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Abstract

Random multigraphs with fixed degrees are obtained by the configuration model or by so called
random stub matching. New combinatorial results are given for the global probability distribution of
edge multiplicities and its marginal local distributions of loops and edges. The number of multigraphs
on triads is determined for arbitrary degrees, and aggregated triads are shown to be useful for
analyzing regular and almost regular multigraphs. Relationships between entropy and complexity
are given and numerically illustrated for multigraphs with different number of vertices and specified
average and variance for the degrees.

Keywords: multigraph, fixed degrees, edge multiplicity, configuration model, random stub matching,
complexity and simplicity, entropy, aggregated triad

1 Introduction and Overview

A random multigraph with n vertices and specified degree sequence d = (d1, . . . ,dn) with
d1+ . . .+dn = 2m is obtained by giving equal probabilities to all permutations of 2m vertex
labels (stubs) chosen such that vertex i occurs di times for i = 1, . . . ,n. The m unordered
pairs of stubs in a permutation are interpreted as sites for edges. This random model is
called random stub matching (RSM) (Shafie, 2016) and is in combinatorics also called the
configuration model (Janson, 2009; Wormald, 1999; McKay & Wormald, 1991; Bender &
Canfield, 1978).

The numbers of edges at different sites are given by random multiplicities M = (Mi j :
1≤ i≤ j ≤ n) and its RSM-distribution is derived and specified in Section 2, Theorem 1.
The minimal sufficient statistic T for this distribution is shown to be a global complexity
measure, and conditional on T the distribution of M is uniform. Complexity T = 0 corre-
sponds to simple graphs, and loops and multiple edges increase complexity. The outcomes
of M have probabilities that decrease with increasing complexity.

In Section 3, the loop distributions at local vertices as well as distributions of loops and
edges at local dyads of vertices are investigated under RSM. In particular, Theorem 2 gives
a general formula for the probability of an arbitrary number of loops at a vertex, which
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is obtained as a marginal distribution of Mii in the global distribution of M. Using similar
technique, the marginal trivariate distribution of (Mii,Mi j,M j j) is specified in Theorem 3.
The Mi j-distribution can be obtained by marginal summation in the trivariate distribution.
A closed expression for the bivariate distribution of (Mii,Mi j) is given in Theorem 4, which
allows a simpler marginal summation in order to get the Mi j-distribution.

A global logarithmic measure of how many outcomes of M that are essential in a
probabilistic sense is the entropy H(M), which is bounded by log2 K(d), the logarithm
of the total number of outcomes. Usually, all outcomes of M and their probabilities are
needed to calculate the entropy. Section 4 defines entropy and shows that distributions of
local multiplicities are sufficient to determine the global entropy H(M). Calculations are
simplified by using an algorithm that identifies all aggregated triads with distinct degree
sequences. This approach makes it unnecessary to list all the outcomes of M in order to
calculate its entropy. The focus on triads is also important since it facilitates the possibilities
to estimate entropy by sampling methods, which are briefly commented on.

The use of triads has a long tradition in social network theory and both undirected,
directed, and colored triads for graphs are well known. See, for instance, the pioneering
papers by Holland & Leinhardt (1976) and Frank & Strauss (1986), or the textbooks by
Wasserman & Faust (1994) and Kolaczyk (2009), or the paper by Frank (1988) on combi-
natorial counts of general triads. The number of possible multigraphs on triads is given in
Theorem 6 for any specified degree sequence. This knowledge is useful for checking and
control of the procedures of entropy calculation and the development of sampling methods
mentioned above. For a general number of vertices n > 3, the number K(d) of multigraphs
with degree restrictions seems to be unknown.

Section 5 treats some illustrating examples. For certain specifications of the degree
sequence d, it is possible to determine the entropy H(M) and the complexity T with
particularly simple versions of the methods. The simplest case is when all aggregated
triads have the same degree sequence, which holds true only for regular multigraphs with
all degrees equal. For regular multigraphs, the global entropy and expected complexity are
determined as functions of the common local distribution of edges at any aggregated triad.
For almost regular graphs, with specified average degree and small degree variance, exact
and approximate formulae are obtained and numerically illustrated.

