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Chapter 1

Introduction

The Atiyah [9], Guillemin and Sternberg [34], [35]and then Kirwan [46] theory

for the momentum polytope has become well known.

Let A be an n × n Hermitian matrix, with diagonal elements (δ1, . . . , δn),

Issai Schur [87] showed that these δi, along with eigenvalues (λ1, . . . , λn) satisfy

a particular collection of linear inequalities. Let Sn be the symmetric group that

permutes points in Rn which we will consider δ and λ as coordinate points in.

The convex hull of the points in Sn.λ contains δ. In fact the two equate as A.

Horn [41] proved the converse.

Now for g∗ dual to the Lie algebra g, and h the Lie algebra of maximal torus

H ⊂ G, then the projection map g∗ → h∗ is the restriction of the coadjoint action

of G on g∗ to h. The Weyl group W acts on h and its dual. According to this

Kostant [49] generalised the above so it applies to any compact group G.

Theorem. Let O ⊆ g∗ be a coadjoint orbit under G. Then the projection of O
on h∗ is the convex hull of a W-orbit.

Therefore Schur and Horn’s result becomes only a particular restriction of

this theorem for G the unitary group of dimension n and H the diagonal matrix

subgroup, and g is the set of anti-Hermitian matrices whose dual is established ac-

cording to the scalar product Tr(AB) that is G-invariant. Therefore the diagonal

of A defines the projection of A ∈ g∗ on h∗.

The standard framework for the convexity theorem is according to Atiyah

[9], Guillemin-Sternberg [34], Kirwan [46]’s versions which work for the more

general Hamiltonian action of Lie group H on symplectic manifold M. Where

the momentum map M → h∗ can be made more specific to the projection O →
12
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h∗. And Kirwan showed that the momentum polytope is convex polytope that

results from the intersection of the momentum map image with the positive Weyl

chamber.

For given Hermitian matrices A and B, their respective eigenvalues that are

in a system of linear inequalities that bound the eigenvalues of their sum A + B

thanks to the non-abelian convexity theorem, if we think of it in terms of Schur

and Horn’s specifications. We go into later developments of convexity theory in

section 2.5.6.

In this thesis we explore the action of SU(3) on CP2 and extend the convexity

theorem according to this action. Specifically, for g ∈ SU(3) and [v] ∈ CP2, with

action A[v] = [Av]. Our compact manifold M is the product of 2 or 3 copies of

CP2, with invariant Fubini-Study symplectic form on it and SU(3) acts diagonally

on it. We assign a scalar Γi (for i = 1, 2, 3) to each invariant symplectic form on

each copy of CP2. This is a Hamiltonian action and the momentum map depends

on the Γi chosen. We classify the momentum polytopes in full for each of these

actions.

Chapter 2 includes the background theory establishing the convex polytope

including properties of the momentum map of the Lie group action on its coad-

joint orbit. The positive Weyl chamber is a result of the orbit momentum map.

The bifurcation lemma provides a rank-nullity correspondence that is essential in

dictating the gradient of the edges of the momentum polytope. We then intro-

duce the Witt-Artin decomposition which we use in calculations of the reduced

spaces. The dynamics of the action are explored through their relative equilibria.

In Chapter 3 we confirm the action that the results of this thesis are based

on: the SU(3) action on its coadjoint orbit CP2, namely determining the isotropy

subgroups and the fixed point sets of the action on two and three copies of CP2.
SU(3) has two types of non-trivial coadjoint orbits (up to diffeomorphism): the

4-dimensional CP2 and the 6-dimensional complex flag manifold F(2, 1). Like all

coadjoint orbits, these are symplectic manifolds with a transitive G-action. For

CP2 the invariant symplectic form is unique up to a scalar multiple, while for

F(2, 1) there is a 2-parameter family of invariant symplectic forms. In chapter

3 we confirm the action that the results of this thesis are based on: the SU(3)

action on its coadjoint orbit CP2, namely determining the isotropy subgroups and

the fixed point sets of the action on two and three copies of CP2. The isotropy

subgroup of a point in CP2 is S[U(2) × U(1)] ' U(2). For two points that are
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perpendicular in CP2 the isotropy subgroup is isomorphic to T2. And the isotropy

subgroup of two points that are neither perpendicular or parallel is T1, the fixed

point set of which consists of the z3 = 0 subspace - which is a CP1 ⊂ CP2: in this

case the dynamics on this subspace restricts to the dynamics of the two points

on the sphere.

In chapter 4 we indicate the symplectic form on the coadjoint orbit and show

that it satisfies certain properties as required and after exhibiting the appropriate

properties of the momentum map of the SU(3) action on CP2. For the action

of SU(3) on products of CP2, we introduced the weighted symplectic form. The

symplectic form on N-copies of CP2 is

ω = Γ1ωFS ⊕ . . .⊕ ΓNωFS where Γ1, . . . ΓN ∈ R

so the symplectic form is the sum of scalar multiples of the Fubini-Study form

on each CP2.We establish the momentum map on that symplectic manifold J :∏N
i=1CP2 → su(3)∗ of the SU(3) action on N-products of CP2 is

J : Z1, . . . ZN → N∑
i=1

iΓi
Zi ⊗ Z̄i
|Zi|2

−
1

3
ΓiI, Zi ∈ CP2.

The intersection of the image of the momentum map with the positive Weyl

chamber is a convex polytope and the vertices are contained in the set of the image

of the momentum map of the fixed point set of the action of the Lie group. The

coadjoint orbits through points in the boundary of the Weyl chamber are CP2s
while those through the interior points are the flag manifolds. Each coadjoint

orbit corresponds to an isospectral submanifold.

Chapter 5 includes most of our results. After exploring the uniqueness of the

fixed point sets according to the respective weightings assigned to each copy of

CP2 we draw up and classify the momentum polytopes of the SU(3) action on two

and three copies of CP2. These momentum polytopes are separated by transition

polytopes which are defined and classified for each action. Section 5.5 uses the

bifurcation lemma to prove that the gradient of each edge of the momentum

polytopes must be perpendicular to one of the walls of the Weyl chambers.

The action SU(3) y CP2×CP2 is a cohomogeneity one action whose orbit is

homeomorphic to the closed interval. We show that the momentum polytopes of

this action fall into six different categories separated by the ratios between the
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Γis. In section 5.3 we prove the following theorem:

Theorem. The momentum polytopes of the SU(3) action on CP2 × CP2 with

weighted symplectic form Γ1ωFS⊕Γ2ωFS fall into four different categories for which

Γ1 − Γ2 6= 0, Γ1 + Γ2 6= 0, Γi 6= 0 where i, j = 1, 2.

An example of these polytopes is shown in Figure 1.1a. All of the different

polytopes corresponding to this action are shown in Figure 1.1b therefore describ-

ing in full, by their momentum polytopes, the different configurations of the two

points according to their weights Γ1 and Γ2.

parallel

perpendicular

Γ1 > Γ2 > 0

(a) Momentum polytope for
Γ1 > Γ2 > 0 clearly indicat-
ing the regular and singular
orbits in relation to paral-
lel or perpendicular points.
The region shaded in pink
is the positive Weyl chamber
for SU(3).

Γ1 = Γ2

λ2 = 0

Γ1 = −Γ2 Γ1 > Γ2 > 0

0 > Γ2 > Γ1 Γ2 > 0 > Γ1
|Γ2| > |Γ1|

Γ1 > 0 > Γ2
|Γ2| > |Γ1|

(b) All of the different momentum polytopes for the
SU(3) action on two points (z1, z2) ∈ CP2 × CP2.

Figure 1.1: The momentum polytopes of SU(3) y CP2 × CP2.

For the SU(3) action on points in CP2×CP2×CP2 there are only five distinct

fixed points:{
[e1, e1, e1], [e2, e1, e1], [e1, e2, e1], [e1, e1, e2], [e1, e2, e3]

}
.

where e1 = [1 : 0 : 0], e2 = [0 : 1 : 0], e3 = [0 : 0 : 1] ∈ CP2. Figure 5.20 is

an example of one of these polytopes: the vertices corresponding to each image

of the momentum map of each fixed point set are labelled a, b, c1, c2 and c3

as shown. There are nine different distinct polytopes for this action as shown
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in Figure 1.2b which are distinguished by the magnitudes and respective ratios

between Γ1, Γ2 and Γ3. In section 5.6 we prove the following theorem:

Theorem. The momentum polytopes of the SU(3) action on CP2×CP2×CP2 with

weighted symplectic form Γ1ωFS⊕ Γ2ωFS⊕ Γ3ωFS fall into nine different categories

for which Γi − Γj − Γk 6= 0, Γi + Γj 6= 0, Γi 6= 0 where i, j, k = 1, 2, 3.

a

c1

c2

c3

b

(a) As an example we have
here one of the polytopes
where the points

a=Spectrum
(
J([e1, e1, e1])

)
,

b=Spectrum
(
J([e1, e2, e3])

)
,

c1=Spectrum
(
J([e2, e1, e1])

)
,

c2=Spectrum
(
J([e1, e2, e1])

)
,

c3=Spectrum
(
J([e1, e1, e2])

)
.

a

c1

c2

c3

b

Polytope Γ1 + Γ2 + Γ3 = 0

a

c1

c2

c3

b

Polytope A

a
c1

c2

c3

b

Polytope B

a

c1

c2

c3

b

Polytope C

a

c1

c2

c3

b

Polytope D

a

c1

c2

c3

b

Polytope E

a

c1

c2

c3

b

Polytope F

a

c1

c2c3
b

Polytope G

a

c1

c2

c3

b

Polytope H

(b) All of the nine momentum polytopes for the SU(3)
action on three points (z1, z2, z3) ∈ CP2 × CP2 × CP2.

Figure 1.2: The momentum polytopes of SU(3) y CP2 × CP2 × CP2.

These different polytopes are separated by transitional polytopes. If the spec-

trum of a coadjoint orbit has a repeated element then the orbit is diffeomorphic

to CP2, while if it has 3 distinct elements it is diffeomorphic to F(2, 1). The first

type of transitional polytope consists of two rather than one singular momentum

values as shown in Figure 1.3. And the second type of transitional polytope corre-

sponds to the 5 fixed point sets ‘collapsing’ into only three (one singular and two
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a

b

c1

c3

c2

Transition Polytope between A and B

(a) The transition polytope
between Polytopes A and B.

a

c1

b

c3

c2

Transition Polytope between C and H

(b) The transition polytope
between Polytopes C and H.

b

c3

c1

c2

a

Transition Polytope between E and F

(c) The transition polytope
between Polytopes E and F.

Figure 1.3: Three examples of the transition polytopes of SU(3) y CP2 ×CP2 ×
CP2.

regular) sets of momentum values: they look exactly like the polytopes for the

SU(3) action on two points in CP2 × CP2. In section 5.4 we prove the following

theorem:

Theorem. The transitional momentum polytopes of the SU(3) action on CP2 ×
CP2×CP2 fall into three different categories for which Γi−Γj−Γk = 0, Γi+Γj = 0,

Γi = 0 where i, j, k = 1, 2, 3.

Similarly for the SU(3) action on CP2 × CP2, in section 5.7 we prove the

following theorem:

Theorem. The different polytopes of theorem 1 are separated by transitional

momentum polytopes of the SU(3) action on CP2 × CP2 fall into three different

categories for which Γ1 − Γ2 = 0, Γ1 + Γ2 = 0, Γi = 0 where i, j = 1, 2.

For the third category of transition polytope in which the momentum poly-

tope of the SU(3) action on CP2 × CP2 × CP2 resembles that of the momenutm

polytopes of the SU(3) action on CP2×CP2 we composed and proved a theorem

to describe the restricted momentum map that outlines this transformation:

Theorem. For Lie group G acting on manifold (M,ω) with J :M→ g∗. Let X

be an invariant symplectic submanifold of M. The momentum map restricted to

this submanifold is J|X = JX : X→ g∗ where for x ∈ X JX(x) = J(x). Therefore JX

is the momentum map for G acting on X.
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In chapter 6 we find a more rigorous derivation for the shape and edges of the

momentum polytope. We prove that the direction of the edges from each vertex

is dictated much more locally. Therefore according to the quadratic momentum

map on the symplectic slice we can distinguish vertices into definite and indefinite

vertices. This distinction then prescribes the possible directions of the edges

leading from that vertex. At the definite vertices the reduced space is isomorphic

to the sphere.

Globally, the gradient of the edges of the polytope are determined by the

bifurcation lemma. The bifucation lemma provides a link between the rank of a

momentum map at a point p of a Poisson Manifold (P, {·, ·}) and the symmetry of

the manifold at p. The rank of TpJ is the same as the dimension of the annihilator

of the isotropy algebra at p providing a rank-nullity correspondence.The Weyl

group reflections at the walls of the Weyl chamber also dictate the resulting

shape of the polytope.

However the direction of the edge of a polytope from its vertex can be described

more locally. For a vertex, the direction of any of the edges that lead away

from the vertex (a, b, c1, c2 or c3) travel along the weight vectors dictated by the

momentum map on the symplectic slice, N1.

The reduced spaces are 2-dimensional symplectic manifolds for certain values of

the momentum map and degenerate for others. On the momentum polytope the

topologies of the reduced spaces can be separated into three categories: those that

correspond to the momentum values along the edge of the momentum polytope,

those that correspond to the momentum values at the interior of the momentum

polytope and those that correspond to the momentum values along the dotted

lines, the ‘interior edges’, between vertices in the interior of the polytope (for

example the dotted lines between vertices b and c2 shown in Figure 5.20). In

chapter 6 we prove the following theorem:

Theorem. A definite vertex of the momentum polytope corresponds to specific

values for µ = J(x) and provides definite values for the quadratic momentum map

on the symplectic slice, and the reduced space is isomorphic to the 2-sphere,

J−1N1(µ)/T
2 ' S2.

for those values of µ. An indefinite vertex does not produce definite values for

the momentum map on the symplectic slice.
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A point vortex is a point of concentrated and isolated vorticity on irrotational

fluid. In more recent cases the point vortices may be modelled on a backdrop

of constant vorticity. Helmholtz showed that vortex interaction can be described

solely by their strength and relative positions in 1858. Kirchhoff wrote the equa-

tions in Hamiltonian form, these Hamiltonian equations didn’t rely on knowing

the potential or kinetic energies of the system. Novikov with others, including

Aref, rediscovered the three vortex problem bringing such research into the lime-

light in 1975 leading to some great developments. In fact Aref stated that point

vortex systems research provides mathematical playgrounds - for the way they

bring different strands of classical maths together. These playgrounds include

those through which Kidambi and Newton showed that the motion of three vor-

tices on a sphere is completely integrable in 1998. Lim showed that for lattice

vortex systems there exist quasi-periodic orbits on the corresponding invariant

tori in 1990. There have been other relevant results. Some latter-day develop-

ments include the study of different point vortex systems on a sphere, and other

surfaces that are less symmetric.

Let’s consider the Hamiltonian structure: for symplectic manifold with Rie-

mannian metric (S,ω0), consider the manifold M = S× S× · · · × S \ Π which

has configurations of an ordered set of n distinct points in S that removes col-

lisions - Π is the large diagonal and therefore the subset that includes all pos-

sible collisions. Usually collisions are removed from models of vortex systems.

If xi is the coordinate of each vortex point, then Γi is its corresponding vortex

strength. And the symplectic form on M is Ω = Γ1ω0 ⊕ Γ2ω0 ⊕ · · · ⊕ Γnω0 =

π∗1(Γ1ω0) + π
∗
2(Γ2ω0) + · · ·+ π∗n(Γnω0) where πj :M→ S is the Cartesian projec-

tion to the jth component of M. Choosing a smooth function that describes the

pairwise interaction of the vortices h0 : S× S \ Π→ R, which, depending on the

configuration space, can be taken to be the negative of the Green’s function of

the Laplacian relative to the Riemannian metric. The Hamiltonian of this action

is the function H(x1, . . . , xn) =
∑

i<j ΓiΓjh0(xi, xj) whose evolution, for vector field

XH is defined by Hamilton’s equation iXHΩ = −dH, is given by ẋ = XH(x).

If the action preserves the symplectic form and h0(g ·x, g ·y) = h0(x, y) for all

g ∈ G, x, y ∈ S, then there exists G symmetry and the vector field is equivariant.

If G action on S is Hamiltonian with momentum map J : S→ g∗, then J :M→ g∗

is the momentum map for the action of G on M which is in turn Hamiltonian

where in particular, J(x1, . . . , xn) =
∑

j ΓjJ(xj). The different components of the
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momentum map are preserved by the dynamics according to Noether which is in

accordance with this.

[66] shows that the actions of SE(2), SO(3) and SL(2) on S if it is the plane,

the sphere or the hyperbolic plane are indeed Hamiltonian. [71] showed that this

is not true for symplectic action on point vortices on a torus or cylinder.

We initiated research in this direction by investigating vortices on the com-

plex projective plane. In Chapter 7 we first introduce widely-known results for

systems of vortices on the 2-sphere including their Hamiltonians. The relative

equilibria is a trajectory that lies in the group orbit or, almost equivalently, an

invariant group orbit. This thesis provides a further extension of the playground

by application of geometric methods to investigate the relative equilibria of vor-

tices on CP2. Here the vortex interaction isn’t modeled to be pairwise except

that we use the assumption that h0(x, y) only depends on the distance between

x and y (coordinates of vortices). It needs to be clarified that we are working

with a generalised mathematical structure and these results don’t apply actual

fluid vortex dynamics.

For two vortices we find that the reduced space is just a single point, for

every configuration, whereas for the 3 point vortex system we find that they

are typically diffeomorphic to a sphere, sometimes a pinched sphere or just a

single point (usually for points on the boundary of the polytope). At the end

we consider the relative equilibria of their stability. For the two generalised

vortices we have that every configuration is a relative equilibria, but this is not

true for the three vortex case except for when the reduced space is a point. The

main outputs from this chapter however are the relative equilibria results. We

introduce our definition of the space of allowed velocity vectors and find that it

is either isomorphic to a single point or the real line depending on the vortex

configurations on the complex projective plane.

In section 7.3 we formulated the following definition and theorem along with

the proof,

Definition. At x ∈ P ,

R0 ⊂ TxG

is the subset of tangent space of the allowed velocity vectors, ξ, of x and is an

RE for which dHx = [ξ] ∈ R0. Therefore

R0 ' (gµ/gx)
Gx
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where N∗0 ' (gµ/gx).

Using this definition we also show results concerning the dynamics of the

configuration of a vortex system including:

Theorem. For the SU(3) action on two vortices on CP2, at a generic configura-

tion (when the vortices are neither parallel or perpendicular),

R0 ' R

and this is true for every respective vortex strength.

In chapter 8 we explore areas for further research and our progress, where it

exists, in each.

The results of this thesis have been taken further and are being written up as

research papers [69], [70].
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Chapter 2

Symplectic Geometry

2.1 Weyl Chambers

Here we provide a run through of the standard theorems, propositions, lemmas,

corollaries and definitions that lead up to a full mathematical description of Weyl

groups, Weyl chambers and weights. We mainly state these in order and have

omitted proofs but the relevant proofs along with detailed narratives and overview

can be found in the following textbooks [23], [31], [42] [83] [90].

2.1.1 Rudimentary Principles

2.1.1.1 The notion of Lie algebra, linear Lie algebras and Lie algebra derivations

We signify an arbitrary (commutative) field with F.

Definition 2.1.1. L is a vector space over a field F, we denote by (x, y) 7→ [xy]

the operation L × L → L, and call it the commutator or bracket of x and y: if

the following axioms hold, it is called a Lie algebra over F:

(L1) The bracket operation is bilinear.

(L2) [xx] = 0 for all x in L.

(L3) [x[yz]] + [y[zx]] + [z[xy]] = 0 (x, y, z ∈ L) (Jacob Identity).

If a vector space isomorphism φ : L→ L ′ satisfying φ([xy]) = [φ(x)φ(y)] exits

for all x, y in L, then the two Lie algebras L, L ′ over F are said to be isomorphic,

where φ would be the isomorphism of Lie algebras. For K a subspace of L, if

[xy] ∈ K whenever x, y ∈ K then K is called a subalgebra. According to the

operations assumed, K is a Lie algebra in its own right.

24
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End V the set of linear transformations V → V where V is a finite dimensional

vector space over F. End V is a vector space over F, is a ring corresponding to

the fixed product operation, and has dimension n2 (n=dim V). End V becomes

a Lie algebra over F when we interpose a new bracket operation called the bracket

of x and y, that’s defined: [x, y] = xy − yx. This is an algebra structure that

is different from the associative one, which we denote gl(V) (the general linear

algebra) for End V . It is the algebra of the general linear group GL(V) which is

the group of all invertible endomorphisms of V .

Any subalgebra of gl(V) is a linear Lie algebra. The classical algebras are

distinguished according to certain long-established linear Lie groups into A`, B`,

C`, D` (` ≥ 1):
A`: We identify the set of endomorphisms of V having trace zero with sl(V)

or sl(` + 1,F). It is a subalgebra of gl(V) and is called the special linear algebra

and is coupled with the special linear group SL(V) of endomorphisms of det 1.

For A` dim V = `+ 1.

B`: If f is the nondegenerate symmetric bilinear form on V with matrices

s =

1 0 0

0 0 I`

0 I` 0

. o(V) or o(2`+ 1,F) (the orthogonal algebra) is made up of all

endomorphisms of V with f(x(v), w) = −f(v, x(w)). Here dim V = 2`+ 1 is odd.

C`: Here f on V is defined by the matrix s =

(
0 I`

−I` 0

)
. The symplectic

algebra denoted ∼p(V) or ∼p(2`,F) is comprised of all endomorphisms x of V

satisfying f(x(v), w) = −f(v, x(w)). Here dim V = 2` with basis (v1, . . . , v2`).

D`: The construction of D` is exactly the same as B`’s except s =

(
0 I`

I` 0

)
and dim V = 2` is even. Therefore we acquire another orthogonal algebra.

Let’s denote the set of upper triangular matrices with UT(n,F), the strictly

upper triangular matrices with SUT(n,F) and the set of all diagonal matrices

with d(n,F).
A vector space U over F that has a bilinear operation U × U → U usually

denoted by a collocation, is called a F-algebra (not necessarily associative). But

if U is a Lie algebra, then instead of the collocation we always use the bracket.

A derivation of U a linear map 4 : U → U satisfying the known product rule

4(ab) = a 4 (b) + 4(a)b. The collection of all derivations of U is a vector

subspace of End U denoted Der U, and it is a subalgebra of gl(U). Der L is
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defined because Lie algebra L is an F-algebra. ad x denotes the x ∈ L where

y 7→ [xy] is an endomorphism of L and because we can rewrite the Jacobi identity

as [x[yz]] = [[xy]z] + [y[xz]] it follows ad x ∈ Der L. These types of derivations

are called inner derivations where every other type of derivation is called an outer

derivation. And the adjoint representation of L is the map L →DerL sendind x

to ad x.

We will use adLx to communicate x is acting on L, and adKx for x is acting

on K, to distinguish when x ∈ L but not in K subalgebra of L.

When L is an arbitrary finite dimensional vector space over F, it is a Lie

algebra if we set [xy] = 0 for all x, y ∈ L. This algebra is abelian if it has

trivial Lie multiplication. Let L denote any Lie algebra, with basis x1, . . . xn,

then the structure constants akij that arise in [xixj] =
∑n

k=1 a
k
ijxk retrieve the

whole multiplication table of L.

2.1.1.2 Ideals, homomorphisms, representations, automorphisms, solvability and nilpo-

tency

An ideal of L is subspace I of L for which both x ∈ L, y ∈ I ⇒ [xy] ∈ I. For

example 0 and L itself are ideals of L. The derived algebra of L, written [LL],

which is comparable to the commutator subgroup of a group is an ideal of L.

Similarly the center Z(L) = {z ∈ L | [xz] = 0 for all x ∈ L} is also an ideal of L.

L is simple if it has no ideal except itself and 0 and more importantly [LL] 6= 0.

For I an ideal of L the quotient algebra L/I is formulated much in the same way

as that of a quotient ring.

NL(K) = {x ∈ L | [xK] ⊂ K} defines the normaliser of a subalgebra K of L.

K is then said to be self-normalising when K = NL(K). And CL(X) = {x ∈ L |

[xX] = 0} is the centraliser of a subset X of L.

φ : L → L ′ becomes an homomorphism if φ([xy]) = [φ(x)φ(y)], for all

x, y ∈ L. When Ker φ = 0, φ is a monomorphism and an epimorphism if

Imφ = L ′. It is an isomorphism again when it is both an epimorphism and a

monomorphism. Just as to φ there is Kerφ, there is to an ideal I the associated

canonical map x 7→ x+ I of L onto L/I.

Proposition 2.1.2. (1) L/Kerφ ' Imφ if φ : L → L ′ is an homomorphism of

Lie algebras. A unique homomorphism ψ : L/I → L ′ exists if I is any ideal of L
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that is in Ker φ, for which

L L ′

L/I

π

φ

ψ

where π=canonical map. (2) If I ⊂ J where I and J are both ideals of L, then J/I

is an ideal of L/I and it follows that L/J is naturally isomorphic to (L/I)/(J/I).

(3) There exists a natural isomorphism between (I+ J)/J and I/(I∩ J) if I, J are

ideals of L.

An homomorphism φ : L → gl(V) is a representation of a Lie algebra L. It

concludes from all of the above that any simple Lie algebra is isomorphic to a

linear Lie algebra.

An isomorphism of L onto itself is an automorphism of L. If we are restricted

to cases of char F=0, if (ad x)k = 0 for some k > 0, then x ⊂ L is an element for

which it is said that ad x is nilpotent.An inner automorphism is that of the form

exp (ad x) where ad x nilpotent.

The derived series is a sequence of ideals of L defined by L(0) = L, L(1) = [LL],

L(2) = [L(1)L(1)], . . . , L(i) = [L(i−1)L(i−1)]. If L(n) = 0 for some n then L is solvable.

Proposition 2.1.3. For L a Lie algebra. (1) When L is solvable, then all subal-

gebras and homomorphic images of L are also solvable. (2) When I is a solvable

ideal of L where L/I is solvable, then L itself is solvable. (3) I + J is a solvable

ideal if both I, J are.

For S a maximal solvable ideal where L is an arbitrary Lie algebra, and I is

any other solvable ideal of L, then there exists a unique maximal solvable ideal,

called the radical of L an denoted Rad L, since (3) of the above proposition would

imply S + I = S accordin to maximality, or I ⊂ S. L is called semisimple when

Rad L = 0.

Write the descending central series (or lower central series) as a sequence of

ideals of L as L0 = L, L1 = [LL] (= L(1)), L2 = [LL1], . . . , Li = [LLi−1]. L is

nilpotent if Ln = 0 for some n.

Proposition 2.1.4. For Lie algebra L: (1) all subalgebras and homomorphic

images of L are nilpotent if L is nilpotent. (2) L is nilpotent if L/Z(L) is nilpotent.

(3) Z(L) 6= 0 if L is nilpotent and nonzero.

x ad-nilpotent if ad x is a nilpotent endomorphism.
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2.1.1.3 Engel’s Theorem

Theorem 2.1.5. (Engel) L is nilpotent if all elements of L are ad-nilpotent.

Lemma 2.1.6. ad x is also nilpotent if x ∈ gl(V) is a nilpotent endomorphism.

Theorem 2.1.7. For L a subalgebra of gl(V) and V finite dimensional, if V 6= 0
and L is made up of nilpotent endomorphisms then there exists nonzero v ∈ V
for which L.v = 0.

Corollary 2.1.8. There exists a basis of V relative to which the matrices of L

are all in SUT(nF), meaning that according to the theorem above, there exists a

flag (Vi) in V stable under L, with x.Vi ⊂ Vi−1 for all i.

Lemma 2.1.9. If K 6= 0 then K∩Z(L) 6= 0 if L be nilpotent and K is an ideal of

L. Specifically Z(L) 6= 0.

2.1.2 Semisimple Lie Algebras

2.1.2.1 Lie’s theorem, Jordan-Chevalley decomposition, Cartan’s criterion, criterion

for simplicity, simple ideals of L

Theorem 2.1.10. Given that V 6= 0 then for all endomorphisms in L there is a

common eigenvector contained in V. This is provided L is a solvable subalgebra

of g(V) and V is finite dimensional.

Corollary 2.1.11. The matrices of L relative to a suitable basis of V (where L

is a solvable subalgebra of gl(V) and dim V = n < ∞) are upper triangular.

Otherwise put: some flag in V is stabilised by L.

Corollary 2.1.12. x ∈ [LL] ⇒ adLx is nilpotent for L solvable. Specifically, [LL]

is nilpotent.

If the roots of the minimal polynomial of x ∈End V (V finite dimensional)

over F are all distinct, then x is semisimple.

