in k subsets. In each iteration one subset (fold) is held out

for test, while the other subsets are used for training purposes (Arlot & Celisse (2009)). This

method is much less time consuming in comparison with the other methods as the number of

iterations is much lower (one iteration for each fold). However, when splitting data in folds, the

folds created can be very similar to each other. To overcome this problem, v-Fold CV is usually

performed multiple times, each time generating different folds.

Performance Metrics for Supervised Learning

Confusion Matrix

A confusion matrix is a matrix of c x c dimensions, where c is the number of classes, usually

used to compute performance metrics for model evaluation. The rows usually represent the

predicted values and the columns the real values of the class. In binary classification we have a

2x2 table, as shown in the example in Table 2.1.

Table 2.1: Confusion Matrix.

Predicted Class

True Class
PC1 PC2

TC1 TP FN
TC2 FP TN

These tables allow us to evaluate where the classifiers are performing correct or wrong predic-

tions. We can see this by the four indicators provided: Number of True Positives, True Negatives,

False Positives and False Negatives, where:

• True Positive (TP): an instance from the positive class that is classified as positive;

• False Negative (FN): an instance from the positive class that is classified as negative;

• True Negative (TN): an instance from the negative class that is classified as negative;

• False Positive (FP): an instance from the negative class that is classified as positive.

The indicators are then used to compute metrics such as Accuracy, Sensitivity and Specificity.
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2.2 Data Mining Techniques

Accuracy

Accuracy gives us the information about how many instances were correctly classified:

Accuracy =
TP + TN

TP + FP + TN + FN
. (2.6)

However, when dealing with imbalanced classes, this metric can be biased by how the classi-

fier performs in classifying the majority class.

Sensitivity

Sensitivity, also known as recall or true positive rate, shows the proportion of positive in-

stances that were classified as such:

Sensitivity =
TP

TP + FN
. (2.7)

Specificity

Specificity, selectivity or true negative rate shows the same information as the sensitivity

metric, but for the negative class. Thus, it gives information about the proportion of negative

instances that were correctly classified:

Specificity =
TN

TN + FP
(2.8)

ROC and AUC

When evaluating a classifier using the metrics described above, we have to be careful and

take into account the proportions of each class value as to not be biased by the results.

The receiver operating characteristic (ROC) curve combines the Sensitivity and Specificity

metrics in a graph for each classification threshold. This results in a graph that shows the

performance of a classification model. Figure 2.5 shows an example of a ROC curve.

The closer the curve is to the upper left corner the better the performance of the classifier,

since the sensitivity and specificity measures are maximized.

The ROC is also used to compute one of the most popular metrics in performance evaluation,

the Area Under the ROC Curve, also known as AUC. As it says in the name, this metric measures

the area under the ROC curve. The AUC metric can be defined as either the a representation
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2. BACKGROUND

Figure 2.5: Example of a ROC curve.

of the classifier ability to separate the classes or the probability of an instance with a given class

value being classified as such.

Cluster Validation

Determining the best number of clusters in a dataset is a common problem in when using

clustering, especially when using k-means, where we need to tell the model how many cluster we

want to create. There are some measures and scores that can be used to determine the optimal

number of clusters to create for our data.

Silhouette Score

The Silhouette score for a given instance in our dataset gives us information on how close

our instance is to the other instances in the same cluster. This score can vary between -1 and

1. Scores close to 1 mean the instance is in the right cluster, while scores close to -1 mean the

instance is in the wrong cluster.

To determine the optimal number of clusters in a dataset, we can run the clustering algorithms

with different number of clusters, and use the average Silhouette score to evaluate how good are

the clusters. The clustering with higher Silhouette score, is the one with optimal number of

clusters.
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2.3 Prognostic Prediction in ALS

2.3 Prognostic Prediction in ALS

As stated previously, with no definitive cure for ALS, efforts are then focused on designing

treatments that improve the prognosis of patients and their quality of life. However, many

treatments are more effective when administered earlier on. Prognostic prediction can be a

key tool in this context. By predicting a given prognosis beforehand, clinicians are then able

to administer appropriate treatment before being to late. Nevertheless, the number of studies

regarding prognostic prediction in ALS are scarce. Current studies usually focus in finding

prognostic biomarkers associated with patient survival (Polkey et al., 2017; Sato et al., 2015).

In the work prior to this dissertation, André Carreiro (Carreiro (2016))proposed an approach

to predict the need of NIV in patients with ALS. He advanced the state of the arr by, rather

than predicting the immediate need, proposing the use of time windows. This allows to answer

the following question: "Given a patient’s current condition, will the patient need NIV within k

days?". Longitudinal Data from a cohort of 758 patients from the ALS clinic of the Translational

Clinical Physiology Unit, Hospital de Santa Maria, Lisbon was used to build the prognostic

models.

To obtain learning instances comprising all information about a patient’s condition and the

need for NIV some prepossessing steps had to be taken. The first was to transform the demo-

graphic data and information of each clinical test into Patient Snapshots. Then, as the snapshot

only accounts for the current condition, an Evolution Class (E) was created, to label each in-

stance with the information about the patient’s needed for NIV within a given time window.

These prepossessing steps are detailed in Section 2.3.1. After, several classifiers were trained to

predict this outcome. The results obtained were promising and helped to prove that prognostic

prediction models can be useful tool in helping clinicians in their decision making process.

The DREAM-Phil Bowen ALS Prediction Prize4Life Challenge (Küffner et al. (2015)) en-

couraged researchers to use clinical trial data to predict disease progression in 3 to 12 months.

In fact knowing how patients progress can be useful when designing clinical trials and help clini-

cians in better determining their patients prognosis. This led to several proposals being presented

that helped validating various prognostic features described in the literature (Westeneng et al.

(2018)).

2.3.1 Patient Snapshots and Evolution Class

In order for a classifier to be trained, it needs labeled learning instances. These instances are

composed by a feature vector, which has the information about a patients current condition and
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a class value, which has the information about the outcome on which the classifier will be trained
to predict.

The original data used in André Carreiro’s work (Carreiro (2016)) was composed of de-
mographic data about the patient, as well as a set of prescribed tests that are usually done
periodically at each appointment. However, since many times the patient cannot perform all
tests in the same day, but rather do it in a span of a few days or weeks, it becomes difficult to
align all tests together to generate a snapshot that resembles that period. An approach to solve
this problem is grouping the tests by their date. A good methodology to achieve this is using
an Agglomerative Hierarchical Clustering scheme. This approach was also proposed by André
Carreiro as an alternative to the standard approach based on pivot tables, which results in a
greater number of instances, but with a higher proportion of missing values.

To build patient snapshots from the original data, the Hierarchical Clustering algorithm will
group all the patient’s tests by date so that the tests performed at closer dates will end at the
same group, thus creating a snapshot. However, there are some restrictions to the algorithm in
order to have cohesive snapshots. First, two observations of the same test cannot be in the same
group, and second, all observations in a group must have the same NIV status, meaning that
there cannot be groups that have tests performed when the NIV status is 0 (the patient does not
require NIV at current time) and tests where NIV status is 1 (the patient requires NIV at current
time). The result from this approach is a dataset where each row is a patient observation, also
called a patient snapshot, where each feature is the result from each test performed, and a NIV
status class, with the information about the need or not for NIV at the time of said evaluation.
A fictional example of the described process is illustrated in Figure 2.6.

Figure 2.6: Example of creating Snapshots.
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2.4 Patient Stratification in ALS

After this step, what we have is the information on the patient’s current condition and

the current need or not need for NIV. However, since the goal is to predict the need for NIV

beforehand, there is one more preprocessing step needed. Therefore, an Evolution class (E) is

added in order to accommodate the temporal information regarding the NIV status. Essentially,

if a patient needs NIV within a time window of k days from the current evaluation, then E=1

(the patient evolves to need NIV). If within the same k days, the patient does not need NIV,

then E=0 (The patient does not evolve to need NIV).

The creation of this class has also some restrictions. They are as follows:

• Snapshots from patients who already require NIV at the first evaluation cannot be used as

learning instances;

• Snapshots where there is no information about the NIV status of the patient after the time

window used cannot be used as learning instances.

Figure 2.7 illustrates the possible cases for the creation of the Evolution class (E). Moreover,

an illustration of this last preprocessing step is presented in Figure 2.8.

Figure 2.7: Definition of the Evolution Class (E) according to the patient’s requirement of NIV
in the interval of k days. i is the median date of the snapshot. E=1 means the patient requires
NIV and E=0 means the patient does not require NIV. Adapted from Carreiro (2016).

2.4 Patient Stratification in ALS

Due to ALS heterogeneous nature, special attention has been given in recent years to patient

stratification. The idea is that designing specialized models using groups of patients stratified

according to their progression (Westeneng et al. (2018)), or specific sets of prognostic biomarkers
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Figure 2.8: Example of creating learning instances using a time window of 90 days.

(Ganesalingam et al. (2009)) may help understand the underlying mechanisms of the disease and

provide a new perspective on how to plan clinical trials and better manage disease progression.

In this dissertation, we propose two approaches to perform patient stratification in ALS

patients: 1) disease progression groups and 2) patient profiles. The two methodologies are

further explained in Sections 2.4.1 and 2.4.2.

2.4.1 Disease Progression Groups

Although the average survival of an ALS patient is about 3-5 years, survival can vary between

less than a year to over 10 years (Martin et al. (2017)). This shows that disease progression

is not equal in all patients, thus making hindering to have treatments that perform well for all

patients.

One way to analyze disease progression is by considering at the ALS Functional Rating Scale

(ALSFRS) (Proudfoot et al. (2016)) decay in a period of time. The ALSFRS is a standard test

used by physicians in practice that can be used to estimate the outcome of a treatment or the

progression of the disease. Although very popular, this scale has only a small respiratory com-

ponent. Given that respiratory failure is the most common cause of death in ALS patients, the

ALS functional rating scale-revised (ALSFRS-R) was later proposed (Cedarbaum et al. (1999)).

This new scale adds additional respiratory assessments and quickly became the preferred test to

22



2.4 Patient Stratification in ALS

quantify disease progression (Simon et al. (2014)). The test is composed of 13 questions, where
each should be answered using a 5-point scale, ranging from 0 to 4, where 0 corresponds the worse
condition and 4 is the best. The questions addressed by this scale are: 1) Speech, 2) salivation, 3)
swallowing, 4) handwriting, 5) cutting and handling utensils, 6) dressing and hygiene, 7)turning
in bed and adjusting bed clothes, 8) walking, 9) climbing stairs, 10) breathing, 11) dyspnea, 12)
orthopnea, and 13) the need of respiratory support (Castrillo-Viguera et al. (2010)).

By measuring the change in ALSFRS-R over time, we can estimate how is the disease pro-
gressing and infer about the survival of the patient (Kimura et al. (2006)). By using the infor-
mation about the time of first symptoms and the time of the first appointment we can compute
its progression rate using the following equation:

ProgressionRate =
48�ALSFRSR1stV isit

�t1stSymptoms;1stV isit
, (2.9)

where 48 is the maximum score of the ALSFRS-R scale (and the assumed score of a patient
at the time of its first symptoms), ALSFRSR1stV isitis the ALSFRS-R score of a given patient
at the beginning of the first appointment (diagnosis) and �t1stSymptoms;1stV isit is the time in
months between the time of first symptoms and the first visit.

By knowing each patient’s progression rate we can then group them to build specialized
models for each disease progression group.

2.4.2 Patient Profiles

A patient’s condition at disease onset is usually more similar to other patients’ condition in the
same situation than to his/her own condition in the latter stages of the disease.

In this context, this second approach proposed consists in stratifying patients using patient
profiles. Instead of grouping patients, we now group patients snapshots. This means that is
not obligatory for all snapshots of a given patient to end up in the same group. The aim is to
group snapshots that are more similar to each other, thus reducing the variability in the data
and potentially enhance the classifiers’ performance.

With the help and insight of the clinicians in our group, we propose to stratify the patient
snapshots using four sets of patients profiles: General, Prognostic, Respiratory, and Functional.
Each set of profiles uses a different subset of features from the original dataset. The subsets of
features used for each profile are the following:

• General Profile - All features in the dataset;

• Prognostic Profile - Features described as good prognostic biomarkers in the literature;
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• Respiratory Profile - Features associated with respiratory function;

• Functional Profile - Features associated with functional scores.

By creating several sets of patient profiles, using different sets of features, rather than just
the one set with features specific to our problem, we are then able to use the different profiles to
predict different outcomes.

2.5 Portuguese ALS Dataset

For this dissertation the dataset used is the Portuguese ALS dataset. It contains clinical data
from respiratory tests and neurophysiological data, as well as some demographic factors, from
ALS patients. All patients were followed in the ALS clinic of the Translational Clinic Physiology
Unit, Hospital de Santa Maria, IMM, Lisbon. Evaluations of patients present in this dataset were
made between 1995 and March 2018. It contains observations from a cohort of 1220 patients,
resulting in 5553 records with 27 features. Since every patient can have multiple records over
time (average 5.18 evaluations per patient), and appointments usually occur every 3 months, we
have an average of 15,6 months of follow-up data for each patient.

The dataset has two subsets of features: the static subset (features that do not change over
time), containing demographic information like gender and age at onset, medical and family
history, onset evaluation and genetic biomarkers, and a temporal subset, with functional scores,
respiratory tests and status, some neurophysiological values and the information of when and if
the patient has Non-Invasive Ventilation. All temporal features can change in between observa-
tions.

The list of features available in the Portuguese ALS dataset are shown in Table 2.2.
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2.5 Portuguese ALS Dataset

Table 2.2: Available Features in the ALS dataset.

Name Temporal/Static Type SubGroup
Gender Static Categorical Demographics
Body Mass Index (BMI) Static Numerical Demographics
Family History of Motor Neuron Disease (MND) Static Categorical Medical and Family History
UMN vs LMN Static Categorical Onset Evaluation
Age at Onset Static Numerical Onset Evaluation
Onset Form Static Categorical Onset Evaluation
Diagnostic Delay Static Numerical Onset Evaluation
El Escorial Reviewed Criteria Static Categorical Onset Evaluation
Expression of C9orf72 Mutations Static Categorical Genetic
ALSFRS* Temporal Numerical Functional Scores
ALSFRS-R* Temporal Numerical Functional Scores
ALSFRSb* Temporal Numerical Functional Scores
ALSFRSsUL* Temporal Numerical Functional Scores
ALSFRSsLL* Temporal Numerical Functional Scores
ALSFRSr* Temporal Numerical Functional Scores
R* Temporal Numerical Functional Scores
Vital Capacity (VC) Temporal Numerical Respiratory Tests
Forced VC (FVC) Temporal Numerical Respiratory Tests
Airway Occlusion Pressure (P0.1) Temporal Numerical Respiratory Tests
Maximal Sniff nasal Inspiratory Pressure (SNIP) Temporal Numerical Respiratory Tests
Maximal Inspiratory Pressure (MIP) Temporal Numerical Respiratory Tests
Maximal Expiratory Pressure(MEP) Temporal Numerical Respiratory Tests
Date of Non-Invasive Ventilation Temporal Date/Categorical Respiratory Status
Phrenic Nerve Response amplitude (PhrenMeanAmpl) Temporal Numerical Neurophysiological Tests
Phrenic Nerve Response latency (PhrenMeanLat) Temporal Numerical Neurophysiological Tests
Cervical Extension Temporal Numerical Other Physical Values
Cervical Flexion Temporal Numerical Other Physical Values

* Scores and Sub-scores of the ALS Functional Rating Scale
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Chapter 3

Time Independent Prognostic Models

In this section, the goal is to predict if a patient will require Non-Invasive Ventilation (NIV)

within a time window of k days. To do this we use data describing the patient’s past evaluation

(current condition), as depicted in Figure 3.1.

Figure 3.1: Problem Formulation: Knowing the Patient current condition, can we predict the
need for Non-Invasise Ventilation (NIV) within a time window of k days?

Figure 3.2 presents the workflow used in this section. First, original data is prepossessed into

patient snapshots and then into learning instances using time windows. These steps are followed

by building the predictive models capable of predicting the need for NIV within a certain time

window, given a patient’s current condition. These first models will be used as baseline results

for this dissertation. This scheme was proposed in Carreiro et al. (2015) with promising results.

We use it as well (with a few alterations to the pipeline as well as an updated version of the
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3. TIME INDEPENDENT PROGNOSTIC MODELS

dataset). The aim is to improve these results and use them to compare with the results of the
two patient stratification approaches we proposed in this thesis.

Figure 3.2: Workflow of the methodology for ALS prognostic prediction using patient snapshots
(following Carreiro et al. (2015)). Original data is preprocessed in order to create patient snap-
shots that are then used to create the learning instances. The models are then built using a
stratified 5 x 10-fold cross-validation scheme. The models are then evaluated and the best pa-
rameters are chosen. After the final model is learned, whenever a new patient arrives to the
clinic, his data is fed to the predictive model that outputs a prediction: need or not need for
NIV.

3.1 Single Snapshot Prediction

3.1.1 Creating Learning Instances

The clinical data used in this work consists in data from a cohort of 1220 ALS patients followed
in the ALS clinic of the Translational Clinic Physiology Unit, Hospital de Santa Maria, IMM,
Lisbon (a full description of this dataset is available in Section 2.5). To transform the original
data into patient snapshots and learning instances, we followed an approach proposed by Carreiro
et al. (2015) to create patient snapshots and learning instances using time windows (See Section
2.2.1). As appointments are usually every three months, we use time windows of 90, 180, and
365 days (3, 6, and 12 months respectively), as recommended by the clinicians in our group as
well as in the literature (Andersen et al. (2012)).

Table 3.1 shows some results and statistics for these preprocessing steps, for each time window.
By analyzing the table we can see that the number of snapshots decreases with the increasing

of k. This can be explained by the fact that for some snapshots we no longer have information
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Table 3.1: Statistics and Class distribution for time windows of k=90,180,365 days.

k 90 180 365
Nr of Snapshots 3178 3018 2762
Nr of Patients 861 823 775

Snapshots p/ Patient 3.69 3.67 3.56
Evolution (E=1) 559 (17.59%) 906 (30.02%) 1342 (48.59%)

No Evolution (E= 0) 2619 (82.41%) 2112 (69.98%) 1420 (51.41%)

about the NIV status after the time window. The same goes for the number of patients, since

some patients will require NIV soon after their first appointment. Looking at the class distribu-

tion, we can see that for the first time window of 90 days, less than 20% of patients evolve to

NIV. However, when we look at the window of 365 days, we observe that the number of NIV

evolutions rises to more than 50%. This is to be expected since the probability of a patient

requiring NIV increases when we consider longer periods of time. We believe that if we would

continue extending k, the number of instances where E=1 would increase and instances with

E=0 would continue to decrease. By extending k to a long enough period we believe we would

possibly end up with a class distribution of 100%((E=1)/0%(E=0).

