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Consistency measures of linguistic preference
relations with hedges

Hai Wang, Zeshui Xu, Senior Member, IEEE, Xiao-Jun Zeng, Member, IEEE, and Huchang Liao, Senior
Member, IEEE

Abstract—Modeling linguistic information is vital for quali-
tative decision making (QDM). Compared with single linguistic
terms, the complex linguistic expressions (CLEs) are more power-
ful and flexible to express linguistic opinions under uncertainties.
Among the existing types of CLEs, the linguistic terms with
weakened hedges (LTWHs), which focus on the uncertainty
of using single terms, can be used to model the linguistic
expressions in natural languages. This paper concentrates on the
application of LTWHs in the framework of QDM with preference
relations. The concept of linguistic preference relations with
hedges (LHPRs) are presented after a new computational model
of LTWHs is formed. Some consistency concepts, such as weak
consistency and additive consistency, are then defined and their
properties are studied. Especially, the theories and algorithms for
consistency checking and improving are proposed. Finally, the
availability of the proposed technique is demonstrated by a real
application. Different from many studies related to consistency
measures, we make use of fuzzy weighted digraphs to develop
the theories and algorithms in a visible manner. Moreover, for
consistency improving, the degree of consistency is measured
by linguistic terms rather than numerical values so that the
threshold of satisfactory consistency is interpretable.

Index Terms—Preference relations, Consistency measures, Lin-
guistic terms with weakened hedges, Linguistic term sets, Tran-
sitivity.

I. INTRODUCTION

Qualitative information is generally inevitable and ubiqui-
tous in practical process of collecting decision information.
This is due to the nature of objects or the complexity of the
focused problems [1]. To manipulate such kind of informa-
tion, approaches for qualitative decision making (QDM) are
required. Linguistic information, taking the form of natural or
artificial languages, is a natural way to represent qualitative
information [2]. In the fuzzy linguistic approaches, linguistic
expressions are modeled and computed based on specific
linguistic models. The traditional linguistic models include
the extension principle-based model [3], the ordered structured
model [4], [5], the linguistic 2-tuple model [6] and the virtual
linguistic model [7], [8]. By defining syntax and semantics
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of each linguistic term in a predefined domain, these models
represent linguistic information by single terms. For example,
the noise of an engine could be “low”.

However, the individual granularity of knowledge may not
coincide with the granularity of the predefined linguistic term
set (LTS). There are some techniques for this case. Unbalanced
LTSs [9] are usually considered if objects are not uniformly
distributed in the reference domain. Multi-granular LTSs [10]
are developed to present different granularities to meet individ-
ual granularities of knowledge. Besides, the use of single terms
might not be sufficiently convenient to express opinions. In this
case, experts may hesitate and balance among several linguistic
terms and then seek for complex linguistic expressions (CLEs)
which match their opinions precisely. Roughly, CLEs refer to
the linguistic expressions, including or implying more than one
linguistic term, organized by natural or artificial languages. Till
now, there are four techniques focusing on the CLEs which are
expressed by natural languages, i.e., uncertain linguistic terms
(ULTs) [11], hesitant fuzzy linguistic term sets (HFLTSs) [12],
[13], linguistic expressions based on label semantics [14], and
linguistic terms with weakened hedges (LTWHs) [15]. ULTs
are suitable for the case when the value of a linguistic variable
locates between two linguistic terms. As a popular topic,
HFLTSs are a powerful tool to model comparative linguistic
expressions. Different from the traditional fuzzy linguistic
approach, the label semantics model is another methodology
to represent several kinds of natural linguistic expressions in
term of label descriptions, appropriateness measures and mass
assignments. Recently, we highlighted the use of weakened
hedges, such as “more or less”, to express the uncertainty of
using single linguistic terms and presented a new linguistic
model of LTWHs [15]. A LTWH incorporates multiple lin-
guistic terms by using weakened hedges. For instance, when
evaluating the noise of an engine, one may be not sure whether
“low” is the most appropriate term. He/she may state that it is
“more or less low”. Here, the hedge does not modify the term
to another. It means that other terms which are close to the
term “low” are also possible. From the perspective of fuzzy
set theory, “low” is a fuzzy subset of “more or less low”.

LTWHs present a natural manner to express the uncertainty
of using single terms. In this paper, we devote to developing
the application of LTWHs under the framework of QDM with
preference relations. It is widely acknowledged that prefer-
ence relations play an important role in relative measurement
problems [16], [17]. In this setting, decision information is
collected by pairwise comparisons between any two objects.
However, uncertainties are generally unavoidable when ex-
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pressing the comparisons between two objects by selecting
proper linguistic terms from a LTS. Experts would like to
seek for CLEs in natural languages, such as ULTs, HFLTSs,
and LTWHs, to represent the uncertainty. Till now, several
categories of preference relations have been proposed and
developed for QDM problems, such as linguistic preference
relations (LPRs) [18], [19], uncertain LPRs (ULPRs) [20],
and hesitant fuzzy LPRs (HFLPRs) [21], [22]. It is clear
that the CLEs taking the form of LTWHs are as natural as
comparative linguistic expressions. Using weakened hedges
corresponds with the natural language convention to express
uncertain preferences. Therefore, in this paper, we present a
new type of preference relations, namely linguistic preference
relations with weakened hedges (LHPRs), whose entries take
the form of LTWHs.

Consistency measures are always considered to guarantee
that a preference relation is logically correct [23]. Associ-
ated with specific types of preference relations, consistency
measures can be defined by means of transitivity, such as
additive transitivity, multiplicative transitivity and weak tran-
sitivity [24]–[26]. Besides, the degree of consistency is also
frequently employed to ensure that a preference relation is
with satisfactory consistency [19], [27]. Motivated by the
existing strategies of defining consistency measures, this paper
systematically investigates several categories of consistency
measures of LHPRs. Based on a set of predefined basic
operations, equivalent relations and partial orders, some con-
sistency measures are proposed by defining transitivity in the
circumstance of LTWHs. The properties of these measures,
relationship among these measures and judgement theorems
are also investigated. Especially, the theory and algorithms
of checking weak consistency and additive consistency are
developed. If a LHPR is not weakly consistent, or if the degree
of additive consistency is not satisfactory, specific algorithms
are proposed to improve its consistency.

The innovation of this paper can be summarized as follows:
(1) The theoretical foundation of applying LHPRs in QDM

is developed. The definition of LHPRs is presented based on
a new computational model. Especially, the identification and
improvement of weak consistency and additive consistency
are deeply studied. Therefore, the exploitation of priorities
from LHPRs can be further designed based on the theoretical
framework presented in this paper.

(2) Definitions and theories related to LHPRs are developed
and demonstrated in a visible manner by using the graph
theory. Different from the common way of using graphs in
preference relations, such as in [22], [23], [28], we utilize the
fuzzy weighted digraphs whose weights are fuzzy sets rather
than numerical values. Specifically, the weights of arcs in a
preference graph are defined by LTWHs. The use of fuzzy
or linguistic information enables a flexible way to model the
uncertainty in pair-wise comparisons.

(3) When considering the consistency improving, the devi-
ation between two LHPRs, the degree of additive consistency
and the threshold of satisfactory consistency are represented by
linguistic information. Compared with the traditional strategy
which quantifies the degree by numbers in [0, 1], the linguistic
threshold can be determined by decision-makers in an easy and

interpretable way.
Following the above introduction, the rest part of the paper

is organized as follows: Section II recalls the representational
model of LTWHs and defines some basic operations, equiva-
lent realtions and partial orders. The concepts of LHPRs, as
well as preference graphs, are presented in Section III. The
concepts and properties of consistencies of LHPRs are then
defined and developed in Section IV. Thereafter Section V
is devoted to improving LHPRs to satisfy certain consistency
measures. A real case study and comparisons are presented
in Section VI. The paper is ended by Section VII with some
conclusions.

II. LINGUISTIC TERMS WITH WEAKENED HEDGES

We will recall the syntax and semantics of LTWHs, and
then propose some basic operations associated with properties
and partial orders in this section.

A. Syntax and semantics of LTWHs

The key idea of computing with words is the use of linguis-
tic variables to manage and model the inherent vagueness and
uncertainty of the linguistic descriptors. In traditional fuzzy
linguistic approaches, the values of a linguistic variable are
collected by a LTS in which each linguistic term is associ-
ated with its syntax and semantics. For the convenience of
expressing preferences of pairwise comparisons, the following
commonly use subscript-symmetric version of LTS, defined in
the reference domain U = [L,R], is considered [7]:

S = {sα|α = −τ, . . . , 0, . . . , τ} (1)

where s0 means indifferent preference, τ is a positive integer
and S satisfies:

(1) Total order: sα ≤ sβ ⇔ α ≤ β;
(2) Negation operator: neg (sα) = s−α.
For convenience, we employ a function N : S → [0, 1] such

that
N(sα) = (τ + α)/2τ (2)

to transform sα into a numerical value. Its inverse function is
denoted as N−1(x) = sα, where α = τ(2x− 1).

If an expert is not sure about a linguistic term, then
weakened hedges can be considered. Generally, for a specific
QDM problem in hand, a set of weakened hedges can be
collected based on the language convention of the involved
experts and linguistic knowledge at first, and then encoded and
classified according to their weakening power. Then the hedges
are generally selected according to the degree of uncertainty.
Formally, a weakened hedge set (WHS) can be defined for a
QDM problem as follows [15]:

H = {ht|t = 1, 2, . . . , ζ} (3)

where hj has more weakening force than hi if and only if
i < j.

Remark 1: In fact, the correspondence between hedges in
natural languages and ht ∈ H may be not one-to-one. This
is because we may use different hedges to represent the same
or indistinguishable weakening power. For example, one may
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think that the weakening power of “rather” and “roughly” are
nearly the same. In this case, the set of hedges with the same
or indistinguishable weakening power are encoded by the same
ht. In addition, the value of ζ should be relatively small, such
as ζ ≤ 3, in applications. Because using too many hedges may
lead to the difficulty of distinguishing their semantics.

