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Abstract 

According to classical molecular chemistry, molecules have a structure, that is, they are sets 

of atoms with a definite arrangements in space and held together by chemical bonds. The 

concept of molecular structure is central to modern chemical thought given its impressive 

predictive power. It is also a very useful concept in chemistry education, due to its role in the 

rationalization and visualization of microscopic phenomena. However, such a concept seems 

to find no place in the ontology described by quantum mechanics, since it appeals to classical 

notions such as the position of the atomic nuclei or the individuality of electrons. Although 

this problem has attracted the attention of several authors, the discussion is far from settled. 

Some authors adopt an explicitly reductionist position and advocate to reconstruct the concept 

of molecular structure within the framework of the quantum theory. Others, although 

acknowledging the conceptual discontinuity between quantum mechanics and molecular 

chemistry, keep the hope of future reduction alive. From an explicitly non-reductionist 

position, on the contrary, others authors conceive molecular structure as an emergent 

phenomenon. 

The purpose of this article is to propose a different line of argumentation to address 

this problem. By contrast to reduction and emergence, the admission of a multiplicity of 

ontologies, not necessarily linked by hierarchical connections, cancels the need of finding a 

relation of dependence between the molecular level and the quantum level. This ontologically 

pluralist position can be applied to the issue of molecular structure, in order to argue that it is 

possible to admit the existence of structure in the ontology of molecular chemistry, in spite of 

the fact that it does not exist in the quantum world. 
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1.- Introduction 

According to classical molecular chemistry, molecules have a structure, that is, they are sets 

of atoms with a definite arrangements in space and held together by chemical bonds. The 

concept of molecular structure is central to modern chemical thought given its impressive 

predictive power. It is also a very useful concept in chemistry education, due to its role in the 

rationalization and visualization of microscopic phenomena. However, such a concept seems 

to find no place in the ontology described by quantum mechanics, since it appeals to classical 

notions such as the position of the atomic nuclei or the individuality of electrons, both ideas 

strongly challenged in the quantum context.  
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Although this problem has attracted the attention of several authors, the discussion is far 

from settled: the views about the link between quantum concepts and the notion of molecular 

structure diverge markedly. Some authors adopt an explicitly reductionist position and 

advocate to reconstruct the concept of molecular structure within the framework of the 

quantum theory. Others, although acknowledging the conceptual discontinuity between 

quantum mechanics and molecular chemistry, keep the hope of future reduction alive. From 

an explicitly non-reductionist position, on the contrary, others authors conceive molecular 

structure as an emergent phenomenon which, although irreducible to quantum mechanics, 

ontologically depends on the underlying quantum domain. 

The purpose of this article is to propose a different line of argumentation to address 

this problem. By contrast to reduction and emergence, the admission of a multiplicity of 

ontologies, not necessarily linked by hierarchical connections, cancels the need of finding a 

relation of dependence between the molecular level and the quantum level. This ontologically 

pluralist position is not new in the discussions about the relationships between chemistry and 

physics. Sometimes rooted in a philosophically Kantian framework, ontological pluralism was 

appealed to in order to defend the ontological autonomy of chemistry and the objective 

existence of orbitals. In this case, the aim is to apply that pluralist position to the issue of 

molecular structure, in order to argue that it is possible to admit the existence of structure in 

the ontology of molecular chemistry, in spite of the fact that it does not exist in the quantum 

world. 

2.- Why reduction? 

The idea of ontic reduction has a venerable tradition both in the history of philosophy and in 

the history of science. Already in Pre-Socratic philosophy, the idea of a fundamental stuff 

which everything is made of was the trademark of the Milesian school in its search for 

reducing multiplicity to unity. Although this initial monism was later replaced by an ontic 

picture based on several material principles, the attempt to reduce the diversified empirical 

reality to a simpler underlying realm survived in Empedocles and his four elements and in the 

atomism of Leucippus and Democritus. In Plato’s philosophy, in turn, the principles became 

non-material. Platonic Ideas retained ontological priority over the other ontic items: Ideas did 

not need anything else to exist; the remaining items had a secondary existence since they 

required the primary items to exist sensible things were mere “copies” of Ideas. 

In the Modern Age, the notion of ontic reduction reappeared in two senses. On the one 

hand, the relationship between primary qualities, endowed with ontological priority, and 

merely subjective secondary qualities permeated the philosophy of Locke and the physics of 

Galileo. On the other hand, Ancient atomism, first introduced in Modern Europe by Gassendi, 

was reborn in Boyle’s corpuscular philosophy, which, in turn, strongly influenced later 
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physics, such as Newton’s corpuscular theory of light. The influence of Ancient atomism 

arrived to the nineteenth century through John Dalton’s modern atomic theory.  

Still closer to our times, two of the most famous physicists of the late nineteenth century 

conceived their fields of study in reductive terms. Under the assumption that gases are nothing 

else than particles in mechanical interaction, Boltzmann tried to explain thermal phenomena 

in gases in terms of classical mechanics. Meanwhile, Maxwell devoted much of his scientific 

effort to the reduction of electromagnetic phenomena to mechanical vibrations of a 

luminiferous aether. In both cases, the underlying ontological assumption was that Nature is 

made of mechanical entities governed by Newtonian physics; this assumption was precisely 

what justified the strategies directed to explain the new theories (thermodynamics, 

electromagnetism) by means of classical mechanics. Nowadays, ontic reductionist ideas are 

still ingrained in many areas of science. Perhaps the most striking example is the present-day 

particle physics as embodied in the Standard Model, which supposedly describe those tiny 

elemental entities which the entire reality is composed of.  

