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Abstract

Schoenberger and colleagues (2018; ACS Chem. Neurosci. 9, 298-305) recently reported attempts to
demonstrate specific binding of the positron emission tomography (PET) radiotracer, [**F]GE-179, to
NMDA receptors in both rats and Rhesus macaques. GE-179 did not work as expected in animal
models; however, we disagree with the authors’ conclusion that “the [*®F]GE-179 signal seems to be
largely nonspecific”.

It is extremely challenging to demonstrate specific binding for the use-dependent NMDA
receptor intrachannel ligands such as [*®*F]GE-179 in animals via traditional blocking, due to its low
availability of target sites (Bj,qx). Schoenberger and colleagues anaesthetised rats and rhesus
monkeys using isoflurane, which has an inhibitory effect on NMDA receptor function and thus would
be expected to further reduce the By, .

The extent of glutamate release achieved in the provocation experiments is uncertain, as is
whether a significant increase in NMDA receptor channel opening can be expected under
anaesthesia.

Prior data suggest that the uptake of di-substituted arylguanidine-based ligands such as GE-
179 can be reduced by phencyclidine binding site antagonists, if injection is performed in the
absence of ketamine and isoflurane anaesthesia, e.g. with GE-179’s antecedent, CNS 5161 (Biegon et
al., 2007), and with GMOM (van der Doef et al., 2016). However, the extent of non-specific uptake

remains uncertain.

Keywords

[*'C]CNS 5161, [*®F]GE-179, isoflurane, ketamine, NMDA, PET.
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Introduction

Alterations in N-methyl D-aspartate (NMDA) receptor activation are implicated in the
pathophysiology of several neuropsychiatric disorders, including epilepsy, schizophrenia and
traumatic brain injury. Imaging NMDA receptor activation in vivo has proven challenging’. [*®F]GE-
179% is a candidate positron emission tomography (PET) radiotracer for this purpose that has shown
expected changes in both rat and human studies®>. Schoenberger and colleagues recently reported
attempts to demonstrate specific binding of [*®F]GE-179 to NMDA receptors in both rats and Rhesus
macaques® in well-founded experiments simultaneously combining PET and magnetic resonance
imaging (MRI). Although the experiments conducted provide solid evidence that GE-179 does not
work as expected in animal models, we disagree with the authors’ conclusion that “the [**F]GE-179

signal seems to be largely nonspecific”, for the reasons outlined below.

The challenge of evaluating use-dependent PCP-site radiotracers

Unlike most other neuroreceptor radiotracers, [**F]GE-179 uptake is expected to reflect not only
receptor distribution but also receptor “state”, i.e. it should exhibit “use-dependency”. The
proportion of NMDA receptors that are in the open state at any one point of time in healthy rodents,
macaques and humans is unknown and the estimates of the probability of channel opening vary
considerably (e.g. 0.002° — 0.37). We believe that it is extremely challenging to demonstrate specific
binding for [*®F]GE-179 in animals via traditional blocking as in °, due to its low and inconstant

availability of target sites (B, qx)-

Effects of anaesthesia on PCP-site availability

GE-179 (N-[2-chloro-5-(2-fluoroethylsulfanyl)phenyl]-N’-methyl-N’-(3-methylsulfanylphenyl)
guanidine))?is one of several putative di-substituted arylguanidine-based ligands with selectivity for
the intrachannel phencyclidine (PCP) binding site of the NMDA receptor. Other molecules in this

class that have been radiolabelled for imaging purposes include CNS 12617, CNS 51618, GMOM?® and
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PK-209"° (Figure 1). The PCP binding site only becomes available when the receptor is in the “open”
state, i.e. on simultaneous binding of both the agonist glutamate and a co-agonist such as glycine,
accompanied by cell depolarisation.

Blocking studies of putative PCP-site NMDA-selective radiotracers are confounded by the
use of general anaesthesia. In reference ® the rats were anaesthetised via isoflurane inhalation, and
the macaques were anaesthetised with ketamine and xylazene, with maintenance via isoflurane

inhalation. The use of anaesthesia facilitates the acquisition of high-quality images. However, what is

the effect of isoflurane, and the other anaesthetics used on B;nax?

