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Abstract

Radio images of the Galactic Center supermassive black hole, SagittariusA* (SgrA*), are dominated by
interstellar scattering. Previous studies of SgrA* have adopted an anisotropic Gaussian model for both the intrinsic
source and the scattering, and they have extrapolated the scattering using a purely λ2 scaling to estimate intrinsic
properties. However, physically motivated source and scattering models break all three of these assumptions. They
also predict that refractive scattering effects will be significant, which have been ignored in standard model fitting
procedures. We analyze radio observations of SgrA* using a physically motivated scattering model, and we
develop a prescription to incorporate refractive scattering uncertainties when model fitting. We show that an
anisotropic Gaussian scattering kernel is an excellent approximation for SgrA* at wavelengths longer than 1 cm,
with an angular size of 1.380 0.013 mascm

2l( ) along the major axis, 0.703 0.013 mascm
2l( ) along the minor

axis, and a position angle of 81 .9 0 .2   . We estimate that the turbulent dissipation scale is at least 600 km, with
tentative support for rin=800±200 km, suggesting that the ion Larmor radius defines the dissipation scale. We
find that the power-law index for density fluctuations in the scattering material is β<3.47, shallower than
expected for a Kolmogorov spectrum (β= 11/3), and we estimate 3.38 0.04

0.08b = -
+ in the case of rin=800 km. We

find that the intrinsic structure of SgrA* is nearly isotropic over wavelengths from 1.3 mm to 1.3 cm, with a size
that is roughly proportional to wavelength: 0.4 massrc cmq l~ ´( ) . We discuss implications for models of SgrA*,
for theories of interstellar turbulence, and for imaging SgrA* with the Event Horizon Telescope.

Key words: Galaxy: nucleus – ISM: structure – radio continuum: ISM – scattering – techniques: interferometric –
turbulence

1. Introduction

The compact radio source at the Galactic Center, Sagittarius
A* (SgrA*), was discovered in 1974 (Balick & Brown 1974).
Within two years, observers had deduced that the radio image
was dominated by scatter broadening caused by the ionized
interstellar medium (ISM) based on an observed scaling of
image size with the squared observing wavelength, θ ∝ λ2

(Davies et al. 1976). In the decades since the initial discovery
of SgrA*, knowledge of its scattering properties has
continually improved, but scattering uncertainties remain the
primary limitation in determining its intrinsic structure at
wavelengths longer than a few millimeters.

Motivated by the θ ∝ λ2 scaling and approximately
Gaussian image, many observers have sought to accurately
measure the image of SgrA* at a wide range of radio
wavelengths, seeking to constrain the scattering law at long
wavelengths (where the scattering dominates) and then to
deconvolve its effects at shorter wavelengths to estimate the

intrinsic source parameters. An advantage of treating both the
source and the scattering as Gaussian is that the scattered
image is then also a Gaussian because the time-averaged
scattering acts as a convolution (see, e.g., Coles et al. 1987;
Goodman & Narayan 1989; Johnson & Gwinn 2015).
Consequently, many techniques have been developed to
accurately estimate Gaussian image parameters for SgrA*

from interferometric data, including image-domain parameter
estimation (Bower et al. 2006), model fitting using only
closure quantities (Bower et al. 2004, 2014b; Shen et al. 2005;
Brinkerink et al. 2016; Ortiz-León et al. 2016), and self-
calibration (Doeleman et al. 2001; Lu et al. 2011; Ortiz-León
et al. 2016). In addition, many techniques have been applied
to ensure conservative estimates of parameter uncertainty,
including standard exploration of the chi-squared hypersur-
face (e.g., Bower et al. 2014b), Monte Carlo approaches
(Ortiz-León et al. 2016), and bootstrap approaches using
multi-epoch data (e.g., Lu et al. 2011). Nevertheless, the
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reported sizes and position angles still have significant
unresolved discrepancies (see Psaltis et al. 2015b).

In addition to the simplified scattering model, a major
missing component from all these previous studies has been
refractive scattering effects. Refractive scattering will distort
the instantaneous image, giving systematic departures from the
ensemble-average image that are independent of observing
quality (Blandford & Narayan 1985). Refractive scattering also
introduces substructure in the image, which contributes
additional “refractive noise” to interferometric measurements
on baselines that resolve the image (Goodman & Narayan
1989; Narayan & Goodman 1989; Johnson & Gwinn 2015).
Recently, refractive noise was discovered in 1.3 cm observa-
tions of SgrA* (Gwinn et al. 2014), suggesting that it may
contribute significantly to the error budget when fitting
Gaussian models. Refractive noise is especially problematic
because the longer baselines, which are most affected, are also
the most sensitive to compact structure; their measurements are
what dominate Gaussian model fits. Because refractive noise
tends to bias long-baseline visibility amplitudes upward,
detections interpreted without a noise budget for refractive
substructure will tend to imply artificially compact structure
(see, e.g., Johnson et al. 2016; Pilipenko et al. 2018). Thus,
refractive scattering effects are essential to include when fitting
models to interferometric data, and they contribute in multiple
ways, both by modulating the “true” instantaneous image size
and orientation and by adding a new type of “noise” to
interferometric measurements.

Here, we analyze archival observations of SgrA* at
wavelengths from 1.3 mm (Event Horizon telescope, EHT) to
30 cm (Very Large Array, VLA). We develop a framework to
efficiently incorporate refractive noise into parametric model
fitting, and we show how to isolate components of the
refractive noise that may be absorbed into fitted model
parameters (e.g., refractive flux modulation and image wander).
We constrain a physically motivated scattering model (Psaltis
et al. 2018), which generically produces Gaussian scatter-
broadening that scales as λ2 in the limit l  ¥, but which
differs at short wavelengths because of a finite inner scale rin of
the interstellar turbulence with an associated power-law index
α. In addition to these two parameters, the scattering model
depends on the Gaussian scatter broadening in the long-
wavelength limit, which we parameterize via the major axis full
width at half maximum (FWHM) θmaj,0, minor axis FWHM
θmin,0, and major axis position angle fPA, all specified at a
reference wavelength λ0 (we use λ0≡ 1 cm).

We estimate uncertainties in our parameter estimates by
fitting representative ensembles of synthetic data sets that
match the baseline coverage and sensitivity of the observations.
These synthetic data sets are created using numerical simula-
tions of the scattering and also include wavelength-dependent
systematic gain calibration uncertainties to simulate imperfect
amplitude and phase calibration. This approach allows us to
incorporate thermal noise, refractive uncertainties, and sys-
tematic calibration errors in the overall error budget, and to
verify that our model fitting is not biased by any of these effects
or by the anisotropic baseline coverage. Using our estimated
scattering model, we compute the wavelength-dependent
intrinsic size of SgrA*.

We begin, in Section 2, with a brief review of scattering
theory. Next, in Section 3, we describe our procedure to fit
individual observations and motivate how we can use the full

set of observations to constrain the scattering model. In
Section 4, we provide details about the observations used to
constrain the scattering model and give the results of Gaussian
fits to each. In Section 5, we derive our parameter estimates and
uncertainties for the scattering model, describe the expected
scattering properties, and estimate the intrinsic source size of
SgrA*. In Section 6, we discuss implications for models of
SgrA*, implications for theories of interstellar turbulence,
consequences of unmet assumptions in our approach, and
prospects for continued study of SgrA*. We summarize our
findings in Section 7.

2. Scattering Model

2.1. Background

The basic properties of interstellar scattering have been
summarized in several reviews (e.g., Rickett 1990; Narayan
1992; Thompson et al. 2017), and our specific scattering model
is derived and discussed in detail in a companion paper (Psaltis
et al. 2018). Here, we will only briefly summarize the key
properties that are of immediate relevance for the remainder of
this paper.
Interstellar scattering and scintillation at radio wavelengths is

caused by density inhomogeneities in the ionized ISM.
Neglecting a weak birefringence from the magnetic field
(which is negligible for the observing wavelengths we
consider), the local index of refraction of the ISM is given

by n 1 1

2

2p» - n
n( ) , where ν is the wave frequency,

9.0 kHzn
p 1 cm

e
3n » ´ - is the plasma frequency, and ne is

the electron density (see, e.g., Thompson et al. 2017). A density
fluctuation δne along a path length dz then introduces a
corresponding phase change r dz ne edf l d= - ´ ´ , where
r 2.8 10 cme

13» ´ - is the classical electron radius and λ is
the wavelength. Note that this dispersion relation is quite
general and is independent of a specific ISM scattering model
or geometry.
Along many lines of sight, the effects of scattering can be

approximated via a single thin phase screen rf ( ), where r is a
two-dimensional vector transverse to the line of sight. Electron
density fluctuations imprint their spectrum on the power
spectrum qQ( ) of phase fluctuations, which are typically
characterized by a single, unbroken power law between some
outer (rout) and inner (rin) scales: q qQ µ b-( ) ∣ ∣ . This descrip-
tion is expected for a top-down turbulent cascade between an
injection scale and a dissipation scale, and a Kolmogorov
spectrum of density fluctuations gives β=11/3 (Goldreich &
Sridhar 1995).
The effects of scattering on interferometric measurements are

conveniently characterized using the phase structure function
of the scattering screen, r r r rD 2 2f f lº á ¢ + - ¢ ñ µf ( ) [ ( ) ( )] .
In the ensemble-average scattering limit (see Goodman &
Narayan 1989; Narayan & Goodman 1989), the effects of
scattering are to convolve an unscattered image with a
scattering kernel or, equivalently, to multiply unscattered
interferometric visibilities by the appropriate Fourier-conjugate
kernel. This kernel is given by bD Mexp 11

2
- +f

⎡⎣ ⎤⎦( ( )) ,

where b is the vector baseline of the interferometer and
M=D/R is the “magnification” of the scattering screen (D is
the observer–screen distance; R is the source–screen distance).
For spatial displacements smaller than rin, the phase fluctua-
tions will be smooth, r r r r rf f f¢ + » ¢ +  ¢( ) ( ) · ( ). In this

2
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limit, rD r2 2lµf ( ) (Tatarskii 1971). This expression—which
makes no assumptions other than the cold plasma dispersion
relation and smoothness of phase fluctuations below some scale
—shows that ensemble-average scatter-broadening should act
as a (possibly anisotropic) Gaussian blurring that scales as

scatt
2q lµ for baselines b M r1 in +( ) (i.e., on angular scales

M r1 inq l +(( ) ). Moreover, because the time-averaged
scattering kernel from an ensemble of thin screens is
determined by the cumulative convolution of all the individual
screens, this generic asymptotic behavior is not limited to thin-
screen scattering. At longer baselines, r rD µf

a( ) ∣ ∣ , where
2a bº - , and the corresponding image becomes non-

Gaussian. In this regime, the angular broadening scales as
scatt

1 2q lµ + a and the interferometric scattering kernel falls as
e b- a∣ ∣ . However, note that rD 2lµf ( ) regardless of α or the
scattering model.

While scatter broadening is produced by phase fluctuations
on the diffractive scale17 r M1diff scattl q~ +(( ) ), refractive
scintillation is dominated by modes that are comparable to the
refractive scale (i.e., the projected size of angular broadening
on the scattering screen): r Dref scattq~ . The Fresnel scale

r DR

D RF 2
º l

p+
, which is defined entirely by geometrical

parameters of the scattering, corresponds to the geometric
mean of the diffractive and refractive scales. When
r r rref F diff> > , the scattering is said to be “strong” (e.g.,
the scattering of SgrA* is strong for all frequencies lower
than a few THz). In this case, refractive effects are most
naturally described using the power spectrum of phase
fluctuations: q r r r rQ d e2 q ri2 2 2òp l f fº á ¢ + ñ- -( ) ( ) ( ) ( ) · . In
this expression, the prefactor renders qQ( ) independent of
wavelength.

To describe a full scattering model then requires six
parameters. Three are needed to characterize the long-
wavelength behavior (Gaussian scatter broadening with a λ2

dependence). As described before, we use the FWHM along
the major and minor axes at a reference wavelength and the
major axis position angle: θmaj,0, θmin,0, and fPA. In addition,
the power-law index α, inner scale rin, and outer scale rout are
needed. Psaltis et al. (2018) show how to compute the phase
structure function, power spectrum, and scattering properties
once these parameters are specified.

We caution that the exact specification of these parameters is
not unique, and the radio scattering literature is particularly
inconsistent in defining the inner scale. For example, Rickett
(1990) and Smirnova & Shishov (2010) taper the power
spectrum by e q r2

in
2- , Coles et al. (1987) and Armstrong et al.

(1995) use e q r 22
in
2- , Lambert & Rickett (1999) use e q r 42

in
2- , and

Spangler & Gwinn (1990) use e qr 2in p- ( ). We use a power
spectrum taper of the form e q r2

in
2- .

2.2. Refractive Noise

Refractive scattering modes introduce many types of
stochastic effects. They modulate the total flux density of an
image, displace its centroid, and distort the overall image. They
also introduce image substructure, even on scales for which the
unscattered source was smooth. All of these effects introduce a
new type of “noise” for interferometric measurements. This
refractive noise has a fractional bandwidth of order unity
and varies slowly, on the refractive timescale tref=rref/V⊥,

where V⊥ is the characteristic relative transverse velocity
of the observer, scattering, and source. At centimeter
wavelengths, SgrA* has r 2 10 cmref

13
cm
2l» ´ ´( ) . Taking

V⊥∼50 km s−1 gives t 50 daysref cm
2l~ ´( ) .