Due to our language convention, we may use some hedges
which have no weakening power. For example, we may say
“really low” or “definitely low”. Here, the hedges “really” and
“definitely” imply that one is sure that “low” is an appropriate
term to measure the object. In this sense, single terms can be
regarded as the special cases of LTWHs. Thus Eq. (3) can be
extended as [15]:

H̄ = {ht|t = 0, 1, 2, . . . , ζ} (4)

where h0 denotes the hedge(s) with no weakening power.
LTWHs can be generated based on a LTS S and a WHS H

as follows [15]:

Definition 1: Given a LTS S and a WHS H defined as
before, a LTWH, denoted by l, is generated by the following
syntactic rule:

〈weakened hedge〉 := ht, ht ∈ H,
〈atomic term〉 := sα, sα ∈ S,

〈LTWH〉 := 〈weakened hedge〉〈atomic term〉,

which can be represented by a 2-tuple, i.e., l = 〈ht, sα〉.
Formally, an atomic term sα ∈ S can be seen as a special

case of LTWH. That is, sα = 〈h0, sα〉. This means that
LTWHs are a generalization of single linguistic terms.

The classification and encoding of hedges could limit the
number of hedges to be represented and thus reduce the
complexity of the model. Moreover, we assume that the gaps
of weakening power between ht and ht+1 are equal, for any
t = 0, 1, . . . , ζ − 1. Therefore, it is natural to define the
semantics of 〈h1, sα〉 based on that of 〈h0, sα〉. This is defined
as follows [15]:

Definition 2: Let S be a LTS defined in U . For any x ∈ U ,
µ〈h1,sα〉(x) is defined by

µ〈h1,sα〉(x) = sup
y∈U
T (Sim(x, y), µsα(y)) (5)

where Sim is the similarity measure of x, y ∈ U , µsα is the
membership function of sα, and T is a triangular norm.

In order to specify the semantics of 〈h1, sα〉, we specify the
semantics of atomic terms in a usual way. Triangular fuzzy
numbers (TFNs) defined in the given domain U are usually
considered to depict the semantics of linguistic terms. Given
a TFN (a, b, c), we have:

µ(a,b,c)(x) =

 (x− a)/(b− a), max{L, a} ≤ x < b
(c− x)/(c− b), b ≤ x ≤ min{c,R}

0, otherwise
(6)

Specifically, given a reference domain U ,we assume that the
semantics is defined by two steps: (1) insert 2τ + 1 points
{xi|i = −τ, . . . , 0, . . . , τ} into the domain U such that x−τ =
L, xτ = R, and xi < xj for any i < j; (2) consider two sets

0 0.25 0.5

very 
poor

extremely 
poor

low
slightly 

poor
fair

slightly 
good

good
very 
good

extremely 
good

0.75 1

more or less very poor roughly good

Fig. 1. An example of LTS defined in uniformly distributed domain and
examples of semantics of LTWHs

of points, which are out of the domain, denoted as {x−τ−i|i =
1, 2, . . . , ζ+1} and {xτ+j |j = 1, 2, . . . , ζ+1}, where ζ is the
number of hedges considered in Eq. (3). Then the semantics of
sα can be represented by a TFN (xα−1, xα, xα+). Moreover,
the domain U is called to be piecewise uniformly distributed
because the membership function of each atomic term is a
piecewise linear function.

Frequently, like the cases in Fig. 1, |xi − xi−1| = |xj −
xj−1| = δ holds for any i, j = −τ − ζ, . . . , 0, . . . , τ + ζ + 1.
Then U is said to be uniformly distributed. In this case, the
similarity of x and y can be defined based on their distance
[15]. Given x, y ∈ U ,

Sim(x, y) =

{
1− |x− y|/δ, |x− y| < δ

0, otherwise
(7)

Moreover, if T (x, y) = min{x, y}, it can be concluded
that µ〈h1,sα〉 = (xα−2, xα, xα+2). As it has been assumed
that the gaps of weakening power of any two adjacent hedges
are equal, the conclusion can be generalized as µ〈ht,sα〉 =
(xα−t−1, xα, xα+t+1), where ht ∈ H̄ , sα ∈ S [15].

Generally, if U is piecewise uniformly distributed, a piece-
wise linear function can be employed to transform U into
an uniformly distributed domain [0, 1]. The above conclusion
holds as well. Thus, we have the following theorem [15]:

Theorem 1: Let S and H̄ be defined as before, T (x, y) =
min{x, y}. For any sα ∈ S and ht ∈ H̄ , the semantics of
〈ht, sα〉 is

µ〈ht,sα〉 = (xα−t−1, xα, xα+t+1) (8)

Example 1: Given a LTS S = {s−4 = extremely poor,
s−3 = very poor, s−2 = poor, s−1 = slightly poor, s0 =
indifferent, s1 = slightly good, s2 = good, s3 = very good,
s4 = extremely good} and a WHS H̄ = {h0 = definitely,
h1 = more or less, h2 = roughly}, three LTWHs might be:

〈h0, s0〉 : (definitely) fair;
〈h1, s−3〉 : more or less very poor

〈h2, s2〉 : roughly good

the semantics of 〈h1, s−3〉 and 〈h2, s2〉 can be found in Fig.
1.

Remark 2: As can be seen in Example 1, there are two
hedges, i.e., “more or less” and “very”, in 〈h1, s−3〉. But there
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are some differences. Firstly, “more or less” is a weakened
hedge whereas “very” is an intensified hedge. As we focus on
the model of uncertainty of using single terms, the intensified
hedges are not necessary. Secondly, “very” in this case acts as
a non-inclusive hedge whereas “more or less” is an inclusive
hedge. See [29] for more details about these two explanations.
Here, “very” moves “poor” to a completely different term.
However, “very poor” is a fuzzy subset of “more or less very
poor”.

The characteristics of the representational model are dis-
tinctive, compared with other techniques for CLEs in natrual
languages. The approach to represent the uncertainty of se-
lecting linguistic terms is unique. In fact, CLEs are considered
generally because we cannot determine which linguistic term
is the most appropriate to describe the objects. Thus, if the
boundary terms emerge in our mind, then it is natural to
use them and the connectives, such as “between”, “and”, to
compose ULTs or HFLTSs to describe the linguistic opinion.
If a single linguistic term might be the real value of a linguistic
variable, but we are not confident enough to confirm the as-
sertion, then according to the language convention, the natural
way is to consider a weakened hedge to express the degree of
uncertainty so that the expressed linguistic information is more
confident. Accordingly, from the perspective of syntactic rules,
the elements of generating LTWHs are different from others.
Specifically, a LTWH is formed by a weakened hedge and
an atomic term. Connectives are thus not necessary. As has
been pointed out in [30], modelling the power of hedges is
very complicated. Our specified semantics of hedges is just
a possible and rational solution. We consider this strategy
because: (1) the semantics can be determined only by the
distribution of the domain, which has been fixed as long as
the LTS is provided; and (2) the result shown in Theorem 1
is compact and concise.

Given S defined in Eq.(1) and H̄ in Eq.(4), the set of all
LTWHs is denoted by L in this paper. Moreover, in the virtual
linguistic model, S is extended to a continuous version S̄ =
{sα|α ∈ [−q, q], q > τ}. For the convenience of computation,
a 2-tuple 〈ht, sα〉, where sα ∈ S̄, is also called a LTWH.
The set of all LTWHs, associate with S̄ and H̄ defined as
above, is denoted by L̄ in the sequel. Given 〈ht, sα〉 ∈ L̄, if
〈ht, sα〉 /∈ L, then it is called a virtual LTWH which only
appears in the process of computation.

B. Basic operations and order relations of LTWHs
The negation operator can be defined naturally based on the

negation operator recalled above [15].

Definition 3: Given l = 〈ht, sα〉 ∈ L̄, its negation is defined
by:

Neg(〈ht, sα〉) = 〈ht, neg(sα)〉 = 〈ht, s−α〉 (9)

According to the semantics of LTWHs, the term sα in
〈ht, sα〉 somewhat acts as the expectation of 〈ht, sα〉. This
motivates us to define the following strictly partial order ≺:

Definition 4: Given two LTWHs l1 = 〈ht1 , sα1
〉, l2 =

〈ht2 , sα2
〉 ∈ L̄, then

l1 ≺ l2 ⇔ sα1
< sα2

(10)

If sα1 = sα2 , then l1 and l2 are incomparable according
to Definition 4. In fact, this can be depicted by the following
equivalent relation.

Definition 5: Given two LTWHs l1 = 〈ht1 , sα1
〉, l2 =

〈ht2 , sα2〉 ∈ L̄, then

l1 ' l2 ⇔ sα1 = sα2 (11)

Moreover, given two matrices P1 and P2, the notation P1 '
P2 means that their corresponding entries are equivalent in the
sense of Definition 5. Notice that two binary relations, i.e.,=
and ', will be used in the sequel. 〈ht1 , sα1

〉 = 〈ht2 , sα2
〉

always means t1 = t2 and α1 = α2. Therefore, l1 = l2 always
implies l1 ' l2. Eqs. (10-11) implies a poset (L̄,�), where �
is defined by

l1 � l2 ⇔ (l1 ≺ l2) ∨ (l1 ' l2) (12)

for any l1, l2 ∈ L̄. For convenience, if l1 � l2 (or l1 ≺ l2), we
also write l2 � l1 (or l2 � l1).

To ease the development of LHPRs, the following basic
operations are necessary.