2 Random Multigraph Model

Consider the site space R = {(i, j) : 1 ≤ i ≤ j ≤ n} for edges, where vertex pair (i, j)
is a canonical representation for an undirected edge between vertices i and j in V =

{1, . . . ,n}. The multigraph model RSM(d) is defined as an undirected multigraph with m
edges obtained by random stub matching of 2m stubs of which di are attached to vertex i ∈
V and ∑

n
i=1 di = 2m. To obtain a representation for this multigraph we specify a sequence

of 2m stubs given as (1d1 , . . . ,ndn) and let X be a random permutation of this stub sequence.
The ordered pair (X2k−1,X2k) in this sequence is interpreted as an unordered site to which
edge k is assigned. With the convention that (i, j) for i ≤ j is a canonical representation
for the unordered pair, we define (Y2k−1,Y2k) as a canonical representation corresponding
to (X2k−1,X2k), that is
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(Y2k−1,Y2k) =

{
(X2k−1,X2k) if X2k−1 ≤ X2k

(X2k,X2k−1) if X2k ≤ X2k−1
(1)

for k = 1, . . . ,m. The sequence Y = (Y1, . . . ,Y2m) is our canonical representation for the un-
ordered multigraph obtained by random stub matching of a stub sequence that is distributed
on the vertices according to a given degree sequence d = (d1, . . . ,dn). The distribution
of its random edge multiplicities M = (Mi j : (i, j) ∈ R) is given in Theorem 1. These
results are also given and discussed in Shafie (2012; 2015; 2016). An alternative to the
edge multiplicity sequence M is the n by n edge multiplicity matrix with elements Mi j,
where M ji = Mi j for all i and j in V . This matrix generalizes the adjacency matrix of
simple graphs.

Theorem 1
Under RSM(d) the edge multiplicities have probabilities

P(M = m) = c2−t , (2)

where

c =
m!2md!
(2m)!

=
d1!, . . . ,dn!
(2m−1)!!

, (3)

and

t = m1 +∑∑
i≤ j

log2 mi j! =
n

∑
i=1

mii +∑∑
i≤ j

log2 mi j! . (4)

Proof
The number of permutations of the stub sequence X is given by(

2m
d

)
=

(2m)!
d1!, . . . ,dn!

. (5)

In order to count how many of these that are interpreted as having M = m we note that any
of the m unordered pairs of stubs correspond to two ordered pairs if X2k−1 6= X2k so that
the numberof favourable cases is (

m
m

)
2m2 , (6)

where m2 = m−m1 and m1 =
n

∑
i=1

mii. Therefore

P(M = m) =

(
m
m

)
2m2(

2m
d

) =
m! 2m d!

(2m)! m! 2m1
= c2−t . (7)

According to Theorem 1, the outcomes m with the same value t = t(m) have the same
probability, and these probabilities decrease with increasing values of t. In particular, sim-
ple graphs with no loops and no multiple edges are graphs with t = 0. If such graphs exist
they have a common probability m!2m/

(2m
d
)
. The statistic t can be used as a complexity
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measure that takes on positive values when there are loops or multiple edges at at least
one site. Another such measure is ∑

n
i=1 mii +∑∑i≤ j

(mi j
2

)
, which is used by e.g. Janson

(2009). Different complexity measures identify simple graphs by complexity 0 and other
graphs by positive complexity. The complexity measure t has the property that it gives the
same complexity to all graphs of the same probability under RSM. The random complexity
measure

T =
n

∑
i=1

Mii + ∑∑
1≤i≤ j≤n

log2 Mi j! . (8)

is of special importance since it is related to the entropy of M as discussed in Section 4.

3 Local distributions of Loops and Edges

In this section we apply Theorem 1 to derive some new results on local distributions of
loops and edges under RSM. In particular, we obtain local loop probabilities for Mii in
Theorem 2, and local probabilities for (Mii,Mi j,M j j) in Theorem 3. Local edge probabili-
ties for Mi j are obtained as marginal sums in the trivariate distribution, and also, somewhat
simpler, as marginal sums in the bivariate distribution of (Mii,Mi j), which is given in
Theorem 4.

Theorem 2
Under RSM(d) the number of loops at vertex i has probability distribution

P(Mii = u) =

(
m

u, di−2u

)
2di−2u(

2m
di

) (9)

for non-negative integers u satisfying

di−2u≥ 0 and m−di +u≥ 0 ,

that is

di−m≤ u≤ di/2 .

Proof
Consider the general probability that there are u loops at vertex i under RSM denoted by
P(Mii = u) for u = 0, . . . ,m. To find how many of the

(2m
d
)

possible stub sequences that
generate u loops at i, arrange m edges with u loops at i, di−2u edges with the remaining i-
stubs, and m−di+u other edges. This number of arrangements is given by the multinomial
coefficient

( m
u, di−2u

)
. The single i-stubs have two alternative locations in the di−2u edges.

