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Highlights

• Multiscale modelling of heat and mass transfer in complex 2D and 3D

fractured media

• Extension of Generalized Multiscale Finite Element Method (GMsFEM)

to include heat transfer equation

• Accurate fluid pressure and temperature solution compared to fine scale
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Abstract

In this work, heat and mass transfer in a hypothetical Enhanced Geothermal

System with complex fracture network is considered. Fracture networks have

complex geometries, exist in the multiple scales and have a significant impact on

the heat and mass transfer processes. Predictive capacity of numerical models

for EGS operations rely directly on how accurately the heat and mass transfer

in fractures and their surrounding matrix are resolved. For numerical solution,

we generate a fine grid model using finite element approximation. The fine

grid explicitly resolves the fractures, however, simulation of the process leads

to computationally prohibitive simulations. To reduce dimension of the system

of equations, we further expand Generalized Multiscale Finite Element Method

(GMsFEM) to include heat transfer equation. Multiscale basis functions for the

coarse grid approximation of the equations are constructed and accurate solu-

tion fluid pressure and temperature are obtained for two and three-dimensional

model problems. To the best knowledge of authors, there are only few applica-

tion of multiscale methods for geothermal heat recovery operations. Therefore

the developed GMsFEM for EGS applications will provide a platform to develop
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Preprint submitted to Journal of Applied Mathematical Modelling October 26, 2018



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

predictive tools for fully coupled thermo-hydro-mechanical-chemical (THMC)

processes.

Keywords: Enhanced Geothermal Systems (EGS), Multiscale simulation,

Fractured reservoirs, Heat recovery, Heat and mass transfer, Generalized

Multiscale Finite Element Method (GMsFEM),

1. Introduction

To alleviate the world’s energy and tackle global warming, renewable energy

through geothermal systems provides an attractive option. However, the de-

velopment in non-volcanic and non-sedimentary subsurface zones is essential as

the geothermal heat resources in shallow sediments (such as Hot Sedimentary

Aquifers) are limited [1]. To this end, the most common form of geothermal en-

ergy extraction from non-volcanic systems requires injecting cold water through

an injection well and extracting heated water from a production well [2]. The

Enhanced Geothermal Systems (EGS), technology that can be applied in non-

volcanic areas, circulates the water between the injection and the production

wells, extracting the stored geothermal energy in the reservoir at depths of 3 to

7 km [3, 4]. An illustration of EGS technology is shown in Figure 1. The tech-

nology relies on artificially enhancing the permeability of fractured reservoirs

through (i) a stimulation process or creation phase and (ii) a subsequent produc-

tion phase through new flow paths in the rock created from shear-failure [5, 6].

The modeling of these two phases involve coupled thermal-hydro-mechanical

and thermal-hydro-chemical, respectively. In both phases, the fractured net-

work properties have significant impact on fluid flow and heat transfer, and

should not be oversimplified or averaged out. However, most of the simula-

tion suites rely on continuum-scale average model to predict the flow and heat

transfer, and one of the largest challenges or uncertainties, is whether or not

the existing continuum-scale models that use the so-called homogenized matrix-

fracture properties are able to capture the dynamics accurately and reliably [7].

To date, it has remained a major challenge to develop codes and computational
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methods that are adapted to the simulation of large, high-resolution domains,

particularly with respect to discrete fractures and fracture networks [8].

Figure 1: Schematic of a conceptual two-well EGS in hot rock, in a low-permeability crystalline

basement formation. Figure is modified from Tester et al. [3]. The study area and initial and

boundary conditions used in this paper are illustrated.

In order to enhance the accuracy of modelling, several multiscale methods

that have been originally developed to generate effective platforms for resolving

the length scales of subgrid geological heterogeneities – which crucially influ-

ence the transport dynamics – can be adapted to accommodate modelling the

heat transfer as well. In their review, He and Tao [9] discussed the application
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of multiscale simulation of heat transfer and fluid flow problems. The authors

provided four examples of coupled thermal processes (turbulent flow, launching

process of a space craft, transport process in a proton exchange membrane fuel

cell and condensation of refrigerant vapor on enhanced surface of a tube). How-

ever, heat recovery from heterogeneous/fractured media is not discussed in the

review. Nissen et al. [10] have proposed a multiscale-based upscaling algorithm

for geothermal heat transport with fractures represented explicitly in the com-

putational grid. The coarse cells were constructed by merging fine-scale cells

with similar flow properties and distance from the fracture network. Xu et al.

[11] proposed a simplified heat exchange model to simulate the coupled hydro-

thermal system for hot dry rock geothermal applications and implemented the

model in an in-house geothermal simulation system based on an equivalent pipe

network model. The authors showed that the proposed method is an efficient

way to model heat transfer in industrial-scale enhanced geothermal systems.

Geiser [12] discussed application of multiscale modelling in heat transfer in a

multiple layer regime. The author used mobile-immobile partitioning of the

porous media due to flow or adsorption, and incorporated mass exchange be-

tween the zones in the multiscale formulation. However, the media under study

was not fractured. An advanced modelling of heat and mass transfer in de-

formable fractured media is presented by Karvounis and Jenny [6]. The authors

developed an adaptive hierarchical fracture model for EGS, by employing a

fracture hierarchy based on size. Discrete representations were used for large

fractures, while the cloud of small fractures was represented by an upscaled

effective permeability of the matrix. The approach simplified addition of new

fractures to the existing grid without re-meshing. In [13], authors presented

an upscaling methodology for geothermal heat transport in fractured porous

media, where upscaling is based on different strategies for the advective term

and the conductive term. The coarse scale advective term is constructed from

sums of fine scale fluxes, whereas the coarse scale conductive term is constructed

based on numerically computed basis functions. In the paper [14], the iterative

multiscale finite volume method is presented, for both pressure and temperature
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unknowns, based on elliptic locally solved basis functions.