Proposition 2.1.13. For V be a finite dimensional vector space over F and x ∈
End V: (1) There exist unique xs, xn ∈ End V that fulfil: xn is nilpotent, xs xn

commute and x = xs + xn and xs are semisimple. (2) xs = p(x), xn = q(x) for

polynomials p(T), q(T) in one indeterminate, without constant term. Specifically,

any endomorphism commuting with x commutes with xs and xn. (3) For subspaces

A ⊂ B ⊂ V, x maps B into A and xs and xn also map B into A.
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The (additive) Jordan-Chevalley decomposition (or simply Jordan decompo-

sition) of x is the decomposition x = xs + xn, where xn is the nilpotent part of x

and xs is its semisimple part.

Lemma 2.1.14. Let x ∈ End V, where x = xs + xn is its Jordan decomposition

and dim V < ∞.Then the Jordan decomposition of adx is ad x =adxs+adxn (in

End (End V)).

Lemma 2.1.15. Let U be a finite dimenstional F-algebra, then the derivative Der

U contains the nilpotent and semisimple parts (in End U) of all its elements.

Lemma 2.1.16. Let A ⊂ B be two subspaces of gl(V) where V is finite dimen-

sional. And let M = {x ∈ gl(V) | [x, B] ⊂ A}. x is nilpotent if x ∈ M satisfies

Tr(xy) = 0 for all y ∈M.

Theorem 2.1.17. For gl(V), with dim V < ∞, let L be a subalgebra. If for

all x ∈ [LL], y ∈ L, Tr(xy) = 0, then L is solvable. This is known as Cartan’s

criterion.

Corollary 2.1.18. L is solvable if Tr(adxady)=0 for all x ∈ [LL], y ∈ L for L a

Lie algebra.

For x, y in L a Lie algebra, we define the Killing form, κ, a associative

(κ([xy], z) = κ(x, [yz])) symmetric bilinear form on L, as κ(x, y) =Tr(adxady).

Lemma 2.1.19. Let κ be the Killing form of L, if I is an ideal of L, and κI is

the Killing form of I. It is viewed as a Lie algebra and κI = κ
∣∣∣
I×I

.

Define the radical of a symmetric bilinear form, β(x, y), as S = {x ∈ L |

β(x, y) = 0 for all y ∈ L}. β(x, y) is nondegenerate if S is 0.

Theorem 2.1.20. For L a Lie algebra. Its Killing form is nondegenerate if and

only if L is semisimple.

For the set of ideals I1, . . . , It, L = I1 + . . .+ It L is said to be a direct sum of

the set if L = I1 + . . .+ It i.e. is a direct sum of subspaces.

Theorem 2.1.21. Let L be a semisimple Lie algebra. Simple ideals, L1, . . . , Lt,

of L exist such that L = L1⊕ . . .⊕Lt. The restriction of κ to Li×Li is the Killing

form of L, and every simple ideal of L coincides with one of the Li.

Corollary 2.1.22. For L a semisimple Lie algebra, L = [LL], and each of its

ideals is a sum of specific simple ideals of L.Also all homomorphic images and

ideals of L are semisimple.
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2.1.2.2 Inner derivations, abstract Jordan decomposition, modules, Casimir elements

of representation, Weyl’s theorem, preservation of Jordan decomposition

Theorem 2.1.23. Every derivation of L is inner if L is semisimple and ad L =

Der L.

An abstract Jordan decomposition in a non-specific semisimple Lie algebra

can be formed using the above theorem. Recall Lemma 2.1.15, and in particular

Theorem 2.1.23, since L →ad L is 1-1, unique elements s, n ∈ L are determined

by each x ∈ L where ad x = ad s+ ad n is the usual Jordan decomposition of

ad x in End L. Therefore x = s + n, with [sn] = 0, s is ad-semisimple (i.e. ads

semisimple) and n is ad-nilpotent. n = xn is the nilpotent part of x, and s = xs

is the semisimple part of x.

A vector space V that has an operation L×V → V , more specifically, (x, v) 7→
x.v or just xv, satisfies the following conditions: (M1) (ax + by).v = a(x.v) +

b(y.v),

(M2) x.(av+ bw) = a(x.v) + b(x.w),

(M3) [xy].v = x.y.v − y.x.v. (x, y ∈ L; v,w ∈ V ; a, b ∈ F). It is called an

L-module.

A linear map φ : V → W where φ(x.v) = x.φ(v) is called a homomorphism

of L-modules. When the two modules have equivalent representations of L, then

for φ an isomorphism of vector spaces, it is called an isomorphism of L-modules.

If an L-module V has exactly two L-submodules, then is it called irreducible. A

zero dimensional vector space is not considered as an irreducible L-module. A one

dimensional space on which L acts is called irreducible is permitted. And V is

completely reducible if V is a direct sum of irreducible L-submodules.

Lemma 2.1.24. For φ : L → gl(V) irreducible, the only endomorphisms of V

that commute with all φ(x) where x is a subset of L are scalars.

This is known as Schur’s lemma. If V is an L-module, if we specify that for f

in the dual vector space V∗, v ∈ V , x ∈ L: (x.f)(v) = −f(x.v), then V∗ becomes

an L-module called the contragredient or the dual.

We call a representation of L faithful if it is 1-1. If L is semisimple and

φ : L→ gl(V) is faithful with non-degenerate trace form β(x, y) =Tr(φ(x)φ(y)),

then fixing basis (x1, . . . , xn) of L, we have that cφ for cφ(β) and name this the

Casimir element of φ.
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Lemma 2.1.25. Let L be a semisimple Lie algebra with representation φ : L →
gl(V), then L acts trivially on any one dimensional L-module and φ(L) ⊂ sl(V).

Theorem 2.1.26. φ : L→ gl(V) is completely reducible if it is a (finite dimen-

sional) representation of a semisimple Lie algebra.

This is Weyl’s theorem

Theorem 2.1.27. Let V be finite dimensional and L ⊂ gl(V) a semisimple lin-

ear Lie algebra. Then the abstract and usual Jordan decompositions in L coincide

since L would contain the semisimple and nilpotent parts in gl(V) of all its ele-

ments.

Corollary 2.1.28. Let φ : L → gl(V) a finite dimensional representation of

semisimple Lie algebra L then the abstract Jordan decomposition of φ(x) is x =

s+ n.

2.1.2.3 Weights, maximal vectors, irreducible module classification

In this section we will assume that all modules are finite dimensional over F. L

will denote sl(2,F), which has standard basis

x =

(
0 1

0 0

)
, y =

(
0 0

1 0

)
, h =

(
1 0

0 −1

)
.

h acts diagonally on V as it’s semisimple and for V an arbitrary L-module, a

decomposition of V would be a direct sum of eigenspaces Vλ = {v ∈ V | h.v = λv},

λ ∈ F. If Vλ 6= 0 then λ is a weight of h in V and Vλ is a weight space.

Lemma 2.1.29. If v is in Vλ, then x.v is in Vλ+2 and y.v is in Vλ−2.

Because the sum V =
∐

λ∈F Vλ is direct for dimV < ∞ then Vλ = 0 must be

true so Vλ+2 = 0. For the λ just described, a maximal vector of weight λ is the

name of any nonzero vector in Vλ. Let’s now suggest that V is an irreducible

L-module. If we pick a maximal vector such as v0 ∈ Vλ and set vi = (1/i!)yi.v0

(i ≥ 0) where v−1 = 0 then,

Lemma 2.1.30. (1) h.vi = (λ− 2i)vi, (2) y.vi = (i+ 1)vi+1, (3) x.vi = (λ− i+

1)vi−1 (i ≥ 0).
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Theorem 2.1.31. Let L = sl(2,F) with irreducible module V. (1) Parallel with

h, V is the direct sum of weight spaces Vµ, µ = m, m − 2, . . . ,−(m − 2),−m,

where m + 1 =dim V and dim Vµ = 1 for each µ. (2) Up to nonzero scalar

multiples V has a unique maximal vector, whose weight is m and is called the

highest weight of V. (3) The above formulas are exactly the action of L on V,

if the basis is chosen in the same way. Specifically, there exists no more than

one irreducible L-module (up to isomorphism) of each possible dimensions m+1,

m ≥ 0.

Corollary 2.1.32. Let V be any finite dimensional L-module where L − sl(2,F)
then the eigenvalues of h on V are all integers, and each occurs along with

its negative (an equal number of times). Specifically, the number of summands

in any decomposition of V into direct sum of irreducible submodules is exactly

dimV0+dimV1.

2.1.2.4 Maximal toral subalgebras, roots, centraliser of H, orthogonality, integrality

and rationality properties

If L is not nilpotent in the way established in Engel’s theorem then we can locate

a x in L whose abstract Jordan decomposition has nonzero semisimple part xs.

Then for example the span of such xs is a nonzero subalgebra of L made up of

semisimple elements. This subalgebra is referred to as toral

Lemma 2.1.33. A toral subalgebra of L is abelian.

A toral subalgebra that is not properly included in any other is a maximal toral

subalgebra H of L. For example, H is just the trace=0 set of diagonal matrices if

L = sl(n,F).
It follows that adLH is a commuting family of semisimple endomorphisms of

L and is simultaneously diagonalisable. For all h ∈ H}, where α ranges over H∗, L

is the direct sum of the subspaces Lα = {x ∈ L | [hx] = α(h)x. The centraliser of

H, CL(H), is exactly L0 which, of course, includes H. Let Φ denote the set of all

nonzero α ∈ H∗ for which Lα 6= 0. The elements of phi are finite and are called

the roots of L with respect to H. The Cartan decomposition L = CL(H)⊕
∐

α∈Φ Lα

is the root space decomposition.

Proposition 2.1.34. [Lα, Lβ] ⊂ Lα+β for all α,β ∈ H∗. ad x is nilpotent if

x ∈ Lα and α 6= 0. Lα is orthogonal to Lβ relative to the Killing form κ of L if

α,β ∈ H∗, and α+ β 6= 0.
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Corollary 2.1.35. The restriction of the Killing form to L0 = CL(H) is non-

degenerate.

Lemma 2.1.36. Let x, y be commuting endomorphisms of a finite dimensional

vector space, Tr(xy) = 0, and y nilpotent then xy is nilpotent.

Proposition 2.1.37. H = CL(H) if H is a maximal toral subalgebra of L.

Corollary 2.1.38. κ restricted to H is nondegenerate.

For φ ∈ H∗ there’s a corresponding (unique) element tφ ∈ H for which φ(h) =

κ(tφ, h) for all h ∈ H. Specifically, Φ corresponds to the subset {tα;α ∈ Φ} of H.

So by the above corollary we can identify H with H∗.

Proposition 2.1.39. (1) Φ spans H∗. (2) If α ∈ Φ then −α ∈ Φ. (3) [xy] =

κ(x, y)tα (tα as above) if α ∈ Φ, x ∈ Lα, y ∈ L−α. (4) [LαL−α] is one dimensional,

with basis tα when α ∈ Φ (5) α(tα) = κ(tα, tα) 6= 0, for α ∈ Φ. (6) There

exists yα ∈ L−α such that xα, yα, hα = [xα, yα] span a three dimensional simple

subalgebra of L isomorphic to sl(2,F) via xα 7→ (
0 1

0 0

)
, yα 7→ (

0 0

1 0

)
, hα 7→(

1 0

0 −1

)
if α ∈ Φ and xα is any nonzero element of Lα. (7) hα = −h−α for

hα = 2tα
κ(tα,tα)

If like specified in (Proposition 2.1.39(b)) for each pair of roots α, −α Sα '
sl(2,F) be a subalgebra of L made up as in Proposition 2.1.39(f), we can describe

adLSα so there exists a complete description of all finite dimensional Sα-modules.

If we choose a particular α ∈ Φ, then it can be shown that twice a root is

never a root (i.e. 2α is not a root) and the only multiples of a root α which are

roots are ±α.

Proposition 2.1.40. (1) For Hα = [LαL−α], Sα = Lα + L−α + Hα and there

exists a unique yα ∈ L−α satisfying [xαyα] = hα for a particular nonzero xα ∈ Lα.

Simply put, α ∈ Φ implies dim Lα = 1. (2) The only scalar multimples of α

which are roots are α and −α if α ∈ Φ. (3) The numbers β(hα) are called

Cartan integers, for which if α,β ∈ Φ, then β − β(hα)α ∈ Φ where β(hα) ∈ Z.

(4) [LαLβ] = Lα+β for α,β, α + β ∈ Φ. (5) Let α,β ∈ Φ, β 6= ±α. If q is the

largest integer such that β + qα is a root, and r is the largest integer such that

β − rα is a root, then β + iα ∈ Φ where −r ≤ i ≤ q, and β(hα) = r − q. (6)

The root spaces Lα generate L.
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Let E be the real vector space derived as E = R⊗QEQ i.e. extending the base

field from Q to R. Then Φ satisfies the following

Theorem 2.1.41. For L, H, Φ, E as above, (1) 0 does not belong to Φ since Φ

spans E. (2) No other scalar multiple of α is a root, only −α ∈ Φ since α ∈ Φ.

(3) β− 2(β,α)
(α,α)

α ∈ Φ if α,β ∈ Φ. (4) 2(β,α)
(α,α)

⊂ Z then α,β ⊂ Φ.

This theorem essentially states that in the real euclidean space E, Φ is a root

system, and we have the correspondence (L,H) 7→ (ΦE).

2.1.3 Root Systems

2.1.3.1 Reflections, root systems, root pairs

In this section we are focused on a finite dimensional vector space over R endowed

with a positive definite symmetric bilinear form (α,β), in other words a fixed

Euclidean space E. an invertible linear transformation that leaves a hyperplane

pointwise fixed therefore sending any vector orthogonal to that hyperplane into

its negative is called a reflection in E.

Pα = {β ∈ E | (β,α) = 0} (2.1)

is a reflecting hyperplane determined by a reflection σα of any nonzero vector α.

A reflection preserves the inner product on E showing that it is orthogonal.

Lemma 2.1.42. If Φ is a finite set that spans E. If all the reflections σα leave

Φ invariant then σ = σα where σ ∈ GL(E) leaves Φ invariant and pointwise fixes

a hyperplane P of E, sending some nonzero α ∈ Φ to its negative.

According to the following axioms, Φ ⊂ E is a root system: (R1) Φ, spans E,

doesn’t contain 0 and is finite.

(R2) The only multiples of α in Φ are ±α.

(R3) The reflection σα leaves Φ invariant.

(R4) 〈β,α〉 ∈ Z for α,β ∈ Φ.

Let’s denote the finite subgroup of GL(E) generated by the reflections σα

(α ∈ Φ), W , and call it the Weyl group of Φ (root system in E).

Lemma 2.1.43. Let W be the Weyl group of the root system Φ in E. σσασ
−1 =

σσ(α) for all α ∈ Φ if σ ∈ GL(E) leaves Φ invariant. And 〈β,α〉 = 〈σ(β), σ(α)〉
for all α,β ∈ Φ.
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For root systems Φ, Φ ′ in respectivve euclidean spaces E, E ′, (Φ,E) and

(Φ ′,E ′) isomorphic if there exists a vector space isomorphism φ. This is not

necessarily an isometry.

Let’s introduceαv = 2α
(α,α)

and Φv = {αv | α ∈ Φ} the dual or inverse of Φ.

THis is also a root system in E and its Weyl group is canonically isomorphic to

W .

The rank of the root system Φ is written l =dimE. We can draw pictures for

Φ for l ≤ 2.

−α α

This is a root system that belongs to sl(2,F) with Weyl group of order 2.

Rank 2 offers more possibilities, here are three examples:

α

β

A1 ×A1
β

α

A2
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β

α

B2

The possible angles between pairs of roots is seriously limited by axiom (R4).

we have that

〈β,α〉 = 2(β,α)

(α,α)
= 2
‖β‖
‖α‖

cosθ.

Lemma 2.1.44. For nonproportional roots α and β, if (α,β) < 0 then α+ β is

a root, and if (α,β) > 0 then α− β is a root.

For nonproportional roots, we call all roots of type β + iα, where i ∈ Z, the

α-string through β. We have that root strings are of length no greater than 4.

And from β− rα to β+ qα, the α-string through β is unbroken.

2.1.3.2 Weyl chambers, simple roots, the Weyl group and irreducible root systems

In this section, Φ is a root system of rank l with Weyl group W in a euclidean

space E.

A base is a name given to a subset 4 of Φ when, (B1) 4 is a basis of E,

(B2) β =
∑
kαα (α ∈ 4), with integral coefficients kα all nonnegative or all

nonpositive, defines each root β.

We call the roots in 4 simple. Card 4 = l and β defined in (B2) is unique

according to (B1). The height of a root relative to 4, may be defined htβ =∑
α∈4 kα. We call β positive if all kα ≥ 0 and write β � 0, similarly β is

negative, β ≺ 0, if all kα ≤ 0. The assemblage of positive and negative roots is

written as Φ+ and Φ− respectively. α+ β is positive when α and β are positive
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roots such that α+ β is also a root. A partial order on E consistent with α � 0
is defined by 4. In fact if we define β ≺ α if and only if β = α or α−β is a sum

between positive or simple roots.

Lemma 2.1.45. (α,β) ≤ 0 for α 6= β in 4 if 4 is a base of Φ, and α − β is

not a root.

Theorem 2.1.46. Φ has a base.

Define Φ+(γ) = {α ∈ Φ | (γ, α) > 0} = for each vector γ ∈ E as the set of

roots that are on the “positive” side of the hyperplane orthogonal to γ. E 6= the

union of finitely many hyperplanes Pα. If γ ∈ E − ∪α∈ΦPα then γ ∈ E is called

regular, it’s called singular otherwise. If α = β1 + β, for some βi ∈ Φ+(γ) then

we call α ∈ Φ ′(γ) decomposable, it is indecomposable otherwise.

Theorem 2.1.47. The set 4(γ) of all indecomposable roots in Φ+(γ) is a base

of Φ for regular γ ∈ E. Also every base can be acquired this way.

E is separated into finitely many regions, separated by the hyperplanes Pα.

The (open) Weyl chambers of E are the connected components of E − ∪αPα.

Each regular γ ∈ E is contained in strictly one Weyl chamber, denoted C(γ). If

γ and γ ′ lie on the same side of each hyperplane Pα (α ∈ Φ) (4(γ) = 4(γ ′)

or Φ+(γ) = Φ+(γ ′)) we notify this with C(γ) = C(γ ′). In other words, bases

are in 1-1 correspondence with Weyl chambers. The fundamental Weyl chamber

relative to 4 is C(4) = C(γ) for 4 = 4(γ). The open convex set, otherwise

known as the intersection of opem half-spaces is denoted C(4) and is made up of

all γ in E for which (γ, α) > 0 where (α ∈ 4).For example take type A2 which

is depicted in the above figure: it has six chambers, one of which is shaded -

this is the fundamental region corresponding to the base {α,β}. The Weyl group

sends one Weyl chamber onto another, or for regular γ and σ ∈ W , we have that

σ(C(γ)) = C(σγ).
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α

β

Lemma 2.1.48. Let 4 be a fixed base of Φ. α − β is a root if α is positive but

not simple and for some β ∈ 4. (Clearly α− β is a positive root.)

Corollary 2.1.49. Let 4 be a fixed base of Φ. For αi ∈ 4 where each αi is

not necessarily distinct, each β ∈ Φ∗ can be written as a sum of αi in the form:

α1 + . . .+ αk. Where each partial sum α1 + . . .+ αi is a root.

Lemma 2.1.50. Let 4 be a fixed base of Φ. The positive roots that are not α

are permuted by σα if α is simple.
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Corollary 2.1.51. Let 4 be a fixed base of Φ. σα(4) = 4− α for all α ∈ 4 if

we set 4 = 1
2

∑
β�0 β.

Lemma 2.1.52. Let 4 be a fixed base of Φ. If we write α1, . . . , αt ∈ 4 where

each is not necessarily distinct and introduce the notation σi = σαi then for some

index 1 ≤ s < t, σ1 . . . σt = σ1 . . . σs−1σs+1 . . . σt−1 if σ1 . . . σt−1(αt) is negative.

Corollary 2.1.53. Let 4 be a fixed base of Φ. σ(αt) ≺ 0 if σ ∈ W can be

written as σ = σ1 . . . σt with regard to reflections in relation to the simple roots,

where t is as small as possible.

Theorem 2.1.54. Let 4 be a base of Φ. Then (1) W acts transitively on Weyl

chambers, and what this means is that there is a σ ∈ W for which (σ(γ), α) > 0

for all α ∈ 4 if γ ∈ E andγ regular. (2) W acts transitively on bases which

means that σ(4 ′) = 4, for some σ ∈ W if 4 ′ is another base of Φ. (3) There

exists a σ ∈ W for which σ(α) ∈ 4 for α any root. (4) σα, where α ∈ 4,

generate W. (5) W acts simply transitively on bases which means that σ = 1 if

σ(4) = 4 where σ ∈ W.

Lemma 2.1.55. l(σ) = n(σ) for all σ ∈ W

Let λ, µ ∈ C̄(4).

Lemma 2.1.56. σ is product of simple reflections which fix λ if σλ = µ for some

σ ∈ W. Specifically, λ = µ.

What the above lemma defines a fundamental domain for the action of W
on E which is the closure C(4) of the fundamental Weyl chamber relative to 4.

Each point of this set is W-conjugate to each vector in E.

If a particular Φ cannot be sectioned into the union of two proper subsets

where each root in one set is orthogonal to each root in the other set then it is

irreducible. For example A1, A2, B2, G2 are irreducible, but A1 × A1 is not. If

4 is a base of Φ, Φ is irreducible if 4 cannot be partitioned in the way just

specified.

Lemma 2.1.57. (1) For Φ irreducible, there is a unique maximal root β accord-

ing to the partial ordering �. After all, α 6= β implies htα < htβ and (β,α) ≥ 0
for all α ∈ 4. All Kα > 0 if β−

∑
kαα where α ∈ 4. (2) For Φ irreducible, W

acts irreducibly on E. Specifically, the W-orbit of a root α spans E. (3) For Φ
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irreducible, then no more than two root lengths can exist in Φ where each root of

a particular length is conjugate to another of the same length under W. (For Φ

irreducible, the two different root lengths are distinguished into a long root and a

short root. When they are all of the same length then they are all referred to as

long roots.) (4) For Φ irreducible, with two distinct roots, then the maximal root

β is long.

2.1.3.3 Cartan matrices and their irreducible parts, weights

Let Φ be a root system of rank l, W its Weyl group and 4 a base of Φ. Fix

(α1, . . . , αl) to be an ordering of the simple roots then the Cartan matrix of Φ

is the matrix (〈αi, αj〉) whose entries are the Cartan integers.

Example 2.1.58.

A1 ×A1

(
2 0

0 2

)
, A2

(
2 −1

−1 2

)
, B2

(
2 −2

−1 2

)
.

The Cartan matrix is independent of the choice of 4 but does depend on the

chosen ordering.

According to the following proposition, we can retrieve Φ from the Cartan

integers. One can therefore write down all the roots.

Proposition 2.1.59. Φ is determined by its Cartan matrix up to isomorphism:

Let Φ be a root system of rank l, W its Weyl group and 4 a base of Φ. Choose

Φ ′ ⊂ E ′ as another root system with base 4 ′ = {α ′1, . . . , α
′
l}. αi 7→ α ′i uniquely

extends to an isomorphism φ : E→ E ′ therefore mapping Φ onto Φ ′ and fulfills

〈φ(α), φ(β)〉 = 〈α,β〉 for all α,β ∈ Φ, if for 1 ≤ i, j ≤ l we have that 〈αi, αj〉 =
〈α ′i, α ′j〉.

Proposition 2.1.60. If we section 4 into mutually orthogonal subsets: 4 =

41 ∪ . . .4t. If Ei spans 4i then E can be written as an orthogonal direct sum:

E = E1⊕ . . .⊕Et. Φ can be written as a unique union of irreducible root systems

Φi in Ei so that E = E1 ⊕ . . .⊕ Et.

Call weights the elements of the set of all λ ∈ E for which 〈λ, α〉 ∈ Z, we will

call this set Γ . Γ is a subgroup of E including Φ because 〈λ, α〉 = 2(λ,α)
(α,α)

linearly

depends on λ. We have that 〈λ.α〉 ∈ Z for all α ∈ 4 if and only if λ ∈ Γ . The
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root lattice is the subgroup of Γ generated by Φ which we denote Γr. Specifically

a root lattice in E in that it is the Z-span of an R-basis of E. λ ∈ Γ is dominant

for a fixed base 4 ⊂ Φ if all integers 〈λα〉 are nonnegative. If these integers

are positive then it is strongly dominant. If we set Γ+ as the set of all dominant

weights, this means that it is the set of all weights that lie in the closure of C(4),

the fundamental Weyl chamber. And the set of strongly dominant weights is

denoted Γ ∩ C(4).

The vectors 2αi/(αi, αi) also form a basis of E if 4 = {α1, . . . , αl}. If we let

λ1, . . . , λl be the dual basis in relation to the inner product on E, i.e.
2(λi,αj)

(αj,αj)
= δij,

then the λi are dominant weights because all 〈λi, α〉 are nonnegative integers and

are called the fundamental dominant weights (relative to 4).

α1

α2

λ2

λ1

the fundamental group of Φ is Γ/Γr which must be a finite group according

to theory on lattices: The Cartan matrix denotes a change of basis, particularly,

mij ∈ Z write αi =
∑

jmijλj, this leads to 〈αi, αk〉 =
∑

jmij and 〈λj, αk〉 = mik.

For example the Cartan matrix of type A2 is

(
2 −1

−1 2

)
therefore α1 = 2λ1− λ2

and α2 = −λ1 + 2λ2. If we invert this matrix, (1/3)

(
(2 1

1 2

)
, we have that

λ1 = (1/3)(2α1 + α2) and λ2 = (1/3)(α1 + 2α2).
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2.1.4 Reduction and Isomorphism

In previous sections we showed thatΦ is a root system in E: Let L be a semisimple

Lie algebra over the algebraically closed field F of characteristic 0, and L has

maximal toral subalgebra H, and the set of roots of L relative to H is Φ ⊂ H∗.
For l =dimFH

∗ we know that the rational span of Φ in H∗ has dimension l over

Q. We derive an l-dimensional real vector space E that is spanned by Φ if we

extend the base field from Q to R. E is a euclidean space because the symmetric

bilinear form dual to the Killing form is carried along to it.

Proposition 2.1.61. Let L, H and Φ be as above. Then Φ is an irreducible root

system in the sense of 2.1.3.2.

Therefore:

Corollary 2.1.62. Let L, H and Φ be as above. If the decomposition of L into

simple ideals is L = L1 ⊕ . . . ⊕ Lt then the maximal toral subalgebra of Li is

Hi = H ∩ Li. The (irreducible) root system Φ that corresponds is irreducible and

has canonical decomposition Φ = Φ1 ∪ . . . ∪Φt.

Characterising simple roots by their (irreducible) root systems is easier than

characterising semisimple Lie algebras by their root systems.

Proposition 2.1.63. If we fix a small set of generators for L. Let L, H as above

and Φ the root system of L relative to H. Fix 4 a base of Φ. Then the root

spaces Lα, L−α generate L as a Lie algebra. Or for xα ∈ Lα, yα ∈ L−α arbitrary

root vectors generate L.

A standard set of generators for L is what we call {xα, yα} or {xα, yα, hα} if

0 6= xα ∈ Lα and 0 6= yα ∈ L−α (α ∈ 4), with [xαyα] = hα. The isomorphism

E→ E ′ (not necessarily an isometry) causes isomorphismΦ→ Φ ′. If we multiply

the inner product on E or E ′ by a positive scalar this doesn’t affect the root system

axioms.

Theorem 2.1.64. Let L be a simple Lie algebra over F, with maximal toral

subalgebra H and root system Φ and let L ′ be another Lie algebra over F, with

maximal toral subalgebra H ′ and root system Φ ′. Assume α 7→ α ′ denotes the

isomorphism Φ → Φ ′ so that there exists π : H → H ′. 4 ′ = {α ′ | α ∈ 4}

is a base of Φ ′ for fixed 4 ⊂ Φ. Pick an arbitrary Lie algebra isomorphism

πα : Lα → L ′ which means to pick an arbitrary non-zero xα ∈ Lα, x ′α ′ ∈ L ′α ′ for
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each α ∈ 4 and α ′ ∈ 4 ′. Then there exists a unique isomorphism π : L → L ′

extending π : H→ H ′ and all πα (α ∈ 4).

2.2 Momentum Map

Again, here we provide the relevant theorems, propositions, lemmas, corollaries

and definitions for symplectic manifolds,almost complex structures, symplectic

and Hamiltonian actions of R, Lie groups, orbit spaces and momentum maps

with some examples. Proofs and more detail can be found in [61] and [77].