Finally, the remaining stubs are arranged in
(2m−di

d∗
)

ways where d∗ is the degree sequence
d without di. This leads to

P(Mii = u) =

(
m

u, di−2u

)
2di−2u

(
2m−di

d∗

)
(

2m
d

) , (10)
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which simplifies to

P(Mii = u) =
m! di! (2m−di)! 2di−2u

u! (di−2u)! (m−di +u)! (2m)!
. (11)

Note that if di ≤ m, then the possible values for Mii are

u = 0,1, . . . ,bdi/2c .

If di ≥ m, then the possible values are

u = di−m,di−m+1, . . . ,bdi/2c ,

so that there are only b(2m−di)/2c+ 1 instead of bdi/2c+ 1 possible values of Mii. The
probability of no loops at vertex i, is given by Janson (2009) as

P(Mii = 0) =
di

∏
j=1

2m−di− j+1
2m−2 j+1

. (12)

The probability of no loops at vertex i using Equation (9) is equal to

P(Mii = 0) =

(
m
di

)
2di(

2m
di

) . (13)

This formula can be developed according to the following which shows that it is equivalent
to the expression of Janson (2009) for P(Mii = 0) as a ratio between a falling factorial from
2m− di and a falling semi-factorial from 2m− 1, both carried out for di factors (in fact,
di−1 factors suffice since the last one cancels):

P(Mii = 0) =
m! di! (2m−di)! 2di

di!(m−di)! (2m)!

=
m! 2m (2m−di)!

(2m)! (m−di)! 2m−di

=
(2m)!! (2m−di)!
(2m)! (2m−2di)!!

=
(2m−2di−1)!! (2m−di)!
(2m−1)!! (2m−2di)!

=
(2m−di)(2m−di−1) · · ·(2m−2di +1)

(2m−1)(2m−3) · · ·(2m−2di +1)
.

(14)

The distribution of Mii can be summarized by its expected value

µii = E(Mii) =
m

∑
k=1

P(Y2k−1 = Y2k = i) = mQii (15)

and variance

σ
2
ii =Var(Mii) =

m

∑
k=1

m

∑
`=1

P(Y2k−1 = Y2k = Y2`−1 = Y2` = i)−µ
2
ii

= µii(1−µii)+m(m−1)Qiiii

, (16)



ZU064-05-FPR nws˙original 11 September 2017 12:2

6 Ove Frank and Termeh Shafie

where

Qii =

(
di

2

)
(

2m
2

) and Qiiii =

(
di

4

)
(

2m
4

) . (17)

We now consider dyad sites to get the trivariate distribution of (Mii, M j j, Mi j). The
dyad site at vertices i and j has Mii and M j j loops and Mi j non-loops between i and j,
di− 2Mii−Mi j external non-loops at i, d j− 2M j j−Mi j external non-loops at j, and m−
di− d j +Mii +M j j +Mi j remaining external edges. It can be considered as a multigraph
on three vertices, the vertices i and j and a fictitious vertex aggregating the other vertices
in V . The aggregated multigraph has degree sequence (di, d j, 2m− di − d j) and edge
multiplicity sequence

(Mii, Mi j, di−2Mii−Mi j, M j j, d j−2M j j−Mi j, m−di−d j +Mii +M j j +Mi j) .

Theorem 3
Under RSM(d), the joint probability distribution of the edge multiplicities (Mii, M j j, Mi j)

is given by

P(Mii = u, M j j = v, Mi j = w) =

=

(
m

u, v, w, di−2u−w, d j−2v−w

)
2di+d j−2u−2v−w(

2m
di, d j

) (18)

Proof
Applying the formula for the RSM model in Theorem 1 to the aggregated multigraph on
three vertices gives

P(Mii = u, M j j = v, Mi j = w) =

=
m! di! d j! (2m−di−d j)! 2di+d j−2u−2v−w

u! v! w! (di−2u−w)! (d j−2v−w)! (m−di−d j +u+ v+w)! (2m)!
,

(19)

for possible outcomes given by non-negative integers u,v,w satisfying

di−2u−w≥ 0, d j−2v−w≥ 0, and m−di−d j +u+ v+w≥ 0 .

The distribution of Mi j is obtainable as a marginal distribution in the trivariate distribu-
tion given in Theorem 3 or, somewhat simpler, as a marginal distribution in the bivariate
distribution given in the next theorem.
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Theorem 4
Under RSM(d), the bivariate probability distribution of the edge multiplicities (Mii, Mi j)

is given by

P(Mii = u, Mi j = w) =

(
m

u, w, di−2u−w

)(
2m−2di +2u

d j−w

)
2di−2u(

2m
di, d j

)

=

(
m

u, m−di +u

)(
di−2u

w

)(
2m−2di +2u

d j−w

)
2di−2u(

2m
di, d j

) .

