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1 Introduction
In this paper we want to discuss the changing role of mathematics in science, as a way to
discuss some methodological trends at work in big data science. More specifically, we will
show how the role of mathematics has dramatically changed from its more classical approach.
Classically, any application of mathematical techniques requires a previous understanding of
the phenomena, and of the mutual relations among the relevant data; modern data analysis
appeals, instead, to mathematics in order to identify possible invariants uniquely attached
to the specific questions we may ask about the phenomena of interest. In other terms, the
new paradigm for the application of mathematics does not require any understanding of the
phenomenon, but rather relies on mathematics to organize data in such a way as to reveal
possible invariants that may or may not provide further understanding of the phenomenon
per se, but that nevertheless provide an answer to the relevant question.

However, postponing or giving up altogether the understanding of phenomena and making
it dependent on the application of mathematics calls for a different kind of understanding,
namely the understanding of the reasons that make the mathematical methods and tools
apt to answer a specific question.

A current explanation of the power of data analysis (whose pervasiveness in popular
literature dispenses us from making specific references) is that there is, in fact, not much
to be understood: mathematics merely consists of a number of disconnected methods and,
drowned in sufficiently many and diverse data, succeeds only because of the omnipotence
of the data themselves; a new Wignerian paradox of “unreasonable effectiveness”; this time,
however, the effectiveness is assigned to data, not to mathematics: a sort of revenge of facts
against their mathematization.

We reject such an answer as both immaterial and unsupported. But in our rejection we do
not argue (as it is often done) that any exploration of data is doomed to failure if the scientist
does not have some previous understanding of the phenomenon (in other words, we do not
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oppose data analysis’ methods by defending the classical approach). Rather we observe the
effectiveness of data analysis in the absence of previous understanding, and wonder about
what makes this possible.

The question is far from simple. Much less simple than an ideological exaltation of the
power of data or an, equally ideological, rejection of their ability to answer questions, at least
when supported by appropriate algorithms. Its difficulty make us unable to even suggest here
any exhaustive and/or definitive answer. We will simply observe that no answer is possible
unless we engage in a technical inquiry on how these algorithms work, and suggest a largely
schematic account of their modus operandi. This account strongly relies on the results of
our previous works, in particular [9], [10], [11], which we will reorganize in a comprehensive
and hopefully coherent way. Furthermore, we will identify a possible direction for future
researches, and specifically a promising perspective from which the question can be tackled.

Before we come to this, we need to make an important proviso regarding the notion of
understanding. In this paper we will not even try to offer a precise characterization of this
notion, as this would take us into a different and more complex direction. Nevertheless, we
can still offer some clarification about the way we appeal to it.

In [9] we have discussed the lack of understanding proper to the current big data methods.
In so doing, we have avoided to borrow any general and univocal notion of understanding
for an empirical (physical, biological, biomedical, social, etc.) phenomenon (which is, by the
way, in no way provided by the specialized literature). We simply observed that big data
methods typically apply not to the study of a certain empirical phenomenon, but rather to
a pair composed by a phenomenon and a question about it. Such methods are used when
it is impossible to identify a small number of independent variables from which values those
of all other pertinent variables depend, so that their measurement is enough to describe
the evolution of the phenomenon in a way relevant to answer the question at hand. We
have argued that, when this happens, no appropriate understanding of the phenomenon is
available, regardless of how one could conceive the notion of understanding. If, in spite of
this, scientists can still offer answers to the questions posed, by utilizing methods that work
with very large amount of (irreducible, or, at least, unreduced) data, then we say that these
methods are “blind” and prefigure an instance of “agnostic science”.

As to the need of understanding what makes the application of mathematics in agnostic
science successful, we adopt, if possible, an even broader attitude. By advocating this need,
we want merely to promote an informed research and reflection on what makes blind methods
successful (when they are so), in spite of their blindness.

Let us now briefly describe the structure of the paper. We will begin by describing, in
Section 2, what we consider to be the basic trend of big data, or the “Microarray Paradigm”,
as we called it in [9]. This name was chosen to reflect the fact that this trend became first
manifest in biology and biomedical sciences, though it is now pervasive in all data analysis.
It is characterized by the handling of huge amounts of data, whose specific, or at least fine-
grained, provenance is often unknown and even practically unknowable, and whose modes
of selection are often disconnected from any previous identification of a relevant structure
in the phenomenon under observation. Far from being considered as a shortcoming, this
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feature is intended as the most notable virtue of the paradigm, since it allows investigating
the relevant phenomena, or better the data that have been gathered about them, without
any previous hypothesis about the way they could be ordered, and the correlations and/or
invariances that they would be supposed to confirm or refute.

