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Abstract

Dependence modelling of integer-valued stationary time series has gained
considerable interest. A generalisation of the ARMA model has been pre-
viously provided using the binomial operator and its estimation carried out
using Markov Chain Monte Carlo methods. There are also various models
that make use of a latent process. The time series is considered now as a
digitised version of a Gaussian ARMA process, which is equivalent to assum-
ing a Gaussian copula with ARMA dependence. Naturally this becomes an
incomplete data problem and an EM algorithm can be used for maximum
likelihood estimation. Due to the complexity of the conditional distribution
given the observed data, a Monte Carlo E-step is implemented. Details of
the MCEM algorithm are provided and standard errors of the parameter es-
timates are considered. Examples with real and simulated data are provided.
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1. Introduction

Dependence modelling of integer-valued stationary time series has gained
considerable interest. There have been many attempts to generalise station-
ary time series models to the integer-valued/count case (Davis et al., 2016).
One particular approach is to use the binomial thinning operator, beginning
with the work of McKenzie (1985) and Al-Osh and Alzaid (1987) for the
INAR(1) model. The INARMA(p, q) model has similarities to the ARMA
model and its estimation has been considered by Neal and Subba Rao (2007)
using MCMC.

Let {yt} be an integer-valued stationary time series that is observed at
t = 1, . . . , n. Such a time series {yt} can be obtained by simply taking the
integer parts of a continuous-valued stationary time series {xt}, or by more
elaborate digitisation as follows. Let F (y) be a discrete distribution function
and F−1(p) = inf{y; F (y) ≥ p} its generalised inverse. Let G(x) be the
distribution function of xt. It is well-known that ut = G(xt) ∼ U(0, 1) and
yt = F−1(ut) has distribution given by F . The inverse CDF or quantile
transform from ut to yt is a standard method of simulating from F (Ross,
2012).

It is much easier to specify a model for the latent process {xt} because it
is continuous-valued. The distribution of the discrete-valued series {yt} then
follows. The Gaussian ARMA(p, q) model has a rich covariance structure
that is well understood (Priestley, 1981). Therefore it provides the basis of
a fairly general model that can be written as follows:

xt =
p∑
i=1

αixt−i + εt +
q∑
j=1

βjεt−j, and (1)

yt = F−1(Φ(xt)), t = 1, 2, . . . , (2)

where F is an unknown distribution function of the discrete type, and Φ is
the CDF of the standard normal distribution N(0, 1). It is assumed that
the innovation εt ∼ N(0, σ2

ε) for some σε > 0 such that xt ∼ N(0, 1). The
ARMA coefficients {αi} and {βj} satisfy the usual causality and invertibility
conditions with no common factors between the AR and MA characteristic
polynomials. For simplicity of notation, we assume that yt only takes values
in {0, 1, 2, ...}. This can be extended to any countable set. The orders p and
q are assumed to be known.
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This model has a system equation (1) for the latent ARMA process {xt}
and an observation equation (2) for yt in terms of xt. It is known to give
rise to a Gaussian copula for y1, . . . , yn, which is a natural choice for its
many desirable properties (Song, 2000). We present it as a digitised ARMA
model because the concept is intuitively plausible and it leads naturally to
the estimation method considered here. A more general model with time
dependent marginals and covariates has been considered by Masarotto and
Varin (2012). For models that utilise a latent process in different ways, we
refer to Davis et al. (2016) and the references therein.

It is easy to see that the transformation from xt to yt is not invertible:

yt = y ⇔ Φ−1(F (y − 1)) < xt ≤ Φ−1(F (y)), (3)

for any integer y. In other words, each probable value of yt corresponds to
an interval for the value of xt. The stationarity of the observed series {yt}
follows from that of {xt} which we assume.

The likelihood of the observations y1, . . . , yn is

P (Φ−1(F (yt − 1)) < xt ≤ Φ−1(F (yt)), t = 1, . . . , n)

=
1∑

i1=0
· · ·

1∑
in=0

(−1)i1+···+inΦΣ(Φ−1(F (y1 − i1)), . . . ,Φ−1(F (yn − in))),(4)

where ΦΣ is the joint distribution function of x1, . . . , xn (Song, 2000). This
is difficult to compute when n is moderately large due to the 2n number of
n-dimensional normal distribution function evaluations involved.