Above literature study indicates that the application of multiscale methods

for geothermal heat recovery problems is an area of research in literature. In

this paper, we consider a heat and mass transfer processes in fractured porous

media. The novelty of this work is in the design and investigation of multiscale

model reduction for heat and mass transfer in fractured porous media in 2D and

3D formulations using Generalized Multiscale Finite Element Method. For the

fine grid approximation, we use Discrete Fracture Model (DFM), where fractures

are resolved by grid explicitly. We note that, we consider only diffusion dom-

inated processes and use continuous Galerkin approximation for pressure and

temperature equations. We develop a multiscale solver using the Generalized

Multiscale Finite Element Method (GMsFEM) [15, 16, 17, 18]. The purpose of

GMsFEM is to find a representation of the solution by using a few multiscale

basis functions per coarse region. In our GMsFEM, we use continuous Galerkin

discretization and construct multiscale snapshot functions by solving local prob-

lems on overlapping coarse regions with various boundary conditions. We then

perform local spectral decomposition to identify the basis functions correspond-

ing to the dominant modes in the snapshot space. These local functions are

multiplied by partition of unity functions to form conforming multiscale basis

functions [19]. The multiscale model is adapted to an engineering application,

and pave the way for more accurate modelling of coupled processes in deep sub-

surface models. Our underlying assumption in this work is that the EGS model

can be ideally represented in a single-phase condition. Therefore the algorithm

developed are not applicable to multiphase flow with phase change.

The paper is organized as follows. In Section 2, we present the mathematical

model and the governing equations. A fine grid approximation using DFM is

described in Section 3. In Section 4, we discuss the multiscale finite element

approximation using GMsFEM adapted for EGS systems. In Section 5, we

provide the numerical models description and parameters. In Section 6 we

compare the accuracy of proposed method for different two-dimensional (2D)

and three-dimensional (3D) models. We compare the solutions by choosing

6
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different numbers of multiscale basis functions. Finally, in Section 7, we conclude

the paper and describe the future works.

2. Problem formulation

Mathematical modeling of the Enhanced Geothermal Systems in the frac-

tured reservoirs requires the modeling of coupled fluid and heat flows. The

mathematical model is described by the coupled system for temperature and

pressure in the porous matrix and in the fracture network. Let Ω ⊂ Rd (d =

2,3) be the computational domain for porous matrix and γ ⊂ Rd−1 be the lower

dimensional domain for fractures.

Let p be the pressure and T be the temperature. We assume a slightly

compressible fluids, where the change of density ρ and porosity φ is related to

the change in temperature and pressure

ρ(p, T ) = ρ0(1− cwT (T − T0) + cwp (p− p0)),

φ(p, T ) = φ0(1− crT (T − T0) + crp(p− p0)),
(1)

where cwT and crT are the fluid and rock thermal expansion coefficients, and cwp

and crp are the fluid and rock compression coefficients.

Fluid flow in the porous matrix and fractures. For fluid flow in the

porous matrix, we have a mass conservation and Darcy’s law:

∂(ρ φ)

∂t
+ div(ρ qm) = 0, x ∈ Ω,

qm = −κm
µ

grad pm, x ∈ Ω,
(2)

where pm is the matrix pressure, qm is Darcy velocity, µ is the fluid viscosity

and κm is the permeability.

Then using Eq.(1), we can write

∂(ρ φ)

∂t
= ρ

∂φ

∂t
+ φ

∂ρ

∂t
= (ρφ0c

r
p + φρ0c

w
p )
∂pm
∂t
− (ρφ0c

r
T + φρ0c

w
T )
∂Tm
∂t

.

Assuming slightly compressible fluids [20]

(ρφ0c
r
p + φρ0c

w
p )
∂pm
∂t
≈ φ0ρ0(crp + cwp )

∂pm
∂t

,
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(ρφ0c
r
T + φρ0c

w
T )
∂Tm
∂t
≈ ρ0φ0(crT + cwT )

∂Tm
∂t

,

div(ρ qm) ≈ ρ0 div qm,

we obtain the following equation for matrix pressure and temperature in the

domain Ω ⊂ Rd

am
∂pm
∂t
− hm

∂Tm
∂t
− div (bm grad pm) = 0, x ∈ Ω, (3)

where

am = φ0c
r
p + φ0c

w
p , hm = φ0c

r
T + φ0c

w
T , bm =

κm
µ
.

For fluid flow in the highly permeable fractures, we consider lower dimen-

sional model in γ ⊂ Rd−1

∂ρ

∂t
+ div(ρ qf )− ρrfm = 0, x ∈ γ,

qf = −κf
µ

grad pf , x ∈ γ,
(4)

where pf is the fracture pressure, qf is the average velocity of fluid along the

fracture plane and fracture permeability κf can be calculated using the power

law [21, 22, 23, 24].

Assuming slightly compressible fluids and using following relationship

∂ρ

∂t
= ρ0c

w
p

∂pf
∂t
− ρ0c

w
T

∂Tf
∂t

,

we obtain the equation for fracture pressure:

af
∂pf
∂t
− hf

∂Tf
∂t
− div (bf grad pf )− rfm = 0, (5)

where

af = cwp , hf = cwT , bf =
κf
µ
.

The last term in Eq.(5) (rfm) is the mass exchange between matrix and

fracture. We assume a linear relationship between flux and pressure difference

rfm = σηfm(pm − pf ).
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Here mass exchange occurs only on the fracture boundary and should be added

to the matrix pressure equation (3)

rmf = σηmf (pm − pf ),

where ηfm and ηmf are geometric factors.