Definition 6: Given three LTWHs l = 〈ht, sα〉, l1 =
〈ht1 , sα1

〉, l2 = 〈ht2 , sα2
〉 ∈ L̄, λ > 0, we define

(1) l1 ⊕ l2 = 〈hmax{t1,t2}, sα1+α2
〉;

(2) λl = 〈ht, sλα〉;
(3) l1 ⊗ l2 = 〈hmax{t1,t2}, N−1(N(sα1

) ·N(sα2
))〉.

Apparently, if ht = ht1 = ht2 = h0 in Definition 6, then the
operations are reduced to the version defined in [7]. For the
convenience of representation in some cases, we introduce the
subtraction of two LTWHs. Given l1, l2, l3 ∈ L̄, if l2⊕l3 = l1,
then we denote l3 = l1	 l2. Associated with the operation ⊕,
we obtain:

l1 	 l2 = 〈hmax{t1,t2}, sα1−α2
〉 (13)

The following properties are required in the sequel.

Theorem 2: For any l, l1, l2, l3 ∈ L̄, λ1, λ2 > 0, we have
(1) Neg(Neg(l)) = l, Neg(l) = s0 	 l;
(2) l ⊕ s0 = l, l 	 s0 = l;
(3) Associative: l1 ⊕ l2 ⊕ l3 = l1 ⊕ (l2 ⊕ l3), l1 	 l2 	 l3 =

l1 	 (l2 ⊕ l3)
(4) Distributive: λ(l1 ⊕ l2) = (λl1) ⊕ (λl2), (λ1 + λ2)l =

(λ1l)⊕ (λ2l);
(5) Neg(l1)⊕Neg(l2) = Neg(l1 ⊕ l2);

where s0 = 〈h0, s0〉 is the middle element in S̄.

The proof of this properties is straightforward according
to the above definitions. Moreover, different from the idea of
many references, such as [19], which uses a number in [0, 1]
to represent the deviation between two linguistic terms in S̄,
we measure the deviation between two LTWHs in L̄ by means
of a LTWH as follows:

Definition 7: Given l1 = 〈ht1 , sα1〉, l2 = 〈ht2 , sα2〉 ∈ L̄,
the deviation between l1 and l2 is defined by:

d(l1, l2) =

{
l1 	 l2, l1 � l2
l2 	 l1, otherwise

(14)

The linguistic form of deviations make use of LTWHs in
{〈ht, sα〉|ht ∈ H̄, sα ∈ S̄ and sα � s0} to represent the gap
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between two LTWHs. The uncertainty implied by the hedges
of the two LTWHs is remained in the deviation measure. For
instance, let l1 = s1 and l2 = 〈h1, s1〉 be two LTWHs based
on S and H̄ specified in Example 1, then d(l1, l2) = 〈h1, s0〉,
which means that the deviation between “slightly good” and
“more or less slightly good” is “more or less indifferent”. The
deviation measure possesses some interesting properties.

Theorem 3: Let l1 = 〈ht1 , sα1
〉, l2 = 〈ht2 , sα2

〉 ∈ L̄, we
have

(1) d(l1, l2) = 〈hmax{t1,t2}, s|α1−α2|〉;
(2) If l1 ' l2, then d(l1, l2) ' s0;
(3) If l1 ' l2, then d(l, l1) ' d(l, l2) for any l ∈ L̄;
(4) d(l1, l)⊕ d(l, l1) � d(l1, l2) for any l ∈ L̄.
Proof. Let l = 〈ht, sα〉 ∈ L̄,
(1) If l1 � l2, d(l1, l2) = l1 	 l2 = 〈hmax{t1,t2}, sα1−α2〉;

if l2 � l1, then d(l1, l2) = l2 	 l1 = 〈hmax{t1,t2}, sα2−α1
〉.

Thus d(l1, l2) = 〈hmax{t1,t2}, s|α1−α2|〉.
(2)-(3). If l1 ' l2, then we have sα1 = sα2 . d(l1, l2) =

〈hmax{t1,t2}, s0〉 ' s0; d(l, l1) = 〈hmax{t,t1}, s|α−α1|〉 =
〈hmax{t,t1}, s|α−α2|〉 ' 〈hmax{t,t2}, s|α−α2|〉 = d(l, l2).

(4) d(l1, l) ⊕ d(l, l2) = 〈hmax{t,t1}, s|α−α1|〉 ⊕
〈hmax{t,t2}, s|α−α2|〉 = 〈hmax{t,t1,t2}, s|α−α1|+|α−α2|〉 �
〈hmax{t,t1,t2}, s|α1−α2|〉 ' d(l1, l2). �

III. LINGUISTIC PREFERENCE RELATIONS WITH
WEAKENED HEDGES

This section is devoted to defining the concept of LHPRs
and presenting a graphical view for further processing. When
expressing preference degrees over a set of objects, weakened
hedges would be quite natural to be considered if the expert
is not confident enough to use a certain term. This leads to
the appearance of LTWHs in preference relations. Thus, we
present the following definition:

Definition 8: Let S̄ and H̄ be defined as before. A binary
relation P defined on the set V = {v1, v2, . . . , vn} is called
a LHPR if, for any i, j = 1, 2, . . . , n, P (vi, vj) = lij ∈ L̄
represents the degree of vi being preferred to vj . Formally,
a LHPR is denoted by P = (lij)n×n = (〈htij , sαij 〉)n×n,
where htij ∈ H̄ , sαij ∈ S̄. P is said to be reciprocal if
lij = Neg(lji) for any i, j = 1, 2, . . . , n.

Two conclusions are transparent: (1) If tij = 0, i.e., htij =
h0, for any i, j = 1, 2, . . . , n, then the LHPR is reduced to a
traditional LPR; (2) For any i = 1, 2, . . . , n, lii ' 〈h0, s0〉. In
fact, lii = Neg(lii) means 〈htii , sαii〉 = 〈htii , s−αii〉. Thus
αii = −αii, which results in αii = 0. Notice that we use
lii ' s0 instead of the traditional form lii = s0. This is just
a theoretical generalization for the convenience of inducing
some necessary properties. The generalization does not mean
that there exists any uncertainty in self comparisons.

In this paper, the graph theory is considered to handle con-
sistency measures of LHPRs in a visible manner. Generally,
a digraph G can be defined by a 2-tuple G = (V,A) where
V is the set of vertices and A is the set of arcs. In a fuzzy
weighted graph [31], the vertices and arcs (or edges) are crisp,
but the weights of arcs (or edges) are fuzzy. In this study, we
specify the weights of arcs by LTWHs which come from the

entries of a LHPR. The LHPR is visualized by its associated
fuzzy weighted digraph.

Definition 9: Let P = (lij)n×n be a LHPR defined on
V = {v1, v2, . . . , vn}. A preference relation graph (P-graph)
associated with P is a fuzzy weighted digraph GP = (V,A),
where the set of vertices is V , the set of arcs is denoted by
A = {(vi, vj)}, and the arc (vi, vj) which joins vi to vj exists
if lij � s0 and i 6= j. If (vi, vj) exists, then its fuzzy weight
is defined by w(vi, vj) = lij .

In a P-graph, the arc (vi, vj) indicates that vi is preferred to
vj . Preference values which are equivalent to s0 are considered
as a special case of preferences. Given a LHPR P (lij)n×n, the
number of arcs is n(n − 1)/2 + c0, where c0 is the number
of upper diagonal entries which are equivalent to s0. The
following digraph is specified to highlight each entry of P :

Definition 10: Let P = (lij)n×n be a LHPR defined on
V = {v1, v2, . . . , vn}. A symmetric preference relation graph
(SP-graph) associated with P is fuzzy weighted digraph GP =
(V,A), where the set of vertices is V , the set of edges is
denoted by A = {(vi, vj)}, and the arc (vi, vj) joins vi to vj
with its fuzzy weight w(vi, vj) = lij , i 6= j.

Different from P-graphs, there are n(n − 1) arcs in
a SP-graph associated with P = (lij)n×n. In the P-
graph (or SP-graph) GP associated with the LHPR P , a
sequence (vi1 , (vi1 , vi2), vi2 , . . . , vik−1

, (vik−1
, vik), vik) is a

walk from vi1 to vik , where vi1 , vi2 , . . . , vik ∈ V and
(vi1 , vi2), . . . , (vik−1

, vik) ∈ A. A walk is called a path
if vi1 , vi2 , . . . , vik are distinct. The fuzzy length of the
path is defined by the sum of weights of its arcs, i.e.,
len(vi1 , (vi1 , vi2), vi2 , . . . , vik−1

, (vik−1
, vik), vik) = li1i2 ⊕

· · · ⊕ lik−1ik The fuzzy distance from vi to vj is the shortest
fuzzy length of the paths from vi to vj in GP . If vi1 = vik
and vi1 , vi2 , . . . , vik−1

are distinct, then a walk is a cycle.
Traditionally, the arcs in a digraph G with n vertices are

represented by an adjacent matrix M = (Mij)n×n, having
Mij = 1 if and only if there is an arc (vi, vj). Given a LHPR
P = (lij)n×n, the arcs of its associated P-graph GP can be
represented by the adjacent metrix MP = (Mij)n×n, where

Mij =

{
1, w(vi, vj) � s0
0, w(vi, vj) ≺ s0

(15)

According to Definition 9, Mii = 0 for any i = 1, 2, . . . , n.
Moreover, if lij ' s0, i 6= j, then Mij = Mji = 1. In this
sense, the adjacent matrix of the SP-graph of a LHPR is not
so interesting because all its off-diagonal elements are equal
to 1.