The aim of this work is to find a computationally feasible method for
maximum likelihood estimation of the underlying ARMA parameters. We
consider it as an incomplete data problem because the latent process {xt}
is not observed. The EM (Expectation Maximisation) algorithm is designed
for such a situation (Dempster et al., 1977). It has proved very popular and
useful, see McLachlan and Krishnan (2007) for a summary of applications
among 1700 publications.

The complete data x = (x1, . . . , xn)> has the Gaussian ARMA likelihood
and established algorithms can be used for its computation. Let the complete
data log-likelihood be `(θ; x) and the incomplete data log-likelihood `(θ; y)
where y = (y1, . . . , yn)>. The EM algorithm works on an estimate of the
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former, yet it can be shown that the latter log-likelihood improves through
the iterations, i.e.,

`(θ(i); y) ≥ `(θ(i−1); y).
Furthermore, if θ(i) converges then it converges to a local stationary point of
`(θ; y) (Wu, 1983).

The EM algorithm alternates between two stages, the E-step (Expecta-
tion) and the M-step (Maximisation), where the parameter values are up-
dated repeatedly until a convergence criterion is met. More specifically, the
E-step at iteration i evaluates the objective function

Q(θ,θ(i−1)) = Eθ(i−1) [` (θ; x) | y] , (5)

as an estimate of ` (θ; x) using θ(i−1) in the conditional expectation and
the M-step maximises the objective function with respect to θ to obtain an
updated set of parameter values θ(i).

For the digitised Gaussian ARMA model, the second moments of the la-
tent process {xt} given the observed count data y in the E-step are not easy
to evaluate, even though we know the form of the conditional distribution to
be truncated multivariate normal. Therefore a Monte Carlo E-step is used
resulting in a Monte Carlo EM algorithm (Wei and Tanner, 1990), where a
Monte Carlo estimate of the objective function (5) is used in the M-step. We
implement a Geweke-Hajivassilou-Keane (GHK) simulator (Geweke, 1989;
Hajivassiliou and McFadden, 1998; Keane, 1994) to generate samples recur-
sively.

This paper is organised as follows. We derive the E-step of the EM
algorithm for model (1)-(2) in Subsection 2.1. A Monte Carlo E-step is
described in 2.2 with further details of simulation in 2.3. A brief mention of
the M-step is in 2.4. We consider standard errors of the parameter estimates
in 2.5. This is followed by practical considerations in 2.6 and a summary
of the estimation method in 2.7. Examples using real and simulated data
are provided in Section 3. We conclude in Section 4 with a discussion of the
strengths and limitations of this MCEM approach to maximum likelihood
estimation of the dependence parameters.
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2. The MCEM Algorithm

We provide details of the algorithm that is developed specifically for the
model given by (1)-(2).

2.1. The E-Step

The latent process {xt} has a Gaussian structure and completely deter-
mines the observed series {yt}. Therefore the complete data log-likelihood

`(θ; x) = −n2 log (2π)− 1
2 log |Σ| − 1

2x>Σ−1 x (6)

only involves x. The variance-covariance matrix Σ can be difficult to invert
when the sample size is large, so we adopt the time series approach (Brockwell
and Davis, 1987). Let

e1 = x1,

e2 = x2 − φ1,1x1,

e3 = x3 − (φ2,1x2 + φ2,2x1),
...

en = xn − (φn−1,1xn−1 + · · ·+ φn−1,n−1x1), (7)

where φt1, . . . , φtt are coefficients of the best linear predictor of xt+1 using
xt, . . . , x1 with minimum mean square error. The linear transformation from
x to e, with determinant equal to one, de-correlates the data and the log-
likelihood can be written as

`(θ; x) = −1
2

n∑
t=1

log(2πτ 2
t ) − 1

2

n∑
t=1

(
xt −

t−1∑
`=1

φt−1,`xt−`

)2

/τ 2
t

= −1
2

n∑
t=1

log(2πτ 2
t ) − 1

2

n∑
i=1

n∑
j=1

cijxixj, (8)

where τ 2
t is the variance of et = xt −

∑t−1
`=1 φt−1,`xt−`. The elements cij of

Σ−1 can be obtained easily from {φt−1,`} and {τ 2
t }, which in turn can be

calculated recursively using the Levinson-Durbin algorithm (Brockwell and
Davis, 1987).
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It follows from (3) that the distribution of x given y is truncated multi-
variate normal with truncation interval (a,b] consisting of