3.1.2 Learning the Predictive Models

After creating the three datasets for the chosen time windows, the next step is to train the

predictive models. Each dataset serves as input for 6 different classifiers, using a stratified

5 x 10-fold cross-validation (CV) scheme. The chosen classifiers are Decision Tree (DT), k-

Nearest Neighbors (kNN), Support Vector Machines (SVM) with Polynomial (P) and Gaussian

(G) kernels, Naïve Bayes (NB), Random Forest (RF), and Logistic Regression (LR). All classifiers

used are available in Weka (Hall et al. (2009)). Moreover, to find the best parameters for each

classifier, we perform a grid search using the range of parameters presented in Table 3.2. For

model evaluation, we use the following metrics: Sensitivity, Specificity, and AUC. The AUC

metric is used for model comparisons since it combines the results of the other metrics.

Regarding Feature selection (FS) we test the use of a Feature Selection Ensemble (FSE) pro-

posed by Pereira et al. (2018). The proposed method combines both stability and predictability

to chose the best features for prognostic prediction in Alzheimer’s Disease. This ensemble com-

bines multiple FS algorithms to return a set of features that in general should be less biased

by the characteristics of each FS algorithms. The FS algorithms used are ReliefF, Information

Gain, Conditional Mutual Information Maximization, Minimum Redundancy Maximum Rele-

vance, and Chi-Squared. This methodology is composed of two phases. First data is used by
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the FSE to select a reduced set of features. Then the feature set is optimized for stability and
predictability. The selected features for each dataset are presented in Table 3.3.

Table 3.2: Parameters and correspondent ranges tested for each classifier.

Classifier Parameter Range
DT Confidence factor {0.15,0.20,0.25,0.30}
kNN Nr of Neighbours {1,3,5,7,9,11}
SVM P/G Complexity {10�2,10�1,,101,102}
SVM P Polinomial Degree {1,2,3}
SVM G Gamma {10�3,10�2,10�1,,101,102,103}
NB Kernel {True,False}
RF Nr of Trees {5,10,15,20}
LR Ridge Factor {10�9,10�8,10�7,10�6,10�5,10�4}

Table 3.3: Selected Features by the Feature Selection Ensemble for each time window.

Features 90 days 180 days 365 days
Gender
Age at Onset X X X
BMI X X X
Family History MND
Disease Duration X X X
El Escorial Reviewed Criteria
UMN vs LMN
Onset form
c9orf72
ALS-FRS X X X
ALS-FRS-R X X
ALS-FRSb X
ALS-FRSsUL
ALS-FRSsLL
ALS-FRSr
R
VC X X X
FVC X X X
MIP X X X
MEP X X X
P0.1 X X
SNIP
PhrenMeanLat X
PhrenMeanAmpl X
Cervical Flexion
Cervical Extension
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Most of the selected features across all datasets are features recognized in the literature
as good prognostic indicators in ALS patients. As we are predicting a respiratory target, it
would be expected that respiratory features would be more prevalent than the other features
regarding other aspects of the disease. Those expectations were somewhat confirmed, however,
demographic features are also relevant to the prognostic models.

Although there are some differences, we can see that there is a subset of features that are
selected in all datasets (Age at Onset, BMI, Disease Duration, ALS-FRS, VC, FVC, MIP, and
MEP). These should be the most important features to predict the need for NIV in ALS patients.

To deal with class imbalance, especially for the 90 and 180 days time windows, we use a
combination of undersampling and oversampling. We chose to use this combination instead of
the singular use of one of the methods due to the fact that by using undersampling exclusively
would lead to a great loss of data, which could lead to loss of performance. By only using
oversampling, as the number of positive instances to be created would surpass the number of
original instances for that class, it could lead to overfitting problems. Thus, in order to solve our
problem, we first use random undersampling to remove instances from the majority class until
we obtain a class distribution of 60%/40% (for the majority and minority classes respectively).
Then we use SMOTE to oversample the minority class until we end up with a balanced dataset.

One common characteristic of real datasets, especially when dealing with clinical data is the
existence of missing values, and although some classifiers are able to work with missing values,
others require a complete dataset. In this work we compare two approaches regarding missing
data: in the first approach, we use the most common and simple method, Mean Imputation. For
the second approach, we use the patients own information to impute the missing data. For the
most part, ALS patients do not improve condition between appointments, but rather stay stable
or worsen their condition. Therefore, in cases where we have information in one appointment
but not in the next, we assume that the patient remained stable and use the value of the last
observation to impute the missing value. This methodology is called Last Observation Carried
Forward (LOCF) and is commonly applied in clinical settings (Newgard & Lewis (2015)). As
this approach can only be used for missing values of which we have information about the
last observation, it could not impute the whole dataset. For the remaining missing values, Weka
automatically imputes those using Mean imputation for the classifiers that need imputed dataset
without missing values. Table 3.4 shows the proportion of missing values for each dataset before
and after the application of the methodology, for each time window.

As described before, this approach does not account for all missing values, however, we can
see that the proportion of missing data decreases over 10% in all cases, which can be helpful for
classifier performance.
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Table 3.4: Proportion of Missing Data before and after Last Observation Carried Forward
(LOCF) imputation.

Time Window Original Dataset Imputed Dataset
90 days 31.14% 19.21%
180 days 31.06% 19.25%
365 days 30.89% 19.32%

We would like to note that, the approaches regarding class imbalance and missing value
imputation are only performed in each training sets of the 10-fold CV in order to avoid overfitting.

Finally to compare the different approaches in terms of AUC values we use the Wilcoxon
Signed Rank Test for paired instances (Rey & Neuhäuser (2011)) to access whether or not the
differences are statistically significant.

3.1.3 Results and Conclusions

We follow by presenting the results for the final models with optimized parameters. To evaluate
them in terms of performance we use the AUC metric. We first look at the results for our baseline
approach (without Feature Selection or Missing Value Imputation) for each of the selected time
windows (90, 180, and 365 days). Sensitivity, Specificity, and AUC results for these models are
presented in Table 3.5.

Table 3.5: AUC, Sensitivity and Specificity results for the prognostic models for 90, 180 and 365
days. The classifiers are: Decision Trees (DT), k-Nearest Neighbors, Support Vector Machine
(SVM) with Polynomial (P) and Gaussian (G) kernels, Naïve Bayes (NB), Random Forest (RF)
and Linear Regression (LR).

DT kNN SVM P SVM G NB RF LR
AUC

90d 72.21 68.56 62.63 58.92 79.84 80.74 79.15
180d 74.79 69.81 63.30 58.64 80.57 85.27 79.68
365d 71.27 71.51 70.56 61.54 82.25 89.20 80.21

Sensitivity
90d 60.47 58.71 66.98 69.30 69.87 68.55 69.41
180d 63.62 52.65 69.60 67.99 73.22 70.73 72.30
365d 75.10 67.96 70.61 71.49 78.41 82.07 73.85

Specificity
90d 74.81 69.93 58.29 48.53 74.99 77.60 74.78
180d 74.01 76.15 57.01 49.29 73.94 81.35 72.47
365d 60.68 63.59 70.51 51.51 71.96 80.66 73.55

We can see that although all classifiers present promising results, some perform better than
the others. In general, all classifiers show better results for the longer the time window. This can

32



3.1 Single Snapshot Prediction

be due to the fact that for those datasets there is less class imbalance. Moreover, sensitivity results

also seem to improve for the longer time windows and the opposite happens for the specificity

results. Thus, for longer time windows the classifier performance improves and sensitivity and

specificity metrics tend to become more balanced.

The SVM G classifier seems to be the least capable to predict the need for NIV, having the

lowest AUC results and specificity lower than 50% for the models regarding the 90 and 180 days

time windows. Then follow the DT, kNN and SVM P classifiers, all presenting better results,

as well as reaching AUC’s over 70% for the 365 days time window. However, the best classifiers

seem to be NB, RF and LR, especially RF reaching an AUC of approximately 90% for the last

time window. As these last three classifiers stand out, for the next tests only these are used.

Comparing our baseline results with those obtained by the previous work done by Carreiro

et al. (2015), we can see that there is a major improvement in the results. Their best results

for each time windows were 81.36%, 78.93%, and 79.98%, while ours were 80.74%, 85.27%, and

89.20% respectively (for the 90, 180 and 365 days datasets). However, while there are significant

changes in the AUC results, the greater differences are in the sensitivity and specificity metrics,

where they had a greater imbalance between the two, achieving sensitivities as lower as 15%

and specificities as high as 97%. This shows that the classifiers were very good at predicting

the negative instances but performed poorly in predicting the positive instances. In our results,

although not achieving as high results in specificity, our sensitivities are considerably higher.

This results in a greater balance between the two, therefore meaning that the classifiers have a

similar performance when predicting both classes.

After building the baseline models, we then follow by training new models using only the

features selected by the FSE for each time window. Table 3.6 comprises the results for the

baseline models and the results with feature selection (using the FSE approach).

By looking at the results we can see that the models that use all features available tend

to have better results than the ones using the set of features selected by the FSE. The better

performance by the baseline models can be explained by the fact that the number of observations

is high enough to handle the number of features available in data. FS methods usually have better

results in situations where we have a high number of features for a small number of observations.

Although the results using all features are better than the ones using the FSE approach,

we still performed the Wilcoxon Signed-Ranks Test for Paired Samples with 0.05 significance to

see whether or not these differences are statistically significant. The test yielded a p-value of

0.0284, meaning that the differences are indeed significant. Therefore, the models using FS do

not improve baseline models and should not be used.
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Table 3.6: AUC, Sensitivity and Specificity results for the prognostic models for the 90, 180 and
365 days Time Windows using Feature Selection. Orig is the original dataset, FS is the dataset
with features selected by Feature Selection Ensemble (FSE). The classifiers are: Naïve Bayes
(NB), Random Forest (RF) and Linear Regression (LR).

AUC Sensitivity Specificity
NB RF LR NB RF LR NB RF LR

90d
Orig 79.84 80.74 79.15 69.87 68.55 69.41 74.99 77.6 74.78
FS 79.05 77.48 79.29 76.06 71.34 74.78 67.25 68.23 69.98

180d
Orig 80.57 85.27 79.68 73.22 70.73 72.3 73.94 81.35 72.47
FS 77.51 82.02 78.21 74.61 74.5 73.77 66.36 73.45 68.5

365d
Orig 82.25 89.20 80.21 78.41 82.07 73.85 71.96 80.66 73.55
FS 79.91 88.95 80.46 74.63 82.07 75.02 70.77 80.9 72.21

Regarding missing value imputation (MVI) we tested two approaches: using Mean Imputation

(MI) and then using Last Information Carried Forward (LOCF). The results for these tests,

together with the results for the baseline models are presented in Table 3.7.

Table 3.7: AUC, Sensitivity, and Specificity results for the prognostic models for the 90, 180 and
365 days Time Windows using Missing Value Imputation. Orig is the original dataset, Mean
MVI is the dataset imputed with Mean Imputation and LOCF MVI is the dataset imputed with
Last Observation Carried Forward Imputation. The classifiers are: Naïve Bayes (NB), Random
Forest (RF) and Linear Regression (LR).

AUC Sensitivity Specificity
NB RF LR NB RF LR NB RF LR

90d
Orig 79.84 80.74 79.15 69.87 68.55 69.41 74.99 77.6 74.78

Mean MVI 79.28 80.63 79.3 70.74 65.58 69.55 74.35 79.18 74.84
LOCF MVI 80.38 81.98 79.61 72.27 69.33 69.37 73.55 79.38 74.44

180d
Orig 80.57 85.27 79.68 73.22 70.73 72.30 73.94 81.35 72.47

Mean MVI 80.10 84.05 79.83 74.28 67.57 72.45 71.36 82.4 72.79
LOCF MVI 81.86 87.29 80.66 72.69 72.93 71.45 75.94 84.13 74.09

365d
Orig 82.25 89.20 80.21 78.41 82.07 73.85 71.96 80.66 73.55

Mean MVI 83.49 87.40 80.21 74.18 78.97 73.84 77.02 80.29 73.54
LOCF MVI 83.93 91.50 82.70 78.00 83.41 75.05 74.54 84.63 74.95

When using Mean Imputation we can see that for the NB and RF models the AUC results are

slightly worse than the ones in baseline models and the LR results are slightly higher. Regarding
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the models using LOCF, we can see that they are always better than the baseline results. This

goes with our expectations. However, to determine the statistical significance of these differences,

we followed the same approach as with the feature selection tests and performed the Wilcoxon

Signed-Ranks Test for Paired Samples with 0.05 significance.

We compared each of the imputation models with the baseline models. For the MI models,

the test resulted in a p-value of 0.3743 meaning there is no statistical difference between the

models. As for the LOCF models, the test yielded a p-value of 0.0077 meaning the differences

between the classifiers are indeed significant. Therefore, the models using LOCF imputation

method should be used instead of the baseline methods.

Finally, Table 3.8 sows the best results achieved for the baseline models among all the tests

performed.

Table 3.8: Best results achieved for baseline models using the patients current condition.

Sensitivity Specificity AUC

90d 69.33 79.38 81.98

180d 72.93 84.13 87.29

365d 83.41 84.63 91.50

3.2 Using a set of Snapshots

In this section we address the following problem: "Given a set of consecutive patient evaluations,

can we predict the need for NIV, in a time window of k days after the last evaluation?". An

illustration of this problem is illustrated in Figure 3.3.

We follow the same pipeline used in the last section. However, instead of using only the

patient’s current condition to predict NIV, we use information about the patient’s medical history

(follow-up), to study whether it helps the models performance. In theory, the more information

we have the best should be the prediction although in practice this is not always the case.

3.2.1 Creating Learning Instances

In order to create the learning instances to address this problem we use the snapshots created

in Section 3.1.1. We take N consecutive patient evaluations and repeat the temporal features

of each snapshot along the columns. Then, we set the value of the Evolution class to be equal
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Figure 3.3: Problem Formulation: Given a set of N consecutive patient evaluations, can we
predict the need for Non-Invasive Ventilation (NIV) k days after the last evaluation?

to the one in the last observation. Figure 3.4 shows the format of the learning examples using
multiple snapshots.

Figure 3.4: Example of learning examples using multiple snapshots.

Given that the number of snapshots per patient is less than four for all time windows, we
chose to only create learning instances using two and three consecutive evaluations, as using
more than that would lead to datasets with a small number of instances. Statistics and Class
distribution for these datasets are presented in Table 3.9.

As in Section 3.1.1, the number of snapshots, as well as the number of patients, are increas-
ingly lower as we increase the time windows. The number of snapshots per patient also decreases
as before. However, we can see that for the same time window, the higher the number of eval-
uations we use, the higher the number of snapshots per patient. This is due to the fact that
patients with fewer observations will usually be progressively left out as they do not have the
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Table 3.9: Statistics and Class distribution for time windows of k=90,180, and 365 days.

90 days 180 days 365 days
2 TP

Nr of Snapshots 2312 2191 1983
Nr of Patients 607 591 545

Snapshots p/ Patient 3.81 3.7 3.65
Evolution (E = 1) 357 (15.43%) 588 (26.84%) 902 (45.49%)

No Evolution (E= 0) 1956 (84.57%) 1603 (73.16) 1081 (54.51%)
3 TP

Nr of Snapshots 1706 1600 1438
Nr of Patients 434 415 381

Snapshots p/ Patient 3.93 3.86 3.77
Evolution (E = 1) 227 (13.31%) 389 (24.31%) 614 (42.70%)

No Evolution (E= 0) 1439 (86.69%) 1211 (75.68%) 824 (57.30%)

necessary number of evaluations. Thus the patients that stay in the analysis are the ones with

a higher number of observations. Regarding class distribution, similar to the other datasets, we

see that the proportion of positive instances increases for the longer time windows. Moreover,

the higher the number of snapshots we use to build learning instances, the more imbalanced the

dataset is, as the patients with more observations tend to progress slower, thus evolving to need

NIV later.

3.2.2 Learning the Predictive Models

To learn the predictive models we followed the same pipeline used in Section 3.1.2. However,

rather than using datasets with only the current condition of the patient we use datasets con-

taining the patient’s clinical history, using consecutive observations of the same patient for that

effect (patient follow-up).

We also tested the effects of FS and MVI on the performance of the classifiers. For the FS

models, we created datasets using only the features selected by the FSE for the baseline models

for each time point. As for MVI, we used only the LOCF approach, since it showed to improve

results on the baseline models.

The use of multiple time points in learning instances also presents an opportunity to study

if the models have better performance when using the value of the tests in each appointment

or when using the differences between appointments. Thus, we decided to transform our data

using temporal aggregation in order to create a set of temporal features that represent the

differences between the two appointments. For the aggregation we use two approaches: the first

consists in computing the numerical difference between the first and second appointments, while
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the second consists in analyzing the nominal variation between appointments to then create a

categorical feature that can have three possible values: U - Up, D - Down, and N - No Change.

The transformation process is presented in Figure 3.5. The new sets of features (numerical and

categorical) can then be used to create new learning instances to be feed to the classifiers.

Figure 3.5: Example of transformation using temporal aggregation.

We choosed to proceed with NB, RF, and LR as they proved to be the best classifiers to

predict NIV in the baseline tests. We trained the classifiers using a 5 x 10-fold CV scheme and

performed a grid search to find the best parameters for the selected classifiers.

3.2.3 Results and Conclusions

We trained the models with data containing information of 2 and 3 time points (clinical history)

with the intent to predict the need for NIV within a time window of k = 90, 180, and 365 days.

The results for the baseline models using a set of consecutive observations are presented in Table

3.10.