Therefore, we have following system of equations for matrix and fracture

pressures

am
∂pm
∂t
− hm

∂Tm
∂t
− div (bm grad pm) + rmf = 0, x ∈ Ω,

af
∂pf
∂t
− hf

∂Tf
∂t
− div (bf grad pf )− rfm = 0, x ∈ γ.

Heat transfer in fractured porous media. Using energy conservation

law, we have the following convection-diffusion equation for heat transfer in the

porous matrix

(cρ)m
∂Tm
∂t

+ (cρ)w div(qmTm)− div (λm gradTm) = 0, x ∈ Ω, (6)

where qm is the fluid velocity in porous matrix and

(cρ)m = (1− φ)(cρ)r + φ(cρ)w, λm = (1− φ)λr + φλw.

Here (cρ)r = crρr, (cρ)w = cwρw, where ρr, cr, ρw, cw denote density and

specific heat of the solid and fluid phases, respectively. λr and λw are the

thermal conductivity of the solid and fluid phases, respectively [25, 26]. In Eq. 6,

we assume that the volumetric heat capacities (cρ)m and (cρ)w are constant and

can be taken outside the partial derivatives.

For heat transfer in fractures, we consider lower dimensional problem for-

mulation in γ ⊂ Rd−1

(cρ)f
∂Tf
∂t

+ (cρ)w div(qfTf )− div (λf gradTf )− Lfm = 0, x ∈ γ, (7)

where (cρ)f = cwρw, so that ρw and cw denote density and specific heat of fluid

phase in fracture, respectively. In this equation, λf = λw is thermal conductivity

of fluid in fracture [27, 28, 29]. Here qm and qf are the heat flux in the porous
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matrix and fracture, and Lfm denotes a jump of the heat flux between matrix

and fracture

Lfm = βηfm(Tm − Tf ) + (cρ)wσηfm(pm − pf )Tmf . (8)

We add similar source term for heat transfer equation in porous matrix and

obtain following system of equations for matrix and fracture temperature

(cρ)m
∂Tm
∂t

+ (cρ)w div(qmTm)− div (λm gradTm) + Lmf = 0, x ∈ Ω,

(cρ)f
∂Tf
∂t

+ (cρ)w div(qfTf )− div (λf gradTf )− Lfm = 0, x ∈ γ,

where

Lmf = βηmf (Tm − Tf ) + (cρ)wσηmf (pm − pf )Tmf .

and Tmf is choosen using upwind technique.

3. Discrete problem on the fine grid

Various numerical approaches to model fractured porous media have been

developed and can be classified by the types of meshing techniques used for

simulations. One approach, called discrete fracture model (DFM) is associated

with the conforming discretization or explicit meshing of the fracture geometry.

In another approach, called the embedded fracture model (EFM) the fractures

are not resolved by grid but are considered as an overlaying continua. In EFM,

matrix and fracture are viewed as two porosity types co-existing at the same

spatial location, thus simple structured meshes can be used for the domain

discretization [30, 31, 32]. In EFM separete meshing of the fracture networks

can help to handle a dynamic fracture networks [33, 34]. We will consider it in

future works.

In this work, for approximation on the fine grid, we use conforming dis-

cretization or explicit meshing of DFM. In DFM, the fractures are located on

interfaces between matrix cells [35, 36]. Let Th be the fine grid for the domain

Ω, Eh be the facets of the mesh Th, and Eγ be the fracture facets, where Eγ ⊂ Eh.

10
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Variational formulation. We use continuous Gakerkin finite element

method with linear basis functions. Let V = H1(Ω) and V h ⊂ V denote the

discrete finite element space on computational mesh Th. We write the solution

as

p =

Nfi∑

i=1

piφi, T =

Nfi∑

i=1

Tiφi,

where φi are the standard linear element basis functions defined on Th, and

Nfi denotes the number of nodes on the fine grid. Using mass exchange be-

tween fracture and matrix and superposition principle, we have the following

variational formulation for heat and mass transfer problem in fractured porous

media: find (pn+1, Tn+1) ∈ (V h, V h) such that

∫

Ω

am
pn+1 − pn

τ
v dx−

∫

Ω

hm
Tn+1 − Tn

τ
v dx+

∫

Ω

bm∇pn+1 · ∇v dx

+
∑

γj⊂Eγ

∫

γj

[
cf
pn+1 − pn

τ
vf − hf

Tn+1 − Tn
τ

vf + κf∇pn+1 · ∇vf
]
ds = 0,

(9)

∫

Ω

(
(cρ)m

Tn+1 − Tn
τ

+ (cρ)w div(qm T
n+1)

)
w dx+

∫

Ω

λm∇Tn+1 · ∇w dx

+
∑

γj⊂Eγ

∫

γj

[(
(cρ)f

Tn+1 − Tn
τ

+ (cρ)w div(qfT
n+1)

)
wf + λf∇Tn+1 · ∇wf

]
ds = 0,

(10)

where (v, w) ∈ (V h, V h) and wf , vf ∈ V hf ⊂ Vf = H1(γ). For approximation in

time, we use implicit scheme with time step τ , where pn and Tn are the pressure

and temperature from the previous time step.

We note that, in this approximation, we suppose that p = pf and T = Tf

on γ and by applying superposition principle we obtain equations for p and T

instead of mixed dimensional formulation with coupled system of equations for

(T, Tf ) and (p, pf ).

Matrix form and computational algorithm. For numerical solution

of the coupled system of equations (9) - (10), similarly to the multiphase flow

problems, some decoupling techniques can be used or this system can be solved

11
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on the fully coupled way. For example, in sequential method, the pressure

equation is first solved, then temperature distribution is obtained. Moreover, the

fluid properties are nonlinear and Newton method should be applied [14]. In this

work, we consider constant properties of the system of equations (9) - (10) and

decouple equations using sequential calculations of the pressure and temperature

fields. For approximation by time, we use implicit schemes for both pressure and

temperature equations. Therefore, we have following computational algorithm:

For each time step tn with n = 1, 2, ...