2.2.1 Symplectic Manifolds

Definition 2.2.1. For M a smooth manifold that hasa closed, nondegenerate,

skew-symmetric 2-form ω on it, a symplectic manifold is a pair (M,ω). If the

2-form ω is comprehended then we will just say that M is a symplectic manifold.

To say that ω is closed means that dω = 0 where d is the exterior derivative.

Nondegenerate ω means that at any point p ∈M, if we have that X ∈ TpM then

if ωp(X, Y) = 0 for all Y ∈ TxM then this must mean that X = 0. And for ω to

be skew-symmetric this means that ωp(X, Y) = −ωp(Y, X) for all X, Y ∈ TpM at

any p ∈ M. If we focus on the symplectic linear geometry properties of ωp on

TpM, the nondegeneracy and skew-symmetric conditions of ωp mean that TpM

must have even dimensions and in turn M must have even dimension.

Proposition 2.2.2. If M is a symplectic manifold then it is necessarily even

dimensional.

Definition 2.2.3. A diffeomorphism from a symplectic manifold to itself that

preserves the symplectic form is called a symplectomorphism. In particular,

ψ ∈Diff(M) is a symplectomorphism if ψ∗ω = ω for M a symplectic mani-

fold. Therefore at points p ∈M and with vectors X, Y ∈ TpM, by the definition

of the pullback we have that,

(ψ∗ω)p(X, Y) = ωψ(p)(dψp(X), dψp(Y)) = ωp(X, Y)

The group, under composition, of symplectomorphisms of a symplectic man-

ifold to itself is written as Symp(M,ω).
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Definition 2.2.4. A submanifold Y of a symplectic manifold (M,ω) where at

each point p ∈ Y, the restriction of ωp to TpY is symplectic is called a symplectic

submanifold. In other words ωp

∣∣∣
TpY×TpY

is nondegenerate and because ω is closed

and skew-symmetric this immediately means that the restriction is also closed

and skew symmetric.

2.2.2 Almost Complex Structures

Definition 2.2.5. Let V be a vector space. A linear map J : V → V such that

J2 = −Id is a complex structure on V .

Definition 2.2.6. Let (V,ω) be a symplectic vector space. J is called a compatible

complex structure if the map gJ : V×V → R where gJ(X, Y) = ω(X, JY) for all X, Y ∈
V is a positive inner product on V .

Proposition 2.2.7. A compatible complex structure on V exists if (V,ω) is a

symplectic vector space.

Definition 2.2.8. Let M be a smooth manifold. A smooth field of complex

structures on the vector spaces of the tangent spaces is an almost complex struc-

ture on M. In other words, there is a linear map Jx : TxM→ TxM at each point

x ∈M such that J2x = −Id.

Definition 2.2.9. Let (Mω) be a symplectic manifold. J is a compatible almost

complex structure on M if g the two form on TM that satisfies:

gx : TxM × TxM→ R

gx(X, Y) = ωx(X, Jx) for all X, Y ∈ TxM

is a Riemannian metric om M. A compatible triple (ω,g, J) where ω is a sym-

plectic form g is a Riemannian metric, and J is an almost complex structure if

gx(·, ·) = ωx(·, Jx·) for all x ∈M.

Proposition 2.2.10. Let (M,ω) be a symplectic manifold and g a Riemannian

metric on M. Then a compatible almost complex structure J on M exists.

Proposition 2.2.11. Any symplectic manifold has compatible almost complex

structures.



2.2. MOMENTUM MAP 45

Proposition 2.2.12. Suppose (V,ω) is a symplectic vector space, and (ω,g, J)

is a compatible triple on V then a linear map A : V → V which preserves both the

symplectic and the complex structures must be unitary (A ∈ U(V)).

2.2.3 Symplectic and Hamiltonian Actions of R

Definition 2.2.13. Suppose (M,ω) is a symplectic manifold then a group ho-

momorphism ψ : R→Symp(M,ω) where the evaluation map evψ :M×R→M

given by evψ(p, t) = ψt(p) is smooth is called a smooth symplectic action of R
on M.

Definition 2.2.14. If X is a vector field on a symplectic manifold (Mω) then if

the 1-form iXω is closed, as in, diXω = 0 we call X a symplectic vector field.

Recall that for a smooth vector field X and a given tensor field τ, the flow of

X can be written ψt, certainly ψ0 =Id and d
dt
ψt(p) = X(ψt(p)). And

LXτ =
d

dt

∣∣∣
t=0
ψ∗tτ.

is the Lie derivative of τ with respect to X. And the following Lie derivative

identities hold: (A) The Cartan Magic Formula: LXτ = iXdτ+ diXτ
(B) d

dt
ψ∗tτ = ψ

∗
tLXτ.

Proposition 2.2.15. For (M,ω) be a compact, symplectic manifold and ψ :

R→ Symp(M,ω) a smooth symplectic action of R. Then a particular collection

of vector fields {Xt} are generated by ψ defined:

d

dt
ψt = Xt ◦ψt.

This means that Xt is a symplectic vector field for every t ∈ R. However, a

smooth family of diffeomorphisms {ψt} satisfying:

ψ0 = Id

and
d

dt
ψt = Xt ◦ψt.

is determined by the flow of Xt if {Xt} is a time-dependent family of symplectic

vector fields. And {ψt} is a smooth symplectic action ψ : R→ Symp(Mω). Thus
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there exists {symplectic actions of R on M} ↔ {time-dependent symplectic vector

fields on M} a 1-1 correspondence.

In other words, the above proposition shows that for a given complete vector

field X, its flow {exptX : M → M | t ∈ R} is defined as the unique collection of

diffeomorphisms is a smooth symplectic action if it satisfies

exptX
∣∣∣
t=0

= Id

d

dt
exptX = X ◦ exptX.

Definition 2.2.16. Let (M,ω) be a symplectic manifold. Then for any given

smooth function H :M→ R a vector field XH on M can be defined by

iXHω = dH

by the nondegeneracy of ω

H is called an Hamiltonian function and XH is called an Hamiltonian vector

field. And XH is tangent to the level sets of H:

dH(XH) = iXHω(XH) = ω(XH, XH) = 0.

Definition 2.2.17. XH is a symplectic vector field because diXHω = ddH = 0,

so the flow ψ of XH is a smooth symplectic action if M is compact. We call ψ is

a Hamiltonian action of R.

2.2.4 Lie Groups

Recall that a Lie group is a group G that is a smooth manifold where multipli-

cation and inversion operations are smooth maps.

Definition 2.2.18. Let G be a Lie group. For g ∈ G, we can define left mul-

tilplication by g as Lg : G → G given by a 7→ g · a. A vector field X on G is

left-invariant if for every g ∈ G (Lg)∗X = X .

Proposition 2.2.19. Let’s introduce a new notation for the Lie algebra. Specif-

ically, the Lie algebra of the Lie group G is the set g of all left-invariant vector

fields on G, together with the Lie bracket [·, ·].
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Proposition 2.2.20. An isomorphism of vector spaces is defined by the map

g → TeG sends a left invariant vector field to its value at the identity e of G,

given by X 7→ Xe. Therefore, we can identify the vector space TeG with g.

Definition 2.2.21. Taking the identity of the map

ψg : G→ G

g 7→ g · a · g−1

provides an invertible linear map Adg : g → g (g = TeG). The adjoint action is

an action of G on g obtained by varying g given by:

Ad : G→ GL(g)

g 7→ Adg.

Definition 2.2.22. Introduce g∗ as the dual vector space of g. The pairing of g∗

and g, 〈·, ·〉, is defined:

〈·, ·〉 : g∗ × g→ R

(ξ, X) 7→ 〈ξ, X〉 = ξ(X).
Given ξ ∈ g∗ we define Ad∗gξ by 〈Ad∗gξ, X〉 = 〈ξ, Adg−1X〉 for any X ∈ g therefore

defining the map Ad∗g : g∗ → g∗. The coadjoint action is the action of G on g∗

given by varying g:

Ad∗ : G→ GL(g∗)

g 7→ Ad∗g.

Adg =Id on g and Ad∗g =Id on g∗ for all g ∈ G if G is abelian. Certainly the

Lie group Tn is abelian.

2.2.5 Orbit Space

Definition 2.2.23. Let ψ : G →Diff(M) be any action. {ψg(p) | g ∈ G} is the

orbit of G through p ∈M.

Definition 2.2.24. The subgroup Gp := {g ∈ G | ψg(p) = p} is the isotropy

subgroup (or stabiliser) of p ∈M.
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For p, q ∈M, let ∼ be the orbit equivalence relation between them. p ∼ q⇔ p

and q are on the same orbit. The orbit space is the space of orbits M/ ∼=M/G.

And the point-orbit projection is

π :M→M/G

p 7→ orbit through p.

2.2.6 Momentum Maps

Definition 2.2.25. For (M,ω) a symplectic manifold. A group homomorphism

ψ : G →Symp(M,ω) where the evaluation map evψ : M × G → M given by

evψ(p, g) = ψg(p) is smooth is a smooth symplectic action of a Lie group G.

Definition 2.2.26. The infinitesimal action of ξ, for a vector ξ ∈ g where g is

the Lie algebra of G, is the vector field Xξ on M that satisfies:

Xξ =
d

dt

∣∣∣
t=0
ψexp(tξ).

That Xξ is a symplectic vector field immediately follows from R→Symp(M,ω) :

t 7→ ψexp(tξ).

Definition 2.2.27. Let (M,ω) be a symplectic manifold, G be a Lie group, g be

the lie algebra of G, g∗ be the dual vector space of g, and ψ : G →Symp(M,ω)

be a symplectic action. Then if there exists a map,

J :M→ g∗

we call ψ a Hamiltonian action which we call the momentum map that satisfies:

(A) We defineHθ :M→ R byHθ(p) = 〈µ(p), θ〉 for each θ ∈ g. The Hamiltonian

function for the vector field Xθ is Hθ such that:

dHθ = iXθω.

(B) The action of ψ of G on M and the coadjoint action Ad∗ of G on g∗ are

equivariant to J for all g ∈ G:

J ◦ψg = Ad∗g ◦ µ
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Ad∗g =Id for all g ∈ G for G abelian, therefore for G abelian, condition (B)

becomes:

J ◦ψg = J.

2.2.6.1 Examples

Example 2.2.28. Let (V,ωV) be a symplectic vector space and let K be a com-

pact connected Lie group with a fixed maximal torus T that acts on V by linear

symplectic transformations. This is a Hamiltonian action with quadratic momen-

tum map

JξV(v) =
1

2
ωV(ξv, v)

where ξV is the image of v ∈ V under ξ ∈ g, and is considered a linear operator

on V . Pick J, a K-invariant ωV-compatible complex structure, on V and suppose

that 〈·, ·〉 is the Hermitian inner product whose imaginary part is equal to −ωV .

Then rewrite the momentum map:

JξV(v) =

√
−1

2
〈ξv, v〉. (2.2)

If K = T is a torus then V is an orthogonal direct sum of weight spaces, V =

⊕ν∈Λ∗Vν. ν is called a weight of symplectic action of T on V if Vν 6= 0. The weights

do not depend on the choice of the complex structure, but the weight space

decomposition does. This is because any two K-invariant compatible complex

structures on V are conjugate by a K-equivariant linear symplectic map. And

ξv = 2π
√
−1ν(ξ)v, so J(v) = −π‖v‖2ν if v is a vector of weight ν by (2.2) (so

that,

∆(V) = −cone{ν1, . . . , νl},

where ν1, . . . , νl are the (real) weights of V as will be clear by the end of this

chapter).

Example 2.2.29. Take the n × n dimensional Unitary group U(n), the Lie

algebra, and its dual, is the space of Hermitian n× n-matrices according to the

standard invariant form (and multiplication by i). These Hermitian matrices are

conjugate by an element of U(n) to a diagonal matrix. A chain of subspaces

V1 ⊂ V2 . . . ⊂ Vn−1 ⊂ Vn = Cn with dimVi = i is a maximal flag in Cn. If

we denote the set of maximal flags by F then F = U(n)/T where T is the n-

dimensional torus made up of diagonal unitary matrices. Given a maximal flag
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{Vi} let Ui be the orthogonal complement of Vi−1 in Vi. Fix real λ1, . . . , λn with

λ1 > λ2 . . . > λn. Then there is a unique hermitian matrix with eigenspaces Ui

and corresponding eigenvalues λi, and Cn =
⊕
Ui, specifically this gives a map,

fλ : F→ g∗

the image of which is the (generic) coadjoint orbit. Flag manifolds with different

sequences of dimensions are the other coadjoint orbits, such as the Grassmanians

and the projective space CPn−1.

The coadjoint orbit fλ(F) of U(n) is an integral orbit if and only if the λi

are integers: for an acceptable choice of normalisation of the invariant quadratic

form on the Lie algebra.

The standard action of U(n + 1) on a projective space CPn has momentum

map,

J(z) =
i

|z|2
zz∗,

where z is a column vector, representing a point in CPn.

For another group G the transpose of g → u(n) begets u(n)∗ → g∗. If we

take ξ ∈ g to act on Cn+1 by iA for a self-adjoint matrix A then we can assume

that A is diagonal with eigenvalues λa, ordered so that λ1 ≥ λ2 ≥ . . . and H is

H(z) =
1

|z|2

∑
λa|za|

2

where taking the eigenvector of A with largest eigenvalue corresponds to taking

the point p where H is maximal. And the weight of the action on the fibre of H

over p is simply what the eigenvalue is.

U(n) has rank n: the maximal torus in U(n) is given by the diagonal matrices

diag(eiλ1 , . . . , eiλn),

The symmetric group on n objects, acting by permutations of the eigenvalues

eiλn is isomorphic to the Weyl group of U(n). Therefore the weights of the

standard representation Cn are λi with usual coordinates (λ1, . . . , λn) on Lie (T)

for the maximal torus T of U(n). The roots are λi − λj for i 6= j and there are

n(n− 1) of these and dimG = n2, rank(G) = n.
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2.3 Coadjoint Orbit

Ig : G → G is the inner automorphism Ig(h) = ghg−1, recall that the adjoint

representation of a Lie group G is defined

Adg = TeIg : g→ g.

The coadjoint action is given by

Ad∗g−1 : g
∗ → g∗

where, for µ ∈ g∗, ξ ∈ g, and 〈, 〉 denotes the pairing between g∗ and g,

〈Ad∗g−1(µ), ξ〉 = 〈µ,Adg−1(ξ)〉

i.e. Ad∗
g−1

is the dual of the linear map Adg−1 . Oµ is the subset of g∗ and is the

coadjoint orbit through µ ∈ g∗ defined,

Oµ := {Ad∗g−1(µ) | g ∈ G} := G · µ

Oµ is an immersed submanifold like the orbit of any group action. If G is compact,

Oµ is a closed embedded submanifold.

Example 2.3.1. The dual of the Lie algebra of SO(3), so(3)∗, is the group of

antisymmetric matrices which is isomorphic to R3. A coadjoint orbit of SO(3) is,

OΠ := {Ad∗A−1(Π) | A ∈ SO(3), Π ∈ R3} := {AΠ | A ∈ SO(3)} (2.3)

which is the sphere in R3 of radius ||Π|| [61].

The coadjoint orbit Kµ with its Kirillov-Kostant symplecti formωµ is a Hamil-

tonian K-manifold for every µ in mathfrakt∗+. The momentum map is simply

the inclusion iµ : Kµ → l∗.
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2.3.1 Coadjoint Equivariant Momentum Map

the Hamiltonian vector field associated to the Hamiltonian function H is a vector

field on M induced from the natural isomorphism between dervations on C∞(M)

XH = {·, H}.

Hamilton’s equations ż = Xh(z) can be rewritten in the Poisson bracket form for

any f ∈ C∞(M),

ḟ = {f, h}.

For (M, {·, ·}) be a Poisson manifold and g a Lie algebra acting on it canonically

with a momentum map J : M → g∗. One can see that the map (g, [·, ·]) →
(C∞(M), {·, ·}) defined by ξ 7→ Jξ becomes a Lie algebra homomorphism i.e.

J[ξ,η] = {Jξ, Jη}, ξ, η ∈ g.

if and only if for any ξ ∈ g and any z ∈M,

TzJ · ξM(z) = −ad∗ξJ(z). (2.4)

This is then called an infinitesimally equivariant momentum map, which is the

infinitesimal version of the global or coadjoint equivariance when the Lie algebra

action corresponds to the Lie group action. J is G-equivariant when for all g ∈ G

Ad∗g−1 ◦ J = J ◦ Ψg (2.5)

otherwise put, JAdgξ(g · z) = Jξ(z), for all g ∈ G, ξ ∈ g, and z ∈M and smooth

left action of G on M, Ψ : G×M→M. The derivative of (2.5) with respect to

g at g = e in the direction ξ is (2.4).

Lie algebra actions that permit infinitesimally equivariant momentum maps

are usually referred to as Hamiltonian actions ; and Lie group actions with coad-

joint equivariant momentum maps are called globally Hamiltonian actions. Global

and infinitesimal equivariance of the momentum map are only equivalent if G be-

ing a connected symmetric group is proveable. The result below shows that if

the momentum map corresponds to the action of a compact Lie group then the

momentum map can always be chosen to be equivariant:



2.3. COADJOINT ORBIT 53

Proposition 2.3.2. (Montaldi) Let G be a compact Lie group that acts canon-

ically on the Poisson manifold (M, {·, ·}) with an associated momentum map

J :M→ g∗. Then an equivariant momentum map exists.

A similar result for choosing an equivariant momentum map: the canonical

action of a semisimple Lie algebra on a symplectic manifold admits an infinitesi-

mally equivariant momentum map.

Lemma 2.3.3. Let G be a Lie group acting on the manifold made up of the N-

product of coadjoint orbits, M = O1 × . . . × . . . × ON, where Oi denotes the ith

coadjoint orbit. Let ω = Γ1ω1 × . . . × ΓNωN be the symplectic structure on this

manifold, where each ωi corresponds to the Kostant-Kirillov-Souriau symplectic

form on the Oi coadjoint orbit, and Γi are the corresponding vortex strengths.

If J(Xi) is the momentum map Ji : Oi → g∗ defined on (Oi, Γi,ωi, G) then the

momentum map for the symplectic manifold M, defined on (M,ω,G) is

J(X1, . . . , XN) = J1(X1) + . . .+ JN(XN) (2.6)

with map J :M→ g∗

Proof. See Proposition 10.7.1 in [61]

2.3.2 Symplectic Reduction

Let’s introduce a more geometric description of a canonical transformation which

is usually defined as a phase space transformation that takes one canonical trans-

formation to another. A smooth map of a symplectic manifold to itself that

preserves the symplectic form (or Poisson bracket) is a symplectic map and it

is invariant. The reduction process for Hamiltonian systems with symmetry is

highly reliant on the geometry of symplectic manifolds.

Let G act on symplectic manifold (S,ω) by symplectic maps (this is called

a symplectic action). Let H be a G-invariant Hamiltonian on P and J be an

equivariant momentum map. The isotropy subgroup (symmetry subgroup) at

µ ∈ g∗ is Gµ = {g ∈ G | g · µ = µ} where Gµ leaves J−1(µ) invariant due to

equivariance. J−1(µ) is a smooth manifold and that Gµ acts freely and properly

on J−1(µ) if µ is a regular value of J, and therefore J−1(µ)/Gµ =: Pµ is a smooth
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manifold. πµ : J−1(µ) → Pµ is the projection map and iµ : J−1(µ) → P is the

inclusion. This means,

dimPµ = dim P − dim G− dim Gµ

Marsden and Weinstein developed results by Arnold, Jacobi, Liouville, and Smale

to reach the following result:

Theorem 2.3.4. A unique symplectic structure ωµ exists on Pµ that satisfies

i∗µω = π∗µωµ

This is known as the Reduction Theorem.

Define the reduced Hamiltonian Hµ : Pµ → R by H = Hµ ◦ πµ for a given

G-invariant Hamiltonian H on P. This means that the trajectories of XH project

to the trajectories of XHµ , however it would be beneficial to know how to rebuild

the XH trajectories from those of XHµ . Therefore a particular version of the

symplectic reduction theorem is below, where Oµ is the coadjoint orbit through

µ:

Corollary 2.3.5.

(T ∗G)µ ' Oµ (2.7)

the Kostant-Kirillov-Souriau orbit symplectic structure is the symplectic struc-

ture induced on Oµ. It is consistent with the Lie-Poisson structure on g∗ because

the bracket of two functions on Oµ is exactly that obtained from extending them

arbitrarily to g∗, taking the Lie-Poisson bracket on g∗ and then restricting to Oµ.

2.3.2.1 The orbit momentum map

Pµ = J−1(µ) = G = J−1(Oµ)/G therefore it is unsurprising to use the orbit

momentum map: j : P/G→ g∗/G because J−1(Oµ)/G ⊂ P/G. We have,

P
J−→ g∗↓ ↓

P/G
j−→ g∗/G

the vertical arrows are quotient maps and therefore Pµ = j−1(Oµ). Since the

momentum value changes this is useful for investigating bifurcations. However
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if Gµ is not compact then the orbit space }∗/G is not necessarily a practicable

space.

2.4 Morse-Bott Functions

Definition 2.4.1. If we choose M to be any compact Riemannian manifold,

then a Morse-Bott function is a smooth function f : M → R if the critical

set Crit(f) = {x ∈ M | df(x) = 0} breaks down to a finite number of connected

submanifolds ofM called the critical manifolds, and ker∇2f is equal to the tangent

space of the critical set. What this means is that,

TxCrit(f) = ker∇2f(x)

for every x ∈Crit(f).

A specific version of the Morse-Bott function for which the critical manifolds

are all of dimension zero, is the Morse function. Therefore for each x ∈Crit(f),

ker∇2f(x) = 0 so the Hessian is nondegenerate.

To help make the above definition more instinctual, let’s consider the following

definition,

Definition 2.4.2. Let M be a compact Riemannian manifold, let f :M→M be

a diffeomorphism, and let L be a f invariant subset of M. If for any point x ∈ L
the tangent space TxM partitions into a direct sum of the three subbundles then

L is said to be a normally hyperbolic invariant manifold :

TxM = TxL⊕ E+x ⊕ E−x

so that, (A) the stable bundle is the restriction of df to E+ and is a contraction,

(B) the unstable bundle is the restriction of df to E− and is an expansion,

(C) the restriction of df to TL is relatively neutral,

all with respect to some Riemannian metric on M. This means that there must

exist constants 0 < c and 0 < κ < δ−1 < 1 for which:

(A) dfxE
+
x = E+f(x) and dfxE

−
x = E−f(x) for all x ∈ L

(B) ‖fnv‖ ≤ cκn‖v‖ for all v ∈ E+ and n > 0

(C) ‖f−nv‖ ≤ cκn‖v‖ for all v ∈ E− and n > 0

(D) ‖f−nv‖ ≤ cδn‖v‖ for all v ∈ TL and n > 0.
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It follows that the critical manifolds of f are all normally hyperbolic invariant

manifolds with respect to the negative gradient flow if f is a Morse-Bott function.

Specifically, the specific collection of diffeomorphisms φt : M → M defined by

φ0 =id for t ∈ R and d
dt
φt = −∇f◦φt is the negative gradient flow. For whichever

critical manifold C, and for any point x in it, TxM is the tangent space that can

be partitioned into the direct sum TxM = TxC⊕ E+x ⊕ E−x where the positive and

negative eigenspaces of ∇2f(x) span E+x and E−x respectively. dφt(x) is relatively

neutral on TxC because ker∇2f(x) = TxC and it is a contraction on E+x and an

expansion on E−x .

Definition 2.4.3. Let Ws(C) be the notation for a stable manifold which is a

manifold constructed from the trajectories, φt(x), of the set of points x ∈M that

converge to some point C as t → ∞. And TxW
s(C) = TxC ⊕ E+x for any x in C.

Likewise, let Wu(C) be the notation for an unstable manifold which is a manifold

constructed from the trajectories, φt(x), of the set of points x ∈M that converge

to some point C as t→ −∞ and TxW
u(C) = TxC⊕ E−x for any x in C.

The image f(M) ⊂ R can only be compact with a minimum and maximum

because M is compact. THis mean that for any x ∈M the trajectory φt(x) has

to converge to some critical manifold C as t→∞ because f decreases along the

trajectory. This means,

M =
⋃
C

Wu(C).

Definition 2.4.4.

n−(C) = dimWu(C) − dimC = codimWs(C)

is the index of a critical manifold C, and,

n+(C) = dimWs(C) − dimC = codimWu(C).

is the coindex of a critical manifold C.

Any compact hypersurface in Rn can be separated into an ‘inside’ and an

‘outside’ according to the Jordan-Brouwer Separation Theorem. If M is a com-

pact manifold embedded in Rn, and codim(M) 6= 1, then Rn −M is connected.

For embedded submanifolds of codimension 6= 1, the Jordan-Brouwer Separation

Theorem doesn’t apply. The complement M − N between a compact manifold
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M and its submanifold N of codimension≥ 1 has to be connected. Consider the

following lemma for codimension6= 1

Lemma 2.4.5. Let M be a compact connected manifold and f :M→ R a Morse-

Bott function such that for any of the critical manifolds C of f, n±(C) 6= 1. Then

the level set f−1(c) is connected for every c ∈ R.

The proof of this involves these points:

(1) There exists exactly just one connected critical manifold of coindex zero and

exactly one connected critical manifold of index zero.

(2) For every regular value c ∈ R, f−1(c) is connected.

(3) For the remaining critical values 0 < j < N, f−1(cj) is connected.

2.5 Convexity Properties of Momentum Mapping

2.5.1 Introduction

Schur announced the first relation between coadjoint orbits and convexity in a

1923 paper. This paper demonstrated that the set of diagonals of an isospectral

set of n×n Hermitian matrices, which is a subset of Rn, reside within the convex

hull, the vertices of which are the vectors comprised from the n! permutations of

its eigenvalues.

Horn proved an archetype to the convexity theorem in the 1950s that focused

on Hermitian matrices. Denote the set of n× n Hermitian matrices with eigen-

values λ1, λ2, . . . , λn where λ1 ≥ λ2 ≥ . . . ≥ λn by Hnλ , and let a11, a22, . . . , ann

be the diagonal entries for each A ∈ Hnλ . The map J : Hnλ → R is defined by

A 7→ (a11, a22, . . . , ann), and the image of the J map is a convex polytope which,

for σ that ranges over the set of permutations of {1, 2, . . . , n}, is the convex hull

of the vectors λσ = (λσ(1), λσ(2), . . . , λσ(n)).

A generalised version of this result that relates to coadjoint orbits was intro-

duced by Kostant in the 1970s. If T is the Cartan subgroup of Lie group G, with

lie algebra t. The dual of the adjoint action of G on its Lie algebra g is the action

of G on g∗ whose orbits are the coadjoint orbit. For inclusion map π : t→ g, take

the transpose, πT : g∗ → t∗. WE have the map

J : O → t∗
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by restricting π to O ⊂ g∗ a coadjoint orbit. And according to Kostant’s theorem

the image of this map is the convex polytope. Denote the set of T -fixed points

on O as OT , J maps it bijectively onto an orbit of the Weyl group N(T)/T and

the image of J is the convex hull of the points on this orbit.

These results are reached through application of symplectic geometry includ-

ing Kirillov, Kostant and Souriau’s theorem that G and its coadjoint orbits are

symplectic manifolds and the action of G on O preserves the symplectic form.

And these coadjoint orbits would be the only symplectic G-manifolds on which G

acts transitively if G is compact and connected. This action is certainly Hamilto-

nian because ξO is a vector field on O that corresponds to ξ ∈ g for the action of

G on O, and it is a Hamiltonian vector field. Introduce inclusion map i : O → g∗

and if the linear functional on g∗, lξ, derived from the pairing on ξ ∈ g with

elements of g∗, then the inner product of the symplectic form on O, ωO, with

ξO is di∗lξ. So G acting on O is an Hamiltonian action with momentum map

i : O → g∗. J above is the momentum mapping of this action restricted to the

action of T whose image is a convex polytope according to Kostant. Specifically,

J(O) = conv J(OT)

where for A a subset of real vector space, conv A is the convex hull of it. Atiyah

and Guillemin-Sternberg generalised this further so that action of G on O need

not be transitive and symplectic, or in fact be considered at all. What their result

states is that for T an n-torus that acts on compact symplectic manifold M by

Hamiltonian action T ×M→M with corresponding momentum map J :M→ t∗

then (A) J(MT) is finite and J(MT) ⊂ t∗, and (B) J(M) is the convex hull of J(MT)

(simply put, J(M) = conv J(MT)). Specifically, J(M) is a convex polytope. And

this is the abelian convexity theorem.

