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Abstract

The wave function in quantum mechanics presents an interesting challenge
to our understanding of the physical world. In this paper, I show that the
wave function can be understood as four intrinsic relations on physical space.
My account has three desirable features that the standard account lacks: (1) it
does not refer to any abstract mathematical objects, (2) it is free from the usual
arbitrary conventions, and (3) it explains why the wave function has its gauge
degrees of freedom, something that are usually put into the theory by hand.

Hence, this account has implications for debates in philosophy of mathematics
and philosophy of science. First, by removing references to mathematical objects,
it provides a framework for nominalizing quantum mechanics. Second, by
excising superfluous structure such as overall phase, it reveals the intrinsic
structure postulated by quantum mechanics. Moreover, it also removes a major
obstacle to “wave function realism.”

Keywords: quantum mechanics, wave function, structural realism, phase structure,
mathematical nominalism vs. platonism, foundations of measurement, intrinsic physical
theory, Quine-Putnam indispensability argument, metaphysics of science.

∗Department of Philosophy, 106 Somerset Street, Rutgers University, New Brunswick, NJ 08901,
USA. Website: www.eddykemingchen.net. Email: eddy.chen@rutgers.edu

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PhilSci Archive

https://core.ac.uk/display/186349533?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Contents

1 Introduction 2

2 The Two Visions and the Quantum Obstacle 4
2.1 The Intrinsicalist Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 The Nominalist Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Obstacles From Quantum Theory . . . . . . . . . . . . . . . . . . . . . . . 8

3 An Intrinsic and Nominalistic Account of the Quantum State 11
3.1 The Mathematics of the Quantum State . . . . . . . . . . . . . . . . . . . . 11
3.2 Quantum State Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Quantum State Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Comparisons with Balaguer’s Account . . . . . . . . . . . . . . . . . . . . 18

4 “Wave Function Realism” 19

5 Conclusion 20

1 Introduction

Quantum mechanics is empirically successful (at least in the non-relativistic domain).
But what it means remains highly controversial. Since its initial formulation, there
have been many debates (in physics and in philosophy) about the ontology of a
quantum-mechanical world. Chief among them is a serious foundational question
about how to understand the quantum-mechanical laws and the origin of quantum
randomness. That is the topic of the quantum measurement problem. At the time of
writing this paper, the following are serious contenders for being the best solution:
Bohmian mechanics (BM), spontaneous localization theories (GRW0, GRWf, GRWm,
CSL), and Everettian quantum mechanics (EQM and Many-Worlds Interpretation
(MWI)).1

There are other deep questions about quantum mechanics that have a philosophi-
cal and metaphysical flavor. Opening a standard textbook on quantum mechanics,
we find an abundance of mathematical objects: Hilbert spaces, operators, matrices,
wave functions, and etc. But what do they represent in the physical world? Are they
ontologically serious to the same degree or are some merely dispensable instruments
that facilitate calculations? In recent debates in metaphysics of quantum mechanics,
there is considerable agreement that the universal wave function, modulo some
mathematical degrees of freedom, represents something objective — the quantum

1See Norsen (2017) for an updated introduction to the measurement problem and the main
solutions.
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state of the universe.2 In contrast, matrices and operators are merely convenient
summaries that do not play the same fundamental role as the wave function.

However, the meaning of the universal quantum state is far from clear. We
know its mathematical representation very well: the universal wave function, which
is crucially involved in the dynamics of BM, GRW, and EQM. In the position
representation, a scalar-valued wave function is a square-integrable function from
the configuration space R3N to the complex plane C. But what does the wave function
really mean? There are two ways of pursuing this question:

1. What kind of “thing” does the wave function represent? Does it represent
a physical field on the configuration space, something nomological, or a sui
generis entity in its own ontological category?

2. What is the physical basis for the mathematics used for the wave function?
Which mathematical degrees of freedom of the wave function are physically
genuine? What is the metaphysical explanation for the merely mathematical or
gauge degrees of freedom?

Much of the philosophical literature on the metaphysics of the wave function has
pursued the first line of questions.3 In this paper, I will primarily pursue the second
one, but I will also show that these two are intimately related.

In particular, I will introduce an intrinsic account of the quantum state. It answers
the second line of questions by picking out four concrete relations on physical
space-time. Thus, it makes explicit the physical basis for the usefulness of the
mathematics of the wave function, and it provides a metaphysical explanation for
why certain degrees of freedom in the wave function (the scale of the amplitude and
the overall phase) are merely gauge. The intrinsic account also has the feature that
the fundamental ontology does not include abstract mathematical objects such as
complex numbers, functions, vectors, or sets.

The intrinsic account is therefore nominalistic in the sense of Hartry Field (1980).
In his influential monograph Science Without Numbers: A Defense of Nominalism, Field
advances a new approach to philosophy of mathematics by explicitly constructing
nominalistic counterparts of the platonistic physical theories. In particular, he
nominalizes Newtonian gravitation theory.4 In the same spirit, Frank Arntzenius
and Cian Dorr (2011) develop a nominalization of differential manifolds, laying
down the foundation of a nominalistic theory of classical field theories and general
relativity. Up until now, however, there has been no successful nominalization
of quantum theory. In fact, it has been an open problem–both conceptually and
mathematically–how it is to be done. The non-existence of a nominalistic quantum
mechanics has encouraged much skepticism about Field’s program of nominalizing

2The universal quantum state, represented by a universal wave function, can give rise to wave
functions of the subsystems. The clearest examples are the conditional wave functions in Bohmian
mechanics. However, our primary focus here will be on the wave function of the universe.

3See, for example, Albert (1996), Loewer (1996), Wallace and Timpson (2010), North (2013), Ney
(2012), Maudlin (2013), Goldstein and Zanghì (2013), Miller (2013), Bhogal and Perry (2015).

4It is not quite complete as it leaves out integration.
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fundamental physics and much optimism about the Quine-Putnam Indispensability
Argument for Mathematical Objects. Indeed, there is a long-standing conjecture, due
to David Malament (1982), that Field’s nominalism would not succeed in quantum
mechanics. Therefore, being nominalistic, my intrinsic theory of the quantum state
would advance Field’s nominalistic project and provide (the first step of) an answer
to Malament’s skepticism.

Another interesting consequence of the account is that it will make progress
on the first line of questions about the ontology of quantum mechanics. On an
increasingly influential interpretation of the wave function, it represents something
physically significant. One version of this view is the so-called “wave function
realism,” the view that the universal wave function represents a physical field on a
high-dimensional (fundamental) space. That is the position developed and defended
in Albert (1996), Loewer (1996), Ney (2012), and North (2013). However, Tim Maudlin
(2013) has argued that this view leads to an unpleasant proliferation of possibilities:
if the wave function represents a physical field (like the classical electromagnetic
field), then a change of the wave function by an overall phase transformation will
produce a distinct physical possibility. But the two wave functions will be empirically
equivalent—no experiments can distinguish them, which is the reason why the
overall phase differences are usually regarded as merely gauge. Since the intrinsic
account of the wave function I offer here is gauge-free insofar as overall phase is
concerned, it removes a major obstacle to wave function realism (vis-à-vis Maudlin’s
objection).