• Solve system of equations for pressure p

S
pn+1 − pn

τ
+Apn+1 = B

Tn − Tn−1

τ
, (11)

where A and S are the stiffness and mass matrices

S = [sij ] =

∫

Ω

amφiφj dx+
∑

γj⊂Eγ

∫

γj

afφ
f
i φ

f
j ds,

B = [bij ] =

∫

Ω

hmφiφj dx+
∑

γj⊂Eγ

∫

γj

hfφ
f
i φ

f
j ds,

A = [aij ] =

∫

Ω

bm∇φi · ∇φj dx+
∑

γj⊂Eγ

∫

γj

bf∇φfi · ∇φfj ds.

• Solve system of equations for temperatures T

M
Tn+1 − Tn

τ
+ (C +D)T = 0, (12)

where C is the approximation of the convective term, M and D are the

stiffness and mass matrices

M = [mij ] =

∫

Ω

(cρ)mφiφj dx+
∑

γj⊂Eγ

∫

γj

(cρ)fφ
f
i φ

f
j ds,

D = [dij ] =

∫

Ω

λm∇φi · ∇φj dx+
∑

γj⊂Eγ

∫

γj

λf∇φfi · ∇φfj ds.

and

C = [cij ] =

∫

Ω

(cρ)w div(qm φi)φj dx+
∑

γj⊂Eγ

∫

γj

(cρ)w div(qfφ
f
i )φfj ds.

12
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This fine-scale discretization yields matrices of the size Nfi ×Nfi for pressure

and temperature. We note that, another type of approximation techniques can

be used on the fine grid, for example, the finite volume method or mixed finite

element method. We will consider it in the future to improve fine grid discrete

system properties. However it doesn’t effect to the construction of the coarse

grid approximation using GMsFEM.

4. Coarse grid approximation using GMsFEM

We consider a continuous Galerkin Generalized Multiscale Finite Element

Method (GMsFEM) for coarse grid approximation [15, 37, 38, 39]. We will

first construct a snapshot space, which contains some possible features of the

solution. Then we perform a dimensional reduction procedure, using a spectral

problem, to identify important modes, which are used as our multiscale basis

functions. Let

pms(x, t) =
∑

i,k

pik(t)ψωik (x), Tms(x, t) =
∑

i,k

T ik(t)φωik (x),

where ψωik and φωik are the multiscale basis functions for pressure and tem-

perature that supported in local domain ωi, and the index k represents the

numbering of the basis functions [15, 40, 41, 42].

Following the fine grid solver, we apply decoupled solution technique for

coarse grid system, where we first solve pressure equation and then find tem-

perature field. We have following variational formulations:

• for pressure: find pn+1
ms ∈ Vms such that

s

(
pn+1
ms − pnms

τ
, v

)
+a(pn+1

ms , v) = b

(
Tnms − Tn−1

ms

τ
, v

)
, ∀v ∈ Vms, (13)

where Vms is the multiscale space for pressure.

• for temperature: find Tms ∈Wms such that

m

(
Tn+1
ms − Tnms

τ
, w

)
+ c(Tn+1

ms , w) + d(Tn+1
ms , w) = 0, ∀w ∈Wms, (14)

where Wms is the multiscale space for temperature.

13
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Here for bilinear forms, we have

s(p, v) =

∫

Ω

amp v dx+
∑

γj⊂Eγ

∫

γj

afp vf ds,

b(T, v) =

∫

Ω

hmT v dx+
∑

γj⊂Eγ

∫

γj

hfT vf ds,

a(p, v) =

∫

Ω

bm∇p · ∇v dx+
∑

γj⊂Eγ

∫

γj

bf∇p · ∇vf ds,

m(T,w) =

∫

Ω

(cρ)mTw dx+
∑

γj⊂Eγ

∫

γj

(cρ)fTwf ds,

d(T,w) =

∫

Ω

λm∇T · ∇w dx+
∑

γj⊂Eγ

∫

γj

λf∇T · ∇wf ds,

c(T,w) =

∫

Ω

(cρ)w div(qm T )w dx+
∑

γj⊂Eγ

∫

γj

(cρ)w div(qfT )wf ds.

Figure 2: Schematic illustration of the method. Coarse grid with local domains

In GMsFEM, we have offline and online stage. In the offline stage we con-

struct multiscale basis functions and after that in the online stage, we solve

14
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our problem for any input parameters, such as right hand sides or boundary

conditions [15].

Offline computations:

Step 1. Coarse grid generation.

Step 2. Construction of the snapshot space that will be used to compute

an offline space.

Step 3. Construction of a ”small” dimensional offline space by performing

a dimension reduction in the space of local snapshots.

Next, we describe construction of the multiscale space in GMsFEM (Step

2 and 3 ). In this work, we construct decoupled multiscale basis functions.

Coupled construction of the multiscale basis functions can provide better results

and will be considered and investigated in the future works. To reduce the

repetitions, we will show construction of the pressure basis functions. For the

construction of the temperature basis functions, we use a similar approach. We

start with the construction of the snapshot space in coarse neighborhoods (see

Figure 2). The snapshot space can be the space of all fine-scale basis functions or

the solutions of some local problem with various choices of boundary conditions.

A general option is to use all possible boundary conditions; however, one can

also use randomized boundary conditions so that one only computes a few local

solutions [43]. The constructed local snapshots contain the information about

local heterogeneities. We describe the details of the snapshot space construction

below. Then, smaller dimensional multiscale spaces are obtained from the

snapshot spaces by a dimension reduction via local spectral problems [16, 17,

18, 44]. After that, we can solve our problem in the constructed multiscale space.

