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Abstract 
We review the polymorphism of p-aminobenzoic acid (pABA), a model drug 
compound whose crystallisation and polymorphic behaviour has been extensively 
studied in recent years. Beyond the well-known and characterised α and β forms, 
pABA also crystallises as a γ polymorph, which is structurally similar to the α form. 
In addition we also compare the newly reported δ form, obtained by high pressure 
crystallisation and through compression of the α-form. A structural analysis and 
comparison of all of the forms is presented, the conditions by which each of them is 
obtained summarised. Crystal structure prediction calculations have also been carried 
out in order to probe the solid form energy landscape of this compound. The overall 
picture of the polymorphism of pABA, reveals, surprisingly, the rarity of the β form. 
 
1.Introduction 
In the field of organic solid-state chemistry the issue of polymorphism continues to be 

of enormous relevance from both scientific and commercial perspectives.1,2 Of 

particular fundamental importance are issues surrounding the relative nucleation3 and 

growth rates of crystal polymorphs and the use of crystal structure prediction4,5 to aid 

the discovery of new forms in support of commercial applications. In the latter 

context it is clearly of prime importance to make the link between prediction and 

experiment for systems which are already proven to be polymorphic.  

 

Here we draw attention to this issue with relation to p-aminobenzoic acid (pABA). 

Significant work covering crystal morphology,6,7 phase behaviour,8 nucleation9,10 and 

crystal growth kinetics11 has been reported over the last decade with reference to two 

polymorphic forms, α and β. These forms are related enantiotropically having a 

transition temperature of ~ 14 °C with β the stable form below this temperature and α 

stable above it.12 It is known that while solvent crystallisation of the β form is actually 
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rather difficult, unless water is used, the α polymorph is readily obtained from a range 

of solvents both above and below the transition temperature.8,13 In this context, we set 

out to review important information available on the polymorphism of pABA. Finally, 

we present crystal structure prediction (CSP) calculations for the system and analyse 

and discuss its crystal energy landscape. 

 

2. The crystal structures of pABA polymorphs. 
 The CSD contains 13 entries for pABA (AMBNAC – AMBNAC12). Of these, two 

structures contain no atomic coordinates (AMBNAC02 and AMBNAC03)14 and 

another three are repeats of existing refcodes with no atomic coordinates (ie. 

AMBNAC05 repeats AMBNAC04;8,15 AMBNAC10 and AMBNAC11 repeat 

AMBNAC07 and AMBNAC086 respectively). The remaining refcodes report only 3 

unique crystal structures of pABA: the α, β and γ polymorphs.  

 

Interestingly, given the subsequent apparent difficulties in preparing it, the first 

reported crystal structure dates from 1966 and corresponds to β-pABA (AMBNAC).16 

Following this Lai and Marsh (10) reported the structure of α-pABA in 196717 and 

noted the prevalence of twinning and disorder within these crystals originating in the 

randomness of secondary H-bonds (NH…O=C) between pABA dimers. Killean et 

al14  returned to this in AMBNAC03 reporting limited crystallographic data on a form 

I, which is almost certainly the α form, and two new forms (AMBNAC03) II and III 

both grown from dioxane. As pointed out later by Kuhnert-Brandstaetter and Grim18 

these latter forms are most likely solvates. Between 2005 and 2017 there were three 

new determinations of the β (AMBNAC05,15 AMBNAC08,6 AMBNAC1219) and α 

structures (AMBNAC06,20 AMBNAC07,6 AMBNAC1321). Of the latter it would 

appear that AMBNAC06 has its amine hydrogens incorrectly positioned so as to 

make the nitrogen trigonal, rather than the correct pyramidal. In 2014 Benali-Cherif et 

al22 reported a new noncentric polymorph, γ, having a dimer motif similar to α but 

differing slightly in its packing. Reported in the preceding companion paper to this 

review Ward et al provide details of a new polymorph, δ, produced under high 

pressure crystallisation conditions.23  
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Table 1. Summary of crystallographic information for the four polymorphs of pABA. 
Form CSD REFCODEs 

(Year, R factor) 
REFCODE 
(Temperature) 