The more intense non-abelian convexity theorem was proven only three years

later by Frances Kirwan. For G not necessarily abelian but still a compact con-

nected Lie group that acts on a compact symplectic manifold in a Hamiltonian

way then the momentum map

J :M→ g∗ (2.8)

applies, however the image is not necessarily convex, but a less obvious convexity

result is approachable. Denote the orbit of the cadjoint action of G on g∗ by

g∗/G. The action of the Weyl group W := N(T)/T on t∗ is the dual of the action



2.5. CONVEXITY PROPERTIES OF MOMENTUM MAPPING 59

of W on t, and the orbit space t∗/W is isomorphic to the orbit space g∗/G. Select

a (closed) Weyl chamber t∗, called the positive Weyl chamber, and denote it t∗+

where g∗/G ' t∗/W ' t∗+ as it is the fundamental domain of the action of the

Weyl group on t∗ therefore (2.8) becomes,

J+ :M→ t∗+ (2.9)

which Kirwan’s theorem proves the image of is the convex polytope.

However this theorem doesn’t come up with a definitive description of the

image of the image of this map in the positive Weyl chamber. But some examples

have been found including, for example, the equivariant Darboux theorem which

states that for X an orbit of G in M which is a Hamiltonian G-manifold, then

there is a structural convexity theorem for MX
can, the canonical model one gets

for the action. And Sjamaar [88] developed theorem for “local” construction of

a convex polytope that couples the convexity theorem for MX
can coupled with a

Morse theory result that Kirwan used in her proof.

There are two versions of convexity theorem that apply the isospectral sets

of Hermitian matrices. For example the application of Kirwan’s theorem to the

action of U(n − 1) on a generic coadjoint orbit of U(n) which some have inter-

twined with Gelfand-Cetlin and confocal quadrics theories. If we project Hn onto

Hn−1 this associates to each n×n Hermitian matrix its (n− 1)× (n− 1) minor

mapping Hnλ onto the
⋃
µHn−1µ set that is the union over all n− 1-tuples µ that

intertwine with λis in the way λi ≥ µi ≥ λi+1 for i = 1, 2, . . . , n− 1.

Another version concerns U(n) acting diagonally on the product of two coad-

joint orbits of U(n): the set of λs satisfying

Hnλ ⊂ Hnµ +HnY (2.10)

for µ and v n-tuples of real numbers, is a convex polytope.

Klyacho finalised a total description of the momentum polytope around two

decades ago. He devised that it is sufficient and necessary for λ to satisfy equation

(2.10) to prove convexity through mini-max and Morse theories.

Let’s consider the momentum polytope of the U(n) on O, where U(n) →
U(n)×U(n) is the diagonal imbedding and O is a coadjoint orbit of U(n)×U(n).
In 2000 Berenstein and Sjamaar found the momentum polytope of the compact

lie group H acting on O which is a coadjoint orbit of compact Lie group G, with
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existing embedding i : H→ G. The polytope, according to them, is distinguished

by a set of inequalities.

And yet another example of Kirwan’s theorem comes about if M is a compact

Kähler manifold. Let T act on M, T ×M → M, in a Hamiltonian way with

momentum map J, we can consider the holomorphic - non-Hamiltonian - action

of complex torus TC = (C×)n on M, where T ' (S1)n is the n-torus and C× is the

multiplicative group of complex numbers. Denote the orbit of TC through p ∈M
as TCp , this provides a more local assembly of this convexity theorem that Atiyah

proved in 1982 such that the closure of TCp is a convex polytope. WHich in turn

is the convex hull of the image of the momentum map of the set T̄Cp ∩MT .

For G a compact connected Lie group that has Kählerian action on a compact

Kähler manifold, M we have a non-abelian generalisation to Atiyah’s 1982 result

that was found by Brion in 1987. WIth respect to the image of the momentum

map J+ of an orbit of the holomorphic action of complex Lie group, GC, through

a choice of point of M is convex. With respect to the image of the momentum

map J(Bp) of the Borel subgroup, B, of GC, -orbit through a p in M associated

to the opposite chamber −t∗+ intersects the interior of the positive Weyl chamber

in a convex set. The intersection is contained in the intersection:

Intt∗+ ∩
⋂
b∈B

J(TCbp). (2.11)

J(Bp)∩Intt∗+ is a convex polytope and equal to the intersection equation (2.11) if

M is a projective variety. Another further edition of Kirwan’s theorem for Kähler

manifolds involves a lower semicontinuous function of p in the form of equation

(2.11).

The convexity theorem has continued to be generalised for a number of differ-

ent useful ways, such as for the Hamiltonian actions of non-compact Lie groups,

for the Hamiltonian actions of compact Lie groups on non-compact symplectic

manifolds, for the quasi-Hamiltonian actions of Lie groups, for poisson actions of

Lie groups on Poisson manifolds, and the action of infinite dimensional groups

such as groups of gauge transformations and loop groups on infinite-dimensional

symplectic manifolds.

A very important development is Delzant’s theorem [27] that focuses on the

faithful action of T on M, a compact Hamiltonian T -manifold where dimM ≥
2dimT (The T -action is called a “toric” action or “completely integrable” if
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dimM = 2dimT). According to Delzant the momentum polytope for this sys-

tem is established up to a T -equivariant symplectomorphism. The non-abelian

version of this result is fascinating. Let G be a compact Lie group and M a

connected G-manifold, all points in dense open subset, U, of M have the same

orbit type for U such that for all p and q in U, the stabiliser groups, Gp and Gq,

are conjugate in G. If the principle isotropy group of the action, Gp, which is

unique up to conjugacy is discrete then dimM ≥ dimG + rankG. Delzant’s con-

jecture states that M can be extrapolated up to isomorphism from its momentum

polytope and its principle isotrpoy group. If dimM = dimG+ rankG then the G

action is called a multiplicity-free action. This is still only a conjecture.

The Bia lynicki-Birula theorem [14] showed that a torus action on a nonsingu-

lar complex projective variety, that is birationally equivalent to projective space,

with finitely many fixed points allows a partition into affine spaces. This there-

fore provided plausability for a conjecture of the convexity result that allows

for Kählerisability. It states that if the fixed point set, MT , of M a compact

Hamiltonian T -manifold, is finite then a T -invariant complex structure which is

compatible with its symplectic structure exists for M. And the Bia lynicki-Birula

theorem hinted that the the birational classiification wouldn’t be complicated if

the Kähler assumption was removed. But Sue Tolman disproved this conjecture

via a counterexample using the fact that the shape of the momentum map is

dictated by the TC-orbits according to a corollary of Atiyah’s convexity theorem.

Duistermaat-Heckman theory provided greater scaffolding to the momentum

polytope geometry. They showed that the momentum polytope is a disjoint

union of “action chambers” - these are open convex subpolytopes - each with

a corresponding polynomial called the Duistermaat-Heckman polynomial. And

ωn/n! is the symplectic form on symplectic manifold (M2n,ω).

2.5.2 The Atiyah-Guillemin-Sternberg Convexity Theorem

2.5.2.1 Preliminaries

Lemma 2.5.1. Let (M,ω) be a compact connected symplectic manifold, and

let a compact group G act symplectically on it: G → Symp(M,ω) : τ → ψτ.

Therefore an almost complex structure J exists on M that is compatible with the

symplectic form and for which ψ∗τJ = J for every τ ∈ G.

Recall that for some unique geodesic γ (determined by Reimannian metric g)
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satisfying γ(0) = x with initial velocity γ ′(0) = ξ for a given point x ∈ M, and

a vector ξ ∈ TxM, the exponential map is expx : TxM→M by expx(ξ) = γ(1)

Proposition 2.5.2. Let the set of points of M that are fixed by each symplecto-

morphism in Im(H) ⊂Symp(M,ω) for H a subgroup of G, be denoted Fix(H) i.e.

Fix(H) =
⋂
h∈HFix(ψh): then Fix(H) ⊂M is a symplectic submanifold of M.

Lemma 2.5.3. Let M be a compact connected symplectic manifold with symplec-

tic form ω. Let Tm →Symp(M,ω) : θ 7→ ψθ describe the Hamiltonian torus

action with momentum map µ : M → Rm. Let Hθ = 〈J, θ〉 : M → R be the

Hamiltonian function for every θ ∈ g∗ = Rm. Then Crit(Hθ) =
⋂
τ∈Tθ Fix(ψτ)

where Tθ = cl({tθ+ k | t ∈ R, k ∈ Zm}/Zm) for Im(Tθ) ⊂Symp(M,ω). Crit(Hθ)

is the critical set and symplectic submanifold of the Morse-Bott function Hθ which

has critical manifolds, also of even dimension, and of even index and coindex.

Definition 2.5.4. A momentum map J :M→ Rm is irreducible if its components

J = (J1, . . . , Jm) have linearly independent 1-forms: dJ1, . . . , dJm. In particular,

α1dJ1(x)(ξ) + . . .+ αmdJm(x)(ξ) = 0 for scalar (α1, . . . , αm) ∈ Rm for all x ∈M
and all vectors ξ ∈ TxM if and only if α1 = . . . = αm = 0. If not then J is

reducible.

Definition 2.5.5. If θi
θj

for {θi | 1 ≤ i ≤ s, θi ∈ R} is rational for all θi,j 6= 0 with

1 ≤ i, j ≤ s, then the set θi is said to be rationally dependent.

Proposition 2.5.6. Tm−1 →Symp(M,ω) : τ 7→ ψ ′τ is action reduced to the

(m− 1)-torus action since J is reducible. It has momentum map J ′ :M→ Rm−1.

And ψθ = ψ
′
Aθ and µ(x) = ATµ ′(x) for θ ∈ Tm, x ∈M and A ∈ Z(m−1)×m.

2.5.2.2 Convex Properties

Theorem 2.5.7. (The Atiyah-Guillemin-Sternberg Convexity Theorem) Hamil-

tonian torus action Tm →Symp(M,ω) : θ 7→ ψθ on compact connected sym-

plectic manifold (M,ω) has momentum map µ : M → Rm whose image is con-

vex, in particular a convex subset of Rm. The levels of J are connected and⋂
θ∈Tm Fix(ψθ) =

⋃N
j=1Cj where C1, . . . , CN denote the finite union of connected

symplectic submanifolds that are the decomposition of the points of M fixed by

every symplectictomorphism in Im(Tm) ⊂Symp(M,ω), whose image is constant

J(Cj) = ηj ∈ Rm. And J(M) = K(η1, . . . , ηN), is the convex hull of these points

which are the images of the fixed points of the action.
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The proof of this is can be broken down into the proofs of the following steps

using only the maths that has been introduced here so far:

(A) For every regular value η ∈ Rm it can be shown that the preimage J−1(η) ⊂M
is connected by induction over the dimension m of the torus.

(B) Use induction over the dimension m of the torus to show that the image

J(M) ⊂ Rm is convex.

(C) C1, . . . , CN denote the finite union of connected symplectic submanifolds that

are the decomposition of the points of M fixed by every symplectictomorphism

in Im(Tm) ⊂Symp(M,ω), whose momentum map image, J(Cj), is constant.

(D) For the points ηj = J(Cj) ∈ Rm, 1 ≤ j ≤ N the image of J is the convex hull

of them.

If G acts on a manifold M in a way such that
⋂
p∈MGp = {e} Gp is the

stabiliser of p i.e. each g ∈ G, g 6= e moves at least one p ∈ M, then this is an

effective action.

Corollary 2.5.8. If the Tm-action on (M,ω,Tm, µ), a Hamiltonian Tm-space,

is effective then dim M ≥ 2m.

Definition 2.5.9. Let (M,ω) be a compact connected symplectic manifold with

effective hamiltonian action of a torus T with associated momentum map J. And

let dimT = 1
2
dim M, then M is a (symplectic) toric manifold.

2.5.3 The non-abelian convexity theorem

Let τ denote an Hamiltonian action of compact connected Lie group G on com-

pact symplectic manifold M, with corresponding momentum map J : M → g∗.

Consider the map g∗ → g∗/G = t∗+ and compose it with J to get a map M→ t∗+.

The image of this is a convex polytope called the Kirwan polytope, 4, according

to the non-abelian convexity theorem.

The local convexity theorem is as follows

Theorem 2.5.10. Let U and U ′ be the neighbourhoods of p in M and µ, the

momentum map image of point p, in t∗+, respectively. Let U and U ′ satisfy

J(U) ∩ t∗+ = Cp ∩ U ′ where Cp is a convex conic polytope. Cp = Cq for p and q

points near enough to each other on the level set, J−1(µ).

The level set, J−1, is connected according to Atiyah’s convexity theorem (the

proof of this involves Morse theory and topology). And this therefore means that
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Cp = Cq for any p and q on the J−1(µ) level set. Therefore for sufficiently small

U ′, 4∩U ′ = Cp ∩U ′. Therefore 4 satisfies local convexity in a neighbourhood

of every point. And every closed set which is locally convex is convex.

The Marle, and Guilllemin-Sternberg equivariant Darboux theorem which de-

scribes by simple canonical model what, for a G-invariant neighbourhood of p,

the G action looks like.

2.5.4 Reyer Sjamaar’s re-examination

The Atiyah-Guillemin-Sternberg abelian convexity theorem provided a much more

quantitative information on the shape of the momenum polytope than Kirwan’s

general convexity theorem. For example, due to the application of Morse theory

and the equivariant Darboux Theorem to the momentum map components, the

abelian version provides full information for the vertices of the polytope as given

by images of fixed points in M. It also provides that one can read off the shape

of the polytope from the isotropy action on the tangent space at a corresponding

fixed point.

The main result of Sjamaar’s paper [88] is to provide such detailed informa-

tion for the non-abelian version, therefore providing a “sharpened” adaptation of

Kirwan’s convexity theorem that is inspired by Brion’s application of Kirwan’s

theorem for projective varieties. He gives a description of the polytope’s shape

in the local neighbourhood of µ = J(m) (m ∈ M) in the momentum polytope

through the action of Gm on polynomials on TmM and the conditions a point µ

in the polytope must satisfy to be a vertex.

”In the language of the orbit method, the momentum polytope of M is the

“classical” analogue of the set of highest weights of the unitary irreducible rep-

resentations occuring in the “quantisation” of M.” [88]

Sjamaar’s main theorem is,

Theorem 2.5.11. Let J :M→ g∗ be a proper momentum map. Then

A. 4(M) =
⋂
m∈J−1(t∗+)4m and this intersection is a closed convex polyhedral

subset of t∗+ because it is locally finite.

Let the commutator subgroup of G be denoted [G,G]: and since [G,G] is normal,

then for every subgroup F of G, [G,G]F is a subgroup of G. And [G,G]F is a

closed reductive subgroup if F is.

B. Consider the fibre J−1(µ) and let m be any point on it: if µ is a vertex of
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4(M) then Oµ = [Oµ,Oµ]Om for coadjoint orbit Oµ through µ in t∗+ and has

Kirillov-Kostant-Souriau symplectic form ωµ, or equivalently gµ = [gµ, gµ] + gm.

Specifically, for m fixed by T it follows that µ = J(m) is a vertex of the convex

polytope within t∗+.

C. There exist m ∈M for which µ ∈ t∗+ and gµ = [gµ, gµ] + gm for µ = J(m). Let

E denote the subset of M that is made up of all such m. The momentum map

image of this subset, J(E) is a discrete subset of t∗+, and 4(M) is the convex hull

of this image if M is compact.

2.5.5 Simple examples of projections of some coadjoint orbits to t∗

The momentum map for the T action on Oµ is the restricition of the projection

π : g∗ → t∗ to Oµ. The fixed points of this action provide the vertices which

correspond to instances for which the map π|Oµ has rank 0, and these are the

only instances for this. Introduce the map ξ : g∗ → R whose restriction to Oµ is

ξ|Oµ = ξµ which will also have rank 0 at these points. These points are critical

points. And the points of the intersection Oµ ∩ t∗ that make up the Weyl group

orbit coincide with the vertices. Therefore the convex polytope is invariant under

the Weyl group.

Definition 2.5.12. A regular point of the (modified) coadjoint action is a µ ∈ g

for which all the isotropy subgroups in a neighbourhood of it are conjugate.

The only ciritcal points for ξ ◦ π|Oµ are the points ξ ∈ t that are regular,

which are exactly the points that are not orthogonal to any of the faces of the

polytope.

µ0

(a) Generic Orbit

µ0

(b) Degenerate Orbit

The two diagrams here are those for G = SU(3) where the Weyl group is the

symmetric group on 3 letters S3. The ‘semiregular’ hexagon corresponds to the
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polytope for generic/regular initial point µ0 and dim(Oµ0) = 6. The equilateral

triangle corresponds to µ0 on a wall of the Weyl chambers or line of reflexion

and dim(Oµ0) = 4. The polytope is a single point for Oµ0 = 0 which is true for

µ0 = 0. Any general linear function on t = R2’s critical points correspond to each

of the vertices.

G = SO(4) has Weyl group is W = Z2 × Z2.

2.5.6 A by-no-means-exhaustive bibliography of modern developments

2.5.6.1 Infinite dimensional Lie theory

By providing a convexity theorem for loop groups of simply connected and com-

pact connected Lie groups through incorporating Kostant’s convexity result [49],

Atiyah and Pressley [10] developed the first infinite dimensional convexity result.

Kac and Peterson [44] further elaborated a theory for any coadjoint orbit (except

some degenerate orbits) of any Kac-Moody Lie groups that correspond to Cartan

matrices that are generalisable and symmetrisable. Neumann provided the first

convexity theorem for the Banach Lie group of unitary operators on a divisible

Hilbert space, by straight-forward generalisation of the Schur Horn version [74],

[75]. Schatten classes, operator topology, and infinite dimensional orthogonal

symplectic groups are incorporated to find a topology to close the convex hull.

Birtea, Ortega and Ratiu showed that the momentum map provies a convexity

result so long as it is closed therefore providing the foundation for further devel-

opments of infinite dimensional convexity theories [15]. They also provide theory

for cylinder-valued momentum maps [16].

2.5.6.2 Linear and nonlinear symplectic actions

Due to Kostant’s stratification of Kirwan’s convexity theory for projective alge-

braic varieties Brion [21] introduced a more precise clarification of the polytope.

And as stated above Sjamaar extended this to provide a local description of the

polytope shape. Pflaum has recently published a book on the stratification [79].

The first result for momentum polytope of Lie group on non-compact sym-

plectic manifold is thanks to Hilgert, Neeb and Planck [40]. The first result for

momentum map of action of linear compact lie group on symplectic vector spaces,

that may not be proper, is thanks to Lerman, it adopts methods of symplectic

cutting, [53]. He along with Meinrenken, Tolman and Woodward [54] developed a
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theory for symplectic orbifolds with local description of the momentum polytope

and proved that the map from the orbit space to the polytope is an open one. A

slice theorem for Hamiltonian actions using the Marle-Guillemin-Sternberg Nor-

mal form provides local description of polyhedral cones that the generally convex,

unbounded, but locally finite intersection of which, make the momentum polytope

(that has discrete vertices) of non-compact manifolds [59], [36].

A version of Kirwan’s convexity theory for the action of the complexification of

the compact Lie group on an irreducible complex Kähler, not necessarily compact,

manifold was introduced by Heinzner and Huckleberry [39]. And the convex

Hamiltonian manifold was introduced by Knop [48].

Duistermaat generalised the convexity result so it not only applied to flag

manifolds (as shown by Kostant), or symplectic action (as shown by Atiyah) but

to provide the polytope for the momentum map of toral Hamiltonian action on

a compact connected symplectic manifold from the image of the fixed point set

of antisymplectic involution [28], [29].

There are even convexity theorems for actions that don’t admit momentum

maps. For example, Benoist and Giacobbe derive the momentum map associated

to a separately appropriate coverings of the symplectic manifold [12], [32], [33].

Giacobbe showed that for the torus action, that the smallest covering possible

that admits a momentum map whose image is the product of a compact convex

polytope with a vector space; and despite small perturbations of the symplectic

form, this remains stable. Giacobbe extended Kirwan’s convexity theorem for

compact group actions as well as the fact that the action of an n-dimensional

torus on a 2n-dimensional closed connected symplectic manifold is Hamiltonian.

Ratiu and Zung proved a convexity theorem for the torus action on presymplectic

manifolds. Lin and Sjamaar proved the convexity theorem for the general compact

lie group action on a presymplectic manifold therefore providing a presymplectic

convexity theorem [57].

The Lu-Weinstein Poisson Lie structure is one of the most important Poisson

Lie group structures on compact lie groups that have all been fully classified, as

well as the associated dual groups [58]. Flaschka and Ratiu formed a convexity

theorem named after them for which the compact Lie group is a Poisson Lie group

[30]. Alekseev connects the usual Kirwan Convexity theorem by reducing the

convexity theory for Poisson actions of compact Poisson Lie groups on symplectic

manifolds that comes about from using the Poisson Lie group structure to adjust
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the symplectic structure of the manifold [3]. Along with Malkin and Meinrenken

he provided a convexity theory for quasi-Hamiltonian action that is non-linear

[4].

2.5.6.3 The Local-Global Convexity Principle

Morse theory cannot always provide an easy advancement from the local to the

global version of this theory. Tietze and Nakajima showed that a connected closed

subset S ⊂ Rn is convex if it is locally convex therefore initiating the develop-

ment of the aptly named Local-Global Convexity Theory [91], [73]. This was

furthered by Schoenberg, Klee, Sacksteder, Straus, and Valentine, Blumenthal

and Freese, Kay, Cel etc in their relevant papers. The first people to apply the

local-global convexity principle were Condevaux, Dazord, and Molino who used

it to provide simpler proofs to both the Atiyah-Guillemin-Sternberg and Kirwan

Convexity Theorems [25]. Hilgert, Neeb and Planck provided a version of the

local-global convexity theory that can be used as a tool for symplectic convexity

[40]. And since Morse theory doesn’t work to globalise the theory for Poisson Lie

groups other than those with Lu-Weinstein structure: this tool was crucial for

the Flaschka-Ratiu convexity theorem proof for all Poisson Lie groups.

Prato provided a crucial result of the failure of convexity for non-compact

manifolds [81]. She showed this was true even for torus actions, and she also

showed that if a momentum map of Hamiltonian action of the symmetry torus

can be provided for an integral element in the Lie algebra which is proper where

the unique ciritcal value is its minimum then the image of it is the convex hull

of affine rays that start at the fixed point of the action and of which there is

a finite number [82]. A map from a connected Hausdorff topological space to a

convex set in Euclidean space that is both proper and continuous was whown by

Bjorndahl and Karshon therefore showing a further version of the Local-Global

Convexity Principle [17]. Zung [92] supplied a simplification of the Local-Global

Convexity theory that he along with Ratiu and Wacheux applied to toric-focus

Hamiltonian systems to provide a global convexity result published in 2017 [84].

2.6 The Bifurcation Lemma

Lemma 2.6.1. ( Bifurcation Lemma) Let L denote the symplectic leaf of the

Poisson manifold (P, {·, ·}) containing p ∈ P. Let J : P → g∗ be the momentum
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map associated to the Lie group acting on P. Then,

TpJ(TpL) = (gp)
◦ (2.12)

where (gp)
◦ represents the annihilator of the isotropy subalgebra gp of p, in g∗. If

P is a symplectic manifold then (2.12) can be rewritten as

Range(TpJ) = (gp)
◦ (2.13)

The bifurcation lemma provides a link between the rank of the momentum

map at a point p and the symmetry of the manifold at p, and we will see that

the rank of TpJ is the same dimension of (gp)
◦, providing a rank-nullity corre-

spondence.

Background before proof of the Bifurcation Lemma

Proposition 2.6.2. For a momentum map J :M → g∗ associated to the action

of the Lie group G on a symplectic manifold M, the image of the momentum

map at a point m is a subset of the dual of the Lie algebra and (g∗m)
◦ = gm i.e.

the annihilator of the dual of the Lie isotropy subalgebra at m is equal to the Lie

isotropy subalgebra at m.

Proof. Recall dJξ + xξMω = 0, the transpose of the tangent momentum map is

TmJ
> : g→ T ∗mM and Im(dJm)

◦ =Ker(dJ>m); the kernel of the map is:

KerTmJ
> = {ξ ∈ g | (xξMω)m = 0}. (2.14)

Meaning that the kernel of the map is the elements ξ for which (ξM)m = 0 i.e. the

set of Lie algebra of the isotropy subgroup Gm. Since the image of the momentum

map is the annihilator of the above kernel definition this is enough to prove that

(g∗m)
◦ is a subspace of ImTmJ and is gm.

Proposition 2.6.3. The stabiliser (isotropy subgroup) Gm is discrete if and only

if the momentum map J :M→ g∗ associated to the canonical action of G onto a

symplectic manifold (M,ω) is a submersion.

Proof. The preceding proposition showed that the dimension of (g∗m)
◦ is equal to
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the rank of the tangent momentum map:

rank(TmJ) = dim(Ker(dJm)
◦) = dim(g/gm) (2.15)

As Ker(dJm)
◦ =KerdJ>m. Jm is a submersion if the differential map dJm has

constant rank which is only true if the dimension of the isotropy subalgebra, and

in turn the dimension of the isotropy subgroup, is discrete.

Proposition 2.6.4. KerdJm is symplectically orthogonal to the space tangent to

the orbit through m.

Proof.

〈dJm(v), ξ〉 = 0 ∀ξ ⇔ ωm(v, ξM(m)) = 0 ∀ξ⇔ v orthogonal to subspace generated by infinitesimal generators

We also need to revisit and prove Noether’s theorem:

Theorem 2.6.5. The momentum map satisfies Noether’s condition if the level

set J−1(µ) of the momentum map is tangent and constant to the Hamiltonian

vector field Xh where h ∈ C∞(M) is a Hamiltonian function that is invariant

under the Hamiltonian action of the Lie group G.

Proof. To clarify, for map J : P → S where S is a set, J is said to satisfy Noether’s

condition and is called a Noether momentum map associated to the Lie group pr

algebra’s canonical action on Poisson manifold (P, {·, ·}) when the flow determined

by any Hamiltonian vector field of this G-invariant or g-invariant Hamiltonian

function preserves the fibers of J:

J ◦ Ft = J|Dom(Ft) (2.16)

[77]. For h ∈ C∞(M)g Hamiltonian function, G-invariance implies ξM[h] = 0,

{Jξ, h}(p) = dJξ(p) · Xh(p)

= −dh(p) · XJξ(p)

= −dh(p) · ξP(p)

= −ξP[h](p) = 0
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Proof of the Bifurcation Lemma

Proof. This requires the proof of 1) TpJ(TpL) ⊂ (gp)
◦ and 2)(gp)

◦ ⊂ TpJ(TpL) or

[TpJ(TpL)]◦ ⊂ gp:

1. For vp ∈ TpL an infinitesimal generator of Hamiltonian function h ∈
C∞(M), with vp = Xh(m) then

〈TpJ · vp, ξ〉 = 〈TpJ · Xh(p), ξ〉

= dJξ(p) · Xh(p) [recall〈J(m), ξ〉 = Jξ(m)]

= −ξp[h](p) = 0 [see proof of Noether’s condition]

2. To show [TpJ(TpL)]◦ ⊂ gp, choose η ∈ g i.e. η ∈ (TpJ(TpL))◦: this implies

that:

〈TpJ · TpL, η〉 = dJη(p) · Xh(p)

= 0

Both since ξP[h](p) = ηP[h](p) = 0 as h arbitrary Hamiltonian function.

Since P is a symplectic manifold then TpL = TpP therefore

TpJ · TpL = TpJ · TpP = Range(TpJ) (2.17)

Corollary 2.6.6. If a Lie group acts canonically on the locally free Poisson

manifold associated with J : P → g∗ momentum map then this momentum map is

a submersion.

Proof. A group action on a manifold is free if the isotropy subgroup of every

element in the manifold is only the identity element. This means the isotropy

subalgebra can only be the trivial element. This means gp = {0} ∀p ∈ P.

TpJ : TpP → g is the tangent momentum map which is surjective since by the

bifurcation lemma equation (2.17), therefore the momentum map is a submersion

and so an open map where the image of the momentum map is an open subset

of g∗.
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2.7 Dynamics

2.7.1 Relative Equilibrium

An equilibrium point p in phase space P for which XH(p) = 0, or equivalently

dHp = 0, is a point in the phase space that is invariant under the dynamics. A

group orbit is a relative equilibria in a symmetric dynamical system if it is invari-

ant under the dynamics. Otherwise put: a relative equilibrium is an equilibrium

point of the dynamics instigated on the orbit space. Relative equilibria are simply

the equilibria or group orbits of the equilibria for finite groups. Simply put it is

the group orbit that is invariant under the dynamics.