In this paper, we focus method on the structured coarse grids (see Figure 2). In

general, this method in presented form can be extended to unstructured coarse

grids, where coarse cells definite using mesh partitioner that satisfy to the load

balancing property [45, 46]. This property can be an important for fractured

media with local refinements of the fine grid. We use structured grid for ease of
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implementation.

Snapshot space. For construction of the basis functions, we first define

a snapshot space V ωsnap in each local domain ω. For simplicity, we omit the

index i. The snapshot space can be the space of all fine-scale basis functions

or the solutions of some local problems with various choices of the boundary

conditions. We will use the latter choice in the following. In particular, we use

the following problem in local domain ω

a(ψω,snapj , v) = 0, (15)

a(u, v) =

∫

Ω

bm∇u · ∇v dx+
∑

γj⊂Eγ

∫

γj

bf∇uf · ∇vf ds,

with Dirichlet boundary conditions

ψω,snapj = δhj (x), x ∈ ∂ω, (16)

where δhj (x) = δj,k, ∀j, k ∈ Jh(ω) and Jh(ωi) denotes the fine-grid boundary

node on ∂ω. Therefore, we have following snapshot space for each local domain

ω

Vsnap(ω) = span{ψω,snapj : 1 ≤ j ≤ Jh},

and

Rsnap =
[
ψω,snap1 , . . . , ψω,snapJh

]

denote a matrix representation.

Local spectral problem. In order to construct the multiscale space V ωms,

we perform a dimension reduction of the snapshot space using an auxiliary

spectral decomposition

ÃΨk = λkS̃Ψk, (17)

where

Ã = RTsnapARsnap, S̃ = RTsnapSRsnap.

For generation of the multiscale space, we choose the smallest Mω eigenvalues

from Eq.(17) and form the corresponding eigenvectors in the space of snap-

shots by setting ψω,msk =
∑Jh
j=1 Ψkjψ

ω,snap
j , k = 1, . . . ,Mω, where Ψkj are the

coordinates of the vector Ψk.
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Figure 3: Construction of the multiscale basis functions for local domain ω. First row: ex-

ample of the snapshots constructed by solution problem (15) - (16). Second row: first three

eigenvectors constructed by solution spectral problem (17). Third row: partition of unity

function constructed by solution problem (18). Fourth row: multiscale basis functions as

multiplication of the first three eigenvectors to partition of unity function.

Multiscale space. Let χi be the standard multiscale partition of the

unity functions

a(χi, v) = 0, x ∈ K

χi = gi x ∈ ∂K,
(18)

for all K ∈ ωi, where gi is a linear function on each edge of ∂K.

Then, to construct the resulting basis functions, we multiply the partition of

unity functions by the eigenfunctions from Eq.(17) ψi,k = χiψ
ωi,ms
k (1 ≤ i ≤ N

and 1 ≤ k ≤ Mωi , where N is the number of vertices of the coarse grid). We

note that, we obtain continuous basis functions due to the multiplication of
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offline eigenvectors with the initial (continuous) partition of unity χi. Next, we

define the continuous Galerkin spectral multiscale space as

Vms = span{ψi,k : 1 ≤ i ≤ N and 1 ≤ k ≤Mωi
p }. (19)

Construction of the multiscale space for temperature is similar and

Wms = span{φi,k : 1 ≤ i ≤ N and 1 ≤ k ≤Mωi
T }. (20)

where Mωi
T and Mωi

p are the number of multiscale basis functions in local domain

ωi.

In GMsFEM approach, the fracture contributions are divided in each coarse

block and then coupled. Each local fracture network introduce an additional

degrees of freedom for current local domain [43]. The number of dominant

modes (which correspond to the very small eigenvalues) is related to the number

of long and connected fracture networks, which refer to the isolated fracture

network that connects the boundaries of the coarse-grid block. For each long

separate fracture (by long, we mean that the fracture goes from one boundary

to another), we need one additional basis function, which local spectral problem

identifies. If we add more and more long fractures (that go through the entire

coarse block), then the number of basis functions will increase and we need

as many as the number of fractures. We remark that such spatial features

are automatically captured through our local spectral problems. In contrast,

many short disconnected fractures that are strictly within the coarse-grid block

can be modeled with one basis functions due to design of the snapshot space.

This is because their effects can be homogenized with one basis functions. The

advantage of our approach is to handle general cases and the local spectral

problem can automatically identify important modes.

Coarse grid system. Using constructed multiscale space for pressure and

temperature, we define projection operators:

RT =
[
ψ1,1, . . . , ψ1,M

ω1
p
, . . . , ψN,1, . . . , ψN,MωN

p

]
,

PT =
[
ψ1,1, . . . , ψ1,M

ω1
T
, . . . , ψN,1, . . . , ψN,MωN

T

]
.
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Using matrix projection operators, we have following computational algorithm:

For each time step tn with n = 1, 2, ...

• Solve system of equations for pressure pc

Sc
pn+1
c − pnc

τ
+Acp

n+1
c = Bc

Tnc − Tn−1
c

τ
,

• Solve system of equations for temperatures Tc

Mc
Tn+1
c − Tnc

τ
+ (Cc +Dc)T

n+1
c = 0.

Here for the pressure equation, we have Sc = RSRT , Ac = RART , Bc =

RBRT and for the temperature equation, we have Mc = PMPT ,Cc = PCPT

and Dc = PDPT . We also note that the operator matrix may be analogously

used in order to project coarse scale solutions onto the fine grid p = RT pc and

T = PTTc. Presented projection (R and P ) and prolongation (RT and PT )

operators can be used in iterative procedure as preconditioner [47, 14, 48, 49].

We will investigate it in future works.