(at, bt] = (Φ−1 (F (yt − 1)), Φ−1 (F (yt))]

in each dimension t = 1, . . . , n. Thus the E-step at iteration i is to evaluate
the objective function

Q(θ,θ(i−1)) = −1
2

n∑
t=1

log(2πτ 2
t ) − 1

2

n∑
i=1

n∑
j=1

cijEθ(i−1)

[
xixj

∣∣∣∣a < x ≤ b
]
, (9)

where the τ 2
t and cij are functions of θ and the values θ(i−1) are used in the

evaluation of the conditional expectation.

2.2. The Monte Carlo E-step

Direct evaluation of the Q(θ,θ(i−1)) function is difficult because the sec-
ond moments of the truncated multivariate normal

E[xixj|a < x ≤ b] = 1
P (a < x ≤ b)

∫ b

a
xixjφΣ(x)dx (10)

involve not only an n-dimensional integral but also the incomplete data like-
lihood P (a < x ≤ b) as given by (4).

Wei and Tanner (1990) first proposed a Monte Carlo (MC) method to
estimate the E-step resulting in the MCEM algorithm. The idea is to use
simulated samples from the conditional distribution of x given y to estimate
the Q-function. Chan and Ledolter (1995) showed that with suitable initial
parameter values, an MCEM sequence will converge with high probability to
the set of parameter values at which the maximum of the likelihood occurs.

To implement the MC E-step, we make use of the Geweke-Hajivassilou-
Keane (GHK) simulator. This is described in the next sub-section. Once the
samples are obtained, the conditional moments (10) are estimated by simple
averaging.

2.3. The GHK simulator

It is possible to sample directly from the truncated multivariate normal
distribution, TNn(0,Σ, a,b), which arises from restricting the multivariate
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normal Nn(0,Σ) distribution to the interval (a,b]. To obtain exact draws, re-
jection sampling is the simplest method however it can be highly inefficient in
high dimensions. Approximate methods such as Markov Chain Monte Carlo
have been proposed to overcome the inefficiency (Geweke, 1991), but they
can suffer from poor mixing, convergence problems and correlation among
samples (Wilhelm and Manjunath, 2010). The standard GHK simulator
uses a Cholesky decomposition of Σ and samples recursively from univariate
truncated normal distributions (Shum, 2008). In the time series case, we can
write

x1 = e1,

x2 = e2 + θ11e1,

x3 = e3 + θ21e2 + θ2,2e1,

...

xn = en + θn−1,1en−1 + · · ·+ θn−1,n−1e1, (11)
where the coefficients θ11 to θn−1,n−1 can be calculated recursively together
with et and τ 2

t , t = 1, . . . , n using the innovations algorithm (Brockwell and
Davis, 1987). The autocovariances of xt up to lag n− 1 are required, which
are also calculated recursively, from the ARMA model parameters.

Sampling can be done recursively as follows:

1. Sample e1 = τ1z1 from N(0, τ 2
1 ) so that x1 = e1 falls within (a1, b1];

2. Sample e2 = τ2z2 from N(0, τ 2
2 ) so that x2 = e2 + θ11e1 falls within

(a2, b2];
3. Sample e3 = τ3z3 from N(0, τ 2

3 ) so that x3 = e3 + θ21e2 + θ22e1 falls
within (a3, b3];
...

n. Sample en = τnzn from N(0, τ 2
n) so that xn = en + θn−1,1en−1 + · · ·+

θn−1,n−1e1 falls within (an, bn].

Each step above uses the fact that for any ct < dt,
zt ∼ TN(0, 1, ct, dt) ⇔ ut = Φ(zt) ∼ U(Φ(ct),Φ(dt)]. (12)

It is a matter of setting
ct = (at − θt−1,1et−1 − · · · − θt−1,t−1e1)/τt, and
dt = (bt − θt−1,1et−1 − · · · − θt−1,t−1e1)/τt, (13)
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simulating ut from the uniform distribution in (12), then calculating xt using
(11) with et = τtΦ−1(ut), t = 1, . . . , n. An equivalent formulation of the GHK
simulator has been given by Masarotto and Varin (2012) who suggested the
use of the Kalman filter to speed up the computation.