Definition 2.7.1. For each t ∈ R a symmetry transformation gt ∈ G exists for

which trajectory γ(t) in P satisfies γ(t) = gt · γ(0). This trajectory is a relative

equilibrium.

If the trajectory through p is γ(t) then the trajectory through g · p is g ·γ(t)
which, according to the definition above, means that the entire group orbit is

invariant. Conversely: since the trajectory remains within a single group orbit,

which if this orbit is invariant under the dynamics means that all the trajectories

within it are relative equilibria.

Example 2.7.2. Consider the N-body problem in space: rigid rotations about

an axis i.e. motions for which the shape of the bodies doesn’t change, are the

relative equilibria of this system.

Proposition 2.7.3. [66] The following statements are equivalent for H a G-

invariant Hamiltonian for G-action on P with momentum map J where µ = J(p)

for p ∈ P:

• γ(t) is the trajectory through p that is a relative equilibrium,

• G · p is the group orbit that is invariant under the dynamics,

• There exists ξ ∈ g for which γ(t) =exp(tξ) · x, ∀t ∈ R,

• There exists ξ ∈ g for which Hξ = H− φξ has critical point p,
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• H restricted to the level set Φ−1(µ) has critical point p.

Proof. The equivalence of the third and fourth statements: the third statement is

equivalent to XH(p) = ξP(x). Using the symplectic form, this is in turn equivalent

to dH(x) = dφξ(x). For the rest of the proof and further discussion of relative

equilibria see [66]

The Riemann ellipsoid problem is the name of Riemann’s classification of

all the possible relative equilibria in an affine fluid flow - this was the first full

classification of relative equilibria, and is otherwise known as the affine rigid

body problem or pseudo-rigid problem. The symmetry group of this system is

SO(3) × SO(3) and the set of all 3 × 3 invertible matrices is the configuration.

Since the momentum is conserved, Riemann found the geometric limitations on

the variety of feasible versions of relative equilibria along with the 6 conserved

quantities that are of the form given in the third statement of proposition 2.7.3.

Riemann used the geometric condition expressed in the corollary below for general

action of groups.

Corollary 2.7.4. coadθξJ(p) = 0 for p ∈ P is a point of a relative equilibrium

with angular velocity ξ and θ is the cocyle associated to the momentum map.

The angular velocity and momentum of a relative equilibrium commute for

suitable choice of equivariant momentum map for compact G. This means that

if a system has SO(3) symmetry then the angular velocity and the value of the

momentum are parallel at any relative equilibrium.

If there exists a non-degenerate relative equilibrium for a given value of the

momentum map then Arnold observed in 1978 that if that value satisfies a par-

ticular condition of regularity then a unique non-degenerate relative equilibrium

exists on each level set of the momentum map close to the level set that contains

the value in the neighbourhood of it. In other words the relative equilibrium

persists. And it is a regular point of the coadjoint group of the Lie group ac-

cording to the regularity hypothesis. The relative equilibrium points have to

have trivial isotropy and the Hamiltonian reduced to the given value must have

a non-degenerate critical point at the relative equilibrium so that the relative

equilibrium is non-degenerate. To prove this apply the implicit function theorem

on the orbit space which is smooth. The relative equilibrium is Lyapunov stable

(even for perturbations that alter the momentum value) if the quadratic part
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of the reduced Hamiltonian is positive definite [8] [55]. This method of prov-

ing the relative equilibrium stability is known as the Energy Casimir method,

which is different from the Energy-Momentum method Marsden developed with

colleagues. In [65] Montaldi gave persistence and stability results for G compact

and extremal relative equilibria (the relative equilibrium i a local extremum for

the reduced Hamiltonian, without application of the regularity hypothesis.

A smooth submanifold of the phase space with dimension dimG+rankG is

made up of the set of relative equilibria in a neighbourhood of a relative equilib-

rium for locally free action with regular velocity according to George Patrick in

1995. And this means that the relative equilibrium doesn’t have to be extremal

and the given momentum map value doesn’t have to be regular in g∗ either.

2.8 The Witt-Artin Decomposition

The reduction to compact group actions is based on the Marle-Guillemin-Sternberg

normal form for symplectic actions and momentum maps. Let again a connected

Lie group G act in a Hamiltonian manner on a symplectic manifold M with a

momentum map Φ : M → g∗ and the corresponding cocycle φ : G → g∗. The

tangent space at m ∈Mcan be decomposed into

TmM = T ⊕N (2.18)

where T is the tangent space to the orbit G ·m and N is the normal to the action.

And this can be further decomposed into

TmM = T0 ⊕ T1 ⊕N1 ⊕N0. (2.19)

At x ∈M, consider the four spaces:

T0 = Tx(G · x) ∩ kerdΦ(x) = Tx(Gµ · x),

T1 = Tx(G · x)/T0,

N1 = kerdΦ(x)/T0,

N0 = TxM/(Tx(G · x) + kerdΦ(x)).

Since kerdΦx is the symplectic complement to Tx(G · x), these spaces depend

only on the G-action and not on the choice of Φ. Using the compactness of
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Gx ⊂ Gµ, we can realise the quotients T1, N1, N0 as Gx-invariant subspaces of

TxM satisfying:

T0 ⊕ T1 = Tx(G · x),

T0 ⊕N1 = kerdΦ(x),

T0 ⊕ T1 ⊕N1 ⊕N0 = TxM

If H is a G-invariant Hamiltonian on P, then the differential dHx at x anni-

hilates T0 ⊕ T1. If x is a relative equilibrium of H, then dHx annihilates T0 ⊕N1

also. Therefore dHx is naturally an element of N0 which since G is compact then

N∗0 ' gµ/gp.
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SU(3) action on products of CP2

After introducing the 3 × 3 special unitary matrix group and its properties, we

introduce its coadjoint orbits. We obtain the isotropy subgroups and the corre-

sponding fixed point sets of the SU(3) action on CP2×CP2 and CP2×CP2×CP2.
We go further and establish the isotropy subgroups and associated fixed point sets

of the SU(n+ 1) action on CPn × CPn × CPn.

3.1 Some General Properties of SU(3) and CP2

The SU(n) matrix group is a connected Lie group. It is the set of n×n complex

matrices whose elements U ∈ SU(n) satisfy the properties

U†U = I, det U = 1. (3.1)

SU(3) is 8 dimensional and of rank 2. The Lie algebra of SU(3), su(3), is the set

of 3 × 3 traceless anti-Hermitian matrices. By The First Conjugation Theorem,

any Hermitian matrix can be put into the diagonal form.

The Cartan subalgebra of SU(3), H, is the set of all diagonal Hermitian matrices

with trace=0, e.g. for D ∈ H:

D =

λ1 0 0

0 λ2 0

0 0 λ3

 , λ1 + λ2 + λ3 = 0. (3.2)

therefore the Cartan subalgebra is 2 dimensional, H ' R2, and the walls of the

Weyl chambers for SU(3) are the hyperplanes λ1 = λ2, λ2 = λ3, λ1 = λ3 in R2.

76
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Besides the single point at the origin of type
(
SU(3)
SU(3)

)
, SU(3) has two types

of coadjoint orbits, the 6-dimensional flag manifold and the complex projective

plane:
SU(3)

U(1)×U(1)
' F(2, 1), SU(3)

SU(2)×U(1)
' CP2, (3.3)

see [13]. CP2 is the 4-dimensional complex projective plane: complex lines

through the origin in C3.
Each orbit of the Weyl group of SU(3), W(SU(3)) is the intersection between H∗

and a coadjoint orbit.

3.2 Isotropy subgroups and Corresponding Fixed Point Sets

of SU(3) acting on CP2 × CP2

SU(3) and CP2×CP2 both have the same dimension, however the quotient space

CP2 × CP2/SU(3) is not isomorphic to a single point: SU(3) does not act tran-

sitively on CP2 × CP2.

Definition 3.2.1. The action of a compact Lie group on a manifold, whose

quotient is one dimensional, is called a cohomegeneity one action.

Theorem 3.2.2. For a cohomogeneity one action, the orbit space M/G, is home-

omorphic to either (i) a circle, (ii) the open unit interval, (iii) the half-open

interval, or (iv) the closed unit interval.

For a proof of this theorem see [37]. This means that the orbit space of this

quotient space is one dimensional, i.e. it’s the space of a 1 parameter family of

orbits of codimension 1, rather than one single orbit. The interior of the singular

orbit space corresponds to the orbit with the smallest isotropy subgroup of the

action and the boundaries of the orbit space correspond to the isotropy subgroups

of greater size(s).

Let us investigate the different isotropy subgroups of the action of SU(3) on

CP2 × CP2. Recall that CP2 coordinates are unique up to rescaling, therefore

[0 : 1 : 0] = [0 : υ : 0] where υ ∈ C∗. For a point [1 : 0 : 0] ∈ CP2, the SU(3)
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matrices that fix this point are of the forma 0 0

0 b c

0 d e

 where A =

(
b c

d e

)
and 1 = adetA (3.4)

A is the group of 2 × 2 unitary matrices. In other words, we will denote the

subgroup of SU(3) that fixes the point [1 : 0 : 0] ∈ CP2 as E1 and it is

SU(3)[1:0:0] = E1 ∼= U(2). (3.5)

The SU(3) matrixb c 0

d e 0

0 0 a

 where A =

(
b c

d e

)
and 1 = adetA, (3.6)

a different subgroup, E2 also isomorphic to U(2) fixes [0 : 0 : 1] ∈ CP2, in other

words SU(3)[0:0:1] = E2 ∼= U(2). Therefore the fixed point set of this isotropy

subgroup is

Fix(E1, E2 ∼= U(2),CP2 × CP2) = {[1 : 0 : 0], [0 : 0 : 1]} (3.7)

For the SU(3) action on CP2 × CP2, we investigate the subgroups of SU(3),

SU(3)(P1,P2), that would fix two different points P1 and P2 in CP2 × CP2. If the

two points are parallel this means they are equal (P1 = P2) and E1 and E2 are

the isotropy subgroups that fix P1 = P2 = [1 : 0 : 0] and P1 = P2 = [0 : 0 : 1] in

CP2 × CP2, respectively:

SU(3)([1:0:0],[1:0:0]) ∼= U(2) ∼= SU(3)([0:0:1],[0:0:1]). (3.8)

The fixed point set of which has two elements:

Fix(E1, E2 ∼= U(2),CP2 × CP2) = {(ei, ei) | i = 1, 3}, (3.9)

where e1 = [1 : 0 : 0], e2 = [0 : 1 : 0] and e3 = [0 : 0 : 1] in CP2. For P2 orthogonal

to P1, for example P1 = [1 : 0 : 0] and P2 = [0 : 1 : 0], the isotropy subgroup that
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fixes this choice of P1 and P2 is the maximal torus subgroup of SU(3):

SU(3)([1:0:0],[0:1:0]) ∼= T2 ∼= U(1)×U(1). (3.10)

The fixed point set of which has four elements:

Fix(T2,CP2 × CP2) = {(ei, ej) | i = 1, 3, j = 1, 2, 3 and i 6= j}. (3.11)

Consider when P1 is neither equal to nor perpendicular to P2, for example P1 = [1 :

0 : 0] and P2 = [a : b : 0] for a 6= 0 and b 6= 0, then the isotropy subgroup for the

set of two generic points, i.e. two points that are not parallel nor perpendicular

to each other, in CP2 × CP2 is

SU(3)([1:0:0],[a:b:0]) ∼= T1 ∼= U(1). (3.12)

And the fixed point set of which is

Fix(T1,CP2 × CP2) = [a : b] ∼= CP1. (3.13)

The dimensions of the different isotropy subgroups of the action of SU(3) on

CP2×CP2 are different and distinct therefore CP2×CP2/SU(3) is homeomorphic

to either the half open interval or the closed interval. Since the SU(3) action on

CP2×CP2 has three different isotropy subgroups of three different sizes that don’t

coincide, i.e. not just two, this means that CP2 × CP2/SU(3) is homeomorphic

to the closed interval. The boundaries of the orbit space of the action CP2 ×
CP2/SU(3) correspond to the isotropy subgroups U(2) and T2 and the interior

corresponds to the T1 isotropy subgroup.

3.3 Isotropy Subgroups and Corresponding Fixed Point Sets

of SU(3) acting on CP2 × CP2 × CP2

The isotropy subgroup that fixes three parallel points in CP2 × CP2 × CP2 is:

SU(3)([1:0:0],[1:0:0],[1:0:0]) = E1 ∼= U(2) ∼= E2 = SU(3)([0:0:1],[0:0:1],[0:0:1])
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The fixed point set of this isotropy subgroup is

Fix(E1, E2 ∼= U(2),CP2 × CP2 × CP2) = {(a, a, a) | a = e1 or e3}. (3.14)

The maximal torus fixes three points for which two points are equal to each other

and both perpendicular to the third point, for example, P1 = P2 = [1 : 0 : 0] and

P3 = [0 : 1 : 0],

SU(3)([1:0:0],[1:0:0],[0:1:0]) ∼= T2,

The isotropy subgroup that fixes three perpendicular points, i.e. P1 ⊥ P2 ⊥ P3,
is also the maximal torus:

SU(3)([1:0:0],[0:1:0],[0:0:1]) ∼= T2

and its fixed point set is

Fix(T2,CP2 × CP2 × CP2) = {(a, a, b), (a, b, a), (b, a, a) | a = e1or e3,

b = e1 or e2 or e3 and a 6= b} ∪ {(e1, e2, e3)}. (3.15)

3.4 Isotropy subgroups of SU(n+1) acting on CPn×CPn×
CPn

Denote three points in CPn as p1, p2 and p3. For p1 = p2 = p3 = [1 : 0 : . . . : 0]

the isotropy subgroup of SU(n+1) that fixes these is isomorphic to U(n), another

subgroup fixes p1 = p2 = p3 = [0 : 0 : . . . : 1] that is also isomorphic to U(n).

For three points for which two of the points are equal and perpendicular to

the third point, or all three points are perpendicular to each other in CPn, the

SU(n+1) sub-matrices that fix such configurations of the three points are all iso-

morphic toU(n−2)×T2. Therefore the fixed point set of these isotropy subgroups

that are all isomorphic to U(n − 2) × T2 is the set given by the configurations

{(a, a, b), (a, b, a), (b, a, a), (a, b, c)} where either a = e1 and b, c = e2, e3 or

a = en, b, c = en−1, en−2 only.

For p3 neither parallel nor perpendicular to points p1 and p2, the isotropy sub-

group that fixes these points is:

SU(n+ 1){p1,p2,p3∈CPn|p3 6⊥p1,p2 and p3 6=p1,p2}
∼= U(n− 2) (3.16)
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the fixed point set of this isotropy subgroup is isomorphic to CP2

Fix(U(n− 2),CPn × CPn × CPn) = [a : b : c] ∼= CP2.

this is also the isotropy subgroup and fixed point set for the action of SU(n+ 1)

on one point p = [a : b : c : 0 : . . . : 0] where a, b, c ∈ C and a, b, c 6= 0.
Without loss of generality, these results provide a novel proof to the following:

Lemma 3.4.1. Any k points in CPn lie in a common CPr, r ≤ k − 1 and any

symmetric dynamics will preserve that CPn by the fixed point argument.



Chapter 4

The Momentum Map of the SU(3)

Action on Products of CP2

The symplectic form on the complex projective plane is the Fubini-Study form: we

explore its properties including the fact that it is a basic symplectic form. After

introducing the momentum map that maps the complex projective plane to the

dual of the Lie algebra of SU(3) we explore the properties of this momentum

map, namely, the uniqueness of the image of this momentum map, its SU(3)

equivariance and show that the Kirillov-Kostant-Souriau symplectic form on the

image of the momentum map pulls back to the Fubini-Study symplectic form. We

then establish the momentum map on products of the complex projective plane

and state the symplectic form on the products of the complex projective plane

which is the direct sum of ‘weighted’ copies of the Fubini-Study symplectic: the

weights are scalar values.

4.1 The Fubini-Study Form

The Fubini-Study form is a symplectic form on the Complex Projective Space.

For the n-dimensional complex projective space, CPn = (Cn+1 \ 0)/C∗, the pull

back of the Fubini-Study form to Cn+1 is

ωFS =

√
(−1)

2
∂∂̄log|z|2 (4.1)

=
i

2|z|4

n∑
j,k=1

(
|zj|

2dzk ∧ dz̄k − z̄jzkdzj ∧ dz̄k
)

(4.2)
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and it is the only SU(3)-invariant form on CP2 up to a scalar multiple1. In the

case that n = 1, z1 = z = x+ iy,∫
CP1
ωFS =

∫
R2

dx∧ dy

(1+ x2 + y2)2
= π. (4.3)

The Fubini-Study inclusion-quotient diagram, as introduced in proposition 2.3.2,

is

S2n+1
i−→ Cn+1

π ↓
CPn

where CPn = S2n+1/S1. S1 acts on Cn+1 with momentum map
∑

j |zj|
2/2 and

S2n+1 is the level set of the momentum map

π∗ωFS = i
∗ωCn+1 (4.4)

where ωCn+1 =
∑n

j=0 dxj∧dyj =
i
2

∑n
j=0 dzj∧dz̄j is the standard symplectic form

on Cn+1.
Claim: The Fubini-Study form is a basic symplectic form.

Proof. We can see that the Fubini-Study form is invariant under S1, for λ ∈ S1:

ωFS =
i

2|λ|4|z|4

n∑
j,k=1

(
|λ|2|zj|

2λdzk ∧ λ̄dz̄k − λ̄z̄jλzkλdzj ∧ λ̄dz̄k
)

=
i

2|z|4

n∑
j,k=1

(
|zj|

2dzk ∧ dz̄k − z̄jzkdzj ∧ dz̄k
)
.

The Fubini-Study form annihilates vertical (or horizontal) vectors, meaning it is

a horizontal (or vertical) vector. This means that w0(dπv1 , · · · , dπvn) = 0 if any

dπvi = 0, then the pull-back is zero. In other words ω(v1, · · · , vp) = 0 when

atleast one of vi are vertical (dπ(vi) = 0 for an i ∈ n). Since the Fubini-Study

form is both invariant and horizontal it is therefore a basic symplectic form.

1Without the 1/2 coefficient in (4.2) and (4.2), wFS(n = 1) = 2π.
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4.2 Properties of a Momentum Map of the SU(3) action on

CP2 × CP2 × CP2 with Unweighted Symplectic Form

Let’s define a momentum map of the SU(3) action on products of CP2 and prove

some of its properties. For Z = [z1 : z2 : z3] a coordinate point in CP2, the map

K : [z1 : z2 : z3] 7→ 1∑
i,j=1,2,3 |zj|

2
(Z⊗ Z̄) − 1

3
I (4.5)

Claim:

(1) Im(K) is a single coadjoint orbit

(2) K is SU(3)-equivariant

(3) Has a Kirillov-Kostant-Souriau (KKS) symplectic form on Im(K) that pulls

back to ωFS on CP2.

Proof. If the second requirement holds then it is enough to verify the third re-

quirement at a single point in CP2 as both forms are invariant. For condition (1),

CPn can be decomposed into Cn t Cn−1 t . . . t C1 t 0:

For [z0 : z1 : . . . : zn] in CPn at

z0 fixed and z0 6= 0 : [1 : z1 : . . . : zn] ' Cn

z0 = 0 : [0 : z1 : . . . : zn] ' CPn−1

z0 = 0, z1 fixed and z1 6= 0 : [0 : 1 : . . . : zn] ' Cn−1

z0 = 0, z1 = 0 : [0 : 0 : . . . : zn] ' CPn−2 etc.

Therefore

CPn = Cn t CPn−1 (4.6)

= Cn t Cn−1 t CPn−2 (4.7)

= . . . (4.8)

and therefore,

CP2 = C2 t C1 t C0. (4.9)

On [z1 : z2 : z3], we have that [0 : 0 : 1] ' C0, [0 : 1 : z3] ' C1 and [1 : z2 :

z3] ' C2. For C1, without loss of generality, we will only consider the specific



4.2. PROPERTIES OF THE MOMENTUM MAP 85

point [0 : 1 : 1] and for C2, again without loss of generality, we only consider the

point [1 : 1 : 1]. Now in C3, acting on the point [0 : 1 : 1] by conjugation, we

rotate it to the point [0 : 0 : 1] (these points are conjugate to each other) and

similarly, [1 : 1 : 1] is conjugate to [0 : 1 : 1] and in turn conjugate to [0 : 0 : 1]. To

belong to a single coadjoint orbit, (K([0:0:1])), (K([0:1:1])) and (K([1:1:1])) must

have the same eigenvalues. As explained, by conjugation we need only consider

(K([0:0:1])) whose eigenvalues are 2/3, 2/3,−1/3. Repeated eigenvalues imply

that the orbit is diffeomorphic to CP2 (if every eigenvalue is distinct then the

orbit is diffeomorphic to the flag manifold F(2, 1)).

For property (2) Consider the action of A ∈ SU(3)

K : Z→ Z⊗ Z
|Z|2

−
1

3
I (4.10)

K : AZ→ AZ⊗AZ
|AZ|2

−
1

3
I =

Z⊗ Z
|Z|2

−
1

3
I. (4.11)

For property (3) since property (2) holds we can consider the coordinate z0 = [1 :

0 : 0], also Tz0CP2 = (0,w1, w2)

K : [1 : 0 : 0]→
1 0 0

0 0 0

0 0 0

−
1

3
I (4.12)

The defining equation for the momentum map, (2.2) re-written here, is

〈dJx(v), ξ〉 = ωx(v, ξp(x)) (4.13)

where x ∈ P, v ∈ TxP and ξ ∈ g.

The symplectic form on su(3)∗

dJ(u) = ad∗ηµ for some η (4.14)

Then for the KKS form

ωµ(dJ(u), dJ(v)) = 〈µ, [ξ, η]〉 (4.15)

and ωFS(u, v)(z0) = 〈µ, [ξ, η]〉 = tr(µ∗[ξ, η]) for u = (u2, u3) and v = (v2, v3)

and K is a momentum map.
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4.3 The Momentum Map of the SU(3) Action on Products

of CP2 with Weighted Symplectic Form

For the action of SU(3) on products of CP2, we will introduce the weighted sym-

plectic form. The symplectic form on N-copies of CP2 is

ω = Γ1ωFS ⊕ . . .⊕ ΓNωFS where Γ1, . . . ΓN ∈ R (4.16)

so the symplectic form is the sum of scalar multiples of the Fubini-Study form on

each CP2. The momentum map J :
∏N

i=1CP2 → su(3)∗ of the SU(3) action on

N-products of CP2 is

J : (Z1, . . . ZN)→ N∑
i=1

ΓiK(Zi), Zi ∈ CP2.



Chapter 5

The Momentum Polytopes of the SU(3)

Action on Products of CP2

In this chapter we classify the momentum polytopes of the SU(3) action on

CP2 × CP2 with symplectic form ω = Γ1ωFS ⊕ Γ2ωFS according to the ratios

between the separate weights Γ1 and Γ2. We also classify the momentum polytopes

of the SU(3) action on CP2 × CP2 × CP2 according to the ratios between Γ1, Γ2

and Γ3 of the associated symplectic form ω = Γ1ωFS ⊕ Γ2ωFS ⊕ Γ3ωFS.

The momentum map, J, of the SU(3) action on products of CP2 with sym-

plectic form ω =
⊕N

i=1 ΓiωFS has an ‘Orbit Momentum Map’, j:

N∏
i=1

CP2 J−→ su(3)∗

↓ ↓
N∏
i=1

CP2/SU(3) j−→ su(3)∗/SU(3) ∼= t∗+

the vertical arrows define reductions and t∗+ is the positive Weyl chamber. More-

over each coadjoint orbit intersects t∗+ at precisely one point: g∗/G ' t∗+. We

identify the elements of g∗ with 3 × 3 traceless (anti-)Hermitian matrices. The

maximal torus of SU(3) is T2 and the Weyl group acts on it as described in section

2.1. The action of the Weyl groupW(G) on a point of C̄ (defined in section 2.1) is

the orbit of the Weyl group. The pink area in the diagram below (see figure 5.1)

is the positive Weyl chamber which has two walls εα1 and εα2 . The generic and

degenerate types of orbits of SU(3) were stated in chapter 3. A coadjoint orbit

87
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intersects with h∗ denoting an orbit of W(SU(3)). For a generic case, an orbit

of W(SU(3)) has 6 elements, each element intersecting with the interior of each

Weyl chamber at one point, if an initial point lies in the interior of the positive

Weyl chamber. And for a degenerate (non-generic) case the orbit of W(SU(3)

has 3 elements which intersect one and only one wall of each Weyl chamber, if

the initial point is on the wall of a positive Weyl chamber [13].

Each coadjoint orbit corresponds to an isospectral submanifold (i.e. the set of

matrices with given spectrum (eigenvalues). Each Weyl chamber is conjugate to

its consecutive Weyl chambers by reflection e.g. (2.1). Reflection along the Weyl

Chamber walls is a permutation of the given spectrum. Therefore the image of

the momentum map is reflected with respect to the Weyl chamber walls onto the

positive Weyl chamber.

λ2 = λ3

λ1 = λ2 λ1 = λ3

t∗+

Figure 5.1: The positive Weyl chamber, t∗+, as introduced in definition 2.1.56,
points in which correspond to the set of eigenvalues of the diagonal elements of
the image of the momentum map of the action, (λ1, λ2, λ3), where λ1 ≥ λ2 ≥ λ3,
λ1 ≥ 0 and λ3 ≤ 0.

5.1 The Weighted Momentum Map of the Fixed Point Sets

of the SU(3) Action on CP2 × CP2

The weighted momentum map for the SU(3) action on the manifold X̄ = CP2 ×
CP2 is

J : Z1, Z2 → i

2∑
i=1

Γi
Zi ⊗ Z̄i
|Zi|2

−
1

3
I

2∑
i=1

Γi

as derived in section 4. The diagonal elements of the image of this map coincide

with the positive Weyl chamber. The images of the momentum map action on

Z1 = Z2 = ei all lie on the same coadjoint orbit and all happen to map to t∗: once
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a given spectrum is permuted, if the image of the momentum map of different

elements of the fixed point set coincide then they lie on the same coadjoint orbit.

For example, the elements of the fixed point set of the U(2) action (3.9) have the

same spectrum. Firstly the spectrum values for Z1 = Z2 = e1:

J([e1, e1]) =


2(Γ1+Γ2)

3
0 0

0 −Γ1−Γ2
3

0

0 0 −Γ1−Γ2
3


Spectrum

(
J([e1, e1])

)
= (λ1, λ2, λ3) =

[2(Γ1 + Γ2)
3

,
−Γ1 − Γ2

3
,
−Γ1 − Γ2

3

]
similarly the image of the momentum map acting on Z1 = Z2 = e3 is

J([e3, e3]) =


−Γ1−Γ2
3

0 0

0 −Γ1−Γ2
3

0

0 0 2(Γ1+Γ2)
3


Spectrum

(
J([e3, e3])

)
=

[−Γ1 − Γ2
3

,
−Γ1 − Γ2

3
,
2(Γ1 + Γ2)

3

]
Permuting this spectrum so that it intersects with the positive Weyl chamber,

Spectrum
(
J([e3, e3])

)
=
[2(Γ1 + Γ2)

3
,
−Γ1 − Γ2

3
,
−Γ1 − Γ2

3

]
.

Therefore the two different spectra coincide within the positive Weyl chamber:

Spectrum
(
J([e1, e1])

)
= Spectrum

(
J([e3, e3])

)
=
[2(Γ1 + Γ2)

3
,
−Γ1 − Γ2

3
,
−Γ1 − Γ2

3

]
.

(5.1)

and similarly,

Spectrum
(
J([e1, e1])

)
= Spectrum

(
J([e2, e2])

)
= Spectrum

(
J([e3, e3])

)
.

The spectrum specified in (5.1) satisfies the positive Weyl chamber domain vari-

ables for specific values of Γ1 and Γ2. For example, for Γ1, Γ2 < 0, the permutation

of the spectrum that orders it accordingly gives

Spectrum
(
J([(ei, ei) | i = 1, 2, 3])

)
= (λ1, λ2, λ3) =

[−Γ1 − Γ2
3

,
−Γ1 − Γ2

3
,
2(Γ1 + Γ2)

3

]
.