Space 
Group 

Z’ Unit 
Cell 
Lengths 

Unit 
Cell 
Angles 

Packing 
Coefficient* 

α AMBNAC01 (1967, 7.0 %) 
AMBNAC06 (2007, 6.6 %) 
AMBNAC07 (2014, 5.2 %) 
AMBNAC13 (2017, 5.1 %) 

AMBNAC07 
(101 K) 

P21/n 2 a:18.562 
b:3.732 
c:18.568 

α:90.0 
β:93.9 
γ:90.0 
 

0.720 

β AMBNAC (1966, 17.0 %) 
AMBNAC04 (2005, 5.0 %) 
AMBNAC08 (2014, 5.7 %) 
AMBNAC12 (2015, 3.0 %) 

AMBNAC08 
(102 K) 

P21/n 1 a:6.243 
b:8.457 
c:12.365 

α:90.0 
β:100.2 
γ:90.0 
 

0.719 

γ AMBNAC09 (2014, 5.1 %) AMBNAC09 
(100 K) 

Pna21 2 a:26.995 
b:3.732 
c:12.673 

α:90.0 
β:90.0 
γ:90.0 

0.727 

δ Ward et al Companion paper23 
 (2018, 2.8 %)§ 

Ward et al§23 
(100 K) 

Pn 1 a:6.455 
b:4.674 
c:10.547 

α:90.0 
β:100.7 
γ:90.0 

0.746 

*As calculated in Mercury. 
§CCDC depostion numbers CCDC 1876686-1876690. Structure at 100 K = 1876689. 

 
These data are summarised in Table 1. It is worth making a note on nomenclature 

here - α and β have been variously referred to as I and IV and as discussed above II 

and III are redundant forms. The CSD refers to the noncentric polymorph as Form V. 

Given the extent to which α and β have been used in the literature we prefer to use 

these Greek symbols throughout hence the non-centric 2014 form is γ and the new 

form is δ.  

 
3. Computational Methods. 
CSD Searches, structure visualisation and comparison. Crystal structures of 

pABA were retrieved from the Cambridge Structural Database (vs. 5.39)24 using 

Conquest. Structures were then visualised in Mercury vs. 3.10.25 Polymorphic forms 

were compared using the Mercury Materials module and the COMPACK algorithm26 

with standard settings using a molecular cluster size of 20 molecules. PXRD 

similarity between polymorphs was calculated with the algorithm implemented in 

Mercury by van de Streek and Motherwell.27 

 
Crystal Structure Prediction (CSP).   
CSP calculations for pABA were carried out using the code CrystalPredictor (version 

2.3).28–30 We were able to sample the crystal packing of pABA efficiently by allowing 
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for molecular relaxation around the carboxylic acid group. Appropriately describing 

for molecular flexibility around the carboxylic acid group was very important for the 

generation of an accurate initial CSP landscape in pABA. The molecular model used 

for pABA as input to CrystalPredictor was optimised in the gas-phase at the M06 

level of theory with a 6-31G(d,p) basis set in Gaussian 0931 using tight optimization 

criteria. A local approximate model (LAM)30 for the conformational energy, 

molecular geometry and atomic ESP charges was derived to describe the molecular 

flexibility around the carboxylic acid group (Ph-COOH torsion) at the same level of 

theory. This LAM was then used for crystal structure generation and optimisation 

together with the Williams 99 forcefield (W99) for the description of exchange-

repulsion and dispersion interactions.32–34 

For the structure generation stage, two searches were performed with Z’=1 and Z’=2. 

These sampled, respectively, the 20 (Z’=1) and the 9 (Z’=2) most common space 

groups. 200 and 500k structural minimisations were run for the Z’=1 and 2 searches 

respectively. After the CrystalPredictor calculations were completed a final clustering 

of generated structures was carried out with the COMPACK algorithm.26 

 
Improved Lattice Energies: Atomic Multipoles. 
In order to refine the calculated lattice energies, the generated structures were 

minimised with an improved energy model consisting of the same W99 potential 

together with an improved model for electrostatics consisting of atomic multipoles. 