There is, however, an important distinction to be done between the use of powerful and
often uncontrollable algorithms on huge amounts of data and agnostic science properly said.
This distinction will be investigated in Section 3 with the help of a negative example, the
Page Rank algorithm used by Google to weight web pages. The basic point, here, is that the
lack of local control of the algorithm in use is not the same as lack of understanding of the
relevant phenomenon. The former is proper to any algorithm working on huge amounts of
data, like Page Rank; the latter is instead, by definition, the characteristic feature of agnostic
science.

In Section 4, we will go further in our analysis of agnostic science, by investigating the
relations between optimization and “forcing”. As we have argued in [11], optimization is at
the very basis of what blind methods in data analysis pursue. In our view and terminology,
this can be seen as a form of forcing: in absence of understanding of the relevant phenomena,
and in order to solve a related problem, mathematics is forced over the available data; this
is done, basically, by reiteratively appealing to interpolation, in order to identify a family of
fitting functions within a functional space chosen for the operational advantages of its func-
tions, and to optimization, in order to successively improve these functions’ correspondence
to the data. By better describing this modus operandi, in relation to deep learning tech-
niques, we will also evaluate a very natural conjecture: that the effectiveness of optimization
is the basic reason behind the success of agnostic science. We will, however, argue against
this conjecture, once again noting that optimization is itself a form of forcing that does not
ensure that the fitting functions and their extrema correspond to anything of significance in
the evolution or state of the phenomenon.

Once this conjecture is rejected, we are still left with the question of the success of
agnostic science. In our final Section 5, we shall outline a tentative answer by indicating a
possible direction for further reflection.

2 The Microarray Paradigm
Let us focus on a DNA microarray (one can find several images and descriptions on the web).
What is it? How does it work?

A DNA microarray is essentially a matrix of microscopic sites where several thousands
of different short pieces of a single strand of DNA are attached. Messenger RNA (mRNA)
molecules are extracted from some specific tissues of different patients, then amplified and
marked with a fluorescent substance and finally dropped on each site of the microarray. This
makes each site take a less or more intense florescence according to the amount of mRNA
that binds with the strands of DNA previously placed in it. The intensity and distribution
of the fluorescence give a way to evaluate the degree of complementarity of the DNA and
the mRNA strands.
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We know that the specific behavior of a cell largely depends on the activity, concentration,
and state of proteins in it, and the the distribution of proteins is, in turn, influenced by
the changes in levels of mRNA. This provides a correspondence between the information
displayed by a DNA microarray and the behavior of a cell from the relevant tissue. This
correspondence, however, is by no means exact or univocal, since the function of many
proteins in the cell is not known, and several strands of DNA are complementary to the
mRNA strands of all protein types. Nevertheless, thousands of strands of DNA are checked
on a single microarray, so that one might expect this method to offer a fairly accurate
description of the state of the cells. Such a description does not offer, however, any sort of
understanding of what is happening in the relevant tissues, since the microarray supplies a
particular value for a huge number of variables, whose relation to each other and to the state
of the cell we ignore.

This lack of understanding does not forbid using microarray in the care (and, possibly,
prevention) of many illnesses, since by measuring the activity of proteins one can hope of
distinguishing patients and tissues affected or not by a certain pathology or reacting or not
to a certain therapy, even without knowing why this is so.

This short description should be enough to justify why we take microarrays as a paradig-
matic example of the way agnostic science works. What we call ‘microarray paradigm’ could
be shortly described by the following slogan: if enough and sufficiently diverse data are
collected regarding a certain phenomenon, we can answer all relevant questions about it.

But how much data is enough, in order to get a reliable conclusion? This depends both on
the phenomenon and the specific question asked about it. But there are ways to apply data
science also to small data systems if we accept strong limitations on the type of questions and
we impose strong restrictions on the type of solutions (essentially regularizations constraints),
providing fast optimization.

This already displays what we mean by forcing. But before coming to it, let us emphasize
the general schema which is applied here: the data are processed through a blackbox, and
the process itself is independent both of the specific nature of the data, and of any knowledge
(or even hypothesis) on the role, mutual dependence and, more generally, relations of the
variables these datas provide values of. The process is subject to to normalization constraints
imposed by the data, rather than by the structure of the phenomenon (which is indeed
unknown). This treatment produces an output which is taken as an answer to a specific
question about this phenomenon.

This approach makes it impossible to generalize the results or even to deal with a change
of scale: any question is answered by a different use of an algorithm, or a different algorithm.
What is general is the structure of each algorithm, but not its use. One can say that the
way in which a question is formulated depends on the nature of the algorithm which is used,
and not the other way around.

To better see how agnostic science works, we will offer an overview of Supervised Machine
Learning (we shall came back later to this description in more detail).

The starting point is a training set (X, Y ), constituted by M pairs (Xi, Yi), (i = 1, 2, . . . , M),
where each Xi is typically an array (Xi,j), (j = 1, 2, . . . , N) of given values of N variables
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pertaining to the same sample, for example a single patient in the case of a diagnostic test,
and each Yi is the relevant given output for this sample, for example either 0 or 1 for each
patient according whether this patient is sick or healthy.