Looking at the table we can see that the models using two or three time points (TP) are

very similar in performance, meaning that there is no improvement in performance in using three

rather than two TP. Moreover, in comparison with the models using only the patient’s current

condition, we can see that although the results are similar, the models using only the current

condition seem to perform better. Therefore, we can assume that the models did not benefit

using the patient’s clinical history over the patient’s current condition.

We then built a new set of models to check if FS was beneficial to the classifier performance.

We used the set of selected features obtained for the baseline models in Section 3.1.2 for each

time windows and repeated those features for each time point (the ones selected as the best to
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Table 3.10: AUC, Sensitivity and Specificity results for the prognostic models using 2 and 3 time
points (TP) for each time windows of k=90,180,365 days. The classifiers are: Naïve Bayes (NB),
Random Forest (RF) and Linear Regression (LR).

AUC Sensitivity Specificity
NB RF LR NB RF LR NB RF LR

90d
2 TP 78.39 78.94 76.93 76.36 70.64 70.76 67.09 73.22 70.72
3 TP 77.88 79.42 76.97 72.33 67.58 66.7 70.63 74.79 74.06

180d
2 TP 79.46 83.84 79.88 78.84 71.53 72.62 66.54 78.69 73.64
3 TP 79.34 83.45 80.03 76.86 71.41 71.36 68.46 78.25 75.26

365d
2 TP 82.22 88.33 79.56 80.89 79.47 73.06 68.53 79.74 74.23
3 TP 82.38 88.57 79.08 79.58 78.99 71.04 70.73 80.92 76.14

predict, using the patient’s current condition). The results for these models are presented in
Table 3.11.

The results show that in most cases FS does not improve the classifier’s performance for these
cases but rather worsens it. The same outcome was obtained for the models using the patient’s
current condition, and the explanation for those results is the same regarding these last ones:
the number of instances from which the classifiers are trained is sufficient to handle the number
of features available in the dataset with all features. We can see however that the FS models
seem to have a greater balance between sensitivity and specificity than the models without FS.

As before, as the differences between the models are not substantial we performed the
Wilcoxon Signed Rank Test for paired samples with 0.05 significance to access the statistical
significance of those differences. The test resulted in a p-value of 0.0311, meaning the differences
are statistically significant. Therefore, the models using feature selection should not be used.

In the last section two MVI approaches were tested: Mean Imputation an LOCF imputation.
The first showed no improvements in classifier performance, however, the latter did. Thus, in
this section, we decided to test only the last approach to see if it also improves performance for
these new models. The results for this test can be found in Table 3.12.

Once more we can see that this imputation method usually improves the models’ performance.
The WSRT supports this claim since it yielding a p-value of 0.0033 (statistically significant).
These models show even more promising results than the baseline, reaching an AUC of 91.40%
for the time window of 365 days using the RF classifier. This results highly approximate the
results obtained for the same model using only the current condition. Therefore, using one or
the other should result in similar outcomes.
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Table 3.11: AUC, Sensitivity and Specificity results for the prognostic models using 2 or 3 patient
time points (TP) for the 90, 180 and 365 days Time Windows using Feature Selection. Orig is the
original dataset, FS is the dataset with features selected by Feature Selection Ensemble (FSE).
The classifiers are: Naïve Bayes (NB), Random Forest (RF) and Linear Regression (LR).

AUC Sensitivity Specificity
NB RF LR NB RF LR NB RF LR

90d
2 TP Orig 78.39 78.94 76.93 76.36 70.64 70.76 67.09 73.22 70.72

FS 77.52 77.16 77.84 73.89 71.32 73.56 67.57 67.79 69.73

3 TP Orig 77.88 79.42 76.97 72.33 67.58 66.70 70.63 74.79 74.06
FS 78.28 77.95 79.26 76.3 69.34 71.89 65.99 70.37 72.06

180d
2 TP Orig 79.46 83.84 79.88 78.84 71.53 72.62 66.54 78.69 73.64

FS 77.86 81.59 79.10 74.18 74.56 74.22 67.05 71.75 70.53

3 TP Orig 79.34 83.45 80.03 76.86 71.41 71.36 68.46 78.25 75.26
FS 78.36 82.20 79.84 75.73 75.53 71.98 67.23 72.65 71.89

365d
2 TP Orig 82.22 88.33 79.56 80.89 79.47 73.06 68.53 79.74 74.23

FS 80.55 88.06 81.60 75.54 81.44 74.50 71.49 77.65 73.47

3 TP Orig 82.38 88.57 79.08 79.58 78.99 71.04 70.73 80.92 76.14
FS 81.03 87.43 81.90 78.50 80.39 73.13 70.07 76.21 73.83

Finally, we test the use of temporal aggregation of features using the datasets containing two
time points. The results are presented in Table 3.13.
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Table 3.12: AUC, Sensitivity and Specificity results for the prognostic models using 2 or 3 time
points (TP) for the 90, 180 and 365 days Time Windows using Missing Value Imputation. Orig
is the original dataset and MVI is the dataset imputed with Last Observation Carried Forward
Imputation. The classifiers are: Naïve Bayes (NB), Random Forest (RF) and Linear Regression
(LR).

AUC Sensitivity Specificity
NB RF LR NB RF LR NB RF LR

90d
2 TP Orig 78.39 78.94 76.93 76.36 70.64 70.76 67.09 73.22 70.72

MVI 78.87 80.00 78.17 75.69 67.90 69.47 67.65 76.20 73

3 TP Orig 77.88 79.42 76.97 72.33 67.58 66.70 70.63 74.79 74.06
MVI 78.30 79.38 78.69 75.07 66.61 68.72 68.26 76.21 75.66

180d
2 TP Orig 79.46 83.84 79.88 78.84 71.53 72.62 66.54 78.69 73.64

MVI 80.34 85.76 80.62 77.93 72.55 70.99 68.51 81.91 74.87

3 TP Orig 79.34 83.45 80.03 76.86 71.41 71.36 68.46 78.25 75.26
MVI 80.58 85.19 81.43 76.14 70.54 72.13 70.45 80.74 76.3

365d
2 TP Orig 82.22 88.33 79.56 80.89 79.47 73.06 68.53 79.74 74.23

MVI 84.30 91.51 82.00 79.73 81.75 74.83 73.78 84.81 76.1

3 TP Orig 82.38 88.57 79.08 79.58 78.99 71.04 70.73 80.92 76.14
MVI 84.96 91.40 81.77 78.01 81.11 73.19 76.70 84.05 78.25

Overall, the models using temporal aggregation do not show great improvements in perfor-

mance when compared to the baseline models, using two TP. For the 180 and 365 days time

windows, the models using NB and LR classifiers, seem to benefit from using temporal aggrega-

tion, especially when adding the categorical features. The exclusive use of the new features is,

however, not advised, since the models show a high decay in the results. Still, the best results are

held by the RF classifier, which does not benefit from the use of the new features. Therefore, as

the models do not show considerable improvements, we chose to use the baseline models instead,

as they have fewer features and therefore end up in simpler models, which should always be

preferred.

To close this chapter, Table 3.14 presents the best possible results in our analysis for the

baseline models both using the current condition of the patient (1 TP) and using the clinical

history of the patient (2 and 3 TP).
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Table 3.13: AUC, Sensitivity and Specificity results for the prognostic models using temporal
aggregation. Legend: Orig ! Original dataset (Temporal Features), Dyn ! Temporal + Cate-
gorical Numerical Features, DynCat ! Temporal + Categorical Features, DynNum ! Temporal
+ Numerical Features, DynOnly ! Categorical Numerical Features, DynCatOnly ! Categorical
Features, DynNumOnly ! Numerical Features. The classifiers are: Naïve Bayes (NB), Random
Forest (RF) and Linear Regression (LR).

AUC Sensitivity Specificity
NB RF LR NB RF LR NB RF LR

90 days

Orig 78.39 78.94 76.93 76.36 70.64 70.76 67.09 73.22 70.72
Dyn 77.75 76.76 75.51 67.06 61.96 64.37 72.91 74.55 74.06

DynCat 78.21 77.12 75.25 73.50 65.21 64.31 68.24 73.55 73.25
DynNum 77.50 77.34 76.67 70.20 66.44 69.30 70.25 73.12 72.28
DynOnly 68.74 70.25 67.83 56.53 54.62 62.52 70.87 73.19 63.72

DynCatOnly 67.37 70.32 67.85 68.24 56.08 65.77 55.45 71.04 60.82
DynNumOnly 67.56 71.45 69.34 55.69 56.41 64.09 66.62 72.56 63.42

180 days

Orig 79.46 83.84 79.88 78.84 71.53 72.62 66.54 78.69 73.64
Dyn 79.65 80.18 78.32 73.91 64.46 65.85 70.14 78.08 76.28

DynCat 80.07 80.89 78.50 76.50 66.39 66.39 68.68 78.23 75.32
DynNum 79.74 81.24 80.06 76.70 68.44 71.60 68.62 76.99 74.17
DynOnly 71.50 74.07 71.42 58.37 59.18 65.82 72.89 75.18 66.06

DynCatOnly 71.14 74.28 71.09 70.48 61.05 68.10 60.61 73.10 63.97
DynNumOnly 71.24 75.92 72.70 65.00 60.48 67.21 64.19 75.38 66.61

365 days

Orig 82.22 88.33 79.56 80.89 79.47 73.06 68.53 79.74 74.23
Dyn 82.75 83.95 82.65 72.42 73.28 73.41 76.45 77.22 76.15

DynCat 83.08 85.23 82.86 80.60 75.79 73.66 69.34 77.76 76.24
DynNum 83.21 85.71 83.34 74.41 76.08 74.39 76.26 77.58 76.21
DynOnly 74.53 78.57 75.77 56.43 68.16 68.94 77.93 72.75 68.70

DynCatOnly 76.34 79.92 75.79 74.48 70.89 69.96 62.65 73.77 67.46
DynNumOnly 74.38 81.14 75.83 51.09 71.93 69.65 79.80 73.95 67.70

The aim of Section 3.2 was to check whether or not the use of clinical history (follow-up)
was better to predict the need for NIV within a predefined time window compared to the use of
the patient’s current condition. By analyzing Table 3.14 we observe that overall there is no clear
benefits in using models which are trained with the patients’ clinical history.
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Table 3.14: Best results obtained for the baseline models using 1 TP (current condition) as well
as using 2 and 3 TP (clinical history).

Sensitivity Specificity AUC
90d

1TP 69.33 79.38 81.98
2TP 67.90 76.20 80.00
3TP 67.58 74.79 79.43

180d
1TP 72.93 84.13 87.29
2TP 72.55 81.91 85.76
3TP 70.54 80.74 85.19

365d
1TP 83.41 84.63 91.50
2TP 81.75 84.81 91.51
3TP 81.11 84.05 91.40
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Chapter 4

Progression Groups

Given the heterogeneous nature of ALS, the progression rate is highly variable across all patients.

Moreover, patients with different progression rates usually have different prognosis. In this

context, when creating prognostic models with such different patients, we risk that our models

learn to predict well a subset of patients and for the others, only be guesses the outcome.

In this section, we explore our first patient stratification approach, in which we stratify the

patients according to their progression rate (see Section 2.4.1). We create three Progression

Groups: Slow, Neutral and Fast, and use patients in these groups to build predictive models

specialized for each group. The groups are created from a cohort of 1220 patients using the

information at the time of disease onset and the ALS-FRS-R scale at first appointment. With

that, we compute the progression rate of the patient using the formula presented in Section 2.4.1.

Only 1093 of 1220 patients (89.6%) could be used for analysis, as the other 127 patients lacked

at least one of the informations needed to compute the progression rate. Using the progression

rate of the selected patients, we obtained the distribution presented in Figure 4.1.

The higher patients’ progression rate are, the faster the patients progress, while lower progres-

sion rates are usually associated with a slower disease progression. Following consensual clinical

insight, we decided to stratify the patients in three disease progression groups. The 25% of the

patients with higher progression rates were grouped together and labeled as Fast Progressors.

The 25% of the patients with lower progression rates were also grouped together to create the

Slow Progressors group. The remaining 50%, with an average progression, were grouped together

and called Neutral Progressors. This totalizes 271 Slow progressors, 552 Neutral progressors and

270 Fast progressors.
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Figure 4.1: Progression Rate Distribution among all patients.

4.1 Single Snapshot Prediction

In this section, we revisit the problem addressed in Chapter 3, adding information about the
patient’s progression groups. Our aim is to create specialized models for each progression group
to investigate if by stratifying the patients according to this criteria, we can improve perfor-
mance. Figure 4.2 shows the new problem formulation. The new specialized models enable us
to answer the following question: "Given that we know the patient’s progression group, as well
as their current condition, can we predict the patient’s need for NIV, k days after his/her last
appointment?".

Regarding to the pipeline used, we adapted the pipeline used in the previous approach, to
accommodate the progression group information. Figure 4.3 shows the updated pipeline.

4.1.1 Creating Learning Instances

The process of creating learning instances for the specialized models consists in extracting all
snapshots of each patient and using them to create three new datasets, one for each progression
group. Thus, each new dataset is a subset of the original dataset containing the snapshots
corresponding to the subset of patients in each group. Table 4.1 presents Statistics and the Class
distribution for each dataset.
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Figure 4.2: Problem Reformulation using Progression Groups: Knowing the Patient current
state, as well as their progression group can we predict the need for Non-Invasive Ventilation k
days after, using group specific models?

Table 4.1: Statistics and Class distribution for time windows of k=90,180, and 365, for each
progression group.

.

k 90 180 365
Slow Progressors

Nr of Snapshots 1242 1191 1090
Nr of Patients 215 210 200

Snapshots p/ Patient 5.78 5.67 5.45
Evolution (E=1) 88 (7.09%) 163 (13.69%) 269 (24.68%)

No Evolution (E= 0) 1154 (92.91%) 1028 (86.31%) 821 (75.32%)
Neutral Progressors

Nr of Snapshots 1459 1390 1278
Nr of Patients 441 425 399

Snapshots p/ Patient 3.31 3.27 3.20
Evolution (E=1) 328 (22.48%) 527 (37.91%) 801 (62.68%)

No Evolution (E=0) 1131 (77.52%) 863 (62.09%) 477 (37.32%)
Fast Progressors

Nr of Snapshots 384 348 311
Nr of Patients 171 158 148

Snapshots p/ Patient 2.24 2.20 2.10
Evolution (E=1) 131 (34.11%) 193 (55.46%) 238 (76.53%)

No Evolution (E=0) 253 (65.89%) 155 (44.54%) 73 (23.47%)

47



4. PROGRESSION GROUPS

Figure 4.3: Workflow of the proposed methodology for ALS prognostic prediction using patient
snapshots and progression groups. Original data is prepossessed in order to create patient snap-
shots, that are then used to create the learning instances. At the same time, the original data is
used to create the progression groups. The progression groups and learning instances are then
merged to create separate sets of data for each group. The models are then built using a strati-
fied 5 x 10-fold cross-validation scheme. The models are then evaluated and the best parameters
are chosen. After the final model is complete when a new patient arrives at the consult, their
progression group is computed and their data is given to the specific predictive model that should
output a prediction for the problem being addressed.

We can see that similarly to the original dataset, the number of patients, the number of

snapshots as well as the number of snapshots per patient, all decrease as the time windows

increase. However, these number differ considerably for each of the groups. The major differences

are between the Slow and Fast progressors. This is expected given that they should be the most

dissimilar groups. The Slow progressors show a higher number of Snapshots per patient, more

than the double regarding the Fast progressors. This can be explained by the fact that these

patients have a slower progression, thus usually having a better prognosis and consequently a

higher survival. In this context, it is expected that they attend a higher number of appointments,

having a longer clinical history, thus having a greater contribute in terms of patient Snapshots for

our dataset. In the case of Fast progressors, their disease progression is so fast that they only have

two or three appointments, therefore, the number of snapshots and even the number of patients
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that have enough information for this analysis tend to be lower. Finally, the Neutral progressors

are more representative of the average of the patients, and thus are those with statistics closer

to the original dataset.

Regarding to class distribution, we can also see differences between the groups. Although

they all follow the same pattern across the time windows (the longer the selected time window,

the higher the number of positive instances), there are clear differences between them. The

Slow progressors present the lower proportion of positive instances in all time windows, and the

fast show higher proportions of negative instances than the other groups as well as the baseline

datasets. Thus, it seems that the faster the disease progresses, the more urgent the need for

NIV is (which actually makes sense). Moreover, we can see that while in the original dataset the

number of positive instances was always lower than the number of negative instances, this does

not hold true for three of these datasets: Fast progressors in time windows of 180 and 365 days,

and Neutral progressors in the 365 days dataset. As for the class imbalance it becomes opposite

than the distribution for the baseline datasets.

4.1.2 Learning the predictive Models

After creating the datasets for each group according to the three selected time windows (90, 180,

and 365 days), we then use each of them as input to learn the specialized models for each group.

Each model is built using a 5 x 10-fold CV scheme as before and the metric selected to evaluate

the models’ performance is AUC.

Similarly to the analysis using the baseline dataset, we performed FS for each of the datasets

using the FSE proposed by Pereira et al. (2018), as described in the Chapter 3. The goal is not

only to study if using only the selected features improves the models’ performance but also to

investigate differences between the sets of features selected for each progression group. Table 4.2

presents the sets of selected features for each dataset.
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Table 4.2: Selected Features for each progression groups and each time window.

Slow Progressors Neutral Progressors Fast Progressors
Features 90 d 180 d 365 d 90 d 180 d 365 d 90 d 180 d 365 d
Gender
Age at Onset X X X X X X X X
BMI X X X X X X X X X
Family History MND
Disease Duration X X X X X X
El Escorial Reviewed Criteria
UMN vs LMN
Onset form X
c9orf72 X X
ALS-FRS X X X X X X
ALS-FRS-R X X X X X X
ALS-FRSb X X X X X
ALS-FRSsUL X X X X X
ALS-FRSsLL X X X X X
ALS-FRSr X X
R X X X X X
VC X X X X X X X X X
FVC X X X X X X X X X
MIP X X X X X X X
MEP X X X X X X X
P0.1 X X X X X
SNIP
PhrenMeanLat X X X X X
PhrenMeanAmpl X X X X X
Cervical Flexion
Cervical Extension

There are clear differences between the selected features for each group. Slow progressors

tend to need more features to build good prognostic models, while Fast progressors seem to rely

on few features. Moreover, while for Slow progressors in longer time windows the number of

selected features diminishes, in Fast progressors, this is reversed. In Neutral progressors, the set

of selected features is the same for all time windows. The differences in the selected features

between the progression groups can also be important in the clinician’s point of view, since

knowing which tests and exams are more important for each type of patient, can save time and

resources that can lead to a better prognosis.