Given the long tradition history of the idea of ontic reduction, it is not surprising that it 

also entered the field chemistry. The reductionist stance was stimulated by the optimism 

following the success of quantum mechanics, as expressed by Paul Dirac’s famous claim 

about the explanation of “the whole of chemistry” in quantum terms (Dirac 1929: 714). In this 

way, chemistry turns out to be part of the ontic interdisciplinary hierarchy favored by the 

reductionist view of nature, according to which “chemistry tells us that a piece of wood is 

‘really’ a complicated arrangement of many kinds of molecules bound together; atomic 

physics tells us that molecules are ‘really’ various atoms held together by interatomic forces; 

particle theory tells us that atoms are ‘really’ elementary particles in interaction, and so on” 

(Rohrlich 1988: 295-296). Once the assumption of reduction is admitted, it directly affects the 

concept of molecular structure, since it is not an auxiliary or secondary notion, but a central 

concept of chemistry: molecular structure is “the central dogma of molecular science” 

(Woolley 1978: 1074). As Robin Hendry claims, “molecular structure is so central to 

chemical explanation that to explain molecular structure is pretty much to explain the whole 

of chemistry” (Hendry 2010: 183). 

A representative of an explicitly reductionist stance is Hinne Hettema (2012), who 

considers that molecular chemistry can be reduced to quantum mechanics when the traditional 

definition of reduction is adequately adjusted. According to him, the fail to recognize 

reduction is due to, at least partially, the scarce impact of the recent developments in quantum 

chemistry on the present-day philosophy of chemistry. However, when the relationships 

between molecular chemistry and quantum mechanics are analyzed in detail, Hettema admits 

that the links do not supply a global reduction but only local and partial reductions of 

particular theories of chemistry; they introduce relevant idealizations and approximations that 
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establish loose and non-continuous connections between theories; they even draw concepts 

out of context and re-use them in a manner inadmissible to the theory to which the concepts 

originally belong. In brief, those links supply a liberal notion of reduction, which could even 

be made compatible with non-reductionist positions, so liberal that one is entitled to ask why 

the relationship is still called ‘reduction’ instead of ‘inter-theory link’ (for a detailed criticism, 

see Lombardi 2014a). 

Another reductionist strategy is that relying on the concept of quantum decoherence: 

conceived as the process that accounts for the classical limit of quantum mechanics (Zurek 

1991, 2003), environment induced decoherence would supply the necessary connection 

between the classical concepts of molecular chemistry and the quantum domain (Trost and 

Hornberger 2009). For example, when discussing the problem of optical isomerism, Eric 

Scerri points out that “this problem has gradually begun to dissolve with the growing 

realization of the role of quantum decoherence in physics and other disciplines.” (Scerri 2011: 

4; for a similar claim, see Scerri 2013). However, in the domain of the philosophy of physics, 

a deep skepticism about the relevance of decoherence to the emergence of classicality 

prevails. As Guido Bacciagaluppi (2012) stresses in his article about the role of decoherence 

in quantum mechanics, although naive claims of the kind that decoherence gives a complete 

answer to the measurement problem are still somewhat part of the “folklore” of the matter, 

decoherence as such provides a solution neither to the measurement problem nor, in general, 

to the classical limit problem, at least not unless it is combined with an appropriate 

interpretation of the theory (for specific arguments, see Fortin, Lombardi and Martínez 

González 2016). 

At present, the strongest reductionist strategy regarding molecular structure is that 

represented by the so-called Quantum Theory of Atoms in Molecules (QTAIM), proposed by 

Richar Bader in the decade of 1990’s (Bader 1991, 1994). According to the theory, molecular 

structure can be obtained from the topological properties of the electron density distribution 

function of the system, which is defined in the physical three-dimensional space. The strategy 

consists in computing the zero flux surfaces in the gradient vector field of the electron 

density: the closed two-dimensional zero-flux surfaces divide the molecular three-dimensional 

space into separate mononuclear regions called ‘atomic basins’. On the other hand, the 

positions of the atomic nuclei are identified with relative maximums of the electron density. 

Then, an atom in a molecule is defined as the union of a nucleus and its associated basin. In 

turn, given two atoms, they are bonded if a single line of locally maximum density in three-

dimensional space, termed ‘bond path’ and linking their nuclei, can be identified: the 

existence of a bond path is a universal indicator of chemical bonding. The QTAIM had a 

strong impact in the quantum chemistry community, since it supplied a visually appealing 

picture of a molecule and its structure. This led some authors, such as Hinne Hettema (2012), 

to share Bader’s optimism about his reductionist program: “The time has arrived for a sea 
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change in our attempts to predict and classify the observations of chemistry, time to replace 

the use of simplified and arbitrary models with the full predictive power of physics, as 

applied to an atom in a molecule.” (Bader 2011: 253). However, optimism should be 

moderated by two essential features of the theory. First, as any approach in quantum 

chemistry, the QTAIM relies on the assumption of the Born-Oppenheimer approximation 

(BOA): from being originally considered an innocent approximation, in the last times the 

BOA has been reconceptualized as a substantial addition to quantum mechanics. In fact, the 

BOA introduces the molecular structure into the quantum description from the very 

beginning, when the positions of the nuclei are established with the appeal to classical 

geometric considerations. On the other hand, the assumption of the nuclei at rest in fixed 

spatial positions is in contradiction with the Heisenberg principle, which prevents quantum 

systems from having definite values of position and velocity simultaneously (for a detailed 

argumentation, see Lombardi and Castagnino 2010). Second, the result of using the electronic 

density for each electron of the system instead of the many-electron wave function is a crude 

approximation: the QTAIM works with a fictitious system of independent electrons which has 

the same ground-state density as the quantum molecule, but where all the interactions 

between electrons have been cancelled.  

