

The University of Manchester Research

Intensified P-xylene Production Process through Toluene and Methanol Alkylation

DOI: 10.1021/acs.iecr.8b00681

Document Version

Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA): Liu, J., Yang, Y., Wei, S., Shen, W., Rakovitis, N., & Li, J. (2018). Intensified P-xylene Production Process through Toluene and Methanol Alkylation. *Industrial & Engineering Chemistry Research*. https://doi.org/10.1021/acs.iecr.8b00681

Published in: Industrial & Engineering Chemistry Research

Citing this paper

Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights

Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy

If you believe that this document breaches copyright please refer to the University of Manchester's Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.

Subscriber access provided by The University of Manchester Library

Process Systems Engineering

Intensified P-xylene Production Process through Toluene and Methanol Alkylation

Jing Liu, Yu Yang, Shun'an Wei, Weifeng Shen, Nikolaos Rakovitis, and Jie Li

Ind. Eng. Chem. Res., Just Accepted Manuscript • DOI: 10.1021/acs.iecr.8b00681 • Publication Date (Web): 29 Aug 2018 Downloaded from http://pubs.acs.org on September 4, 2018

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Intensified P-xylene Production Process through Toluene and Methanol Alkylation

Jing Liu¹, Yu Yang¹, Shun'an Wei¹, Weifeng Shen^{1,*}, Nikolaos Rakovitis², Jie Li^{2,*} ¹ School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China ² Centre for Process Integration, School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M139PL, UK

* Corresponding author: shenweifeng@cqu.edu.cn(W.S.), or jie.li-2@manchester.ac.uk(J.L.)

Abstract

The production of *p*-xylene has received more and more attention since it is widely used in chemical synthetic resins, pharmaceutical, chemical fiber, and pesticides industries. The *p*-xylene production through toluene alkylation is considered to be more promising due to high selectivity of *p*-xylene and little environmental impact compared to other methods. Although the existing *p*-xylene production process through toluene alkylation could achieve high selectivity of *p*-xylene, the methanol conversion is still as low as 70.0 %, requiring methanol recovery and recycle system and resulting in additional loss of toluene in the downstream separation of light component, methanol and toluene. Based on these findings, an intensified *p*-xylene production process through toluene alkylation with complete methanol conversion is proposed and simulated using Aspen Plus V8.4[®]. The optimal operating conditions for the alkylation reactor are obtained using the sensitivity analysis tool and sequential quadratic programming (SQP) optimization solver in Aspen Plus V8.4[®]. It is found that the methanol conversion could reach 98.0 % with *p*-xylene selectivity of 92.0 % through increasing reaction temperature to 442.5 °C and pressure to 4.0 bar compared to the existing process, resulting in the removal of methanol recovery and recycle system and less toluene loss in the downstream separation. The comparative evaluations demonstrate that the proposed process is more efficient than the existing process based on economic and environmental metrics. The overall TAC is reduced by 4.71 % and CO₂ emissions are decreased by 40.2 % compared to the existing process without heat integration.

Keywords: Process design, *p*-xylene, toluene alkylation, heat integration, TAC, carbon emission