The joint density of a GHK sample is f(x) = φΣ(x)/w(x), where w(x) =∏n
t=1(Φ(dt)−Φ(ct)) is the importance sampling weight (Shum, 2008). This is

not the same as the truncated normal density φΣ(x)/P (a < x ≤ b) in (10).
However, each w(x) is an unbiased estimator of P (a < x ≤ b) (Gourieroux
and Monfort, 1996). Having obtained m samples x(1), . . . ,x(m), we use the
simple average of x(i)x(i)> to estimate E[xx>|a < x ≤ b]. The weighted
average

m∑
i=1

x(i)x(i)>w(x(i))/
m∑
i=1

w(x(i))

provides a better estimate (Shum, 2008) at the expense of computation time.

2.4. The M-step

There is no closed form solution to the M-step so numerical optimisation is
used. For consistent results, we use the R package dfoptim which implements
the Nelder-Mead-Kelley approach (Kelley, 1999).

2.5. Standard errors of estimates

The second derivatives of the observed log-likelihood `(θ; y) can be cal-
culated through `(θ; x) using (Louis, 1982)

∂

∂θ
`(θ; y) = E

[
∂

∂θ
`(θ; x) | y

]
, and

− ∂2

∂θ∂θ>
`(θ; y) = E

[
− ∂2

∂θ∂θ>
`(θ; x) | y

]
− E

[
∂

∂θ
`(θ; x) ∂

∂θ>
`(θ; x) | y

]

+ ∂

∂θ
`(θ; y) ∂

∂θ>
`(θ; y). (14)

At the MLE, the last term in (14) is zero. Therefore using simulated samples
(Chan and Ledolter, 1995) the Fisher information is estimated by

− 1
m

m∑
j=1

∂2`(θ; x(j))
∂θ∂θ>

− 1
m

m∑
j=1

(
∂`(θ; x(j))

∂θ

)(
∂`(θ; x(j))
∂θ>

)
. (15)

8



The partial derivatives of the Gaussian ARMA log-likelihood `(θ; x) as given
in (6) require additional steps because the innovation variance σ2

ε of model
(1)- (2) depends on the ARMA parameters. For example, if the dependence
structure is AR(2) then

σ2
ε = (1 + α2)((1− α2)2 − α2

1)(1− α2)−1.

2.6. Practical considerations

Wei and Tanner (1990) suggested the use of a small number m of Monte
Carlo samples to begin with, increasing it in later runs to allow the estimates
to explore the parameter space, and that it should be large in the final few
iterations to reduce the Monte Carlo error in the E-step. The approximate
value of a local maximum is often easy to discern and further analysis with
larger m can then be carried out, if necessary, to refine the approximation.
Every limit of an EM sequence θ(i) is a stationary point of `(θ; y) and so the
choice of the initial parameter values may lead to a local maximum rather
than a global maximum, i.e. the maximum likelihood estimate.

The goal is to find the parameter values that globally maximise the like-
lihood function. In practice, we can run the algorithm several times with
different starting points. Increased confidence in an MCEM procedure can
be achieved by repeating the procedure with different starting values repre-
sentative of the parameter space. This allows for easy searching for multiple
modes and helps discover the landscape of the likelihood function. The start-
ing values θ(0) do not need to be close to the true θ; but the EM algorithm
will converge very slowly if a poor choice of θ(0) is used.

Due to the variability introduced in the E-step by simulation, the pa-
rameter updates can still fluctuate after ‘convergence’ so it can be diffi-
cult to certify convergence of {θ(i)} (Mollerberg 2003). The issue is ex-
panded when the number of parameters is impractical to monitor. Chan and
Ledolter (1995) suggest monitoring the change in log-likelihood ∆`(θ; y) =
`(θ(i); y)− `(θ(i−1); y) going from θ(i−1) to θ(i), estimating it by

− log
(

1
m

m∑
k=1

exp{`(θ(i−1); x(k))− `(θ(i); x(k))}
)
, (16)

where x(1), . . . , x(m) are samples from the conditional distribution of x | y
using θ(i). Plot the estimated change in log-likelihood value (16) against the
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number of iterations. Convergence can be claimed when the plot appears to
fluctuate randomly about the abscissa, for example when the absolute value
of (16) is less than a precision value for the last 5 iterations.