Although admitting the impossibility of deriving molecular structure from quantum 

mechanics, some authors with reductionist spirit consider that this impossibility is not the 

result of a conceptual obstacle. By contrast, it would be the consequence of our partial 

knowledge of the molecular systems in the theoretical framework of quantum mechanics, a 

limitation that will gradually be overcome in the future. This is the position of Guy Woolley 

and Brian Sutcliffe, when they say: “We have never claimed that molecular structure cannot 

be reconciled with or reduced to quantum mechanics, or that there is something ‘alien’ about 

it; our claim is much more modest. We do not know how to make the connection.” (Sutcliffe 

and Woolley 2011: 94; see also Sutcliffe and Woolley 2012). 

In spite of the prevailing reductionist perspective in the scientific community, during the 

last decades some voices rise to point out the shortcomings of the assumption of reduction in 

the field of chemistry. One of the first authors in stressing those shortcomings was Hans 

Primas, who identified non-locality as the specific feature of quantum mechanics that 

excludes the spatial concept of molecular structure: “the holistic correlations between the 

nuclei and electrons are suppressed, so the description of a molecule reduces to the 

description of the motion in the electrical field of a classical nuclear framework” (Primas 

1998: 91; see also Primas 1983). In a similar vein, Anton Amann recalls that, in order to 

conceive the molecule as an individual object with its own spatial structure, it is necessary to 

ignore quantum correlations: “The shape of a molecular state should of course not show 

holistic correlations to other molecular quantities and hence be unambiguously defined” 

(Amann 1992: 32). In turn, if the state of the molecule determines its properties, the 
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possibility of superpositions has to be dismissed; for instance, in the case of chemical 

isomers: “What is the shape of the hypothetical superposition of these two species? Is there a 

proper reason to exclude such superpositions? What reason can be given from a quantum-

mechanical point of view for chemical systematics?” (Amann 1992: 32). 

In fact, the case of optical isomerism is perhaps the clearest challenge to the assumption 

of reduction. As Wooley himself recognizes, “the existence of isomers, and the very idea of 

molecular structure that rationalizes it, remains a central problem for chemical physics.” 

(Woolley 1998: 3). The so-called Hund’s paradox reads: since chiral states corresponding to 

levo-rotation and dextro-rotation are not eigenstates of the Hamiltonian which is invariant 

under spatial reflection and none of them corresponds to the basal state, why do certain 

chiral molecules display an optical activity that is stable in time, associated to a well-defined 

chiral state?, why are they not in a superposition of the two possible chiral states? (Hund 

1927). More recently, the paradox was formulated in a slightly stronger version (Berlin, Burin 

and Goldanskii 1996): why do chiral molecules have a definite chirality? 

The inability of quantum mechanics to explain optical isomerism is a particular case of 

what can be called, following Woolley and Sutcliffe (1977), the ‘symmetry problem’: if the 

interactions embodied in the Hamiltonian of the molecule are Coulombic, the solutions of the 

Schrödinger equation are spherically symmetrical; however, the asymmetry of polyatomic 

molecules is essential in the explanation of their chemical behavior. On this basis, Robin 

Hendry concludes that “if the acidic behaviour of the hydrogen chloride molecule is conferred 

by its asymmetry, and the asymmetry is not conferred by the molecule’s physical basis 

according to physical laws, then surely there is a prima facie argument that ontological 

reduction fails.” (Hendry 2010: 186). 

The above arguments mainly come from chemists and philosophers of chemistry, who 

express the difficulties found in the scientific practice to supply quantum explanations to 

chemical phenomena. But strong arguments against the idea of reducing molecular chemistry 

to quantum mechanics come also from physics: the reasons come from the very theoretical 

structure of quantum mechanics.  

In 1967, Simon Kochen and Ernst Specker (1967) presented a fundamental theorem that 

proves, in the context of the Hilbert space formalism, that any assignment of a definite value 

to all the observables of a quantum system leads to contradiction. This means that quantum 

mechanics is essentially contextual: definite values can be consistently assigned only in a 

context, that is, to observables that share the same eigenbasis. It is essential to stress that it is 

not the case that the quantum system has definite properties but we do not know which; on the 

contrary, any non-contextual attempt to complete the assignment of properties, no matter how, 

leads to contradiction. It is not the case that the particle has a definite momentum but we do 

not know its position: any assignment of a definite position and a definite position is logically 
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forbidden by the very structure of the theory. Therefore, quantum mechanics challenges the 

traditional principle of omnimode determination, “quodlibet existens est omnimode 

determinatum”, that appears in the works of Christian Wolff (1728), in the famous treatise on 

the calculus of probabilities by Jakob Bernoulli (1713), and is also repeated several times by 

Immanuel Kant in his lectures on metaphysics dating from the 1760s to the 1790s (see the 

edition of 1902). A quantum system is not an individual in the traditional sense, since it has 

properties that have no definite value; and this is not a merely epistemic limitation, but an 

ontological fact described by the theory. 