We can then use this set to find, by an appropriate algorithm, a suitable function F such
that F (Xi) = Yi or F (Xi) ≈ Yi (i = 1, 2, . . . , M). Here ‘suitable’ does not merely mean that
F satisfies these conditions for all relevant i, but that it does it on most cases, and that it
belongs to a space of functions selected because of its mathematical simplicity (for example
the space of polynomial functions).

This function F is, then, tested on a testing set (Xi, Yi), (i = M +1, M +2, . . . , M +M ′),
and after having been suitably modified is finally used, by analytical continuation, as a base
for forecasting.

This description indicates that Supervised Machine Learning consists, essentially, in an
analytic continuation of a function found by interpolation, within an appropriate functional
space. What is relevant, however, is that each of the numbers M, N , and M ′ may be huge,
and we have no idea of how the values Yi depend on the values Xi, or how the values in
each array Xi are related to each other. In particular, we do not know whether the variables
taking these values are reducible (that is, depend on each other in some way) or whether
it is possible to apply any appropriate changes of scale or normalization on the variables.
As anticipated above, this is just what we mean by speaking of lack of understanding: we
have no other resource than using appropriate algorithms to identify a possible interpolating
function F . We should add that the interpolation algorithm usually depends on parameters
used to weight the available data. Still, because of the lack of understanding, there are no
real criteria to guide the choice of the parameters, which are instead taken with arbitrary
values, eventually corrected by successive reiterations of the algorithm, until some sort of
stability is achieved.

This process seems to raise an obvious question. Indeed, using Ramsey’s theory, Calude
and Longo ([3]) have shown that if one enlarges sufficiently the training and the testing
sets, it is possible to establish any possible correlation among data. Thus, by working on
larger and larger amounts of data, one can establish arbitrary descriptions and arbitrary
forecasts. In other words, large enough data seem to allow the establishment of any possible
interpretation. If this is indeed the case, then the use of big data is doomed to failure.

There are, however, several comments to be made. To begin with, we note that Ramsey’s
theory proves the existence of lower bounds on the size of data in order to find non-arbitrary
(if not structural) correlations. But this is still not enough to ensure that these bounds
are small enough for becoming significant with respect to the present possibility of handling
data. Even more importantly, we note that requiring, as in supervised machine learning,
that every element of X match with an appropriate element of Y is essentially different from
making a subset of the data display a certain correlation. In other words, if, in line with the
tenants of Ramsey’s theory, an algorithm showed that only for some subset of elements of
X and Y it is possible to write F (Xi) = Yi, this would have no useful application in practice
for supervised learning, where the totality of the available data is required to be properly
matched, by reducing the training and testing error rates as much as possible. Of course
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there is always the risk that, even after learning from large training and testing sets, the
fitting function F has no predictive power, but to identify such a problem, it is not necessary
to invoke Ramsey theory; this is, indeed, the consequence of the obvious limitation of any
interpolation procedure, and of any empirically validated rule.

Hence, as long as finding patterns within a data set X is tied to supervised learning, i.e.
to the solution of a predetermined problem defined by the suitable matching of X and Y,
it will not be subject to the risks of uncontrolled and spurious correlations. Moreover, we
will see in Section 4 that, even when agnostic methods seem not to fall within the structural
constraints of supervised learning, they can still be reinterpreted as such, for the specific
problem of regularizing or compressing data.

This does not mean that we can avoid all risks of arbitrary descriptions and forecasts,
risks that are indeed often present in agnostic science. Rather, agnostic science enters the
game not in opposition to traditional, theoretically-tied methods, but as an other mode
of exploration of phenomena, and it should be in no way (used to) discourage, or even
inhibit the search for other sort of methods based on previous understanding. Any form of
understanding of the relevant phenomena is certainly welcome. Still, our point here is that
there is no intrinsic methodological weakness in blind methods that is not in a way or another
already implicit in those other methodologies with a theoretical bent: at their core they all
depend on some sort of inductive inference, namely on assuming that a predictive rule, or a
functional interpolation of data, either justified by a structural account of phenomena, or by
analytical continuation of functions got by interpolation on huge amount of (independent)
data, will continue to hold true when confronted with new observations.

Supervised learning shows that we can succeed, despite the obvious (theoretical and/or
practical) risks, in using data to find pattern useful to solve specific problems with the
available resources (though not necessarily patterns universally associated with the relevant
phenomena). This, and only this (namely not any alleged infallibility or omnipotence of
them) makes (or, at least, should make) agnostic science both useful and welcome.