Johnson & Gwinn (2015) and Johnson & Narayan (2016)
provide expressions for how to compute properties of refractive
noise, including the variance of refractive fluctuations of a
complex visibility measured on a vector baseline b: bref

2s º( )
bV 2á D ñ∣ ( )∣ . However, for short baselines, this variance is not

the correct quantity to apply to standard very long baseline
interferometry (VLBI) analyses. Namely, part of the variance is
due to variations in the total flux density, caused by refractive
focusing, and part is due to image wander, caused by refractive
deflections. Both of these effects would be eliminated in a
typical VLBI analysis. The flux variations would be absorbed
into the estimated total source flux density, and the image
wander would be eliminated by centering the image (since
VLBI has no concept of absolute position without absolute
phase referencing).
Appendix A shows how to compute a renormalized

visibility variance, brefŝ ( ), that eliminates these contribu-
tions. For example, the renormalized refractive noise is zero
in the limit of zero baseline. On short baselines, it is
dominated by changes in the overall image size from
scattering—a property that we utilize in Section 5.2.2. We
will include renormalized refractive noise in the error budget
for our model fitting.

2.3. Assumed Scattering Properties of Sgr A*

We will use a few supplementary measurements and
assumptions about the scattering of SgrA*. The first is for
the scattering geometry of SgrA*. Because the Galactic Center
magnetar lies only 2 4 from SgrA* (Bower et al. 2015a), its
radio pulsations permit an estimate of temporal broadening
associated with the scattering toward SgrA*. This measure-
ment can be combined with the angular broadening to estimate
the location of the scattering material (Gwinn et al. 1993). For
instance, if the scattering is isotropic, then the pulse-broadening
function is exponential: g(t)=e− t/ τ. This expression follows
by relating a radial distance r on the scattering screen to its
corresponding geometric delay, t r r

c D R2

1 12

» +( )( ) , and then
expressing the brightness distribution on the sky in terms of t.
The 1/e scale of the temporal broadening, τ, is related to the
FWHM angular size of the scattered image, θscatt, via (e.g.,
Cordes & Lazio 1997)

c
Md

8 ln 2
, 1src

scatt
2t q=

( )
( )

where dsrc=D+R is the distance from the observer to the
source, and M=D/R. Because the magnetar shows angular
broadening comparable to SgrA*, the same scattering material
is thought to dominate the angular broadening of each (Bower
et al. 2014a, 2015a). The temporal broadening of the magnetar
can then be combined with the angular broadening and distance
to SgrA* to estimate the location of the scattering material for
both objects.
For anisotropic scattering, the pulse-broadening function is

monotonically decreasing but not exponential. For a scattered
image with FWHM θmaj and θmin along the major and minor17 Formally, the diffractive scale is defined by D r 1diff ºf ( ) .
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axes, the pulse-broadening function takes the form18

g t I
Md

e
4 ln 2 ct

,

. 2

0
src

2

maj min

maj
2

min
2

Md

4 ln 2 ct

src
2

q

q
q q

q q

=

º


-

-



q+

⎛
⎝⎜

⎞
⎠⎟( ) ( )

( )

( )

In this case, determining τ (i.e., solving g(τ)=g(0)/e) must be
done numerically.

We will assume a distance to SgrA* of 8.1 kpc (Gravity
Collaboration et al. 2018). Using our estimated scattering
kernel parameters (see, e.g., Table 2), we obtain 1 s1 GHzt »( )

M2.47 . Using the measured value 1.3 0.2 s1 GHzt =  (Spitler
et al. 2014) then gives M=0.53±0.08. Note that this
estimate differs slightly from the simpler approach of using the
isotropic scattering result with the geometric mean of the major
and minor scattering axes, which gives M1 s 2.771 GHzt »( )
(Bower et al. 2014a). Using the exact expression for anisotropic
scattering, we obtain D=2.7 kpc and R=5.4 kpc.

There is now compelling evidence that at least some of the
temporal broadening of the magnetar is local to the Galactic
Center region (see, e.g., Dexter et al. 2017; Desvignes
et al. 2018). Because angular broadening is more sensitive to
scattering material closer to the observer, it is likely that the
angular broadening and refractive effects are dominated by the
scattering region that is distant from the Galactic Center.
Because the temporal broadening caused by this material may
be smaller than the value used above, the corresponding M
for the scattering responsible for the angular broadening may
be somewhat lower and the scattering material somewhat
further from the Galactic center. However, our later results
are insensitive to changes in M. Refractive noise scales as

Mref
1 2s µ - + a

(e.g., Mref
1 6s µ - for a Kolmogorov spectrum),

while our later inner scale constraint is proportional to
(1+M)−1. Thus, even a change in our assumed temporal
broadening by a factor of 2 would not strongly affect our
conclusions, and so we will work within the single-screen
framework for the remainder of this paper.

Our second assumption is that the outer scale for the
scattering of SgrA* is sufficiently large to be irrelevant for our
calculations (specifically, we require r 10 auout  ). We will
discuss the validity of this assumption in Section 6.2.1.

3. Scattering Model Fitting Procedure

We now describe our procedure to fit observations, constrain
the full scattering model, and estimate parameter uncertainties.
Our fitting strategies are guided by synthetic data sets. We
generated data sets with identical baseline coverage and
sensitivity to our actual observations of SgrA*, but with
visibilities generated from simulated scattered images. We use
a Monte Carlo approach to determine our uncertainties, fitting
an ensemble of synthetic observations of scattered images.
Thus, our reported uncertainties account for thermal noise,
limitations of the fitting procedure, and systematic uncertainties
from refractive scattering.

3.1. Anisotropic Gaussian Model Assumption

One significant simplification in our model fitting approach
is that we model the brightness distribution of the source on
the sky as a wavelength-dependent anisotropic Gaussian. In
Section 2, we demonstrated that this assumption is well
motivated for the shape of the scatter broadening because it
corresponds to universal scattering behavior in the limit of long
wavelength. Moreover, our approach to estimate parameter
uncertainties uses the full, non-Gaussian scattering model, so
our final error budget accounts for limitations in the assumption
of Gaussian scatter broadening. However, the intrinsic source
may be non-Gaussian, especially when the emission region
becomes optically thin. Nevertheless, even in this regime, the
Gaussian source assumption is well motivated for model fitting
and has a meaningful associated FWHM, as we will now
demonstrate.
Specifically, the interferometric visibility uĨ ( ) on a short

baseline u can be approximated as

u x x

x x u x u x

I d I e

d I i1 2 2 , 3

u xi2 2

2 2 2

ò
ò p p

=

» - -

p-˜( ) ( )

( )[ · ( · ) ] ( )

·

where xI ( ) denotes the image, with x an angular coordinate on
the sky (Thompson et al. 2017). The term that is linear in u
reflects an interferometric phase that is proportional to the image
centroid projected along the baseline direction (from the Fourier
shift theorem). Standard VLBI observations (including all those
used in this paper) do not have absolute phase information, so
we can set this term to zero (i.e., we use the image centroid to
define the origin of the sky coordinates). The remaining terms in
Equation (3) show that the visibility amplitude decreases
quadratically with baseline length for short baselines. The
quadratic coefficient is proportional to the second moment of the
image projected along the baseline direction. This second
moment can then be used to define a characteristic image
FWHM, using the relationship corresponding to a perfectly
Gaussian image. For example, the major axis FWHM θmaj is
given by

u
I

I
2 ln 2

0
, 4u umaj 2

2
0maj

q
p

= -  =
( )

˜( )
˜( )⌋ ( )ˆ

where I 0˜( ) is the total flux density of the image, and u
2

maj
ˆ is the

second directional derivative along the major axis direction.
The three characteristic Gaussian parameters {θmaj, θmin, f}
can be determined by diagonalizing the image covariance
matrix.
For this universal Gaussian behavior for the source visibility

function to be applicable, the baselines must only marginally
resolve the unscattered source. For SgrA*, this assumption can
be assessed post hoc using the inferred intrinsic size. Using the
characteristic size 0.4 massrc cmq l~ ´( ) that we derive later
(see Section 5.3), we estimate that projected baselines must
have a length of approximately 3000 km for the normalized
visibility function of the intrinsic source to fall to 1/e (this
length is independent of wavelength because the source grows
linearly with wavelength while angular resolution scales
inversely with wavelength). For all observations we analyze
other than 1.3 and 3.5 mm, the longest baselines are
significantly shorter than this limit (because longer baselines

18 Rickett et al. (2009) and Gwinn et al. (2016) derive similar expressions for g
(t). However, note that Rickett et al. (2009) express their results in terms of the
scattering angle of the screen θs rather than the observed scattering
angle R D R M11

s
1

sq q q= + = +- -( ) ( ) .
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heavily resolve the scattered source). Thus, for the wavelengths
we analyze to estimate the scattering kernel (λ� 7 mm), the
quadratic expansion of Equation (3) and Gaussian approx-
imation are well motivated for the intrinsic structure of SgrA*.

3.2. Anisotropic Gaussian Fitting Procedure

To estimate the scattering kernel of SgrA*, we indepen-
dently fit anisotropic Gaussian models to observations of
SgrA* at wavelengths from 1.3 mm to 30 cm. In principle,
fitting a Gaussian to interferometric data is quite simple. In
practice, the fitting is subtle and subject to many sources of
noise and bias. These include thermal noise, station-based
systematic errors in amplitude and phase, and refractive noise.
We developed a simplified prescription for Gaussian model
fitting that accounts for all these errors. Our prescription is
motivated by tests on synthetic data sets (see Section 3.3); it
sacrifices some exactness for the sake of computational
efficiency. Nevertheless, our approach provides a reliable error
budget despite shortcomings in the model fitting procedure.

For each observation, we began with complex visibilities
that had a priori amplitude calibration applied but no self
calibration. We first flagged all visibilities for which the
elevation at either station was below 5°. Next, on a scan-by-
scan basis, we flagged all stations that did not have a signal-to-
noise ratio (S/N) of at least 12 on any baseline. Thus, at each
time, a station was only included if it had at least one strong
fringe detection. This station-based cut was chosen to avoid
including visibilities with a noise bias from the fringe search; a
baseline-based cut would also avoid spurious fringes but would
potentially bias the set of unflagged, low-S/N visibility
amplitudes upward. Next, we computed the expected renorma-
lized refractive noise (see Section 2.2) for each point, and
eliminated all visibilities for which the ensemble-average
visibility function was less than four times the renormalized
refractive noise. This cut eliminated visibilities that were
dominated by refractive noise from the Gaussian model fits (we
only performed this final cut for the Gaussian model fitting and
included these visibilities for estimates of the long-baseline
refractive noise).

Next, we jointly fit for complex, time-dependent station
gains at every site and the Gaussian image parameters (i.e.,
self-calibration to a model), seeking the maximum a posteriori
estimate of all parameters. For this estimate, we used flat priors
on the station phases and Gaussian priors on the logarithm of
the gain amplitude, centered on a gain of amplitude of unity
and with wavelength- and array-dependent spread. We used 5%
uncertainty for VLA data at 15–30 cm, 5% uncertainty at
3.6 cm for Very Long Baseline Array (VLBA) data, and 10%
uncertainty at 1.3 cm (VLBA) and 7 mm (Korean VLBI
Network and VERA Array (KaVA)). At 3.5 mm, the a priori
calibration is sufficiently poor that we do not constrain the gain
amplitudes (similar to an analysis using only closure
quantities). These values can be validated after fitting the
actual data and were guided by the expected performance for
each wavelength/array combination. We assumed that the
visibilities had complex Gaussian random noise, with a
standard deviation that was the quadrature sum of the measured
thermal noise and the renormalized refractive noise. In this
way, we included additional tolerance for visibility errors from
refractive noise.

3.3. Synthetic Observations for Monte Carlo
Uncertainty Estimates

To estimate uncertainties for the fitted parameters, we used a
Monte Carlo approach. Namely, for each data set analyzed, we
generated a representative ensemble of synthetic data sets and
analyzed each using our procedure for the actual data. To create
synthetic data sets, we scattered Gaussian source images using
the stochastic-optics module of the EHT-imaging
library (Chael et al. 2016; Johnson 2016). The source and
scattering parameters were chosen to match the current best
estimates in our iterative fitting procedure (see Section 3.4). We
then sampled each scattered image on the observed (u, v)
coordinates and added complex Gaussian noise that was equal
to the measured thermal noise. Next, we injected two types of
gain uncertainty to the measurements: (1) fluctuations of the
station gains that were uncorrelated from scan to scan, and (2)
an overall uncertainty in each station gain that was constant
over the entire observation but different among the different
synthetic data sets. Each of these gain errors was a Gaussian
random variable with unit mean and wavelength-dependent
uncertainty, matching the values given Section 3.2.
As a concrete example, a single realization of the simulated

1.3 cm VLBA data would have rapid jitter from thermal noise
that was uncorrelated among all baselines and times, rapid
station-based jitter from the gain errors (rms of 2 10%´ of
each visibility amplitude), and a constant station-based error
(rms of 2 10%´ of each visibility amplitude). For instance,
all baselines to a particular antenna might be systematically
underestimating the true flux density in one realization and
overestimating in another. Each realization also produced an
image with FWHM fluctuations from refractive image distor-
tions and with additional noise on long baselines from
refractive substructure.
To estimate our parameter uncertainties, we compute the rms

of the parameter estimates from each simulated data set with
respect to the true, ensemble-average parameter. Thus, our
uncertainties account for thermal scatter in the model fitting, for
systematic scatter from the refractive scattering, and for
systematic errors and bias in the model fitting procedure.
Real data have additional imperfections that our simplified

prescription does not capture, including bandpass errors,
polarimetric leakage, and gain errors that are elevation
dependent. However, the polarization of SgrA* is negligible
at cm wavelengths, and residual bandpass errors are small. As
we will demonstrate, the dominant source of uncertainty for
many of our measurements is refractive scattering, and our
Monte Carlo approach fully accounts for this uncertainty.

3.4. Overall Fitting Strategy

As described in the previous sections, we independently fit
Gaussian models to data at multiple frequencies. However,
these fits used refractive noise corresponding to the scattering
properties that are estimated using the full multi-frequency data
set. Thus, our overall fitting procedure is iterative.

1. We fit Gaussian models to the 1.3 and 3.6 cm data. These
fits require estimates of rin and α to determine the
refractive noise to include in the model fitting procedure
and in the Monte Carlo uncertainty estimation via
synthetic data. We assume that the scattering dominates
the intrinsic size at these wavelengths (as is supported by
the λ2 scaling), so we use these fits to estimate the three
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parameters that characterize the long-wavelength scatter-
ing behavior: θmaj,0, θmin,0, fPA.