The different spectra of the four different elements of the fixed point set of
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the maximal torus action, (3.11), all coincide in the positive Weyl chamber once

permuted. Firstly,

Spectrum
(
J([e1, e2])

)
= Spectrum

(
J([e2, e1])

)
Spectrum

(
J([e1, e3])

)
= Spectrum

(
J([e3, e1])

)
Spectrum

(
J([e2, e3])

)
= Spectrum

(
J([e3, e2])

)
up to permutation, and

Spectrum
(
J([e1, e2])

)
= Spectrum

(
J([e1, e3])

)
= Spectrum

(
J([e2, e3])

)
again, up to permutation, where

Spectrum
(
J([(ei, ej) | i, j = 1, 2, 3 and i 6= j])

)
=
[2Γ1 − Γ2

3
,
2Γ2 − Γ1
3

,
−Γ1 − Γ2

3

]
but this spectrum coincides with the positive Weyl chamber for certain values of

Γ1 and Γ2 only. Other Γ1 to Γ2 ratios require different permutations:

For Γ1 > Γ2 > 0 the correct permutation gives the spectrum

Spectrum
(
J([(ei, ej) | i, j = 1, 2, 3 and i 6= j])

)
=
[2Γ1 − Γ2

3
,
2Γ2 − Γ1
3

,
−Γ1 − Γ2

3

]
;

For 0 > Γ1 > Γ2 the correct spectrum is

Spectrum
(
J([(ei, ej) | i, j = 1, 2, 3 and i 6= j])

)
=
[−Γ1 − Γ2

3
,
2Γ2 − Γ1
3

,
2Γ1 − Γ2
3

]
;

For Γ1 > 0 > Γ2 where |Γ2| > |Γ1|,

Spectrum
(
J([(ei, ej) | i, j = 1, 2, 3 and i 6= j])

)
=
[2Γ1 − Γ2

3
,
−Γ1 − Γ2

3
,
2Γ2 − Γ1
3

]
;

For Γ2 > 0 > Γ1 where |Γ2| > |Γ1|,

Spectrum
(
J([(ei, ej) | i, j = 1, 2, 3 and i 6= j])

)
=
[2Γ2 − Γ1

3
,
−Γ1 − Γ2

3
,
2Γ1 − Γ2
3

,
]
;

For Γ1 = Γ2 where Γ1 and Γ2 are both positive and for Γ1 = −Γ2 = Γ where Γ is
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positive two different spectrum equate,[2Γ1 − Γ2
3

,
2Γ2 − Γ1
3

,
−Γ1 − Γ2

3

]
=
[2Γ2 − Γ1

3
,
2Γ1 − Γ2
3

,
−Γ1 − Γ2

3

]
;

For Γ1 = Γ2 where both Γ1 and Γ2 are both negative and for Γ1 = −Γ2 = Γ

where Γ is negative two different spectrum equate,[−Γ1 − Γ2
3

,
2Γ1 − Γ2
3

,
2Γ2 − Γ1
3

]
=
[−Γ1 − Γ2

3
,
2Γ2 − Γ1
3

,
2Γ1 − Γ2
3

]
.

5.1.1 The Γ1 to Γ2 Ratio

For two scalar values Γ1 and Γ2 there exist a few distinct ratios between them

that distinguish the correct permutations of the eigenvalues so that the image of

the momentum map intersects with the positive Weyl chamber. These can be

distinguished on the Γ1 − Γ2 plane:

Γ1-axis

Γ2-axis Γ1 = Γ2

Γ1 = −Γ2

Γ1 > Γ2 > 0

Γ1 > 0 > Γ2
& |Γ2| > |Γ1|

0 > Γ1 > Γ2

Γ2 > 0 > Γ1
& |Γ2| > |Γ1|

Figure 5.2: There are six different ratios shown on this plane including (going
clockwise) Γ1 = Γ2, Γ1 > Γ2 > 0 , Γ1 = −Γ2, Γ1 > 0 > Γ2 where |Γ2| > |Γ1|,
0 > Γ1 > Γ2 and Γ2 > 0 > Γ1 where |Γ2| > |Γ1|.

Therefore the Momentum Polytopes of the SU(3) Action on CP2 × CP2 are

classified into 6 different Polytopes: the Mometum Polytope for Γ1 = Γ2; the

Momentum Polytope for Γ1 = −Γ2; the Momentum Polytope for Γ1 > Γ2 > 0; the

Momentum Polytope for 0 > Γ1 > Γ2; the Momentum Polytope for Γ1 > 0 > Γ2

where |Γ2| > |Γ1|; and the Momentum Polytope for Γ2 > 0 > Γ1 where |Γ2| > |Γ1|.
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5.2 The Weighted Momentum Map of the Fixed Point Sets

of the SU(3) Action on CP2 × CP2 × CP2

The momentum map for the SU(3) action on the manifold X̄ = CP2×CP2×CP2

is

J : Z1, Z2, Z3 → i

3∑
i=1

Γi
Zi ⊗ Z̄i
|Zi|2

−
1

3
I

3∑
i=1

Γi

As the roots can be permuted according to the constant rank theorem, to satisfy

the above positive Weyl chamber root conditions then the only fixed points that

need to be considered are:{
[e1, e1, e1], [e2, e1, e1], [e1, e2, e1], [e1, e1, e2], [e1, e2, e3]

}
(5.2)

whose momentum map images are:

J([e1, e1, e1]) =


2(Γ1+Γ2+Γ3)

3
0 0

0 −Γ1−Γ2−Γ3
3

0

0 0 −Γ1−Γ2−Γ3
3


Spectrum

(
J([e1, e1, e1])

)
=

[2(Γ1 + Γ2 + Γ3)
3

,
−Γ1 − Γ2 − Γ3

3
,
−Γ1 − Γ2 − Γ3

3

]
J([e2, e1, e1]) =


−Γ1+2(Γ2+Γ3)

3
0 0

0 2Γ1−Γ2−Γ3
3

0

0 0 −Γ1−Γ2−Γ3
3


Spectrum

(
J([e2, e1, e1])

)
=

[−Γ1 + 2(Γ2 + Γ3)
3

,
2Γ1 − Γ2 − Γ3

3
,
−Γ1 − Γ2 − Γ3

3

]
J([e1, e2, e1]) =


2Γ1−Γ2+2Γ3

3
0 0

0 −Γ1+2Γ2−Γ3
3

0

0 0 −Γ1−Γ2−Γ3
3


Spectrum

(
J([e1, e2, e1])

)
=

[2Γ1 − Γ2 + 2Γ3
3

,
−Γ1 + 2Γ2 − Γ3

3
,
−Γ1 − Γ2 − Γ3

3

]
J([e1, e1, e2]) =


2(Γ1+Γ2)−Γ3

3
0 0

0 −Γ1−Γ2+2Γ3
3

0

0 0 −Γ1−Γ2−Γ3
3


Spectrum

(
J([e1, e1, e2])

)
=

[2(Γ1 + Γ2) − Γ3
3

,
−Γ1 − Γ2 + 2Γ3

3
,
−Γ1 − Γ2 − Γ3

3

]
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J([e1, e2, e3]) =


2Γ1−Γ2−Γ3

3
0 0

0 −Γ1+2Γ2−Γ3
3

0

0 0 −Γ1−Γ2+2Γ3
3


Spectrum

(
J([e1, e2, e3])

)
=

[2Γ1 − Γ2 − Γ3
3

,
−Γ1 + 2Γ2 − Γ3

3
,
−Γ1 − Γ2 + 2Γ3

3

]
Again, these points and the resulting momentum polytope that is made up of

these points depends on the respective magnitudes of Γ1, Γ2 and Γ3 and their

respective ratios i.e. their classification.

5.2.1 The Γ1 to Γ2 to Γ3 Ratio

For three scalar values Γ1, Γ2 and Γ3 there exist a few distinct ratios between them

that distinguish the correct permutations of the eigenvalues so that the image of

the momentum map intersects with the positive Weyl chamber.

We only need to consider the Momentum Polytopes for values of Γi 6= 0, this is

because when one of the Γi = 0 we end up recreating and repeating the Momentum

Polytopes of the action of SU(3) on the CP2 or CP2 × CP2 manifolds which is

redundant and does not produce any new information for us. We will separate

the momentum polytopes according to the following equalities: Γ1 = 0, Γ2 = 0,

Γ3 = 0, Γ2 = Γ3, Γ1 = Γ3, Γ1 = −Γ2, Γ2 = −Γ3, Γ1 = −Γ3, Γ1 = Γ2 + Γ3, Γ2 = Γ1 + Γ3

and Γ3 = Γ1 + Γ2.

So let us distinguish the different Momentum Polytopes that aren’t defined by

these equations.

The hyperplane Γ1 + Γ2 + Γ3 = ∆ for an arbitrary ∆ ∈ R+ on the Γ1 − Γ2 − Γ3

axes:

Γ1

Γ2

Γ3

∆

1

Figure 5.3: ∆ marks the hyperplane Γ1 + Γ2 + Γ3 = ∆ for an arbitrary ∆ ∈ R+
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On the plane Γ1 + Γ2 + Γ3 = ∆,

Γ1+ Γ2+ Γ3 = ∆

Figure 5.4: The plane Γ1+ Γ2+ Γ3 = ∆ for an arbitrary ∆ ∈ R+ flattened onto the
page and without the Γ1, Γ2 or Γ3 axes shown

We mark out the lines that correspond to the different coincidences between

Γ1, Γ2 and Γ3:

Γ1 + Γ2 + Γ3 = ∆ Γ3 = 0

Figure 5.5: Γ1 + Γ2 + Γ3 = ∆ and Γ3 = 0 drawn and labelled
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Γ1 + Γ2 + Γ3 = ∆ Γ3 = 0

Γ
1 =
0Γ 2

=
0

Figure 5.6: Γ1 = 0 and Γ2 = 0 also marked



96 CHAPTER 5. MOMENTUM POLYTOPES

Γ1 + Γ2 + Γ3 = ∆ Γ3 = 0

Γ
1 =
0Γ 2

=
0

Γ 1
=
Γ 2

Figure 5.7: Γ1 = Γ2 also drawn and labelled
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Γ1 + Γ2 + Γ3 = ∆ Γ3 = 0

Γ
1 =
0

Γ 1
=
Γ 2

Γ 2
=
Γ 3

Figure 5.8: Γ2 = Γ3 added
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Γ1 + Γ2 + Γ3 = ∆ Γ3 = 0

Γ
1 =
0

Γ 1
=
Γ 2

Γ 2
=
Γ 3

Γ
1 =
Γ
3

Figure 5.9: Γ1 = Γ3 added
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Γ1 + Γ2 + Γ3 = ∆ Γ3 = 0

Γ
1 =
0

Γ 1
=
Γ 2

Γ 2
=
Γ 3

Γ
1 =
Γ
3

Γ3 = Γ1+ Γ2

Γ1 = −Γ2

Figure 5.10: Γ1 = −Γ2 and Γ3 = Γ1 + Γ2 added
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Γ1 + Γ2 + Γ3 = ∆ Γ3 = 0

Γ
1 =
0

Γ 1
=
Γ 2

Γ 2
=
Γ 3

Γ
1 =
Γ
3

Γ3 = Γ1+ Γ2

Γ1 = −Γ2

Γ 2
=
Γ 1
+
Γ 3

Γ 1
=
−
Γ 3

Figure 5.11: Γ1 = −Γ3 and Γ2 = Γ1 + Γ3 added



5.2. THE MOMENTUM MAP FOR SU(3) ACTING ON (CP2)3 101

Γ1 + Γ2 + Γ3 = ∆ Γ3 = 0

Γ
1 =
0

Γ 1
=
Γ 2

Γ3 = Γ1+ Γ2

Γ1 = −Γ2

Γ 2
=
Γ 1
+
Γ 3

Γ 1
=
−
Γ 3

Γ 2
=
Γ 3

Γ
1 =
Γ
3

Figure 5.12: Due to symmetries of the momentum map we choose to focus on the
region between the lines marked in red Γ2 = Γ3 and Γ1 = Γ3
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A
B C

E

D

H F

G

Γ1 + Γ2 + Γ3 = ∆ Γ3 = 0

Γ
1 =
0

Γ 1
=
Γ 2

Γ3 = Γ1+ Γ2

Γ1 = −Γ2

Γ 2
=
Γ 1
+
Γ 3

Γ 1
=
−
Γ 3

Γ 2
=
Γ 3

Γ
1 =
Γ
3

Figure 5.13: The separate sections outlined by Γ2 = Γ3, Γ1 = Γ3 and the other
equalities that have been drawn and labelled are lettered separately



5.2. THE MOMENTUM MAP FOR SU(3) ACTING ON (CP2)3 103

Figure 5.4 is a 2-dimensional representation of the plane Γ1+ Γ2+ Γ3 = ∆ with

∆ ∈ R+ (with the emphasised triangle outlining the resulting plane for a specific

∆ ∈ R+). The lines correspond to all possible equalities between the Γi’s and

have been drawn and labelled accordingly in figures 5.5 through to 5.11: those

figures show the plane Γ1 + Γ2 + Γ3 = ∆ with the lines Γ3 = 0, Γ1 = 0 and Γ2 = 0

marked, as well as Γ1 = Γ2, Γ2 = Γ3, Γ1 = Γ3, Γ1 = −Γ2, Γ3 = Γ1 + Γ2, Γ1 = −Γ3,

Γ2 = Γ1 + Γ3. In figure 5.11 the plane is split into six sections separated by the

lines Γ1 = Γ2, Γ2 = Γ3 and Γ1 = Γ3. These six sections are interchangeable with

one another contingent on the swapping of a Γi for a Γj, therefore recognising that

there is symmetry across this plane, we need only consider one of the six sections

to distinguish and classify the Momentum Polytopes that are separated by the Γi

equalities. Hence why we mark out one of these regions in figure 5.12: the region

within the lines Γ2 = Γ3 and Γ1 = Γ3.

In figure 5.13, between each of the equalities drawn and labelled within the re-

gion outlined by Γ2 = Γ3 and Γ1 = Γ3, are the sections which have been lettered

A,B,C,D,E,F,G and H. The sections A through to H represent 8 different clas-

sifications of the Momentum Polytopes of the SU(3) action on CP2×CP2×CP2.
Including the Momentum Polytope for Γ1 + Γ2 + Γ3 = 0 this makes 9 different

classifications. Therefore classifying the Momentum Polytopes of this action into

9 different ’types’ including the Momentum Polytope for Γ1 + Γ2 + Γ3 = 0.

The image of the momentum map of the action of SU(3) on CP2 × CP2 ×
CP2 where all the points are parallel, J([e1, e1, e1]), is equal to the image of the

momentum map of the action of SU(3) on parallel points in CP2×CP2, J([e1, e1]),
if we equate Γ1 = Γ2 and then make the replacements 2Γ1 = Γa and Γ3 = Γb:

Spectrum
(
J([e1, e1, e1])

)
=

[2(Γ1 + Γ2 + Γ3)
3

,
−Γ1 − Γ2 − Γ3

3
,
−Γ1 − Γ2 − Γ3

3

]
=

[4Γ1 + 2Γ3
3

,
−2Γ1 − Γ3

3
,
−2Γ1 − Γ3

3

]
at Γ1 = Γ2

=
[2(Γa + Γb)

3
,
−Γa − Γb

3
,
−Γa − Γb

3

]
= Spectrum

(
J([e1, e1])

)
(5.3)

Similarly, images of the momentum map of the SU(3) action on CP2×CP2×
CP2 coincide with images of the momentum map of the action on CP2 × CP2

for Γ2 = Γ3 with the replacements 2Γ2 = Γa and Γ1 = Γb, as it would for Γ1 = Γ3
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with replacements 2Γ1 = Γa and Γ2 = Γb. Likewise, a different class of polytopes

correspond to the equalities Γ1 = 0, Γ2 = 0, Γ3 = 0, Γ1 = Γ2, Γ2 = Γ3, Γ1 = Γ3,

Γ1 = −Γ2, Γ2 = −Γ3, Γ1 = −Γ3, Γ1 = Γ2 + Γ3, Γ2 = Γ1 + Γ3 and Γ3 = Γ1 + Γ2 and

another class of momentum polytopes correspond to their inequalities: the latter

are explored and fully classified in section 5.3, and the former are fully classified

in section 5.7.

5.3 The Momentum Polytopes of the SU(3) Action on CP2×
CP2

The action SU(3) y CP2 × CP2 is a cohomogeneity one action whose orbit is

homeomorphic to the closed interval. We show that the momentum polytopes of

this action fall into different categories separated by the ratios between the Γis.

Theorem 5.3.1. The momentum polytopes of the SU(3) action on CP2 × CP2

with weighted symplectic form Γ1ωFS⊕ Γ2ωFS fall into four different categories for

which Γ1 − Γ2 6= 0, Γ1 + Γ2 6= 0, Γi 6= 0 where i, j = 1, 2.

Proof. Γ1 > Γ2 > 0, Γ2 > 0 > Γ1 where |Γ2| > |Γ1|, 0 > Γ1 > Γ2 and Γ1 > 0 > Γ2

where |Γ2| > |Γ1| are the regions defined within the hyperplanes Γ1 − Γ2 = 0,

Γ1 + Γ2 = 0 and Γi = 0 where i, j = 1, 2 on the Γ1 − Γ2 axes as shown in figure 5.2.

Let us categorise these regions and explore the different Momentum Polytopes

they make.

The First Category:

The spectrum of the image of the momentum maps of the SU(3) action on two

parallel points and two perpendicular points in CP2 × CP2 with weighted sym-

plectic form for which Γ1 > Γ2 > 0 that satisfy the positive Weyl chamber domain

conditions λ1 ≥ λ2 ≥ λ3 with λ1 ≥ 0 and λ3 ≤ 0 as shown in figure 5.1 are:

Spectrum
(
J([(ei, ei) | i = 1, 2, 3])

)
= (λ1, λ2, λ3) =

[2(Γ1 + Γ2)
3

,
−Γ1 − Γ2

3
,
−Γ1 − Γ2

3

]
Spectrum

(
J([(ei, ej) | i, j = 1, 2, 3 and i 6= j])

)
=
[2Γ1 − Γ2

3
,
2Γ2 − Γ1
3

,
−Γ1 − Γ2

3

]
Spectrum

(
J([(ei, ei) | i = 1, 2, 3])

)
has a repeated element so is diffeomorphic to

CP2 and Spectrum
(
J([(ei, ej) | i, j = 1, 2, 3 and i 6= j])

)
has 3 distinct elements so
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is diffeomorphic to F(2, 1). The coadjoint orbits through points in the boundary

of the Weyl chamber are CP2s, while those through the interior points are the

flag manifolds. Plotting these spectra on the positive Weyl chamber, the line that

joins them is the convex Momentum Polytope of this action:

parallel

perpendicular

Γ1 > Γ2 > 0

Figure 5.14: Momentum Polytope for Γ1 > Γ2 > 0 clearly indicating the regular
and singular orbits in relation to parallel or perpendicular points.
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The Second Category:

If the weighting of the symplectic form satisfy Γ2 > 0 > Γ1 where |Γ2| > |Γ1|,

the spectra for parallel and perpendicular points must be permuted so that they

coincide with the positive Weyl chamber. The resultant spectra for the action on

parallel and perpendicular points in CP2 × CP2 are respectively:

Spectrum
(
J([(ei, ei) | i = 1, 2, 3])

)
= (λ1, λ2, λ3) =

[2(Γ1 + Γ2)
3

,
−Γ1 − Γ2

3
,
−Γ1 − Γ2

3

]
Spectrum

(
J([(ei, ej) | i, j = 1, 2, 3 and i 6= j])

)
=
[2Γ2 − Γ1

3
,
−Γ1 − Γ2

3
,
2Γ1 − Γ2
3

]
the Momentum Polytope for which is generally of the form:

Γ2 > 0 > Γ1
|Γ2| > |Γ1|

Figure 5.15: Momentum polytope for Γ2 > 0 > Γ1 where |Γ2| > |Γ1|
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The Third and Fourth Category: The Momentum Polytopes of the SU(3)

action on CP2 ×CP2 with weighted symplectic form for which Γ1 > 0 > Γ2 where

|Γ2| > |Γ1| and 0 > Γ1 > Γ2 represent the above first and second category for the

Momentum Polytopes of the action but reflected along the λ2 = 0 line in the

positive Weyl chamber.

The Third Category (a reflection of the Momentum Polytopes of the first

category reflected along the λ2 = 0 line along the chosen positive Weyl chamber):

For the action with weighting restriction 0 > Γ1 > Γ2, the permuted spectra for

the action on parallel and perpendicular points are

Spectrum
(
J([(ei, ei) | i = 1, 2, 3])

)
= (λ1, λ2, λ3) =

[−Γ1 − Γ2
3

,
−Γ1 − Γ2

3
,
2(Γ1 + Γ2)

3

]
Spectrum

(
J([(ei, ej) | i, j = 1, 2, 3 and i 6= j])

)
=
[−Γ1 − Γ2

3
,
2Γ1 − Γ2
3

,
2Γ2 − Γ1
3

]
for which the Momentum Polytope is of the form

0 > Γ2 > Γ1

Figure 5.16: Momentum polytope for 0 > Γ1 > Γ2
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The Fourth Category (a reflection of the Momentum Polytopes of the second

category reflected along the λ2 = 0 line along the chosen positive Weyl chamber):

The action with weighting restriction Γ1 > 0 > Γ2 where |Γ2| > |Γ1|, the permuted

spectra for the action on parallel and perpendicular points are

Spectrum
(
J([(ei, ei) | i = 1, 2, 3])

)
= (λ1, λ2, λ3) =

[2(Γ1 + Γ2)
3

,
−Γ1 − Γ2

3
,
−Γ1 − Γ2

3

]
Spectrum

(
J([(ei, ej) | i, j = 1, 2, 3 and i 6= j])

)
=
[2Γ1 − Γ2

3
,
−Γ1 − Γ2

3
,
2Γ2 − Γ1
3

]
whose Momentum Polytope is of the form

Γ1 > 0 > Γ2
|Γ2| > |Γ1|

Figure 5.17: Momentum polytope for Γ1 > 0 > Γ2 where |Γ2| > |Γ1|
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5.4 The Transitional Momentum Polytopes of the SU(3)

Action on CP2 × CP2

Theorem 5.4.1. The different polytopes of theorem 1 are separated by transi-

tional momentum polytopes of the SU(3) action on CP2 × CP2 fall into three

different categories for which Γ1 − Γ2 = 0, Γ1 + Γ2 = 0, Γi = 0 where i, j = 1, 2.

Proof. The First Category:

The permuted spectra for the action with weighting Γ1 − Γ2 = 0 are

Spectrum
(
J([(ei, ei) | i = 1, 2, 3])

)
= (λ1, λ2, λ3) =

[2(Γ1 + Γ2)
3

,
−Γ1 − Γ2

3
,
−Γ1 − Γ2

3

]
Spectrum

(
J([(ei, ej) | i, j = 1, 2, 3 and i 6= j])

)
=
[2Γ1 − Γ2

3
,
2Γ2 − Γ1
3

,
−Γ1 − Γ2

3

]
whose resultant Momentum Polytope is of the general form:

Γ1 = Γ2

Figure 5.18: Momentum polytope for Γ1 = Γ2
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The Second Category:

The permuted spectra for the action with weighting Γ1 + Γ2 = 0 are

Spectrum
(
J([(ei, ei) | i = 1, 2, 3])

)
= (λ1, λ2, λ3) =

[
0, 0, 0

]
Spectrum

(
J([(ei, ej) | i, j = 1, 2, 3 and i 6= j])

)
=
[2Γ1 − Γ2

3
,
−Γ1 − Γ2

3
,
2Γ2 − Γ1
3

]
whose resultant Momentum Polytope is of the general form:

λ2 = 0

Γ1 = −Γ2

Figure 5.19: Momentum polytope for Γ1 = −Γ2
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The Third Category:

For the action with weighting Γi = 0 the image of the momentum map is equal to

that of the SU(3) action on a single copy of CP2 and Momentum Polytope can

only be a point in the boundary of the Weyl Chamber.

5.5 The Directions of the Edges of the Momentum Poly-

topes of the SU(3) Action on CP2 × CP2 × CP2

Globally, the gradient of the edges of the polytope are determined by the bifur-

cation lemma. The bifucation lemma, whose proof is provided in section 2.6,

provides a link between the rank of a momentum map at a point p of a Poisson

Manifold (P, {·, ·}) and the symmetry of the manifold at p. The rank of TpJ is the

same as the dimension of the annihilator of the isotropy algebra at p providing a

rank-nullity correspondence.The Weyl group reflections at the walls of the Weyl

chamber also dictate the resulting shape of the convex polytope.

For a point on the surface of a sphere, the gradient at that point will be the

coordinates of the plane tangent to the sphere at that point. Applying this to

points in CP2 we have for

zi = [0 : 0 : 1] żi = [a : b : 0]

zi = [0 : 1 : 0] żi = [a : 0 : c]

zi = [1 : 0 : 0] żi = [0 : b : c]

Therefore, for

P = [e1, e1, e2]

Tz0P =


 0b1
c1

 ,
 0b2
c2

 ,
a30
c3


 = v
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The gradient of the momentum map at P is

dJv[e1, e1, e2] = Γ1[e1v
†
1 + v1e

†
1] + Γ2[e1v

†
2 + v2e

†
1] + Γ3[e2v

†
3 + v3e

†
2]

= Γ1

 0 b̄1 c̄1

b1 0 0

c1 0 0

+ Γ2

 0 b̄2 c̄2

b2 0 0

c2 0 0

+ Γ3

 0 a3 0

ā3 0 c̄3

0 c3 0



The dot product of the torus action Ξ =

e
iψ 0 0

0 eiθ 0

0 0 eiφ

, where ψ, θ,φ ∈ [0, 2π],

with the vector v gives

Ξ · v =

( 0

b1e
iθ

c1e
iφ

 ,
 0

b2e
iθ

c2e
iφ

 ,
a3e

iψ

0

c3e
iφ

) (5.4)

and

ξψ · v =

(00
0

 ,
00
0

 ,
ia30
0

) (at ψ = 0)

ξθ · v =

( 0

ib1

0

 ,
 0

ib2

0

 ,
00
0

) (at θ = 0)

ξφ · v =

( 0

0

ic1

 ,
 0

0

ic2

 ,
 0

0

ic3

) (at φ = 0)

where ξθ =
d
dθ
Ξ, ξφ = d

dφ
Ξ and ξψ = d

dψ
Ξ.

Therefore the torus action that generates θ or rather fixes θ is defined at a3 =

0 = c1 = c2 = c3. For symplectic form ω(z1, z2) = Γ=(z1z̄2), i.e. the imaginary

part of (z1z̄2) with Γ ∈ R and Γ 6= 0 the momentum map satisfies:

〈J(v), ξ〉 = ω(ξ · v, v) (5.5)
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Using the bifurcation lemma (section 2.6): ImdJz = g◦z .

dJ

( 0

ib1

0

 ,
 0

ib2

0

 ,
00
0

) = Γ1

 0 b̄1 0

b1 0 0

0 0 0

+ Γ2

 0 b̄2 0

b2 0 0

0 0 0

 (5.6)

=

 0
∑2

i=1 Γib̄i 0∑2
i=1 Γibi 0 0

0 0 0

 (5.7)

the spectrum of which is λ3−λ
∑2

i=1 Γib̄i
∑2

i=1 Γibi = 0 = λ(λ
2−
∑2

i=1 Γib̄i
∑2

i=1 Γibi)

rescalling
∑2

i=1 Γib̄i
∑2

i=1 Γibi = 1 then

g◦z =


(0, 1,−1), (0,−1, 1)

(1, 0,−1), (−1, 0, 1)

(1,−1, 0), (−1, 1, 0)

Meaning that the edges of the polytope must be perpendicular to any of the walls

of any of the Weyl chambers. So, locally from every fixed point of the SU(3)

action on CP2 × CP2 × CP2 the weights associated to that point travel in any

of the (λ1, λ2, λ3) directions of g◦z shown above where (0, 1,−1) = −(0,−1, 1),

(1, 0,−1) = −(−1, 0, 1) and (1,−1, 0) = −(−1, 1, 0) therefore specifying three

different directions or their negative counterparts. When the weight of a fixed

point coincides with that of another fixed point then an edge to the polytope is

formed. If this does not create a convex polytope then one of the fixed points

is reflected along one of the walls of the positive Weyl chamber until a convex

shape is reached whose edges coincide with any of the g◦z directions shown.
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5.6 The Momentum Polytopes of the SU(3) Action on CP2×
CP2 × CP2

We will calculate the momentum polytopes for the SU(3) action on points in the

manifold CP2×CP2×CP2 with weighted symplectic form Γ1ωFS⊕ Γ2ωFS⊕ Γ3ωFS.

There are nine different distinct polytopes for this action which are distinguished

by the magnitudes and respective ratios between Γ1, Γ2 and Γ3.

Theorem 5.6.1. The momentum polytopes of the SU(3) action on CP2×CP2×
CP2 with weighted symplectic form Γ1ωFS ⊕ Γ2ωFS ⊕ Γ3ωFS fall into nine different

categories for which Γi − Γj − Γk 6= 0, Γi + Γj 6= 0, Γi 6= 0 where i, j, k = 1, 2, 3.