In this paper, I will first explain (in §2) the two visions for a fundamental physical
theory of the world: the intrinsicalist vision and the nominalistic vision. I will
then discuss why quantum theory may seem to resist the intrinsic and nominalistic
reformulation. Next (in §3), I will write down an intrinsic and nominalistic theory
of the quantum state. Finally (in §4), I will discuss how this account bears on the
nature of phase and the debate about wave function realism.

Along the way, I axiomatize the quantum phase structure as what I shall call
a periodic difference structure and prove a representation theorem and a uniqueness
theorem. These formal results could prove fruitful for further investigation into the
metaphysics of quantum mechanics and theoretical structure in physical theories.

2 The Two Visions and the Quantum Obstacle

There are, broadly speaking, two grand visions for what a fundamental physical
theory of the world should look like. (To be sure, there are many other visions and
aspirations.) The first is what I shall call the intrinsicalist vision, the requirement
that the fundamental theory be written in a form without any reference to arbitrary
conventions such as coordinate systems and units of scale. The second is the
nominalistic vision, the requirement that the fundamental theory be written without
any reference to mathematical objects. The first one is familiar to mathematical
physicists from the development of synthetic geometry and differential geometry.
The second one is familiar to philosophers of mathematics and philosophers of
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Figure 1: Euclid’s Windmill proof of the Pythagorean Theorem. No coordinate
systems or real numbers were used. Cartesian coordinates were invented much later
to facilitate derivations.

physics working on the ontological commitment of physical theories. First, I will
describe the two visions, explain their motivations, and provide some examples.
Next, I will explain why quantum mechanics seems to be an obstacle for both
programs.

2.1 The Intrinsicalist Vision

The intrinsicalist vision is best illustrated with some history of Euclidean geometry.
Euclid showed that complex geometrical facts can be demonstrated using rigorous
proof on the basis of simple axioms. However, Euclid’s axioms do not mention
real numbers or coordinate systems, for they were not yet discovered. They are
stated with only qualitative predicates such as the equality of line segments and the
congruence of angles. With these concepts, Euclid was able to derive a large body of
geometrical propositions.

Real numbers and coordinate systems were introduced to facilitate the derivations.
With the full power of real analysis, the metric function defined on pairs of tuples of
coordinate numbers can greatly speed up the calculations, which usually take up
many steps of logical derivation on Euclid’s approach. But what are the significance
of the real numbers and coordinate systems? When representing a 3-dimensional
Euclidean space, a typical choice is to use R3. It is clear that such a representation
has much surplus (or excess) structure: the origin of the coordinate system, the
orientation of the axis, and the scale are all arbitrarily chosen (sometimes conveniently
chosen for ease of calculation). There is “more information” or “more structure” in
R3 than in the 3-dimensional Euclidean space. In other words, the R3 representation
has gauge degrees of freedom.

The real, intrinsic structure in the 3-dimensional Euclidean space–the structure
that is represented by R3 up to the Euclidean transformations–can be understood
as an axiomatic structure of congruence and betweenness. In fact, Hilbert 1899
and Tarski 1959 give us ways to make this statement more precise. After offering a
rigorous axiomatization of Euclidean geometry, they prove a representation theorem:
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any structure instantiates the betweenness and congruence axioms of 3-dimensional
Euclidean geometry if and only if there is a 1-1 embedding function from the structure
onto R3 such that if we define a metric function in the usual Pythagorean way then
the metric function is homomorphic: it preserves the exact structure of betweenness
and congruence. Moreover, they prove a uniqueness theorem: any other embedding
function defined on the same domain satisfies the same conditions of homomorphism
if and only if it is a Euclidean transformation of the original embedding function: a
transformation on R3 that can be obtained by some combination of shift of origin,
reflection, rotation, and positive scaling.

The formal results support the idea that we can think of the genuine, intrinsic
features of 3-dimensional Euclidean space as consisting directly of betweenness and
congruence relations on spatial points, and we can regard the coordinate system (R3)
and the metric function as extrinsic representational features we bring to facilitate
calculations. (Example: Figure 1. Exercise: prove the Pythagorean Theorem with and
without real-numbered coordinate systems.) The merely representational artifacts
are highly useful but still dispensable.

There are several advantages of having an intrinsic formulation of geometry.
First, it eliminates the need for many arbitrary conventions: where to place the
origin, how to orient the axis, and what scale to use. Second, in the absence of these
arbitrary conventions, we have a theory whose elements could stand in one-to-one
correspondence with elements of reality. In that case, we can look directly into the
real structure of the geometrical objects without worrying that we are looking at
some merely representational artifact (or gauge degrees of freedom). By eliminating
redundant structure in a theory, an intrinsic formulation gives us a more perspicuous
picture of the geometrical reality.

The lessons we learn from the history of Euclidean geometry can be extended to
other parts of physics. For example, people have long noticed that there are many
gauge degrees of freedom in the representation of both scalar and vector valued
physical quantities: temperature, mass, potential, and field values. There has been
much debate in philosophy of physics about what structure is physically genuine and
and what is merely gauge. It would therefore be helpful to go beyond the scope of
physical geometry and extend the intrinsic approach to physical theories in general.

Hartry Field (1980), building on previous work by Krantz et al. (1971), ingeniously
extends the intrinsic approach to Newtonian gravitation theory. The result is an
elimination of arbitrary choices of zero field value and units of mass. His conjecture
is that all physical theories can be “intrinsicalized” in one way or another.

2.2 The Nominalist Vision

As mentioned earlier, Field (1980) provides an intrinsic version of Newtonian
gravitation theory. But the main motivation and the major achievement of his project
is a defense of nominalism, the thesis that there are no abstract entities, and, in
particular, no abstract mathematical entities such as numbers, functions, and sets.

The background for Field’s nominalistic project is the classic debate between
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the mathematical nominalist and the mathematical platonist, the latter of whom
is ontologically committed to the existence of abstract mathematical objects. Field
identifies a main problem of maintaining nominalism is the apparent indispensability
of mathematical objects in formulating our best physical theories:

Since I deny that numbers, functions, sets, etc. exist, I deny that it is
legitimate to use terms that purport to refer to such entities, or variables
that purport to range over such entities, in our ultimate account of what
the world is really like.

This appears to raise a problem: for our ultimate account of what
the world is really like must surely include a physical theory; and
in developing physical theories one needs to use mathematics; and
mathematics is full of such references to and quantifications over numbers,
functions, sets, and the like. It would appear then that nominalism is not
a position that can reasonably be maintained.5

In other words, the main task of defending nominalism would be to respond to the
Quine-Putnam Indispensability Argument:6

P1 We ought to be ontologically committed to all (and only) those entities that
are indispensable to our best theories of the world. [Quine’s Criterion of
Ontological Commitment]

P2 Mathematical entities are indispensable to our best theories of the world. [The
Indispensability Thesis]

C Therefore, we ought to be ontologically committed to mathematical entities.

In particular, Field’s task is to refute the second premise–the Indispensability
Thesis. Field proposes to replace all platonistic physical theories with attractive
nominalistic versions that do not quantify over mathematical objects

Field’s nominalistic versions of physical theories would have significant advan-
tages over their platonistic counterparts. First, the nominalistic versions illuminate
what exactly in the physical world provide the explanations for the usefulness of any
particular mathematical representation. After all, even a platonist might accept that
numbers and coordinate systems do not really exist in the physical world but merely
represent some concrete physical reality. Such an attitude is consistent with the
platonist’s endorsement of the Indispensability Thesis. Second, as Field has argued,
the nominalistic physics seems to provide better explanations than the platonistic
counterparts, for the latter would involve explanation of physical phenomena by
things (such as numbers) external to the physical processes themselves.