2. Keeping θmin,0 and fPA fixed at the values obtained in
step 1, we fit the 15–30 cm VLA data to obtain a tighter
constraint on θmaj,0.

3. Having determined the three parameters of the long-
wavelength ensemble-average image in steps 1 and 2, we
use four additional pieces of evidence to constrain rin
and α.
(a) The nearly perfect scaling of image size as λ2 down

to 1.3 cm and across the observing bandwidth at
1.3 cm, combined with constancy of position angle
and image anisotropy over this frequency range.
These properties suggest that scattering must dominate
over intrinsic structure at all wavelengths longer than
1.3 cm and that the inner scale must exceed the
diffractive scale at 1.3 cm.

(b) The Gaussian scaling of visibility amplitude with
baseline length at 1.3 cm and tentative non-Gaussian
scaling of visibility amplitude with baseline length
at 7 mm.

(c) The magnitude of refractive visibility noise using
long-baseline measurements at 1.3 cm and 3.6 cm,
where the Gaussian image contribution is negligible.

(d) An upper limit of 3% on image size fluctuations at
7 mm, as determined by historical data.

4. We then repeat steps 1–3 using the full scattering model
(θmaj,0, θmin,0, fPA, α, rin) estimated in the previous pass
to estimate a new set of scattering parameters.

4. Observations and Gaussian Fits

We now provide details on the specific observations that we
use to constrain our scattering model. While previous scattering
studies have generally relied on compiling large sets of
observations and then averaging across multiple epochs to
reduce parameter uncertainties, we instead consider a small
number of high-quality observations and analyze each with a
full scattering error budget.

4.1. VLA Observations at 20 cm

The longest-wavelength observations we examine are with
the Karl G. Jansky VLA. These observations span wavelengths
from 15 to 29 cm. The recorded bandwidth was divided into 16
spectral windows, each 64MHz. Of the 16 original windows,
four were flagged by the VLA calibration pipeline in CASA.
We analyzed each spectral window independently. For each,
we averaged in frequency and in one minute intervals. Figure 1
shows representative baseline coverage for one spectral
window.

The long-wavelength data are subject to a challenge for
Gaussian model fitting that does not affect our other
observations. Namely, short baselines measure significant flux
density that is not associated with SgrA*; it is diffuse emission
from the local Galactic Center environment. To eliminate
contributions from this emission, we imposed a minimum
baseline length umin for visibilities used in the Gaussian fits. On
baselines longer than ∼50 kλ, we did not see any indications of
contaminating emission (e.g., via non-zero closure phases).
Thus, we repeated Gaussian fits using umin=60 kλ, 80 kλ, and
100 kλ, and we then used the scatter of these solutions as our
estimate for the measurement uncertainty.

Because the VLA baselines only modestly resolve SgrA*,
we did not find stable results among the different spectral
windows when fitting all Gaussian parameters separately. In
addition, the fitted position angle was highly degenerate with
the major axis size; smaller position angles produce a smaller
major axis size because of the anisotropic baseline coverage
(see Figure 1). To mitigate this problem, we instead fit the
Gaussian parameters holding the minor axis and position angle
fixed to the values determined by 3.6 and 1.3 cm observations
(i.e., we only fit for the total flux density and major axis size in
each spectral window). With this reduction, we obtained self-
consistent estimates of the major axis among all spectral
windows (see Table 1).
Fitting a single λ2 scattering law to our measured major axis

sizes yields θmaj,0=1.3799±0.0067 mas. This uncertainty
does not account for refractive scattering effects, and it
underestimates thermal uncertainty because the measurements
with varying umin have identical thermal noise. The uncertainty
in the assumed position angle, σPA∼0°.2, gives an additional
uncertainty of 0.004 mas 1PAs» ´ ( ) ( ), which is negligible.
The uncertainty in the assumed minor axis is likewise
negligible.
To estimate the total uncertainty, we repeated the Gaussian

fits using multi-frequency sets of synthetic data generated from
10 simulated realizations of the scattering. For each realization,
we estimated a scattering law from the fitted Gaussian
parameters. Note that while these data do not include diffuse
emission, we used the same procedure with cutoffs of
u k60min l= , k80 l, and k100 l. These estimates of maj,0q
had a scatter of 0.011 mas relative to the ensemble-average
value for the simulations. This scatter accounts for refractive
noise, thermal noise, and systematic noise from gain errors, but
it does not account for systematic uncertainty from diffuse

Figure 1. Baseline coverage of the VLA at the representative wavelength
λ=21.06 cm, with baselines to the single VLBA antenna at Pie Town in
green. Red circles show our three cuts in u∣ ∣ to eliminate flux density from
diffuse emission near SgrA*. Blue ellipses show contours at which the
estimated ensemble-average Gaussian visibility function falls to 0.5, 0.1, and
0.02 of the zero-baseline value.
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structure. Adding our two estimated uncertainties at quadrature
yields our final estimate: 1.380 0.013 masmaj,0q =  .

We also reanalyzed the VLA observations reported in Bower
et al. (2006) using the same procedure as for the VLA
observations. These observations included the single VLBA
antenna at Pie Town in addition to the VLA, thereby extending
the longest baselines by a factor of ≈2. However, they had the
disadvantage of a radio transient located only 2 7 south of
SgrA*, with a flux density that was ∼5% of SgrA* (Bower
et al. 2005). For our analysis, we adopted an image-domain
approach to remove the transient. Namely, we performed
maximum entropy imaging independently for each sub-band.
For each image, we then computed the interferometric
visibilities for the transient by windowing the image on a
region of radius 1 8 centered on the transient. We subtracted
these from the measured visibilities (because the Fourier
relationship is linear) and used the remainder for Gaussian
model fitting to SgrA*. With this procedure, we found

1.4082 0.0075maj,0q =  . This value is at modest tension
(1.9σ) with the VLA-only results, especially because refractive
effects are likely correlated between the two epochs (at these
wavelengths, the refractive timescale is ∼100 yr), so each of
the two measurements would be similarly biased. Because
uncorrected contamination from the transient may bias the
measured Gaussian values for SgrA*, we adopted the
measurement and uncertainty of the VLA-only results.

4.2. VLBA Observations at 3.6 cm

We analyzed observations at λ=3.6 cm taken with the
VLBA in 2014. These observations also included the Green
Bank Telescope (GBT), but we did not detect fringes between

the GBT and the inner VLBA, so we only used the inner six
VLBA stations (Brewster: BR; Fort Davis: FD; Kitt Peak:
KP; Los Alamos: LA; Owens Valley: OV; Pie Town: PT) for
our analysis. These observations recorded four contiguous
128MHz channels and spanned approximately 3.5 hr. They
used NRAO530 as a calibration source. After a global fringe
search in AIPS (Greisen 2003), we averaged the data in
frequency and in 30 s intervals before Gaussian fitting.
Even without detailed analysis, the effects of refractive

substructure are evident in the closure phases of these data. On
triangles that resolve the source, the closure phases are
markedly non-zero, demonstrating that the underlying image
is inconsistent with any smooth, scatter-broadened structure
(see Figure 2). Our Gaussian fitting procedure gives the major
and minor axis sizes to within an estimated uncertainty of less
than 2%, even when including refractive effects in the error
budget (see Table 1).
After the Gaussian fits, we self-calibrated the full data set to

the Gaussian model. However, this procedure must be done
with care because the longest baselines are dominated by
refractive noise and are inconsistent with the pure Gaussian
model. While our approximate prescription for model fitting
with substructure (i.e., simply inflating the thermal noise with
the rms renormalized refractive noise; see Section 3.2) gives
reliable results for Gaussian model fitting, we found that it
could downward bias long-baseline visibilities. To perform
the self-calibration without biasing long-baseline visibility
amplitudes, we first derived time-dependent gain solutions
using only “short” baselines, for which the Gaussian model
visibility was four times the renormalized refractive noise. We
then applied these self-calibration solutions to all baselines.
We dropped any visibilities that did not have simultaneous

Table 1
Summary of Elliptical Gaussian Fits to SgrA*

λ Instrument Expt. Obs. Date θmaj θmin P.A.
cm μas μas deg

28.84 VLA 15A-310 2015 Aug 20 1147000±31000
27.17 VLA 15A-310 L 1017000±11000
23.22 VLA+PT AB1134 2004 Oct 1 and 4 664000±121000
22.05 VLA 15A-310 L 672000±28000
21.96 VLA+PT AB1134 L 682000±14000
21.06 VLA 15A-310 L 609000±16000
20.89 VLA+PT AB1134 L 624000±4000
20.15 VLA 15A-310 L 546000±12000
19.78 VLA+PT AB1134 L 544000±6000
18.56 VLA 15A-310 L 489000±6000
18.00 VLA+PT AB1134 L 464000±12000
17.85 VLA 15A-310 L 435000±3000
17.47 VLA+PT AB1134 L 423000±5000
17.19 VLA 15A-310 L 395000±13000
16.59 VLA 15A-310 L 371000±14000
15.49 VLA 15A-310 L 329000±5000
14.99 VLA 15A-310 L 308000±7000
3.598 VLBA(+GBT) BG221B 2014 Apr 9 18290±310 9110±170 82.2±0.8
1.261 VLBA+GBT BG221A 2014 Mar 7 2255±61 1243±39 81.9±0.2
0.698 KaVA r14308a 2014 Nov 4 741±19 434±8 81.2±0.6
0.348 VLBA+LMT BD183C 2015 Apr 27 215±4 139±4 80.9±3.0
0.131 EHT 2013 Campaign 2013 Mar 21–27 59±6 60±30

Note.Because of our Monte Carlo error estimation procedure, the size uncertainties are stated relative to the ensemble-average image. They account for thermal noise,
systematic noise, limitations of our fitting procedure, and refractive variations of the image size. Note that the errors for each epoch are highly correlated (from all
effects apart from thermal noise).
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self-calibration solutions for both stations. In this way, long
baselines that are dominated by refractive noise still obtain
reliable self-calibration to the Gaussian model. Figure 3 shows
our 3.6 cm data after self-calibration in this way. However,
these data only have eight baselines with consistently strong
detections (and there are six stations to self-calibrate), so we
cannot reliably synthesize an image.

4.3. VLBA Observations at 1.3 cm

We analyzed observations at λ=1.3 cm taken with the
VLBA+GBT in 2014. These observations were analyzed in
Gwinn et al. (2014), who reported the initial discovery of
refractive substructure in SgrA*. As with the 3.6 cm data, these
observations recorded four contiguous 128MHz channels,
spanned approximately 3.5 hr, and used NRAO530 as a
calibration source. They include strong detections to the VLBA
antennas at North Liberty (NL) and Hancock (HN) in addition
to the sites noted in Section 4.2. After a global fringe search in
AIPS (Greisen 2003), we averaged the data in frequency and in
30 s intervals before Gaussian fitting. However, we averaged
the data to four 128MHz sub-bands and separately ana-
lyzed each.

For these data, the overall baseline coverage is well matched
to the scattered image, and we can tightly constrain the
Gaussian parameters separately within each sub-band. For
each, the thermal uncertainty on the major axis size is less than
0.1%, and we clearly identify the λ2 scaling of image size
across the four sub-bands (see Figure 4). However, the
uncertainty from refractive distortion is an order of magnitude
larger, so we can only constrain the ensemble-average FWHM
to within approximately 1%.

For these data, there is sufficient baseline coverage to
reliably synthesize an image. Figure 5 shows a maximum
entropy image reconstruction using the EHT-imaging library
(Chael et al. 2016). The effects of refractive substructure are
evident in the substructure of the image. However, the effects
of substructure are most striking in the visibility domain, where

long baselines from GBT to the inner VLBA give strong
detections on baselines for which the Gaussian visibility
contribution is negligible. Figure 6 shows the final self-
calibrated visibilities, following the procedure described in
Section 4.2.

4.4. KaVA Observations at 7 mm

The KaVA array has been conducting regular monthly
monitoring of SgrA* at 7 mm since 2014 September as part of
the KaVA AGN large program (Kino et al. 2015; Zhao
et al. 2017). The KaVA baselines range from 300 to 2300 km
and provide excellent (u, v) coverage for SgrA* observations
(Figure 7; see also Akiyama et al. 2014). In particular, the
KaVA coverage along the north–south direction is significantly
better than VLBA coverage at this frequency, so the KaVA
data are better suited to estimate the minor axis size.
We analyzed data from the experiment r14308a, which were

obtained in 2014 November. The data were recorded with
256MHz total bandwidth, spanned 5.5hr, and had an on-
source time for SgrA* of 220min. NRAO530 and two nearby
SiO masers (OH 0.55–0.06, VX Sgr) were observed as
calibrators (Cho et al. 2017). The correlated data were analyzed
with AIPS in a standard pipeline. Most stations had good fringe
detections in this experiment. After a global fringe search, the
data were averaged in 30 s intervals and across the entire
bandwidth for Gaussian model fitting. See G.-Y. Zhao et al.
(2018, in preparation) for more details of the monitoring and
data analysis.
Figure 7 shows the data from this observation, after our

Gaussian model fitting and self-calibration. For these observa-
tions, the contribution of renormalized refractive noise is
insignificant and is only comparable to the thermal noise on the
longest baselines.

4.5. VLBA+LMT Observations at 3.5 mm

For λ=3.5 mm, we analyzed data from the first VLBI
observations using the Large Millimeter Telescope Alfonso
Serrano (LMT) in concert with the VLBA. These observations
recorded 480MHz of bandwidth and spanned 7.5hr (with
approximately 3.4 hr on SgrA*). We averaged the data in 10 s
intervals and across the full bandwidth before Gaussian
model fitting. For additional details about these observations,
see Ortiz-León et al. (2016), who originally reported and
analyzed them.
Using our Gaussian fitting procedure, we found values and

uncertainties very close to those reported in Ortiz-León et al.
(2016) using self-calibration. This agreement is expected
because the only significant adaptation in our current approach
is to include refractive noise, and the renormalized refractive
noise is less than the thermal noise for all points. More recent
data, reported by Brinkerink et al. (2016), also include the
GBT and shows marked non-Gaussianity in the closure phases.
For these data, which achieve significantly better sensitivity,
including refractive noise in the error budget for model fitting
may be significant.