The electron density of the pABA molecule in each crystal structure was recalculated 

at the M06/6-31G** level of theory in a continuum dielectric environment with a 

dielectric constant of 2.0 (using a SMD continuum model).35 A distributed multipole 

analysis36,37 was then performed on the calculated density in order to derive atomic 

multipoles. Crystals were then minimized and energies calculated with the software 

DMACRYS (version 2.1).38 

 
Improved Lattice Energies: PBE-d. 
As a final step the lattice energies of the ten most stable crystal structures (together 

with all the experimental polymorphs) were recomputed with periodic density 

functional theory with van der Waals corrections. For this, the PBE functional39 was 

used together with PAW pseudopotentials40,41 and the Grimme's van der Waals 

corrections (d2)42 as implemented in the VASP code (version 5.4).43–46 An energy cut 
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off of 520 eV was used for the planewaves. The Brillouin zone was sampled using the 

Monkhorst–Pack approximation47 at k-point grids separated by approximately 0.05 Å.  

Crystal structures were relaxed with this model allowing the unit cell volume as well 

as the atomic positions to optimise. After two optimisation cycles, the energy of the 

structure was recomputed with the same level of theory. Structural relaxations were 

halted when the calculated force on every atom was less than 0.003 eV Å−1. Lattice 

energies (Elatt) for both forms were calculated by subtracting the electronic energy of 

a single molecule in the gas-phase from the electronic energy of the simulation cell 

normalised by the number of molecules (N). 

	
 
4. Analyses of the four polymorphs 
4.1 Overall interactions 
The main type of interactions found in the pABA polymorphs are summarised in 

Figure 1. pABA molecules can H-bond through 𝑅!!(8) cyclic acid dimers (Fig. 1 top 

left) or through a carboxylic acid-amino head to tail interaction (Fig. 1 bottom left). 

Molecules are also involved in aromatic interactions via stacking governed by 

translation (Fig. 1 top right) or inversion symmetry (Fig. 1 bottom right).  

 

The α, and γ form have the same type of H-bonding and stacking: 𝑅!!(8) acid dimers 

and stacking related by translation (along the crystallographic b axis in both 

structures). The β and δ form have the same head to tail H-bonding but whilst stacks 

in β are related by inversion in the new δ form they are related by translation.  

 
Figure 1.  Hydrogen bonding and stacking interactions in the four polymorphs of 

pABA. 
 

H-Bonding Stacking 

β 

α , γ 

δ 
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Further to the main H-bonds and stacking interactions, the NH2 group is also able to 

get involved in one further H-bond with the carbonyl group. This secondary H-bond 

is observed in all of the forms (Fig. 2) although the N…O distances vary from 2.94 to 

3.3 Å. 

 
Figure 2. Unit cell view of the four pABA polymorphs. 

 
 
4.2 α versus γ  
As already anticipated, the α and the γ-forms are very similar. α crystallises in a 

monoclinic space group (P21/n) whilst γ crystallises in an orthorhombic space group 

(Pna21), both with Z’=2. A COMPACK comparison of the two crystal structures 

(AMBNAC07 and 09) returns 18 molecules in common out of a molecular shell of 20 

molecules.  

To understand further the differences between these forms, we can view form α and γ 

as a succession of corrugated layers packed along the [101] direction for form α or the 

[001] direction for form γ (Fig. 3 illustrates form α). The differences between α and γ 

forms lie in the inner structure of alternate layers. Therefore, the packing of the α and 

γ structures can be understood as a succession of one equivalent and one mismatched 

layers along the [101] and [001] directions respectively. In an equivalent layer, all 

atoms are in identical positions (red layers Fig. 3 and left Fig. 4); in a mismatched 

layer atoms have different arrangements for the α and γ structures (right Fig. 4). 

β 

α   

δ 

γ 
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Figure 3. Packing of (101) layers in the α pABA form, view along the b-axis. Black 

and red wavy lines delineate alternate layers. 
 

Thus the red layers in Figure 3 are equivalent in both forms showing almost identical 

molecular positions whilst the alternate (black) mismatched layers have molecules 

orientated in different directions but with centres of mass in almost identical positions. 