In addition to learning models using the set of features selected by the FSE for each dataset,

we also build models using datasets for each group using the features selected for the baseline

dataset presented in the Chapter 3 to check which set of features is more helpful. Our intuition
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4.1 Single Snapshot Prediction

is that the important features are group specific but it is worth checking.

For dealing with missing data we follow the LOCF methodology described before, as it has

shown improvements on classifier performance in the models for the baseline datasets.

Finally, we compare the performance of specialized models to that of the baseline models

using all patients to see how the models differ in predicting each of the progression groups. We

look at how the baseline models predicts each instance from each group and compare them to

the predictions using the specialized models for the group. What we want to know is: When we

look at the patients in a specific group, how good is the baseline model?

The classifiers used were NB, LR and RF and the metric used to assess classifier performance

is AUC.

4.1.3 Results and Conclusions

Table 4.3 presents the results for the specialized models for each progression group, across all

the selected time windows of 90, 180 and 365 days.

Table 4.3: AUC, Sensitivity and Specificity results for the prognostic models for the 90, 180 and
365 days Time Windows, as well as for each Progression Group. The selected classifiers are:
Naive Bayes (NB), Random Forest (RF) and Linear Regression (LR).

AUC Sensitivity Specificity
NB RF LR NB RF LR NB RF LR

Slow
90d 81.11 81.11 74.15 70.91 69.55 64.09 79.41 75.58 73.99
180d 85.21 86.51 80.94 77.42 72.27 72.88 80.88 83.29 77.67
365d 84.4 90.58 80.22 73.16 78.29 69.52 80.56 85.87 77.47

Neutral
90d 77.29 76.2 74.88 67.74 58.17 64.88 74.06 77.84 71.71
180d 75.32 81.61 74.68 60.91 62.01 63.76 77.27 82.92 72.84
365d 74.4 85.71 73.54 70.64 78.8 68.76 67.04 77.06 66.5
Fast
90d 72.69 71.82 74.94 63.66 51.3 61.37 74.39 76.68 77.39
180d 71.48 81.23 70.56 65.28 70.57 68.81 68 75.61 61.55
365d 65.6 79.41 65.02 64.96 74.37 68.15 57.26 71.23 51.23

By analyzing Table 4.3 we can see that the specialized models for the Slow Progressors show

better results than the models for the other groups. Moreover, these results surpass the ones

of baseline models using all patients. Contrary to this, the models for Fast progressors seem to

be the worse. These results can be explained by the reduced number of learning instances in
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this group, which can be hampering for the models’ performance. The results for the Neutral

Progressors are the most similar to the baseline models, probably due to their greater contribution

for those models. Our intuition that baseline models are specialized in Neutral Progressors and

are not good at the others.

Table 4.4 shows the results for the models using feature selection. For most cases, FS does

not improve the models’ performance. Moreover, the sets of features selected specifically for each

dataset seem to have more predictive power than the ones selected for the original datasets using

all patients. The differences are however not major. Therefore, similarly to previous analysis,

we performed the Wilcoxon Signed Rank Test for paired samples statistic test to check the

statistical significance of the differences. When comparing the models without feature selection

and the models using the features selected for the baseline models the test yielded a p-value of

0.0014 meaning that the differences are significant. Thus, the set of features selected for the

baseline models should not be used to build the specialized models for each progression group.

The test comparing the specialized models without feature selection and the specialized models

with feature selection specific to each group yielded a p-value of 0.8288, meaning the differences

are not statistically significant. Therefore, the features selected by for each specific progression

group should be used in the creation of specialized models as the use of a smaller set of features

usually results in simpler models, which are generally better.

Table 4.5 shows the results for the models learnt using the LOCF imputation method. As in

previous results, the models using the selected imputation method seem to improve the models’

performance. The Wilcoxon Signed Rank Test for paired samples for these models resulted in a

p-value of 0.0001 meaning that the differences between approaches are high enough to justify the

use of this imputation method, in comparison to the non-imputed models, when building these

specialized models.

To compare how the baseline models behave when classifying each specific progression group,

we built the classifiers using all instances labeled with the progression group (not used in the

classifiers). Then we retrieved the predictions for each instance and computed the confusion

matrix and AUC to retrieve the necessary information to better compare the two approaches.

To lower the number of presented results, this comparison was only made for NB (Table 4.6).
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Table 4.4: AUC, Sensitivity and Specificity results for the prognostic models for the 90, 180 and
365 days Time Windows, as well as for each Progression Group using Feature Selection. Orig is
the original dataset, FS is the dataset with selected features for each progression group by the
Feature Selection Ensemble (FSE), and FS Orig is the dataset using the features selected for the
main models, by the FSE. The selected classifiers are: Naive Bayes (NB), Random Forest (RF)
and Linear Regression (LR).

AUC Sensitivity Specificity
NB RF LR NB RF LR NB RF LR

Slow
90d

Orig 81.11 81.11 74.15 70.91 69.55 64.09 79.41 75.58 73.99
FS 82.24 79.77 79.17 72.27 68.86 70.45 76.79 73.97 75.06

Orig Fs 80.60 76.48 77.91 77.05 70.91 71.59 73.29 69.84 72.69
180d

Orig 85.21 86.51 80.94 77.42 72.27 72.88 80.88 83.29 77.67
FS 84.78 85.72 82.50 75.58 74.11 73.50 79.73 80.64 78.79

Orig Fs 81.07 82.11 80.64 79.14 72.76 75.21 70.04 75.86 73.99
365d

Orig 84.40 90.58 80.22 73.16 78.29 69.52 80.56 85.87 77.47
FS 82.27 88.92 82.71 75.54 80.00 73.01 75.44 82.39 75.98

Orig Fs 82.24 88.66 82.77 75.61 79.33 73.38 75.42 81.78 76.22
Neutral

90d
Orig 77.29 76.20 74.88 67.74 58.17 64.88 74.06 77.84 71.71
FS 76.34 74.94 77.43 68.66 62.87 69.57 71.18 72.25 72.36

Orig Fs 75.75 72.74 76.06 70.30 60.24 68.84 67.06 70.47 69.05
180d

Orig 75.32 81.61 74.68 60.91 62.01 63.76 77.27 82.92 72.84
FS 75.78 80.24 76.62 66.72 65.24 66.22 73.02 78.61 73.42

Orig Fs 72.42 77.78 71.89 67.13 60.46 65.88 64.26 77.71 66.56
365d

Orig 74.40 85.71 73.54 70.64 78.80 68.76 67.04 77.06 66.50
FS 75.27 83.93 75.43 59.48 68.39 68.29 79.45 82.01 71.78

Orig Fs 71.74 84.10 72.22 60.85 66.77 65.74 73.04 82.39 68.89
Fast
90d

Orig 72.69 71.82 74.94 63.66 51.30 61.37 74.39 76.68 77.39
FS 72.62 72.43 70.45 75.88 62.44 64.12 58.58 70.12 65.06

Orig Fs 72.97 70.37 75.04 68.40 64.12 68.09 66.64 65.30 69.96
180d

Orig 71.48 81.23 70.56 65.28 70.57 68.81 68.00 75.61 61.55
FS 70.62 81.26 69.14 61.14 66.22 60.10 67.35 76.26 63.23

Orig Fs 70.47 79.73 70.02 59.59 67.56 62.80 71.61 74.58 65.29
365d

Orig 65.60 79.41 65.02 64.96 74.37 68.15 57.26 71.23 51.23
FS 69.57 77.52 63.00 56.13 65.71 59.08 72.60 72.33 55.07

Orig Fs 66.97 75.54 60.51 54.54 64.03 57.06 67.40 70.14 55.34
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Table 4.5: AUC, Sensitivity and Specificity results for the prognostic models for the 90, 180 and
365 days Time Windows, as well as for each Progression Group using Missing Value Imputa-
tion. Orig is the original dataset and MVI is the dataset with LOCF imputation. The selected
classifiers are: Naive Bayes (NB), Random Forest (RF) and Linear Regression (LR).

AUC Sensitivity Specificity
NB RF LR NB RF LR NB RF LR

Slow
90d

Orig 81.11 81.11 74.15 70.91 69.55 64.09 79.41 75.58 73.99
MVI 84.19 83.66 79.63 72.27 69.32 72.50 80.59 79.17 75.53

180d
Orig 85.21 86.51 80.94 77.42 72.27 72.88 80.88 83.29 77.67
MVI 87.24 88.45 84.74 75.21 74.85 75.71 83.23 85.45 79.63

365d
Orig 84.4 90.58 80.22 73.16 78.29 69.52 80.56 85.87 77.47
MVI 87.70 92.30 85.93 72.34 78.81 75.32 84.90 87.67 82.00

Neutral
90d

Orig 77.29 76.20 74.88 67.74 58.17 64.88 74.06 77.84 71.71
MVI 77.64 78.05 75.54 66.46 63.23 66.89 74.45 78.94 72.73

180d
Orig 75.32 81.61 74.68 60.91 62.01 63.76 77.27 82.92 72.84
MVI 76.96 83.72 76.75 61.40 63.11 65.16 79.33 86.05 74.81

365d
Orig 74.40 85.71 73.54 70.64 78.8 68.76 67.04 77.06 66.50
MVI 77.24 89.54 75.96 69.51 78.70 69.61 72.33 84.49 68.47

Fast
90d

Orig 72.69 71.82 74.94 63.66 51.30 61.37 74.39 76.68 77.39
MVI 70.69 70.71 72.97 59.08 48.70 57.56 70.91 76.76 74.62

180d
Orig 71.48 81.23 70.56 65.28 70.57 68.81 68.00 75.61 61.55
MVI 72.41 82.09 71.48 63.01 70.16 69.74 69.16 79.10 62.58

365d
Orig 65.60 79.41 65.02 64.96 74.37 68.15 57.26 71.23 51.23
MVI 68.96 80.33 70.08 64.03 70.50 68.99 62.47 75.34 61.37
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Table 4.6: AUC, Sensitivity and Specificity results for the prognostic models built without
progression groups (baseline models) for the 90, 180 and 365 days Time Windows, relative to
each Progression Group. The selected classifiers is Naive Bayes (NB).

Sensitivity Specificity AUC
90d

Overall 69.87 74.99 79.84
Slow 33.41 94.52 81.88

Neutral 68.54 71.03 76.48
Fast 85.04 34.70 68.36

180d
Overall 73.22 73.94 80.57
Slow 40.86 95.91 85.31

Neutral 69.15 68.76 75.22
Fast 84.87 31.87 66.11

365d
Overall 78.41 71.96 82.25
Slow 51.45 92.98 84.30

Neutral 78.72 55.81 74.44
Fast 90.84 31.87 66.37

By comparing the AUC between the overall population and each specific group in Table 4.6

we can see that they are similar. However, when looking at Sensitivity and Specificity, we see

that the results are quite different and the specialized models are indeed more effective for NIV

prediction.

Regarding Slow progressors, Sensitivity and Specificity measures are highly imbalanced, with

a very high specificity and a very low sensitivity, meaning that the baseline model is correctly

classifying almost all the negative instances and poorly classifying the positive instances. The

opposite can be seen with Fast progressors, where the baseline model correctly predicts almost all

positive instances but incorrectly classifies the majority of negative instances. Moreover, results

for Fast progressors show that the AUC difference between approaches is higher than that of

the other groups. Once again this can be due to the reduced number of instances hampering

the performance of the classifiers. Neutral progressors are those with closer results between

approaches. This is probably due to the fact that Neutral progressors give a higher contribution

in terms of patient and learning instances to the baseline model, as well as the fact that they

are more representative of the average of the population. This means that the results for the

baseline model, generalize around the Neutral progressors, thus they predict better the instances

from the Neutral group or those from the other groups that are closer to them. For the instances
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that are more dissimilar, the model tries to predict the outcome but generally fails. Using the

specialized models for the groups ensures that each model learns with a subset of patients that

are similar to each other and generalize around a less heterogeneous set of data.

In this context, the results show that there are clear benefits in using the specialized models

for the disease progression groups rather than the baseline ones, provided we are able to compute

the progression group of the patient.

To close this Section, Table 4.7 presents the best results obtained among all tests for the

specialized models for each disease progression group.

Table 4.7: Best results obtained for the specialized models for each progression group, using the
patients current condition.

Sensitivity Specificity AUC
Slow

90d 72.27 80.59 84.19
180d 74.85 85.45 88.45
365d 78.81 87.67 92.30

Neutral
90d 63.23 78.94 78.05
180d 63.11 86.05 83.72
365d 78.70 84.49 89.54

Fast
90d 68.09 69.96 75.04
180d 70.16 79.10 82.09
365d 70.50 75.34 80.33

4.2 Using a Set of Snapshots

For this section, we use the datasets from our first stratification approach using Progression

Groups to build specialized models capable to answer the question previously addressed in Section

3.2: "Given a patient’s N consecutive appointments and the information about its progression

group, will the patients evolve or not evolve to need NIV, k days from the date of the last

appointment". Figure 4.4 presents an illustration of the problem addressed.

4.2.1 Creating Learning Instances

In order to create the learning instances to train the classifiers, we use the methodology used in

Subsection 3.2.1 for each of the progression groups. This results in a set of new datasets whose

statistics and class distribution are presented in Table 4.8.
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Figure 4.4: Problem Reformulation using Progression Groups: Knowing the Patient clinical
history (follow-up), as well as their progression group can we predict the need for Non-Invasive
Ventilation within k days from the last evaluation, using specialized models for each group?

In this analysis we can observe that the number of snapshots, the number of patients and

thus the number of snapshots per patient all decrease. Similarly to Section 4.1.1, the Slow

progressors have a large number of snapshots for the number of patients and the opposite happens

to Fast progressors. In this case, the differences between each group are even more noticeable.

For example, even though the Slow and Fast progression groups were initially created with

approximately the same number of patients we can see how that the number of Slow progressors

more than doubles the number of Fast progressors, as the patients with a faster progression

unfortunately tend to die in a shorter period of time, thus typically not having long clinical

histories. Moreover, the conclusions regarding the class distribution are the same as the ones in

the Section 4.1.1, where Slow progressors have smaller proportions of positive instances, Neutral

progressors are the ones with a distribution closer to the original datasets and Fast progressors

show the greater proportions of positive instances.

4.2.2 Learning the Predictive Models

We build specialized models for each of the progression groups using the information of its

patients’ clinical history (two or three appointments) to predict the need for NIV, k days after

the last appointment. The models are trained using a 5 x 10-fold CV for the 3 selected classifiers:

NB, RF, and LR. After, we test the use of an FS and LOCF methodologies to check if they

improve prediction.
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Table 4.8: Statistics and Class distribution for time windows of k=90,180, and 365, for each
progression group using 2 and 3 time points TP.

Nr of
Snapshots

Nr of
Patients

Snapshots
p/ Patient

Evolution
(E = 1)

No Evolution
(E= 0)

Slow
2 TP 90 days 1023 186 5.5 63 (6.16%) 960 (93.84%)

180 days 977 183 5.34 125 (12.79%) 852 (87.21%)
365 days 886 173 5.12 216 (24.38%) 670 (75.62%)

3 TP
90 days 837 154 5.44 43 (5.14%) 794 (94.86%)
180 days 794 151 5.26 95 (11.96%) 699 (88.04%)
365 days 713 138 5.17 173 (24.26%) 540 (75.74%)

Neutral
2 TP 90 days 1017 308 3.3 219 (21.53%) 798 (78.47%)

180 days 964 298 3.23 356 (36.93%) 608 (63.07%)
365 days 878 275 3.19 544 (61.96%) 334 (38.04%)

3 TP
90 days 708 215 3.29 148 (20.90%) 798 (78.47%)
180 days 665 207 3.21 240 (36.09%) 425 (63.91%)
365 days 602 192 3.14 368 (61.13%) 234 (38.87%)

Fast
2 TP 90 days 211 91 2.32 66 (31.28%) 145 (68.72%)

180 days 188 88 2.14 93 (49.47%) 95 (50.53%)
365 days 161 77 2.09 118 (73.29%) 43 (26.71%)

3 TP
90 days 119 53 2.25 31 (26.05%) 88 (73.95%)
180 days 99 45 2.2 45 (45.45%) 54 (54.55%)
365 days 83 39 2.13 57 (68.67%) 26 (31.33%)

4.2.3 Results and Conclusions

Table 4.9 shows the results for this section without FS or MVI. We can see that in the majority of

the cases using two time points (TP) is better than using 3 TP. However, comparing to previous

models we can see that for the Slow progressors the models using 2 TP perform slightly better

than the ones using only the current condition of the patient. The major difference between the

two approaches concerns Fast progressors, where using multiple observations seems to have a

greater negative impact in the performance of classifiers. However, this is probably due to the

reduced number of training instances.

Finally, we present the results for the models using FSE and LOCF. Regarding FS, we chose

to use only the set of features selected for each dataset since in the last section the models using

the features selected for the original datasets did not show any improvement to the prediction.

Tables 4.10 and 4.11 shows the results for these methodologies using 2 and 3 TP, respectively.
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Table 4.9: AUC, Sensitivity and Specificity results for the prognostic models for the 90, 180 and
365 days Time Windows, as well as for each Progression Group using 2 and 3 Time Points. The
selected classifiers are: Naive Bayes (NB), Random Forest (RF) and Linear Regression (LR).