(20)

Proof
If the probability in Equation (9) is written as a function of outcome and parameters
according to P(Mii = u) = f (u|m, di), it follows that Equation (18) can be written as(

m
u, w, di−2u−w

)
2di−2u

(
m−di +u

v, d j−2v−w

)
2d j−2v−w(

2m
di, d j

)

=

(
m

u, w, di−2u−w

)
2di−2u f (v|m−di +u, d j−w)

(
2m−2di +2u

d j−w

)
(

2m
di, d j

) .

(21)

Now the arguments in f specifies a probability distribution for which Theorem 2 can be ap-
plied with modified parameters. Therefore, a summation over all v results in Equation (20).
It might be noted that if the last expression in Equation (20) is summed over w we retain
Equation (9).

The distribution of Mi j can be summarized for i < j by its expected value

µi j = E(Mi j) = mQi j (22)

and variance

σ
2
i j =Var(Mi j) = µi j(1−µi j)+m(m−1)Qi ji j , (23)

where

Qi j =
did j(
2m
2

) and Qi ji j =

4
(

di

2

)(
d j

2

)
(

2m
2

)(
2m−2

2

) . (24)

In order to judge multivariate spread of (Mii, M j j, Mi j) by relative entropy as defined
in Section 4 we need to determine the total number of outcomes for the aggregated multi-
graph. This is given by a general formula for arbitrary RSM multigraphs on three vertices
in the following section.
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4 Aggregated Multigraphs on Triads

The random complexity measure T is of special importance since it is related to the entropy
of M for the RSM(d) model. This is shown in Theorem 5 below, and it might be convenient
to start by giving some definitions and preliminaries about entropies. The entropy H(Z)
for a discrete random variable Z with K outcomes zk of positive probabilities p(zk) for
k = 1, . . . ,K is defined as

H(Z) = E
(

log
1

p(Z)

)
=

K

∑
k=1

p(zk) log
1

p(zk)
, (25)

that is as the expected value of the so called uncertainty of Z, where uncertainty of an event
is defined as the logarithm of its inverted probability. Uncertainty is usually measured in
binary digits (bits) obtained with logarithms to the base 2 (so, for instance, an event of
probability 1/8 is said to have uncertainty 3 bits). The entropy satisfies the inequalities

0≤ H(Z)≤ log2 K ,

with equality to the left if Z has a single outcome and equality to the right if Z has a uniform
probability distribution over its K outcomes. Entropy H(Z) can therefore be used as a
measure of spread between peakiness and flatness for the distribution of Z, or as a measure
of uncertainty between certainty and maximal uncertainty for the outcomes of Z, such
that 2H(Z) approximates how many of the outcomes of Z are essential when uncertainty
is taken into account. The proportion of essential bits H(Z)/ log2(K) measures relative
uncertainty, and the number of non-essential bits log2(K)−H(Z) measures discrepancy
from uniformity. A more exact interpretation in terms of optimal binary prefix codes of the
outcomes is provided by information theory. See, for instance, Cover & Thomas (2012).
Multivariate entropies are useful in exploratory statistics and for statistical model testing
as demonstrated in Frank (2000; 2011), and Frank & Shafie (2016).

Theorem 5
The entropy of the multiplicities M under RSM(d) depends on the random complexity
measure T according to

H(M) = E(T )+ log2(2m−1)!!−
n

∑
i=1

log2(di!) (26)

with expected complexity given by the local distributions of edge multiplicities according
to

E(T ) =
bd1/2c

∑
k=1

(k+ log2 k!)
n

∑
i=1

P(Mii = k)+
d2

∑
k=1

(log2 k!) ∑∑
1≤i< j≤n

P(Mi j = k) (27)

where d1 ≥ ·· · ≥ dn.

Proof
According to Theorem 1 the expected uncertainty of M is equal to H(M)=E(T )− log2(c),
where c is given by Equation (3). By using multiplicity counts

R1k =
n

∑
i=1

I(Mii = k) (28)
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and

R2k = ∑∑
1≤i< j≤n

I(Mi j = k) (29)

for k = 0,1, . . . ,m, it follows that

T =
m

∑
k=1

[(k+ log2 k!) R1k + log2 k! R2k] (30)

Since Mii ≤ bdi/2c and Mi j ≤ min(di,d j), there are at most bd1/2c positive terms in R1k

and at most d2 in R2k when degrees are ordered d1 ≥ ·· · ≥ dn. Hence the result for E(T )
follows.