This is seen viewed along [001] in Fig. 4. The (101) surface in the α or the (001) 

surface in the γ form mostly expose the NH2 groups and the side of the carbonyl. So, 

a different orientation of the NH2…O interactions leads these two types of layer 

orientations characteristic of the α and γ forms. 

 
Figure 4. Equivalent layer (left) and mismatched layer (right) in the α (yellow) and γ 

(black) polymorph. View along c. 
 
 
4.3 β versus δ  
The β and δ forms contain identical H-bond head to tail acid-amine dimers. The β 

form crystallises in a P21/n structure whilst the δ form is a Pn structure, both with 

Z’=1 (Table 1). Thus, whilst β is a centric form, δ is non-centric. Figure 5 shows a 

[101] 
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view of the crystal packing for both forms along the stacking direction. For the non-

centric δ form (Fig. 5, right), the (polar) H-bonded acid-amine chains (O….N- 2.78 

Å) run roughly along [101] and are stacked by translation along the b-axis (3.5 Å). 

For the centric β form (Fig. 5, left), however, the acid-amide chains are packed in 

alternate directions allowing them to be joined by the creation of the H-bonded 

tetramer (Fig. 2) at the expense of the infinite stacking arrangement seen in δ.   

 

 
Figure 5. View of the β and δ forms along the stacking direction.  

 
We note of the rarity of the head to tail hydrogen bond motif observed in the β and δ 

forms of pABA. A CSD search of the p-aminobenzoic acid substructure with any 

small substituents on the ring carbons 2, 3, 4 and 5, returned nine compounds (CSD 

refcodes: AMSALA02, AYOSOX, BRABZA01, HOLTAE, PUQFUD, PUQGAK, 

YOZFIE, YOZFUQ01), all of which crystallise making use of the 𝑅!!(8) cyclic acid 

dimer. 

 

5. Preparation of the polymorphic forms 
As in many polymorphic systems, crystallisation of some forms is extremely facile 

whilst others may require very specific crystallisation conditions for their nucleation 

and growth. From a practical perspective we note that α-pABA is the dominant, most 

accessible polymorph, crystallising under most conditions (solvents and 

supersaturations)12 while β-pABA can only be consistently obtained by direct 

crystallisation from water in a range of supersaturations from S = 1.1-1.488,13 or by 

phase transformation of an α-pABA slurry below 14oC. Controlled sonication has 

been reported to aid consistent outcomes in the crystallisation of the β-pABA,48 by 

extending the cooling rates and temperatures over which it is accessible. Whilst α-

pABA crystallises in well-known b-axis needles (Fig. 6a and b), β does so mostly as 

rhombic blocks though also as plates from ethanol (Fig. 6c).6 

β δ 
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The least reported polymorph is the γ-form. In their original paper Benali-Cherif et al 

obtained it as needles from water in the presence of selenous acid.22 Given its 

structural similarity to α, it is expected that such needles will also reflect the stacking 

interaction along the b-axis. More recently Kamali et al49,50 have reported failure to 

reproduce the crystallisation of the γ form from either selenous or phosphinic acids 

but have found that its preparation using a vapour growth technique is rather facile. 

Their micrographs show block-like crystals rather than needles, a feature that may be 

due to the growth conditions employed. As discussed above (section 4.2) and later 

(Section 8, Fig. 8) the α and γ structures are extremely similar and hard to distinguish. 

Over the last few years the Manchester group have crystallised α-pABA many 

hundreds of times from aqueous and organic solutions and we have determined the 

single crystal structure of the resulting needle crystals on four occasions using both X-

ray6 and neutron diffraction.51 Always these had the known α structure in which the 

two fold rotation axis coincides with the needle b–axis.  