Example 2: Given S and H̄ defined in Example 1, a LHPR
P could be:

s0 〈h1, s−2〉 〈h1, s−3〉 s−1 〈h2, s2〉
〈h1, s2〉 s0 s2 〈h1, s1〉 s2
〈h1, s3〉 s−2 s0 s3 s1
s1 〈h1, s−1〉 s−3 s0 〈h1, s2〉

〈h2, s−2〉 s−2 s−1 〈h1, s−2〉 s0


For example, entry 〈h1, s2〉 means that v2 is more or less good
when compared with v1. Its P-graph and SP-graph are shown
in Fig.2 and Fig.3, respectively.
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Fig. 2. The P-graph associated with the LHPR in Example 2
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Fig. 3. The SP-graph associated with the LHPR in Example 2

IV. CONSISTENCY MEASURES OF LHPRS

Based on the concept and the associated P-graph, we now
define several kinds of consistency measures to implement
the idea of transitivity. The properties, identification and
improvement of such measures will be discussed as well.

A. Defining consistencies by transitivity

Definition 11: Given a reciprocal LHPR P = (lij)n×n with
lij = 〈htij , sαij 〉 ∈ L̄, i, j = 1, 2, . . . , n, then

(1) P satisfies the triangle condition if ∀i, j, k = 1, 2, . . . , n,

lik ⊕ lkj � lij
(2) P satisfies the weak transitivity if ∀i, j, k = 1, 2, . . . , n,

lik � s0, lkj � s0 ⇒ lij � s0
(3) P satisfies the restricted max-max transitivity if

∀i, j, k = 1, 2, . . . , n,

lik � s0, lkj � s0 ⇒ lij � max{lik, lkj}

(4) P satisfies the restricted max-min transitivity if
∀i, j, k = 1, 2, . . . , n,

lik � s0, lkj � s0 ⇒ lij � min{lik, lkj}

(5) P satisfies the additive transitivity if ∀i, j, k =
1, 2, . . . , n,

lik ⊕ lkj ' lij

(6) P satisfies the multiplicative transitivity if ∀i, j, k =
1, 2, . . . , n and lij , ljk, lki � s−τ ,

lij ⊗ ljk ⊗ lki ' lik ⊗ lkj ⊗ lji
Especially, P is said to be weakly consistent, additively con-

sistent and multiplicatively consistent if it satisfies the weak
transitivity, additive transitivity and multiplicative transitivity,
respectively.

It is very easy to interpret most of the transitivities visually
by using P-graphs and SP-graphs. For any i, j, k = 1, 2, . . . , n,
if vi is preferred to vk and vk is preferred to vj , then the
triangle condition and the weak transitivity stipulate the upper
and lower bounds of w(vi, vj), respectively. Specifically, in
a P-graph, if there is an arc directed from vi to vk and
another arc directed from vk to vj , then the weak transitivity
requires that there should be an arc directed from vi to
vj . Simultaneously, the triangle condition calls for that the
fuzzy weight of (vi, vj) should not exceed the fuzzy length
of (vi, (vi, vk), vk, (vk, vj), vj). As seen in Fig. 2, because
there are two arcs (v2, v3) and (v3, v1), then there should
be an arc (v2, v1) according to the weak transitivity and
w(v3, v1) should not exceed w(v2, v3)⊕ w(v3, v1) according
to the triangle condition. From the angle of lower bounds, the
restricted max-min transitivity requires that w(vi, vj) should
be no less than min{w(vi, vk), w(vk, vj)}; the restricted max-
max transitivity demands that w(vi, vj) should be at least
max{w(vi, vk), w(vk, vj)}. The additive transitivity defines
w(vi, vj) by a precise angle, i.e., w(vi, vj) should be equiva-
lent to w(vi, vk)⊕w(vk, vj) in the sense of Eq.(11). Associated
with its SP-graph, a LHPR satisfies the additive transitivity if
the fuzzy lengths of all paths which start from vi and end by vj
are equivalent. As seen in Fig. 2, len(v2, (v2, v1), v1) = l21 =
〈h1, s2〉, and len(v2, (v2, v3), v3, , (v3, v1), v1) = l21 ⊕ l31 =
s2 ⊕ 〈h1, s3〉 = 〈h1, s5〉. Then we have 〈h1, s2〉 ≺ 〈h1, s5〉
and thus P in Example 2 is not additively consistent.

The relationship among the transitivity can be summarized
directly based on the definition and the above analyses.

Theorem 4: Given a LHPR P and five propositions: (i) P
satisfies the triangle condition; (ii) P satisfies the weak consis-
tency; (iii) P satisfies the restricted max-max transitivity; (iv)
P satisfies the restricted max-min transitivity; (v) P satisfies
the additive transitivity, then:

(1) (v) ⇒ (i);
(2) (v) ⇒ (iii) ⇒ (iv) ⇒ (ii).

Similar to many studies regarding preference relations, the
additive consistency is an ideal property for a LHPR if
satisfied. The weak consistency, which ensures that a LHPR is
logically correct, is the property that the LHPR should at least
satisfy. We mainly focus on these two types of transitivity and
start with identifying whether a LHPR is of weak consistency.

B. Weak consistency of LHPRs

According to the definition, weak transitivity can be checked
directly by the P-graph. Similar to Ref. [32], a cycle with k
vertices and k arcs is referred to as a k-cycle. Weak transitivity
requires that there is no k-cycle in the P-graph, 3 ≤ k ≤ n.
Fortunately, it does not have to check all k ∈ {3, 4, . . . , n}.
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Fig. 4. Illustration of finding 3-cycle from a k-cycle. (a) a 3-cycle is found;
(b) the k-cycle is reduced to a (k − 1)-cycle.

Theorem 5: For any P-graph associated with a reciprocal
LHPR, if there is a k-cycle, k ∈ {3, 4, . . . , n}, then there is a
3-cycle.

Proof. For any P-garph, according to Definition 9, there
is at least one arc located between any two vertices. Given a
k-cycle denoted by (vi1 , (vi1 , vi2), vi2 , . . . , vik , (vik , vi1), vi1),
where k ∈ {3, 4, . . . , n},

(1) If w(vi2 , vik) � s0, as shown in Fig. 4(a), then there is
a 3-cycle (vi1 , (vi1 , vi2), vi2 , (vi2 , vik), vik , (vik , vi1), vi1).

(2) If w(vi2 , vik) ≺ s0, according to the reciprocal property,
there is an arc (vik , vi2). Ignoring v1, we obtain a new (k−1)-
cycle (vi2 , (vi2 , vi3), vi3 , . . . , vik , (vik , vi2), vi2), as shown in
Fig.4(b). Similarly, when considering w(vi3 , vik), we could
get either a 3-cycle or a new (k − 2)-cycle.

Repeating this process, it is apparent that a 3-cycle can be
found. �

Remark 3: The idea of checking the weak consistency of
preference relations has been included in some graph-based
approaches, such as [28], [33]. But the fundamental aspect
has not been clarified. The proof of Theorem 5 guarantees
that this kind of approaches are theoretically correct.

Therefore, it is enough to check all the 3-cycles in a P-
graph for weak consistency judgement. However, not all the
3-cycles means illogical judgements in a preference relation
because the weights of arcs in a 3-cycle might be equivalent
to s0. The following definition is to identify real cycles.

Definition 12: A k-cycle in a P-graph is said to be a strict
k-cycle if there exists at least one arc (vi, vj) whose weight
is greater than s0, i.e., w(vi, vj) � s0.

The definition is straightforward. In fact, if the weight of
each arc in a cycle is equivalent to s0, then the cycle is
meaningless for weak consistency judgement. Formally, we
have the following theorem:

Theorem 6: A LHPR is weakly consistent if and only if
there is no strict 3-cycle in its associated P-graph.

Proof. The theorem can be rephrased as: A LHPR is not
weakly consistent if and only of there exists at least one strict
3-cycle in its P-graph. Let P = (lij)n×n be a LHPR defined
on the set {v1, v2, . . . , vn}, associated with the P-graph GP .

(⇒) If P is not weakly consistent, then there exist i, j, k ∈
{1, 2, . . . , n} such that lij � s0, ljk � s0, and lik ≺ s0. Then
the 3-cycle (vi, (vi, vj), vj , (vj , vk), vk, (vk, vi), vi) always ex-
ists.

(1) If lij � s0 and ljk � s0, then the weights of three arcs
of the 3-cycle are greater than s0. Thus, it is a strict 3-cycle.

(2) If lij � s0 and ljk ' s0, then we have w(vi, vj) � s0
and w(vk, vi) � s0. It is also a strict 3-cycle.

(3) If lij ' s0 and ljk ' s0, the 3-cycle is strict because
w(vk, vi) � s0.

(⇐) Suppose that there exist i, j, k ∈ {1, 2, . . . , n} which
form a strict 3-cycle (vi, (vi, vj), vj , (vj , vk), vk, (vk, vi), vi).
The cycle is strict, and thus, there is at least one arc whose
weight is greater than s0.

(1) If all the three weights are greater than s0, it is obvious
that P is not weakly consistent.

(2) If two of the three weights are greater than s0, we denote
w(vi, vj) � s0, w(vj , vk) � s0, and w(vk, vi) ' s0. We have
ljk � s0 (i.e., ljk � s0) and lki ' s0 (i.e., lki � s0), but
lji ≺ s0. Thus, P is not weakly consistent.

(3) If one of the three weights is greater than s0, we
denote w(vi, vj) � s0, w(vj , vk) ' s0, and w(vk, vi) ' s0.
Accordingly, ljk � s0 and lki � s0. However, lji ≺ s0. Thus,
P is not weakly consistent. �

Theorem 6 ensures that the weak consistency can be iden-
tified by checking the existence of strict 3-cycle. In order to
identify whether a 3-cycle is strict or not, we need to find out
the walk of a cycle at first.

Algorithm 1: Input: a LHPR P = (lij)n×n. Output: P is
weakly consistent or not.

Step 1: Construct the adjacent matrix M according to
Eq.(15); let c = 1.