The calculations of entropy H(M) and expected complexity E(T ) can be simplified if
the needed distinct local distributions are obtained by using an algorithm that identifies all
triads with distinct degree sequences (di,d j,2m−di−d j) and their distributions of Mii and
Mi j. Focus on aggregated triads can also be beneficial in order to develop sampling methods
for multigraph inference. Assume, for instance, that data (mii,di) are available for vertices
i in a vertex sample S1 only, and not for all vertices in V . By Horvitz-Thompson estimators
it is possible to estimate totals E(R1k), m1, and 2m for arbitrary sampling schemes with
known inclusion probabilities for the vertices. A similar approach to a sample S2 of vertex
pairs with data (mii,mi j,m j j,di,d j) for (i, j) ∈ S2, makes it possible to estimate totals
E(R1k), E(R2k), m1, m2, and 2m that allow estimation of E(T ) and H(M). In applications,
such local sample data on loops, edges, and degrees might be observed and modelled with
additive independent measurement errors, or might be partly known from other sources.
Thus, sample data from aggregated triads suffice to estimate the global entropy and ex-
pected complexity of the multigraph.

The number K(d) of outcomes of M is needed to judge spread and relative spread of M
under RSM(d). It is no restriction to assume that d is ordered since K(d) is invariant under
permutations of the degrees in d. Theorem 6 gives a general formula for arbitrary RSM
multigraphs on three vertices with ordered degrees a ≥ b ≥ c > 0 and a+ b+ c = 2m.
For a ≥ b > c = 0 it was noted after Theorem 2 that multigraphs on two vertices have
K(a,b,0) = K(a,b) = bb/2c+1 outcomes.

Theorem 6

The number K(a,b,c) of multigraphs on a triad with ordered degree sequence a≥ b≥ c> 0
is given by the following expressions when the integer parts of a/2, b/2, and c/2 are given
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by α , β , and γ:

K(2α,2β ,2γ) = (β +1)(γ +1)2−2
(

γ +2
3

)
−
(

β + γ−α +2
3

)
if α ≥ β ≥ γ ≥ 1 ,

K(2α,2β +1,2γ +1) = (β +1)(γ +1)(γ +2)−2
(

γ +2
3

)
−
(

β + γ−α +3
3

)
if α > β ≥ γ ≥ 0 ,

K(2α +1,2β ,2γ +1) = (β +1)(γ +1)(γ +2)−
(

γ +2
3

)
−
(

γ +3
3

)
−
(

β + γ−α +2
3

)
if α ≥ β > γ ≥ 0 ,

K(2α +1,2β +1,2γ) = (β +1)(γ +1)2−
(

γ +1
3

)
−
(

γ +2
3

)
−
(

β + γ−α +2
3

)
if α ≥ β ≥ γ ≥ 1 .

(31)

Proof

For a≥ b≥ c≥ 1 and a+b+ c even there are four cases to consider:

1) a = 2α, b = 2β , c = 2γ for α ≥ β ≥ γ ≥ 1

2) a = 2α, b = 2β +1, c = 2γ +1 for α > β ≥ γ ≥ 0

3) a = 2α +1, b = 2β , c = 2γ +1 for α ≥ β > γ ≥ 0

4) a = 2α +1, b = 2β +1, c = 2γ for α ≥ β ≥ γ ≥ 1 .

(32)

Let the edge multiplicities be denoted by x,y,z,u,v,w where x,y,z are the loop frequencies
and u,v,w the non-loop frequencies satisfying

2x+u+ v = a

2y+u+w = b

2z+ v+w = c .

(33)

Due to these three restrictions we can express the six edge multiplicities by using only the
loop counts and get the non-loop counts by

u = m− c+ z− x− y

v = m−b+ y− x− z

w = m−a+ x− y− z .

(34)
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Since all counts are non-negative this leads to the following inequalities valid for the
possible integer values of x,y,z:

0≤ x≤ a/2

0≤ y≤ b/2

0≤ z≤ c/2

x+ y− z≤ m− c

x+ z− y≤ m−b

y+ z− x≤ m−a .

(35)

If we rewrite this as restrictions on (x,y) for a fixed value of z according to

0≤ x≤ a/2

0≤ y≤ b/2

y≤Cz− x where Cz = m− c+ z

Bz + x≤ y≤ Az + x where Bz = b−m+ z and Az = m−a− z ,

(36)

we can describe the possible (x,y) as the points with integer coordinates in the intersection
of a rectangular region and the region below a line with negative slope and between two
lines with common positive slope. If Kz(a,b,c) denotes the number of possible points
(x,y,z) for a fixed z, we get

K(a,b,c) =
γ

∑
z=0

Kz(a,b,c) (37)

as the total number of points in the γ +1 slices of the three-dimensional region in (x,y,z)-
space. Since the points counted in the (x,y)-plane belong to triangular and rectangular
regions it is possible to use combinatorial formulas in Equation (31) to find Kz(a,b,c) and
sum these numbers to K(a,b,c).