Finally, as discussed by Ward et al23 in the preceding companion paper to this, the δ-

form is obtained either from direct compression of the α-form under high-pressure in 

pure water or by solution recrystallization also at high pressure. In the former case, α 

transforms to the new δ form at a pressure of around 0.85 GPa while in the latter, 

compression of aqueous (0.33 GPa), aqueous ethanol (0.8 GPa) or ethanolic solutions 

(0.49 GPa) induced the precipitation of the δ-form. The transition pressure is likely to 

be close to 0.3 GPa but the pressures quoted are those at which datasets were 

collected. Single crystals of the δ-form were recoverable to ambient conditions, 

allowing a full characterisation of the form including XRD and face indexing. The 

morphology of the δ-pABA crystals obtained at these high pressures is thin plates 

with dominant (10-1) faces (Fig. 6d). These crystallisation conditions are summarised 

in Table 2.  
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Figure 6. Microscopic images of crystals of α-pABA grown from methanol (A)6 β-

pABA grown from water (B)13 and δ-pABA from water at high-pressure (C).23  
 
  

Table 2. Summary of crystallisation conditions which afford the various polymorphs 
of pABA. 

Form Crystallisation Conditions Morphology Ease of 
Crystallisation 

α Most crystallisation conditions (solvent and 
supersaturation) afford this form. Any temperature. 

Needles Dominant 

γ From water in the presence of selenous acid/vapour 
growth. 

Needles / Blocks Difficult from 
solution. 

β From water at low supersturations only  
(S<1.5). Any temperature. 

Blocks / Plates  Difficult from 
solution 

δ From water, ethanol and water:ethanol mixtures at high 
pressure. 

Thin plates High Pressure 

 
 
6. Nucleation and Growth Rates. 
pABA has been the subject of significant numbers of publications focusing on the α 

and β polymorphs. Such work includes measurement of solubility phase diagram in 

different solvents, the determination of the α/β transition temperature, the 

transformation rates between these two polymorphs and their crystallisation from 

aqueous and organic solutions. Gracin and Rasmuson8 were the first to report a 

detailed study where the transition temperature between the two forms was 

determined to be 25°C using solubility measurements and the crystallisation 

conditions for obtaining the α and β forms were comprehensively elucidated. It was 

reported, for the first time that water is the only solvent that can reproducibly yield 

the β form. This point was taken up in some detail by Black et al13 who defined 

precise supersaturation conditions for the isolation of β and showed that these were 

independent of temperature. As far as the α/β phase transition temperature is 

concerned further work by Hao et al52, using solubility combined with slurry 

experiments, in situ Raman and FTIR and microscopy (FBRM) tools, determined this 

α B C A 
β 

δ 
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more precisely as 13.8°C. All such thermodynamic data has been reviewed by Svard 

et al.12  

Crystal morphologies of the α and β forms were determined through use of 

goniometry, pXRD and morphological computations by Sullivan and Davey6 and this 

theme was developed in more detail by Rosbottom et al7 who used force field 

calculations to determine the lattice energies and morphologies of the two forms. 

They reported the α form to be the more stable by approximately 7.5 kJmol-1. The 

solution mediated interconversion kinetics between the forms were measured by both 

Hao et al52 and Turner et al53. 

As far as kinetic data are concerned Sullivan et al9 reported a detailed study of the 

nucleation of the α form from a number of organic solvents. The impact of solvent on 

these rates was confirmed by Turner et al with rate increases from alcohol through 

acetonitrile to water.54 Both studies appeared to highlight the important role of 

desolvation and hydrogen bonded dimer formation in the crystallisation process.9 

However later work, in which the solvent dependant nucleation rates of pABA, 

benzoic, p-toluic and p-nitrobenzoic acids were compared, revealed that this 

conclusion was premature and that in fact the rates are controlled by aromatic 

stacking interactions. More recently, through additional nucleation kinetics measured 

for α-pABA in water and single crystal growth rate measurements on each phase11  

Black et al have rationalised the labile appearance of α and the role of water in 

encouraging β. These data support the view . that the nucleation of these molecules is 

driven by aromatic stacking rather than H-bond dimer interactions and confirm that  

that nucleation and growth rates are very closely correlated.55 Finally we note very 

recent work in which through the use of additives chosen to disrupt growth along the 

stacking direction ( b axis ) of  α pABA it has been shown, for the first time, that β 

can be crystallised directly from IPA solutions.56 

 