Another peculiarity of quantum mechanics is the fact that the statistical behavior of 

quantum “particles” does not follow the rules of classical particles: whereas classical particles 

follow the Maxwell-Boltzmann statistics, their quantum counterparts follow Fermi-Dirac or 

Bose-Einstein statistics, which also show that they do not behave as individuals in the 

traditional sense. The category of individual requires some “principle of individuality” that 

makes an individual different from other individuals and that re-identifies it through time 

(French and Krause 2006). Quantum “particles”, by contrast, do not preserve their identity 

when statistically conceived, they are indistinguishable, and this does not depend on the 

complexity of the system, but on the very nature of quantum mechanics. Paul Teller (1998) 

addresses the problem of indistinguishability in terms of the concept of haecceity, as 

introduced by John Duns Scotus in the thirtheenth century: haecceity is what makes an 

individual to be different from all others in some way that trascends all properties. According 

to Teller, quantum mechanics provides good reasons for rejecting any aspect of quantum 

entities that might be thought to do the job of haecceity and, then, support their individuality: 

“I suggest that belief in haecceities, if only tacit and unacknowledged, plays a crucial role in 

the felt puzzles about quantum statistics” (Teller 1998: 122). 

The features of contextuality and indistinguishability specific of quantum mechanics are 

clear obstacles to define molecular structure in terms of the spatial relations of the nuclei 

conceived as individual localized objects. According to quantum mechanics, quantum 

“particles” are not individuals with definite properties, which can be identified as different 

from others and re-identified through time; therefore, they do not have the ontological 

stability necessary to maintain the relations that can lead to the identifiable shape of a 

spatially definite system, as molecular structure requires.  

Another aspect of molecular chemistry, when expressed in quantum terms, is the 

priority conferred to the Hamiltonian of the molecule. As it is well known, a quantum system 

is represented by a Hilbert space, where all the bases are equivalent: there is no theoretical 

reason to prefer a basis over the others. However, chemistry always works in the basis of the 

energy: the interest is always focused on the possible values of the energy and the possible 

eigenstates of the Hamiltonian. Another way of stressing this point is to notice that, in 
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chemistry, it is usual to talk about the time-independent Schrödinger equation; so the 

Hamiltonian seems to have a privilege since contained in the law to be solved. Nevertheless, 

in the context of quantum mechanics, the Schrödinger equation is the dynamical postulate of 

the theory, that is, the law that rules the time evolution of the system. Therefore, talking of a 

dynamical postulate that is ‘independent of time’ sounds, at least, strange from a physical 

viewpoint. Strictly speaking, the so-called ‘time-independent Schrödinger equation’ should be 

conceived as the eigenstate-eigenvalue equation of the Hamiltonian. But, from this 

perspective, it turns out to be clear that one can solve the eigenstate-eigenvalue equation of 

any observable of the system. So, again, the privilege conferred to the Hamiltonian needs to 

be justified. Forgetting this may lead to some reconstructions of the theory that restrict the 

space of observables to a single observable, the Hamiltonian (see Hettema 2012: 264-265), 

depriving quantum mechanics from its specificity, strongly related to the existence of 

incompatible observables. A possible answer to this requirement of justification is that 

chemists are mainly interested in the stationary states of the molecule (eigenstates of the 

Hamiltonian) and in the energy of the molecule in those states. But this assumes that energy is 

always a definite-valued property. However, this is not an innocent assumption since, as 

stressed above, the Kochen-Specker theorem teaches us that not all the observables of the 

system may have definite values simultaneously. From this perspective, the need for the 

justification of the privilege of energy takes the form of the need for the justification of the 

definite-valuedness of the Hamiltonian. In summary, although quantum chemists use the 

resources supplied by quantum mechanics with successful results, this does not mean 

reduction: their applications add certain assumptions not justified in the context of quantum 

mechanics or even inconsistent with the very formal structure of the theory. 

3.- Why emergence? 

By contrast to the notion of reduction, with its venerable and long tradition, the idea of 

emergence has a relatively recent appearance in the history of thought. At the beginning of the 

twentieth century, the so-called ‘British emergentists’ were the first to attempt to understand 

certain scientific phenomena by appealing neither to mechanicism nor to vitalism. From the 

perspective of those first emergentists, most mental, biological and chemical properties and 

processes must be conceived as emergent. However, the rest of the twentieth century, under 

the strong influence of logical positivism, was marked by reductionism. It was only during the 

last decades that the notion of emergence has “reemerged” not only in philosophy, but also in 

the scientific field (Cunningham 2001). The reasons for this revival are varied. One of them is 

the high development of the interdisciplinary field of the sciences of complexity. Another 

reason can be found in the studies about mind and consciousness. Of course, the boom in the 

computational resources to model non-linear dynamical systems has also exerted a great 

influence on the appeal to the notion of emergence in different scientific disciplines. In the 
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field of philosophy, the return of emergentism was possible thanks to the collapse of logical 

positivism, along with its search for the reductive unification of sciences. 

The main difficulty in the discussions about emergence is the fact that there are as many 

meanings of the word ‘emergence’ as authors that use it. The general notion of emergence is 

very appealing: in relation to the entities from which they arise, emergents are usually 

characterized as novel, unpredictable, unexplainable on the basis of a lower level domain. In 

Philip Anderson’s terms, the whole is not merely greater than but essentially different from 

the sum of the parts (Anderson 1972). But as soon as one tries to make the general idea more 

precise, multiple views arise, varying from one author to another. In this sense, Jaegwon Kim 

claims: “The term ‘emergence’ seems to have a special appeal for many people; it has an 

uplifting, expansive ring to it, unlike ‘reduction’ which sounds constrictive and overbearing. 

We now see the term being freely bandied about, especially by some scientists and science 

writers, with little visible regard for whether its use is underpinned by a consistent, tolerably 

unified, and shared meaning” (Kim 2006: 547). For this reason, it is convenient to begin by 

introducing certain terminological precisions. 