Step 2: For any i, j, k = 1, 2, . . . , n, if MijMjkMki = 1,
then let lmax = max{lij , ljk, lki}: if lmax � s0, then c = 0,
break; else, continue.

Step 3: If c = 1, then P is weakly consistent; else P is not.

Note that, different from the similar weak consistency iden-
tification algorithms [28], [33], the above algorithm checks the
P-graph of P based on two levels. First, MijMjkMki = 1 is to
identify the existence of a 3-cycle. In addition, if lmax � s0,
then the found 3-cycle is a strict 3-cycle. The algorithm is
terminated if a strict 3-cycle is found or i, j, k have gone
through 1, 2, . . . , n. Moreover, for a preference relation, n is
usually suggested to be less than 9 [34]. Thus, the complexity
of Algorithm 1 is acceptable.

Example 3: Consider the LHPR P in Example 2, according
to Algorithm 1, there is no 3-cycle in the P-graph, then P is
weakly consistent.
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C. Additive consistency of LHPRs

Below we consider how to identify whether a LHPR is
additively consistent or not.

Theorem 7: If a LHPR P = (lij)n×n is reciprocal, then the
following statements are equivalent:

(1) lij ⊕ ljk ' lik, ∀i, j, k;
(2) lij ⊕ ljk ' lik, ∀i < j < k;
(3) li,i+1 ⊕ li+1,i+2 ⊕ · · · ⊕ lj−1,j ⊕ lj,i ' s0, ∀i < j.
Proof. (1)⇒(2): It’s obvious.
(2)⇒(1): Let us consider the order of i, j, k. If i = j = k,

lij ⊕ ljk = s0 = lik; if two of the three are equal, say, if
i = j 6= k, lij ⊕ ljk = s0 ⊕ lik = lik. Then we consider the
case i 6= j 6= k:

(i) If i < j < k, then apparently lij ⊕ ljk ' lik according
to (2);

(ii) If i < k < j, then we have lik ⊕ lkj ' lij . Thus,

lij⊕ ljk = (lik⊕ lkj)⊕ ljk = lik⊕ (lkj⊕ ljk) ' lik⊕s0 = lik

(iii) Similar to (ii), lij ⊕ ljk ' lik holds if j < i < k,
j < k < i, k < i < j, and k < j < i.

Thus for any i, j, k = 1, 2, . . . , n, lij ⊕ ljk ' lik.
(2)⇒(3): Let j = i+ 1 and k = i+ 2 in (2), we get

li,i+1 ⊕ li+1,i+2 ' li,i+2

Similarly, we can get a collection of equations:

li,i+2 ⊕ li+2,i+3 ' li,i+3, . . . , li,j−1 ⊕ lj−1,j ' lij

. Moreover, lij⊕lj,i ' s0. The accumulation of these equations
results in:

li,i+1 ⊕ li+1,i+2 ⊕ · · · ⊕ lj−1,j ⊕ lj,i ' s0

(3)⇒(2): Let i < j < k, then we obtain

li,i+1 ⊕ li+1,i+2 ⊕ · · · ⊕ lj−1,j ⊕ lji ' s0
lj,j+1 ⊕ lj+1,j+2 ⊕ · · · ⊕ lk−1,k ⊕ lkj ' s0

and
li,i+1 ⊕ li+1,i+2 ⊕ · · · ⊕ lk−1,k ⊕ lki ' s0

from (3). Accumulating the first two, we get

li,i+1 ⊕ li+1,i+2 ⊕ · · · ⊕ lk−1,k ⊕ lji ⊕ lkj ' s0

Comparing it with the third equation, it is obvious that lji ⊕
lkj ' lki, which also means

(s0 	 lij)⊕ (s0 	 ljk) ' (s0 	 lik)

According to Theorem 2, lij ⊕ ljk ' lik. �

In Theorem 7, (2) presents a simple way to check the
additive consistency of a LHPR. In fact, it is enough to
check the values of lij , ljk, and lik having i ≤ j ≤ k for
a given reciprocal LHPR. Besides, (3) enables to generate
an additively consistent LHPR by means of n − 1 entries:
l12, l23, . . . , ln−1,n.

1) Constructing an additively consistent LHPR from n-1
entries: Incomplete preference relations are frequently con-
sidered to facilitate experts providing their preference infor-
mation. Ideally, if each object is compared by only one time,
then we have n− 1 known entries of the preference relation.
An additively consistent preference relation can always be
generated in this case.

The algorithm can be depicted by two phases: computation
and normalization. The first phase (Steps 1-2) computes all
the missing entries, and then the second phase (Steps 3-4)
normalizes the results so that they could be interpretable in
the original domain. Specifically,

Algorithm 2: Input: An incomplete LHPR P = (lij)n×n
with known entries l12, l23, . . . , ln−1,n ∈ L̄. Output: A com-
pleted additively consistent LHPR P .

Step 1: For any i < j, if lij /∈ {l12, l23, . . . , ln−1,n}, do

lij = li,i+1 ⊕ li+1,i+2 ⊕ · · · ⊕ lj−1,j

Step 2: For any i = j, lii = s0; for any i > j, lij =
Neg(lji).

Step 3: Find an entry li0,j0 = 〈hti0,j0 , sαi0,j0 〉 satisfying
li0,j0 � lij , for any i, j = 1, 2, . . . , n. If sαi0,j0 ≤ sτ , then go
to Step 5; else, go to Step 4.

Step 4: A new LHPR P
′

= f(P ) where the function

f : [s−αi0,j0 , sαi0,j0 ]→ [s−τ , sτ ]

normalizes the second component of each LTWH in P , such
that f(sα) = sβ with β = τα/αi0,j0 . Let P = P

′
.

Step 5: End.

Theorem 8: Algorithm 2 outputs an additively consistent
LHPR.

Proof. Given l12, l23, . . . , ln−1,n ∈ L̄, it is apparent that
the computational results of Step 2 satisfy lij ⊕ ljk ' lik,
∀i, j, k, according to Theorem 7. Thus, if sαi0,j0 ≤ sτ , then
the resultant P is additively consistent; else we have to clarify
that f mapping P to an additively consistent LHPR whose
entries are in L̄.

Denote P = (lij)n×n = (〈htij , sαij 〉)n×n, P
′

= (l
′

ij)n×n
= (〈htij , s

′

αij 〉)n×n.
(1) Obviously, f(s−αi0,j0 ) = s−τ , f(sαi0,j0 ) = sτ . Thus,

the entries are normalized into the range L̄.
(2) For any i, j = 1, 2, . . . , n,

〈htij , s
′

αij 〉 ⊕ 〈htji , s
′

αji〉 = 〈htij , f(sαij )〉 ⊕ 〈htji , f(sαji)〉

where

f(sαij )⊕ f(sαji) = (τ/αi0,j0)sαij ⊕ sαji = (τ/αi0,j0)s0

according to Step 2. Thus, 〈htij , s
′

αij 〉⊕〈htji , s
′

αji〉 ' s0. The
reciprocal property is proven.

(3) For any i, j, k = 1, 2, . . . , n,

l
′

ij ⊕ l
′

jk = 〈htij , s
′

αij 〉 ⊕ 〈htjk , s
′

αjk
〉

= 〈hmax{tij ,tjk}, f(sαij )⊕ f(sαjk)〉

where

f(sαij )⊕ f(sαjk) = (τ/αi0,j0)sαij ⊕ sαjk
= (τ/αi0,j0)sαik = f(sαik)
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according to Step 1 and Theorem 7. Thus, l
′

ij ⊕ l
′

jk =

〈hmax{tij ,tjk}, s
′

αik
〉 ' l′ik. The additive consistency is proven.

�

Note that, due to the basic operations in Definition 6, the
uncertainties of the known entries which are expressed by
weakened hedges, will be transferred to the missing entries
during the generating process.

Example 4: Given an incomplete LHPR P = (lij)4×4 with
three known entries: l12 = s1, l23 = 〈h1, s2〉, l34 = 〈h2, s−1〉,
based on the LTS S and the WHS H̄ defined in Example 1.
According to Steps 1-2 of Algorithm 2, P can be completed
as:

P =


s0 s1 〈h1, s3〉 〈h2, s2〉
s−1 s0 〈h1, s2〉 〈h2, s1〉

〈h1, s−3〉 〈h1, s−2〉 s0 〈h2, s−1〉
〈h2, s−2〉 〈h2, s−1〉 〈h2, s1〉 s0


where, for example, l14 = l12 ⊕ l23 ⊕ l34 = s1 ⊕ 〈h1, s2〉 ⊕
〈h2, s−1〉 = 〈h2, s2〉, l41 = Neg(l14) = 〈h2, s−2〉. We can
see that the greatest element is l13 = 〈h1, s3〉. Because s3 ≺
sτ = s4, the algorithm is terminated.

2) Constructing an additively consistent LHPR by a re-
ciprocal LHPR: Besides, an additively consistent LHPR can
be generated based on a given LHPR. Consider the SP-
graph of a LHPR P , if P is additively consistent, then
given i, j = 1, 2, . . . , n, w(vi, vj) should be equivalent to
the fuzzy length of path (vi, (vi, vk), vk, (ki, vj), vj), for any
k = 1, 2, . . . , n. This fact motivates us to estimate lij the set
of paths which are from vi to vj through any intermediate
vertices. Formally, we have

Theorem 9: Given a reciprocal LHPR P = (lij)n×n, let
P̄ = (l̄ij)n×n with

l̄ij =
1

n

n
⊕
k=1

(lik ⊕ lkj) (16)

where i, j = 1, 2, . . . , n, then P̄ is additively consistent.
Proof. (1) For any i, j = 1, 2, . . . , n,

l̄ji = 1
n

n
⊕
k=1

(ljk ⊕ lki) = 1
n

n
⊕
k=1

(Neg(lkj)⊕Neg(lik))

= 1
nNeg(

n
⊕
k=1

(lik ⊕ lkj)) = Neg(l̄ij),

thus P̄ is reciprocal.
(2) For any i, j, k = 1, 2, . . . , n,

l̄ik ⊕ l̄kj = 1
n

n
⊕
k1=1

(li,k1 ⊕ lk1,k)⊕ 1
n

n
⊕
k2=1

(lk,k2 ⊕ lk2,j)

= 1
n

n
⊕
k1=1

(li,k1 ⊕ lk1,k ⊕ lk,k1 ⊕ lk1,j)

= 1
n

n
⊕
k1=1

(li,k1 ⊕ lk1,j) = l̄ij ,

thus P̄ is additively consistent. �

In practice, it is not very interesting to generate such a
LHPR based on arbitrary reciprocal LHPR. However, the
generation process implies another way to check if a LHPR
is additively consistent.