Figure 1-4 show numerical examples to illustrate the four cases with different parity of
the degrees.
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Fig. 1: Number of multiplicity sequences for degree sequence (16,12,6) is K(16,12,6) =
91.
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Fig. 2: Number of multiplicity sequences for degree sequence (16,11,7) is K(16,11,7) =
99.
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Fig. 3: Number of multiplicity sequences for degree sequence (17,12,7) is K(17,12,7) =
109.
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Fig. 4: Number of multiplicity sequences for degree sequence (17,11,6) is K(17,11,6) =
82.
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5 Some Illustrations

According to Theorem 5 the entropy of M is equal to

H(M) = E(T )− log2(c) , (38)

where T is the global complexity given by Equation (8) and the constant c is given by
Equation (3). In this section we look at some numerical examples of how entropy H(M),
expected complexity E(T ), and log2(c) vary for different n and d in regular and close to
regular graphs. Consider first

log2(c) = m+ log2(m!)− log2((2m)!)+ log2(d!) , (39)

where 2m = d1 + · · ·+dn. Stirling approximations

m!≈
(m

e

)m√
2πm (40)

can be used to all the factorials m!, (2m)! and d! = (d1! ·d2! · · ·dn!). The approximation to
log2(d!) is a function

f (d) = log2

[(
d
e

)d√
2πd

]
. (41)

A Taylor expansion of this function at di around the average degree d̄ gives

f (di) = f (d̄)+(di− d̄) f ′(d̄)+
(di− d̄)2

2
f ′′(d̄)+ . . . (42)

with an approximation given by its first three terms. By summation
n

∑
i=1

f (di)≈ n f (d̄)+
n

∑
i=1

(di− d̄)2

2
f ′′(d̄) , (43)

and an approximation of log2(c) is thus given by

log2(c)≈ m+ f (m)− f (2m)+n f (d̄)+
ns2

2
f ′′(d̄) , (44)

where s2 is the degree variance and

f ′′(d̄) =
log2(e)

d̄

(
1− 1

2d̄

)
. (45)

In order to consider how the expected complexity E(T ) depends on n and d, we express
Equation (8) as

E(T ) =
n

∑
i=1

E [Mii + log2(Mii!)]+ ∑∑
1≤i< j≤n

E [log2(Mi j!)] (46)

and use Stirling approximations to the factorials as before. The approximation to log2(M!)
has a Taylor expansion

f (M) = f (µ)+(M−µ) f ′(µ)+
(M−µ)2

2
f ′′(µ)+ . . . (47)

so that an approximation is given by its three first terms and we get

E[ f (M)]≈ f (µ)+
σ2

2
f ′′(µ) (48)
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where µ = E(M) and σ2 = Var(M). Thus, we have an approximation of the expected
complexity

E(T )≈
n

∑
i=1

E[Mii + f (Mii)]+ ∑∑
1≤i< j≤n

E[ f (Mi j)]

=
n

∑
i=1

[
µii + f (µii)+

σ2
ii

2
f ′′(µii)

]
+ ∑∑

1≤i< j≤n

[
f (µi j)+

σ2
i j

2
f ′′(µi j)

] (49)

where means and variances are given by Equations (15) to (17) and Equations (22) to (24),
and can be simplified for regular graphs according to

µii = E(Mii) =

(
d
2

)
nd−1

, (50)

σ
2
ii =Var(Mii) = µii(1−µii)+m(m−1)Qiiii = µii(1−µii)+

6
(

d
4

)
(nd−1)(nd−3)

, (51)

µi j = E(Mi j) =
d2

nd−1
, (52)

σ
2
i j =Var(Mi j) = µi j(1−µi j)+m(m−1)Qi ji j = µi j(1−µi j)+

d2(d−1)2

(nd−1)(nd−3)
. (53)

As a consequence,

E(T )≈ n


(

d
2

)
nd−1

+g1(n,d)

+(n
2

)
g2(n,d) (54)

where

g1(n,d) = f (µii)+
σ2

ii
2

f ′′(µii) , (55)

g2(n,d) = f (µi j)+
σ2

i j

2
f ′′(µi j) . (56)

The accuracy of the approximation of E(T ) can be obtained by comparing it to the exact
value of E(T ) available from direct computation according to Equation (27) or according
to

E(T ) = ∑
u

∑
v

∑
w

[
n(u+ log2(u!))+

(
n
2

)
log2(w!)