5Field (2016), Preliminary Remarks, p.1.
6The argument was originally proposed by W. V. Quine and later developed by Putnam (1971).

This version is from Colyvan (2015).
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Field has partially succeeded by writing down an intrinsic theory of physical
geometry and Newtonian gravitation, as it contains no explicit first-order quantifi-
cation over mathematical objects, thus qualifying his theory as nominalistic. But
what about other theories? Despite the initial success of his project, there has been
significant skepticism about whether his project can extend beyond Newtonian
gravitation theory to more advanced theories such as quantum mechanics.

2.3 Obstacles From Quantum Theory

We have looked at the motivations for the two visions for what the fundamental
theory of the world should look like: the intrinsicalist vision and the nominalistic
vision. They should not be thought of as competing against each other. They
often converge on a common project. Indeed, Field’s reformulation of Newtonian
Gravitation Theory is both intrinsic and nominalistic.7

Both have had considerable success in certain segments of classical theories. But
with the rich mathematical structures and abstract formalisms in quantum mechanics,
both seem to run into obstacles. David Malament was one of the earliest critics of
the nominalistic vision. He voiced his skepticism in his influential review of Field’s
book. Malament states his general worry as follows:

Suppose Field wants to give some physical theory a nominalistic refor-
mulation. Further suppose the theory determines a class of mathematical
models, each of which consists of a set of “points” together with certain
mathematical structures defined on them. Field’s nominalization strategy
cannot be successful unless the objects represented by the points are ap-
propriately physical (or non-abstract)...But in lots of cases the represented
objects are abstract. (Malament (1982), pp. 533, emphasis original.)8

Given his general worry that, often in physical theories, it is abstracta that are
represented in the state spaces, Malament conjectures that, in the specific case of
quantum mechanics, Field’s strategy of nominalization would not “have a chance”:

Here [in the context of quantum mechanics] I do not really see how Field
can get started at all. I suppose one can think of the theory as determining
a set of models—each a Hilbert space. But what form would the recovery
(i.e., representation) theorem take? The only possibility that comes to
mind is a theorem of the sort sought by Jauch, Piron, et al. They start

7However, the intrinsicalist and nominalistic visions can also come apart. For example, we can,
in the case of mass, adopt an intrinsic yet platonistic theory of mass ratios. We can also adopt an
extrinsic yet nominalistic theory of mass relations by using some arbitrary object (say, my water
bottle) as standing for unit mass and assigning comparative relations between that arbitrary object
and every other object.

8Malament also gives the example of classical Hamiltonian mechanics as another specific instance
of the general worry. But this is not the place to get into classical mechanics. Suffice to say that
there are several ways to nominalize classical mechanics. Field’s nominalistic Newtonian Gravitation
Theory is one way. Arntzenius and Dorr (2011) provides another way.
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with “propositions” (or “eventualities”) and lattice-theoretic relations
as primitive, and then seek to prove that the lattice of propositions is
necessarily isomorphic to the lattice of subspaces of some Hilbert space.
But of course no theorem of this sort would be of any use to Field. What
could be worse than propositions (or eventualities)? (Malament (1982), pp.
533-34.)

As I understand it, Malament suggests that there are no good places to start
nominalizing non-relativistic quantum mechanics. This is because the obvious
starting point, according to Malament and other commentators, is the abstract
Hilbert space, H , as it is a state space of the quantum state.

However, there may be other starting points to nominalize quantum mechanics.
For example, the configuration space, R3N, is a good candidate. In realist quantum
theories such as Bohmian mechanics, Everettian quantum mechanics, and sponta-
neous localization theories, it is standard to postulate a (normalized) universal wave
function Ψ(x, t) defined on the configuration space(-time) and a dynamical equation
governing its temporal evolution.9 In the deterministic case, the wave function
evolves according to the Schrödinger equation,

ih̵
∂
∂t

Ψ(x, t) = [−
N

∑
i=1

h̵2

2mi
∆i +V(x)]Ψ(x, t) ∶= HΨ(x, t),

which relates the temporal derivatives of the wave function to its spatial derivatives.
Now, the configuration-space viewpoint can be translated into the Hilbert space
formalism. If we regard the wave function (a square-integrable function from the
configuration space to complex numbers) as a unit vector ∣Ψ(t)⟩, then we can form
another space—the Hilbert space of the system.10 Thus, the wave function can be
mapped to a state vector, and vice versa. The state vector then rotates (on the unit
sphere in the Hilbert space) according to a unitary (Hamiltonian) operator,

ih̵
∂
∂t

∣Ψ(t)⟩ = Ĥ ∣Ψ(t)⟩ ,

which is another way to express the Schrödinger evolution of the wave function.
Hence, there is the possibility of carrying out the nominalization project with the

configuration space. In some respects, the configuration-space viewpoint is more
friendly to nominalism, as the configuration space is much closely related to physical
space than the abstract Hilbert space is.11 Nevertheless, Malament’s worries still

9Bohmian mechanics postulates additional ontologies—particles with precise locations in physical
space—and an extra law of motion—the guidance equation. GRW theories postulate an additional
stochastic modification of the Schrödinger equation and, for some versions, additional ontologies
such as flashes and mass densities in physical space.

10This is the Hilbert space L2
(R3N,C), equipped with the inner product < ψ,φ > of taking the

Lebesgue integral of ψ∗φ over the configuration space, which guarantees Cauchy Completeness.
11I should emphasize that, because of its central role in functional analysis, Hilbert space is highly

important for fascilitating calculations and proving theorems about quantum mechanics. Nevertheless,
we should not regard it as conclusive evidence for ontological priority. Indeed, as we shall see in §3,
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remain, because (prima facie) the configuration space is also quite abstract, and it is
unclear how to fit it into the nominalistic framework. Therefore, at least prima facie,
quantum mechanics seems to frustrate the nominalistic vision.

Moreover, the mathematics of quantum mechanics comes with much conventional
structure that is hard to get rid of. For example, we know that the exact value of the
amplitude of the wave function is not important. For that matter, we can scale it
with any arbitrary positive constant. It is true that we usually choose the scale such
that we get unity when integrating the amplitude over the entire configuration space.
But that is merely conventional. We can, for example, write down the Born rule with
a proportionality constant to get unity in the probability function:

P(x ∈ X) = Z∫
X
∣Ψ(x)∣2dx,

where Z is a normalization constant.
Another example is the overall phase of the wave function. As we learn from

modular arithmetic, the exact value of the phase of the wave function is not physically
significant, as we can add a constant phase factor to every point in configuration
space and the wave function will remain physically the same: producing exactly the
same predictions in terms of probabilities.