5. Numerical models and parameters

We present numerical results for fluid flow and heat transfer in domain Ω

for multiscale and fine-scale solvers. We consider four test cases:

(1) 2D domain with 15 fractures (Test Case 1),

(2) 2D domain with 100 random fractures (Test Case 2),

(3) 3D domain with 14 fractures (Test Case 3),

(4) 3D domain with 8 fractures (Test Case 4).

In Figure 4, we show computational coarse and fine grids for two-dimensional

problems, where the fractures are depicted with black color and fine mesh with

blue color. For Test Case 1, we consider computational domain Ω = [0, 10]2 m

and calculate multiscale solution using GMsFEM on two coarse grids: 10 × 10
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and 20 × 20. For Test Case 2, we consider computational domain Ω = [0, 10]2

m and 20× 20 coarse grid. For Test Case 3, we use coarse grid 10× 10× 5 and

computational domain Ω = [0, 10]× [0, 10]× [0, 5]. For Test Case 4, we consider

coarse grid 5 × 5 × 5 and computational domain Ω = [0, 10] × [0, 10] × [0, 10].

In Figure 5, we depict coarse grid, fine grids and fracture distribution for three-

dimensional problems. For coarse grid approximation, we use uniform grid.

Figure 4: Computational grids. Left: uniform coarse grid 20× 20 (441 vertices and 400 cells).

Middle: fine grid for Test Case 1 (15534 vertices and 30666 cells). Right: fine grid for Test

Case 2 (40395 vertices and 80144 cells)

We use DOFf (Degree of Freedom) to denote fine grid system size and DOFc

to denote problem size of the multiscale system using GMsFEM. To compare the

results, we use the weighted relative L2 error between multiscale and fine-scale

solutions

ep = ||p− pms||s, ||p− pms||2s =
s(p− pms, p− pms)

s(p, p)
,

eT = ||T − Tms||r, ||T − Tms||2r =
r(T − Tms, T − Tms)

r(T, T )
,

where

s(p, v) =

∫

Ω

bmp v dx+
∑

γj⊂Eγ

∫

γj

bfp v ds,

r(T, v) =

∫

Ω

λmT v dx+
∑

γj⊂Eγ

∫

γj

λfT v ds,

and pms, Tms are the multiscale solutions and p, T are the fine-scale solutions.
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Figure 5: Computational grids for Test Case 3 (first row) and 4 (second row). First column:

coarse grids. Second column: fine grids. Third column: fracture distributions.

We define two-dimensional problems for Test Cases 1 and 2 with tmax =

4 days and 40 time steps. We consider the following parameters for the 2D

models: bm = 0.5 · 10−13[m2/(Pa.sec)], bf = 10−7[m2/(Pa.sec)], hm = hf = 0,

am = af = 10−6[Pa−1], (cρ)m = (cρ)f = 106[J/(◦C m3)], λm = 0.1[W/(◦C m)],

λf = 100.0[W/(◦C m)]. For the boundary conditions, we set p1 = 5·107[Pa] and

T1 = 20[◦C] on the left boundary. On other boundaries, we set zero fluid and

heat flux. We set initial pressure p0 = 107[Pa] and T0 = 200[◦C]. In Figure 4,

we have shown the computational fine grids for two dimensional problems. For

Test Case 1, we construct triangular mesh with 15534 vertices and 30666 cells.

For Test Case 2, the fine grid has 40395 vertices and 80144 cells.

We consider two test cases in a three-dimensional domain for test cases 3

and 4 with tmax = 4 days and 20 time steps. We consider the following

parameters for Test Case 3: bm = 10−13[m2/(Pa.sec)], bf = 10−6[m2/(Pa.sec)],

hm = hf = 0, am = af = 10−6, (cρ)m = (cρ)f = 106[J/(◦C m3)], λm =

1.0[W/(◦C m)], λf = 100.0[W/(◦C m)]. For Test Case 4, we have: bm =

10−13[m2/(Pa.sec)], bf = 10−7[m2/(Pa.sec)], hm = hf = 0, am = af = 10−6,

(cρ)m = (cρ)f = 104[J/(◦C m3)], λm = 0.1[W/(◦C m)], λf = 100.0[W/(◦C m)].
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For the boundary conditions, we set p1 = 1.5 · 107[Pa] and T1 = 20[◦C] on the

left boundary for Test Case 3. For Test Case 4, we set p1 = 1.1 · 107[Pa] and

T1 = 20[◦C] on the left boundary. On other boundaries, we set zero fluid and

heat flux. We set initial pressure p0 = 107[Pa] and T0 = 200[◦C]. Computational

fine grid contains 60206 vertices for Test Case 3 and 22443 vertices for Test Case

4. For Test Case 3, we have 10 × 10 × 5 coarse grid with 726 vertices and 500

cells, and 5× 5× 5 coarse grid with 216 vertices and 125 cells for Test Case 4.

The implementation is based on the open-source library FEniCS [50, 51].

The values used for all the parameters used in simulations are summarized

in Table 1 and Table 2.

Coefficient Case 1 Case 2 Case 3 Case 4

tmax [day] 4 4 4 4

time steps 40 40 20 20

bm [m2/(Pa.sec)] 0.5 · 10−13 0.5 · 10−13 10−13 10−13

bf [m2/(Pa.sec)] 10−7 10−7 10−6 10−7

hm 0 0 0 0

hf 0 0 0 0

am [Pa−1] 10−6 10−6 10−6 10−6

af [Pa−1] 10−6 10−6 10−6 10−6

(cρ)m [J/(◦C m3)] 106 106 106 104

(cρ)f [J/(◦C m3)] 106 106 106 104

λm [W/(◦C m)] 0.1 0.1 1.0 0.1

λf [W/(◦C m)] 100.0 100.0 100.0 100.0

p1 [Pa] 5 · 107 5 · 107 1.5 · 107 1.1 · 107

T1 [◦C] 20 20 20 20

p0 [Pa] 107 107 107 107

T0 [◦C] 200 200 200 200

Number of fractures 15 100 14 8

Table 1: Simulation parameters.
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Mesh type Case 1 Case 2 Case 3 Case 4

Fine grid 15534 40395 60206 22443

Coarse grid 441 and 121 441 726 216

Table 2: Coarse and fine grid parameters (number of vertices).