Isoflurane and similar volatile anaesthetics have complex mechanisms of action which

11-25

include a well-described inhibitory effect on NMDA receptor function™"=>, and which is possibly

mediated in part via competitive antagonism at the glutamate®® or glycine binding sites®” 6?2, Such

inhibition would be expected to reduce the already-low B;,,, of PCP-site radiotracers such as
[*®F]GE-179. Demonstration of signal blockade in such circumstances would be extremely difficult.

Effects of methamphetamine on PCP site availability

In an attempt to increase By, Via provocation of NMDA receptor channel opening, Schoenberger
and colleagues® injected methamphetamine two minutes prior to injection of [**F]GE-179 in rat

studies and at 48 minutes p.i. in macaques studies, i.e. presumably administered after the induction

29-30

of anaesthesia. Although single- dose methamphetamine may induce glutamate release™ ", there is

31-32

some evidence that suggests the effect on glutamate release is negligible® ™. As the authors

acknowledged, amphetamine and methamphetamine can actually directly inhibit the NMDA

333 |t is not clear whether significant glutamate release was actually achieved, and whether

receptor
and when a significant increase in NMDA receptor channel opening can be expected under the

competing influences of anaesthesia and perhaps methamphetamine.
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Complementary studies of putative PCP-site radiotracers
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Figure 1: NMDA receptor PET and SPECT (single photon emission tomography) putative PCP site

radiotracers.

We interpret the experiments reported in reference © in the context of the relevant studies for
similar ligands (Figure 1). In short, partial blockade of radiotracer uptake has been achieved, and

modest enhancement of the signal with challenge has been reported, as summarised below.

Awake rats

GE-179 is a derivative of CNS 5161 (N-[2-chloro-5-(2-methylsulfanyl)phenyl-]-N’-methyl-N’-(3-
methylsulfanylphenyl) guanidine); which has a low inhibition constant (K;) of 1.9 £ 0.6 nM versus MK-

801°°. In non-sedated rats, pre-treatment with cold MK-801 (3mg/kg intraperitoneal) reduced the
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cortex-to-cerebellum uptake ratio from 1.45 to 1.20 (i.e. ~17%), approximately, at 90 minutes post-
injection of [*H]CNS 5161%*’. Whilst complete activation of the NMDA channel is unlikely with
pharmacological manipulation at doses that do not elicit seizures, pre-treatment with NMDA
40mg/kg five minutes prior to injection of radiotracer increased the uptake ratio from 1.45 to 1.60
(i.e. ~10%), approximately, with larger increases (~31%) seen in the hippocampus. Approximately
17% blockade of signal has been seen in rats that were not sedated at the time of injection with
[**1)CNS-1261".

Pre-treatment of a baboon with (cold) MK-801 (after induction of anaesthesia with ketamine
and maintenance with isoflurane) did not significantly reduce ["'C]JGMOM binding®, and similar to
the results presented in reference °, a slight increase was actually observed. Crucially, however, pre-
treatment of awake rats with MK-801 (1 mg/kg intravenous) five minutes prior to injection produced
a uniform decrease in binding of up to 28%°. The discrepant findings between awake rats and
anaesthetised baboons are consistent with an anaesthesia-induced reduction of B,,,, in vivo. Pre-
treatment of the awake rats with the co-agonist D-serine produced increases in binding of up to
24%, whereas the NR2B-selective antagonist Ro25-6981 produced decreases of up to 38%. Blockade
of the binding of a [**F]PK-209, a [*'CIGMOM derivative, has also been seen with MK-801 pre-
treatment in awake rats®®, and in Rhesus macaques that were anaesthetised using agents other

than ketamine and isoflurane®®,

Awake humans

A uniform decrease in [*'C]JGMOM influx constant of approximately 66% was observed in six healthy,
non-sedated human participants following early and prolonged administration of the low-affinity
PCP-site antagonist, S-ketamine®. The decrease in radioactivity concentration (kBg/ml), as opposed
to influx constant, was not quantified but appeared to be modest (see “Data Analysis section below)
— opposed by a slight (7%) increase in perfusion/extraction and accumulation in the non-specific
compartment (Vyp; 10%). A reduction in volume-of-distribution (V1) of approximately 20% has also

been observed with [**]]CNS-1261*,
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Data Analysis