All these gauge degrees of freedom are frustrating from the point of view of the
intrinsicalist vision. They are the manifestation of excess structures in the quantum
theory. What exactly is going on in the real world that allows for these gauge degrees
of freedom but not others? What is the most metaphysically perspicuous picture of
the quantum state, represented by the wave function? Many people would respond
that the quantum state is projective, meaning that the state space for the quantum
state is not the Hilbert space, but its quotient space: the projective Hilbert space. It
can be obtained by quotienting the usual Hilbert space with the equivalence relation
ψ ∼ Reiθψ. But this is not satisfying; the “quotienting” strategy raises a similar
question: what exactly is going on in the real world that allows for quotienting with
this equivalence relation but not others?12 No one, as far as I know, has offered an
intrinsic picture of the quantum state, even in the non-relativistic domain.

In short, at least prima facie, both the intrinsicalist vision and the nominalist vision
are challenged by quantum mechanics.

the configuration-space viewpoint provides a natural platform for the nominalization of the universal
wave function. We should also keep in mind that, at the end of the day, it suffices to show that
quantum mechanics can be successfully nominalized from some viewpoint.

12These questions, I believe, are in the same spirit as Ted Sider’s 2016 Locke Lecture (ms.), and
especially his final lecture on theoretical equivalence and against what he calls“quotienting by hand.”
I should mention that both Sider and I are really after gauge-free formulations of physical and
metaphysical theories, which are more stringent than merely gauge-independent formulations. For
example, modern differential geometry is gauge-independent (coordinate-independent) but not
gauge-free (coordinate-free): although manifolds can be defined without privileging any particular
coordinate system, their definition still uses coordinate systems (maps and atlas).
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3 An Intrinsic and Nominalistic Account of the Quantum State

In this section, I propose a new account of the quantum state based on some lessons
we learned from the debates about wave function realism.13 As we shall see, it does
not take much to overcome the “quantum obstacle.” For simplicity, I will focus on
the case of a quantum state for a constant number of identical particles without spin.

3.1 The Mathematics of the Quantum State

First, let me explain my strategy for nominalizing non-relativistic quantum mechanics.

1. I will start with a Newtonian space-time, whose nominalization is readily
available.14

2. I will use symmetries as a guide to fundamentality and identify the intrinsic
structure of the universal quantum state on the Newtonian space-time. This
will be the goal for the remaining part of the paper. (Here we focus only on the
quantum state, because it is novel and it seems to resist nominalization. But the
theory leaves room for additional ontologies of particles, fields, mass densities
supplied by specific interpretations of QM; these additional ontologies are
readily nominalizable.)

3. In future work, I will develop nominalistic translations of the dynamical
equations and generalize this account to accommodate more complicated
quantum theories.

Before we get into the intrinsic structure of the universal quantum state, we
need to say a bit more about its mathematical structure. For the quantum state of a
spinless system at a time t (see Figure 2), we can represent it with a scalar-valued
wave function:

Ψt ∶ R3N → C,

where N is the number of particles in the system, R3N is the configuration space of N
particles, and C is the complex plane. (For the quantum state of a system with spin,
we can use a vector-valued wave function whose range is the spinor space—C2N .)

13Here I’m taking the “Hard Road” to nominalism. As such, my goal is to (1) reformulate quantum
mechanics (QM) such that within the theory it no longer refers (under first-order quantifiers) to
mathematical objects such as numbers, functions, or sets and (2) demonstrate that the platonistic
version of QM is conservative over the nominalistic reformulation. To arrive at my theory, and to
state and prove the representation theorems, I refer to some mathematical objects. But these are parts
of the meta-theory to explicate the relation between my account and the platonistic counterpart and
to argue (by reductio) against the indispensability thesis. See Field (2016), Preliminary Remarks and
Ch. 1 for a clear discussion, and Colyvan (2010) for an up-to-date assessment of the “Easy Road”
option. Thanks to Andrea Oldofredi and Ted Sider for suggesting that I make this clear.

14It is an interesting question what role Galilean relativity plays in non-relativistic quantum
mechanics. I will explore this issue in future work.
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Figure 2: A wave function for a two-particle system in 1-dim space. Source:
www.physics.auckland.ac.nz

My strategy is to start with a Newtonian space-time (which is usually represented
by a Cartesian product of a 3-dimensional Euclidean space and a 1-dimensional
time). If we want to nominalize the quantum state, what should we do with the
configuration space R3N? As is now familiar from the debate about wave function
realism, there are two ways of interpreting the fundamental physical space for a
quantum world:

1. R3N represents the fundamental physical space; the space represented by R3

only appears to be real; the quantum state assigns a complex number to each
point in R3N. (See Figure 2. Analogy: classical field.)

2. R3 represents the fundamental physical space; the space represented by R3N

is a mathematical construction—the configuration space; the quantum state
assigns a complex number to each region in R3 that contains N points (i.e. the
regions will be irregular and disconnected). (Analogy: multi-field)

Some authors in the debate about wave function realism have argued that given
our current total evidence, option (2) is a better interpretation of non-relativistic
quantum mechanics.15 I will not rehearse their arguments here. But one of the key
ideas that will help us here is that we can think of the complex-valued function as
really “living on” the 3-dimensional physical space, in the sense that it assigns a
complex number not to each point but each N-element region in physical space. We
call that a “multi-field.”16

Taking the wave function into a framework friendly for further nominalization,
we can perform the familiar technique of decomposing the complex number Reiθ

into two real numbers: the amplitude R and the phase θ. That is, we can think of the
compex-valued multi-field in the physical space as two real-valued multi-fields:

15See, for example, Chen (2017) and ?.
16This name can be a little confusing. Wave-function “multi-field” was first used in Belot (2012),

which was an adaptation of the name “polyfield” introduced by Forrest (1988). See Arntzenius and
Dorr (2011) for a completely different object called the “multi-field.”
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R(x1,x2,x3, ...,xN), θ(x1,x2,x3, ...,xN).

Here, since we are discussing Newtonian space-time, the x1.....xN are simultaneous
space-time points. We can think of them as: (xα1 ,xβ1 ,xγ1 ,xt), (xα2 ,xβ2 ,xγ2 ,xt), ......,
(xαN ,xβN ,xγN ,xt).

Now the task before us is just to come up with a nominalistic and intrinsic
description of the two multi-fields. In §3.2 and §3.3, we will find two physical
structures (Quantum State Amplitude and Quantum State Phase), which, via the
appropriate representation theorems and uniqueness theorems, justify the use of
complex numbers and explain the gauge degrees of freedom in the quantum wave
function.17

3.2 Quantum State Amplitude

The amplitude part of the quantum state is (like mass density) on the ratio scale, i.e.
the physical structure should be invariant under ratio transformations

R→ αR.

We will start with the Newtonian space-time and help ourselves to the structure of
N-Regions: collection of all regions that contain exactly N simultaneous space-time
points (which are irregular and disconnected regions). We start here because we
would like to have a physical realization of the platonistic configuration space. The
solution is to identify configuration points with certain special regions of the physical
space-time.18

In addition to N-Regions, the quantum state amplitude structure will contain
two primitive relations:

• A two-place relation Amplitude–Geq (⪰A).

17In the case of a vector-valued wave function, since the wave function value consists in 2N complex
numbers, where N is the number of particles, we would need to nominalize 2N+1 real-valued functions:

R1(x1,x2,x3, ...,xN), θ1(x1,x2,x3, ...,xN),R2(x1,x2,x3, ...,xN), θ2(x1,x2,x3, ...,xN), ......