It is also because of these risks that it is important to understand why agnostic science
works and what makes it successful. We should not be blind about why blind methods
succeed! Lack of understanding of phenomena does not necessarily require or even allow
lack of understanding of agnostic science itself. Rather, it urgently asks for such a latter
understanding, in order to allow some sort of indirect (scientific, methodological, political
and ethical) control possible, if not to allow any risk in the use of blind methods. This is
just the aim of an informed philosophy of data analysis, which shows, then, not only its
intellectual interest, but also, and overall, its practically utility, even necessity.

3 Agnostic Science and Lack of Control
Before continuing our search for such a (meta-)understanding, a proviso is essential. One
might fall into conflating agnostic science with the mere use of uncontrolled algorithms on
huge amount of data. Indeed, powerful algorithms can be applied on huge amounts of data
whose size makes it (practically) impossible to exercise any sort of local control on the
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way these same algorithms work, even when it is perfectly clear (even provably clear) that
they converge, we understand what they result in, and even when the result depends on
a structural understanding of the relevant phenomenon. This would not be an example of
agnostic science. To see how this is possible, take the example of PageRank: the algorithm
used by Google to weight webpages ([2], [12]).

Let A be a web page with n other pages Ti (i = 1, 2, . . . , n) pointing to it. We introduce
a damping factor dA (0 ≤ d ≤ 1) that describes the probability that a random web-surfer
landing on A will leave the page. If dA = 0, no surfer will leave the page A; if dA = 1,
every surfer will abandon the page. One can chose dA arbitrarily, or do it on the base of any
possible a priori reason. This makes no difference in the end, or at least at the limit. The
PageRank of A is given by this formula:

PR(A) = (1− dA) + dA

(
n∑

i=1

PR (Ti)
C (Ti)

)
.

where PR (Ti) and C (Ti) are the PageRanks of Ti and the links going out of it.
This formula is very simple. But it is recursive: in order to compute PR(A), one needs to

compute the PageRank of all the pages pointing to A. In general, this makes impossible to
directly compute it, since, if A points to some Ti, then PR (Ti) depends on PR(A), in turn.
This does not make the computation of PR(A) actually impossible, however. Since one can
compute it by successive approximations: one begins by computing PR(A) by choosing any
arbitrary value for PR (Ti); the value of PR(A) so computed, is, then, used to provisionally
compute PR (Ti); next one comes back on PR(A) to compute it anew on the base of these
values of PR (Ti); and so forth, for a sufficient number of times.

It is impossible to say a priori how many times the process is to be reiterated in order to
reach a stable value for any page of the Web. The actual complexity and dimension of the
Web makes moreover impossible to follow the algorithm’s computation in any of its stages,
and for all the relevant pages, even for a single page A, if the page is sufficiently connected
within the Web. Again, since the Web is constantly changing, the PageRank of each page
is not fixed and is to be computed again and again, so that the algorithm can never really
stop to run. Thus it is obvious the impossibility of any local control on this process.

Still it can be demonstrated that the algorithm converges to the principal eigenvector of
the normalized link matrix of the Web. This makes the limit PageRank of any page, namely
the value of the PageRank of the given page in this vector, a measure of the centrality of this
page in the Web. This does not mean, of course, that it also measure the actual importance
of the page. Still, this is an entirely different story. What is relevant is that the algorithm
have been designed to compute the principal eigenvector, under the assumption that the
value obtained in this way is an index of the importance of the page.

Masterton, Olsson and Angere ([7]) have, by the way, recently proved that it is sufficient
to suppose that a link pointing to each web page, in whatever portion of the Web, is somehow
motivated by the importance of this page—however we define importance—and not by the
fact that other links point or not to it, to make the PageRank of the pages in this portion
of the Web actually converge to the importance of these pages when the size of this portion
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increases. Let us tell it in another way: suppose that a measure of importance is ascribed to
each page in this portion of the Web in whatever possible way, and that, for whatever such
page, the probability that another page points to it increases with such a measure according
to whatever monotonically increasing function, but is independent of the probability that
any third page point to it; then the probability that the ranking of the pages in this portion of
the Web assigned to them by PageRank coincides with the ranking due to their importance
converges to 1 when the size of the Web goes to infinity.

This result confirms the essential point: the algorithm responds to a structural under-
standing of the Web, and to the (motivated) assumption that the importance of any page
in it is proportional to its centrally in its normalized link matrix. Then, strictly speaking,
there is nothing blind in this approach, and using it is in no way an instance of agnostic
science, though the Web and the net of links in it is one of the most obvious example of Big
Data we might imagine. But, then, what makes blind methods blind, and agnostic science
agnostic?

Agnostic science appears when, for the purpose of solving specify problems, one uses
methods to search invariants which—unlike PageRank—correspond to no previous under-
standing. This means we use methods and algorithms to find problem-dependent invariants
in the hope that, once discovered, they will provide an apparent solution to the given prob-
lem.