]
P(Mii = u,M j j = v,Mi j = w) , (57)

where Mii and Mi j are loop and edge counts at and between any vertices i and j having
degree d. The exact value of E(T ) requires the distribution of Mii given in Theorem 2
and the marginal distribution of Mi j obtainable from the three-variate distribution given in
Theorem 3 or from the bivariate distribution given in Theorem 4. The approximate value
of E(T ) given in Equation (54) requires no more than the expected values and variances of
the edge counts given by Equations (15), (16), (22) and (23).
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Fig. 5: Entropy H and expected complexity E(T ) for regular graphs with n = 4,6,8,10,
against m = 4,5, . . . ,100.
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Fig. 6: Entropy H and expected complexity E(T ) for regular (solid) and irregular (dashed)
graphs with n = 4,6,8,12, against m = 12,24,36,48.

Table 1 illustrates the accuracy of approximations of E(T ) and H(M) based on second
order Taylor expansion for graphs with n = 8 and m = 24, and degree variance s2 ≤ 3. As
seen, both approximations are very good for all cases shown in Table 1.

Figure 5 and 6 illustrate how E(T ) and H(M) vary for regular and irregular graphs with
different combinations of n and m. For the irregular cases, the degree sequences are chosen
to correspond to 2s= d̄, where d̄ = 2m/n, so that most of the degrees are within the interval
from 0 to 2d̄.

We notice some interesting tendencies and stabilities in Figure 5 and 6. Both entropy and
expected complexity increase with increasing number of edges. But with increasing num-
ber of vertices, entropy increases and expected complexity decreases. Thus, when further
edges are distributed among a fixed number of sites of vertex pairs, entropy and expected
complexity go up. When more sites are made available for a fixed number of edges, entropy
goes up but expected complexity goes down. It is remarkable that these tendencies seem
to remain for irregular as well as for regular degree sequences. These observations might
inspire to investigations of various asymptotic tendencies in large multigraphs obtained by
random stub matching.
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Table 1: Exact and approximate values of E(T ) and H(M) based on second order Taylor
expansions for graphs with n = 8, m = 24, and with degree variance less than or equal to
3.

Exact Approximation

Degree
sequence

Degree
variance E(T ) H(M) Ê(T ) Ĥ(M)

6 6 6 6 6 6 6 6 0 8.38 32.36 8.36 32.50

5 6 6 6 6 6 6 7 0.25 8.48 32.23 8.45 32.37

5 5 6 6 6 6 7 7 0.5 8.57 32.10 8.55 32.24

4 6 6 6 6 6 7 7 0.75 8.67 31.94 8.65 32.08
5 5 5 6 6 7 7 7 0.75 8.66 31.97 8.64 32.11
5 5 6 6 6 6 6 8 0.75 8.65 31.99 8.63 32.13

4 5 6 6 6 7 7 7 1 8.77 31.81 8.74 31.95
4 6 6 6 6 6 6 8 1 8.76 31.83 8.73 31.97
5 5 5 5 7 7 7 7 1 8.75 31.84 8.73 31.98
5 5 5 6 6 6 7 8 1 8.75 31.87 8.72 32.01

4 5 5 6 7 7 7 7 1.25 8.86 31.68 8.83 31.82
4 5 6 6 6 6 7 8 1.25 8.85 31.71 8.82 31.85
5 5 5 5 6 7 7 8 1.25 8.84 31.74 8.81 31.87

3 6 6 6 6 7 7 7 1.5 8.98 31.44 8.95 31.59
4 4 6 6 7 7 7 7 1.5 8.96 31.52 8.93 31.67
4 5 5 6 6 7 7 8 1.5 8.94 31.58 8.92 31.72
5 5 5 5 6 6 8 8 1.5 8.93 31.63 8.90 31.77
5 5 5 6 6 6 6 9 1.5 8.91 31.67 8.89 31.81

3 5 6 6 7 7 7 7 1.75 9.08 31.32 9.05 31.46
3 6 6 6 6 6 7 8 1.75 9.07 31.34 9.04 31.48
4 4 5 7 7 7 7 7 1.75 9.05 31.39 9.02 31.54
4 4 6 6 6 7 7 8 1.75 9.05 31.42 9.02 31.56
4 5 5 5 7 7 7 8 1.75 9.04 31.44 9.01 31.59
4 5 5 6 6 6 8 8 1.75 9.03 31.47 9.00 31.61
4 5 6 6 6 6 6 9 1.75 9.02 31.51 8.99 31.65
5 5 5 5 5 7 8 8 1.75 9.02 31.50 8.99 31.64
5 5 5 5 6 6 7 9 1.75 9.01 31.54 8.98 31.68