2.7. Summary of the estimation method

The estimation method takes the following steps.

1. Set initial values of ARMA parameters, number of MC samples, stop-
ping criterion etc;

2. Estimate marginal distribution nonparametrically using emirical CDF
or parametrically by maximising the product of marginal probabilities;

3. Calculate truncation parameters a and b using marginal CDF;
4. While convergence is not achieved

• MC E-step (estimating the Q function):
– Calculate autocovariance matrix Σ using latest values of
ARMA parameters;
– Generate samples x(1),. . . ,x(m) using GHK method;
– Calculate Σ using new ARMA parameter values, run Levinson-
Durbin algorithm to obtain τ 2

t and φt−1,`, and use them to
calculate elements cij of Σ−1;
– Evaluate the Q-function (9) replacing conditional moments
E[xx>|a < x ≤ b] by 1

m

∑m
i=1 x(i)x(i)>;

• M-step: Maximise Q function to obtain optimal new values of
ARMA parameters;
• Check convergence and exit loop if criterion is met,

5. Calculate standard errors of ARMA parameter estimates.

For a fully parametric approach including maximum likelihood estimation
of marginal parameters, put steps 3 and 4 inside a function to maximise the
Q-function with respect to all the parameter values.

As shown in Section 3, the MCEM algorithm can be adapted to accom-
modate time dependent marginal distributions Ft with shape and regression
parameters.
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3. Examples

3.1. A simulation study

To assess the performance of the MCEM algorithm, a simulation study
was conducted using samples of sizes n = 250, 500 and 1000. For comparison
we also obtained estimates using the R gcmr package (Masarotto and Varin,
2017) which implements the simulated likelihood method of Masarotto and
Varin (2012).

We simulated S = 1000 samples of each size n from a digitised Gaussian
ARMA(1,1) model with (α1, β1) = (0.7,−0.5) as typical values of the ARMA
parameters. The marginal distribution is negative binomial NB(s, π) with
parameters s = 5 and π = 0.5, which were estimated by maximising the
product of marginal probabilities. The initial values were (α1 = 0, β1 = 0)
for the MCEM algorithm. To aid convergence, the number of Monte Carlo
samples began with m = 100 in the first five iterations then increased to
m = 500. The estimated change in log-likelihood was computed at each step
to monitor convergence. The sample mean and variance of the parameter
estimates were calculated together with the bias, mean squared error and
root mean squared error.

Table 1 gives results of estimation using both methods. The mean values
of parameter estimates became closer to the true values as n increases. The
variances of the estimates decreased as n went from n=250 to n=1000 and
the bias values were close to zero. The mean square errors and root MSE’s
(RMSE’s) also decreased as n increased.

The results of MCEM method are similar to those of the simulated likeli-
hood method with smaller biases but larger mean square errors. Both meth-
ods worked remarkably well compared with maximum likelihood estimation
using Gaussian ARMA(1,1) data with only a small increase in mean square
error. A typical simulated series of length 1000 from the same ARMA(1,1)
model gave estimates 0.6478 and −0.4521 with standard errors 0.1033 and
0.1226 respectively.

The downside of the MCEM method is computation time. For n = 1000
it can take more than 4 hours on a desktop PC.
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Table 1: Simulation results using S = 1000 samples.

Parameter MCEM Simulated Likelihood
n=250 n=500 n=1000 n=250 n=500 n=1000

α1=0.7 mean 0.676 0.677 0.685 0.632 0.660 0.677
var 0.022 0.017 0.010 0.053 0.013 0.004
bias -0.024 -0.023 -0.015 -0.068 -0.040 -0.023
MSE 0.022 0.018 0.011 0.058 0.014 0.005
RMSE 0.149 0.133 0.103 0.241 0.119 0.071

β1=-0.5 mean -0.481 -0.482 -0.489 -0.428 -0.458 -0.476
var 0.033 0.023 0.013 0.056 0.017 0.007
bias 0.019 0.018 0.011 0.072 0.042 0.024
MSE 0.033 0.023 0.013 0.062 0.018 0.008
RMSE 0.183 0.152 0.115 0.248 0.136 0.087