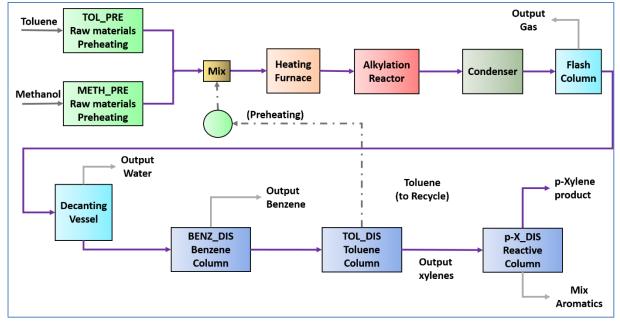
1 Introduction

The production of *p*-xylene has received more and more attention from both academia and chemical industries since it is one of the most important petrochemical intermediates that is widely used in chemical synthetic resins, pharmaceutical, chemical fiber, and pesticides industries.¹⁻⁴ The demand of *p*-xylene in the world has been greatly increasing in recent years, especially from China.⁵ *P*-xylene is mainly produced by selective toluene disproportionation⁶⁻⁸, C₈ aromatic isomerization⁹, and adsorptive separation or crystallization from other xylene isomers¹⁰⁻¹¹. Although these methods produce high-purity p-xylene, relatively high cost is required because of either expensive raw materials in selective toluene disproportionation or low selectivity of *p*-xylene in C₈ aromatic isomerization. The production of *p*-xylene through adsorptive separation or crystallization requires more energy, due to very close boiling points of xylene isomers and low selectivity of *p*-xylene.¹¹ Meanwhile, these production processes are associated with the generation of a considerable amount of by-products (e.g., ethylbenzene) resulting in environmental pollution.

With the significant reduction of toluene price arising from great increase of its global productivity¹², the selective alkylation using toluene as a feedstock for synthesis of *p*-xylene has been identified as a promising alternative.¹³⁻¹⁷ The toluene is reacted with another

feedstock methanol to produce *p*-xylene directly. Side reactions could also take place simultaneously to generate *m*-xylene and *o*-xylene. Unreacted toluene and methanol are recovered in the downstream distillation processes and recycled to the feed. *P*-xylene is separated from byproducts *m*-xylene and *o*-xylene in the downstream reactive distillation. Compared to other existing methods, this method requires mild reaction conditions (i.e., 400.0~500.0 °C and 3.0~4.0 bar) and could result in high utilization of toluene with excessive methanol and high selectivity of *p*-xylene.¹³⁻¹⁷ However, this production process is viable only when the cost of methanol is low (e.g., < \$ 0.35/ton) and the selectivity of *p*-xylene is high enough (e.g., > 90.0 %).^{18,35}

To reach high selectivity of *p*-xylene in toluene methylation, Breen et al.^{18,19} and Sotelo et al.²⁰ found out the selectivity of Mg-modified ZSM-5 catalyst to *p*-xylene can achieve as high as nearly 100 %. Zhao²¹ demonstrated that high selectivity of *p*-xylene on ZSM-5 zeolite catalyst could be always obtained. High selectivity of *p*-xylene not only inhibits the production of other unwanted isomers of xylene, but also increases *p*-xylene productivity and improves process economics. Meanwhile, it has been experimentally demonstrated that methanol conversion could remain at 100 % over Mg-modified ZSM-5 catalyst even with highest magnesium content.²²⁻²⁴ Ashraf et al.¹⁵ designed a *p*-xylene production process through toluene methylation with Mg-modified ZSM-5 catalyst. Their objective is to achieve maximum selectivity of *p*-xylene and to obtain 99.7 wt % of *p*-xylene. However, the production process of *p*-xylene still requires the present situation of methanol and toluene two-component separation cycle due to incomplete reaction in the existing reactor. In addition,


lead to additional loss of toluene.

In order to overcome the disadvantages of Ashraf et al.¹⁵ and improve process economics, an intensified *p*-xylene production process through toluene and methanol alkylation is proposed in this study where the methanol recovery and recycle system are cut off. A systematic design procedure for the proposed process involving thermodynamic and kinetic insights, process simulation, sensitivity analysis, and optimization through Sequential Quadratic Programming tool implemented in Aspen Plus V8.4[®] is proposed to identify the optimal operating conditions and reduce toluene loss in the downstream separation. Then, heat integration is conducted using pinch analysis tool implemented in Aspen Plus V8.4[®] to improve energy efficiency and further reduce total cost. Finally, two examples are used to illustrate the advantages of the proposed process based on economic and environmental metrics.

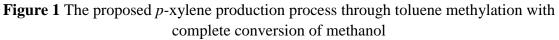

2 Proposed *p*-xylene production process

Figure 1 illustrates the proposed p-xylene production process through toluene methylation. The fresh feeds (i.e. toluene and methanol) are first preheated and then vaporized in the heating furnace before entering the alkylation reactor. In the alkylation reactor, toluene is primarily reacted with methanol to produce p-xylene. Other side reactions also take place such as methanol self-decomposition into hydrocarbons and water, and p-xylene conversion to m-xylene and o-xylene. A condenser is added to partially cooling outlet stream of the reactor to get light compounds such as gaseous hydrocarbon (GH) which are separated out in the subsequent flash column. The cooled GH is separated out at the top of flash column and the bottom liquid is fed into a decanting vessel for further separation where the upper layer product is water and the lower layer is aromatic mixture including benzene, toluene, p-xylene,