18Notes on mereology: As I am taking for granted that quantum mechanics for indistinguishable
particles (sometimes called identical particles) works just as well as quantum mechanics for distin-
guishable particles, I do not require anything more than Atomistic General Extensional Mereology
(AGEM). That is, the mereological system that validate the following principles: Partial Ordering
of Parthood, Strong Supplementation, Unrestricted Fusion, and Atomicity. See Varzi (2016) for a
detailed discussion.

However, I leave open the possibility for adding structures in N-Regions to distinguish among
different ways of forming regions from the same collection of points, corresponding to permuted
configurations of distinguishable particles. We might need to introduce additional structure for
mereological composition to distinguish between mereological sums formed from the same atoms but
in different orders. This might also be required when we have entangled quantum states of different
species of particles. To achieve this, we can borrow some ideas from Kit Fine’s “rigid embodiment”
and add primitive ordering relations to enrich the structure of mereological sums.
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• A three-place relation Amplitude–Sum (S).

Interpretation: a ⪰A b iff the amplitude of N-Region a is greater than or equal to
that of N-Region b; S(a, b, c) iff the amplitude of N-Region c is the sum of those of
N-Regions a and b.

Define the following short-hand (all quantifiers below range over only N-Regions):

1. a =A b ∶= a ⪰A b and b ⪰A a.

2. a ≻A b ∶= a ⪰A b and not b ⪰A a.

Next, we can write down some axioms for Amplitude–Geq and Amplitude–Sum.19

Again, all quantifiers below range over only N-Regions. ∀a, b, c ∶

G1 (Connectedness) Either a ⪰A b or b ⪰A a.

G2 (Transitivity) If a ⪰A b and b ⪰A c, then a ⪰A c.

S1 (Associativity*) If ∃x S(a, b,x) and ∀x′ [if S(a, b,x′)) then ∃y S(x′, c, y)], then ∃z
S(b, c, z) and ∀z′ [if S(b, c, z′)) then ∃w S(a, z′,w)] and ∀ f , f ′, g, g′ [if S(a, b, f ) ∧
S( f , c, f ′) ∧ S(b, c, g) ∧ S(a, g, g′), then f ′ ⪰A g′].

S2 (Monotonicity*) If ∃x S(a, c,x) and a ⪰A b, then ∃y S(c, b, y) and ∀ f , f ′ [if
S(a, c, f ) ∧ S(c, b, f ′) then f ⪰A f ′].

S3 (Density) If a ≻A b, then ∃d,x [S(b,d,x) and ∀ f , if S(b,x, f ), then a ⪰A f ].

S4 (Non-Negativity) If S(a, b, c), then c ⪰A a.

19Compare with the axioms in Krantz et al. (1971) Defn.3.3: Let A be a nonempty set, ⪰ a binary
relation on A, B a nonempty subset of A ×A, and ○ a binary function from B into A. The quadruple
< A,⪰,B, ○ > is an extensive structure with no essential maximum if the following axioms are satisfied
for all a, b, c ∈ A:

1. < A,⪰> is a weak order. [This is translated as G1 and G2.]

2. If (a, b) ∈ B and (a ○ b, c) ∈ B, then (b, c) ∈ B, (a, b ○ c) ∈ B, and (a ○ b) ○ c ⪰A a ○ (b ○ c). [This is
translated as S1.]

3. If (a, c) ∈ B and a ⪰ b, then (c, b) ∈ B, and a ○ c ⪰ c ○ b. [This is translated as S2.]

4. If a ≻ b, then ∃d ∈ A s.t. (b,d) ∈ B and a ⪰ b ○ d. [This is translated as S3.]

5. If a ○ b = c, then c ≻ a. [This is translated as S4, but allowing N-Regions to have null amplitudes.
The representation function will also be zero-valued at those regions.]

6. Every strictly bounded standard sequence is finite, where a1, ..., an, ... is a standard sequence if
for n = 2, .., an = an−1 ○a1, and it is strictly bounded if for some b ∈ A and for all an in the sequence,
b ≻ an. [This is translated as S5. The translation uses the fact that Axiom 6 is equivalent to
another formulation of the Archimedean axiom: {n∣na is defined and b ≻ na} is finite.]

The complications in the nominalistic axioms come from the fact that there can be more than one
N-Regions that are the Amplitude-Sum of two N-Regions: ∃a, b, c,d s.t. S(a, b, c) ∧ S(a, b,d) ∧ c ≠ d.
However, in the proof for the representation and uniqueness theorems, we can easily overcome these
complications by taking equivalence classes of equal amplitude and recover the amplitude addition
function from the Amplitude-Sum relation.
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S5 (Archimedean Property) ∀a1, b, if ¬S(a1, a1, a1) and ¬S(b, b, b), then ∃a1, a2, ..., an

s.t. b ≻A an and ∀ai [if b ≻A ai, then an ⪰A ai], where ai’s, if they exist, have the
following properties: S(a1, a1, a2), S(a1, a2, a3), S(a1, a3, a4), ..., S(a1, an−1, an).20

Since these axioms are the nominalistic translations of a platonistic structure in Krantz
et al. (Defn. 3.3), we can formulate the representation and uniqueness theorems for
the amplitude structure as follows:

Theorem 3.1 (Amplitude Representation Theorem) <N-Regions, Amplitude–Geq,
Amplitude–Sum> satisfies axioms (G1)—(G2) and (S1)—(S5), only if there is a function
R ∶ N-Regions→ {0} ∪R+ such that ∀a, b ∈ N-Regions:

1. a ⪰A b⇔ R(a) ≥ R(b);

2. If ∃x s.t. S(a, b,x), then ∀c [if S(a, b, c) then R(c) = R(a) +R(b)].

Theorem 3.2 (Amplitude Uniqueness Theorem) If another function R′ satisfies the
conditions on the RHS of the Amplitude Representation Theorem, then there exists a real
number α > 0 such that for all nonmaximal element a ∈ N-Regions, R′(a) = αR(a).

Proofs: See Krantz et al. (1971), Sections 3.4.3, 3.5, pp. 84-87. Note: Krantz et al.
use an addition function ○, while we use a sum relation S(x, y, z), because we allow
there to be distinct N-Regions that have the same amplitude. Nevertheless, we can
use a standard technique to adapt their proof: we can simply take the equivalence
classes N-Regions / =A, where a =A b if a ⪰A b ∧ b ⪰A a, on which we can define an
addition function with the Amplitude-Sum relation.

The representation theorem suggests that the intrinsic structure of Amplitude-Geq
and Amplitude-Sum guarantees the existence of a faithful representation function.

20S5 is an infinitary sentence, as the quantifiers in the consequent should be understood as infinite
disjunctions of quantified sentences. However, S5 can also be formulated with a stronger axiom called
Dedekind Completeness, whose platonistic version says:

Dedekind Completeness. ∀M,N ⊂ A, if ∀x ∈ M,∀y ∈ N, y ≻ x, then ∃z ∈ A s.t. ∀x ∈ M, z ≻ x and ∀y ∈

N, y ≻ z.

The nominalistic translation can be done in two ways. We can introduce two levels of mereology so
as to distinguish between regions of points and regions of regions of points. Alternatively, as Tom
Donaldson, Jennifer Wang, and Gabriel Uzquiano suggest to me, perhaps one can make do with
plural quantification in the following way. For example ( with ∝ for the logical predicate “is one of” ),
here is one way to state the Dedekind Completeness with plural quantification:

Dedekind Completeness Nom Pl. ∀mm,nn ∈ N-Regions, if ∀x ∝ mm,∀y ∝ nn, y ≻ x, then there
exists z ∈ A s.t. ∀x ∝ mm, z ≻ x and ∀y ∝ nn, y ≻ z.