6. Results

The fine-grid pressure (pfi) and temperature (Tfi) distribution at times of

t5, t20 and t40 are presented in Figure 6 for Test Case 1 and in Figure 7 for Test

Case 2. The figure shows that the propagation of pressure and temperature

profiles are almost taking place in a same speed. This is because of assumptions

made in energy equations for matrix and fracture (Eqs. 6 and 7, respectively).

Realistically, there should be a delay in temperature front that our current work

does not consider due to simplifying assumptions made in energy equations.

Comparison of the fine grid and multiscale solutions are presented in Figure 8

and Figure 9 at the final time. We perform computations on the 20× 20 coarse

grid with M = 4 multiscale basis functions in each local domains. Fine grid

system has size of DOFf = 15, 534 for Test Case 1 and DOFf = 40, 395 for Test

Case 2. By using multiscale solver, we reduce size of system to DOFc = 1, 792.

At the final time, we have less than one percent of error for pressure and 1.9%

for temperature for Test Case 1. For Test Case 2, we obtain 3.5% of error for

pressure and 4.2% for temperature, when we take 4 multiscale basis functions.

In Table 3, we present relative errors for Test Case 1 at final time for two

coarse grids and for different number of multiscale basis functions with M =

1, 2, 4 and 6. Relative errors for Test Case 2 are presented in Table 4 at the final

time on the 20× 20 coarse grid.

In Figure 10, we present relative errors for the pressure and temperature

vs. time for different number of multiscale basis functions for the Test Case 2.

From the numerical results, we observe a good convergence behavior, when we

take sufficient number of multiscale basis functions.
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Figure 6: Fine grid solution for different times tn, n = 5, 20 and 40 (from left to right) for

Test Case 1. First row: pressure, p(tn). Second row: temperature, T (tn).

M DOFc ep eT

1 121 26.233 55.163

2 242 13.332 36.409

4 484 2.103 14.743

6 726 0.232 2.315

M DOFc ep eT

1 441 6.842 34.991

2 882 0.962 6.834

4 1762 0.240 1.938

6 2646 0.184 1.700

Table 3: Numerical results (relative errors (%) for the final time). Left: Coarse grid 10 × 10.

Right: Coarse grid 20 × 20. Test Case 1. Fine grid DOFf = DOFT
f = DOF p

f = 15, 534.

We present results of the numerical simulation of three-dimensional problem

for Test Case 3 in Figure 11. Relative errors are 0.458% for pressure and 3.323%
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Figure 7: Fine grid solution for different times tn, n = 5, 20 and 40 (from left to right) for

Test Case 2. First row: pressure, p(tn). Second row: temperature, T (tn). The domain size is

10 m × 10 m.

M DOFc ep eT

1 441 27.589 74.194

2 882 25.962 33.644

4 1762 3.566 4.273

6 2646 1.876 2.808

Table 4: Numerical results (relative errors (%) for the final time). Coarse grid 20 × 20. Test

Case 2. Fine grid DOFf = DOFT
f = DOF p

f = 40, 395.
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Figure 8: Fine grid and multiscale solution at final time for Test Case 1. First column: fine

grid solution, DOFf = DOFT
f = DOF p

f = 15, 534. Second column: multiscale solution,

DOFc = DOFT
c = DOF p

c = 1762 (11.3% from DOFf ). First row: pressure, p(tn). Second

row: temperature, T (tn). The domain size is 10 m × 10 m.

for temperature at final time. For multiscale solver, we used 6 multiscale basis

functions in each local domains for pressure and same number of bases for

temperature.

We present results of the numerical simulation of three-dimensional problem

for Test Case 4 in Figure 12. Relative errors are 0.241% for pressure and 1.703%

for temperature at final time. For multiscale solver, we used 32 multiscale basis
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Figure 9: Fine grid and multiscale solution at final time for Test Case 2. First column: fine

grid solution, DOFf = DOFT
f = DOF p

f = 40395. Second column: multiscale solution,

DOFc = DOFT
c = DOF p

c = 1762 (4.3% from DOFf ). First row: pressure, p(tn). Second

row: temperature, T (tn). The domain size is 10 m × 10 m.

functions in each local domains for pressure and same number of bases for

temperature.

Next, we discuss the computational advantages of our approach and consider

the online computational cost. In GMsFEM with constant coefficients, we have

offline and online computational stages. In the offline stage: (a) we calculate

multiscale basis functions for pressure and temperature; (b) generate projection
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Figure 10: Relative errors vs. time for the coarse mesh 20× 20 with different number of basis

functions for the Test Case 2. Left: pressure, p(tn). Right: temperature, T (tn).

matrices R and P ; (c) construct coarse grid matrices Sc, Ac, Bc, Mc and Dc. In

the online stage: (a) we solve coarse grid system for pressure; (b) reconstruct fine

grid pressure and generate convection matrix Cc; (c) solve a coarse grid system

for temeperature. Main computational advantage come from fast solution of

the coarse grid systems for pressure and temperature. Let DOF lf is the size

of fine-scale system (l = p, T ), where DOF pf and DOFTf are the number of

degrees of freedom for pressure and for temperature fields. Then, the dimension

of the fine problem is DOF lf×DOF lf for pressure and temperature for presented

decoupled scheme. The coarse-scale system size is DOF lc for pressure (l = p)

and the temperature problem (l = T ) depends on the coarse-grid size and the

number of local multiscale basis functions. Assume that N is the number of

local domains (number of vertices on the coarse grid) and in each local domain,

we have M multiscale basis functions for pressure and M bases for temperature.