AUC Sensitivity Specificity
NB RF LR NB RF LR NB RF LR

Slow
90d

2 TP 81.18 78.91 69.46 64.13 67.62 59.37 79.54 75.08 72.65
3 TP 77.52 77.96 68.64 66.05 68.37 60.00 76.85 71.56 69.82

180d
2 TP 85.48 86.99 82.25 75.52 75.20 70.40 79.91 81.17 77.91
3 TP 83.14 84.12 77.32 72.84 69.05 68.21 78.00 79.11 73.91

365d
2 TP 84.22 90.47 79.67 72.22 76.57 69.07 79.61 84.96 77.43
3 TP 82.95 89.25 80.12 70.64 77.34 70.06 80.33 84.22 78.52

Neutral
90d

2 TP 72.48 72.68 70.20 64.29 58.36 60.73 71.95 74.89 70.00
3 TP 69.27 71.00 66.72 58.51 52.43 57.70 69.64 74.00 69.46

180d
2 TP 72.96 78.91 72.04 58.93 59.21 60.67 75.36 80.82 71.64
3 TP 70.73 77.05 70.74 55.92 56.00 59.17 73.84 81.04 72.80

365d
2 TP 75.00 82.98 73.16 69.08 74.45 69.01 68.20 75.63 64.85
3 TP 75.99 84.03 71.66 69.35 81.20 69.57 70.60 71.03 61.62

Fast
90d

2 TP 61.81 67.55 63.55 58.48 57.88 56.67 60.00 66.07 66.34
3 TP 61.9 62.48 57.24 52.9 50.97 46.45 63.86 64.09 65.00

180d
2 TP 64.4 71.95 65.81 69.89 67.96 60.43 46.95 66.74 62.95
3 TP 59.12 74.22 59.47 54.67 62.67 51.56 55.93 75.93 60.37

365d
2 TP 54.93 74.02 60.82 67.12 71.02 62.54 37.67 64.19 53.02
3 TP 51.04 70.94 53.13 55.79 65.26 56.49 49.23 70.77 50.77
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Table 4.10: AUC, Sensitivity and Specificity results for the prognostic models for the 90, 180 and
365 days Time Windows, as well as for each Progression Group, using 2 Time Points (TP). Orig
is the original dataset, FS is the dataset with selected features for each progression group by the
Feature Selection Ensemble (FSE), and MVI is the dataset imputed with LOCF imputation. The
selected classifiers are: Naive Bayes (NB), Random Forest (RF) and Linear Regression (LR).

AUC Sensitivity Specificity
NB RF LR NB RF LR NB RF LR

Slow
90d

Orig 81.18 78.91 69.46 64.13 67.62 59.37 79.54 75.08 72.65
FS 80.52 77.95 73.21 66.03 65.71 60.00 78.31 72.73 74.38

MVI 81.68 82.05 72.84 63.81 73.65 60.00 82.06 77.77 73.17
180d

Orig 85.48 86.99 82.25 75.52 75.20 70.40 79.91 81.17 77.91
FS 83.98 86.08 83.23 75.36 76.16 72.32 78.31 78.15 79.53

MVI 85.37 88.70 83.56 71.20 76.80 72.16 82.09 82.09 78.97
365d

Orig 84.22 90.47 79.67 72.22 76.57 69.07 79.61 84.96 77.43
FS 82.86 88.64 84.02 72.04 82.69 73.61 79.10 79.67 77.40

MVI 86.98 92.54 85.86 72.04 79.54 73.98 83.97 88.18 81.88
Neutral

90d
Orig 72.48 72.68 70.20 64.29 58.36 60.73 71.95 74.89 70.00
FS 72.69 72.88 73.22 66.30 63.20 65.30 68.82 69.77 70.10

MVI 73.82 74.54 72.09 62.83 55.34 61.46 72.53 79.57 72.73
180d

Orig 72.96 78.91 72.04 58.93 59.21 60.67 75.36 80.82 71.64
FS 72.67 76.75 74.47 62.30 64.04 66.52 72.76 74.84 71.48

MVI 74.47 81.27 73.76 58.93 61.35 61.74 76.22 83.68 73.98
365d

Orig 75.00 82.98 73.16 69.08 74.45 69.01 68.20 75.63 64.85
FS 75.72 80.09 74.87 61.36 64.08 68.42 78.32 79.88 68.56

MVI 77.97 87.76 75.75 67.35 75.04 70.48 73.05 84.07 68.92
Fast
90d

Orig 61.81 67.55 63.55 58.48 57.88 56.67 60.00 66.07 66.34
FS 66.91 73.05 66.93 60.61 63.33 60.30 61.66 70.21 64.00

MVI 62.08 70.29 63.79 61.82 57.58 55.45 54.21 69.66 67.31
180d

Orig 64.40 71.95 65.81 69.89 67.96 60.43 46.95 66.74 62.95
FS 65.33 69.93 65.47 53.55 59.57 62.58 68.63 66.53 61.47

MVI 65.89 71.27 69.39 66.88 65.59 65.16 53.47 68.42 70.11
365d

Orig 54.93 74.02 60.82 67.12 71.02 62.54 37.67 64.19 53.02
FS 66.16 80.70 54.41 54.75 61.53 54.07 68.37 82.79 47.44

MVI 60.38 76.22 62.18 61.02 71.19 64.41 50.70 67.91 55.35
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Table 4.11: AUC, Sensitivity and Specificity results for the prognostic models for the 90, 180 and
365 days Time Windows, as well as for each Progression Group, using 3 Time Points (TP). Orig
is the original dataset, FS is the dataset with selected features for each progression group by the
Feature Selection Ensemble (FSE), and MVI is the dataset imputed with LOCF imputation. The
selected classifiers are: Naive Bayes (NB), Random Forest (RF) and Linear Regression (LR).

AUC Sensitivity Specificity
NB RF LR NB RF LR NB RF LR

Slow
90d

Orig 77.52 77.96 68.64 66.05 68.37 60.00 76.85 71.56 69.82
FS 79.61 78.37 72.22 65.12 70.23 65.12 76.93 71.81 72.82

MVI 78.43 78.59 70.52 65.58 66.98 60.47 77.71 76.10 70.91
180d

Orig 83.14 84.12 77.32 72.84 69.05 68.21 78.00 79.11 73.91
FS 83.69 83.63 79.20 73.68 69.89 67.79 77.40 78.28 75.77

MVI 82.97 87.37 77.86 69.89 74.53 65.26 81.23 82.58 75.74
365d

Orig 82.95 89.25 80.12 70.64 77.34 70.06 80.33 84.22 78.52
FS 82.95 87.86 83.63 76.07 80.35 72.95 76.44 78.67 78.41

MVI 86.87 92.23 86.30 71.91 80.23 73.53 85.15 86.74 82.85
Neutral

90d
Orig 69.27 71.00 66.72 58.51 52.43 57.70 69.64 74.00 69.46
FS 70.17 70.77 72.04 62.97 57.16 64.73 67.75 71.11 70.96

MVI 71.62 73.53 71.92 61.76 56.35 61.22 70.07 78.32 72.96
180d

Orig 70.73 77.05 70.74 55.92 56.00 59.17 73.84 81.04 72.80
FS 71.17 74.68 72.19 58.25 59 62.33 71.44 75.20 71.58

MVI 72.95 81.66 74.17 59.67 61.08 63.67 74.92 84.00 75.58
365d

Orig 75.99 84.03 71.66 69.35 81.20 69.57 70.60 71.03 61.62
FS 75.81 80.38 73.57 61.14 72.39 68.26 76.07 73.42 66.41

MVI 79.76 88.68 74.37 68.26 79.13 70.11 74.79 81.79 64.96
Fast
90d

Orig 61.90 62.48 57.24 52.90 50.97 46.45 63.86 64.09 65.00
FS 59.06 66.23 53.53 63.87 52.26 53.55 49.09 68.86 54.32

MVI 59.32 60.04 63.32 48.39 45.81 49.03 68.18 68.41 70.23
180d

Orig 59.12 74.22 59.47 54.67 62.67 51.56 55.93 75.93 60.37
FS 61.73 73.89 51.44 49.33 64.44 51.11 75.19 77.04 52.59

MVI 68.07 74.68 56.85 57.78 60.89 54.67 64.07 74.81 60.74
365d

Orig 51.04 70.94 53.13 55.79 65.26 56.49 49.23 70.77 50.77
FS 63.43 78.09 38.25 54.73 59.29 48.07 60.76 80.77 30.77

MVI 63.18 77.8 75.21 46.67 68.42 66.32 69.23 71.54 70.77
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Once again we can see that using FS does not seem to improve the models’ performance.
Moreover, the Wilcoxon Signed Ranked Test for paired samples resulted in a p-value of 0.007,
meaning that in this case, we should use the models that use all features available in lieu of
the set chosen by the FSE. However, for Fast Progressors the models using FS present better
results. This is probably due to the fact that they use less features, which is important since
Fast Progressors have a low number of instances from which the models can learn.

As for LOCF, the results showed to improve the models’ performance. To support this
conclusion, the statistical test resulted in a p-value of approximately 0, thus reinforcing the use
of this methodology for our models.

Table 4.12 presents the best results obtained for the specialized models for the progression
groups using both the patients current condition (1TP) and the patinets clinical history (2 and
3 TP) among all analysis performed in this Chapter.

Finally, the results using multiple evaluations (clinical history) do not show improvements
in comparison to the ones using the patients current condition. However, we note that by using
multiple patient observations, the number of learning instances that we can create is very limited.
As the performance of the classifiers tends to improve with the increase of training data, it is
then expected that the models using only the current condition of the patient would perform
better as they are trained with larger quantities of information. We also expect that by using
classifiers that can take advantage of the temporal nature of data by looking beyond independent
variable, follow-up turns out to be important.
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Table 4.12: Best results obtained for the specialized models for each disease progression group
using 1 TP (current condition) as well as using 2 and 3 TP (clinical history).

Sensitivity Specificity AUC

Slow

90d
1TP 72.27 80.59 84.19
2TP 73.65 77.77 82.05
3TP 65.12 72.82 79.61

180d
1TP 74.85 85.45 88.45
2TP 76.8 82.09 88.7
3TP 74.53 82.58 87.37

365d
1TP 78.81 87.67 92.3
2TP 79.54 88.18 92.54
3TP 80.23 86.74 92.23

Neutral

90d
1TP 63.23 78.94 78.05
2TP 55.34 79.57 74.54
3TP 56.35 78.32 73.53

180d
1TP 63.11 86.05 83.72
2TP 61.35 83.68 81.27
3TP 61.08 84 81.66

365d
1TP 78.7 84.49 89.54
2TP 75.04 84.07 87.76
3TP 79.13 81.79 88.68

Fast

90d
1TP 68.09 69.96 75.04
2TP 63.33 70.21 73.05
3TP 52.26 68.86 66.23

180d
1TP 70.16 79.1 82.09
2TP 67.96 66.74 71.95
3TP 60.89 74.81 74.68

365d
1TP 70.5 75.34 80.33
2TP 61.53 82.79 80.7
3TP 59.29 80.77 78.09
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Chapter 5

Patient Profiles

In this section we present our second patient stratification approach, using Clinical Profiles:
General, Prognostic, Respiratory and Functional. These profiles are then used in the creation
of patients profiles (groups of patient evaluations that are closer to each other). We create four
different sets of patient profiles, each using a different set of features, according to the clinical
profiles. The aim is to create specialized models for each profile, that can be used to create
better models when compared to the baseline models, which use all snapshots from all patients.
Moreover, by having several sets of profiles based of different subsets of features rather then just
one using a set of features specific to our problem, we can then select the most fitting for other
outcomes.

5.1 Creating Patient Profiles

Each set of patient profiles was obtained by clustering the patient snapshots using for each a set of
features from each snapshot. We created 4 sets of profiles: General, Prognostic Respiratory, and
Functional. The choice of features for each profile was performed with the help of the clinicians
involved in this project. The features used to create each set of clinical profiles were:

• General Profile – All features available in the dataset;

• Prognostic Profile – Gender, BMI, Family History MND, Age at Onset, Disease Duration,
El Escorial reviewed criteria, UMN vs LMN, Onset form, c90rf72, ALS-FRS, ALS-FRS-R
and FVC;

• Respiratory Profile – FVC, PhrenMeanAmpl, ALS-FRSr, R;

• Functional Profile – ALS-FRS, ALS-FRS-R, ALS-FRSb, ALS-FRSsUL, ALS-FRSsLL, ALS-
FRSr, R.
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For each clinical profile, we create a set of patient profiles. First, we select the features from

each clinical profile from the datasets for each time window. Then, we perform clustering of all

the available snapshots according to the features selected. The resulting clusters are then called

patient profiles. The clustering method used was k-Means, which has a requirement that the

number of clusters to create is known apriori. However, as we do not know the optimal number

of groups that should be created for each profile, we performed clustering for a range of 2 to

10 clusters and then used the silhouette score to determine the optimum number to use. The

clustering is also performed for each of the selected time windows since the dataset for each

window is different, thus the clustering can have different results.

5.2 Single Snapshot Prediction

In this section, revisit the problem presented in Section 3.2, but this time we build specialized

models for each of the patient profiles in order to predict whether or not given a patient’s current

condition and given a specific patient profile (computed using a clinical profile), the patient will

need NIV in a time windows of k days. This problem is presented in Figure 5.1.

Figure 5.1: Problem reformulation using Patient Profiles: Knowing the Patient current state, as
well as the attributed patient profile (for a given clinical profile) can we predict the need for NIV
within a given time window?

Regarding the pipeline, we adapted the pipeline used in Chapter 3, in order to add the

information on patient profiles. Figure 5.2 shows the updated pipeline.
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Figure 5.2: Workflow of the proposed methodology for ALS prognostic prediction using patient
snapshots and patient profiles. Original data is prepossessed in order to create patient snapshots,
that are then used to create the learning instances. These instances are then clustered to create
different profiles. Then, the models are built using a stratified 5 x 10-fold cross-validation scheme.
The models are then evaluated and the best parameters are chosen. After the final model is
complete when a new patient arrives at the consult, their progression group is computed and
their data is given to the specific predictive model that should output a prediction for the problem
being addressed.

5.2.1 Creating Learning Instances

For all sets of patient profiles (one for each clinical profile) created in this section the highest

Silhouette score was obtained when using k=2, thus, each clustering was performed to create two

groups/ patient profiles. The groups were labeled as p1 and p2 for each dataset. However, we

note that for two different datasets, the p1 or p2 groups of each are not the same. The instances

belonging to each patient profile are then separated into different datasets that are used to train

the specialized models. Table 5.1 presents the number of instances in each dataset and their

class distribution. By analyzing the table we see that the groups obtained for the General and

Prognostic profiles are very similar, not only in number of snapshots but also in class distribution.

This can be explained by the fact that the prognostic profiles are created from a subset of features

available in the general profile, that could be the most differentiating features, thus the clustering

algorithm ends up creating almost the same groups. The groups created for each patient profile,
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5. PATIENT PROFILES

seem to always consist in a larger cluster, containing the majority of instances, and a smaller one
with the leftover instances. Moreover, in these cases, the smaller group seems to always have a
more imbalanced distribution of NIV, when compared with the larger group. The Respiratory
and Functional profiles show different results, showing less discrepancy in the number of instances
in each group, and in these cases the smaller groups present more balanced class distribution
then the larger.

5.2.2 Learning the predictive Models

After creating the datasets for each clinical profile and respective patient profiles, we use them
as input to learn specialized models to predict the need for NIV. The models are trained using a
5 x 10-fold CV and AUC is the metric used to assess models’ performance. The classifiers used
are NB, RF, and LR. A grid search is also performed to determine the best parameters for each
classifier.

Similarly to the previous analysis, we test the effects of FS and MVI in the models’ perfor-
mance. The methodologies used for this consist in FSE for the FS test and LOCF for MVI.
Table 5.2 shows the set of features selected by the FSE for each dataset.
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5.2 Single Snapshot Prediction

Table 5.1: Statistics and class distribution for each profile, across all time windows.

Nr of Snapshots Evolution (E = 1) No Evolution (E = 0)
90 days

General
p1 2897 550 (18.99%) 2347 (81.01%)
p2 281 9 (3.20%) 272 (96.80%)

Prognostic
p1 2895 549 (18.96%) 2346 (81.04%)
p2 283 10 (3.53%) 273 (96.47%)

Respiratory
p1 453 204 (45.03%) 249 (54.97%)
p2 2725 355 (13.03%) 2370 (86.97%)

Functional
p1 2348 334 (14.22%) 2014 (85.78%)
p2 830 225 (27.11%) 605 (72.89%)

180 days
General

p1 2750 888 (32.29%) 1862 (67.71%)
p2 268 18 (6.72%) 250 (93.28%)

Prognostic
p1 2748 887 (32.28%) 1861 (67.72%)
p2 270 19 (7.04%) 251 (92.96%)

Respiratory
p1 433 278 (64.20%) 155 (35.80%)
p2 2585 628 (24.29%) 1957 (75.71%)

Functional
p1 2224 548 (24.64%) 1676 (75.36%)
p2 794 358 (45.09%) 436 (54.91%)

365 days
General

p1 2516 1314 (52.22%) 1202 (47.78%)
p2 246 28 (11.38%) 218 (88.61%)

Prognostic
p1 2515 1314 (52.25%) 1201 (47.75%)
p2 247 28 (11.34%) 219 (88.66%)

Respiratory
p1 410 337 (82.20%) 73 (17.80%)
p2 2352 1005 (42.73%) 1347 (57.27%)

Functional
p1 2058 851 (41.35%) 1027 (50.65%)
p2 704 491 (69.74%) 213 (30.26%)

69



5. PATIENT PROFILES
Ta

bl
e

5.
2:

Se
le

ct
ed

fe
at

ur
es

by
th

e
Fe

at
ur

e
Se

le
ct

io
n

E
ns

em
bl

e
(F

SE
)

fo
r

ea
ch

cl
in

ic
al

pr
ofi

le
an

d
re

sp
ec

ti
ve

se
t

of
Pa

ti
en

t
P

ro
fil

es
.

G
en

er
al

P
ro

fil
es

P
ro

gn
os

ti
c

P
ro

fil
es

R
es

pi
ra

to
ry

P
ro

fil
es

Fu
nc

ti
on

al
P

ro
fil

es
90

d
18

0
d

36
5

d
90

d
18

0
d

36
5

d
90

d
18

0
d

36
5

d
90

d
18

0
d

36
5

d
Fe

at
ur

es
P

1
P

2
P

1
P

2
P

1
P

2
P

1
P

2
P

1
P

2
P

1
P

2
P

1
P

2
P

1
P

2
P

1
P

2
P

1
P

2
P

1
P

2
P

1
P

2
G

en
de

r
A

ge
at

O
ns

et
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

B
M

I
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
Fa

m
ily

H
is

to
ry

M
N

D
D

is
ea

se
D

ur
at

io
n

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
E

lE
sc

or
ia

lR
ev

ie
w

ed
C

ri
te

ri
a

U
M

N
vs

LM
N

O
ns

et
fo

rm
X

X
X

c9
or

f7
2

X
A

LS
-F

R
S

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

A
LS

-F
R

S-
R

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

A
LS

-F
R

Sb
X

X
X

X
X

X
X

X
X

X
A

LS
-F

R
Ss

U
L

x
X

X
A

LS
-F

R
Ss

LL
X

X
X

X
X

A
LS

-F
R

Sr
X

R
X

X
X

X
V

C
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
FV

C
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

x
X

X
X

X
X

M
IP

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

M
E

P
X

X
X

X
X

x
X

X
X

X
X

X
X

X
X

X
X

X
X

P
0.