7. Thermal Analysis and Forms Conversions. In their 2004 paper8 Gracin and 

Rasmuson report the transformation and melting behaviour of α and β forms. The 

former melts at between 187 and 189°C. Crystals of the β form transform 

endothermically to α at temperatures between 70 and 97°C (depending on crystal size 

within the sample). According to the heat of transition rule57, this confirms both their 

enantiotropic relationship and that the true transition temperature (13.8°C) lies below 

70°C. The heats of fusion and transformation were recorded as ~ 22.6 and 2.0 kJmol-1. 
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In 2008 Yang et al58  confirmed this result and used Raman spectroscopy to measure 

the rate of the solid state transformation from β to α at temperatures between 78 and 

100°C. They observed no intermediate forms and estimated the activation energy to 

be 136 kJmol-1.  

Further thermal analysis of δ and γ forms and grinding of the δ are discussed by Ward 

et al in the companion paper.23 We summarise the form conversions in Figure 7.  

 
Figure 7. Conversions between forms of pABA. 

 
8. PXRD fingerprinting of the forms. 
Here we comment on the characterisation of these polymorphs using pXRD. Figure 8 

shows the calculated PXRD patterns of the four forms. It is clear that the α and γ 

forms may be easily distinguished from β or δ. The β and δ forms show fairly 

different diffraction patterns. The α and γ forms, however, have almost 

indistinguishable patterns apart from small differences between 2θ ~ 24 – 30o. In fact, 

the PXRD packing similarity algorithm implemented in Mercury scores these two 

polymorphs with a PXRD similarity of 0.991 (1 being identical). In fact, the structure 

of the γ form is not contained in the best R-factor list for unique crystal structures 

(given that PXRD similarity is used to distinguish polymorphs in this list). It is 

plausible, thus, that the γ form may have been overlooked given the dominance of α. 

In fact, possible intergrowth of these two forms may explain the twinning and 

disorder observed by Lai and Marsh17 on α-pABA in 1967 as discussed above in 

section 2. 

α 

δ 

γ 

β 

grinding 

heating 

Cooled melt 
pr

es
su

re
 

heating 
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Figure 8. Calculated PXRD patterns for the pABA polymorphs (α: AMBNAC07, γ: 

AMBNAC09, β: AMBNAC08, δ: this study). 
 
 
9. Crystal Structure Prediction & Computed Stabilities  
As an adjunct to this review of experimental studies crystal structure predictions of 

pABA were performed to enable further exploration of its solid form landscape. 

Results are presented in Figure 9 in CSP plots of lattice energy versus packing 

coefficients for the lowest energy structures within a 10 kJmol-1 energy window. The 

structures are classified according to their H-bonding (left) and stacking (right) type 

of interactions. Each circle in the plot is a structure generated computationally with a 

given lattice energy and packing efficiency. A comparison of the experimental forms 

with the computationally generated structures revealed that, with our CSP model, 

forms α, β and γ lie within 1.5 kJmol-1of the global minimum (Fig.9; α: 0.2 kJmol-1, β: 

0.9 kJmol-1 and γ: 1.5 kJmol-1). The δ form, obtained under high pressure, was 

computed to be 5.6 kJmol-1 in energy and it corresponds to the densest structure of the 

entire landscape (Fig. 9). 

 

Of these ~150 crystal structures generated within 10 kJ/mol of the global minimum, 

all structures except three contain the 𝑅!!(8) cyclic acid dimers. Those “unusual” 

three structures are based on the head to tail COOH…NH2 motif and, remarkably, 

two of them correspond to experimental forms β and δ.  
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Analysis of the aromatic stacking motifs also reveals that stacking through 

translational symmetry is more common than stacking through inversion (52% of 

structures in the landscape stack via translation versus less than 5% which do so via 

inversion). We note that the β form is in fact a rare occurrence containing both a rare 

(cf comment earlier section 4.3) H-bonding motif and stacking interaction based on 

inversion symmetry. 

 
Figure 9. CSP plots with predicted structures classified according to their type of hydrogen 

bonding (a) and stacking interaction (b). 
 