A first distinction is that between diachronic and synchronic emergence (Rueger 2000, 

Humphreys 2008). Diachronic emergence is a time process through which a novel item arises 

from a pre-existent domain: the emergent item is genuinely new since it comes into existence 

at a certain time as the result of previous events. Synchronic emergence, by contrast, refers to 

the relationship between a certain item and a lower level: the emergent item arises out of an 

underlying domain, but is neither reducible nor predictable from that domain. It is clear that, 

in the problem of the relations between chemistry and physics, synchronic emergence is the 

relevant concept. Another distinction to be taken into account is that between epistemic and 

ontic emergence (see O’Connor and Wong 2015). Epistemic emergence depends on the 

limitation of human knowledge: it is that limitation what makes the emergent item neither 

explainable nor predictable from the basal level. Ontic emergence, by contrast, refers to the 

relationship between items belonging to different ontic levels, sometimes expressed in 

mereological terms: the emergent items, which arise from a lower level, are ontically new and 

populate reality as objectively as the items belonging to the lower level. 

Robin Hendry (2004, 2008, 2010), who has largely treated the issue of molecular 

structure, clearly distinguishes between the intertheoretic-epistemic and the metaphysical-

ontological aspects of the reduction debate. In fact, reductionists and non-reductionists agree 

in that classical intertheoretic reductions of chemistry are not currently available, but differ in 

how they interpret the situation: “the issue is essentially future directed both sides must wait 

and see, even if they would bet different ways. But why do the two sides make different bets? 

Perhaps the answer concerns their different underlying metaphysical views.” (Hendry 2010: 

184). On this basis, Hendry correctly claims that the debate chemistry-physics must turn to 
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consider the ontic relationships between the entities, processes, and laws studied by the two 

different sciences. In particular, the relationship between quantum mechanics and molecular 

chemistry, embodied in the way in which the molecular structure of a system of several 

electrons and nuclei is explained, must be considered in terms of emergence, conceived as an 

ontological concept that refers to an ontic relation. 

One might suppose that, once the focus is put on synchronic ontological emergence, the 

misunderstandings have been overcome. However, this is not the case: there are 

disagreements about what ontological categories –objects, properties, processes, etc. – may be 

emergent; sometimes emergence is identified with other notions, such as supervenience; there 

is no consensus about whether downward causation is a requiriement for emergence or not; 

etc. This is not the place to discuss all these matters. Nevertheless, despite the many 

disagreements, there are several features shared by almost every emergentist position. 

Virtually all emergentists hold a hierarchical view, according to which reality is organized in 

different ontic levels or strata. In turn, emergence is traditionally conceived as the symptom of 

a failure of reduction. Moreover, emergence is an essentially asymmetric relation: if A 

emerges from B, then B does not emerge from A. Usually, it is said that emergent items have 

novel causal powers, namely, that they are capable of producing genuinely novel effects in 

their own level. If one prefers to avoid the talk about causal powers, it might be said that 

emergents are actively involved in new regularities in their ontic domain. 

Most emergentists base the asymmetry of emergence on physicalism: the belief that 

there are no existent items beyond physical items, and that all real regularities depend on the 

fundamental regularities of the basal domain of physics. This assumption endows the physical 

level with ontic priority over the remaining levels of reality, and this naturally supports the 

theoretical priority of physics over other special sciences. However, physicalist emergentists 

face a conceptual problem: their view seems to contradict the metaphysical principle that 

something cannot come from nothing (O’Connor 1994). In fact, if all the items belonging to 

the non-basal levels are realized by physical items, how can genuine novelty emerge? As 

Alexandru Manafu clearly explains in the particular case of chemical items: “It is hard to miss 

the apparent tension between the two claims made in the preceding paragraphs. If chemical 

stuff is composed of nothing else except micro-physical stuff, how can one justify the belief 

that there are even such things as chemical properties, truths, or explanations as opposed to 

merely complex quantum-mechanical properties, truths, or explanations? Given the 

generality of physics, how can the autonomy of chemistry be preserved in a substantial way, 

i.e., how can chemistry be considered autonomous in a way which goes beyond historical or 

methodological autonomy? If physicalism is true, can we even speak of the ontological 

autonomy of chemistry, as opposed to a merely historical or methodological autonomy?” 

(Manafu 2011: 10). 
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Setting aside for a moment the above difficulty, let us consider the asymmetry essential 

to emergence: this asymmetry means that emergence does not involve mere correlations, but 

requires something else, in particular, ontic dependence: if B emerges from A, B ontically 

depends on A, or, in other words, A has ontic priority over B. The ontic dependence implicit in 

emergence is usually expressed in counterfactual terms, such as ‘if A did not exist, then B 

would not exist either.’ The relevant question regarding the decision about accepting or 

rejecting emergentism is: why to accept the ontic dependence of the emergent level on the 

basal domain? What argument does support the ontic priority of the basal domain over the 

emergent level? Of course, there is no way to decide the truth value of a counterfactual 

proposition beyond any doubt: we always rely on indirect arguments to justify our 

commitment to an ontological thesis like that. In this case, two types of arguments can be 

considered: conceptual and pragmatic. 