4.6. EHT Observations at 1.3 mm

Since 2007, the EHT has observed SgrA* using a 1.3 mm
VLBI array with stations in California, Arizona, and Hawaii.
Recently, Lu et al. (2018) reported observations that included a
fourth station (in Chile). With only three or four stations, there

Figure 2. Example closure phases from VLBA observations of SgrA* at
λ=3.6 cm. We first computed closure phases on 30 s intervals, then (vector)
averaged them in 10 min blocks. We estimated uncertainties via bootstrap
resampling within each block. Closure phases on the triangle FD-LA-PT are
close to zero, as is expected because these baselines are all dominated by the
symmetric Gaussian image rather than substructure (see Figure 3). In contrast,
closure phases on the triangle KP-LA-PT are markedly non-zero, demonstrat-
ing the clear imprint of refractive substructure breaking symmetry of the
smooth ensemble-average image.
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is insufficient baseline coverage to create an image. In addition,
the measured visibilities are markedly non-Gaussian (Johnson
et al. 2015; Fish et al. 2016; Lu et al. 2018), as expected
because of complex intrinsic structure from optically thin
emission near the black hole. Nevertheless, even under these
circumstances, the image FWHM is still a meaningful quantity
that is reliably constrained by sparse coverage because it
represents universal behavior of the interferometric visibility
function on short baselines (see Section 3.1). Thus, we will
now estimate this characteristic FWHM and its uncertainty at
1.3 mm using previously published EHT data.

Because the EHT baseline joining CARMA-SMT
(California–Arizona) does not significantly resolve SgrA*

at 1.3 mm, current EHT measurements primarily constrain the

source size in the direction of the California–Hawaii and
Arizona–Hawaii baselines, close to east–west (i.e., roughly
along the major axis of the scattering kernel). Early detections
were consistent with a Gaussian image having a FWHM
of approximately 40 μas (Doeleman et al. 2008; Fish et al.
2011). However, more recent measurements with improved
sensitivity and calibration find visibility amplitudes on the
shortest Hawaii baselines (California–Hawaii) that are
strongly inconsistent with the Gaussian model (Johnson
et al. 2015; Lu et al. 2018). Thus, the appropriate FWHM is
not that of the Gaussian fits, which are incompatible with
the data, but can instead be estimated by computing the
characteristic FWHM of models that do fit the short- and
intermediate-baseline visibility amplitudes.

Figure 3. Self-calibrated VLBA data at λ=3.6 cm (see Section 4.2). (Left) Final u–v coverage after the cuts described in Section 4.2. Blue points indicate those used
for the Gaussian model fits; red points indicate those used to estimate the long-baseline refractive noise, with the red stars denoting their baseline vector average. Blue
ellipses show 0.5, 0.1, and 0.02 contour levels of the fitted Gaussian; the red contour shows where the Gaussian visibility is equal to the rms renormalized refractive
noise. (Right) Correlated flux density as a function of baseline length. The long/short dashed blue curve shows the best-fit Gaussian visibility function along the
major/minor axis. The red curves show the corresponding renormalized refractive noise. Points (with ±1σ uncertainties) and Gaussian model curves are colored by
baseline; baseline labels are ordered by median baseline length. Because of refractive noise, we expect systematic departures at the level of ŝ from the Gaussian model
curves for each visibility; for a single baseline, these visibilities will be highly correlated over time (see, e.g., the BR-KP and the KP-PT visibilities).

Figure 4. Gaussian parameters for the four sub-bands of the λ=1.26 cm observations fitted independently. The scatter among sub-bands when fitting the major axis
scattering law is approximately 2 μas, or roughly 0.08% of the image size. However, the uncertainty from refractive fluctuations of the image size (which will give
nearly identical bias for each sub-band) is approximately ≈20 μas, or 1% of the image size. Thus, the estimated major axis uncertainty relative to the ensemble
average size is dominated by refractive image distortion. The close agreement with a λ2 scaling law (shown in red) strongly suggests that intrinsic structure is heavily
subdominant to scatter broadening at this wavelength and also that the inner scale must be larger than the diffractive scale, rin300 km, because otherwise the

wavelength dependence of the scattering kernel steepens, 1 2
q lµ + a .
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One such model is an annulus. The fitted annulus in Johnson
et al. (2015) gives a characteristic FWHM of 58.5 μas for the
intrinsic source (as defined in Equation (4)). For comparison,
the annulus model from Doeleman et al. (2008) gives 51.5 μas.
Two-Gaussian model fits that also include closure phase
measurements and baselines to APEX give FWHMs of
55.2 μas and 60.4 μas along the east–west direction or
62.5 μas and 60.5 μas along the major axis of the scattering
(for Models A and B of Lu et al. 2018). Because the east–west
scatter-broadening is 20 μas at this frequency, our revisions
to the scattering model and remaining uncertainties have little
effect on the estimated intrinsic FWHM. The uncertainties are
instead dominated by the sparse baseline coverage, and we
estimate a plausible range of 51–63 μas for the FWHM of the
intrinsic source along the major axis of the scattering based on
the span of these fitted models. Note that this range extends
beyond the expected diameter of the black hole shadow
(51± 3 μas), so it does not necessitate that the accretion flow
be viewed at large inclination. Accounting for both source
and scattering uncertainties, we adopt a plausible range of
53–66 μas for the FWHM of the scattered image of SgrA* at
1.3 mm along the major axis of the scattering kernel.

The north–south FWHM at 1.3 mm is comparatively poorly
constrained. Krichbaum et al. (1998) reported detections of
SgrA* at λ=1.4 mm on the baseline joining Pico Veleta and
an antenna of the IRAM interferometer at Plateau de Bure.
These observations had a baseline length u 0.7 109» ´∣ ∣ , but
the baseline was aligned close to east–west (position angle
approximately 70° east of north). Lu et al. (2018) have recently
reported detections at λ=1.3 mm on baselines from APEX to
California and Arizona, which are oriented close to north–
south, but these heavily resolve the source. Thus, they are
unreliable for estimating a FWHM using Equation (4) or for
computing the second moment of a fitted model. Instead, we
estimate a maximum size of the source along the scattering
minor axis by requiring that the CARMA-SMT baseline
amplitude be at least 80% of the zero-baseline flux density
over the Greenwich Sidereal Time (GST) range from −0.5 to
4.0 hr, as is supported by both a priori calibration (Lu
et al. 2018) and polarization arguments (Johnson et al. 2015).
For a major axis FWHM of ∼60 μas, this requirement gives an
upper limit to the minor axis FWHM of approximately 90 μas.
To obtain a corresponding lower limit, we require that the

correlated flux density on the SMT-APEX baselines for the
scattered image never exceed 10% of the zero-baseline flux
density over the GST range from 0.0 to 2.5 hr (otherwise it
would exceed measurements on this baseline; Lu et al. 2018).
This constraint only requires that the scattered source have a
minor axis FWHM that exceeds 25 μas. Combining these
limits, we obtain a plausible range for the FWHM along the
scattering minor axis direction of 25–90 μas (of course,
the scattering position angle need not correspond to that of
the scattered or unscattered image at 1.3 mm).
Finally, we note that the EHT has detected persistent non-

zero closure phases of SgrA* on the California–Arizona–
Hawaii triangle, demonstrating that the scattered image
structure is not point symmetric (Fish et al. 2016). However,
these results do not imply that the intrinsic or scattered FWHM
is asymmetric because the non-zero closure phases may be
produced by image substructure. For instance, ModelB in Lu
et al. (2018) fits both the visibility amplitudes and closure
phases but has little asymmetry in the FWHM, with major and
minor axes FWHMs of 60.5 μas and 60.3 μas, respectively.

5. Composite Constraints on the Scattering and Intrinsic
Structure of Sgr A*

We now use our Gaussian model fits and self-calibrated data
to constrain the five parameters of our scattering model and
estimate the intrinsic structure of SgrA*. We derive constraints
in two stages. First, in Section 5.1, we constrain the three
asymptotic Gaussian parameters using our fits to the long-
wavelength observations (�1.3 cm), for which scatter-broad-
ening is dominant over intrinsic structure. Next, in Section 5.2,
we jointly constrain α and rin using the observed refractive
scattering signatures and limits from the scattering kernel shape
and wavelength dependence. With the scattering constraints in
place, we show the estimated scattering properties and estimate
the intrinsic size of SgrA* in Section 5.3.

5.1. Constraining the Asymptotic Gaussian Parameters

The three asymptotic parameters of our scattering model can
be estimated directly from the Gaussian fits to long-wavelength
data. These parameters can also be directly compared with the
results of previous studies.
For the major axis normalization, our analysis of the VLA

data from 15–30 cm gives 1.380 0.013 masmaj,0q =  . For
comparison, our fits to the 3.6 cm VLBA observation gives

1.412 0.024 masmaj,0q =  . Thus, the two estimates are
consistent to within their stated uncertainties. We will adopt
the VLA estimate and uncertainty for our constraint on maj,0q .
Because we could not reliably fit the minor axis and position

angle using the VLA or VLA+PT data, we use VLBI
measurements at shorter wavelengths to estimate these
parameters. The minor axis of the scattering is small enough
at 1.3 cm that intrinsic structure may be significant. Taking
only the 3.6 cm measurement and full uncertainty gives

0.703 0.013 masmin,0q =  . This estimate represents an upper
limit to the scattering size because we have not included a
contribution from intrinsic structure. However, our representa-
tive intrinsic source size derived below using the full set of
shorter-wavelength data (see Section 5.3) would bias this
upward by only 0.01mas, which is within our measurement
uncertainty.

Figure 5. (Left) Reconstructed image at λ=1.3 cm. The color scale is linear
and ranges from 0 0.33 Jy mas 2-– . The dashed blue ellipse shows the Gaussian
half-maximum contour from model fitting; the solid black line shows the half-
maximum contour of the reconstructed image. Substructure is apparent through
the subtle distortions from a smooth Gaussian image. (Right) Residual image
after subtracting the best-fit Gaussian image. The color scale is linear, and the
range extends over ±0.033 Jy mas−2.
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Despite the relatively complete baseline coverage at 3.6 cm
(see Figure 3), the position angle is rather poorly constrained at
this wavelength. The reason for the poor constraint is that there
are only eight baselines that are dominated by the Gaussian
structure, and these baselines must constrain the (time-
dependent) self-calibration solutions for the six participating
stations. For comparison, among those same six stations, the
1.3 cm data have fifteen baselines that are dominated by the
Gaussian structure. Thus, the self-calibration at 1.3 cm is
heavily over-constrained, and the measured position angle has
small uncertainties despite the more limited baseline coverage.
Because we find a position angle that is consistent with a
constant value over wavelengths from 3.5 mm to 3.6 cm, it is
unlikely that intrinsic structure changes the position angle
appreciably at wavelengths of 1.3 or 3.6 cm. In addition, for the
scattering model of Psaltis et al. (2018), the position angle
of the scattering kernel is independent of wavelength. Thus,
we estimate the scattering position angle by combining the
measured position angles at 1.3cm and 3.6cm, giving
fPA=81.9±0.2.

Table 2 compares our newly derived Gaussian parameters
with previously reported estimates. Note that the three
observations used to derive our parameter estimates (2015

Figure 6. VLBA+GBT observations at λ=1.3 cm (see Section 4.3). Panels are as described for Figure 3. Larger points in the left panel denote baselines to the GBT.
For clarity, we only show long baselines to GBT on this plot (omitting long baselines to NL and HN, which sample similar (u, v) coordinates but with less sensitivity).

Figure 7. KaVA observations at λ=0.7 cm (see Section 4.4). Panels are as described for Figure 3.

Table 2
Estimated Asymptotic Gaussian Scattering Parameters

Reference maj,0q (mas) min,0q (mas) P.A.(deg)

Lo et al. (1998) 1.430±0.020 0.760±0.050 80±3
Shen et al. (2005) 1.390±0.020 0.690±0.060 80
Bower et al. (2006) 1.309±0.015 0.640 0.050

0.040
-
+ 78 1.0

0.8
-
+

Lu et al. (2011) 1.335±0.014 0.817±0.042 L
Psaltis et al. (2015b) a 1.320±0.040 0.820±0.210 77.8±9.7
Bower et al. (2015a) 1.320±0.020 0.670±0.020 81.8±0.2
This Work 1.380±0.013 0.703±0.013 81.9±0.2

Notes.These parameters give the scattering kernel at the reference wavelength
λ0≡1 cm.
a Unlike the other entries in this table, Psaltis et al. (2015b) reanalyzed a
sample of published Gaussian parameter fits rather than analyzing new or
archival observations directly.
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VLA observations, and VLBA observations at 3.6 and 1.3 cm)
were not used by any of these previous studies. Relative to past
work, the major and minor axes are consistent with the values
found by Shen et al. (2005), but our major axis normalization is
4.7σ larger than the estimate of Bower et al. (2006) and 3σ
larger than that of Bower et al. (2015a) (both relied on the same
VLA+PT image-domain analysis at long wavelengths). Our
major axis uncertainty is similar to these previous results,
largely because of the increased error budget to accommodate
refractive fluctuations, while our minor axis uncertainty is
significantly smaller than all past work. While our position
angle is somewhat larger than most previous studies, it is close
to the value and uncertainty estimated by Bower et al. (2015a).