We only need the Archimedean property in the proof. Since Dedekind Completeness is stronger, the
proof in Krantz et al. (1971), pp. 84-87 can still go through if we assume Dedekind Completeness
Nom Pl. Such strenghthening of S5 has the virtue of avoiding the infinitary sentences in S5. Note:
this is the point where we have to trade off certain nice features of first-order logic and standard
mereology with the desiderata of the intrinsic and nominalistic account. (I have no problem with
infinitary sentences in S5. But one is free to choose instead to use plural quantification to formulate
the last axiom as Dedekind Completeness Nom Pl.) This is related to Field’s worry in Science Without
Numbers, Ch. 9, “Logic and Ontology.”
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But the intrinsic structure makes no essential quantification over numbers, functions,
sets, or matrices. The uniqueness theorem explains why the gauge degrees of
freedom are the positive multiplication transformations and no further, i.e. why the
amplitude function is unique up to a positive normalization constant.

3.3 Quantum State Phase

The phase part of the quantum state is (like angles on a plane) of the periodic
scale, i.e. the intrinsic physical structure should be invariant under overall phase
transformations

θ→ θ +φ mod 2π.

We would like something of the form of a “difference structure.” But we know that
according to standard formalism, just the absolute values of the differences would
not be enough, for time reversal on the quantum state is implemented by taking
the complex conjugation of the wave function, which is an operation that leaves the
absolute values of the differences unchanged. So we will try to construct a signed
difference structure such that standard operations on the wave function are faithfully
preserved.21

We will once again start with N-Regions, the collection of all regions that contain
exactly N simultaneous space-time points.

The intrinsic structure of phase consists in two primitive relations:

• A three-place relation Phase–Clockwise–Betweenness (CP),

• A four-place relation Phase–Congruence (∼P).

Interpretation: CP(a, b, c) iff the phase of N-Region b is clock-wise between those of
N-Regions a and c (this relation realizes the intuitive idea that 3 o’clock is clock-wise
between 1 o’clock and 6 o’clock, but 3 o’clock is not clock-wise between 6 o’clock
and 1 o’clock); ab ∼P cd iff the signed phase difference between N-Regions a and b is
the same as that between N-Regions c and d.

The intrinsic structures of Phase–Clockwise–Betweenness and Phase–Congruence
satisfy the following axioms for what I shall call a “periodic difference structure”:

All quantifiers below range over only N-Regions. ∀a, b, c,d, e, f :

C1 At least one of CP(a, b, c) and CP(a, c, b) holds; if a, b, c are pair-wise distinct,
then exactly one of CP(a, b, c) and CP(a, c, b) holds.

C2 If CP(a, b, c) and CP(a, c,d), then CP(a, b,d); if CP(a, b, c), then CP(b, c, a).

K1 ab ∼P ab.
21Thanks to Sheldon Goldstein for helpful discussions about this point. David Wallace points out

(p.c.) that it might be a virtue of the nominalistic theory to display the following choice-point: one can
imagine an axiomatization of quantum state phase that involves only absolute phase differences. This
would require thinking more deeply about the relationship between quantum phases and temporal
structure, as well as a new mathematical axiomatization of the absolute difference structure for phase.
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K2 ab ∼P cd⇔ cd ∼P ab⇔ ba ∼P dc⇔ ac ∼P bd.

K3 If ab ∼P cd and cd ∼P e f , then ab ∼P e f .

K4 ∃h, cb ∼P ah; if CP(a, b, c), then∃d′,d′′ s.t. ba ∼P d′c, ca ∼P d′′b; ∃p, q,CP(a, q, b),CP(a, b,p),
ap ∼P pb, bq ∼P qa.

K5 ab ∼P cd⇔ [∀e, f d ∼P ae⇔ f c ∼P be].

K6 ∀e, f , g,h, if f c ∼P be and gb ∼P ae, then [h f ∼P ae⇔ hc ∼P ge].

K7 If CP(a, b, c), then ∀e,d, a′, b′, c′ [if a′d ∼P ae, b′d ∼P be, c′d ∼P ce, then C(a′, b′, c′)].

K8 (Archimedean Property)∀a, a1, b1, if CP(a, a1, b1), then∃a1, a2, ..., an, b1, b2, ..., bn, c1, ...cm

such that CP(a, a1, an) and CP(a, bn, b1), where anan−1 ∼P an−1an−2 ∼P ... ∼P a1a2 and
bnbn−1 ∼P bn−1bn−2 ∼P ... ∼P b1b2, and that a1b1 ∼P b1c1 ∼P ... ∼P cna1.22

Axiom (K4) contains several existence assumptions. But such assumptions are
justified for a nominalistic quantum theory. We can see this from the structure of the
platonistic quantum theory. Thanks to the Schrödinger dynamics, the wave function
will spread out continuously over space and time, which will ensure the richness in
the phase structure.

With some work, we can prove the following representation and uniqueness
theorems:

Theorem 3.3 (Phase Representation Theorem) If<N-Regions, Phase–Clockwise–Betweenness,
Phase–Congruence> is a periodic difference structure, i.e. satisfies axioms (C1)—(C2) and
(K1)—(K8), then for any real number k > 0, there is a function f ∶ N-Regions → [0, k) such
that ∀a, b, c,d ∈ N-Regions:

1. CP(c, b, a)⇔ f (a) ≥ f (b) ≥ f (c) or f (c) ≥ f (a) ≥ f (b) or f (b) ≥ f (c) ≥ f (a);

2. ab ∼P cd⇔ f (a) − f (b) = f (c) − f (d) (mod k).

Theorem 3.4 (Phase Uniqueness Theorem) If another function f ′ satisfies the condi-
tions on the RHS of the Phase Representation Theorem, then there exists a real number β
such that for all element a ∈ N-Regions , f ′(a) = f (a) + β (mod k).

Proofs: see Appendix.
Again, the representation theorem suggests that the intrinsic structure of Phase–

Clockwise–Betweenness and Phase–Congruence guarantees the existence of a faithful
representation function of phase. But the intrinsic structure makes no essential
quantification over numbers, functions, sets, or matrices. The uniqueness theorem
explains why the gauge degrees of freedom are the overall phase transformations
and no further, i.e. why the phase function is unique up to an additive constant.

22Here it might again be desirable to avoid the infinitary sentences / axiom schema by using plural
quantification. See the footnote on Axiom S5.
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Therefore, we have written down an intrinsic and nominalistic theory of the
quantum state, consisting in merely four relations on the regions of physical space-
time: Amplitude-Sum, Amplitude-Geq, Phase-Congruence, and Phase-Clockwise-
Betweenness. As mentioned earlier but evident now, the present account of the
quantum state has several desirable features: (1) it does not refer to any abstract
mathematical objects such as complex numbers, (2) it is free from the usual arbitrary
conventions in the wave function representation, and (3) it explains why the quantum
state has its amplitude and phase degrees of freedom.