The conceptual argument appeals to the scientific reason we have to believe in the 

existence of the basal and the emergent levels: in the field of science, we accept the items –

objects, properties, processes– described by our best theories. In particular, our belief in the 

existence of the subatomic systems described by quantum physics and of the molecules 

described by molecular chemistry are supported by the great success of the respective 

theories. Therefore, we can assess the ontological counterfactual ‘if A did not exist, then B 

would not exist either’ on the basis of the acceptability of its epistemological counterpart: ‘if 

the theory describing A were wrong, then the theory describing A would also be wrong.’ This 

means that we must ask ourselves to what extent the knowledge derived from the theory of 

the emergent level depends on what the basal theory offers: if we did not have access to the 

resources supplied by the theory that describes the ontically prior level, would the knowledge 

of the supposedly dependent level be affected? The answer to this question does no longer 

belong to the ontological field, but refers to what effectively happens in science, and its truth 

value depends on the particular relationships between the two theories. In the particular case 

of the quantum reduction of molecular structure, the question is: would we lose the chemical 

knowledge about molecules if we did not count with the resources supplied by quantum 

mechanics? As Jaap van Brakel explicitly asserts, the answer of this question is mostly 

negative: “If quantum mechanics would turn out to be wrong, it would not affect all (or even 

any) chemical knowledge about molecules (bonding, structure, valence and so on). If 

molecular chemistry were to turn out to be wrong, it wouldn't disqualify all (or even any) 

knowledge about, say, water” (van Brakel 2000: 177). This means that the dependence 

relation between theories does not offer good conceptual arguments for support the ontic 

dependence of molecular structure on the quantum domain.  

The issue of the ontic priority of quantum mechanics over molecular chemistry can also 

be analyzed from a pragmatic perspective, by considering the pragmatic virtues of the two 

theories regarding to what Ian Hacking (1983) calls the intervention on reality. As this author 
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claims, in the discussions about the foundations of science we have paid too much attention to 

theoretical considerations, forgetting the effective practice of science: it is in this pragmatic 

context that the criterion for the existence of scientific entities has to be searched for. 

According to Hacking, we accept the existence of unobservable entities when we can “spray 

them”, that is, when we can use them for intervening in other aspects of nature: “We are 

completely convinced of the reality of electrons when we set out to build and often enough 

succeed in building new kinds of devices that use various well-understood causal properties 

of electrons to interfere in other more hypothetical parts of nature” (Hacking 1983: 265). In 

other words, it is scientific experimental practice, and not descriptive matters about theories, 

which gives us the best support for our commitments about scientific reality. But if this is the 

case, molecular chemistry offers an excellent example of ontic independence. The practice of 

chemistry shows a wide scientific field where it is possible to develop a highly fruitful work 

on the basis of the concept of molecular structure, in spite of the fact that it cannot be reduced 

to quantum mechanics. From this pragmatic viewpoint, “molecular chemistry holds the 

winning card: its astonishing success in the manipulation of known substances and in the 

production of new substances is the best reason for accepting the existence of the entities 

populating its realm. In other words, we are entitled to admit the reality of the molecular 

world inhabited by, among others, chemical orbitals, bonding, chirality, molecular shapes 

on the basis of the impressive fruitfulness of molecular chemistry itself, independently of what 

physics has to say about that matter.” (Lombardi and Labarca 2011: 74). As a consequence, 

not only the theoretical virtues of chemistry, but primarily its pragmatic virtues are the factors 

that play a decisive role in the arguments for the autonomy of the chemical domain and 

against the assumption of ontic dependence (see also Lombardi 2014b). 

Summing up, the crisis of the traditional idea of the reduction of chemistry to physics 

led to the adoption of emergence as a non-reductionist perspective that would overcome the 

difficulties of the reductive view. Nevertheless, emergentism incorporates metaphysical 

assumptions about the ontic dependence of the molecular domain on the quantum realm that, 

far from being scientifically supported, seem to re-edit the traditional hierarchy of sciences 

supported by positivism. 

4.- Ontic plurality: Why not?  

Why is so much ink spilled on the problem of molecular structure? Because the debate 

focuses not on an auxiliary or secondary notion, but on a central concept of molecular 

chemistry: molecular structure is “the central dogma of molecular science” (Woolley 1978: 

1074). More precisely, “[t]he alpha and omega of molecular chemistry is the doctrine that 

molecules exist as individual objects and that every molecule has a shape, characterized by 

its molecular frame” (Primas 1994: 216). In fact, the structure of a molecule plays a central 

role in the explanation of the chemical properties of the corresponding substance: solubility, 
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differences in melting and boiling points, reactivity, acidity, density, polarity, are some of the 

many properties in whose explanation the concept of molecular structure plays an essential 

role. Moreover, geometrical structure is extremely helpful to visualize the object of study of 

molecular chemistry: it is very difficult to imagine a molecule without its geometrical shape 

in three-dimensional space. Additionally, structure is a powerful tool to interpret the result of 

experiments. For example, when we see the result of the imaging of the molecule of 

pentaceno by means of the atomic force microscopy (AFM) technique (see Gross et al. 2009, 

Figure 1), it is difficult to not identify the spatial disposition of the molecule’s atoms in the 

AFM picture. 

It is also very important to emphasize that the concept of molecular structure is not an 

isolated concept, whose reduction to quantum mechanics would merely simplify our picture 

of reality. Molecular chemistry is not a “zoo” of structures that only deserve to be classified 

by geometrical similarities; on the contrary, it is a scientific discipline that involves a body of 

theoretical knowledge that allows chemists to make predictions of chemical properties and to 

operate successfully on reality (we thank Joachim Schummer for drawing our attention to this 

point, see Schummer 1998). Therefore, the existence of the entities, properties and processes 

described by that discipline should be assessed in terms of the success of that very discipline 

and not by means of criteria coming from another disciplinary field.  