Theorem 10: Let P = (lij)n×n be a reciprocal LHPR
and P̄ = (l̄ij)n×n be the LHPR generated by Eq.(16). P is
additively consistent if and only if P ' P̄ .

Proof. (⇐): If P ' P̄ , according to Theorem 9, P̄ is
additively consistent. For any i, j, k = 1, 2, . . . , n, lik ⊕ lkj '
l̄ik ⊕ l̄kj ' l̄ij ' lij , then P is also additively consistent.

(⇒): If P is additively consistent, then lik ⊕ lkj ' lij for
any i, j, k = 1, 2, . . . , n. Accordingly,

l̄ij =
1

n

n
⊕
k=1

(lik ⊕ lkj) '
1

n

n
⊕
k=1

lij = lij

for any i, j = 1, 2, . . . , n. Thus P ' P̄ . �

According to Theorem 10, an additively consistent LHPR
should be equivalent to the LHPR generated by Eq.(16).

Example 5: We have proven that the LHPR in Example 2
is weakly consistent. According to Eq.(16), a new LHPR P̄ =

(l̄ij)5×5 can be generated. For instance, l̄12 = 1
5

5
⊕
k=1

(l1k ⊕
lk2) = 1

5 (s0 ⊕ 〈h1, s−2〉) ⊕ (〈h1, s−2〉 ⊕ s0) ⊕ (〈h1, s−3〉 ⊕
s−2) ⊕ (s−1 ⊕ 〈h1, s−1〉) ⊕ (〈h2, s2〉 ⊕ s−2) = 〈h2, s−2.2〉.
Moreover, we have:

P̄ =


〈h2, s0〉 〈h2, s−2.2〉 〈h2, s−1.8〉
〈h2, s2.2〉 〈h1, s0〉 〈h1, s0.4〉
〈h2, s1.8〉 〈h1, s−0.4〉 〈h1, s0〉
〈h2, s0.6〉 〈h1, s−1.6〉 〈h1, s−1.2〉
〈h2, s−0.6〉 〈h2, s−2.8〉 〈h2, s−2.4〉
〈h2, s−0.6〉 〈h2, s0.6〉
〈h1, s1.6〉 〈h2, s2.8〉
〈h1, s1.2〉 〈h2, s2.4〉
〈h1, s0〉 〈h2, s1.2〉
〈h2, s−1.2〉 〈h2, s0〉


Obviously, P ' P̄ is not true, thus P is not additively

consistent.

If a LHPR is not additively consistent, then the degree of
additive consistency could be measured by the similarity or
deviation between P and P̄ . This will be presented in detail
in the next section.

V. CONSISTENCY IMPROVING OF LHPRS

The additive consistency is an ideal case of preference
relation, which might be hard to reach. The weak consistency
often serves as the boundary condition that a preference
relation should satisfy. In applications, the degree of addi-
tive consistency is frequently considered. If a given LHPR
approaches to its additively consistent version, then it would be
satisfactory and acceptable by a decision-maker. The deviation
between two LHPRs, which is vital to quantify the degree of
consistency, is defined based on the deviation between each
pair of upper diagonal elements in the LTWHs:

Definition 13: Given two reciprocal LHPRs P = (lij)n×n
and P

′
= (l

′

ij)n×n, their deviation is defined as:

d(P, P
′
) =

2

n(n− 1)
⊕
i<j

d(lij , l
′

ij) (17)

Definition 14 can be regarded as a tool of consistency
improving. Firstly, we will employ it to improve a LHPR to
satisfy the weak transitivity.
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A. Improving a LHPR to satisfy weak consistency

It is generally required that a LHPR is weakly consistent.
If not, an approach should be developed to improve the
consistency of the LHPR. Interactive approaches, such as the
idea in [32], detect the illogical arcs in the graph and receive
feedbacks from experts. Automatic approaches, like the idea
in [28], [33], improves the preference relation based on the
original information and some specific revision rules. In the
sequel, we propose an automatic approach to improve a LHPR
which is not weakly consistent.

Algorithm 3: Input: a reciprocal LHPR P , λ ∈ (0, 1);
Output: a weakly consistent LHPR P (m).

Step 1: Let P (0) = P , m = 0.
Step 2: According to Algorithm 1, if P (m) is weakly

consistent, go to Step 4; else, generate P̄ (m) by using Eq.(16),
go to Step 3.

Step 3: Let P (m+1) = (1− λ)P (m) ⊕ λP̄ (m), m = m+ 1.
Go to Step 2.

Step 4: Output P (m).

The iterative algorithm revises the entries of a given LHPR
automatically and maintains the original opinions as much
as possible. To this end, λ plays an important role. In fact,
λ implies to what extent the original information should be
maintained. If λ = 0, then only the original information in
P is considered; if λ = 1, then the original information is
completely ignored.

In Algorithm 3, the additively consistent LHPR P̄ (m) is
generated in each iteration. This is rational but results in the
complexity of the algorithm. To improve Algorithm 3, we
present the following theorem at first:

Theorem 11: Given any P̄ (m) and P̄ (m+1) derived in
Algorithm 3, m ≥ 0, λ ∈ (0, 1), we have P̄ (m) ' P̄ (m+1).

Proof. Denote P (m) = (l
(m)
ij )n×n = (〈h

t
(m)
ij
, s
α

(m)
ij
〉)n×n,

P̄ (m) = (l̄(m))n×n.
(1) Firstly, we have to prove that P (m+1) is a reciprocal

LHPR. In fact,

l
(m+1)
ij = (1− λ)l

(m)
ij ⊕ λ 1

n

n
⊕
k=1

(l
(m)
ik ⊕ l

(m)
kj )

= 〈h
t
(m)
ij
, s

(1−λ)α(m)
ij
〉

⊕ λ 1
n

n
⊕
k=1
〈h
max{t(m)

ik ,t
(m)
kj }

, s
α

(m)
ik +α

(m)
kj

〉
= 〈h

t
(m)
ij
, s

(1−λ)α(m)
ij
〉 ⊕ 〈h

t
(ij)
0
, s
λα

(ij)
0
〉,

where t
(ij)
0 = max

k
{max{t(m)

ik , t
(m)
kj }}, α

(ij)
0 =

1
n

n∑
k=1

(α
(m)
ik + α

(m)
kj ). Then

l
(m+1)
ij = 〈h

max{t(m)
ij ,t

(ij)
0 }, s(1−λ)α(m)

ij +λα
(ij)
0
〉

It is clear that h
max{t(m)

ij ,t
(ij)
0 } ∈ H̄ , s

(1−λ)α(m)
ij +λα

(ij)
0
∈ S̄,

thus l
(m+1)
ij ∈ L̄ and P (m+1) is a LHPR. Furthermore, if

m = 0, then P is reciprocal. Assume that P (m) is reciprocal,

which means l(m)
ij = Neg(l

(m)
ji ) for any i, j = 1, 2, . . . , n.

Then

l
(m+1)
ji = 〈h

max{t(m)
ji ,t

(ji)
0 }, s(1−λ)α(m)

ji +λα
(ji)
0
〉

= 〈h
max{t(m)

ij ,t
(ij)
0 }, s−((1−λ)α(m)

ij +λα
(ij)
0 )
〉

= Neg(l
(m+1)
ij ),

thus P (m+1) is reciprocal.

(2) We prove P̄ (m) ' P̄ (m+1). According to l(m+1)
ij derived

in (1), we have:

l̄
(m+1)
ij = 1

n

n
⊕
k=1

(〈h
t
(ik)
0
, s
α

(ik)
0
〉 ⊕ 〈h

t
(kj)
0

, s
α

(kj)
0
〉)

= 1
n

n
⊕
k=1
〈h
max{t(ik)0 ,t

(kj)
0 }, sα(ik)

0 +α
(kj)
0
〉

= 〈h
t
(ij)
1
, s
α

(ij)
1
〉,

where t
(ij)
1 = max

k
{max{t(ik)0 , t

(kj)
0 }} and α

(ij)
1 =

1
n

n∑
k=1

(α
(ik)
0 + α

(kj)
0 ). Especially,

α
(ij)
1 = 1

n

n∑
k=1

( 1
n

n∑
k1=1

(α
(m)
ik1

+ α
(m)
k1k

)

+ 1
n

n∑
k2=1

(α
(m)
kk2

+ α
(m)
k2j

))

= 1
n2

n∑
k=1

n∑
k1=1

(α
(m)
ik1

+ α
(m)
k1k

+ α
(m)
kk1

+ α
(m)
k1j

)

= 1
n2

n∑
k=1

n∑
k1=1

(α
(m)
ik1

+ α
(m)
k1j

)

= 1
n

n∑
k1=1

(α
(m)
ik1

+ α
(m)
k1j

) = α
(ij)
0 ,

which means l̄(m+1)
ij ' l̄(m)

ij . Therefore, P̄ (m) ' P̄ (m+1). �

Thus, according to (3) of Theorem 3 and Theorem 11, it is
not necessary to generate P̄ (m) in each loop of Algorithm 3.
The algorithm can be improved to the following version:

Algorithm 4: Input: a reciprocal LHPR P , λ ∈ (0, 1);
Output: a weakly consistent LHPR P (m).