If this is so, then agnostic science is, in fact, a family of mathematically sophisticated
techniques to learn from experience by observation of invariants. Still, attention to invariants
is, ultimaely, that which Plato (Theaetetus, 155d) called ‘astonishment [θαυμάζειν]’, and
considered to be “the origin of philosophy [ἀρχὴ φιλοσοφίας]”. What happens with agnostic
science is that we know too much, or not still enough on too much data, in order to be
astonished by our experience as guided by the conceptual schemas we have at hand. So we
use blind methods to look for sources of astonishment deeply hidden within these data.

4 Forcing
The question we tackle is, then, that of understanding what makes an algorithm able to
identify appropriate invariants within a specific problem.

The question has two facets. On one hand, it consists in wondering what makes these
algorithms successful. On the other hand, it consists in wondering what makes them so
appropriate (for a specific problem). The problem is that what appears to be a good answer
to the first question seems to contrast, at least at first glance, with the possibility of providing
a satisfactory answer to the second question.

Indeed, as to the first question, we would say that the algorithms perform successfully
because they act by forcing, i.e. by choosing (interpolation) methods and selecting func-
tional spaces for the fitting functions in agreement to a criterion of intrinsic (mathematical)
effectiveness, rather than building them into the relevant phenomena. Is this answer really
in contrast with the possibility of providing a satisfactory answer to the second question? In
this section we shall try to make this answer more precise and to explore ways to make it com-
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patible with the second question. Unfortunately we will see that none of these approaches
is promising, and so in the next, final section, we will suggest a different direction.

A clear example of forcing is given by boosting algorithms: algorithms designed to im-
prove weak classifiers, generally just slightly better than random ones, and to transform
them, by iterations in strong classifiers. A second example is given by regularization al-
gorithms. If the data are too complicated and/or rough, these algorithms are designed to
render the date amenable to being treated by other algorithms, for example by reducing
their dimension. Using these algorithms reveals a double application of forcing: forcing on
the original data to smooth them; and then forcing on the smooth data to treat them with a
second set of algorithms. After regularization, if this is needed, one uses often continuity and
smoothness conditions to force an essentially unjustified differential equation in the search
for a fitting function ([15], chapter 19). Again, it often happens that methods originated
in a certain domain (where they are proved to be highly effective) are exported to other,
completely different and unrelated domains. A case in point are neural networks used, for
example, in studying climate change.

In all these cases, the mathematical hard core of the methods is provided by some sort
of optimization techniques. Our claim is, then, that optimization can be see as a form of
forcing. In a sense, this is even suggested by the historical origins of optimization methods
([13]; [14]). When Maupertuis firstly introduced the idea of least action, he claimed to have
found the real quantity that God had aimed to minimize when creating the universe. Euler,
who was at the time a member of the Berlin Academy of Sciences, whose President was
Maupertuis himself, could not openly criticize his President, but clearly adopted a different
attitude, by maintaining that action was nothing but what was expressed by the equations
governing the system under consideration, provided they were shaped in an appropriate
form. In other terms, he suggested one should force the minimization (or maximization) of∫

F (x)dx

on any physical system in order to find the function F characteristic of it. Mutatis mutandis,
this is the basic idea that we associate today with the Lagrangian of a system. Since then
optimization became the preeminent methodology in solving empirical problems. One could
say that the idea of a Lagrangian has been generalized to the notion of fitting function,
whose optimization characterizes the dynamics of a given system.

Though this process can be already seen as a form of forcing, acting within a quite
classical setting, one should note that in this case the only thing that is forced on the
problem is the form of the relevant condition, its being shaped as the request that a certain
appropriate integral reach a maximum or minimum. Since, the function to optimize is here
so chosen as to express at least a preliminary understanding of the system itself. Things
change radically when the fitting function is selected within a convenient functional space
through an interpolation process designed to have the function fit the existing data. In
this case, both the space and the nature of the fitting (that which makes it appropriate)
are forced on the system. Moreover, often these conditions are still not enough to select a
unique fitting function or to find or ensure the existence of an absolute minimum, so that a
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new functional choice may be required, and thus forced again on the data.
There are many reasons why such an optimization process can be considered effective.

One is that it matches with what we have called before the microarray principle. Enough
data and a sufficiently flexible set of algorithms will solve, in principle, any scientific problem.
More concretely, optimization has shown to be both simple and relatively reliable: not
necessarily to find the actual solution of a problem, but rather to obtain, whiteout exceeding
time and resources constraints, outcomes that can be taken as useful solutions to the problem.
These outcomes can be also tested in simple cases and shown compatible with already known
solutions found with other methods based on a structural understanding of the relevant
phenomenon; in addition the results from the optimization process may be suitable for
practical purposes (as in the case of self-driving cars, where the aim is not that of mimicking
human reactions, but rather that of having a car driven with appropriate care). Finally, we
can conceive optimization as a motivation for finding algorithms without being constrained
by the searching of the best solution.