1
X

X
X

X
X

X
X

X
X

X
X

X
SN

IP
X

X
P

hr
en

M
ea

nL
at

X
X

X
X

X
X

X
X

X
P

hr
en

M
ea

nA
m

pl
X

X
X

X
X

X
X

X
X

X
C

er
vi

ca
lF

le
xi

on
C

er
vi

ca
lE

xt
en

ti
on

70



5.2 Single Snapshot Prediction

5.2.3 Results and Conclusions

Table 5.3 shows the results without FS or MVI for each dataset, in the three chosen time windows

(90, 180, and 365 days).

Table 5.3: AUC, Sensitivity and Specificity results for the prognostic models for the 90, 180 and
365 days Time Windows, as well as for each Clinical Profile and respective set of Patient Profiles.
The selected classifiers are: Naive Bayes (NB), Random Forest (RF) and Linear Regression (LR).

AUC Sensitivity Specificity
NB RF LR NB RF LR NB RF LR

General
p1 90 days 78.86 79.75 78.25 68.07 64.40 67.35 75.59 78.46 74.89

180 days 79.15 84.32 79.02 69.80 68.27 70.05 74.20 81.57 74.59
365 days 80.11 87.57 77.95 76.85 79.59 72.60 69.53 79.32 70.95

p2 90 days 60.23 72.74 72.44 66.67 68.89 73.33 77.94 78.60 78.97
180 days 86.25 90.98 83.68 85.56 77.78 80.00 84.80 86.56 77.84
365 days 87.62 94.45 88.70 85.71 90.71 83.57 86.06 84.95 82.75

Prognostic
p1 90 days 78.63 79.55 77.92 68.63 63.90 68.01 74.69 78.58 75.12

180 days 79.11 84.26 78.97 69.33 67.03 69.29 74.78 82.47 74.54
365 days 80.09 87.93 78.23 76.18 79.13 72.89 70.11 80.37 71.64

p2 90 days 71.44 84.81 83.52 78.00 80.00 74.00 72.01 76.85 77.73
180 days 87.82 90.81 87.20 87.37 81.05 85.26 82.95 84.46 80.88
365 days 90.52 94.62 89.51 90.00 85.00 87.14 84.20 88.68 82.19

Respiratory
p1 90 days 70.54 73.53 70.9 71.96 66.08 64.22 59.04 67.95 69.64

180 days 68.36 73.11 68.14 71.65 70.65 69.21 56.00 61.29 58.58
365 days 71.29 79.65 69.98 72.52 76.44 70.56 61.37 70.41 59.45

p2 90 days 77.19 77.85 76.71 69.58 65.46 67.04 72.23 73.97 72.62
180 days 78.72 82.68 77.86 70.19 68.73 69.08 73.38 78.11 72.42
365 days 80.78 88.83 80.64 77.99 79.00 71.76 69.68 81.71 74.22

Functional
p1 90 days 80.82 81.41 79.83 71.98 69.58 71.26 75.68 77.33 74.58

180 days 81.27 85.28 81.33 72.55 71.50 73.61 76.31 80.85 74.71
365 days 81.82 88.82 80.34 77.74 76.64 73.21 69.81 83.60 74.40

p2 90 days 72.36 71.02 71.79 60.53 49.96 61.42 72.07 77.62 70.41
180 days 74.09 78.38 70.44 62.23 62.91 59.27 74.68 77.52 70.69
365 days 74.13 82.12 71.53 74.62 79.47 72.26 60.56 69.39 57.28

As in previous tests, the models for the longer time windows perform better. The models

for General and Prognostic profiles behave overall better than the Respiratory and Functional

profiles. Nonetheless, the results for the patient profiles approach are very promising. In fact,

for the General and Prognostic profiles, in the 365 days window, the models reach AUC’s higher
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5. PATIENT PROFILES

than 94% which are so far the highest AUC scores obtained for the problem at hand.

Table 5.4 shows the effects of feature selection in the models.

Table 5.4: AUC, Sensitivity and Specificity results for the prognostic models using Feature
Selection for the 90, 180 and 365 days Time Windows, as well as for each Clinical Profile and
respective set Patient Profiles. The selected classifiers are: Naive Bayes (NB), Random Forest
(RF) and Linear Regression (LR).

AUC Sensitivity Specificity
NB RF LR NB RF LR NB RF LR

General
p1 90 days 78.12 75.32 77.97 73.27 68.76 71.96 68.10 68.76 69.72

180 days 78.63 81.43 78.60 72.97 73.31 72.32 70.74 73.63 71.17
365 days 77.95 87.76 78.15 71.55 79.06 71.45 70.38 81.18 72.13

p2 90 days 67.90 71.24 69.26 66.67 73.33 75.56 80.88 76.54 76.40
180 days 90.32 87.38 90.08 65.56 76.67 82.22 88.16 81.60 78.64
365 days 92.38 92.26 86.17 90.71 87.86 81.43 82.75 82.02 80.28

Prognostic
p1 90 days 78.90 77.47 79.30 73.81 67.47 70.71 70.10 73.36 74.65

180 days 78.74 81.44 78.70 72.58 70.76 72.27 71.02 75.27 71.70
365 days 77.34 88.38 77.95 71.02 79.18 71.10 70.27 82.18 71.96

p2 90 days 75.55 81.97 74.13 80.00 78.00 64.00 79.41 75.24 80.95
180 days 71.38 74.87 69.14 72.63 69.47 57.89 52.83 68.61 66.29
365 days 92.09 92.90 88.45 85.71 90.00 86.43 83.20 82.92 83.20

Respiratory
p1 90 days 71.52 73.10 72.41 67.45 66.18 68.33 64.90 67.95 67.15

180 days 70.76 70.44 70.15 71.22 60.14 67.19 60.39 68.65 63.23
365 days 75.41 79.80 74.95 75.13 71.22 69.91 63.29 73.42 67.12

p2 90 days 72.21 72.24 73.59 76.56 68.00 68.96 58.53 64.95 65.92
180 days 77.31 80.57 77.82 73.57 76.31 73.44 68.58 70.18 69.77
365 days 78.22 89.18 78.51 77.35 81.61 73.45 65.27 82.21 70.38

Functional
p1 90 days 81.36 80.42 81.31 77.54 71.62 74.37 70.31 73.11 73.86

180 days 81.24 83.65 82.15 75.99 77.92 75.99 72.58 73.54 73.90
365 days 76.95 88.75 77.95 73.00 77.39 74.55 65.12 82.88 64.84

p2 90 days 71.50 67.63 71.38 76.71 53.07 68.09 48.93 71.37 62.02
180 days 68.17 76.03 67.80 73.69 62.96 67.32 49.86 74.17 58.26
365 days 70.97 82.08 68.64 75.40 69.86 73.40 52.02 77.93 48.26

Comparing to the models using no FS, these models show an overall loss in performance,

although usually very small. This was already observed in previous tests. As the differences are

not major, we performed a Wilcoxon Signed Rank Test for paired samples to check if they are

statistically significant. The test resulted in a p-value of 0.0114, therefore the differences are

statistically significant and we should not use the mdoels using FS to predict the need for NIV.
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5.2 Single Snapshot Prediction

However, we would like to note that, the set of features selected, can still be relevant for the

clinicians to understand which tests are more important for each clinical profile.

Finally, Table 5.5 shows the effects of MVI, using LOCF as described before.

Table 5.5: AUC, Sensitivity and Specificity results for the prognostic models using Misssing Value
Imputation for the 90, 180 and 365 days Time Windows, as well as for each Clinical Profile and
respective set Patient Profiles. The selected classifiers are: Naive Bayes (NB), Random Forest
(RF) and Linear Regression (LR).

AUC Sensitivity Specificity
NB RF LR NB RF LR NB RF LR

General
p1 90 days 79.60 80.86 78.15 70.22 65.24 66.55 73.75 79.41 74.41

180 days 80.50 85.93 79.61 72.03 70.25 69.50 74.14 83.37 74.64
365 days 82.21 90.75 80.96 76.06 81.48 74.93 72.65 84.38 74.08

p2 90 days 80.00 82.50 77.12 80.00 83.97 72.79 73.33 82.65 75.03
180 days 91.69 91.68 86.82 88.89 85.56 75.55 87.76 86.64 84.08
365 days 95.64 96.46 95.19 95.00 92.14 89.29 89.17 91.10 89.72

Prognostic
p1 90 days 79.41 80.56 78.24 72.09 65.36 66.74 72.71 79.97 74.96

180 days 80.48 86.35 79.67 70.51 69.79 69.09 75.52 84.52 74.95
365 days 82.17 90.62 81.15 75.71 81.64 74.93 73.09 84.18 74.45

p2 90 days 87.47 86.97 87.19 88.00 70.00 78.00 81.10 83.08 83.66
180 days 91.43 92.95 88.72 89.47 85.26 78.95 86.22 87.09 83.90
365 days 94.43 96.32 94.44 93.57 90.71 90.71 88.95 89.13 89.22

Respiratory
p1 90 days 70.08 74.11 70.42 71.76 66.67 63.73 57.59 68.59 69.56

180 days 68.83 73.59 67.69 70.65 69.78 67.99 56.26 65.68 56.52
365 days 73.96 79.01 68.45 74.48 76.85 70.21 59.45 66.85 56.16

p2 90 days 78.03 78.27 76.74 69.35 66.08 66.42 71.78 74.33 72.85
180 days 79.83 84.42 79.04 71.21 72.68 69.39 73.75 79.47 73.82
365 days 82.47 90.76 81.72 78.03 80.58 73.35 71.39 85.15 75.22

Functional
p1 90 days 82.42 83.05 81.40 75.27 71.50 71.14 74.79 77.75 75.65

180 days 82.48 86.55 82.60 73.54 74.74 74.23 77.12 81.96 76.58
365 days 84.13 91.53 83.87 76.87 80.24 75.86 75.00 86.79 77.53

p2 90 days 71.55 73.60 70.22 58.84 51.73 59.02 71.83 78.81 69.62
180 days 75.93 80.41 72.57 62.51 64.58 61.12 77.34 78.81 72.48
365 days 77.15 83.95 74.43 74.54 80.29 74.13 65.26 72.02 60.19

These models show higher improvements in performance when compared with the baseline

results presented in Table 5.3. Some models reach AUC’s higher than 90% and two have per-

formances over 96% (both for the RF classifier using the 365 days time window). These are

very promising results for this outcome. The Wilcoxon Signed Rank Test for paired samples
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comparing this results to the models without imputation yielded a p-value of approximately 0,
meaning that these models are statistically better, thus, we should use MVI.

Overall, this stratification approach seems to be very useful to predict NIV, presenting better
results for the specialized models for the General and Prognostic profiles, comparing to the
baseline models. In future work it would be interesting to do a characterization of the patients
in each patient profile. This would possibly allow us to find patterns that can be meaningful to
the clinicians regarding the use of NIV or other outcomes.

Finally, Table 5.6 presents a summary of the best results achieved for this analysis.
When a patient arrives to a medical appointment, the clinician can decide which clinical

profile, or set of clinical profiles, are more adequate to predict the desired clinical outcome. For
each clinical profile selected, the patient’s data from the evaluation will be compared to each one
of the clusters created (patient profiles). The patient will then be assigned to the patient profile
more similar to his/her data. Then, his/her data is used as input to the specialized model for
that profile, in order to predict the need for NIV, or any other outcome.
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5.2 Single Snapshot Prediction

Table 5.6: Best Results obtained for each Clinical Profile and respective set of patients profiles.

Sensitivity Specificity AUC

General

90d p1 65.24 79.41 80.86
p2 83.97 82.65 82.5

180d p1 70.25 83.37 85.93
p2 88.89 87.76 91.69

365d p1 81.48 84.38 90.75
p2 92.14 91.1 96.46

Prognostic

90d p1 65.36 79.97 80.56
p2 88 81.1 87.47

180d p1 69.79 84.52 86.35
p2 85.26 87.09 92.95

365d p1 81.64 84.18 90.62
p2 90.71 85.15 96.32

Respiratory

90d p1 66.67 68.59 74.11
p2 66.08 74.33 78.27

180d p1 69.78 65.68 73.59
p2 72.68 79.47 84.42

365d p1 71.22 73.42 79.8
p2 80.58 85.15 90.76

Functional

90d p1 71.5 77.75 83.05
p2 51.73 78.81 73.6

180d p1 74.74 81.96 86.55
p2 64.58 78.81 80.41

365d p1 80.24 86.79 91.53
p2 80.29 72.02 83.95
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

We use data from a cohort of 1220 ALS patients that we preprocess into patient snapshots (a

vector of features that describes the patient’s current condition) and then into learning instances.

Our first approach was to build a set of time independent prognostic models to predict the need

within NIV 90, 180, and 365 days from the last evaluation. To make that prediction the models

use the information of a patient’s condition at the current appointment. These first models

reached AUCs of 80.74%, 85.27%, and 88.95%. We also built similar models using the patient’s

clinical history instead of its current condition. However, using more than one snapshot did not

show improvement when compared to the models using the last evaluation.

To deal with the heterogeneity of data we proposed two approaches to patient stratifica-

tion. The first consists in assigning a new patient to a progression group according to his/her

progression rate and use specialized models for each group to predict the target outcome. Al-

though the models for each group do not show overall improvements compared to the baseline

models, we proved that, in fact, for the two more dissimilar groups (Slow and Fast Progressors)

the models only classifies correctly one of the classes. In this scenario, we showed the need for

patient stratification to create specialized models, as generic models tend generalize around a

group of patients that are more representative of the overall population. The disease progression

groups approach resulted in a paper that was submitted and accepted in The Sixth Workshop on

Data Mining in Biomedical Informatics and Healthcare 2018. It will be presented on November

17th in Singapore, held in conjunction with the IEEE International Conference on Data Mining

(ICDM’18).

The second approach consists in grouping similar patient evaluation in order to create patient

profiles. Four sets of patient profiles were created (one for each clinical profile): General, Prog-
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nostic, Respiratory, and Functional. For each clinical profile we then compute patient profiles
by clustering the patient evaluation into similar groups. The models trained using the patient
profiles from the General and Functional set of clinical profiles showed better results than the
others and even better results than those obtained by the baseline models. These profiles reached
AUC’s of over 96% for the time window of 365 days when using LOCF imputation, being the
best results achieved for the NIV prediction. Once again, we showed that patient stratification
is a useful tool and that specialized prognostic models can better predict the need for NIV for
ALS patients.

6.2 Future Work

As future work, we propose creating an Ensemble using either all or a subset of the best models
for each approach (Baseline, Disease Progression Groups and Patient Profiles). The Ensemble
allows patients data to be used by several models and the final prediction will be based on the
majority voting of all models. Hopefully, by gathering the advantages of each model into one
place, we will be able to enhance our predictions.

The approaches proposed in this thesis are not exclusive to the NIV prediction. Therefore,
replacing the clinical outcome would be interesting. One alternative could be to create models to
predict other functional outcomes, such as knowing when the patient will need to use a wheelchair,
knowing when the patient will lose the ability to speak, and other functional outcomes.

Temporal Data Mining is a sub-area data mining aimed to find temporal patterns and models
to explain the data being analyzed. By using the aforementioned methods to find temporal
patterns to be used by the prognostic models would be an interesting proposal to try to improve
our models.

Creating models using classifiers that are sensitive to time constraints is also important. Thus,
future work should tackle the creation of Time-Dependent Models for prognostic prediction in
ALS.
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Abstract—Amyotrophic Lateral Sclerosis (ALS) is a neurode-
generative disease highly known for its rapid progression, leading
to death usually within a few years. Respiratory failure is the
most common cause of death. Therefore, efforts must be taken
to prevent respiratory insufficiency. Preventive administration of
non-invasive ventilation (NIV) has proven to improve survival in
ALS patients. Using disease progression groups revealed to be of
great importance to ALS studies, since the heterogeneous nature
of disease presentation and progression presents challenges to
the learn of predictive models that work for all patients. In this
context, we propose an approach to stratify patients in three
progression groups (Slow, Neutral and Fast) enabling the creation
of specialized learning models that predict the need of NIV within
a time window of 90, 180 or 365 days of their current medical
appointment. The models are built using a collection of classifiers
and 5x10-fold cross validation. We also test the use of a Feature
Selection Ensemble to test which features are more relevant to
predict this outcome. Our specialized predictive models showed
promising results, proving the utility of patient stratification when
predicting NIV in ALS patients.

Index Terms—Amyotrophic Lateral Sclerosis, Patient Stratifi-
cation, Prognostic Prediction, Disease Progression Groups

I. INTRODUCTION

Amyotrophic Lateral Sclerosis (ALS) is a devastating dis-
ease characterized by the progressive loss of motor neurons in
the brain and spinal cord [1]. Patients with ALS generally die
from respiratory failure within 3 to 5 years [2]. However, due
to the heterogeneity of the disease, some patients die in less
than a year from disease onset, while some can live with it for

*Corresponding Authors

over 10 years [3]. This aspect of the disease hinders our un-
derstanding of it, making it difficult to provide early diagnosis
and develop treatments based on disease progression.

Although approximately 10% of patients has a family his-
tory of ALS, genetic factors are not the only cause. Epigenetic
factors, as well as environmental and internal factors, can have
a role in the causality of the disease [4]. At the moment there
is no cure to ALS. Thus, efforts to maintain the quality of life
and improve the prognosis are imperative.

Respiratory Muscle weakness, leading to respiratory failure,
is the most common cause of death in ALS patients. Thus,
clinicians should take especial attention to early signs of
respiratory insufficiency [5]. Non-invasive ventilation (NIV)
is generally used in ALS to improve prognosis and quality of
live [6].