3.2. Real Data Example

We use the polio data (Zeger, 1988) which often appear in the literature
as an example of real world data to illustrate the MCEM algorithm. The
values are monthly counts of reported polio cases in the US from January
1970 to December 1983 with n = 168 observations. Following existing work
on these data (Masarotto and Varin, 2012), we assume an ARMA(2,1) model
for the underlying time series and a negative binomial distribution NB(s, πt)
for yt, with mean µt = s(1− πt)/πt satisfying

log (µt) = γ0 + γ1(t− 73)/1000 + γ2 cos
(

2π(t−1)
12

)
+ γ3 sin

(
2π(t−1)

12

)
+ γ4 cos

(
2π(t−1)

6

)
+ γ5 sin

(
2π(t−1)

6

)
.

(17)

The reason for using covariates is due to perceived seasonality and a trend in
the data. We refer to Enciso-Mora et al. (2009) for an INAR(1) model with
the same explanatory variables.

We implemented the MCEM algorithm using estimated regression param-
eters from fitting the marginal model using glm.nb from the MASS library.
The initial values for the ARMA parameters were all zeros and the number
of Monte Carlo samples begins small with m = 10 and increases at every
tenth iteration to 50, 102, 5× 102, 103, 5× 103, 104, 5× 104 and 105.
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Table 2: Estimated parameters for polio data using MCEM and simulated likelihood
method.

Estimation Method
MCEM Simulated likelihood

estimate se estimate se
ARMA α1 -0.5664 (0.260) -0.5229 (0.220)

α2 0.2701 (0.099) 0.3046 (0.090)
β1 0.7214 (0.272) 0.6959 (0.229)

Marginal 1/s 0.5671 (0.484) 0.5700 (0.170)
γ0 0.2093 (0.096) 0.2095 (0.121)
γ1 -4.3318 (1.895) -4.3151 (2.284)
γ2 -0.1430 (0.129) 0.1215 (0.147)
γ3 -0.5025 (0.138) -0.4967 (0.157)
γ4 0.1682 (0.131) 0.1903 (0.129)
γ5 -0.4214 (0.132) -0.4030 (0.128)

The MCEM parameter values at iterations 1 to 90 are plotted in Fig. 1.
We see that the sequences begin to stabilise after 50 iterations and conver-
gence was confirmed by the change in log-likelihood (Fig. 2). The parameters
and the estimated change in log-likelihood continues to fluctuate randomly
around zero. The parameter estimates and standard errors are given in Table
2. The standard errors of ARMA parameter estimates were calculated using
the estimated information matrix (15), while those of marginal parameters
were taken from negative binomial regression.
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Figure 1: MCEM iterations with parameters α1 (solid), α2 (dashed) and β1 (dotted).
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4. Concluding Discussion

We have derived an MCEM algorithm for maximum likelihood estimation
of the digitised Gaussian ARMA model. The marginal distributions can
have parameters and regression coefficients to be estimated together with
the ARMA parameters.

In the Monte Carlo E-step, we utilised a GHK simulator as an alter-
native to approximate samplers such as the commonly used Gibbs sampler
(Tan et al., 2007) that can suffer from poor mixing and convergence issues
(Christen et al., 2017).

We found the quality of the MCEM estimates to be similar to the maxi-
mum simulated likelihood method of Masarotto and Varin (2012) with smaller
biases but larger mean square errors. Both methods compared well with max-
imum likelihood estimation using the original ARMA data.

We have demonstrated the robustness of the MCEM method and consid-
ered time series of different lengths. A common criticism of the EM algorithm
is that convergence can be relatively slow. We note that computation time
increases significantly for longer time series and with larger values of m. For
n = 1000, the timing can come close to 18 hours. This is already using chol
which is a wrapper for LAPACK routines. The minimum time for conver-
gence when n = 1000 was 4.2 hours and for shorter time series, the timings
are generally much faster. Work is under way to speed up computation so
that importance sampling weights can be applied.

The R code to fit the digitised Gaussian ARMA to integer-valued time
series using the MCEM algorithm is available from the first author as an R
package named copulaIVTS.

All computation was carried out in the R (R Core Team, 2013) environ-
ment.
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