But optimization as forcing also raises some important issues, beyond the obvious one
which is typical of blind methods, namely the absence of an a priori justification.

One is that optimization generally requires fixing a large number of parameters, some-
time millions of them, which not only make control hopeless, but also makes it difficult to
understand the way the algorithm works, and often results in lack of robustness, since dif-
ferent initial choices of the parameters can lead to completely different solutions. Another
is manifest in point by point optimization, for example by the gradient descent method ([4],
section 4.3), which does not guarantee that we will reach the desired minimum, or even a
significant relative minimum. Since virtually all significant Supervised Machine Learning
methods can be shown to be equivalent to point by point optimization [11], we will describe
and discuss the gradient descent method.

If F (X) is a real-valued multi-variable function, its gradient ∇F is the vector that gives
the slope of its tangent oriented towards the direction in which it increases most. The
gradient descent method exploits this fact to obtain a sequence of values of F which converges
to a minimum. Indeed, if

xn+1 = xn −Kn∇F (xn) (x = 0, 1, . . .)

for Kn small enough, then
F (x0) ≥ F (x1) ≥ F (x2) , . . .

and one can hope that this sequence of values converges towards the desired minimum. This
is only a hope, however, since nothing in the method can warrant that the minimum it detects
be significant, and, even less, appropriate for an optimization apt to provide a solution for
the relevant problem.

Let us now further illustrate the idea of optimization as forcing, by considering the
paradigmatic example of Deep Learning Neural Networks (we follow here ([5], Section 11.3)
and [4]).

The basic idea is the same anticipated above. One starts with a Training Set (X, Y ),
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where X is, as a matrix (an array of arrays) of variables,

X = (X1, . . . , XM) Xi = (Xi,1, . . . Xi,N)

while Y can be either an array of variables,

Y = (Y1, . . . , YM)

which is the case when attempting some data classification, or an array of array of variable,
in more general cases. The goal is to find a function F : X → Y in a certain functional
space, whose optimization will give us the desired result. The functional space is chosen so
that any function in it depends on parameters, which weight the data in X. The space will
include all the functions obtained by composition, according to a certain algorithm, of some
basic functions whose general form is fixed in advance (and varies slightly from a particular
version of the method to another). As the algorithm moves from a function to another, the
choice of the parameters also changes, and this is what the term ‘learning’ means.

The process starts with K linear functions for any array Xi in X:

Q
[k]
i (Xi) = A

[k]
0 +

N∑
j=1

A
[k]
j Xi,j (k = 1, . . . , K),

where A
[k]
j are K(N + 1) parameters chosen with base on same a priori criterion, or even

randomly, and K is a positive integer appropriately chosen in relation to the particular
application of the algorithm. Then, one gets K new arrays of variables

H
[k]
i = G

(
Q

[k]
i (Xi)

)
(k = 1, . . . , K),

were G is an appropriate non-linear function, changing from a particular version of the
method to another: we will soon say more about this function. Next, one gets T linear
combinations of the variables H

[k]
i

Z
[t]
i (Hi) = B

[t]
0 +

K∑
j=1

B
[t]
j H

[j]
i (t = 1, . . . , T ),

where B
[t]
j are T (K + 1) parameters chosen with base on same a priori criterion, or even

randomly, and T is a positive integer appropriately chosen in accordance with the particular
application of the algorithm.

If the neural network has only one layer, that is, it is not deep, we set T = 1 and the
process closes by imposing

Z
[1]
i ≈ Yi

and modifying the values of the parameters accordingly, in a way to be explained soon. As
neither the algorithm nor the parameter depends on i, this is the same as choosing Z [1] (the
same for any i) as our final function F : X → Y . If the network is deep, the process is
repeated several times, starting from the M arrays Zi each of length T , to produce several
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layers, by choosing different parameters A and B at each step, with the obvious limitation
that the dimension of the output of the last layer has to match the dimension of the elements
of Y .

The algorithm is designed to allow learning also in absence of Y by using X itself, possibly
appropriately regularized, in place of Y (auto-encoding). When an independent Y is used,
the learning in said to be ‘supervised’ and corresponds to the setting described in § 3. In
absence of it, it is equivalent to unsupervised learning ([4], chapter 14), where the objective
is to find significant patterns and correlations within the set X itself. This is an important
shift of perspective, because it allows to constrain the exploration of patterns within data
X, for the sole purpose of regularization of the data themselves. Whichever correlations and
patterns are found, they will be instrumental to this specific problem, rather than on the
ambiguous task of finding causal relationships within X.