Step 1: Let P (0) = P , m = 0, generate P̄ by using Eq.(16).
Step 2: According to Algorithm 1, if P (m) is weakly

consistent, then go to Step 4; else, go to Step 3.
Step 3: Let P (m+1) = (1− λ)P (m) ⊕ λP̄ , m = m+ 1. Go

to Step 2.
Step 4: Output P (m).

The convergence of Algorithm 4 can be identified as fol-
lows:

Theorem 12: Algorithm 4 outputs a weakly consistent
LHPR within finite loops.

Proof. Let P (m) = (l
(m)
ij )n×n and P̄ = (l̄ij)n×n which

is generated from P . It is sufficient if the deviation between



IEEE TRANS. FUZZY SYST., VOL. *, NO. * 11

P (m) and P̄ reduces in each loop. In fact, according to the
proof of Theorem 11, we have

d(l
(m+1)
ij , l̄ij) = d(〈h

max{t(m)
ij ,t

(ij)
0 }, s(1−λ)α(m)

ij +λα
(ij)
0
〉,

〈h
t
(ij)
0
, s
α

(ij)
0
〉)

= 〈h
max{t(m)

ij ,t
(ij)
0 }, s|(1−λ)α(m)

ij +λα
(ij)
0 −α(ij)

0 |〉
= 〈h

max{t(m)
ij ,t

(ij)
0 }, s|(1−λ)(α(m)

ij −α
(ij)
0 |〉

' (1− λ)〈h
max{t(m)

ij ,t
(ij)
0 }, s|(α(m)

ij −α
(ij)
0 |〉

= (1− λ)d(l
(m)
ij , l̄ij) ≺ d(l

(m)
ij , l̄ij).

Thus d(P (m+1), P̄ ) ≺ d(P (m), P̄ ). If m → +∞, then P (m)

approaches an additively consistent LHPR. According to (2)
of Theorem 4, the proof is completed. �

B. Improving the degree of addtive consistency

Obviously, the above algorithms improve a LHPR by letting
it approach to an additively consistent LHPR. In applications,
if weak consistency does not meet the requirement of a
decision-maker, then the concept of the degree of additive
consistency can be introduced so that the decision-maker can
express the threshold of satisfactory consistency. Given P , the
degree of additive consistency of a LHPR can be measured
by the deviation between each entry in the upper triangular
position lij (i < j) and its ideal value.

Definition 14: The degree of additive consistency of P is
defined as:

D(P ) = sτ 	 d(P, P̄ ) (18)

where P̄ is the LHPR generated by Eq.(16) based on P .

The larger D(P ) implies the larger degree of additive
consistency of P . Linguistically, take the LTS in Example 1
for instance, if D(P ) ' s4, then we can assert that the degree
of additive consistency of P is “extremely good”. Moreover,
we have the following theorem:

Theorem 13: For any reciprocal LHPR P = (lij)n×n,
D(P ) ' sτ if and only if P is additively consistent.

Proof. Let P̄ = (l̄ij)n×n represent the additively consistent
LHPR generated by Eq.(16).

(⇒) According to Definition 7, d(l1, l2) � s0 for any
l1, l2 ∈ L̄. Thus D(P ) ' sτ means d(lij , l̄ij) ' s0 for any
i < j and i, j = 1, 2, . . . , n. Moreover, P is reciprocal, thus
lij ' l̄ij for any i, j = 1, 2, . . . , n. Because P̄ is additively
consistent, P is also additively consistent.

(⇐) If P is additively consistent, then according to Theorem
10, P ' P̄ . For any i, j = 1, 2, . . . , n, lij ' l̄ij , d(lij , l̄ij) '
s0, which means d(P, P̄ ) ' s0. Thus D(P ) ' sτ . �

In application, it may be acceptable if the degree of additive
consistency of a LHPR is big enough. Given a threshold δ
determined by the decision-maker, the concept of satisfactory
consistency is defined below:

Definition 15: A LHPR P is said to be of satisfactory
consistency if D(P ) ≥ δ, where δ ∈ {s1, s2, . . . , sτ}.

Given a LHPR, the satisfactory consistency can be achieved
automatically by slightly revise Algorithm 4, which is depicted
as follows:

Algorithm 5: Input: a reciprocal LHPR P , λ ∈ (0, 1), δ;
Output: a LHPR P (m) with satisfactory consistency.

Step 1: Let P (0) = P , m = 0, generate P̄ by using Eq.(16).
Step 2: Compute D(P (m)) by using Eq.(18). If D(P (m)) �

δ, go to Step 4; else, go to Step 3.
Step 3: Let P (m+1) = (1− λ)P (m) ⊕ λP̄ , m = m+ 1. Go

to Step 2.
Step 4: Output P (m).

According to the proof of Theorem 12, we have

d(P (m+1), P̄ ) = 2
n(n−1) ⊕

i<j
d(l

(m+1)
ij , l̄ij)

' 2
n(n−1) ⊕

i<j
(1− λ)d(l

(m)
ij , l̄ij)

= (1− λ)d(P (m), P̄ ).

Assume that d(P, P̄ ) ' sα, i.e., D(P ) ' sτ−α. Then we have
D(P (m)) ' sτ−(1−λ)mα. If δ = sβ(β > α), then Algorithm
5 will be terminated once τ − (1 − λ)mα ≥ β, i.e., m ≥
log1−λ

τ−β
α .

Example 6: Continue with the LHPR P in Example 2.
According to Eqs.(17-18), D(P ) = 〈h2, s2.98〉. Assume that
the decision-maker prefers that the consistent threshold should
be “very good”, i.e., δ = s3. If we let λ = 0.1, then a new
LHPR P (1) can be derived by applying Step 3 of Algorithm
5:

P (1) =


〈h2, s0〉 〈h2, s−2.02〉 〈h2, s−2.88〉
〈h2, s2.02〉 〈h1, s0〉 〈h1, s1.84〉
〈h2, s2.88〉 〈h1, s−1.84〉 〈h1, s0〉
〈h2, s0.96〉 〈h1, s−1.06〉 〈h1, s−2.82〉
〈h2, s−1.86〉 〈h2, s−2.08〉 〈h2, s−1.14〉
〈h2, s−0.96〉 〈h2, s1.86〉
〈h1, s1.06〉 〈h2, s2.08〉
〈h1, s2.82〉 〈h2, s1.14〉
〈h1, s0〉 〈h2, s1.92〉
〈h2, s−1.92〉 〈h2, s0〉


and D(P (1)) = 〈h2, s3.08〉 � s3, thus the algorithm is termi-
nated. Furthermore, if δ is fixed by “very good” (s3), “middle
of very good and extremely good (s3.5)”, and “extremely good”
(s4), respectively, the numbers of iterations with respect to the
values of λ have been illustrated in Fig. 5. Note that we use
s3.9999 to approximate the case δ = s4.

Besides, we conduct another simulation to explore the
influence of the parameters. Given S and H̄ in Example 1,
we ran Algorithm 5 and compute m by randomly generating
reciprocal LHPRs. Especially, we test n = 2, 3, . . . , 9 and
λ = 0.1, 0.2, . . . , 0.9 while fixing δ = s3. By repeating the
procedures 1000 times, the averaging values of of m are
derived and shown in Fig. 6. Basically, the bigger n results in
the bigger m. But the influence of n is less than those of λ
and δ, according to Figs. 5-6.

Similar to the existing studies, the threshold δ is determined
by a decision-maker. However, the use of linguistic threshold
makes its determination much easier. As can be seen in
Example 6, the threshold is labeled by interpretable meaning
naturally. Moreover, based on the virtual linguistic model,
the decision-maker could express the threshold within a finer
granularity of the given LTS, like s3.5 in Example 6.
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VI. EXPERIMENTS AND DISCUSSIONS

A. An application of audits on natural resources and assets

The Chinese government will audit all the main leaders
of the Party and local governments with respect to the nat-
ural resources and assets when they are outgoing, in order
to supervise their work of fulfilling the economic and en-
vironmental responsibility. Currently, Chinese scholars and
auditors are seeking for proper methodologies to meet the
requirement of outgoing audits. Generally, the evaluation
system is very complex mainly because: (1) there are many
quantitative and qualitative criteria which should be evaluated;
(2) the evaluation information of several criteria, such as the
reasonableness of policy, can only be assessed by experts’
subjective opinions. A hierarchical structure can be considered
to construct the evaluation system. The following five criteria
could be included in the first level of the hierarchy: (1)
responsibility of policy implementation (v1), (2) responsibility
of decision-making (v2), (3) responsibility of management
(v3), (4) responsibility of supervision (v4), (5) responsibility

of self-discipline (v5). In order to determine the priority
of these criteria, several experts are authorized to express
their subjective preferences in the framework of traditional
analytical hierarchy process.

Due to the major focus of this paper, we do not aim
at solving the whole problem of audit evaluation. Instead,
we focus on the collection of uncertain preferences and
reasonableness checking of the collected preference relation.
A group of experts and auditors are authorized to express their
subjective preferences by pair-wise comparisons. They agree
with utilizing the following LTS for evaluations: S = {s−4 =
extremely less important, s−3 = very less important, s−2 =
less important, s−1 = slightly less important, s0 = indifferent,
s1 = slightly important, s2 = important, s3 = very important,
s4 = extremely important}. If they are not sufficiently confi-
dent to use a certain term, then the WHS in Example 1 can be
considered. Firstly, they provided the following preferences:

v1 is slightly important than v2;
v2 is less important than v3;

v3 is roughly important than v4;
v4 is more or less indifferent to v5.