In this context, Carreiro et al. [7] proposed a prognostic
prediction approach to predict the need for NIV in ALS pa-
tients given a predefined time window. The use of demographic
and clinical data together with state of the art data mining
techniques provided a tool that can help clinicians to anticipate
prescription of NIV and possibly improve patients’ prognosis.

Due to ALS heterogeneous nature, special attention has been
given in recent years to patient stratification. The idea is that
designing specialized models using groups of patients who are
similar either according to their progression [8] or to sets of
prognostic biomarkers [9], may eventually help to understand
the underlying mechanisms of the disease, providing a new
perspective on how to plan clinical trials and better manage the



disease. The DREAM-Phil Bowen ALS Prediction Prize4Life
Challenge [10] encouraged researchers to use clinical trial
data to predict disease progression in 3 to 12 months, leading
to several proposals that helped validating various prognostic
features described in the literature [8].

In this work, we revisit the work of Carreiro et al. [7] using
the follow-up data from our ALS clinic. We also propose an
for patient stratification using the patients’ progression rate.
We divide patients into three separate disease progression
groups (Slow, Neutral and Fast). For each group we train
specialized models to predict the need for NIV, within a given
time window (k days) from the date of current appointment.
Given that patients usually have medical appointments every
3 months, we use three time windows: 90, 180, and 365 days.

II. METHODS

First we provide an overview of data used in this work. Our
data comprises demographic, clinical, and genetic information
from 1220 ALS patients observed from 1992 until March
2018. It has 27 features, most of them known prognostic
biomarkers for ALS. These features can be divided into two
groups: static and temporal. Static features do not change over
time, such as demographic and genetic features. Temporal
features are clinical tests that are usually measured at each
appointment (every 3 months). Table I presents the features
used in this work.

Figure 1 illustrates our baseline approach (following Car-
reiro et al. [7]): ”Given a patient’s current condition, can
we predict the need for NIV in a predefined time window
(k days)?”. To tackle this problem we follow the workflow
presented in Figure 2. First we need to transform data into
snapshots and then into learning examples, according to the
chosen time window. Then we optionally run a feature se-
lection ensemble to select the best features for classification.
We then build the models from various classifiers that try to
predict the need for NIV according to the previously chosen
time window. After the models are trained, when a new patient
goes to an appointment, his/her data is fed to the predictive
model that predicts whether or not the patient will require the
use of NIV within k days.

In our proposed approach we will also aim at predicting
the need for NIV in k days. However, we perform patient
stratification using patients’ disease progression rate to create
three disease progression groups: Slow, Neutral, and Fast
Progressors. Then, we build specialized models using data
from each group, aiming to improve prognostic prediction.
Our revised version of the prognostic prediction problem is
illustrated in Figure 3.

In Figure 4, We adapted the workflow used for the baseline
approach, to account for the use of disease progression groups.
The progression groups are created from the whole population
of patients using the information of their first symptoms and
their first visit. The patients snapshots and learning instances
are created in the same way as before [7]. After created they
are split into separate datasets for each disease progression
group. Then classifiers are trained for each progression group

Fig. 1. Problem Formulation: Given the Patient current condition, can we
predict the need for Non-Invasise Ventilation (NIV) in a predefined time
window (k days)?

Fig. 2. Workflow of the methodology for ALS prognostic prediction using
patient snapshots (following Carreiro et al.). Original data is preprocessed in
order to create patient snapshots, which are then used to create the learning
instances. The models are then built using a stratified 5 x 10-fold cross
validation scheme. The models are then evaluated and the best parameters are
chosen. After the final model is learnt, whenever a new patient is evaluated,
his/her data is fed to the predictive model that outputs a prediction: need or
not need for NIV.

to predict if a patient will need NIV in k days. Once the
models are trained, whenever a new patient comes to an
appointment, we compute his/her progression rate to identify
the corresponding progression group, and his/her data is used
by the specialized model to predict the desired target.

A. Data Preprocessing

In this section we further explain how we preprocess data
in order to be used in the predictive models. First we need to
transform the original data into patient snapshots that have all
the information of a patient’s current state. Then we need to
label those snapshots with an Evolution class. The class has
information about that patient’s need for NIV within a time
window (Yes or No). We also present our approach to create
disease progression groups, using all population.

1) Creating Snapshots and Learning Instances: Data used
in this work is a combination of static data (demographics,
family history, onset evaluation and genetic information),
and temporal data (set of clinical tests performed at each



TABLE I
AVAILABLE FEATURES IN THE ALS DATASET

Static

Demographics Gender Body Mass Index (BMI) Age at onset
Medical and Family History Family History of Motor Neurone Disease (MND)

Onset Evaluation UMN vs LMN Onset Form Diagnostic Delay
El Escorial Reviewed Criteria

Genetic Expression of c9orf72 Mutations

Temporal

Functional Scores ALSFRS* ALSFRS-R* ALSFRSb* R*
ALSFRSsUL* ALSFRSsLL* ALSFRSr*

Respiratory Tests
Vital Capacity (VC) Forced VC (FVC) Airway Occlusion Pressure (P0.1)

Maximal Sniff nasal Inspiratory Pressure (SNIP)
Maximum Inspiratory/Expiratory Pressures (MIP/MEP)

Respiratory Status Date of Non-invasive ventilation (NIV) start

Neurophysiological Tests Phrenic nerve response amplitude (PhrenMeanAmpl)
Phrenic nerve response latency (PhrenMeanLat)

Other physical values Cervical Extension Cervical Flexion
* Scores and Sub-scores of the ALS Functional Rating Scale

Fig. 3. Revised Problem Formulation using Disease Progression Groups:
Knowing the patient current state, as well as his/her disease progression
group can we predict the need for NIV in a given time window, using group
specialized prognostic models?

appointment). In original data, each exam or test is stored
in its separate file, where temporal features are presented as
a multivariate time series. After each appointment, a set of
clinical tests are prescribed to the patient (to be presented at
the next appointment). However, it is common for patients to
not be able to perform all tests in the same day. This makes
it difficult to merge all features into a single observation.
To solve this problem, we follow the approach proposed
by Carreiro et al. [7], that uses a bottom-up hierarchical
clustering with constraints strategy to group exams and tests
that are closer, creating a patient snapshot (a summary of
the patient condition around that time). The constraints are:
1) two evaluations of the same test/exam cannot be in the
same snapshot and 2) there cannot be snapshots where the
patient uses NIV in some exams and does not in others, thus
disrupting class coherence. At the end of this step we have a
snapshot that is composed by static and temporal information
of a patient (at the time around each appointment) and a class
that tells us if the patient was or was not using NIV at the

Fig. 4. Adapted Workflow of the proposed methodology for ALS prognostic
prediction using patient snapshots and disease progression groups. Original
data is preprocessed in order to create patient snapshots and learning instances.
At the same time, original data is used to create the progression groups. The
progression groups and learning instances are then used to create separate sets
of data for each group. The models are built using a stratified 5 x 10-fold cross
validation scheme, evaluated, and the best parameters are chosen. After the
final model is trained, whenever a new patient is evaluated, his/her progression
group is computed and his/her data is fed to the specialized prognostic model.

time. This yields a dataset that can have multiple snapshots
per patient, one for each appointment.

Finally, there is still one additional step to be performed: to
create the learning instances from which the predictive models
will learn from [7]. A single snapshot has only information
about the NIV status at that specific time. However, what we
want to know is the NIV status k days after the appointment
time. To do this, we look to the next appointments of the
same patient to create an Evolution class that takes the value
1 when the NIV status changes (from not needing NIV at the
time of the appointment to needing NIV within the selected
time window), and 0 when the NIV status does not change
in that period of time. Snapshots where the patient already
requires NIV at the current time and snapshots that have no



information about the NIV status after the time we are looking
at cannot be used as learning examples and are thus discarded.
As appointments are usually every three months, we use the
time windows of 90, 180, and 365 days (3, 6, and 12 months
respectively), as recommended by clinicians and the literature
[11].

Figure 5 is an example of the preprocessing steps just
described, adapted form [7].

Fig. 5. Example of creating Snapshots and Learning Instances

2) Creating Disease Progression Groups: ALS is a highly
heterogeneous disease that can present itself in various phe-
notypes. Some phenotypes, such as bulbar palsy, are usually
associated with a worse prognosis, while flail leg or flail arm
are usually associated with a better prognosis [4]. However,
even with this knowledge, it is still difficult to understand
disease progression, and what makes a patient progress faster
or slower.

The ALS Functional Rating Scale (ALSFRS) is a standard
test used by physicians to estimate the outcome of a treatment
or the progression of the disease. Although very popular,
this scale has only a small respiratory component. Given that
respiratory failure is the most common cause of death in ALS
patients, the ALS functional rating scale revised (ALSFRS-R)
was proposed [12]. This new scale adds additional assessments
of dyspnea, orthopnea, and need for ventilatory support, and
quickly became the preferred test to quantify disease pro-
gression [13]. In this scenario, by measuring the change in
ALSFRS-R over time, we can obtain an estimation of how
the disease is progressing and infer about the survival of the
patient [14]. In this work, we build upon this idea and use
it to create three groups of patients with similar progression
rate (with the time of first symptoms and the information
about the patients in their first appointment). We compute the
progression rate, using the following equation:

ProgressionRate =
48�ALSFRSR1stV isit

�t1stSymptoms;1stV isit
, (1)

where 48 is the maximum score for the ALSFRS-R
scale, ALSFRSR1stV isitis the ALSFRS-R score of a
given patient in the first appointment (diagnosis) and
�t1stSymptoms;1stV isit is the time in months between the first
symptoms and the first appointment.

We compute the progression rate for each patient. Then
after analyzing the distribution of the progression rate from
all patients in our dataset, and following consensual clinical
recommendation, we divided the patients in three groups: 25%
of the patients with lower or higher progression rates are
grouped to create the Slow and Fast progressors groups; While
the remaining 50 % of the patients with an average progression
rate are grouped together and called Neutral progressors.

3) Feature Selection: Feature Selection (FS) methods are
known for their capability to improve prediction performance
[15]. These methods select a set of features that better describe
data and reduce the effects of noisy and irrelevant features
[16]. In clinical data, FS is especially useful for two reasons: 1)
Data is usually high dimensional, with high number of missing
values and usually with few observations (known challenges
in machine learning, often called the curse of dimensionality
and curse of sparsity [17]); 2) The set of chosen features can
be of importance to clinicians to know which tests or exams
are more important to the problem under study and also reduce
the number and cost.

In this work, we follow the FS methodology proposed
by [18]. They propose a FS Ensemble (FSE) that combines
both stability and predictability to chose the best features for
prognostic prediction in Alzheimer’s Disease. This ensemble
combines multiple FS algorithms to return a set of features less
biased by the characteristics of each FS algorithms. The FS
algorithms used are: ReliefF, Information Gain, Conditional
Mutual Information Maximization, Minimum Redundancy
Maximum Relevance, and Chi-Squared. This methodology has
two phases: first data is processed by FS algorithms to select a
reduced set of features and then this set of features is optimized
for stability and predictability [18].

B. Predictive Models

After creating learning instances for the main dataset (all
patients) and each disease progression group (for the three
time windows of 90, 180, 365 days), we use them to train the
models that will allow us to predict whether or not a patient
will need NIV k days after the current appointment.

Each dataset was imputed to 6 different classifiers while
using stratified 5 x 10-fold cross-validation (CV) scheme [19].
The classifiers are: Decision Tree (DT), k-Nearest Neighbors
(kNN), Support Vector Machines (SVM) with Polynomial
(Poly) and Gaussian (G) kernels, Naı̈ve Bayes (NB), Random
Forest (RF), and Logistic Regression (LR). All classifiers used
are available in Weka [20].

To deal with imbalanced data, we used a combination of
Random Undersampling [21] and SMOTE [22] techniques.
We used this combination due to two reasons: 1) by only
undersampling the majority class to have equal size to the
minority class, we would be using less data, thus impairing



classifiers (as well as their ability to generalize, due to the
potential loss of variability in the data); 2) SMOTE creates
synthetic learning instances for the minority class by using
kNN to find similar instances to one of the learning examples.
When dealing with a dataset that has a slight imbalance, this
works well, since it creates synthetic instances close to the
original ones, rather than simply oversampling them, which
could lead to model overfitting. However, when dealing with
a highly imbalanced dataset, in order to balance the data, the
number of synthetic instances that are created easily surpasses
the number of true instances of the minority class. As such,
we randomly undersample the majority class, until we have a
class imbalance of 60%/40% between the majority class and
the minority class, and then use SMOTE to oversample the
minority class until we achieve a balance of 50%/50%.

We performed a grid search to find the best parameters
for each classifier. The parameters and corresponding ranges
are detailed in Table II. The best parameters were chosen
according to the best average AUC across the 5 x 10-fold
CV classification results.

For model evaluation several metrics were retrieved, such
as AUC, prediction accuracy, confusion matrix, sensitivity and
specificity.

Regarding FS, we used the methodology presented be-
fore. We performed FS for each time window and disease
progression group. We then created new datasets containing
only the features selected. For the disease progression groups
we also created datasets using the features selected from the
main model, to understand if those features were better for
prediction than the ones specific for each group. We then
compared the models with and without FS using the Wilcoxon
Signed-Rank Test for paired instances [23]. For the disease
progression groups we also compared the results from using
all features with the ones using the features selected for the
baseline model (all patients).

TABLE II
PARAMETERS AND CORRESPONDING RANGES TESTED FOR EACH

CLASSIFIER.

Classifier Parameter Range
DT Confidence factor {0.15,0.20,0.25,0.30}
kNN Nr of Neighbours {1,3,5,7,9,11}
SVM P/G Complexity {10�2,10�1,,101,102}
SVM P Polinomial Degree {1,2,3}
SVM G Gamma {10�3,10�2,10�1,,101,102,103}
NB Kernel {True,False}
RF Nr of Trees {5,10,15,20}
LR Ridge Factor {10�9,10�8,10�7,10�6,10�5,10�4}

III. RESULTS

We first analyze the results from creating Patient Snapshots
and Learning Instances for the time windows of k = 90,
180, and 365 days. Then, we describe the creation of disease
progression groups together with results and show the results
for the FSE. Follows the results using the stratified 5x10 fold
CV for the prognostic models. Finally, we compare the two
approaches (Main and Progression Groups).

Our results are based on a cohort of 1220 ALS patients,
described in Section II. For each patient we analyzed data as
described in Table I. All patients were followed by the same
clinician and all tests and exams were preformed using the
same procedure, to reduce clinical bias.

A. Creating Snapshots and Learning Instances

The approach used to create patient snapshots, consists in
a bottom-up hierarchical clustering with constraints. From the
1220 patients only 1070 could be used to create snapshots, as
the other 150 patients either had NIV at the time of the first
appointment, or the information about their NIV status was
unavailable.

Using this 1070 patients, we were able to create 5553 patient
snapshots, resulting in an average of 5.19 snapshots per patient
(15.57 months of follow-up data for each patient on average).

From these snapshots we created the learning instances for
each time window to be used by the FSE and classifiers. This
consisted in creating an Evolution class (E), where E=1 if
the patient evolves to needing NIV in k days, and E=0 if the
patient does not evolve to need NIV in that time period. Table
III shows the results for each value of k.

TABLE III
STATISTICS AND CLASS DISTRIBUTION FOR TIME WINDOWS OF K=90,

180 AND 365 DAYS

k 90 180 365
Nr of Snapshots 3178 3018 2762
Nr of Patients 861 823 775

Snapshots p/ Patient 3.69 3.67 3.56
Evolution (E=1) 559 (17.59%) 906 (30.02%) 1342 (48.59%)

No Evolution (E= 0) 2619 (82.41%) 2112 (69.98%) 1420 (51.41%)

Table III shows that the number of snapshots decreases
with the increasing of k. This is due to the fact that for
some snapshots we no longer have information about their
NIV status within these time window. The same goes for the
number of patients, since some patients require NIV soon after
their first appointment. The class distribution shows that in the
first time window of 90 days, less than 20% evolve to NIV.
However, when in the window of 365 days, the number of NIV
evolutions rises to 50%. This is expected since the probability
of a patient requiring NIV increases when we consider longer
periods of time, meaning that if we extended k, the number
of instances where E=1 would continue to increase while
instances with E=0 would keep decreasing. By extending k
to a period long enough we believe a class distribution of
100%((E=1)/0%(E=0) would be reached.

B. Creating Disease Progression Groups

To create the disease progression groups we start by com-
puting the progression rate for each patient. Using (1) we
calculate the change in the ALSFRS-R scale over a period of
time. We chose to use the change between the first symptoms
and the first appointment (following clinical advice), since
after the 1st appointment the progression rate usually remains
constant. Out of the 1220 patients, only 1093 were used
to create the progression groups, due to the fact that some



patients did not have information on either the ALSFRS-R
scale or the interval between the first symptoms to the first
visit (Diagnostic Delay).

Figure 6 shows the progression rate distribution for all
patients. Similar results for the disease progression rate dis-
tribution were obtained by [24], although using the change
in ALSFRS rather than ALSFRS-R, suggesting that the dis-
tribution obtained is not specific to our ALS population. We
then divided the patients as aforementioned, by creating three
disease progression groups: Slow, Neutral and Fast progres-
sors. This resulted in 271, 552, and 270 patients in each
group respectively. By using the whole population to create
the groups, we allow their use for other problems, such as
predicting other outcomes.

Fig. 6. Progression Rate Distribution among all patients.

After the progression groups were created, we merged the
information each patient’s group with the learning instances
created before, to create datasets for each group and time
window. The class distribution and statistics for each group
are presented in Table IV, where we see that Slow progressors
have more Snapshots per Patient than the other groups, and
that Fast progressors have less snapshots than the other groups.
This is in accordance with our expectations, as Slow pro-
gressors have a lower progression rate, meaning they survive
longer, thus having more follow-up appointments. The number
of patients for each time window is also higher in Slow
progressors than in Fast progressors, despite the fact that they
had almost the same number of patients when the groups were
created. This is because Fast progressors evolve faster before
k and some of them arrive to the clinic already using NIV,
thus not being used to create learning instances.