m-xylene, and *o*-xylene. The aromatic mixture is separated further into benzene, toluene, *p*-xylene, and mixed aromatics through two distillation columns and one reactive distillation unit. 99.7 wt % of *p*-xylene is obtained at the top of the reactive column. Compared to the existing process¹⁵ which is depicted in Figure 2, the proposed process does not require methanol recovery and recycle system due to almost complete conversion of methanol. Therefore, a trace amount of methanol in the reactor effluent could be found in the proposed process, whilst non-negligible amount of unconverted methanol existed in the reactor effluent in the existing process reported in the literature.¹⁵

PLEASE INSERT FIGURE 1 HERE

PLEASE INSERT FIGURE 2 HERE

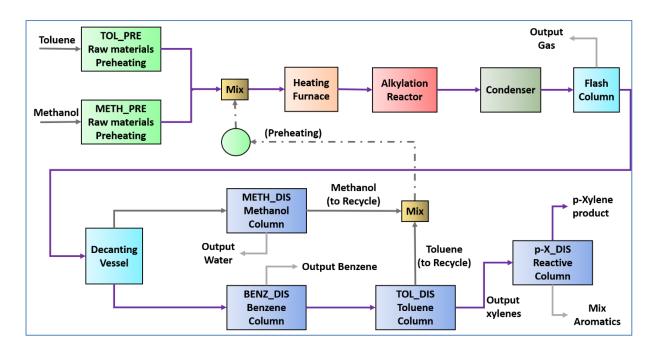


Figure 2 The existing p-xylene production process by toluene methylation¹⁵

2.1 Reaction kinetics in alkylation reaction

In the alkylation reactor, toluene is primarily reacted with methanol to produce *p*-xylene. It has been shown that methanol is completely converted in the temperature range of 400 - 600 oC.²⁴⁻²⁵ Mantha et al.²⁶ and Bhat et al.²⁷ developed a kinetic model based on the Langmuir-Hinshelwood approach, ignoring other products than xylene generated from the side reactions of methanol. Vayssilov et al.²⁸ proposed a power law kinetic model only considering the reactions of toluene alkylation and xylene isomerization. However, the experimental data that were used for kinetic model development is generated at a unique temperature of 227 °C. Sotelo et al.²⁰ developed a kinetic model over the Mg-modified catalysts in a fixed-bed reactor with the consideration of diffusional effects and the influence of *p*-xylene isomerization over the external zeolite surface, reproducing the experimental product distribution with an average relative error of 6.8%. Valverde et al.²⁵ developed a simple power law kinetic model for toluene alkylation with methanol over Mg-modified

 ZSM-5 catalyst considering all possible side reactions of methanol. The catalyst used contains 1.09 wt% Mg and 35 wt% sodium montmorillonite as a binder with an average particle size of 0.75 mm. The reaction kinetic model²⁵ is introduced as follows,

Toluene + Methanol $\rightarrow p$ - Xylene + Water $\mathbf{r}_1 = k_1 p_T p_M$ (1)

2Methanol
$$\rightarrow$$
 GH+2Water $\mathbf{r}_2 = k_2 p_{\rm M}^2$ (2)

Toluene
$$\rightarrow \frac{1}{2}$$
Benzene $+\frac{1}{2}$ p - Xylene $r_3 = k_3 p_T$ (3)

$$p-Xylene \rightarrow Toluene + \frac{1}{2}GH$$
 $r_4 = k_4 p_{p-X}$ (4)

$$p-Xylene \rightarrow \frac{1}{2}(m-Xylene+o-Xylene)$$
 $r_5 = k_5 p_{p-X}$ (5)

where, k_i denotes rate constant and p represents partial pressure. Gaseous hydrocarbons (GH) indicate light species (e.g., methane, ethane, ethylene, propane, and butanes), which is represented as pure ethylene to ensure stoichiometric balance in eq. 2. The kinetic parameters are given in Table 1.