3.4 Comparisons with Balaguer’s Account

Let us briefly compare my account with Mark Balaguer’s account (1996) of the
nominalization of quantum mechanics.

Balaguer’s account follows Malament’s suggestion of nominalizing quantum
mechanics by taking seriously the Hilbert space structure and the representation
of “quantum events” with closed subspaces of Hilbert spaces. Following orthodox
textbook presentation of quantum mechanics, he suggests that we take as primitives
the propensities of quantum systems as analogous to probabilities of quantum
experimental outcomes.

I begin by recalling that each quantum state can be thought of as a function
from events (A,∆) to probabilities, i.e., to [0,1]. Thus, each quantum state
specifies a set of ordered pairs < (A,∆), r >. The next thing to notice is that
each such ordered pair determines a propensity property of quantum
systems, namely, an r−strengthed propensity to yield a value in ∆ for
a measurement of A. We can denote this propensity with “(A,∆, r)”.
(Balaguer, 1996, p.218.)

Balaguer suggests that the propensities are “nominalistically kosher.” By interpreting
the Hilbert space structures as propensities instead of propositions, Balaguer makes
some progress in the direction of making quantum mechanics “more nominalistic.”

However, Balaguer’s account faces a problem—it is not clear how Balaguer’s
account relates to any mainstream realist interpretation of quantum mechanics. This is
because the realist interpretations—Bohmian Mechanics, GRW spontaneous collapse
theories, and Everettian Quantum Mechanics—crucially involve the quantum state
represented by a wave function, not a function from events to probabilities.23 And
once we add the wave function (perhaps in the nominalistic form introduced in this
paper), the probabilities can be calculated (via the Born rule) from the wave function
itself, which makes primitive propensities redundant. If Balaguer’s account is based
on orthodox quantum mechanics, then it would suffer from the dependence on vague
notions such as “measurement,” “observation,” and “observables,” which should
have no place in the fundamental ontology or dynamics of a physical theory.24

23See Bueno (2003) for a discussion about the conflicts between Balaguer’s account and the modal
interpretation of QM.

24Bell (1989), “Against ‘Measurement,’ ” pp. 215-16.
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4 “Wave Function Realism”

The intrinsic and nominalistic account of the quantum state provides a natural
response to some of the standard objections to “wave function realism.”25 According
to David Albert (1996), realism about the wave function naturally commits one to
accept that the wave function is a physical field defined on a fundamentally 3N-
dimensional wave function space. Tim Maudlin (2013) criticizes Albert’s view partly
on the ground that such “naive” realism would commit one to take as fundamental
the gauge degrees of freedom such as the absolute values of the amplitude and the
phase, leaving empirically equivalent formulations as metaphysically distinct. This
“naive” realism is inconsistent with the physicists’ attitude of understanding the
Hilbert space projectively and thinking of the quantum state as an equivalence class
of wave functions (ψ ∼ Reiθψ). If a defender of wave function realism were to take
the physicists’ attitude, says the opponent, it would be much less natural to think
of the wave function as really a physical field, as something that assigns physical
properties to each point in the 3N-dimensional space. Defenders of wave function
realism have largely responded by biting the bullet and accepting the costs.

But the situation changes given the present account of the quantum state. Given
the intrinsic theory of the quantum state, one can be realist about the quantum
state by being realist about the four intrinsic relations underlying the mathematical
and gauge-dependent description of the wave function. The intrinsic relations are
invariant under the gauge transformations. Regardless of whether one believes
in a fundamentally high-dimensional space or a fundamentally low-dimensional
space, the intrinsic account will recover the wave function unique up to the gauge
transformations (ψ ∼ Reiθψ).

I should emphasize that my intrinsic account of the wave function is essentially
a version of comparativism about quantities. As such, it should be distinguished
from eliminitivism about quantities. Just as a comparativist about mass does not
eliminate mass facts but ground them in comparative mass relations, my approach
does not eliminate wave function facts but ground them in comparative amplitude
and phase relations. My account does not in the least suggest any anti-realism about
the wave function.26

Therefore, my account removes a major obstacle for wave function realism. One
can use the intrinsic account of the quantum state to identify two field-like entities on
the configuration space (by thinking of the N-Regions as points in the 3N-dimensional
space) without committing to the excess structure of absolute amplitude and overall
phase.27

25“Wave function realists,” such as David Albert, Barry Loewer, Alyssa Ney, and Jill North, maintain
that the fundamental physical space for a quantum world is 3N-dimensional. In contrast, primitive
ontologists, such as Valia Allori, Detlef Dürr, Sheldon Goldstein, Tim Maudlin, Roderich Tumulka,
and Nino Zanghi, argue that the fundamental physical space is 3-dimensional.

26Thanks to David Glick for suggesting that I make this clear.
27Unsurprisingly, the present account also provides some new arsenal for the defenders of the

fundamental 3-dimensional space. The intrinsic account of the quantum state fleshes out some details
in the multi-field proposal.
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5 Conclusion

There are many prima facie reasons for doubting that we can ever find an intrinsic
and nominalistic theory of quantum mechanics. However, in this paper, we have
offered an intrinsic and nominalistic account of the quantum state, consisting in four
relations on regions of physical space:

1. Amplitude-Sum (S),

2. Amplitude-Geq (⪰A),

3. Phase-Congruence (∼P),

4. Phase-Clockwise-Betweenness (CP).

This account, I believe, offers a deeper understanding of the nature of the quantum
state that at the very least complements that of the standard account. By removing
the references to mathematical objects, our account of the quantum state provides a
framework for nominalizing quantum mechanics. By excising superfluous structure
such as overall phase, it reveals the intrinsic structure postulated by quantum
mechanics. Here we have focused on the universal quantum state. As the origin of
quantum non-locality and randomness, the universal wave function has no classical
counterpart and seems to resist an intrinsic and nominalistic treatment. With the
focus on the universal quantum state, our account still leaves room for including
additional ontologies of particles, fields, mass densities supplied by specific solutions
to the quantum measurement problem such as BM, GRWm, and GRWf; these
additional ontologies are readily nominalizable.

Let us anticipate some directions for future research. First, the intrinsic structure
of the quantum state at different times is constrained by the quantum dynamics.
In the platonistic theory, the dynamics is described by the Schrödinger equation.
To nominalize the dynamics, we can decompose the Schrödinger equation into
two equations, in terms of amplitude and gradient of phase of the wave function.
The key would be to codify the differential operations (which Field has done for
Newtonian Gravitation Theory) in such a way to be compatible with our phase and
amplitude relations. Second, we have described how to think of the quantum state
for a system with constant number of particles. How should we extend this account
to accommodate particle creation and annihilation in quantum field theories? I
think the best way to answer that question would be to think carefully about the
ontology of a quantum field theory. A possible interpretation is to think of the
quantum state of a variable number of particles as being represented by a complex
valued function whose domain is ⋃∞

N=0 R3N—the union of all configuration spaces
(of different number of particles). In that case, the extension of our theory would
be easy: (1) keep the axioms as they are and (2) let the quantifiers range over K-
regions, where the integer K ranges from zero to infinity. Third, we have considered
quantum states for spinless systems. A possible way to extend the present account
to accommodate spinorial degrees of freedom would be to use two comparative
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relations for each complex number assigned by the wave function. That strategy
is conceptually similar to the situation in the present account. But it is certainly
not the only strategy, especially considering the gauge degrees of freedom in the
spin space. Fourth, as we have learned from debates about the relational theories of
motion and the comparative theories of quantities, there is always the possibility of
a theory becoming indeterministic when drawing from only comparative predicates
without fixing an absolute scale.28 It would be interesting to investigate whether
similar problems of indeterminism arise in our comparative theory of the quantum
state. Finally, the formal results obtained for the periodic difference structure could
be useful for further investigation into the metaphysics of phase.