5.2. Constraining α and rin

The remaining two parameters of our scattering model, α
and rin, can be constrained in two ways: through a change in
the scatter-broadening law from its asymptotic behavior at long
wavelengths and through stochastic signatures of refractive
scattering. For both types of constraints, the effects of α and rin
must be considered jointly; α will determine the asymptotic
behavior at short wavelengths, but rin determines the scale on
which the scattering transitions between the two asymptotic
regimes. Many previous efforts have constrained α by fitting
the wavelength dependence of scatter-broadening to a power
law λβ or by quantifying Gaussianity of the scattered image
(e.g., Lo et al. 1998; Bower et al. 2004; Lu et al. 2011).
However, these studies have implicitly assumed the limit
r 0in  , effectively fitting centimeter data to the properties of
the scattering expected for the asymptotic regime 0l  . As
we will demonstrate, jointly fitting the two parameters is
imperative to derive meaningful parameter constraints for α
and rin.

We will now derive a series of constraints α and rin. In
Section 5.2.1, we derive constraints from the refractive noise

on long baselines at 3.6 and 1.3 cm. In Section 5.2.2, we
determine constraints from the stringent limits on refractive
fluctuations of the image size at 7 mm. In Section 5.2.3, we
derive constraints based on the λ2 scaling of scatter broadening
at centimeter wavelengths. In Section 5.2.4, we establish
constraints based on Gaussianity of the scattered image at
1.3 cm. While any of these individual constraints can only
weakly constrain the parameter pair (α, rin), the cumulative
constraints are quite restrictive, summarized in Figure 9. We
discuss these constraints and give our recommended character-
istic values in Section 5.2.5.

5.2.1. Constraints from Refractive Noise at 3.6 and 1.3 cm

For a single long-baseline visibility measurement, the
refractive noise is drawn from a circular Gaussian distribution.
On baselines that heavily resolve the ensemble-average image,
the visibility amplitude is then drawn from a Rayleigh
distribution. However, the mean of this distribution is poorly
constrained by a single measurement. Moreover, refractive
noise among nearby baselines will be correlated, with a
correlation length that is comparable to the length of baselines
that begin to resolve the source (Johnson & Narayan 2016).
Consequently, our long baselines at 3.6 and 1.3 cm only sample
a few independent realizations of the refractive noise.
To combine measurements from multiple baselines, we

adopted a simple procedure. First, we only examined
visibilities that were reliably dominated by refractive noise,
with negligible contribution from the ensemble-average
structure. At 3.6 cm, we used the cut u20 106´ < <∣ ∣
40 106´ , while at 1.3 cm we used u150 10 3006´ < < ´∣ ∣
106. Next, we performed an unweighted scalar average of the
noise-debiased visibilities on these baselines. We used this
average as an approximation to the mean renormalized
refractive noise on the vector average of the baselines, for

Figure 8. (Left) Expected amplitude of the renormalized refractive noise refŝ at 3.6 cml = on the baseline u v, 23.4, 3.2 106= - ´( ) ( ) as a function of α and rin.
Colored contours show predicted values of ;refŝ the gray shaded region shows the 95% confidence range determined by the measured refractive noise (see
Section 5.2.1). For the model values, we approximate the ensemble-average image size at each wavelength using our measured size. Thus, the assumed intrinsic size
depends on α and rin because the scattering kernel depends on them. (Right) Amplitude of the refractive noise at λ=1.3 cm on the baseline
u v, 207.6, 30.4 106= - ´( ) ( ) as a function of α and rin. The gray shaded region shows the 95% confidence range determined by the measured refractive noise.
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which we expect b b bV 0.89
2 ref refs sá ñ = »p∣ ( )∣ ˆ ( ) ˆ ( ). The

average baseline was (u, v)=(23.4,−3.2)× 106 at 3.6 cm and
(u, v)=(207.6,−30.4)×106 at 1.3 cm.

In this way, we obtained an estimate of refŝ on a single
baseline at each wavelength. This simplification facilitates
direct comparisons with predictions for refŝ from a scattering
model. To validate this reduction and determine a confidence
interval for our refractive noise estimates, we generated 1000
simulated images of the scattering at both wavelengths. For
each image, we calculated the visibilities on all the long
baselines for the 3.6 and 1.3 cm observations and computed the
scalar average of the visibility amplitudes. At 3.6 cm, the mean
amplitude of the sampled refractive noise (averaged over all the
long baselines and the multiple simulations) was within 10% of
the mean amplitude for refractive noise of the average baseline.
For averaged visibility amplitudes for individual image
realizations, 95% of values fell between 0.40 and 1.90 times
the expected mean value for the fixed baseline. For draws of a
Rayleigh distributed random variable, the middle 95% of
samples will extend to 0.18 and 2.2 times the mean. Thus, our
simple averaging scheme significantly tightens the bounds on

refŝ by combining multiple correlated measurements. At
1.3 cm, the mean amplitude of the refractive noise averaged
over long baselines was within 0.1% of the mean value on the
average baseline. The middle 95% of samples fell within the
range of 0.45 to 1.70 times the expected mean noise amplitude
on the fixed baseline.

With this approach, we thereby estimate 95% confidence
intervals for σref of [0.096%, 0.45%] at (u, v)= (23.4,−3.2)×
106 for 3.6 cm, and [0.32%, 1.2%] at (u, v)= (207.6,−30.4)×
106 for 1.3 cm (both are expressed as a fraction of the total
flux density). Figure 8 shows the expected values for σref
at both wavelengths as a function of α and rin; the gray
shaded regions show the 95% confidence intervals for α and
rin based on the refractive noise measurements at both
wavelengths.

5.2.2. Constraints from Refractive Fluctuations of the Image Size

Refractive scattering causes variations in the observed
angular size of a source (Blandford & Narayan 1985). For
observations that span many refractive timescales, the observed
level of variability can then be used to constrain the scattering
model. Because the intrinsic source may also be time-variable,
measurements of the image size variability can only give an
upper limit for the variations attributable to scattering. As with
other refractive effects, fluctuations of image size will increase
with increasing α and rin.
For SgrA*, the most stringent constraints on image size

fluctuations come from observations at λ=7mm. Even without
accounting for refractive noise, observations over the past 25 years
or so consistently find a major axis size in the range of
680 750 asm– (e.g., Backer et al. 1993; Krichbaum et al. 1993;
Lo et al. 1998; Bower et al. 2004, 2014b, 2015a; Lu et al. 2011;
Akiyama et al. 2014; Zhao et al. 2017). A uniform distribution
over the entire range 680 750 asm– has a standard deviation of
20.2 asm , or fractional variations of 2.8%. Note that this range is
inflated by measurement uncertainties in the reported sizes (in
addition to scattering and intrinsic variability). Thus, we estimate
that the fractional scatter of the major axis size at 7 mml = from
refractive distortion is certainly less than 3%.
We can compare this limit to the expected refractive

fluctuations, which can be computed semi-analytically via the
framework for renormalized refractive noise developed in
Appendix A. Namely, on short baselines, the renormalized
refractive noise is dominated by refractive fluctuations in image
size. For a short baseline u, the renormalized visibility (i.e., the
visibility after normalizing the total flux density and centering
the image) is given by

uV u u1
4 ln 2

, 5
2

2 2 3 3
p

q q= - + 
ˆ ( ) ( ) ( )

where q is the source size projected along the baseline
direction (see Equations (3) and (4)). Because of scattering, the
instantaneous source size will not match the ensemble-average
value, ;qá ñ this discrepancy is what produces renormalized
refractive noise urefŝ ( ) on short baselines. Explicitly,

u u

u
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u

u
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The red lines in the right panel of Figure 9 show contours for
the values of α and rin that would produce 1%, 3%, and 5%

Figure 9. Composite constraints on α and rin. Blue lines show α-dependent
lower limits on rin from the 2l scaling of image size (major axis: solid, minor
axis: dashed; see Section 5.2.3). The solid green line shows the lower limit on
rin from the measured Gaussian image shape at 1.3 cm, while the dotted green
line shows the (more tentative) upper limit on rin from the measured non-
Gaussian image shape at 7 mm (see Section 5.2.4). Red lines show contours of
1%, 3%, and 5% for rms fluctuations of the major axis size at 7 mm;l = these
fluctuations are constrained to be less than 3%, giving an α-dependent upper
limit on rin (see Section 5.2.2). Combining these constraints, the yellow shaded
region shows the plausible range of α and r ;in the darker yellow region shows
the range without including the non-Gaussian measurement at 7 mm. Overall,
we find that 1.47a and r 600 kmin  . The star marks our recommended
characteristic values: 1.38a = and r 800 kmin = (see Section 5.2.5).
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fractional fluctuations of the major axis size at 7 mml = . For
these calculations, we hold the ensemble-average image size
fixed (approximating it by our measured size), so the intrinsic
size is also a function of these parameters because the
scattering kernel depends on them. The requirement that the
fluctuations are smaller than 3% then gives an α-dependent
upper-limit on rin.

Observe that the shapes of the image fluctuation contours are
very similar to those of the refractive noise at 1.3 cm on the
fixed baseline u 207.6, 30.4 106= - ´( ) . This similarity is
expected because both effects are dominated by scattering
modes on the same angular scale. Specifically, at 7 mm, the
dominant modes for image distortion are on the scale of the
image size, 0.7 masmajq » . At 1.3 cm, the dominant modes for
refractive noise are those matched to the angular resolution of
the long baselines, u1 1 mas~∣ ∣ .

5.2.3. Constraints from the 2l Scaling of Scattered Size

The constant scaling of image size as 2q lµ , stable image
anisotropy, and constant position angle at wavelengths

1.3 cml strongly argue against a departure of the angular
broadening from the asymptotic 2l law in this interval, as that
would require intrinsic structure to fortuitously offset the
change in angular broadening. Likewise, these properties argue
against intrinsic structure being significant at these wave-
lengths. This plausibility argument gives a lower bound on the
inner scale because the angular broadening asymptotes to

1 2q lµ + a as 0l  , with the transition when the diffractive
scale becomes larger than the inner scale.

The diffractive scale is larger at shorter wavelengths, so our
most stringent constraints on rin come from the shortest
wavelengths that exhibit the 2l law. We have found close
agreement with the 2l law across the observing bandwidth at
1.3 cm (see Figure 4), so the inner scale must exceed the
diffractive scale at 1.3 cm: r 300 kmin  . The limit is slightly
higher for lower values of α because they asymptotically give a
stronger departure from 2l scaling. The limit is slightly higher
for the minor axis than for the major axis because the former
has a larger diffractive scale.

Blue lines in the right panel of Figure 9 show α-dependent
lower limits on rin using the simple condition that the

1.3 cml = angular broadening cannot be more than 5%
smaller than the value extrapolated from l  ¥ with a pure 2l
scaling (i.e., the limit as rin  ¥). Requiring that the scaling
across the full 1.3 cml = bandwidth match a 2l law to within
the uncertainties shown in Figure 4 gives a similar constraint.

5.2.4. Constraints from the Image Gaussianity

We can also constrain α and rin from the shape of the scatter-
broadened image at a fixed wavelength. At long wavelengths, the
scatter-broadening is Gaussian and the visibility function falls as
e u2- , while at short wavelengths the visibility function falls as
e u- a

. As in Section 5.2.3, this constraint is really a plausibility
argument; the intrinsic source could fortuitously offset any change
in the angular broadening function to produce a Gaussian image
despite non-Gaussian scattering, and non-Gaussian source struc-
ture could mimic the behavior of a non-Gaussian scattering kernel.
Thus, we focus these tests on our 1.3 cm and 7mm observations,
where the baseline coverage is excellent and source structure is
subdominant to scatter broadening.

Once again, the transition between the two scaling regimes
depends on the inner scale. Specifically, the scattering kernel
will depart from a Gaussian for baselines with physical lengths
b M r1 in +( ) , whereM≈0.53 for SgrA* (see Section 2.3).
At 1.3 cm, the longest baselines that are not dominated by
refractive noise are 100 M 1300 kml~ » , so these observa-
tions can, in principle, constrain rin to be greater than

800 km~ . The lower limit is expected to increase with
decreasing α because of a sharper deviation from the Gaussian
kernel with decreasing α.
To derive constraints on α and rin using image Gaussianity

tests, we fit our 1.3 cm and 7 mm observations with the full,
non-Gaussian kernel of our scattering model. For each case, we
included refractive noise in the error budget as we did for
Gaussian fits. For the 1.3 cm fits, we used a point-source model
for the intrinsic structure. This procedure then quantifies the
baseline length at which visibilities become inconsistent with a
Gaussian curve; this break is insensitive to the distinction
between intrinsic structure and scattering because of the
convolution action of scattering in the visibility domain. We
found the best fits to the 1.3 cm data were those with rin  ¥
(giving a perfectly Gaussian image). Thus, the fits give an
α-dependent lower limit for rin. The solid green curve shown in
Figure 9 corresponds to the values with an increase of 4 in the
total chi-squared of the fitted model, corresponding to a 2σ
confidence contour. These limits range from r 520 kmin  for

1.6a = to r 930 kmin  for 1.0a = , in line with expectations
from the simple calculation in the previous paragraph.
For the 7mm data, intrinsic structure is non-negligible, so we

fixed the Gaussian scattering parameters to the estimates from
Section 5.1 and then fit for the three parameters of an anisotropic
intrinsic Gaussian source along with α and rin. These fits show a
strong indication of non-Gaussian structure, with an increase in
total chi-squared for a purely Gaussian model of 19.2 relative to
the best-fitting models with a finite inner scale (i.e., a 4 s
preference for a non-Gaussian image). The fits then provide an
α-dependent upper limit for rin. This test must be interpreted with
caution, as the intrinsic source structure is non-negligible at this
wavelength and may be non-Gaussian, although it is expected to
be Gaussian on baselines that do not significantly resolve the
intrinsic source (see Section 3.1). Because the KaVA baselines
only modestly resolve the scattered source, this assumption is
likely acceptable. Nevertheless, we still use a slightly higher
threshold for these results relative to those at 1.3 cm because the
plausibility argument is weaker. Thus, the dotted green curve
shown in Figure 9 corresponds to the values with an increase of 9
in the total chi-squared of the fitted model relative to the best-fit
model, corresponding to a 3σ confidence contour. However, when
the residual gain priors on the a priori calibration are
unconstrained, the significance of the finite inner scale is only

1s» . Thus, we regard this detection of visibility amplitude non-
Gaussianity and the corresponding upper limit on rin as tentative.