Then for presented 2D and 3D problems, we have DOF pc = DOFTc = M ·N and

DOF pf = DOFTf = Nf , where Nf is the number of vertices on fine grid. Then,

we can easily compare the computational compare the computational cost of

solving coarse and fine problems. For example in Test Case 2, for coarse grid

20 × 20 with N = 441 vertices, when we use M = 4 multiscale basis functions

in each local domain for pressure and similar number of basis functions for

temperature, coarse-scale system size is DOFc = DOF pc = DOFTc = 441 · 4 =
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Figure 11: Fine grid and multiscale solution at final time. Three-dimensional problem for

Test Case 3. First column: fine grid solution, DOFf = DOFT
f = DOF p

f = 60, 206. Second

column: multiscale solution, DOFc = DOFT
c = DOF p

c = 4, 356 (7.2% from DOFf ). First

row: pressure, p. Second row: temperature, T . The domain size is 10 m × 10 m × 5 m.

1762. For the fine-scale system DOFf = DOF pf = DOFTf = Nf = 40, 395.

Then, we can obtain good solution for multiscale solver for Test Case 2 using

only 4.3% from DOFf . For Test Case 3, for M = 6 multiscale basis functions on

the coarse grid 10×10×5, we have DOFc = DOF pc = DOFTc = 726 ·6 = 4, 356

and DOFf = DOF pf = DOFTf = Nf = 60, 206. Therefore, for 3D problem in

Test Case 3, we obtain good results using only 7.2% from DOFf . In each time
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Figure 12: Fine grid and multiscale solution at final time for pressure (first row) and tem-

perature (second row). Three-dimensional problem for Test Case 4. First column: fine grid

solution for Z = 5 slice. Second column: multiscale solution for Z = 5 slice. Third column:

fine grid solution for X = 7, Y = 2.5 and Z = 5 slices. Fourth column: multiscale solution

for X = 7, Y = 2.5 and Z = 5 slices. The domain size is 10 m × 10 m × 5 m.

step, the proposed method solves a small coarse-grid system compared to the

fine-grid system. In both offline and online simulations, one can easily take an

advantage of space-time adaptivity and parallel computations.
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7. Conclusions and future work

A Generalized Multiscale Finite Element method was developed successfully

for resolving fluid temperature and pressure in fractured porous media. The

high temperature gradient is relevant to Enhanced Geothermal Systems (EGS)

and therefore the model developed has direct application in design of optimal

heat recovery from these geothermal resources. All results showed reasonable

accuracy of the proposed multiscale method for heat and mass transfer problem

in fractured media relevant to EGS operations.

In the current work, we assumed a small diffusion dominated heat transfer

processes. However, the diffusion process may impact the hydrodynamics of

mass exchange between fractures and matrix. In the future, we will add me-

chanical effects and consider coupled thermoporoelastic processes in fractured

media. Such numerical applications have been discussed in existing literature

studies [52], but not in a computationally efficient multiscale framework. More-

over, in the context of coupled thermo-hydro-mechanical-chemical (THMC) pro-

cesses, fracture alteration is an area of research for the geothermal heat recovery

[53, 54, 55, 56]. Computational expenses are always an issue even for modern

computers. In future, we explore extending multiscale modelling to these areas

of research as well.

Nomenclature

Mathematical model parameters
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am porosity times coefficient of isothermal compressibility

in matrix rock and fluid

af porosity times coefficient of isothermal compressibility

in fracture fluid

b fracture aperture

bm permeability over viscosity ratio in matrix

bf aperture times permeability divided by viscosity in frac-

ture

cr specific heat of the solid phase

cwT fluid thermal expansion coefficient

crT rock thermal expansion coefficient

cwp coefficient of isothermal compressibility of fluid

crp coefficient of isothermal compressibility of rock

cw specific heat of the fluid phase

hm porosity times fluid thermal expansion coefficient in ma-

trix rock and fluid

hf porosity times fluid thermal expansion coefficient in

fracture fluid

Lfm heat flux between matrix and fracture

pm matrix pressure

pf fracture pressure

pfi fine scale pressure

qm Darcy velocity in matrix

qf average velocity of fluid along the fracture plane

Tm matrix temperature

Tf fracture temperature

Tfi fine scale temperature

β porosity averaged fluid and solid thermal conductivity

over fracture aperture ratio

κm matrix permeability

κf fracture permeability

λm porosity averaged fluid and solid thermal conductivity

in matrix

λf porosity averaged fluid and solid thermal conductivity

in fracture
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λr thermal conductivity of rock

λw thermal conductivity of fluid

µ fluid viscosity

ρr density of the solid phase

ρw density of the fluid phase

σ matrix-fracture pressure exchange coefficient

φ porosity

φ0 reference porosity

Fine and coarse grid solvers parameters

Nfi number of nodes on the fine grid

DOF Degree of Freedom

Vms multiscale space for pressure

Wms multiscale space for temperature

V ωsnap snapshot space

Mωi
T number of multiscale basis functions in local domain ωi

for temperature

Mωi
p number of multiscale basis functions in local domain ωi

for pressure

R projection operator for temperature

P projection operator for pressure

RT prolongation operator for temperature

PT prolongation operator for pressure

Th fine grid

Eh facets of the Th
Eγ fracture facets of the Th
φi standard linear element basis functions

τ time step

ωi local domain

χi multiscale partition of the unity functions
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ψωik multiscale basis functions for pressure

φωik multiscale basis functions for temperature

ep L2 error for pressure

eT L2 error for temperature
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