In the rat experiments®, Schoenberger et al inferred the absence of an effect from the failure to
observe ‘a meaningful change in the whole-brain TAC'. Whilst in some experiments the displacement
is so clear simple assessment of the whole-brain time-activity curve will suffice **, a more rigorous
guantitative analysis of the data is usually required to establish the presence of an effect. Drug
competition can cause changes of the bioavailability of the PET tracer due to changes of the
peripheral metabolism, alterations of the delivery, binding to peripheral sites, etc. Therefore model-
based quantification of regional tracer binding in brain tissue is usually preferred over simpler
methods when the expected effect sizes are in the order of a few per cent® . The possibility cannot
be excluded that the authors missed small but measureable effects in their in vivo rat experiments

because they did not calculate quantitative measures of regional [**F]GE-179 binding.

Discussion

Taken together, these data suggest that the uptake/binding of di-substituted arylguanidine-based
NMDA-selective radiotracers can be reduced by PCP site antagonists, if injection is performed in the
absence of ketamine and isoflurane anaesthesia. We expect that this should be the case for [**F]GE-
179, particularly since it has already been reported for its antecedent [*'C]JCNS 5161%’.

Moreover, increased uptake/binding in non-sedated specimens has been demonstrated via
direct provocation of channel opening with the agonist NMDA?” and alternatively with the co-agonist
D-serine’. Increased uptake/binding has also been demonstrated in conditions in which increased
“endogenous” NMDA receptor channel opening is expected, such as deep brain stimulation®,
dyskinesias®, epilepsy” **, and cerebral ischaemia®. There is good evidence, therefore, that these
radiotracers specifically bind to the PCP site in vivo, and we suggest that the divergent findings in °
are explicable by the use of isoflurane and/or ketamine anaesthesia. A within-subject paired study
design, in which [**FIGE-179 is administered prior to anaesthesia for one scan and subsequent to
anaesthesia in the other, would allow this hypothesis to be tested. If confirmed and if it proves

9
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valuable to perform pharmacological (or other) challenge before the induction of anaesthesia, this
would advantage F-18 labelled agents such as [**FIGE-179 over those limited by the short radioactive
half-life of C-11 (e.g. [''CIGMOM).

The extent of blockade or alternatively the extent of enhancement that has been achieved
thus far, in terms of change in radioactivity concentration, has been modest. The results presented

in reference *°

suggest that alterations in perfusion/extraction can confound the detection of
blockade (and presumably enhancement). The modest alterations in signal might also have resulted
in part from incomplete receptor blockade/enhancement; for example, Van der Doef and colleagues
estimated that their ketamine dosing regimen (total 0.3 mg/kg over 135 minutes) resulted in an
average occupancy of the PCP binding site of only approximately 19%>°. Hence, it is not immediately
apparent that non-specific binding should be particularly marked for GE-179, given its lipophilicity
(LogD;4= 2.5 £ 0.1). However, the low volume of distribution observed for the second compartment
(V,) of kinetic models is consistent with low specific binding in healthy specimens.

In conclusion, we believe that the experiments described in reference °, which contrast with
those of several related studies®® 3 3%*% 4748 4o not adequately resolve the question of specific
versus nonspecific binding for [*®F]GE-179 and similar radiotracers. Evaluation of NMDA receptor-
selective radiotracers is a challenging endeavour that will require continued experimental
innovation. The data to date suggests that diarylguanidine-based PCP-site tracers are sensitive to
channel opening in awake specimens, whereas the extent of non-specific uptake remains uncertain.

["®F]GE-179 and [*'C]GMOM might still find use in clinical populations in which marked alterations in

channel opening probability are expected.
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