3 5 5 7 7 7 7 7 2 9.17 31.19 9.14 31.33
3 5 6 6 6 7 7 8 2 9.16 31.21 9.13 31.36
4 4 5 6 7 7 7 8 2 9.14 31.29 9.11 31.43
4 4 6 6 6 6 8 8 2 9.14 31.31 9.11 31.46
4 5 5 5 6 7 8 8 2 9.12 31.34 9.09 31.48
4 5 5 6 6 6 7 9 2 9.11 31.38 9.08 31.52
5 5 5 5 5 7 7 9 2 9.10 31.41 9.07 31.55

3 4 6 7 7 7 7 7 2.25 9.28 31.03 9.24 31.18
3 5 5 6 7 7 7 8 2.25 9.26 31.08 9.23 31.23
3 5 6 6 6 6 8 8 2.25 9.25 31.11 9.22 31.25
3 6 6 6 6 6 6 9 2.25 9.23 31.14 9.20 31.28
4 4 5 6 6 7 8 8 2.25 9.23 31.18 9.20 31.33
4 4 6 6 6 6 7 9 2.25 9.22 31.22 9.19 31.36
4 5 5 5 6 7 7 9 2.25 9.21 31.25 9.17 31.39
5 5 5 5 5 6 8 9 2.25 9.19 31.31 9.16 31.45

2 6 6 6 7 7 7 7 2.5 9.42 30.66 9.39 30.82
3 4 6 6 7 7 7 8 2.5 9.36 30.93 9.33 31.07
3 5 5 6 6 7 8 8 2.5 9.35 30.98 9.31 31.12
3 5 6 6 6 6 7 9 2.5 9.33 31.02 9.30 31.16
4 4 4 7 7 7 7 8 2.5 9.34 31.00 9.31 31.15
4 4 5 5 7 7 8 8 2.5 9.32 31.05 9.29 31.20
4 4 5 6 6 7 7 9 2.5 9.31 31.09 9.28 31.24
4 5 5 5 5 8 8 8 2.5 9.30 31.11 9.27 31.25
4 5 5 5 6 6 8 9 2.5 9.29 31.15 9.26 31.29
5 5 5 5 6 6 6 10 2.5 9.25 31.27 9.22 31.41

Exact Approximation

Degree
sequence

Degree
variance E(T ) H(M) Ê(T ) Ĥ(M)

2 5 6 7 7 7 7 7 2.75 9.52 30.54 9.49 30.70
2 6 6 6 6 7 7 8 2.75 9.51 30.56 9.48 30.72
3 4 5 7 7 7 7 8 2.75 9.46 30.80 9.42 30.94
3 4 6 6 6 7 8 8 2.75 9.45 30.82 9.42 30.97
3 5 5 5 7 7 8 8 2.75 9.44 30.85 9.41 30.99
3 5 5 6 6 7 7 9 2.75 9.43 30.89 9.40 31.04
4 4 4 6 7 7 8 8 2.75 9.43 30.90 9.40 31.04
4 4 5 5 6 8 8 8 2.75 9.41 30.95 9.38 31.10
4 4 5 5 7 7 7 9 2.75 9.40 30.97 9.37 31.11
4 4 5 6 6 6 8 9 2.75 9.40 30.99 9.37 31.13
4 5 5 5 5 7 8 9 2.75 9.39 31.02 9.35 31.16
4 5 5 6 6 6 6 10 2.75 9.35 31.11 9.32 31.25
5 5 5 5 5 6 7 10 2.75 9.34 31.14 9.31 31.28

2 5 6 6 7 7 7 8 3 9.61 30.43 9.57 30.59
2 6 6 6 6 6 8 8 3 9.60 30.45 9.57 30.61
3 3 7 7 7 7 7 7 3 9.60 30.54 9.56 30.69
3 4 5 6 7 7 8 8 3 9.55 30.69 9.51 30.84
3 4 6 6 6 7 7 9 3 9.53 30.73 9.50 30.88
3 5 5 5 6 8 8 8 3 9.53 30.75 9.50 30.89
3 5 5 5 7 7 7 9 3 9.52 30.76 9.49 30.91
3 5 5 6 6 6 8 9 3 9.52 30.79 9.48 30.93
4 4 4 6 6 8 8 8 3 9.52 30.80 9.49 30.94
4 4 4 6 7 7 7 9 3 9.51 30.81 9.48 30.95
4 4 5 5 6 7 8 9 3 9.49 30.86 9.46 31.01
4 4 6 6 6 6 6 10 3 9.46 30.95 9.43 31.09
4 5 5 5 6 6 7 10 3 9.45 30.98 9.42 31.12
5 5 5 5 5 5 9 9 3 9.45 30.98 9.42 31.13
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