Two things remains to be explained.
The first concerns the non-linear function G, called ‘activation function’ (because of the

origin of the algorithm as a model for neural dynamic). It can take different forms. Two
classical examples are the sigmoid function

G(u) = 1
1 + e−u

and the ReLU (Rectified Linear Unit) function

G(u) = max(0, u),

This latter function is composed of two linear branches and therefore is, mathematically
speaking, much simpler than the sigmoid function. While the ReLU is not linear, it has a
steep uniform slope, on a wide portion of its domain, and this seems the key of its signif-
icantly better performance as activation function for deep networks. The use of an appro-
priate activation function allows the method to approximate any nice (continuous on closed
and bounded subsets of the n-dimensional real space Rn) function. This is the Universal
Approximation Theorem for Neural Networks ([6])

The second thing to be explained concerns the computation of the parameters according
to the condition

Zi ≈ Yi.

This is typically made through the gradient descent method (with the gradient computed by
an appropriate fast algorithm adapted to neural networks known as backpropagation: [5],
Section 11.4), with the request to minimize

M∑
i=1

[Yi − Zi]2 .

To this purpose, one can go as far as considering hundreds of layers, though it is not generally
true that increasing the number of layers always improves the minimum, nor it makes Zi

closer and closer to Yi. All what can be said, in general, is that once one fixes the number
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of layers, the algorithm of gradient descent used to establish the relevant parameters is
equivalent to a regularization of the final function, if we stop the iterative application of
this algorithm when the error does not significantly decreases any more ([4], Section 7.8).
Still, in many cases, taking more layers makes a dramatic improvement possible: up to a
tenfold reduction of errors. For example, it has been showed that in a database of images
of handwritten digits classification errors go from a rate of 1.6% for a 2 layers network ([5],
section 11.7) to a rate of 0.23% with a network of about 10 layers ([16]).

This short explanation of the way in which Deep Learning Neural Networks work should
be enough to clarify why we have taken them as an example of optimization by forcing.
But it should also be enough to make clear the second aspect of the question mentioned in
the beginning of the present section: how can methods like this be appropriate for solving
specific problems, when the methods themselves do not reflect in any way the particular
features of the problems?

A simple way to answer is by negating the premise of the question: one can argue that, in
fact, these method are in no way appropriate; that their success is nothing but appearance
and that, rather, the faith in their success is dangerous, since it provides an incentive to the
practice of accepting forecasts and solutions that are indeed inappropriate or erroneous.

The problem with this answer is that it argues that blind methods do not succeed since
they cannot succeed because they do not conform with the pattern of classical science. But
a non-ideological look at the results obtained in this way should be enough to convince
ourselves that this cannot be the good answer. We can of course emphasize, for example,
that basing cancer therapy only on microarrays, and using microarrays only as guides for
therapies is as inappropriate as dangerous, since, in a domain like that, looking for causes is
as crucial as necessary. But we cannot hide the fact that microarrays can be used also as an
evidential bases in a search for causes. And also that, in many cases—like in handwriting
recognition—the search of causes is much less crucial, and that in many situations the success
of blind methods is manifest and confirmed by applications.

So we need a less ill-advised answer, which, far from negating the question, takes it
seriously and challenges the assumption that classical science is the only appropriate pattern
for good science.

Such an answer cannot depend, of course, on the assumption that blind methods suc-
ceed since they perform appropriate optimization. And this not simply because this merely
displaces the problem, but mostly because, in these methods, optimization is only such by
name and not by nature. Indeed, when forced on a problem, optimization can be identi-
fied, in a general sense, with the mathematical form of classical optimization, but certainly
not because it actually reaches an optimum in the sense of finding the best function or the
absolute minimum of the right function.

A more promising answer might be that blind methods succeed for the same reason as
classical induction does: blinds methods are indeed interpolation methods on income/outcome
pairs, followed by analytical continuation, which is the basic way in which induction works.
Of course, one could argue that induction itself is not logically sound. But could one really
reject it as an appropriate method in science because of this? Is there another way to be em-
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piricist, other than trusting induction? And can one really defend classical science without
accepting some form of empiricism, as refined as it might be?

One could offer two important objections to this response.
The first is that our argument applies only to supervised methods, that is methods

based on the consideration of a training set, and, possibly, also a testing one. It does not
apply, or, at least, not immediately, to unsupervised ones, where no sort of induction is
present. One could supersede this objection, however, by noticing that it is possible to
reduce unsupervised methods to supervised ones through the auto-encoding regularization
processes described above.

A second objection is much more relevant. The objection consists in recognizing that
when forcing is at work, interpolation is restricted to a space of functions which is in no way
selected by a consideration of the specific nature of the relevant phenomenon and, in view of
that, it is submitted to a regularization of the data that often takes those same data quite
far from reflecting the phenomenon itself. Because of this objection, and despite the fact
that the answer we offered cannot be completely dismissed, it is necessary to complement it
with a more specific and stronger response.