Further to the CSP study, we recomputed the lattice energy of the lowest energy seven 

crystal structures (ie. structures within 1.5 kJmol-1 of the global minimum, number 

restricted by computational expense) plus the δ form. Atomic positions as well as unit 

cell parameters were allowed to optimise thus enabling optimisation of the NH2 

hydrogen atoms positions and adjustments to the pyramidalisation of the nitrogen 

atom. Modelling nitrogen pyramidalisation is challenging for hybrid models used in 

CSP and yet this is known to have an important impact in lattice energies.59 Thus, for 

systems containing amines and amides, a final full DFT-d optimisation is a 

requirement.  The results of these calculations are given in Table 3 where it is seen 

that out of the 7 structures chosen the α, γ, β and δ forms became the most stable 

crystal structures. The relative stabilities of these experimental forms at 0 K is: α > γ 

(0.1 kJ/mol) > β (3.9 kJ/mol) > δ (6.1 kJ/mol). Unsurprisingly, the α and the γ form 

are computed to be isoenergetic and the δ form is calculated to be the least stable 

(without any pressure considerations) but also the structure with the highest density.  
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Table 3. Relative stability and packing coefficients of the lowest energy predicted pABA 
polymorphs and the delta form as computed with PBE-d. 

Form CSP Ranking 
(W99 + Multipoles) 

Packing 
Coefficient 

Lattice Energy 
(kJ/mol) 

Relative Lattice 
Energy 

(kJ/mol) 
α 2 0.783 -130.5 0.0 
γ 7 0.785 -130.4 0.1 
β 3 0.788 -126.6 3.9 
δ 77 0.808 -124.4 6.1 
- 1 0.780 -124.4 6.1 
- 5 0.791 -124.1 6.4 
- 6 0.801 -123.8 6.7 
- 4 0.776 -123.2 7.3 

 
 

Most interestingly, none of the energy models used here or elsewhere7 are able to 

predict β as the most stable structure at low temperature. All of the experimental 

evidence available suggests the β form to be the thermodynamically stable form at 

low temperatures. All of the energy models at 0 K fail to reproduce this observation, 

giving α as the more stable of the forms.  
 
 

10. Conclusions 
We have reviewed the polymorphism of a popular compound, p-aminobenzoic acid, 

whose crystallisation behaviour has been extensively studied in recent years. Four 

forms are now known for pABA. Forms α and β have been well studied in the past 

and are easily distinguishable because of their characteristic morphologies (needles 

for α and chunks for β). They are related enantiotropically with β being the low 

temperature form and a transition temperature at around 14 °C. Whilst the α form 

appears almost ubiquitously from solution, the β can only be crystallised from water 

and under a very specific set of supersaturations (S < 1.3). Using high pressure 

together with water and ethanol solutions the new δ form may be prepared. This new 

form has some similarities with both the α and the β forms; namely pABA molecules 

interact via head to tail COOH…NH2 hydrogen bonds as in β and they stack making 

use of translation symmetry as in α. The last form, form γ, was first reported in 2014 

from selenous acid solutions22 and it is now known that it can be reproducibly 

obtained from sublimation.49,50 This form has striking similarities with the α form 

with identical interactions found in the lattices, almost identical PXRD patterns, 

similar morphologies when grown from solution and being basically isoenergetic 
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(differing in energy by only 0.1 kJ/mol). We question whether or not the α and the γ 

form may even be able to intergrow as in the well-known aspirin forms I & II.60,61	

 
Finally, a crystal energy landscape was computed for pABA. The landscape revealed 

the rarity of the head to tail (COOH…NH2) motif. The experimental polymorphs 

were computed to be the most stable structures upon DFT-d optimisation of the 7 

most stable structures in the landscape. The α form was found to be the most stable 

with the γ form being only 0.1 kJ/mol above in energy, then the β (3.9 kJ/mol) and the 

δ  (6.1 kJ/mol) forms. This stability contradicts the experimental observations of β 

being the most stable form at low temperatures. This highlights the difficulties of 

measuring and calculating polymorph stabilities accurately even for polymorphs of 

relatively simple systems. 
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