Proof. The fixed point sets of the SU(3) action on CP2×CP2×CP2 with weighted

symplectic form have been narrowed down to just 5 fixed points as specified in

equation (5.2). Once the spectrum for each of these points defined Spectrum
(
J([e1, e1, e1])

)
,

Spectrum
(
J([e1, e2, e3])

)
, Spectrum

(
J([e2, e1, e1])

)
, Spectrum

(
J([e1, e2, e1])

)
and

Spectrum
(
J([e1, e1, e2])

)
have been plotted, the edges that connect these points

to make the convex polytope must be perpendicular to one of the walls of the

Weyl chambers as shown in section 5.5. We will label each of these spectra:

a = Spectrum
(
J([e1, e1, e1])

)
,

b = Spectrum
(
J([e1, e2, e3])

)
,

c1 = Spectrum
(
J([e2, e1, e1])

)
,

c2 = Spectrum
(
J([e1, e2, e1])

)
,

c3 = Spectrum
(
J([e1, e1, e2])

)
.

Figure 5.20 is an example of one of these polytopes: the vertices corresponding

to each image of the momentum map of the 5 fixed points are labelled a,b,c1,c2

and c3 as shown. The edge connecting a to c1 is perpendicular to the wall

λ1 = λ3, the edge connecting a to c3 is perpendicular to the wall λ1 = λ2, the

edge connecting b to c1 is perpendicular to the wall λ1 = λ2, the edge connecting

b to c3 is perpendicular to the wall λ1 = λ3, and finally the ‘internal’ edge

connecting b to c2 is perpendicular to the wall λ2 = λ3.



5.6. MOMENTUM POLYTOPES FOR SU(3) ACTING ON (CP2)3 115

a

c1

c2

c3

b

Figure 5.20: As an example we have here the polytope for region C from
figure 5.13 where the labelled points a,b,c1,c2 and c3 each correspond to

a specific spectrum: a=Spectrum
(
J([e1, e1, e1])

)
, b=Spectrum

(
J([e1, e2, e3])

)
,

c1=Spectrum
(
J([e2, e1, e1])

)
, c2=Spectrum

(
J([e1, e2, e1])

)
,

c3=Spectrum
(
J([e1, e1, e2])

)
and the edges of this convex momentum polytope

are each perpendicular to a particular wall of the Weyl chambers.

Let us now show all of the different polytopes that fall into the nine different

categorisations:
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The A Polytope

The Momentum Polytope defined by the region labelled A in figure 5.13 between

the boundaries Γ1 = Γ3, Γ2 = Γ3 and Γ2 = Γ1+ Γ3 on the Γ1+ Γ2+ Γ3 = ∆ plane has

the general shape,

a

c1

c2

c3

b

Polytope A

Figure 5.21: The polytope for region A from figure 5.13 where
again the labelled points each correspond to a specific spec-

trum: a=Spectrum
(
J([e1, e1, e1])

)
, b=Spectrum

(
J([e1, e2, e3])

)
,

c1=Spectrum
(
J([e2, e1, e1])

)
, c2=Spectrum

(
J([e1, e2, e1])

)
,

c3=Spectrum
(
J([e1, e1, e2])

)
and the edges of this convex momentum polytope

are each perpendicular to any one wall of the Weyl chambers.

This Polytope is different to the example Polytope in figure 5.20: For this

polytope to be convex, the points c1 and c2 are reflected along the λ2 = λ3 and

λ1 = λ2 walls of the positive Weyl chamber, respectively. Let us detail how this
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polytope has been formed. First we plot the 5 different spectrum values as shown

in figure 5.22

a

c1

c2

c3

b

Polytope A

Figure 5.22: The points a,b,c1,c2 and c3 that each correspond to a specific spec-
trum for Γ1, Γ2 and Γ3 defined by the region A in figure 5.13 have been plotted
in the positive Weyl chamber. Points a,c1,c3 and c2 lie on a straight line that
is perpendicular to the λ1 = λ2 wall of the positive Weyl chamber, but this line
with the point b do not make a convex shape that is a momentum polytope.
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As can be seen in figure 5.22 four points in a straight line, points a,c1,c3 and

c2, with a fifth point, point b, cannot be connected to make a convex shape whose

edges are each perpendicular to one of the walls of the Weyl chambers. Secondly

we reflect points c1 and c2 across their closest Weyl chamber wall:

a

c1

c2

c3

b

Polytope A

Figure 5.23: The points of figure 5.22 with point c1 reflected along the λ2 = λ3
wall of the positive Weyl chamber and point c2 reflected across the λ1 = λ2 wall
of the positive Weyl chamber.
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The edges that connect the new set of points make a convex shape whose edges

comply with the specifications outlined by the bifurcation lemma and calculations

made in section 5.5.

a

c1

c2

c3

b

Polytope A

Figure 5.24: We connect the points shown in figure 5.24 to make a convex shape
whose edges are each perpendicular to one of the walls of the Weyl chambers.
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The edge from point a to c1 is perpendicular to the wall λ1 = λ3, the edge

from point c1 to b is perpendicular to the wall λ1 = λ2, the edge from point b

to c2 is perpendicular to the wall λ2 = λ3, the edge from point c2 to c3 to a is

perpendicular to the wall λ1 = λ2. The actual Momentum Polytope has vertices

c1 and c2 reflected back into the positive Weyl chamber:

a

c1

c2

c3

b

Polytope A

Figure 5.25: The convex shape from the refected points c1 and c2 whose edges
are each perpendicular to one of the walls of the Weyl chambers.
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a

c1

c2

c3

b

Polytope A

Figure 5.26: The convex shape from the reflected points c1 and c2 being reflected
back into the positive Weyl chamber whose edges are each perpendicular to one
of the walls of the Weyl chambers. This is the Momentum Polytope.
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The points of polytope A have been reflected back into the positive Weyl

chamber and the resultant Momentum Polytope is shown.

As can be seen in figures 5.25 and 5.26, the internal lines (from the re-reflected

point c1 to the wall λ2 = λ3 and from the re-reflected point c2 to the wall λ1 = λ2)

show the parts of the Polytope that have been reflected back into the positive

Weyl chamber.
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The B Polytope

The Momentum Polytope defined by the region labelled B in figure 5.13 between

the boundaries Γ1 = 0, Γ1 = Γ3 and Γ2 = Γ1 + Γ3 on the Γ1 + Γ2 + Γ3 = ∆ plane has

the general shape,

a
c1

c2

c3

b

Polytope B

Figure 5.27: The Momentum Polytope for region B from figure 5.13 where point
c1 is a re-reflected vertex.

This Polytope is also different to the example Polytope in figure 5.20: For

this polytope to be convex, the point c1 has been reflected along the λ2 = λ3

wall of the positive Weyl chamber to make a convex shape whose edges are each

perpendicular to a wall of the Weyl chambers before being re-reflected back in to

make the Momentum Polytope for region B defined in figure 5.13.
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The C Polytope

The Momentum Polytope defined by the region labelled C in figure 5.13 between

the boundaries Γ1 = 0, Γ1 = −Γ3 and Γ3 = Γ1 + Γ2 on the Γ1 + Γ2 + Γ3 = ∆ plane

has the general shape,

a

c1

c2

c3

b

Polytope C

Figure 5.28: The Momentum Polytope for region C from figure 5.13

This Polytope is the same as the example Polytope in figure 5.20: it is the

Momentum Polytope for region C defined in figure 5.13.
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The D Polytope

The Momentum Polytope defined by the region labelled D in figure 5.13 between

the boundaries Γ3 = 0 and Γ1 = Γ3 on the Γ1 + Γ2 + Γ3 = ∆ plane has the general

shape,

a

c1

c2

c3

b

Polytope D

Figure 5.29: The Momentum Polytope for region D from figure 5.13 where point
c2 is a re-reflected vertex and the dotted line leading from vertex c1 is an internal
edge.

Let us compare the convex shape of the points including the reflected point

c2 with the resultant Momentum Polytope:
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a

c1

c2

c3

b

Polytope D

Figure 5.30: The convex shape from the plotted spectra including the refected
point c2 whose edges are each perpendicular to one of the walls of the Weyl
chambers. The dotted line from point c1 to the edge connecting points c2 and b
is an internal edge
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a

c1

c2

c3

b

Polytope D

Figure 5.31: The convex shape has been filled so that it is distinguishable.
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a

c1

c2

c3

b

Polytope D

Figure 5.32: The convex shape from the reflected point c2 being reflected back
into the positive Weyl chamber whose edges are each perpendicular to one of the
walls of the Weyl chambers and is contained within the positive Weyl chamber.
This is the Momentum Polytope.
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The points of polytope D have been reflected back into the positive Weyl

chamber and the resultant Momentum Polytope is shown. This Polytope in-

cludes an internal edge: the reduced space along the edge of the Momentum

Polytope, the interior of the Momentum POlytope and along the internal edge

are all different. This will be discussed in detail in section 7.2.2.
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The E Polytope

The Momentum Polytope defined by the region labelled E in figure 5.13 between

the boundaries Γ3 = 0, Γ1 = −Γ3 and Γ3 = Γ1 + Γ2 on the Γ1 + Γ2 + Γ3 = ∆ plane

has the general shape,

a

c1

c2

c3

b

Polytope E

Figure 5.33: The Momentum Polytope for region E from figure 5.13
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The F Polytope

The Momentum Polytope defined by the region labelled F in figure 5.13 between

the boundaries Γ1 = −Γ2, Γ1 = −Γ3 and Γ3 = Γ1 + Γ2 on the Γ1 + Γ2 + Γ3 = ∆ plane

has the general shape,

a

c1

c2

c3

b

Polytope F

Figure 5.34: The Momentum Polytope for region F from figure 5.13: vertex c3 is
reflected back into the positive Weyl chamber along the wall λ1 = λ2, and there
is an internal edge between vertices c2 and b
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The G Polytope

The Momentum Polytope defined by the region labelled G in figure 5.13 between

the boundaries Γ2 = Γ3 and Γ1 = −Γ2 on the Γ1+ Γ2+ Γ3 = ∆ plane has the general

shape,

a

c1

c2c3 b

Polytope G

Figure 5.35: The Momentum Polytope for region G from figure 5.13: vertex c3
is reflected back into the positive Weyl chamber along the wall λ1 = λ2.
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The H Polytope

The Momentum Polytope defined by the region labelled H in figure 5.13 between

the boundaries Γ2 = Γ3, Γ1 = −Γ3 and Γ3 = Γ1 + Γ2 on the Γ1 + Γ2 + Γ3 = ∆ plane

has the general shape,

a

c1

c2

c3

b

Polytope H

Figure 5.36: The Momentum Polytope for region F from figure 5.13: vertex b is
reflected back into the positive Weyl chamber along the wall λ1 = λ2, and there
is an internal edge between vertices c2 and b
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The Zero Polytope

The Momentum Polytope defined by the Γi relations Γ1 + Γ2 + Γ3 = 0 which we

will refer to as the Zero Polytope has the general shape,

a

c1

c2

c3

b

Polytope Γ1 + Γ2 + Γ3 = 0

Figure 5.37: The Momentum Polytope for region Γ1 + Γ2 + Γ3 = 0: vertex c3 is
reflected back into the positive Weyl chamber along the wall λ1 = λ2
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5.7 The Transitional Momentum Polytopes of the SU(3)

Action on CP2 × CP2 × CP2

The different momentum polytopes depend on the respective magnitudes of Γ1,

Γ2 and Γ3. However, transitions between one type of relation between the Γi’s

to other Γj’s take place across lines that have been drawn and labelled in figure

5.13. Therefore the different polytopes in section 5.6 are separated by transitional

polytopes. For example, between polytope A and B is the transition polytpoe that

corresponds to the relationship Γ2 = Γ1 + Γ3. The different transition polytopes

can be separated into three different categories. The first type of transitional

polytope consists of two rather than one singular momentum value, with each

singular momentum value landing on opposite walls of the positive Weyl chamber.

The second type of transitional polytope also consists of two rather than one

singular momentum value however both singular momentum value land on the

same point: two of the vertices coincide at one point on one wall of the positive

Weyl chamber. The third type of transitional polytope corresponds to the 5

fixed point sets ‘collapsing’ into only three (one singular and two regular) sets of

momentum values: they look exactly like the polytopes for the SU(3) action on

CP2 × CP2. The third transitional polyopes are described by Theorem 5.7.2.

Theorem 5.7.1. The transitional momentum polytopes of the SU(3) action on

CP2 × CP2 × CP2 fall into three different categories for which Γi − Γj − Γk = 0,

Γi + Γj = 0, Γi = 0 where i, j, k = 1, 2, 3.

Proof. The First Category of Transition Polytopes

The first category of the transitional polytopes consists of polytopes for which

Γi = Γj + Γk. This type of transitional polytope consists of two rather than one

singular momentum value. In the case for Γ2 = Γ1 + Γ3 both the spectrums

a=Spectrum
(
J([e1, e1, e1])

)
and c2=Spectrum

(
J([e1, e2, e1])

)
have a repeated el-

ement: each of these singular momentum values are each a point on the opposite

walls of the positive Weyl chamber, respectively:

a = Spectrum
(
J([e1, e1, e1])

)
=
[4(Γ1 + Γ3)

3
,
−2(Γ1 + Γ3)

3
,
−2(Γ1 + Γ3)

3

]
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c1 = Spectrum
(
J([e2, e1, e1])

)
=

[Γ1 + 4Γ3
3

,
Γ1 − 2Γ3
3

,
−2(Γ1 + Γ3)

3

]
c2 = Spectrum

(
J([e1, e2, e1])

)
=

[Γ1 + Γ3
3

,
Γ1 + Γ3
3

,
−2(Γ1 + Γ3)

3

]
c3 = Spectrum

(
J([e1, e1, e2])

)
=

[4Γ1 + Γ3
3

,
−2Γ1 + Γ3

3
,
−2(Γ1 + Γ3)

3

]
b = Spectrum

(
J([e1, e2, e3])

)
=

[Γ1 − 2Γ3
3

,
Γ1 + Γ3
3

,
−2Γ1 + Γ3

3

]
The momentum value

a =
[4(Γ1 + Γ3)

3
,
−2(Γ1 + Γ3)

3
,
−2(Γ1 + Γ3)

3

]
is a point on the λ2 = λ3 wall of the positive Weyl chamber (afterall Γ1+ Γ3 > 0).

And the momentum value

c2 =
[Γ1 + Γ3

3
,
Γ1 + Γ3
3

,
−2(Γ1 + Γ3)

3

]
is a point on the λ1 = λ2 wall of the Weyl chamber. Therefore for each transition

polytope that corresponds to the weight equality Γ2 = Γ1 + Γ3, a lands on the

λ2 = λ3 wall of the positive Weyl chamber and c2 lands on the λ1 = λ2 wall of

the positive Weyl chamber.
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a

b

c1

c3

c2

Transition Polytope between A and B

Figure 5.38: The transitional momentum polytope from polytope A to B that
corresponds to Γ2 = Γ1+Γ3. Vertices a and c2 are each singular momentum values.
Vertex c1 is reflected back into the positive Weyl chamber along the wall λ2 = λ3.
Between vertices b and c3 is an internal edge.
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Between regions C and H is the polytope corresponding to the Γ3 = Γ1+Γ2 that

is the transition polytope between polytope C and polytope H. Between regions

E and F is the polytope corresponding to the Γ3 = Γ1+ Γ2, which is the transition

polytope between polytope E and polytope F. In this case for Γ3 = Γ1+Γ2 both the

spectrums a=Spectrum
(
J([e1, e1, e1])

)
and c3=Spectrum

(
J([e1, e1, e2])

)
have a

repeated element and with each singular momentum value landing on opposite

walls of the positive Weyl chamber: the singular momentum value

a = Spectrum
(
J([e1, e1, e1])

)
=
[4(Γ1 + Γ2)

3
,
−2(Γ1 + Γ2)

3
,
−2(Γ1 + Γ2)

3

]
is a point on the λ2 = λ3 wall of the positive Weyl chamber and the other singular

momentum value

c3 = Spectrum
(
J([e1, e1, e2])

)
=
[Γ1 + Γ2

3
,
Γ1 + Γ2
3

,
−2(Γ1 + Γ2)

3

]
is a point on the λ1 = λ2 wall of the Weyl chamber. Therefore for each polytope

that corresponds to the weight equality Γ3 = Γ1 + Γ2, a lands on the λ2 = λ3 wall

of the positive Weyl chamber and c3 lands on the λ1 = λ2 wall of the positive

Weyl chamber.
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a

c1

b

c3

c2

Transition Polytope between C and H

Figure 5.39: The Momentum Polytope for the polytope corresponding to the
equality Γ3 = Γ1 + Γ2. This is a transition polytope that depicts the transition
between polytope C and polytope H. Vertices a and c3 are singular momen-
tum values and each points on the opposite walls of the positive Weyl chamber.
Between vertex b and c2 is an internal edge.
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b

c3

c1

c2

a

Transition Polytope between E and F

Figure 5.40: The Momentum Polytope for Γ3 = Γ1 + Γ2 depicting the transition
polytope that depicts the transition between polytope E and polytope F. Vertices
a and c3 are the singular momentum values and each points on the opposite walls
of the positive Weyl chamber. Between vertex b and c2 is an internal edge.
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The Second Category of Transition Polytopes

The second category of transition polytope corresponds to the equality Γi+Γj = 0

for i,j=1,2,3. In the quadrant shown in figure 5.13 we have three instances of

this case: there are two types of transition polytopes for which Γ1 = −Γ3 between

regions of polytope C and polytope E and between the regions of polytope F and

H; the third type is the transition polytope for which Γ1 = −Γ2 between regions

for polytope F and G. At Γ1 = −Γ3 the momentum values

a = Spectrum
(
J([e1, e1, e1])

)
=
[2Γ2
3
,
−Γ2
3
,
−Γ2
3

]
c2 = Spectrum

(
J([e1, e2, e1])

)
=
[−Γ2
3
,
2Γ2

3
,
−Γ2
3

]
coincide after permutation

a = c2 =
[2Γ2
3
,
−Γ2
3
,
−Γ2
3

]

b

c3

c1

c2

a

Transition between C and E

Figure 5.41: Between regions C and E in figure 5.13 is the polytope with weights
Γ1 = −Γ3 that is the Transition Polytope between polytope C and polytope E.
Vertices a and c2 coincide on the λ2 = λ3 wall of the Weyl chamber.
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b

c3

c1

c2

a

Transition between F and H

Figure 5.42: Between regions F and H in figure 5.13 is the polytope with weights
Γ1 = −Γ3 that is the Transition Polytope between polytope F and polytope H.
Vertices a and c3 coincide on the λ2 = λ3 wall of the Weyl chamber. Vertex c3 is
a vertex reflected along the λ1 = λ2 wall of the positive Weyl chamber.
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However at Γ1 = −Γ2 the momentum values

a = Spectrum
(
J([e1, e1, e1])

)
=
[2Γ3
3
,
−Γ3
3
,
−Γ3
3

]
c3 = Spectrum

(
J([e1, e2, e1])

)
=
[−Γ3
3
,
2Γ3

3
,
−Γ3
3

]
coincide after permutation

a = c3 =
[2Γ3
3
,
−Γ3
3
,
−Γ3
3

]

a

c1

c2

c3

b

Transition between F and G

Figure 5.43: Between regions F and G in figure 5.13 is the polytope with weights
Γ1 = −Γ3 that is the Transition Polytope between polytope F and polytope G.
Vertices a and c2 coincide on the λ2 = λ3 wall of the Weyl chamber. Vertex c2
has also been reflected along the λ1 = λ2 wall of the positive Weyl chamber.
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The Third Category of Transition Polytopes

For the action with weighting Γi = 0 the image of the momentum map is equal

to that of the SU(3) action on a double copy of CP2 and the polytopes are

those described in theorem 5.3. We will construct a theorem to descibe, not the

momentum map of the action with Γi = 0, but for which the momentum map of

the SU(3) action on CP2 ×CP2 ×CP2 would match that of the momentum map

of the SU(3) action on CP2×CP2 which we name the restricted momentum map:

Theorem 5.7.2. For Lie group G acting on manifold (M,ω) with J : M →
g∗. Let X be an invariant symplectic submanifold of M. The momentum map

restricted to this submanifold is J|X = JX : X → g∗ where for x ∈ X JX(x) = J(x).
Therefore JX is the momentum map for G acting on X.

Proof. The symplectic form is:

〈dJX(x), ξ〉 = ω(ξX(x), v) (5.8)

therefore ξX(x) ∈ g∗ and ξ ∈ g. The structure of ω is pre-symplectic. For

momentum map

J(z1, z2, z3) =
∑
j

Γjzj ⊗ z̄j −
1

3
(
∑
j

Γj)I (5.9)

if we choose the invariant symplectic submanifold of CP2 to be X1 = {(z1, z2, z3) ∈
(CP2)3 | zi = 0} which is SU(3) invariant then

JX1(z2, z3) = J(z1, z2, z3) (5.10)

= Γ2z2 ⊗ z̄2 + Γ3z3 ⊗ z̄3 −
1

3
(
∑
j

Γj)I (5.11)

So

(X1,ω) = (CP2, Γ2ω0)× (CP2, Γ3ω0) (5.12)

Another example is X23 = {(z1, z2, z3) ∈ (CP2)3 | z2 = z3} which is symplectic

provided Γ2 + Γ3 6= 0 and SU(3) invariant. Then

JX23(z1, z2) = J(z1, z2, z3) (5.13)

= Γ1z1 ⊗ z̄1 + (Γ2 + Γ3)z2 ⊗ z̄2 −
1

3
(
∑
j

Γj)I (5.14)
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So (X23,ω) = (CP2, Γ1ω0)× (CP2, (Γ2 + Γ3)ω0).



Chapter 6

The Definite and Indefinite Vertices of the

Momentum Polytopes of the SU(3)

Action on CP2 × CP2 × CP2 and the

Reduced Space at the Definite Vertex

Globally the gradient of the edges of the momentum polytopes are determined

by the bifurcation lemma and the Weyl group reflections at the walls of the

Weyl chamber, as shown in previous sections. However the direction of the edge

of a polytope from its vertex can be described more locally by the quadratic

momentum map on the symplectic slice, N1.

Theorem 6.0.3. A definite vertex of the momentum polytope corresponds to spe-

cific values for µ = J(x) and provides definite values for the quadratic momentum

map on the symplectic slice, and the reduced space is isomorphic to the 2-sphere,

J−1N1(µ)/T
2 ' S2. (6.1)

for those values of µ. An indefinite vertex does not produce definite values for

the momentum map on the symplectic slice.
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Proof. If we take the second differential of the momentum map,

J(z) = Γ
( 1
|z|2
z⊗ z̄− 1

3
I
)

J̈(z) = Γ
( 1
|z|2
z⊗ z̄− 1

3
I
)··

= Γ
1

|z|2

(
z̈⊗ z̄+ 2ż⊗ ˙̄z+ z⊗ ¨̄z

)
For normalised z, |z| = 1 therefore,

J̈(z) = Γ
(
z̈⊗ z̄+ 2ż⊗ ˙̄z+ z⊗ ¨̄z

)
(6.2)

For example J̈(p) at p = [p1 : p2 : p3] = e1 = [1 : 0 : 0] and ṗ = [0 : q : r]

J̈[1:0:0] = Γ

p̈
1 + ¨̄p1 ¨̄p2 ¨̄p3

p̈2 2|q|2 2qr̄

p̈3 2q̄r 2|r|2

 (6.3)

Now for J(z1, z2, z3) where z1 = e2 = [0 : 1 : 0] and z2 = z3 = e1 and zi = [z1i : z
2
i :

z3i ] their differentials are ż1 = [u1, 0, v1] and żi = [0, ui, vi] for i = 2, 3

J̈(z1) = Γ1

2|u1|
2 z̈11 2u1v̄1

¨̄z11 z̈21 + ¨̄z21 ¨̄z31
2ū1v1 z̈31 2|v1|

2

 (6.4)

Similarly,

J̈(zi) = Γi

z̈
1
i + ¨̄z1i ¨̄z2i ¨̄z3i
z̈2i 2|ui|

2 2uiv̄i

z̈3i 2ūivi 2|vi|
2

 for i = 2, 3 (6.5)

Let’s consider the projection π : su(3)→ t2 for t2 ⊂ su(3), in other words a map

from an su(3) matrix to its diagonal elements, and apply it to the momentum

map. Therefore

π ◦ J̈(e2, e1, e1) = Diag[̈J(e2, e1, e1)] = [2Γ1|u1|
2 + Γ2(z̈

1
2 + ¨̄z12) + Γ3(z̈

1
3 + ¨̄z13),

Γ1(z̈
2
1 + ¨̄z21) + 2Γ2|u2|

2 + 2Γ3|u3|
2,

2Γ1|v1|
2 + 2Γ2|v2|

2 + 2Γ3|v3|
2] (6.6)
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Let’s recall (section 2.3.2) that the Hopf map maps a (2n+1)-sphere to CPn,

therefore CP2 coordinates satisfy the spherical equation,

|z11|
2 + |z21|

2 + |z31|
2 = 1

|z12|
2 + |z22|

2 + |z32|
2 = 1

|z13|
2 + |z23|

2 + |z33|
2 = 1

which when solved for z1 = e2 = [0 : 1 : 0] and z2 = z3 = e1 and ż1 = [u1, 0, v1]

and żi = [0, ui, vi] for i = 2, 3 give,

z̈21 + ¨̄z21 = −2|u1|
2 − 2|v1|

2

z̈12 + ¨̄z12 = −2|u2|
2 − 2|v2|

2

z̈13 + ¨̄z13 = −2|u3|
2 − 2|v3|

2

Therefore

Diag[̈J(e2, e1, e1)] = 2[Γ1|u1|
2 − Γ2(|u2|

2 + |v2|
2) − Γ3(|u3|

2 + |v3|
2),

−Γ1(|u1|
2 + |v1|

2) + Γ2|u2|
2 + Γ3|u3|

2,

Γ1|v1|
2 + Γ2|v2|

2 + Γ3|v3|
2]. (6.7)

Lemma 6.0.4. The restriction of the quadratic form d2hξ(p), where p is a rel-

ative equilibria and ξ ∈ g is a group velocity, to the kernel equations of the first

derivative of the momentum map is a well-defined quadratic form on the symplec-

tic slice N1.

Now the momentum map on the symplectic slice N1, JN1 , is the second differ-

ential of the momentum map restricted to Kernel(DJ).

To find Kernel(DJ) we must first calculate DJ:

J̇(zi) = Γi(żi ⊗ z̄i + zi ⊗ ˙̄zi) (6.8)

and

J̇(z1, z2, z3) =

 0 Γ1u1 + Γ2ū2 + Γ3ū3 Γ2v̄2 + Γ3v̄3

Γ1ū1 + Γ2u2 + Γ3u3 0 Γ1v̄1

Γ2v2 + Γ3v3 Γ1v1 0

 (6.9)
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therefore

the Kernel of dJ(z1, z2, z3) =


Γ1ū1 + Γ2u2 + Γ3u3 = 0

Γ2v2 + Γ3v3 = 0

Γ1v1 = 0

so that

|u1|
2 =

(Γ2
Γ1

)2
|u2|

2 +
Γ2Γ3

Γ 21
(ū2u3 + u2ū3) +

(Γ3
Γ1

)2
|u3|

2

|v3|
2 =

(Γ2
Γ3

)2
|v2|

2

v1 = 0

If we substitute this into (6.7) and u2 = x2 + iy2 and u3 = x3 + iy3 we have that

Diag [̈J(e2, e1, e1)]
∣∣∣
Ker DJ

= JN1 =

=
[
(x22 + y

2
2)
(Γ 22
Γ1

− Γ2

)
+ (x23 + y

2
3)
(Γ 23
Γ1

− Γ3

)
+
Γ2Γ3

Γ1
(2x2x3 + 2y2y3) − |v2|

2
(Γ 22
Γ3

+ Γ2

)
,

−(x22 + y
2
2)
(Γ 22
Γ1

− Γ2

)
− (x23 + y

2
3)
(Γ 23
Γ1

− Γ3

)
−
Γ2Γ3

Γ1
(2x2x3 + 2y2y3),

|v2|
2
(Γ 22
Γ3

+ Γ2

)]
If we complete the square in the fashion,

(Γ 22
Γ1

− Γ2

)
x22 + 2

Γ2Γ3

Γ1
x2x3 +

(Γ 23
Γ1

− Γ3

)
x23 =

(Γ 22
Γ1

− Γ2

)
(x2 +

Γ3

Γ2 − Γ1
x3)

2 +
Γ2Γ3

Γ1 − Γ2
x23

similarly

(Γ 22
Γ1

− Γ2

)
y22+ 2

Γ2Γ3

Γ1
y2y3+

(Γ 23
Γ1

− Γ3

)
y23 =

(Γ 22
Γ1

− Γ2

)
(y2+

Γ3

Γ2 − Γ1
y3)

2+
Γ2Γ3

Γ1 − Γ2
y23

Let’s rewrite x ′2 = x2 +
Γ3

Γ2−Γ1
x3 and y ′2 = y2 +

Γ3
Γ2−Γ1

y3 therefore

JN1 =
[(Γ 22
Γ1

− Γ2

)
(x ′22 + y ′22 ) +

Γ2Γ3

Γ1 − Γ2
(x23 + y

2
3) − |v2|

2
(Γ 22
Γ3

+ Γ2

)
,

−
(Γ 22
Γ1

− Γ2

)
(x ′22 + y ′22 ) −

Γ2Γ3

Γ1 − Γ2
(x23 + y

2
3),

−|v2|
2
(
−
Γ 22
Γ3

− Γ2

)]
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Therefore the first term of the diagonal is

(Γ 22
Γ1

− Γ2

)
(x ′22 + y ′22 ) +

Γ2Γ3

Γ1 − Γ2
(x23 + y

2
3) − |v2|

2
(Γ 22
Γ3

+ Γ2

)
, (6.10)

the second term of the diagonal is

−
(Γ 22
Γ1

− Γ2

)
(x ′22 + y ′22 ) −

Γ2Γ3

Γ1 − Γ2
(x23 + y

2
3), (6.11)

and the third term of the diagonal is

−|v2|
2
(
−
Γ 22
Γ3

− Γ2

)
. (6.12)

For the second term of the diagonal, equation (6.11), the coefficients of the

quadratic terms
(
Γ22
Γ1
− Γ2

)
and Γ2Γ3

Γ1−Γ2
as shown in (6.11) must either all be positive

definite or all be negative definite for this to describe the 3-sphere. The third

term of the diagonal, (6.12), describes the 1-sphere.