On the other hand, in spite of its name, molecular chemistry also includes the study of 

substances, like water, metals, and salts, which obviously evade molecular approaches. In 

turn, structure is not only related to molecules (we thank Guillermo Restrepo for drawing our 

attention to this point): metals and other crystalline substances have structure even if they are 

not composed of molecules; and their structure, given by the spatial relations of their atoms, is 

also essential to their properties and behaviors. This means that there is a wide domain of 

entities, properties and processes whose ontic status is under discussion due to their relations 

to the supposedly underlying quantum domain. As a consequence, when the assumptions of 

reductionism and of emergentism applied to this case manifest their limitations, it is worth 

considering a third philosophical position: ontic pluralism. 

The idea of a plurality of scientific words is not new in the philosophy of science. On 

the basis of his semantic conception of reference, Willard V. O. Quine argues that there is no 

absolute reality: his dictum “To be is to be the value of a bound variable” (Quine 1948) 

implies that different theories have different ontic commitments. Therefore, “all ascription of 

reality must come rather from within one’s theory of the world; it is incoherent otherwise” 

(Quine 1981: 21). In the so-called ‘historicist turn’, it is not difficult to find the idea of 

conceptual relativity that leads to an ontic pluralism. For instance, according to Thomas Kuhn 

(1990), the taxonomic categories used by a speaker of a certain language not only describe the 
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world in a certain way, but also constitute the ontic items that populate that world; therefore, 

speakers of different languages may live in different worlds.  

A very travelled road toward ontic pluralism is that based on transcendental philosophy. 

According to Kant, there exists a reality that is independent of the knowing subject: but it is a 

noumenal realm, which is not object of our knowledge. Speculating about an independent 

ontic domain makes no sense, since there are no ontic items objects, properties, processes 

in the noumenal reality: the noumenon is ineffable, it can only be conceived as a limit of 

thought. The world, inhabited by the objects of knowledge, results from the synthesis between 

the categories of the understanding and the material coming from the experience: thoughts 

without content are empty, intuitions without concepts are blind (Kant 1781: A51, B75; in the 

original: “Gedanken ohne Inhalt sind leer, Anschauungen ohne Begriffe sind blind”). 

Therefore, the world our scientific knowledge refers to is not a mere “epistemologized” 

ontology resulting from our contingent means of access to reality, in the same sense as the 

Kantian system is not an epistemology but a broad philosophical framework that establishes 

the necessary conditions of possibility for knowledge and, therefore, for any meaningful 

scientific discourse. 

After having adopted a precritical realism for years, in his book Reason, Truth and 

History Hilary Putnam defends an explicitly Kantian rooted “internalism”, also referred to as 

“God’s Eye point of view” (Putnam 1981: 49), according to which the world exists 

independently of our theories and consists of some fixed totality of self-subsistent objects. 

According to Kantian-inspired internalism, on the contrary, “‘objects’ do not exist 

independently of conceptual schemes.  We cut up the world into objects when we introduce 

one or another scheme of description.” (Putnam 1981: 52). In other words, objects depend on 

conceptual schemes in a strong sense, which includes existence. Therefore, even though there 

is a reality independent of the subject a noumenal reality, the structure of our world only 

arises from a conceptual scheme. The ontic items resulting from the synthesis between each 

conceptual scheme and the noumenal reality are the only inhabitants of our ontic domain. In 

turn, recognizing that different conceptual schemes may coexist leads to the thesis of 

ontological pluralism, according to which each successful conceptual scheme constitutes its 

own ontic realm. 

Another author directly influenced by Kant’s philosophy is Roberto Torretti, who 

explicitly criticizes metaphysical realists when they “speak persistently of the reality of the 

external world, as if they were disembodied spirits contemplating it from the outside, and, for 

all their godlessness, they put forward a view of it that is only conceivable from the 

standpoint of an omniscient God.” (Torretti 2000: 114). Torretti is interested in recovering the 

elements of Kantian views that are fruitful for the contemporary philosophy of science. So, he 

admits that Kant’s “conception of the understanding as a closed system of rules with full 
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authority over every cognitive judgment makes it virtually impossible to think that there is 

more than one form of understanding, expressed in a single fixed «categorial framework» or 

«conceptual scheme»” (Torretti 2008: 87). Nevertheless, once it is accepted that there is no 

reason why the constitution of the ontic domains of our sciences must be binded by a rigid 

and absolute system of categories, then it is possible to admit that “Kant opens a wide door to 

intellectual pluralism.” (Torretti 2008: 87). 

It is interesting to notice that ontic pluralism has begun to enter also the field of the 

philosophy of biology, when the ontic status of certain central biological concepts is 

discussed. For instance, John Dupré’s “promiscuous realism” can be conceived from an ontic 

pluralist perspective (Dupré 1993): according to the author, contemporary scientific 

understanding of biological species lends little support to essentialism and, as a consequence, 

a variety of more or less cross-cutting classificatory systems is needed (Dupré 2000).  

In the field of the philosophy of chemistry, an explicitly Kantian-rooted ontic pluralism 

has been adopted by Olimpia Lombardi and Martín Labarca (2005, 2006) to defend the 

ontological autonomy of the chemical world with respect to the world of physics. Once it is 

realized that different theories and even different disciplines are accepted at the same 

historical time due to their pragmatic success, it turns out to be clear that different ontic 

realms may coexist to the extent that each one of them is constituted by its corresponding 

conceptual scheme. But since the privileged viewpoint of “God’s eye” does not exist, there is 

not a single “true world” to which all the descriptions must refer: all the ontic domains 

coming from successful science have the same status, since all of them are constituted by 

equally objective descriptions. It is from this viewpoint that the multiple and different 

scientific practices become intelligible. 