To facilitate completing the preference, Algorithm 2 is
employed to provide an estimation of the remaining entries.
The algorithm outputs the following LHPR:

P =


〈h0, s0〉 〈h0, s1〉 〈h0, s−1〉 〈h2, s1〉 〈h2, s1〉
〈h0, s−1〉 〈h0, s0〉 〈h0, s−2〉 〈h2, s0〉 〈h2, s0〉
〈h0, s1〉 〈h0, s2〉 〈h0, s0〉 〈h2, s2〉 〈h2, s2〉
〈h2, s−1〉 〈h2, s0〉 〈h2, s−2〉 〈h0, s0〉 〈h1, s0〉
〈h2, s−1〉 〈h2, s0〉 〈h2, s−2〉 〈h1, s0〉 〈h0, s0〉


The LHPR is reciprocal and additively consistent. However,
it may not coincide with the group’s real opinion. In order to
mine more accurate information, the LHPR is fed back to the
group. After discussion, they revise three entries of the upper
triangular matrix:

l14 = 〈h1, s2〉, l25 = 〈h0, s1〉, l35 = 〈h1, s−3〉.

The entries of the lower triangular matrix are revised accord-
ingly. Based on Algorithm 1, the revised version is not of
weak consistency. Thus Algorithm 4 is used at first to ensure
the LHPR is logically right. After 16 loops, the derived weakly
consistent LHPR is as follows:

P (16) =


〈h2, s0〉 〈h2, s1〉 〈h2, s0.02〉
〈h2, s−1〉 〈h2, s0〉 〈h2, s−0.98〉
〈h2, s−0.02〉 〈h2, s0.98〉 〈h2, s0〉
〈h2, s−1.49〉 〈h2, s−0.34〉 〈h2, s−1.32〉
〈h2, s−0.49〉 〈h2, s0.36〉 〈h2, s0.28〉
〈h2, s1.49〉 〈h2, s0.49〉
〈h2, s0.34〉 〈h2, s−0.36〉
〈h2, s1.32〉 〈h2, s−0.28〉
〈h2, s0〉 〈h2, s−0.85〉
〈h2, s0.85〉 〈h2, s0〉


The degree of additive consistency of P (16) is 〈h2, s3.84〉.
Meanwhile, the decision-maker requires that the threshold of
satisfactory consistency is s3. Because 〈h2, s3.84〉 � s3, the
consistency degree of P (16) is satisfactory.
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B. Discussions

We have illustrated the proposed definitions and algorithms
by means of some examples and a real case. In this section,
we will discuss the inherent idea by comparing with some
similar types of preference relations based on natural linguistic
expressions, i.e., LPRs, ULPRs, and HFLPRs. Some of the
major differences are listed in Table I.

The entries of these types of preference relations are funda-
mentally different due to the inherent uncertainties implied
by their focused types of linguistic expressions. Based on
specific linguistic representational models, the uncertainty of
an entry of LPRs is implied by the linguistic terms, specified
by their semantics. In this sense, experts have to be confident
enough to express their preferences by single terms. Other-
wise, preferences could be expressed by CLEs, such as ULTs,
HFLTSs, LTWHs, and other artificial linguistic expression.
See [35] for a detailed review. For ULPRs and HFLPRs, the
uncertainty of preferences expressed by CLEs are modelled
by the sets of all possible terms. From the mathematical
perspective, these two techniques model the uncertainty by
fixing the boundaries. However, in LHPRs, the linguistic term
in a LTWH indicates the term that is the most possibly real
value. And the hedge qualifies the degree of uncertainty.
This is another natural way of humans’ linguistic convention.
Therefore, the development of LHPRs extends the way of
expressing preferences in qualitative setting.

It is quite natural to visualize preference relations by means
of graphs. For weak consistency, it is sufficient to consider
the presence and absence of an arc. However, the weights of
arcs should be taken into account when measuring additive
consistency. The P-graph of a LPR is a simple graph and
thus the weight of an arc can be defined by the index of the
corresponding entry, as can be seen in [36], [37]. But this
is not the case in HFLPRs where the P-graph is generally
a multiple graph. The weight of each arc of a HFLPR can
be defined by the index of each possible term in a HFLTS.
See [22] for example. Different from HFLTSs, LTWHs imply
multiple terms in an indirect way. The uncertainty included in
hedges cannot be represented by simply listing possible terms.
Therefore, fuzzy weighted graphs are introduced to visualize
LHPRs. In such a manner, the P-graph of a LHPR is also
a simple graph whose weights are fuzzy numbers. The same
idea could be considered for the visualization of ULPRs.

Generally, satisfactory consistencies are defined by the de-
gree of a preference relation satisfying additive consistencies.
It is inevitable that the threshold depends on the risk attitude
of a decision-maker and thus should be determined by the
decision-maker. To ease the determination, it would be signi-
ficative and helpful if the decision-maker could understand
the defined measure of the degree of additive consistency
directly [38]. However, most of the existing contributions,
such as [22], [39], [40], utilize a real number in [0, 1] to
serve as the threshold. No guideline has been given to select
the value. The selected number is not interpretable. Thus
this kind of measure remains an obstacle to use satisfactory
consistencies in potential applications. Dong et al. [37] firstly
tried to define this measure by means of linguistic terms.

In order that, a specific LTS with seven terms is defined
to evaluate the degree of additive consistency. Based on a
context-free grammar, this paper suggests the use of some
LTWHs in L. The proposed procedure is much easier than
that of [37]. These two proposals improve the interpretability
of consistency thresholds. But it should be noticed that, in
order to guarantee the interpretability, the decision-maker
has to understand the semantics of the involved linguistic
terms, and new consistency improving algorithm (such as
Algorithm 5) has to be designed accordingly. Thus the process
is more complicated than the traditional ones with numerical
thresholds.

It is interesting to note that the parameter λ could also be
linguistic values. Roughly, λ can be interpreted in some way,
such as the percentages of original information that should
be considered. However, the decision-maker might be not so
confident to distinguish two different values, especially when
the two values are very close. In this sense, one could assign
linguistic values to λ so that the decision-maker could easily
understand the selected value. If so, some preliminaries should
be prepared to extend Algorithm 5.

The proposed consistency measures and algorithms could be
employed to complete unknown entries in LHPRs. As shown
in Example 4 and Section VI-A, unknown entries can be
estimated automatically based on the additive consistency. In
fact, given a n×n LHPR, if more than n−1 entries are known,
then some elaborate algorithms could be developed to estimate
unknown entries according to the criterion of reaching the
highest degree of additive consistency. Some existing strategy
of traditional LPRs can be found in [41]. Moreover, the weak
consistency could be used to search possible values of each
unknown entries and to design interactive algorithms based on
the idea in [32].

VII. CONCLUSIONS

The model of LTWHs presents a new tool to compute
with a natural type of CLEs in QDM. Based on the existing
representational model, this paper has developed a new compu-
tational model including order relations and basic operations.
To facilitate this type of CLEs in expressing preferences, the
concept of LHPRs has been defined. More importantly, several
consistency measures have been proposed and their properties
have been discovered so that the quality of a given LHPR can
be identified. The consistency measures have been defined by
specific transitivity and illustrated by fuzzy weighted digraphs.
The main contributions of this paper are as follows:

(1) The theoretical foundation of applying LHPRs in the
framework of QDM with preference relation has been es-
tablished. We have introduced the definition of LHPRs and
their consistency measures. Especially, we have focused on
the properties of weak consistency and additive consistency.

(2) The approaches for checking the weak consistency and
additive consistency of a LHPR have been proposed. The
algorithms have been developed based on the definitions and
are easy to implement. The effectiveness and convergence of
the algorithms have also been proven.

(3) The automatic algorithms for consistency improving
have been developed for the cases when a LHPR is not weakly
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TABLE I
CHARACTERISTICS OF THE COMPARATIVE TECHNIQUES

Technique Underlying linguistic model Uncertainty representation Consistency visualization Satisfactory consistency measure
LPR Any Semantics of a term Simple graph Numbers in [0, 1] or linguistic terms
ULPR ULT Linguistic interval N/A Numbers in [0, 1]
HFLPR HFLTS A set of terms Multiple graph Numbers in [0, 1]
LHPR LTWH Weakened hedge Fuzzy weighted graph linguistic terms

consistent, or when the degree of additive consistency is not
satisfied by a decision-maker.

Meanwhile, this proposal possesses some limitations as
well. These results in the following open problems:

(1) Techniques for exploiting priorities implied by the LHPR
should be developed. This paper presents approaches to ensure
that a LHPR is meaningful. To enable the use of LHPRs in real
applications, algorithms should be developed to either rank the
objects or obtain the relative weights of the objects. Roughly,
semantics-based strategy and eigenvector-based strategy are
both possible solutions.

(2) Techniques for group decision making with LHPRs are
required. In this case, two vital points, i.e., the synthesis
of individual LHPRs and the group consensus, should be
addressed at first. The techniques in (1) are also necessary.
Specifically, the consensus could be measured by linguistic
thresholds, similar to the idea of this paper. And the synthesis
could be achieved by maximum the group’s consensus.

(3) The multiplicative consistency of LHPRs should be
further studied. Multiplicative transitivity is more useful than
additive consistency in some sense [26]. However, it is
not straightforward to study the multiplicative transitivity by
graphs. Thus it is not the main focus of this paper. The
multiplicative consistency could be checked and improved by
extending the idea in [26].

(4) LHPRs based on unbalanced LTSs are also interesting.
Based on the representational model, LTWHs in a LHPR could
be a special case of unbalanced LTSs where the semantics
of terms should be defined by triangular fuzzy numbers. For
more general cases, LHPRs might be also useful. As possible
solutions, the model of LTWHs could be reconstructed based
on the ordered structured model, or an uniformly distributed
LTS could be employed for transformation, like the idea in
[42].
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