Collectively the second and third terms of the diagonal describe S3 × S1 if and

only if all of the coefficients in (6.11) and (6.12) are all positive definite or all

negative definite. In other words the coefficients
(
Γ22
Γ1
− Γ2

)
and Γ2Γ3

Γ1−Γ2
as shown in

(6.11) and the coefficient −
(
Γ22
Γ3
+Γ2

)
as shown in (6.12) must either all be positive

definite for the particular Γi or must all be negative definite for the particular Γi

for this diagonal to describe S3 × S1. Therefore,

J−1N1(µ)/T
2 ' S3 × S1/S1 × S1 ' S2 (6.13)

where the values of µ correspond to the definite vertices of the momentum poly-

topes. Otherwise if these coefficients don’t satisfy these conditions i.e. they are

neither all positive definite nor negative definite, then they are collectively indef-

inite.

Therefore one must compare these coefficients
(
Γ22
Γ1

− Γ2

)
, Γ2Γ3
Γ1−Γ2

and −
(
Γ22
Γ3

+ Γ2

)
for each choice of Γi as distinguished for each polytope.

Here we will demonstrate the above conclusions concerning the definiteness of

each vertex and what that means in the formation of the momentum polytopes

using an example momentum polytope.
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a

c1

c2

c3

b

Figure 6.1: An example from the nine different categories of mometum polytopes
for which Γ1 = −5.5, Γ2 = 27.5 and Γ3 = 8.25.

The polytope in figure 6.1 has been constructed with Γ1 = −5.5, Γ2 = 27.5

and Γ3 = 8.25

Equation (6.10) is the hessian for the c1 vertex. And indeed for these values

of Γi:(Γ 22
Γ1

− Γ2

)
= −165,

Γ2Γ3

Γ1 − Γ2
= −6.875 and −

(Γ 22
Γ3

+ Γ2

)
= −119.1667 (6.14)

these are all negative, so it is negative definite. Therefore as can be seen in figure

6.1 c1 is a negative definite vertex. The weights leading from this vertex are only

in the negative root directions: this is in reference to the α1, α2, α3, −α1, −α2
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and −α3 root directions as introduced in section 2.1:

α1−α1

α3

−α3

α2

−α2

Figure 6.2: The α1, α2, α3, −α1, −α2 and −α3 root directions as introduced in
section 2.1.

This means that for vertex c1 the weights leading from this vertex travel along

the −α1, −α2 and −α3 root directions.

If we repeat all of the above calculations however for vertex c2, the coefficients

are indefinite: they are neither all positive or all negative but a mix of both for

the Γi specified for this example polytope. Indeed in figure 6.1 the vertex c2 lies

along the edge that joins vertex a to vertex c3 and indeed it is not a definite

vertex but what we will name an indefinite vertex. The weights leading from the

c2 vertex point travel along the α2, −α2 and α1 root directions.

Again if we repeat all of the above calculations however for vertex c3, the

coefficients are again different: they are positive definite. Therefore in figure 6.1

the vertex c3 is a positive definite vertex. The weights leading from this vertex

travel in the positive root directions. In figure 6.1 the weights leading from the

c3 vertex travel along the α2 and α3 root directions.

For example, let us plot the five different spectrum values of the polytope in

figure 6.1:
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a

c1

c2

c3

b

Figure 6.3: The spectrum values a, c1, c2, c3, b for the momentum polytope in
figure 6.1 with Γ1 = −5.5, Γ2 = 27.5 and Γ3 = 8.25.

As we’ve established, points a, b and c2 are indefinite(the weights leading

from these points are only in any of the root directions αi and −αi), however

c1 is negative definite (the weights leading from c1 are only in the negative root

directions −α1, −α2 and −α3) and c3 is positive definite (the weights leading

from c3 are only in the positive root directions α1, α2 and α3). Let us include

these root directions as calculated from each of the spectrum points:
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a

c1

c2

c3

b

Figure 6.4: The positive and negative definite and indefinite certices a, c1, c2,
c3, b for the momentum polytope in figure 6.1 with Γ1 = −5.5, Γ2 = 27.5 and
Γ3 = 8.25 and their corresponding root directions according to calculations.

Following these root directions from each spectrum point, this is the con-

struction of potential edges leading from the vertices of the polytope. When

two potential edges leading from seperate vertices, but in the same and opposite

directions, meet this is when a potential edge becomes an actual edge of the poly-

tope. For example, let us consider vertices c1 and b. As explained above, vertex

c1 is a negative definite vertex, therefore the roots travel from it in the −α1,

−α2 and −α3 directions. This means that the edges of the momentum polytope

connecting vertex c1 to the rest of the spectrum points will be in the directions

−α1, −α2 or −α3. The indefinite vertex b has roots travelling from it in all the
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directions pertained to an A2 type Lie algebra. And this means that the edges of

the momentum polytope connecting vertex b to the rest of the spectrum points

will be in any of the αi and −αi root directions.

As we can see from figure 6.4 the potential edge leading from vertex c1 in the

−α2 direction will coincide with only one other potential edge: the potential edge

leading from vertex b in the α2 direction. These potential edges will meet and

merge creating a clear-cut edge to the polytope leading from definite vertex c1 to

indefinite vertex b. As shown in figure 6.5

a

c1

c2

c3

b

Figure 6.5: The potential edge leading from vertex c1 in the −α2 direction co-
incides with the potential edge leading from vertex b in the α2 direction. These
potential edges meet and merge creating a clear-cut edge to the polytope leading
from definite vertex c1 to indefinite vertex b. This is the only edge that ex-
ists connecting vertices c1 and b satisfying the convexity property of momentum
polytopes, the bifurcation lemma and information from the quadratic mometum
map on the symplectic slice.
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Let us follow suit for the rest of the vertices: Between vertex a and c1, the

only potential edges that will coincide, merge and unite to form an actual edge of

the polytope connecting these two vertices, as required according to the convexity

properties of the mometum polytope, will be the potential edge travelling from

indefinite vertex a in the α3 direction and the potential edge travelling from

definite vertex c1 in the −α3 direction. Between indefinite vertices a and c2 the

only potential edges that will coincide, merge and unite to form an actual edge

of the polytope connecting these two vertices will be the potential edge travelling

from indefinite vertex a in the −α2 direction and the potential edges travelling

from indefinite vertex c2 in the α2 direction. Between indefinite vertex c2 and

positive definite vertex c3 the potential edges that coincide to form an actual edge

are the potential edge travelling from the indefinite vertex c2 in the −α2 direction

and the potential edge travelling from the positive definite vertex c3 in the equal

and opposite direction, namely in the α2 weight direction. The edge connecting

postive definite vertex c3 to indefinite vertex b is that travelling in the α3 and

−α3 from each vertex, respectively. These edges formed from potential edges are

marked out in figure 6.6



157

a

c1

c2

c3

b

Figure 6.6: Here we can see all the edges connecting vertices a,c1,c2,c3,b to each
other according to the opposite and equal weight directions travelling from each
vertex that meet to form a polytope fulfilling convexity requirements.

There is an internal edge between indefinite vertices c2 and b. This is formed

from the potential edges leading from these vertices in the α1 and −α1 directions,
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respectively.

a

c1

c2

c3

b

Figure 6.7: Between indefinite vertices c2 and b, the only potential edges that
will coincide, merge and unite to form the internal edge (depicted here by the
dotted line) of the polytope connecting these two vertices, as required according
to the convexity properties of the mometum polytope, will be the potential edge
travelling from indefinite vertex c2 in the α1 direction and the potential edge
travelling from indefinite vertex b in the −α1 direction.

Finally, we have the convex structure for the momentum polytope for Γ1 =

−5.5, Γ2 = 27.5 and Γ3 = 8.25,
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a

c1

c2

c3

b

Figure 6.8: Here we have the final convex skeleton (black lines) for the unique
momentum polytope for Γ1 = −5.5, Γ2 = 27.5 and Γ3 = 8.25 according to all its
external (solid black lines) and internal edge (dotted black line). The final convex
momentum polytope for these weights is shown in figure 6.1.



Chapter 7

The Dynamics of the SU(3) Action on

Products of CP2

7.1 Generalised Vortex Dynamics

Hermann Ludwig Ferdinand Helmholtz (1821-1894) wrote a seminal paper nearly

150 years ago in which he “initiated” vortex dynamics theory. This is especially

peculiar because Helmholtz was a professor of physiology and anatomy at the

time. He established three laws of vortex motion which one will find in textbooks

in usually practically exactly the same form.

For N point vortices α = 1, . . .N with strength Γα (constant scalars) interact-

ing on unbounded xy-plane with respective positions (xα, yα) we have,

dxα

dt
= −

1

2π

N∑ ′

β=1

Γβ
yα − yβ
l2ab

,

dyα

dt
= −

1

2π

N∑ ′

β=1

Γβ
xα − xβ
l2ab

, (7.1)

are the 2N first order, nonlinear ODEs where α = 1, 2, . . .N, and

lαβ =
√

(xα − xβ)2 + (yα − yβ)2

is the distance between vortices α and β and the omission of the singular term β =

α is indicated by the prime on the summation. and so according to Helmholtz,

the point vortices interact and their interaction develops in a way that is only

160
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dependent on their positions and strengths.

We can rewrite (7.1) as an ODE system for N complex coordinates zα =

xα + iyα

dz∗α
dt

=
1

2πi

N∑ ′

β=1

Γβ

zα − zβ
, α = 1, 2, . . . ,N

where the asterisk denotes complex conjugation.

Kirchoff showed that the system (7.1) may be rewritten in Hamiltonian form,

Γα
dxα

dt
=
∂H

∂yα
, Γα

dyα

dt
= −

∂H

∂xα
, α = 1, 2, . . . ,N

that is conserved during the motion of the Hamiltonian.

H = −
1

4π

N∑ ′

α,β=1

ΓαΓβloglαβ,

And this Hamiltonian isn’t governed by potential and kinetic energies.

The system (7.1) has three independent first integrals: Q =
∑N

α=1 Γαxα, P =∑N
α=1 Γαyα and I =

∑N
α=1 Γα(x

2
α + y

2
α) where H, I and P2 +Q2 are in involution

for N = 2 irregardless of the vortex strength values. And for N = 3 this system is

integrable irregardless of vortex strength values according to Louiville’s analytical

dynamics theorem.

Gröbli’s 1877 is an extensive study of the integrability of different three-vortex

systems. Novikov and Aref revived interest in Gröbli and Synge’s early work

on the three-vortex problem again in the 1970s. Vortices were catapulted into

mainstream modern science research when chaos theory was shown to model

N = 4 vortex systems.

Here we reiterate the fact that we implement generalised point vortex system

dynamics and not fluid vortex dynamics systems as demonstrated in the sections

below.

7.1.1 Spherical Vortices

First, vortex dynamics on S2 with G = SO(3). S2 is a coadjoint orbit of G, and

we consider X̄ = S2 × . . .× S2 (N copies), with symplectic form

ω = Γ1ω0 ⊕ · · · ⊕ ΓNωo,
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where ω0 is some fixed choice of invariant symplectic form on S2, and the γj are

non-zero real numbers (called vortex strengths). The Hamiltonian on X̄ is

H(x1, . . . , xN) = −
∑
j<k

ΓjΓklog(‖xj − xk‖2).

This is not defined on the large diagonal (where some xj = xk), so the phase space

is X = X̄ \ ∆ where ∆ is the large diagonal. (The log term is (essentially) the

Green’s function for the Laplacian on the sphere. Note the argument of log is (the

square of) the Euclidean distance between the points, rather than the spherical

distance. This is just what the Green’s function for the Laplacian happens to

be.)

The dynamics is then determined by these geometric ingredients: in particular

by the choice of the Γj (equivalently, by the choice of the symplectic form on each

copy of S2).

7.1.2 Our Generalisation

Repeat above with any symplectic manifold. Let (S,ω0) be a symplectic manifold

with an action of a Lie group G. Let Γ1, . . . , ΓN be non-zero real numbers. The

complete phase space for N point vortices on S is X̄ = S × . . . × S (N copies),

with symplectic form

ω = Γ1ω0 ⊕ · · · ΓNω0.

The Hamiltonian will be a function of the form

H(x1, . . . , xN) = −
∑
j<k

ΓjΓkh(rjk)

where rjk is a distance between xj and xk, and h(r) is a smooth function of r,

possibly not defined when r = 0.

If G is compact and acts transitively on S then S is necessarily a coadjoint

orbit of G (Theorem of Guillemin-Sternberg).

Since the action is Hamiltonian, then there exists a momentum map. We have

established and investigated the momentum map for G = SU(3) with coadjoint

orbit CP2. Noether’s theorem states that the components of the momentum map

are preserved by the dynamics.
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7.2 Using Symplectic Geometry to Model Systems of Vor-

tices on CP2

Recall that SU(3) has three types of coadjoint orbits: the Flag manifold F(2, 1),

the complex projective plane CP2 and the single point. We are interested in

SU(3) actions on vortices on the complex projective plane. Therefore the results

in the previous chapters can be used to investigate vortex systems on CP2 and

the SU(3) actions on them, with particular attention to 2- and 3-vortex systems.

Let X̄ = CP2 × . . . × CP2 be the product of N copies of the complex projective

plane in C3.

7.2.1 The SU(3) action on two vortices on phase space X̄ = CP2 ×
CP2

For the 2-vortex system Γ1 is the vortex strength of one of the point vortices and

Γ2 is the vortex strength of the second point vortex, each with coordinates z1

and z2 respectively. The matrix subgroups of SU(3) derived in chapter 3 that

fix two points in CP2 × CP2 (isotropy subgroups) are the matrix subgroups that

fix two vortices when their coordinates are perpendicular, parallel and on generic

coordinates (neither parallel nor perpendicular to each other) with respect to

one another on respective complex projective planes. This defines the range of

distances between the coordinates of 2 vortices on the complex projective plane.

The action of SU(3) on CP2 × CP2 is a cohomogeneity 1 action therefore there

are three isotropy subgroups fixing three distinct fixed point sets for the vortex

system. The matrix group U(2) ⊂ SU(3) fixes two vortices that are parallel to

each other; the matrix group T2 ⊂ SU(3) is the istoropy subgroup that fixes

two vortices perpendicular to each other; the matrix group T1 ⊂ SU(3) is the

isotropy subgroup that fixes two generic point vortices that are neither parallel or

perpendicular to each other. Section 3.2 provides the calculations for the isotropy

subgroups of SU(3) acting on CP2 × CP2.
For vortices on the orbits, conservation of momentum means each vortex cannot

move from one orbit to another, and the momentum map will only move them in

particular directions on that orbit.

Without deriving a Hamiltonian, the dynamics and geometry of an action can

be investigated via its momentum map (see section 2.3.2.1 and sections 4 and



164 CHAPTER 7. DYNAMICS

5): the momentum map, J, for the SU(3) action on two vortices on phase space

X̄ = CP2 × CP2:
J : CP2 × CP2 → su(3)∗ (7.2)

where su(3) is the dual to the Lie algebra of SU(3) (the set of traceless (anti-)

Hermitian 3 × 3 matrices). By lemma 2.3.1 considering several vortices at once

is simply the addition of the momentum map of the action on each vortex. The

intersection J ∩ t∗+ of the image of the momentum map with the positive Weyl

chamber t∗+ in t∗ is the convex polytope also known as the Moment Polytope

or Momentum Polytope. Section 2.1 introduced Weyl Chambers with particular

attention to that for SU(3), information for this is derived mainly from Frank

Adams [2] and Raoul Bott’s [20] respective lecture series. Weyl chambers are es-

sential when considering vortices on SU(n) as the trajectory of their momentum

map depends on their initial position and scope of movement on the root diagram

as explained via the moment polytope. Sections 4 and 5 include the definitions of

momentum maps and moment polytopes which are a type of convex polyhedron

that describe the shape of the trajectory of the momentum map as well as the

direction.

The momentum polytope coincides with the image of the orbit momentum map:

section 2.3.1 provides a narrow description of the Orbit-Reduction Method and

complete integrability.

The momentum polytopes as shown in section 5.3 classify the different configura-

tions of the 2 vortex system according to the ratios between the vortex strengths.

7.2.2 The SU(3) action on three vortices on phase space X̄ = CP2×
CP2 × CP2

The 3-vortex system follows the same methodology as that for the 2-vortex sys-

tem, however as shown in section 3 and 5 there are 5 different fixed point sets

here. In this case different moment polytopes arise according to the different

fixed vortex strengths Γ1, Γ2 and Γ3 assigned to each vortex. Section 2.6 gives a

proof of the bifurcation lemma which provides a rank-nullity correspondence that

shows how the edges of the polytopes that connect the fixed points of subgroups

of SU(3) acting on CP2 × CP2 × CP2 are constructed as shown in section 5.5.

The nine different polytopes that result from the different nontrivial Γ1, Γ2 and Γ3

vortex strength combinations are shown in section 2.5 as well as the transitions
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between the nine different polytopes. Chapters 2 outlined mathematical condi-

tions such as the nondegeneracy of the momentum map.

Chapter 4 explained some properties of the momentum map explained via the

weighted roots of su(3) how the edges of the polytopes are constructed locally

from a fixed point. And theorem 5.7.2 showed some of the transitions from a

2-vortex polytope to a 3-vortex polytope.

We can apply the results in section to write the relative equilibria of the

2-vortex system and further steps beyond this point.

7.3 The Space of Allowed Velocity Vectors R0

For ξ ∈ g, the associated vector field on P is denoted by ξP and, given a Hamilto-

nian functionH : P → R, the associated vector field is denoted by XH. Equivariant

momentum map is defined by the differential condition,

〈dΦx(v), ξ〉 = ω(Xξ, v) ∀ξ ∈ g, ∀v ∈ TxP (7.3)

If H : P → R is an invariant Hamiltonian function, it passes down to a function

H̄ : P/G → R, whose restriction to the reduced space Pµ is denoted Hµ. If Pµ is

smooth , a relative equilibrium xµ ∈ Pµ in non-degenerate if d2Hµ(xµ) is a non-

degenerate quadratic form; it is regular if the velocity ξ of the relative equilibrium

is a regular element of g. (The velocity is defined by XH(x) = Xξ(x) for some

point p of the relative equilibrium; this velocity is well-defined modulo the adjoint

action, since by equivariance XH(g · x) = XAdg(ξ)(g · x).) And for simplicity we

assume throughout that the Hamiltonian H is such that the associated vector

field XH is complete.

Proposition 7.3.1. Let x ∈ P be a relative equilibrium for the Hamiltonian

system H, and suppose that XH(x) = Xξ(x) (so ξ is well-defined modulo gx).

Then, viewing dHx as an element of N∗0 ' (gµ/gx) as described above, we have

dHx = [ξ] ∈ (gµ/gx)
Gx . (7.4)

Proof. The isomorphism is defined via the symplectic form:

[ξ] ∈ gµ/gx 7→ [z 7→ ω(Xξ(x), z)] ∈ N∗0.
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Since XH(x) = Xξ(x) is follows that for n ∈ N0, dHx(z) = ω(XH(x), z) =

ω(Xξ(x), z) as required.

We write K < G to mean K is a closed subgroup of G. The fixed point set of

a subgroup K < G is

Fix(K,P) = {x ∈ P | g · x = x, ∀g ∈ K}

it is a closed submanifold of P . If K is compact and formed of symplectic sym-

metries, then Fix(K,P) is invariant under the flow of the dynamical system. If in

addition K is compact, then Fix(K,P) is a Hamiltonian subsystem with Hamil-

tonian given by the restriction of H to Fix(K,P).

How does one locate relative equilibria?

From above, relative equilibria are critical points of the Hamiltonian restricted

to the level sets of the momentum map, so results on critical point of G-invariant

functions are of particular interest. Let G be a Lie group and H : P → R
a G-invariant function. Assume that G acts properly on P . The Principle of

Symmetric Criticality states that if the directional derivatives dHx(u) vanish for

all directions u at x tangent to Fix(K,P), then directional derivatives in directions

transverse to Fix(K,P) also vanish. In particular any isolated point of Fix(K,P)
is a critical point of H. Therefore

ξP(x) = XH(x) ∈ (gµ/gx)
Gx = Fix(Gx, gµ/gx)

since by equivariance

φt(g · X) = g · φt(X)

i.e. x ∈ Fix(κ)⇒ φt(x) ∈ Fix(κ)

In other words,

Theorem 7.3.2. The flow φt leaves Fix(K,P) invariant, meaning that if x ∈Fix(K,P)
then φt(x) ∈Fix(K,P). This is known as the conservation of symmetry.

Therefore we will introduce the following definition:
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Definition 7.3.3. At x ∈ P ,

R0 ⊂ TxG (7.5)

is the subset of tangent space of the allowed velocity vectors, ξ, of x and is an

RE for which dHx = [ξ] ∈ R0. Therefore

R0 ' (gµ/gx)
Gx (7.6)

where N∗0 ' (gµ/gx).

Using this definition we will show that

Theorem 7.3.4. For the SU(3) action on two vortices on CP2, at a generic

configuration (when the vortices are neither parallel or perpendicular),

R0 ' R (7.7)

and this is true for every respective vortex strength.

Proof. We look at the Relative Equilibrium for every configuration, generic and

otherwise, on CP2×CP2, specifically the velocity space R0 of their relative motion

on CP2 × CP2 for the sake of being meticulous:

Γ1 = Γ2 = Γ

When parallel, x = (z1, z2) = ([1 : 0 : 0], [1 : 0 : 0]) (for example), Gx = U(2) and

Gµ = U(2)

J(x) = µ =
2Γ

3

2 0 0

0 −1 0

0 0 −1



When the vortices are perpendicular, x = (z1, z2) = ([1 : 0 : 0], [0 : 1 : 0]) (for

example), Gx = T2 and Gµ = U(2):

J(x) = µ =
Γ

3

1 0 0

0 1 0

0 0 −2



At niether parallel or perpendicular, x = (z1, z2) = ([c : d : 0], [c : −d : 0]) (for
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example) , Gx = T1 and Gµ = T2:

J(x) = µ = 2Γ


( |c|2

|c|2+|d|2
− 1/3) 0 0

0 ( |d|2

|c|2+|d|2
− 1/3) 0

0 0 −1/3



Γ1 = −Γ2 = Γ

At parallel, Gx = U(2) and Gµ = SU(3):

J(x) = µ =
2Γ

3

0 0 0

0 0 0

0 0 0



However, identically to Γ1 = Γ2 = Γ when perpendicular, Gx = T2, Gµ = T2 and

at neither parallel or perpendicular Gx = T1, Gµ = T2.
For other ratios between Γ1 and Γ2

For Γ1 > Γ2 > 0, Γ1 > 0 > Γ2 where |Γ2| > |Γ1|, 0 > Γ1 > Γ2 and Γ2 > 0 > Γ1

where |Γ2| > |Γ1|: at parallel, Gx = U(2), Gµ = U(2). At perpendicular Gx = T2,
Gµ = T2. And at neither parallel or perpendicular Gx = T1, Gµ = T2.

Γ1 = Γ2

parallel: Gx = U(2) = Gµ R0 ' (u(2)/u(2))U(2) = {0}

perpendicular: Gx = T2, Gµ = U(2) R0 ' (u(2)/t2)T
2
= {0}

inbetween: Gx = T1, Gµ = T2 R0 ' (t2/t1)T
1
= R

Γ1 = −Γ2 = Γ

parallel: Gx = U(2), Gµ = SU(3) R0 ' (su(3)/u(2))U(2) = {0}

perpendicular: Gx = T2 = Gµ = U(2) R0 ' (t2/t2)T
2
= {0}

inbetween: Gx = T1, Gµ = SU(3) R0 ' (t2/t1)T
1
= R

Otherwise
parallel&perpendicular: Gx = Gµ R0 ' (gµ/gx)

Gx = {0}

inbetween: Gx = T1, Gµ = T2 R0 ' (t2/t1)T
1
= R

• (su(3)/t2)T
2
= {0}

• (su(3)/u(2))U(2) ⊂ (su(3)/t2)T
2
= {0}

• (t2/t1)T
1 ' (S1)S

1 ' R



Chapter 8

Further Proposed Research

8.1 The Littlewood-Richardson Polytope

This question arose from conversations with Professor Gert Heckman:

The vertices of the momentum polytope may be split up into the Cartan vertex

which is the highest vertex of the polytope, and the Parthasarathy-Ranga Rao-

Varadarajan vertex which is the lowest vertex of the polytope. By this notation

we can endeavour to describe the finite algorithm to describe the Littlewood-

Richardson polytope (or Horn polytope) which provides an explicit description of

a polytope. For our case of momentum polytopes which provide non-trivial solu-

tions, this will help to further understand the general problem and even further

to understand the Littlewood-Richardson polytopes for the actions of groups of

rank greater than 2. A useful paper with good references for this problem is [38].

We have already confirmed that the highest vertex of each of our momentum

polytopes and the lowest vertex of each of our momentum polytopes satisfy the

definitions of the Cartan vertex and Parthasarathy-Ranga Rao-Varadarajan ver-

tex, respectively. And we have made some first steps for a proof for this.

8.2 Hamiltonian

The interaction of vortices on the sphere has been researched extensively by many

including Paul Newton and James Montaldi with some extensions including, for

example, point vortices on the hyperbolic plane for its non-compact symmetry

properties. The dynamics of a system of vortices is usually determined by the

Hamiltonian: in particular by the choice of the Γi. The Hamiltonian of a system

169
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of vortices on the sphere is described by the Green’s function for the Laplacian

of the Euclidean coordinates on the sphere.

Current work on the symmetric square of quaternionic and complex projective

spaces [19] sheds some light on a distance metric that can be used to formulate a

Hamiltonian for the system of vortices on Πni=1CP2. Once a possible Hamiltonian

has been established we may assess the critical points and stability. We are

establishing a possible Hamiltonian using the chordal distance between two points

in projective spaces that defines a metric that matches the Fubini-Study metric

form from [24].

8.3 Further Generalisation

The dynamics of a system of vortices can also be determined by the choice of

the symplectic form on each copy of the manifold it is on. Therefore instead

of using scalar multiples of a given one symplectic form, we can investigate the

system of vortices that is governed by different symplectic forms with guidance

from Marsden and Weinstein’s paper [60].

8.4 Semi-Toric Systems

Recently at the Finite Dimensional Integrable Systems Conference in Barcelona

on July 2017 I attended a talk given by Joseph Palmer from Rutgers University

on New Constructions of Semi-Toric Systems and the results of his collabora-

tion with Yohann le Floch and Alvaro Pelayo [51]. This included constructing

coupled angular momentum systems according to some parameter that shifts the

semi-toric polytope and from identifying the corresponding singularity points.

Therefore this method can be used to construct a Hamiltonian from the Momen-

tum Map according to deformations of the polytope rather than independently

from the Momentum Map.
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