This ontic pluralism based on Kantian philosophy has been recently applied to different 

problems in the philosophy of chemistry. In particular, it has been appealed to discussing the 

problem of the existence of orbitals (Labarca and Lombardi 2010, Lombardi and Labarca 

2011): “whereas in quantum mechanics ‘orbital’ is a non-referring term, in molecular 

chemistry orbitals exist as spatial regions on the basis of which the shape of the local and 

individual molecules can be explained” (Labarca and Lombardi 2010: 155). After stressing 

the conceptual discontinuity between molecular chemistry and quantum mechanics, it is 

argued that the transition from the concept of orbital as a wavefunction to the concept of 

orbital as a spatial region of high electronic density is not a continuous transformation within 

quantum mechanics, but a conceptual breakdown with respect to the supposedly 

“fundamental” theory. In the context of the debate about natural kinds in chemistry, Mariana 

Córdoba and Lombardi (2013) notice that, surprisingly, in the attempts to avoid both the 

Scylla of conventionalism and the Charybdis of essentialism, Kantian philosophy is usually 

not even mentioned: the debate proceeds from an “externalist” metaphysical perspective, as if 
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we could adopt God’s eye position to decide what exists and what does not exist in the world. 

Ontic pluralism allows the authors to argue that, although chemical kinds are not conventional 

groupings with no reference in the world, they neither are essential and absolute kinds that 

populate reality in itself. The active role played by the subject in knowledge is what supports 

the fact that natural kinds result from the synthesis between the noumenal reality and a 

conceptual framework expressed by a discourse that is the verbal manifestation of a 

successful scientific practice. More recently, this Kantian-rooted ontic pluralism has been 

further articulated with the purpose of answering the criticisms advanced from different 

perspectives since its original formulation (Lombardi 2014b). 

When the discussions developed in the previous sections are now reconsidered in the 

light of ontic pluralism, it is clear that this philosophical framework can also be directly 

applied to the problem of the ontological status of molecular structure. Furthermore, the 

arguments against reduction and emergence in this context turn out to become arguments in 

favor of ontic pluralism.  

On the one hand, if the structure of molecules could be explained in terms of quantum 

mechanics, there would be a good argument in favor of ontic reduction. But as made clear in 

Section 2, when the relation between molecular chemistry and quantum mechanics is studied 

in detail, it can be concluded that there are no direct reductive links that would deprive the 

concept of molecular structure of its own ontic reference. And this conclusion does not 

depend on approximations on the quantum computations, whose remotion would finally 

discover the real nature of chemical molecules: even if a quantum omniscient demon gave us 

the completely precise wave function of the molecule, as the solution of the Schrödinger 

equation including completely all the subatomic particles and its interactions, it would be 

impossible to recover, from that solution, the chemical concepts that molecular chemistry uses 

for its scientifically successful development, such as bonding, functional groups, interatomic 

distances and angles, and so on.  

On the other hand, it is precisely that successful development, founded on its own 

concepts and methods, what counts for the pragmatic independence of molecular chemistry 

with respect of quantum mechanics and, with it, what undermines the assumption of an ontic 

dependence of molecular structure on the quantum domain. This does not mean to ignore the 

use of certain quantum resources in the context of molecular chemistry; but they are precisely 

mere auxiliary resources, computational tools always subordinated to the specifically 

chemical conceptual framework. Therefore, once it is accepted that there are no sufficient 

arguments to support ontic dependence, the idea that molecular structure is an emergent 

property that arises from underlying quantum entities loses its essential component. 

Ontic pluralism provides a philosophical framework to accommodate these intetheoretic 

facts. Pluralism stands against the asymmetry presupposed by reductionism and implicit in 
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emergentism. Given that the supposedly reduced/emergent domain turns out to be as 

constituted as the supposedly basal domain, and since there is no external perspective from 

which reality in itself can be described, then no neutral viewpoint can be adopted to say that 

one of domain has ontic priority over the other. As a consequence, the ontic priority of the 

physical world turns out to be a mere metaphysical prejudice: concepts such as bonding, 

molecular shape and orbital refer to entities belonging to the ontic domain of molecular 

chemistry, which only depends on its own body of theoretical knowledge. Chemical entities 

do not owe their existence to an ontically more fundamental level of reality, but to the fact 

that they are described by theories whose immense predictive and creative power cannot be 

ignored.  

When ontic pluralism is taken seriously, it is possible to claim that the term ‘molecule’ 

does not refer to the same ontic item in quantum mechanics and in molecular chemistry. In the 

quantum theoretical context, a molecule is a quantum system with no shape and no individual 

differentiated components; even its own nature cannot be conceptualized in terms of the 

category of individual. A chemical molecule, on the contrary, is an individual object with 

individual components, whose spatial disposition defines the geometric shape of the 

molecule. With respect to energy, in the quantum molecule we compute the energy levels of 

the molecular system as a whole, and it is assumed that those levels are what the imaging of 

molecular spectrum reveals. In the chemical molecule, by contrast, we compute the energies 

of the electrons belonging to the molecule, and with them the image of the molecular 

spectrum is obtained. And the fact that the two results approximately agree in many cases 

does not cancel the difference between the two ontic pictures. In other words, the word 

‘molecule’ has different meanings in the two domains, the quantum and the chemical, and 

asking which is the “true” one is as senseless as trying to scrutinize God’s mind by means of 

science. 
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