The nature of the quantum state is the origin of many deeply puzzling features
of a quantum world. It is especially challenging given realist commitments. I hope
that the account discussed in this paper makes some progress towards a better
understanding of it.
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Appendix: Proofs of Theorems 3.3 and 3.4.

Step 1. We begin by enriching < N-Regions, Phase–Clockwise–Betweenness, Phase–
Congruence> with some additional structures.

First, to simplify the notations, let us think of N-Regions as a set of regions, and
let us now only consider Ω ∶= N-Regions / =P, the set of “equal phase” equivalence
classes by quotienting out =P. (a =P b if they form phase intervals the same way:
∀c ∈ S, ac ∼P bc.)

28See Dasgupta (2013), Baker (2014), Martens (2016), and Field (2016), preface to the second edition,
pp. 41-44.
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Second, we fix an arbitrary A0 ∈ Ω to be the “zero phase equivalence class.”
Third, we define a non-inclusive relation C on Ω according to CP on N-Regions.

(∀A,B,C ∈ Ω, C(A,B,C) iff A,B,C are pairwise distinct and ∀a ∈ A,∀b ∈ B,∀c ∈ C,
C(a, b, c).)

Fourth, we define an addition function ○ ∶ Ω ×Ω→Ω. ∀A,B ∈ Ω, C = A ○ B is the
unique element in Ω such that CB ∼ AA0, which is guaranteed to exist by (K4) and
provably unique as elements in Ω form a partition over N-Regions.

Step 2. We show that the enriched structure < Ω, ○,C > with identity element A0

satisfies the axioms for a periodic extensive structure defined in Luce (1971).
Axiom 0. < Ω, ○ > is an Abelian semigroup.
First, we show that ○ is closed: ∀A,B ∈ Ω, A ○ B ∈ Ω.
This follows from (K4).
Second, we show that ○ is associative: ∀A,B,C ∈ Ω, A ○ (B ○C) = (A ○ B) ○C.
This follows from (K6).
Third, we show that ○ is commutative: ∀A,B ∈ Ω, A ○ B = B ○A.
This follows from (K2).
∀A,B,C,D ∈ Ω:
Axiom 1. Exactly one of C(A,B,C) or C(A,C,B) holds.
This follows from C1.
Axiom 2. C(A,B,C) implies C(B,C,A).
This follows from C2.
Axiom 3. C(A,B,C) and C(A,C,D) implies C(A,B,D).
This follows from C2.
Axiom 4. C(A,B,C) implies C(A ○D,B ○D,C ○D) and C(D ○A,D ○ B,D ○C).
This follows from (K7).
Axiom 5. If C(A0,A,B), then there exists a positive integer n such that C(A0,A,nA)

and C(A0,nB,B).
This follows from (K8).
Therefore, the enriched structure < Ω, ○,C > with identity element A0 satisfies the

axioms for a periodic extensive structure defined in Luce (1971).
Step 3. We use the homomorphisms in Luce (1971) to find the homomorphisms

for < N-Regions, Phase–Clockwise–Betweenness, Phase–Congruence>.
Since < Ω, ○,C > satisfy the axioms for a periodic structure, Corollary in Luce

(1971) says that for any real K > 0, there is a unique function φ from Ω into [0,K) s.t.
∀A,B,C ∈ Ω:

1. C(C,B,A) ⇔ φ(A) > φ(B) > φ(C) or φ(C) > φ(A) > φ(B) or φ(B) > φ(C) >

φ(A);

2. φ(A ○ B) = φ(A) +φ(B) (mod K);

3. φ(A0) = 0.
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Now, we define f ∶ N-Regions → [0,K) as follows: f (a) = φ(A), where a ∈ A. So
we have CP(c, b, a)⇔ f (a) ≥ f (b) ≥ f (c) or f (c) ≥ f (a) ≥ f (b) or f (b) ≥ f (c) ≥ f (a).

We can also defineψ ∶N-Regions ×N-Regions→ [0,K) as follows: ψ(a, b) = φ(A)−

φ(B) (mod K), where a ∈ A and b ∈ B. Hence, ∀a, b ∈ N-Regions, ψ(a, b) = f (a) − f (b)
(mod K).

Moreover, given (K5), ∀a ∈ A, b ∈ B, c ∈ C,d ∈ D, ab ∼P cd
⇔ AB ∼ CD
⇔ A ○D = B ○C
⇔ φ(A ○D) = φ(B ○C)

⇔ φ(A) +φ(D) = φ(B) +φ(C) (mod K)
⇔ ∀a ∈ A, b ∈ B, c ∈ C,d ∈ D, f (a) + f (d) = f (b) + f (c) (mod K)
⇔ ∀a ∈ A, b ∈ B, c ∈ C,d ∈ D, f (a) − f (b) = f (c) − f (d) (mod K)
Therefore, we have demonstrated the existence of homomorphisms.
Step 4. We prove the uniqueness theorem.
If another function f ′ ∶ N-Regions → [0,K) with the same properties exists, then

it satisfies the same homomorphism conditions. Suppose (for reductio) f ′ and f differ
by more than a constant mod K.

Let D(a, b) by the function that measures the differences between f and f ′ on
N-regions:

D(a, b) = [ f (a) − f (b)] − [ f ′(a) − f ′(b)] mod K.

Without loss of generality, let us suppose that there exist two regions x, y where
D(x, y) ≠ 0. By (K8), there will be a sequence of pairs of regions that are phase-
congruent to x, y: xy ∼P ya1 ∼P a1a2 ∼P ... ∼P anx. Since by assumption both f and f ′

preserve the structure of phase-congruence, we have (mod K):

f (x) − f (y) = f (y) − f (a1) = ... = f (an) − f (x),

f ′(x) − f ′(y) = f ′(y) − f ′(a1) = ... = f ′(an) − f ′(x).

Consequently:

D(x, y) = [ f (x) − f (y)] − [ f ′(x) − f ′(y)] = D(y, a1) = ... = D(an,x)

Hence, since the above D’s are not zero, they must be either all positive or all negative.
If they are all positive, then the sum of them will be positive:

D(x, y) +D(y, a1) + ... +D(an,x) > 0

However, expanding them in terms of f and f ′ we have a telescoping sum:

[ f (x)− f (y)]−[ f ′(x)− f ′(y)]+[ f (y)− f (a1)]−[ f ′(y)− f ′(a1)]+...+[ f (an)− f (x)]−[ f ′(an)− f ′(x)] = 0.

Contradiction. The same argument works for the case when all the D’s are negative.
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Therefore, D(x, y) = 0 for all N-regions. Let a0 be where f assigns zero. Then

f ′(a) − f ′(a0) mod K = f (a) − f (a0) mod K = f (a),

which entails that
f ′(a) = f (a) + β mod K,

with the constant β = f ′(a0). QED.
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