5.2.5. Recommended Characteristic Values for α and rin

For our recommended characteristic value for the inner scale,
we adopt r 800 200 kmin =  , based on the combined image
Gaussianity tests at 1.3 cm and 7 mm and the refractive noise
constraints for 3.6 and 1.3 cm. However, while the lower limit
at ∼600 km is relatively firm, we regard the upper limit as
somewhat tentative without confirmation from additional 7 mm
observations and from tests at other wavelengths.
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To obtain a characteristic value for α, we then use the joint
likelihood function of the 1.3 and 3.6 cm refractive noise with
rin as estimated above. As in Section 5.2.1, we used 1000
scattering realizations at both wavelengths. For each realiza-
tion, we sampled and then averaged visibilities on the long
baselines, following our procedure for the data. This sample
then provides an estimate for the likelihood function for ŝ on
the characteristic baseline at each wavelength. The joint
likelihood function then gives 1.38 0.04

0.08a = -
+ , where α=1.38

is the maximum likelihood estimate.

5.3. The Scattering Kernel and Intrinsic Structure of Sgr A*

Using the scattering model determined in Sections 5.1 and
5.2, we now explore the expected scattering properties for
SgrA* and estimate its wavelength-dependent intrinsic size.
Table 3 summarizes our estimates for the parameters of this
scattering model and provides additional derived quantities.

Figures 10 and 11 show our estimated major axis FWHM,
minor axis FWHM, and position angle as a function of
wavelength (these values are given in Table 1). After
normalizing by 2l- , these sizes show a significant increase
with decreasing wavelength for 1.3 cml . Because 2a < ,
the scattering law can only become steeper than 2l at short
wavelengths. Thus, this increase in normalized size robustly
indicates intrinsic structure at millimeter wavelengths.

Figures 10 and 11 also show the estimated FWHM of the
scattering kernel, including the uncertainty spanned by the
plausible range of α and rin (see Figure 9). For these estimates,
we do not define the FWHM using the second derivative of the
visibility amplitude on a zero baseline (as in Section 3.1). We
instead identify the baseline length at which the scattering
kernel falls to half, uD Mexp 1 1 21

2 1 2- + ºf
⎡⎣ ⎤⎦( ( )) , and

then derive a representative image FWHM based on the

relationship for a Gaussian image:
uFWHM

2 ln 2

1 2
q =

p
. The kernel

uncertainties become larger at shorter wavelengths because of
our limited constraints on α and rin. At 1.3 mm, the uncertainty
is ∼20% on both the major and minor axis FWHM.
Figure 12 shows our estimates of the visibility domain scattering

kernel and its uncertainties at six representative wavelengths. This
kernel is required to “deblur” measurements of SgrA*, so it is
fundamental to scattering mitigation strategies (Fish et al. 2014;
Johnson 2016). At millimeter wavelengths, the kernel differs
significantly from the prediction of the simple Gaussian/ 2l model,
and the remaining uncertainty in the scattering kernel on long
baselines is significant, primarily because of uncertainties on α and
rin. Thus, we expect that the blurring effects of scattering are
significantly weaker than have been assumed for SgrA*.
With the estimated size of the scattering kernel in place, we can

deconvolve the scattering from the observed Gaussian size to
estimate an intrinsic FWHM at each wavelength. Table 4 and
Figure 13 show the estimated intrinsic size along the major and
minor axes of the scattering kernel as a function of wavelength.
The plotted uncertainties account for uncertainties in our estimates
of the scattered size (from thermal noise, systematic effects,
and refractive distortion) and in the estimated scattering kernel.
The inferred intrinsic size is nearly isotropic and scales
approximately as θ∝λ. The largest intrinsic anisotropies are
at 3.5mm (up to ∼1.3:1) and 1.3mm (up to ∼2:1, but poorly
constrained). Because the total flux density I0 of SgrA*

rises with frequency over this range (see, e.g., Lu et al. 2011;
Bower et al. 2015b), the brightness temperature T Ib

2
src

2
0l qµ - also

rises. For instance, using 40 assrc mmq m l~ ´( ) , we estimate
T 1.1 10 Kb

10~ ´ at 1.3 cm and T 3.1 10 Kb
10~ ´ at 1.3mm.

6. Discussion

6.1. The Intrinsic Structure of Sgr A*

Our estimates for the approximately linear wavelength depend-
ence of intrinsic size are typical for stratified emission in
synchrotron self-absorbed systems (e.g., Blandford & Königl
1979; Falcke & Markoff 2000; Davelaar et al. 2018), and they are
plausible for both disk- and jet-dominated models for the radio
emission of SgrA*. However, the lack of asymmetry in the
inferred intrinsic size and the stable position angle of the scattered
image both argue against intrinsic structure that is highly
asymmetric for 3.5 mm 1.3 cm l . For instance, the model
of Falcke & Markoff (2000) predicts an image asymmetry of
roughly 4:1, and recent general relativistic magnetohydrodynamic
(GRMHD) simulations of jets show asymmetry of ∼2:1 at 7mm
(Davelaar et al. 2018). The intrinsic size of SgrA* we find is
qualitatively consistent with radiatively inefficient accretion flow
(RIAF) models (e.g., Özel et al. 2000; Yuan et al. 2003; Yuan &
Narayan 2014), which are more plausible for producing a nearly
isotropic image at wavelengths as long as 1.3 cm. Recent general
relativistic radiation magnetohydrodynamic (GRRMHD) simula-
tions show good agreement with our estimated size at 1.3mm and
also show a similar size trend, but they generally underpredict the
size at 7mm and 1.3 cm (Chael et al. 2018), perhaps highlighting
the contribution from a non-thermal population of electrons.
Note that there has not been consistency in how image

FWHM from simulations is defined. For comparison with
Gaussian image sizes reported here and elsewhere, simulations
should compute the image FWHM from the second moment
along principal axes of the image brightness distribution (see
Section 3.1). While some simulation papers have adopted this

Table 3
Estimated Scattering Model for SgrA*

Parameter Estimate

Geometrical parameters
Scattering screen magnification M D R 0.53 0.08= = 
Earth-scattering distance D 2.7 0.3 kpc= 
SgrA*-scattering distance R 5.4 0.3 kpc= 
Scattering parameters
Reference wavelength 1 cm0l º
Gaussian major axis FWHM 1.380 0.013 masmaj,0q = 
Gaussian minor axis FWHM 0.703 0.013 masmin,0q = 
Gaussian position angle 81 . 9 0 . 2PAf =   
Power-law index of rDf ( ) 1.38 0.04

0.08a = -
+

Power-law index of qQ( ) and qPne ( ) 2 3.38 0.04
0.08b a= + = -

+

Inner scale r 800 200 kmin = 
Scattering transitions
Gaussian–inertial kernel transition 5 mml =
Weak–strong scattering transition 0.2 mml =

Note. Values and uncertainties for α, β, and rin use our tentative upper-limit
from non-Gaussianity at 7 mm (see Figure 9). We define the Gaussian-inertial
kernel transition as the wavelength for which the diffractive scale and inner scale
are equal. At significantly longer wavelengths, the scattering kernel will be
Gaussian (determined by the three asymptotic Gaussian parameters); at
significantly shorter wavelengths, the shape will be determined by α. The
weak–strong transition is the wavelength for which the diffractive scale and
refractive scale are equal. For Kolmogorov turbulence, α=5/3 and β=11/3.
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convention for comparison (e.g., Mościbrodzka et al. 2009,
2012; Chael et al. 2018; Davelaar et al. 2018), others have
developed ad hoc definitions for the reported image size (e.g.,
Falcke & Markoff 2000; Özel et al. 2000; Chan et al. 2015;
Psaltis et al. 2015a) or do not state their procedure for
estimating the size. An alternative is to fit or compare
simulations directly to measured interferometric visibilities
(e.g., Broderick et al. 2009, 2016; Dexter et al. 2010; Kim
et al. 2016; Pu et al. 2016; Gold et al. 2017).

6.2. Implications for Interstellar Scattering

We now re-evaluate our assumptions for the scattering of
SgrA*, and discuss implications of our findings.

6.2.1. The Outer Scale of Turbulence

All of our calculations and model fits have assumed that the
outer scale of turbulence is effectively infinite. We now

evaluate this assumption a posteriori. In particular, Goldreich &

Sridhar (2006) estimated that r 10 cm R
out

11
130 pc

5 2
 ´ ´( )

T

10 K

3 4
4( ) . For the previously assumed value of R 130 pc=

(Lazio & Cordes 1998), they noted that this scale is
unacceptably small, as it produces too much heating and it
does not correspond to a reasonable astronomical scale for
nonlinear density fluctuations. In addition to these objections,
our measurements of refractive noise give a lower bound for
the outer scale because refractive noise will be suppressed on
angular scales larger than r Dout~ . Thus, our measurements of
refractive noise on baselines with u 107~∣ ∣ at 3.6 cm show that
r D2 10 10 cmout

1 7 14 p ~-( ) . With the modified distance to
the scattering (see Section 2.3 and Bower et al. 2014a), the
problems identified by Goldreich & Sridhar (2006) are
mitigated, as we now discuss in detail.
Specifically, an upper limit on the outer scale can be

estimated as the scale on which the scattering power spectrum

Figure 10. Gaussian parameters of the scattered image of SgrA* as a function of wavelength. Major and minor axes sizes are normalized by 2l- . Black points show
our measurements with 1s uncertainties (Table 1). The red region shows our fitted asymptotic parameters maj,0q , min,0q , and PAf with their respective uncertainties.
The blue region shows the plausible range of values for the scattering kernel based on our constraints on all scattering parameters, including α and rin (see Figure 9).
The purple region shows the size corresponding to a simple source model, with srcq lµ , added at quadrature to the scattering law, with the associated scattering model
uncertainty. The blue and purple dashed curves show the results corresponding to our recommended characteristic values for α and rin.

Figure 11. Same as Figure 10, but without normalizing sizes by 2l- .
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requires density fluctuations of order unity. Suppose that the
scattering material is statistically homogeneous over a region of
length z along the line of sight. Electron density fluctuations
n ℓed ( ) on a scale ℓ then introduce corresponding screen phase
fluctuations of ℓ r ℓz n ℓe edf l d~( ) ( ) (because of the random
walk through z/ℓ regions; see Section 2.1). Taking
n ℓ n ℓ re e out

1 2d ~ a-( ) ( )( ) , we obtain,

ℓ n r zℓ
ℓ

r

r n r zr r

,

, 7

e e
out

1 2

out e e diff
2 1

diff

df l

l

~



a

a

-

-

⎛
⎝⎜

⎞
⎠⎟( )

( ) ( )

( )

( )

where r M1diff scattl q» +(( ) ) is the diffractive scale (i.e.,
r 1diffdf ~( ) ). For SgrA*, r 10 cmdiff

8» at 1 cml = . With

our characteristic value 1.38a = , we then find

r
n z

10 pc
10 cm 10 pc

. 8out
e

3

5.26 2.63

 ´
-

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟( ) ( )

For comparison, Armstrong et al. (1995) estimate r 30 pcout 
for the scattering material within 1 kpc. For Equation (8) to
violate our measured lower limit for the 3.6 cm refractive noise
would require much lower electron densities n 0.1e  or larger
values of α (approximately 5 3a , for the characteristic

Figure 12. Scattering kernel of SgrA* as a function of baseline length along the major and minor axes at representative wavelengths. For each panel, the red curves
correspond to a Gaussian kernel with our measured scattering parameters, the blue shaded region shows the plausible range of values based on our constraints on the
scattering model, and the dashed blue line shows the kernel corresponding to our recommended characteristic values for the scattering parameters. For baselines much
longer than the inner scale, the kernel is non-Gaussian, falling as e b- a

rather than e b2- . For the EHT, which has baselines extending to 6 Gl~ along the major axis and
to 9 Gl~ along the minor axis at 1.3 mm, the expected kernel differs significantly from the Gaussian prediction, and we expect that the effects of scattering are
substantially weaker than have been assumed. Because of its intrinsic structure, SgrA* is heavily resolved for baselines of 3 6 Gl– (e.g., Lu et al. 2018); the remaining
kernel uncertainties may have minimal effects for imaging at 1.3 and 0.87 mm (see, e.g., Figure 11).

Table 4
Estimated Intrinsic Size of SgrA*

λ (cm) majq ( asm ) minq ( asm )

Char. Plausible Char. Plausible

3.598 4000 1900
1200

-
+ 4000 4000

1800
-
+ L L

1.261 550 370
210

-
+ 550 550

280
-
+ 560 90

80
-
+ 560 160

120
-
+

0.698 327 46
41

-
+ 327 69

58
-
+ 274 13

12
-
+ 274 25

23
-
+

0.348 143 6
6

-
+ 143 12

11
-
+ 114 5

5
-
+ 114 8

7
-
+

0.131 56 6
6

-
+ 56 7

7
-
+ 59 31

30
-
+ 59 31

30
-
+

Note.These estimates of intrinsic FWHM correspond to directions along the
major and minor axes of the scattering kernel. We give uncertainties for both
the assumed characteristic scattering parameters (which only account for 1s
measurement uncertainties) and for the full range of plausible scattering
parameters (which account for remaining uncertainties in the scattering kernel).
We omit the estimated intrinsic minor axis at 3.6 cm because the minor axis
scattering was estimated from this measurement (see Section 5.1).