5 Conclusions
Should we, then, abandon any hope to provide a satisfactory answer to our question, capable
to reconcile its two aspects, that is, able to explain at once the good performance of blind
methods and their appropriateness for the solution of the problems they are applied too?
Or should we abandon the answer we have given with respect to the first aspect, namely the
claim that the relevant methods operate by forcing? In other words, should be accept that
forcing (or, more generally, blindness) is incompatible with appropriateness? We think not.
Not only, we are not ready to renounce, but, though we are far from having ready a totally
convincing, exhaustive and definitive answer, we would like to suggest a new perspective,
which we believe will be fruitful.

The basic idea is to stop looking at the appropriateness question as a question concerned
with some sort of topical correspondence between phenomena (in particular the relevant
problems about them) and methods. The very use of forcing makes illusory the possibility
to identify such a correspondence.

We should instead look at the question from a more abstract, general or, as it were,
structural perspective. Why not to imagine that what makes blinds methods fits in some
way or another with the phenomena and problems they are successfully applied to is a sort
of homology of structure between the former and the latter?

If we look at blind methods from a more structural point of view, we can find a simple,
general feature that is shared by all of them. It relates to what we have elsewhere ([11])
called ‘Brandt Principle’. We called it this way, since we did find it firstly expounded, though
implicitly and for the restricted class of multiscale algorithms, in a paper by Achi Brandt
([1]) and can be stated as follows:
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An algorithm that approaches a steady state in its output has found a solution
to a problem, or needs to be replaced.

As trivial as it appears at first glance, this is, in our view, the fundamental principle on
which agnostic science is founded. First of all, the principle is implicit in forcing, since an
integral idea in forcing is that if an algorithm does not work, another one is to be chosen. But,
more specifically, the key to the power of this principle is that the steady state output of each
algorithm, when it is reached, is chosen as input of the next algorithm, if a suitable solution
to the initial problem has not yet been found. Notably, deep learning architecture matches
with it, since the reiteration of the gradient descent algorithm is generally arrested when the
improvement of parameters reaches a steady state and, then, either the function that has
been obtained is accepted and used for forecasting or problem-solving, or the algorithm is
replaced by a new one, or at least re-applied starting from a new assignation of values to the
initial parameters. Again, local optimization methods satisfy this principle. And since most,
if not virtually all, algorithms in agnostic data science can be rewritten as local optimization
methods, we can say that virtually all algorithms in agnostic data science do. Moreover,
in [11] we argued that thinking about algorithms in terms of Brandt’s principle often sheds
light on those characteristics of a specific method that are essential to its success.

For example, the success of deep learning algorithms, as we have seen in the previous
section, relies in a fundamental way on two advances: (1) the use of the ReLU activation
function that, thanks to its constant slope for nonzero arguments, allows the fast exploration
of the parameter space with gradient descent; and (2) a well defined regularization obtained
by stopping the gradient descent algorithm when error rates do not improve significantly
anymore. Both these advances took a significant time to be identified as fundamental to the
success of deep learning algorithms, perhaps exactly for their deceiving simplicity, and yet
both of them are naturally derived from Brandt’s principle.

But, as fundamental as it might be in agnostic science, why would such a principle provide
an answer to our question on the power of agnostic science? The answer is that the general
structure revealed by Brandt’s Principle is not necessarily proper to algorithmic procedures
of methods. It can also be shared, at a sufficient level of abstraction, by the phenomena they
apply to.

Indeed, in [11] we showed how Brandt’s Principle is equivalent in spirit to an organizing
principle for developmental biology, first proposed by Alessandro Minelli in [8], what he
called the principle of Developmental Inertia. Such principle states that:

Biological developmental processes typically go ahead by successive deviations
from local self-perpetuation of cell-level dynamics.

We refer to [11] for a full justification and explication of such principle, but we note here that,
just like Brandt’s Principle for algorithmic processes, the principle of Developmental Inertia
has a surprisingly powerful ability to conceptualize developmental biological processes.

Its homology with Brandt’s principle is evident by associating steady-states of algo-
rithms with self-perpetuating (and repeating) cell dynamics, and by associating switching
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of algorithms (as advocated by Brandt’s Principle) with deviations of self-perpetuating cell
dynamics.

The only structural difference between these principles is that Brandt’s Principle starts
from non-steady states, and prescribes what to do when approaching steady states, while the
principle of developmental inertia starts from local self-perpetuating dynamics, and estab-
lishes the necessity of deviating from them for a complex biological process to develop. But
this is only a difference of emphasis, since both steady states and deviations are postulated
as essential by both principles.

In light of this parallel between Brandt’s and developmental inertia principles, the ques-
tion becomes the following: is the success of methods in agnostic science due to the homology
of their general structure (as revealed by Brandt’s Principle) with the structure of the phe-
nomena (and problems) that agnostic science deals with?

For the time being, we prefer to leave the question open. But we are confident that
future research and reflection might provide an answer illuminating enough for helping in
answering the other, more fundamental question that we have tried here to make clear and
illustrate.
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