Finally, by looking at class distribution we observe that, as
before, the instances with E=1 tend to increase with the value
of k. However, class distribution for Fast and Slow progressors
differs reasonably from class distribution for the datasets with
all patients. Neutral progressors have a class distribution closer
to the overall population. Slow progressors have less instances
with E=1, having in the longer k of 365 days less than 25%
of evolutions (approximately half of what we have using all

instances). Regarding Fast progressors we observe the opposite
from Slow progressors in terms of class distribution. Here the
number of E=1 instances is in total ~35% for the smaller k of
90 days and goes up to ~77% for the longer k of 365 days.

TABLE IV
STATISTICS AND CLASS DISTRIBUTION FOR TIME WINDOWS OF

K=90,180,365, FOR EACH DISEASE PROGRESSION GROUP

k 90 180 365
Slow Progressors

Nr of Snapshots 1242 1191 1090
Nr of Patients 215 210 200

Snapshots p/ Patient 5.78 5.67 5.45
Evolution (E=1) 88 (7.09%) 163 (13.69%) 269 (24.68%)

No Evolution (E= 0) 1154 (92.91%) 1028 (86.31%) 821 (75.32%)
Neutral Progressors

Nr of Snapshots 1459 1390 1278
Nr of Patients 441 425 399

Snapshots p/ Patient 3,31 3,27 3,20
Evolution (E=1) 328 (22.48%) 527 (37.91%) 801 (62.68%)

No Evolution (E=0) 1131 (77.52%) 863 (62.09%) 477 (37.32%)
Fast Progressors

Nr of Snapshots 384 348 311
Nr of Patients 171 158 148

Snapshots p/ Patient 2.24 2.20 2.10
Evolution (E=1) 131 (34.11%) 193 (55.46%) 238 (76.53%)

No Evolution (E=0) 253 (65.89%) 155 (44.54%) 73 (23.47%)

C. Feature Selection

Table V shows the features selected for each dataset by
the FSE. Most of the selected features across all datasets are
recognized in the literature as prognostic indicators in ALS
patients. Since we are predicting a respiratory target, we would
expect that respiratory features would be more important than
other features regarding other aspects of the disease. Those ex-
pectations were somewhat confirmed. However, demographic
features are also relevant for the prognostic models.

There are differences between the features selected for each
group. Slow progressors tend to need more features to build
good prognostic models, while Fast progressors seem to rely
on fewer features. Moreover, while in Slow progressors, for
longer time windows the number of selected features dimin-
ishes, in Fast progressors it is exactly the opposite. In Neutral
progressors, the selected features are actually the same for all
values of k. The differences in the selected features between
the progression groups is also important to the clinicians, since
knowing which tests and exams are more important for each
patient, can save time and resources, which in turn can lead
to a better prognosis.

Features such as family history and region of disease-onset
are described in literature as independent prognostic predictors
for ALS. However, they were not selected by the FSE. This
does not mean that those features are not important in the
global view of ALS, but rather that they are not the best
predictors for the problem presented in this work. Prognos-
tic Features in literature are mainly from studies predicting
survival and functional declines. However, they may not be
the most useful for other approaches, datasets or outcome
predictions.



TABLE V
SELECTED FEATURES

All Patients Slow Progressors Neutral Progressors Fast Progressors
Features 90 d 180 d 365 d 90 d 180 d 365 d 90 d 180 d 365 d 90 d 180 d 365 d
Gender
Age at Onset X X X X X X X X X X X
BMI X X X X X X X X X X X X
Family History MND
Diagnostic Delay X X X X X X X X X
El Escorial Reviewed Criteria
UMN vs LMN
Onset form X
c9orf72 X X
ALS-FRS X X X X X X X X X
ALS-FRS-R X X X X X X X X
ALS-FRSb X X X X X X
ALS-FRSsUL X X X X X
ALS-FRSsLL X X X X X
ALS-FRSr X X
R X X X X X
VC X X X X X X X X X X X X
FVC X X X X X X X X X X X X
MIP X X X X X X X X X X
MEP X X X X X X X X X X
P0.1 X X X X X X X
SNIP
PhrenMeanLat X X X X X X
PhrenMeanAmpl X X X X X X
Cervical Flexion
Cervical Extension

Although there are some differences in the selected features,
there is a subset of features that is selected in almost all
datasets. Age at onset, Body Mass Index (BMI), Disease
Duration, ALSFRS, FVC, and Vital Capacity (VC) are some
of the most frequent features, being selected at least 75% of
the time. Three features are selected 100% of the time (BMI,
FVC, and VC) making them the most important features to
predict whether a patient will require NIV or not k days from
his current appointment. It is no surprise that FVC is one of the
most important features, since it is one of the most common
tests used to evaluate respiratory declines in ALS [28].

D. Learning Predictive Models

We now look at the results of the predictive models. For
each model, we followed a stratified 5 x 10-fold CV scheme,
followed by a grid search to check for the best parameters for
each classifier. The classifiers used were: Decision Trees (DT),
k-Nearest Neighbors, Support Vector Machine (SVM) with
Polynomial (P) and Gaussian (G) kernels, Naı̈ve Bayes (NB),
Random Forest (RF), and Linear Regression (LR). To evaluate
the models, three metrics were chosen: AUC, Sensitivity, and
Specificity. AUC is used to perform model comparisons, since
it combines the results of the other two metrics.

We first run all the classifiers for the main models (with
all snapshots for all patients) to build our baseline classifiers.
Results are presented in Table VI.

These baseline results show that the performance of all
classifiers improves for longer values of k. This can be due
to the lower class imbalance for the longer time windows.
Moreover, three of the classifiers (NB, RF, and LR) show
better performances than the rest. These results can also be

TABLE VI
BASELINE RESULTS: AUC, SENSITIVITY, AND SPECIFICITY RESULTS FOR

THE PROGNOSTIC MODELS FOR 90, 180, AND 365 DAYS. THE
CLASSIFIERS ARE: DECISION TREES (DT), K-NEAREST NEIGHBORS,

SUPPORT VECTOR MACHINE (SVM) WITH POLYNOMIAL (P) AND
GAUSSIAN (G) KERNELS, NAÏVE BAYES (NB), RANDOM FOREST (RF)

AND LINEAR REGRESSION (LR).

DT kNN SVM P SVM G NB RF LR
UC

90d 72.21 68.56 62.63 58.92 79.84 80.74 79.15
180d 74.79 69.81 63.30 58.64 80.57 85.27 79.68
365d 71.27 71.51 70.56 61.54 82.25 89.20 80.21

Sensitivity
90d 60.47 58.71 66.98 69.30 69.87 68.55 69.41
180d 63.62 52.65 69.60 67.99 73.22 70.73 72.30
365d 75.10 67.96 70.61 71.49 78.41 82.07 73.85

Specificity
90d 74.81 69.93 58.29 48.53 74.99 77.60 74.78
180d 74.01 76.15 57.01 49.29 73.94 81.35 72.47
365d 60.68 63.59 70.51 51.51 71.96 80.66 73.55

observed in the models proposed by [7]. However, the results
obtained here outperform those models. This improvement
can be due to the changes in the pipeline and/or by the
larger amount of data used. Moreover, contrary to previous
results, where there was a great imbalance in the values of
sensitivity and specificity, ours are more balanced. This is a
great improvement. Overall, the results obtained are promising
for all time windows, with some measures above 80% and one
result very close to 90%.

Although all classifiers present acceptable AUC values, for
clarity sake and due to space restrictions, we use the best 3
classifiers (NB, RF and LR) for the following tests.

After training the baseline classifiers for each time window



using all features, we built the classifiers for the datasets, using
the features selected by the FSE. We then compared them to
see if the models with less features perform at least as good
as the ones using all the information available. The results for
this test are presented in the Table VII.

Comparing AUC results, we see that for most models, the
results are better when using all features rather than using
the set of selected features. FS methods usually have better
results in situations where the number of features is higher
than the number of observations. In our case, the number of
observations is higher and thus the models benefit from using
more features.

Although the results suggest that the models without FS
are better then the ones with it, we performed the Wilcoxon
Signed-Ranks Test for Paired Samples to check if the dif-
ferences between them were statistically significant. The test
wielded a p-value of 0.0284, meaning that the differences
are indeed significant. Therefore, the baseline models used to
predict the use of NIV should be the ones using all features.

We follow by using the same FS approach for the progres-
sion groups. We also tested how the models performed when
using the features selected for the baseline results for each
group to see how they compared to the specific feature set in
terms of model performance. Table VIII presents these results.

By comparing with baseline results, we can see that in terms
of AUC, baseline results are apparently better for the Fast and
Neutral progressors and worse for Slow progressors. However,
we highlight that this does not mean that the baseline models
are better at predicting those groups than the actual specialized
models. The results also seem to be better for the larger time
windows, with an exception for the Fast progressors, where
the window of 180 days shows the best results. This could
be due to the decreasing number of learning instances that
can be deteriorating the model’s performance. This is also the
group with the lower results, probably due to the difference
in number of learning instances.

Similarly to the baseline models, the results using the FSE
are be overall lower than when using all features. Furthermore,
the results with the selected features for the baseline models
are also lower. As before, we used the Wilcoxon Signed-
Ranks Test for Paired Samples to check if the differences
were high enough to be statistically significant. We obtained
p-values of 0.8288 and 0.0014 (not statistically significant
and statistically significant) when comparing the all feature
models to the results using the specific FS features and using
the baseline FS features, respectively. Thus, we can conclude
that using the baseline set of features is detrimental to the
models performance in the progression groups. However, the
differences between the no FS and the FS models for each
group is not high enough to be statistically significant. As such,
using the models with the FSE features should be preferred,
since a lower number of features leads to simpler models,
which generalize better.

E. Comparing Baseline and Disease Progression Groups

To better compare baseline and disease progression groups
results, we trained the classifiers using all instances labeled
with the progression group (not used in the classifiers). Then
we retrieved the predictions for each instance and computed
the confusion matrix and AUC to retrieve the necessary
information to better compare the two approaches. The goal
was to evaluate how well was the baseline model classifying
patients from each group individually. Table IX shows the
results for the NB classifier.

The AUC results for each group in Table VIII and Table
IX are similar. However, when looking at sensitivity and
specificity, we observe that the results are very different and
groups are indeed relevant.

Regarding Slow progressors, sensitivity and specificity mea-
sures are highly imbalanced (very high specificity and very
low sensitivity), meaning that the baseline model is correctly
classifying negative instances and poorly classifying positive
instances. The opposite can be seen with Fast progressors,
where the baseline model correctly predicts almost all positive
instances but incorrectly classifies the majority of negative
instances. Moreover, results for the Fast progressors show that
the AUC difference between approaches is higher than that of
other groups. Once again this can be due to the fewer number
of instances hindering the classifiers performance.

Neutral progressors show closer results between approaches.
This is probably due to the fact that this group gives a higher
contribution in terms of patients and learning instances to the
baseline model, as well as being more representative of the
average of the population. This means that the results for
the baseline model generalize around the Neutral progressors,
thus it predicts better the instances from that group (or the
ones from the other groups that are closer to them). For the
instances that are dissimilar, the model tries to predict the
outcome, but generally fails. Using specialized models for
the groups ensures that each model learns with a subset of
patients that are similar to each other, generalizing around a
less heterogeneous set of patients.

The results show that there are benefits in using the spe-
cialized models for the disease progression groups rather than
the baseline ones, provided that we are able to compute the
disease progression group of the patient. In this scenario,
patient stratification thus proves useful when predicting NIV.

IV. CONCLUSIONS AND FUTURE WORK

We propose an approach using patient stratification, and
prognostic prediction to tackle a known problem in ALS liter-
ature: prognostic prediction of NIV. We created three disease
progression groups (Slow, Neutral and Fast progressors) to
learn specialized prognostic models that predict the need of
NIV within predefined time windows of 90, 180, and 365
days. The results are promising, achieving up to 91% in AUC
for Slow progressors in 375 days. We also tested a Feature
Selection Ensemble outputting set of features that are more
important for the prognostic models. These features can help
clinicians understand what are the best tests and medical



TABLE VII
BASELINE RESULTS: AUC, SENSITIVITY AND SPECIFICITY RESULTS FOR THE PROGNOSTIC MODELS FOR THE 90, 180 AND 365 DAYS TIME WINDOWS.
ORIG IS THE ORIGINAL DATASET, FS IS THE DATASET WITH FEATURES SELECTED BY FEATURE SELECTION ENSEMBLE (FSE). THE CLASSIFIERS ARE:

NAÏVE BAYES (NB), RANDOM FOREST (RF) AND LINEAR REGRESSION (LR).

AUC Sensitivity Specificity
NB RF LR NB RF LR NB RF LR

90d
Orig 79.84 80.74 79.15 69.87 68.55 69.41 74.99 77.6 74.78
FS 79.05 77.48 79.29 76.06 71.34 74.78 67.25 68.23 69.98

180d
Orig 80.57 85.27 79.68 73.22 70.73 72.3 73.94 81.35 72.47
FS 77.51 82.02 78.21 74.61 74.5 73.77 66.36 73.45 68.5

365d
Orig 82.25 89.20 80.21 78.41 82.07 73.85 71.96 80.66 73.55
FS 79.91 88.95 80.46 74.63 82.07 75.02 70.77 80.9 72.21

TABLE VIII
RESULTS WITH DISEASE PROGRESSION GROUPS: AUC, SENSITIVITY AND SPECIFICITY RESULTS FOR THE PROGNOSTIC MODELS FOR 90, 180 AND 365

DAYS, WHEN USING DISEASE PROGRESSION GROUP. ORIG IS THE ORIGINAL DATASET, FS IS THE DATASET WITH FEATURES SELECTED FOR EACH
PROGRESSION GROUP BY THE FEATURE SELECTION ENSEMBLE (FSE), AND ORIG IS THE DATASET USING THE FEATURES SELECTED FOR THE MAIN

MODELS. THE CLASSIFIERS ARE: NAÏVE BAYES (NB), RANDOM FOREST (RF) AND LINEAR REGRESSION (LR).

AUC Sensitivity Specificity
NB RF LR NB RF LR NB RF LR

Slow
90d

Orig 81.11 81.11 74.15 70.91 69.55 64.09 79.41 75.58 73.99
FS 82.24 79.77 79.17 72.27 68.86 70.45 76.79 73.97 75.06

Orig FS 80.60 76.48 77.91 77.05 70.91 71.59 73.29 69.84 72.69
180d

Orig 85.21 86.51 80.94 77.42 72.27 72.88 80.88 83.29 77.67
FS 84.78 85.72 82.50 75.58 74.11 73.50 79.73 80.64 78.79

Orig FS 81.07 82.11 80.64 79.14 72.76 75.21 70.04 75.86 73.99
365d

Orig 84.40 90.58 80.22 73.16 78.29 69.52 80.56 85.87 77.47
FS 82.27 88.92 82.71 75.54 80.00 73.01 75.44 82.39 75.98

Orig FS 82.24 88.66 82.77 75.61 79.33 73.38 75.42 81.78 76.22
Neutral

90d
Orig 77.29 76.20 74.88 67.74 58.17 64.88 74.06 77.84 71.71
FS 76.34 74.94 77.43 68.66 62.87 69.57 71.18 72.25 72.36

Orig FS 75.75 72.74 76.06 70.30 60.24 68.84 67.06 70.47 69.05
180d

Orig 75.32 81.61 74.68 60.91 62.01 63.76 77.27 82.92 72.84
FS 75.78 80.24 76.62 66.72 65.24 66.22 73.02 78.61 73.42

Orig FS 72.42 77.78 71.89 67.13 60.46 65.88 64.26 77.71 66.56
365d

Orig 74.40 85.71 73.54 70.64 78.80 68.76 67.04 77.06 66.50
FS 75.27 83.93 75.43 59.48 68.39 68.29 79.45 82.01 71.78

Orig FS 71.74 84.10 72.22 60.85 66.77 65.74 73.04 82.39 68.89
Fast
90d

Orig 72.69 71.82 74.94 63.66 51.30 61.37 74.39 76.68 77.39
FS 72.62 72.43 70.45 75.88 62.44 64.12 58.58 70.12 65.06

Orig FS 72.97 70.37 75.04 68.40 64.12 68.09 66.64 65.30 69.96
180d

Orig 71.48 81.23 70.56 65.28 70.57 68.81 68.00 75.61 61.55
FS 70.62 81.26 69.14 61.14 66.22 60.10 67.35 76.26 63.23

Orig FS 70.47 79.73 70.02 59.59 67.56 62.80 71.61 74.58 65.29
365d

Orig 65.60 79.41 65.02 64.96 74.37 68.15 57.26 71.23 51.23
FS 69.57 77.52 63.00 56.13 65.71 59.08 72.60 72.33 55.07

Orig FS 66.97 75.54 60.51 54.54 64.03 57.06 67.40 70.14 55.34



TABLE IX
DETAILS OF BASELINE RESULTS FOR EACH PROGRESSION GROUP: AUC,
SENSITIVITY AND SPECIFICITY RESULTS FOR THE PROGNOSTIC MODELS
FOR 90, 180 AND 365 DAYS RELATIVE TO EACH DISEASE PROGRESSION

GROUP. THE CLASSIFIER IS NAÏVE BAYES (NB).

Sensitivity Specificity AUC
90d

Slow 33.41 94.52 81.88
Neutral 68.54 71.03 76.48

Fast 85.04 34.7 68.36
180d

Slow 40.86 95.91 85.31
Neutral 69.15 68.76 75.22

Fast 84.87 31.87 66.11
365d

Slow 51.45 92.98 84.3
Neutral 78.72 55.81 74.44

Fast 90.84 31.87 66.37

exams to predict the need for NIV. The models created can be
a useful tool for clinicians, either to reinforce the decision of
prescribing or not NIV, or to help them decide when in doubt.

The proposed approach based on disease progression groups
is not restricted to predict NIV. In future work we plan to apply
it to prognostic prediction of other clinical outcomes, such as
functional declines.

We reinforce the need for patient stratification when study-
ing heterogeneous diseases such as ALS. We showed that
when we learn with all patients (disregarding how different
they are) in the same model, we risk to obtain a model that
only performs well for a subgroup of patients and not for the
whole population. Furthermore, by having specialized models
to address different groups of patients, we are able to provide
a more personalized care to each patient needs, thus improving
prognosis and quality of life.
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