Figure 13. Estimated intrinsic size of SgrA* along the directions of the major
and minor axes of the scattering kernel. The error bars denote the range of
values accounting for uncertainties in the full scattering model and for ±1σ
measurement uncertainty (see Table 1). Diamonds show central values for
measured parameters and they use our recommended characteristic values for α
and rin. The major/minor axis markers are offset slightly in wavelength, for
visual clarity. We also show the expected diameter of the black hole “shadow”
and plot a simple isotropic source model with size directly proportional to
wavelength. We do not find evidence for significant intrinsic anisotropy at any
wavelength or for a steep scaling of intrinsic size with wavelength.
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values of z and ne given in Equation (8)), although these results
are highly sensitive to the screen thickness, z. From the
dispersion measure of the Galactic Center magnetar (e.g.,
Eatough et al. 2013; Kravchenko et al. 2016), we can
only estimate an upper bound on the plasma density, ne <

z180 cm 10 pc3-( ) ( ). Regardless, the outer scale required by
our scattering model is not implausible.

Goldreich & Sridhar (2006) have also provided an
alternative model for interstellar scattering from folded
magnetic field structures. Their proposed model reproduces
the 2l scaling and Gaussian scatter-broadening for SgrA*, but
it also predicts significantly suppressed refractive scintillation.
Furthermore, intrinsic structure would be blurred out on small
angular scales from the scattering in this model. Thus, our
measurements of image substructure at 1.3 cm conclusively
reject the folded field model for the scattering of SgrA* in its
simplest form. However, we will demonstrate later that this
model is compatible with our measurements if the inner scale
(corresponding to the thickness of current sheets in this model)
is significantly larger than expected: r 2 10 kmin

6~ ´ . In this
case, the Goldreich & Sridhar (2006) spectrum would instead
produce significantly enhanced refractive effects at millimeter
wavelengths.

6.2.2. The Inner Scale of Turbulence

Our measurements constrain the inner scale of turbulence,
both through plausibility arguments related to the 2l depend-
ence of the angular broadening and image Gaussianity and by
relating the scattering power on large scales (refractive noise)
to that on small scales (the diffractive blurring). Ultimately, our
most stringent lower limit on the inner scale comes from the
image Gaussianity at 1.3 cm, giving r 600 kmin  . Likewise,
the 7 mm data show a statistically significant departure from a
Gaussian image, with a preference for r 1000 kmin  , although
we regard this upper limit as tentative (see Section 5.2.4). Thus,
we have adopted a recommended characteristic value of
r 800 kmin = . While the scattering of SgrA* is anomalously
strong, the dissipation mechanism for turbulence in the ISM
may be universal. Thus, we now compare our estimate for rin
with previous theoretical and observational estimates.

Using VLBI measurements of the angular broadening
for several heavily scattered objects, Spangler & Gwinn
(1990) estimated an inner scale of 50 200 km– . Based on
weak scintillation measurements at centimeter wavelengths,
Armstrong et al. (1995) constrained the inner scale for the
nearby ISM (within 1 kpc) to be less than 5 10 km4~ ´ .
Rickett et al. (2009) estimated r 70 100 kmin = – from the
pulse-broadening of PSRJ1644-4559. Smirnova & Shishov
(2010) estimated r 350 150 kmin =  from the pulse-broad-
ening of PSRB2111+46. Each of these studies has its own
limitations. For instance, the pulsar analyses assumed isotropic
scattering, and Rickett et al. (2009) noted that a (finely tuned)
anisotropy would allow an arbitrarily large inner scale. Perhaps
the most significant difficulty in our study of SgrA* is that
intrinsic source structure becomes significant for the baselines
and wavelengths that are sensitive to a direct estimate of the
inner scale for SgrA*. Nevertheless, our lower limit on the
inner scale is quite robust.

Goldreich & Sridhar (1995) suggest that the inner scale in
the ISM may approach the ion Larmor radius, and Spangler &
Gwinn (1990) propose that the inner scale corresponds to the

larger of the ion inertial length and the ion Larmor radius in the
scattering medium. The ion inertial length is ℓ Vi A i= W »

n230 cm kme
3- , where V B n m4A e ip= is the Alfvén

speed and eB m ci iW = ( ) is the ion cyclotron frequency.
The ion Larmor radius is r v 930 kmi th i= W » ´

B T

1 G

1

10 K

1 2
4m

-( ) ( ) , where v kT mth i= is the ion thermal

speed. Given the strong scattering of SgrA*, it is likely that the
ion Larmor radius will then determine the inner scale in this
model. The required B 1 Gm~ is somewhat lower than
expected for magnetic fields in the ISM at the Galactocentric
distance R 5.5 kpc~ (e.g., Han et al. 2006), and it may suggest
that the inner scale is a few times larger than ri.
In terms of a specific model for the scattering of SgrA*,

Sicheneder & Dexter (2017) have proposed that the scattering
may arise in a single H II region along the line of sight, with
density n 200 cme

3~ - and radius ∼3 pc. They note that this
region can also produce the observed rotation measure of the
Galactic Center magnetar SGRJ1745-2900, if the field
strengths in the scattering material are 15 70 Gm– . In this
model, the ion inertial length is only ℓ 10 20 kmi ~ – and the
ion Larmor radius is r 60 kmi  . Thus, our estimates of an
inner scale that is significantly higher than either of these
values support the scenario in which the large rotation measure
(RM) of the magnetar arises from a local contribution near the
Galactic Center (Eatough et al. 2013; Desvignes et al. 2018).
For smaller magnetic fields, B 1 Gm~ , the parameters
identified by Sicheneder & Dexter (2017) remain plausible
for the scattering.

6.2.3. The Power-law Index of Turbulence

Figure 14 shows our constraints on the power spectrum of
phase fluctuations, qQ( ), along the direction of the scattering
major axis. Refractive noise on a long baseline u is dominated
by refractive modes with q u D2p~ . Thus, our measurements
of refractive noise at 3.6 and 1.3 cm constrain the power in
wavenumbers q 10 10 cm1 13 14~- – . In addition, our mea-
surements of the asymptotic Gaussian angular broadening
constrain the power in wavenumbers q r1

in~- , with the
exact constraint also weakly dependent on α: Q r rin

1
in
4µ-( )

1 2aG -( ).
As is evident from Figure 14, larger values of the inner scale

require a flatter power spectrum for the measured refractive
noise to be compatible with the measured angular broadening
(see also Figure 9). Allowing arbitrarily small inner scales, we
find 1.6a , while including our derived constraints on the
inner scale, we obtain 1.47a < . Thus, a Kolmogorov spectrum
(α= 5/3) is incompatible with our measurements, as is an
α=3/2 spectrum (see, e.g., Iroshnikov 1964; Kraichnan 1965;
Sridhar & Goldreich 1994; Goldreich & Sridhar 1995). Our
results are at odds with measurements for the local ISM (e.g.,
Armstrong et al. 1995), the wavelength dependence of pulsar
temporal broadening (e.g., Löhmer et al. 2001; Bhat et al.
2004; Lewandowski et al. 2013), and VLBI of heavily scattered
sources (Spangler & Gwinn 1990), all of which tend to infer
somewhat larger values of α. We now outline possible
generalizations to our scattering model that might render
higher values of α, including a Kolmogorov spectrum, feasible.
The first possibility is an outer scale of turbulence that is

similar to the scales probed at 3.6 cm, thereby reducing the
3.6 cm refractive noise but perhaps not the 1.3 cm refractive
noise (which probes smaller scales). The 3.6 cm refractive
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noise corresponds to scattering modes with a transverse scale of
∼4 au on the scattering screen, so the required outer scale is
r 1 auout ~ . This value is somewhat smaller than the lower
limit estimated by Armstrong et al. (1995). Moreover, this
is a finely tuned constraint, requiring the outer scale to be
precisely matched to our observing parameters—a smaller
outer scale would be inconsistent with the observed 1.3 cm
refractive noise, and a larger outer scale would not affect the
3.6 cm noise.

A second possibility is that there is extra power located near
the dissipation scale. Spectral flattening near the inner scale has
been seen in the solar wind (e.g., Neugebauer 1975; Celnikier
et al. 1983; Coles et al. 1991) and possibly also in the ISM
(Smirnova & Shishov 2010). A pile-up in power by a factor of
∼15 would reconcile our measurements with a Kolmogorov
spectrum (see Figure 14); a factor of ≈2 would be needed for
an 3 2a = spectrum.

A more radical possibility, which is not excluded by our
data, is that the spectrum is extremely shallow and the inner

scale is correspondingly large. In particular, the model of
Goldreich & Sridhar (2006) produces a power spectrum with
α=0, which would be consistent with all our measurements if
r 2 10 kmin

6~ ´ . This inner scale is a factor of 20 larger than
the characteristic value used by Goldreich & Sridhar (2006)
and requires an outer scale that is 400 times larger than
expected, or a few kpc. Nevertheless, our measurements are
insufficient to rule out this type of power spectrum, and it
would produce refractive signatures for the EHT that are
approximately 10 times stronger than those predicted by our
recommended characteristic model. Thus, we expect continued
studies at 1.3 mm (and possibly 3.5 mm) will be able to
conclusively confirm or reject this scattering model for SgrA*.

6.3. Sensitivity to the Assumed Scattering Model

We have analyzed all our data in the context of a single
scattering model. The anisotropy in this model is determined by
the magnetic field wander along the line of sight relative to its
preferred orientation (which determines the minor axis of the
scattering ellipse). Psaltis et al. (2018) give three representative
models for the field wander: “von Mises,” “Dipole,” and
“Boxcar.” The vonMises model represents the angular field
wander using a generalized Gaussian distribution for circular
quantities, the Dipole model uses a change of variables to
rescale the principal axes of the power spectrum, and the
Boxcar model has a power spectrum that is isotropic across a
restricted range of angles and is zero elsewhere. Because of the
efficient computational tools developed in Appendix B, all of
our results have used the Dipole model. We now evaluate how
sensitive our conclusions are to this choice.
Psaltis et al. (2018) show that the shape of the scattering

kernel is almost independent of the choice of scattering model.
However, the refractive noise along the minor axis is sensitive
to the scattering model. Because our measurements of
refractive noise are predominantly along the major axis, our
results are not strongly affected by the choice of scattering
model.
For example, the mean refractive noise on our long baselines

at 3.6 cm changes by less than ±2% among the three scattering
models (well within our uncertainty from sampling only a few
elements of the refractive noise). Likewise, the 95% confidence
intervals are almost identical for the three models. For the
average refractive noise on long baselines at 1.3 cm, the von
Mises and Dipole models agree to within 1%, but the Boxcar
model differs by 5%. Again, these differences are negligible
within our error budget.
Thus, we conclude that our specific choice of scattering

model is irrelevant for our results. Equivalently, our current
measurements provide no firm guidance for discriminating
among these models for the magnetic field wander. Future
measurements of refractive noise on long baselines along the
minor axis could immediately rule out the Boxcar model and
would be sensitive to differences between the von Mises and
Dipole models (see, e.g., Figures 9 and 13 in Psaltis et al.
2018).

6.4. Implications for Continued Studies of Sgr A*

For the scattering parameters that we have identified, a
Gaussian scattering kernel is likely a good approximation for
SgrA* for centimeter wavelengths, although the full non-
Gaussian kernel shape should be used for continued studies at

Figure 14. Summary of constraints on the power spectrum of phase
fluctuations, qQ( ). Refractive noise on long baselines at 3.6 and 1.3 cm
constrains the power in wavenumbers q 10 10 cm1 13 14~- – (red diamonds).
Asymptotic Gaussian angular broadening constrains the power in wavenum-
bers q r ;in

1~ - the corresponding constraint on Q depends strongly on rin and
weakly on α. The orange band shows the angular broadening constraint as a
function of q rin

1= - over the range 1 5 3a< < . Three models are plotted: a
Kolmogorov spectrum with our minimum allowed inner scale (purple; α =
5/3, r 600 kmin = ), our recommended characteristic model (blue; α = 1.38,
r 800 kmin = ), and a Goldreich & Sridhar (2006) spectrum (dashed gray;
α = 0, r 2 10 kmin

6= ´ ). Corresponding colored circles show the constraint
on Q from angular broadening for each model. While a Kolmogorov spectrum
is compatible with the refractive noise measurements taken alone, it would
require spectral flattening or additional power near the inner scale to be
compatible with the measured angular broadening, as shown by the horizontal
purple dashed line. The green shaded region shows the range of modes that
contribute refractive noise to EHT images of SgrA* ( Qrefs µ ). Note that
refractive noise predictions from our model for the EHT are rather insensitive
to possible generalizations that would allow α=5/3. However, the Goldreich
& Sridhar (2006) spectrum would increase refractive noise by a factor of ≈10
relative to our characteristic model.
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millimeter wavelengths. The full kernel shape is especially
important for scattering mitigation in imaging with EHT data
(Fish et al. 2014; Johnson 2016).

We have shown that refractive noise is a critical component
of the error budget when model fitting to observations of
SgrA*. In addition, we caution that inferences of intrinsic size
should account for refractive image distortion. At long
wavelengths, stochastic changes from refractive distortion can
exceed the contribution of intrinsic structure (see Figure 15).
Our results suggest that intrinsic structure can only be securely
decoupled from refractive distortion for 3.6 cml (minor
axis) or 1.3 cml (major axis). Note that these are
fundamental limitations; they would apply even if the
sensitivity and baseline coverage of the observations were
perfect.

Our work has two significant implications for imaging
SgrA* with the EHT. First, we have shown that the scattering
kernel may be much smaller than has been estimated, so the
blurring effects of scattering may be less severe than have been
assumed (see Figure 12). Second, we find 1.47a , which
produces significantly less refractive noise than the standard
Kolmogorov picture; it predicts that the renormalized refractive
noise is at most ∼1% of the zero-baseline flux density (see
Figure 16). This estimate reinforces the conclusions of Fish
et al. (2016) and Lu et al. (2018) that refractive noise is
unlikely to be a significant component of the error budget for
past EHT observations. Both these implications improve the
prospects for horizon-scale imaging at 1.3 mm. However,
continued observations must also account for the possibility of
strong refractive effects from shallow spectra, such as from the
model with α=0 and r 2 10 kmin

6= ´ . While this model
remains speculative and lacks support from other lines of sight,
it would produce striking differences from our characteristic
model for EHT observations (an increase in refractive noise by

a factor of 10) and should be tested further with long-baseline
measurements at 1.3 mm and 3.5 mm.

7. Summary

We have analyzed observations of SgrA* at wavelengths
from 1.3 mm to 30 cm using a physically motivated model for
its scattering (developed in Psaltis et al. 2018). At long
wavelengths, the angular broadening from scattering is an
anisotropic Gaussian, and its size scales as scatt

2q lµ . At
shorter wavelengths, the shape and wavelength dependence of
the scattering depend on the inner scale of turbulence, rin, and
on the power-law index of the scattering, α. Using a new
prescription to perform model fitting with refractive noise in
the error budget, we are able to estimate the asymptotic
Gaussian scattering parameters to excellent accuracy (see
Table 2). In addition, we show that 1.47a and r 600 kmin 
(our recommended characteristic values for these parameters
are 1.38a = and r 800 kmin = ). Our recommended scattering
parameters are summarized in Table 3.
After deconvolving the effects of scattering from our

estimated sizes of the scatter-broadened images, we find that
the intrinsic image of SgrA* is nearly isotropic, with FWHM

40 assrc mmq m l~ ´( ) from 1.3 mm to 1.3 cm. While this
linear wavelength dependence for the emission size is natural
for both disk- and jet-dominated models, the nearly isotropic
image shape strongly favors disk models. At 1.3 mm, where the
emission region is expected to be largely optically thin, our
estimated image size is consistent with predictions from recent
GRRMHD simulations (e.g., Chael et al. 2018).
For ISM scattering, our most surprising conclusion is that a

Kolmogorov spectrum (α= 5/3) in the inertial range is
incompatible with our observations. However, our constraints
on α are somewhat indirect, as they relate the refractive power
in large scattering modes to the diffractive power from small
scattering modes (see Figure 14). For a generalized scattering
model, larger values of α are possible but would require
continuous injection of energy on au -scales, a pile-up of
energy near the inner scale ( 10 km3~ ), or a small outer scale
for the turbulence ( 1 au~ ).
We have also shown that the inner scale cannot be smaller

than 600 km and is likely r 800 kmin » . This scale is
comparable to the ion Larmor radius for regions of the ISM

Figure 15. Comparison of the wavelength-dependent fractional effects from
intrinsic image structure and from refractive image distortion. The intrinsic
curves show the fractional increase in the scattered image size because of
intrinsic structure: 1 scatt eaq q- , where scattq is the size of a scattered point
source and eaq is the angular size of an extended source using our estimated
wavelength-dependent size of SgrA*. The refractive distortion curves show the
expected fractional fluctuations of image size among different observing
epochs because of refractive scattering (see Section 5.2.2). Intrinsic structure
can only be reliably estimated when refractive jitter is significantly smaller than
the intrinsic contribution, irrespective of the observing sensitivity or baseline
coverage. Requiring that the fractional increase from intrinsic size must be at
least three times the rms distortion, we estimate that intrinsic properties for the
major axis can only be reliably constrained for observations with 1.3 cml ,
while intrinsic properties for the minor axis can only be constrained for
observations with 3.6 cml .

Figure 16. Expected rms of refractive noise (dashed) and renormalized
refractive noise (solid) for SgrA* at 1.3 mm (i.e., for EHT observations). The
curves correspond to our recommended characteristic scattering model and an
isotropic intrinsic Gaussian source with FWHM 52 assrcq m= . To express the
refractive noise in units of flux density, we assume a total flux density of 3.5 Jy
for SgrA*.
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with weak magnetic fields B 1 Gm~ , thereby supporting
identification of the ion Larmor radius (or a few times this
radius) with the dissipation scale of ISM turbulence. This
estimate also suggests that the rotation measure associated with
the scattering material is modest, and hence that the rotation
measure of the Galactic Center magnetar is dominated by local
contributions (Eatough et al. 2013) rather than from the
scattering material (Sicheneder & Dexter 2017). Our estimated
rin is also comparable to the ion inertial length for
n 0.1 cme

3~ - and requires n 0.1 cme
3 - if the inner scale

is determined by the larger of these characteristic two plasma
length scales (Spangler & Gwinn 1990). However, we cannot
conclusively rule out much shallower spectra with correspond-
ingly larger inner scales.

While our primary objective has been to constrain the
parameters of our specific scattering model, our observations
also constrain alternative theories for the scattering of SgrA*.
For example, Goldreich & Sridhar (2006) have proposed a
model in which the scattering is caused by an ensemble of
folded current sheets in the ISM. While this model naturally
reproduces the 2l scaling of angular broadening and the
Gaussian image at long radio wavelengths, it predicts an
absence of refractive scattering effects. This model would not
produce scattering substructure in images, and any intrinsic
substructure would be blurred out by small-scale scattering
modes. Hence, the pronounced long-baseline refractive noise at
1.3 cm enables us to firmly reject this alternative scattering
model for SgrA* in its simplest form (see also Gwinn
et al. 2014). However, the model is compatible with our
measurements if the thickness of the current sheets is
significantly larger than expected, corresponding to r 2in ~ ´
10 km6 , in which case it would instead produce strongly
enhanced refractive effects at millimeter wavelengths. Thus,
we expect that continued observations with the Global 3 mm
VLBI Array (GMVA) and EHT will be sufficient to firmly
support or reject this model.

Our results highlight the importance of including refractive
noise when fitting models to radio observations of SgrA*.
Refractive uncertainties can plausibly explain many of the
discrepancies in past measurements of the size of SgrA*, such
as those identified by Psaltis et al. (2015b). In addition, we
have shown that refractive effects likely prohibit a meaningful
study of intrinsic structure at wavelengths longer than 1.3 cm
(or 3.6 cm for the minor axis; see Figure 15). Nevertheless, our
results also show that both the blurring and substructure from
scattering may be significantly smaller at 1.3 mm than
expected. Thus, the prospects for deeper study of SgrA* at
millimeter wavelengths, including imaging with the EHT, are
excellent.
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Appendix A
Calculating Renormalized Refractive Noise

As described in Section 2.2, refractive noise includes
contributions that may not be appropriate for the relevant error
budget. For instance, the refractive noise on a zero-baseline
corresponds to refractive modulation of the total flux density,
which may be absorbed into model parameters. Likewise, the
variance in the imaginary part of visibilities on short baselines
is produced by image wander, which is only relevant for
observations with absolute phase referencing. We now derive
“renormalized” refractive noise expressions, which remove the
contributions of flux density modulation and/or image wander.
We derive expressions to efficiently compute properties of
renormalized refractive noise semi-analytically, following the
methodology and notation of Johnson & Narayan (2016) (see
also Blandford & Narayan 1985).
To proceed, we will first define the renormalized average

visibility bVâ ( ) as the visibility corresponding to a scattered
image that has been normalized to have unit total flux density
(e.g., V 0 1a =ˆ ( ) ) and that has been shifted such that its
brightness distribution is centered on the origin:
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In these expressions and throughout the remainder of this
paper, a subscript “a” denotes a quantity in the average image
regime, while “ea” denotes a quantity in the ensemble-average
image regime (Goodman & Narayan 1989; Narayan &
Goodman 1989). The original image centroid, x0,a, is given
as a transverse displacement on the scattering screen. Thus, in
angular units, the centroid is at x D0,a 0,ah º . We assume that
the refractive effects are only a small perturbation of the
ensemble-average image, so the final expression only includes
refractive terms to linear order.
The renormalized refractive noise can then be written
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The prefactor in this expression only depends on the ensemble-
average visibility. It normalizes the ensemble-average image to

21

The Astrophysical Journal, 865:104 (24pp), 2018 October 1 Johnson et al.



have unit flux density and to be centered on the origin. The first
term inside the square brackets is the full refractive noise of the
average image. The remaining two terms remove the contribu-
tions from flux modulation and from image wander, respec-
tively. To simplify the remainder of our discussion, we will
assume that the ensemble-average image is centered on the
origin: x 00,ea = and x x0,a 0,aD = .

To estimate properties of the refractive noise, we must
determine the function r bf ; ,V l( )ˆ defined by bVaD ºˆ ( )

r r b rd f ; ,2
Vò l f( ) ( )ˆ , where rf ( ) is the refractive component

of the scattering screen phase (i.e., consisting only of modes
with wavelengths longer than the Fresnel scale). For example,
the average visibility is approximated as (see Johnson &
Narayan 2016, Equations (11) and (12))
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These equations arise from the approximate representation of
scattering in the geometric optics regime, which gives the
scattered image rIa ( ) in terms of the ensemble-average image

rIea ( ) and the refractive scattering screen phase gradients:
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To denote the integral correspondence in Equation (11), we
will introduce the shorthand b r bV f ; ,a V lD «( ) ( ). Obviously,
we then have rV f0 ; 0,a V lD «( ) ( ). Finally, note that
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where b denotes a gradient with respect to the baseline (not the
directional derivative b · ). This general identity relates an image
centroid to the corresponding visibility gradient at zero baseline.
We will use the notation that b bV Vb b ba 0 0 a º = =( )⌋ ( ).
Thus, x b bi V i Vb b
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Putting everything together, we obtain
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For computational purposes, we require the Fourier-conjugate
quantity, q b r r bf d f e; , ; , q ri

V
2

Vòl lº -˜ ( ) ( )ˆ ˆ · , which follows

trivially from Equation (15):
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where q bf ; ,V l˜ ( ) is (Johnson & Narayan 2016, Equation (15))
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As in Equation (10), the prefactor in Equation (16) normalizes
the ensemble-average image to have unit total flux density. The
first term in the brackets gives the usual contribution of
refractive noise, the second term eliminates noise from
refractive flux modulation, and the third term eliminates noise
from refractive position wander.
We can also express Equation (16) explicitly in terms of the

ensemble-average visibility and its gradient:
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In this expression, the terms that eliminate flux modulation and
image wander are mixed.
A benefit of these representations is that we can easily calculate

the corresponding functions for the real or imaginary compon-
ents of the normalized refractive noise; e.g., bVRe aD «[ ˆ ( )]

r bf ; ,V,re l( )ˆ . These functions are necessary to estimate the full
covariance matrix of the complex refractive noise among different
interferometric baselines. Specifically, because r bf ; ,V l- =( )ˆ

r bf ; ,V
* l( )ˆ and the Fourier transform is linear, we obtain
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Using these functions, we can compute statistical properties
of the renormalized refractive noise using the expressions given
in Johnson & Narayan (2016), with fṼ replaced by f V

˜ ˆ . For
example, the variance of the renormalized refractive noise on a
baseline b is
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Appendix B
Efficient Computation of Refractive Noise

Even the simplified expressions for refractive noise (e.g.,
Equation (20)) remain numerically expensive, and an efficient
approximation is necessary for our fitting framework. We now
derive a suitable approximation by making two key simplifica-
tions: we approximate the ensemble-average visibility as an
elliptical Gaussian, and we approximate the power spectrum

qQ q 2µ a- +( ) ( ) as a sum of exponentials. With these
approximations, the (renormalized) refractive noise integrals
(e.g., Equation (20)) become Gaussian integrals and can be
computed analytically. The first of these approximations is
likely excellent for SgrA*; the second can achieve any desired
accuracy based on a simple prescription that we now develop.

Specifically, we use the framework of Psaltis et al. (2018) to
define the power spectrum of phase fluctuations in the
scattering screen. In this framework, the power spectrum arises
from a wandering magnetic field direction throughout the
scattering medium; anisotropic scattering arises if the field has
a preferred direction, with the major axis of the scattering
orthogonal to the preferred field direction. In this framework,
the power spectrum takes the form,

qQ Q qr q r Pexp , 21qin
2 2
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where P q 0f f-( ) describes the (normalized) angular distribu-
tion of scattering power, and the overall normalization Q̄ is
given by
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We will use the “dipole” model of Psaltis et al. (2018):
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where kz is determined by the asymptotic (l  ¥) asymmetry
of the scatter-broadening:
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With this model, the power spectrum can be written
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We can now derive an approximation of qQ( ) about some
point q0. For this, we approximate a power law using a sum of
exponentials (see also, e.g., Bochud & Challet 2007). Consider
the function f q z q; z

pl = -( ) . We will define an exponential
basis function at a location qi as

f q z q q e; , . 26i i
z z
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Note that the basis function and its first derivative match the power
law at q qi= : f q z q f q z; , ;i i iexp pl=( ) ( ) and f q z q; ,i iexp

¢ =( )
f q z;ipl
¢ ( ). To approximate f q z;pl ( ), we sum exponential basis

functions that are evenly spaced logarithmically over a desired
range q q, ;min max{ } we then normalize the result so that the
approximate and exact forms match at some reference coordinate
qref . For instance, taking q 1ref = , we obtain
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Figure 17 illustrates why this approximation is effective and
shows the errors when one, two, and five exponentials are
placed per decade in the range of interest. In essence, the
exponential basis functions act as approximate step functions in
log–log space; they are flat at values smaller than qi and
quickly approach zero at larger values.
We can thus approximate the power spectrum near a point

q0 as
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By normalizing the power law in this way, the function fexp can
be referenced to a value q 1ref = , with basis functions that

Figure 17. Approximating a power law using a sum of exponentials. In all panels, the exact power law is q 11 6- . The left panel shows how our exponential
approximation is constructed; in this example, one exponential per decade is summed. Each of these components matches the power law and its derivative at the
reference point, qi, and (in log–log space) each has the form of a soft step function. The exponentials are then summed and normalized at the chosen global reference
point (here, at q = 1). The center panel compares the approximations with one, two, and five exponentials per decade, and the right panel shows the fractional residual
in each case.
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are independent of q. Note that the argument of fexp is quadratic
in q, and
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Thus, the exponential approximation for qQ( ) (Equation (28))
yields a sum of Gaussian functions in q.
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