PLEASE INSERT TABLE 1 HERE

Table 1 Kinetic parameters of toluene methylation over Mg-modified ZSM-5 zeolite catalyst²⁵

reaction	pre-exponential factor, A _i , mol/(g h atm ²) or mol/(g h atm)	activation energy, E _i , (kJ/mol)
1	403 ± 5	45.7 ± 0.4
2	1346 ± 64	50.6 ± 0.5
3	96.2 ± 1	59.0 ± 0.5
4	0.3815 ± 0.05	19.6 ± 0.7
5	46.94 ± 0.5	48.9 ± 0.3

The kinetic rate constant k_i is related to A_i and E_i as Eq. 6.

$$k_i = A_i T^n e^{\frac{-E_i}{RT}}$$
(6)

It is shown that the reactions given in eqs. 1, 3, and 4 occur preferentially inside pores of the catalyst. Consequently, the effectiveness factors η_1 , η_3 , and η_4 are used to account for

diffusion limitations.²⁵ The values of the effectiveness factors, η_3 and η_4 are given in Table 2 for three different temperatures: 460.0 °C, 500.0 °C, and 540.0 °C. The value of effectiveness factor η_1 is 0.98 which is approximated to be 1.

PLEASE INSERT TABLE 2 HERE

Table 2 Effectiveness factors for toluene methylation over Mg modified ZSM-5 catalyst²⁵

temperature, °C	η_3	η_4
460.0	0.7781 ± 0.117	2.977 ± 1.10
500.0	0.5335 ± 0.170	3.212 ± 0.59
540.0	$0.4470 \ \pm 0.320$	3.201 ± 0.97

The aforementioned reaction kinetic model with the given parameter values²⁵ are quantitatively validated by Ashraf et al.¹⁵ The simulation results are in agreement with the experimental results from Sotelo et al.²⁰ The same reaction kinetic model was also used to investigate the effects of temperature, pressure, space time and toluene-to-methanol feed ratio on toluene conversion, xylene selectivity and p-xylene selectivity using the sensitivity analysis feature in Aspen Plus and obtain the best reaction conditions including temperature and pressure.²⁹ It should be noted that although the kinetic parameters and effectiveness factors were reported in three temperatures 460 °C, 500 °C and 540 °C, they are valid for the temperatures ranging from 400 °C to 540 °C and for the pressures ranging from 1 to 15 bar as indicated in the sensitivity analysis of Ashraf et al.¹⁵ Hence, the same kinetic model with the given parameter values are also used in this work. The mean values for each of parameters given in Tables 1 are input directly. However, for the data in Table 2, the specific effectiveness factors corresponding to other temperatures are not given and then these factors are calculated based on the Eqs. S1-S4 and the iterative algorithm block diagram of calculating effectiveness diffusion coefficient De as illustrated in Figure S1 of Supporting

 Information.

2.2 Reaction kinetics in reactive distillation

It is well known that *p*-xylene and *m*-xylene are difficult to separate using conventional distillation since they have very close boiling point at 1.0 bar as shown in Table 3. However, *m*-xylene can be selectively *tert*-butylated (reaction with di-tert-butyl-benzene) in the presence of aluminum chloride under mild alkylation conditions to form *tert*-bytyl *m*-xylene (TBMX) with higher boiling point as shown in Table 3, which can be separated from *p*-xylene. When modeling the reactive distillation column in Aspen Plus, the reactions can be considered to reach equilibrium as reported in the work of in Venkataraman³⁰, based on the experimental work of Saito et al.³¹ The reaction equations are presented in eqs. 7-8. The corresponding equilibrium constants are given in eqs. 9-10, respectively.

$$DTBB + m - X \rightarrow TBMX + TBB \tag{7}$$

$$TBB + m - X \rightarrow TBMX + B \tag{8}$$

$$K_{1}^{R} = \frac{x_{TBMX} x_{TBB}}{x_{DTBB} x_{m-X}} = 0.6$$
(9)

$$K_2^R = \frac{x_{TBMX} x_B}{x_{TBB} x_{m-X}} = 0.16 \tag{10}$$

In the equations above, DTBB represents di-*tert*-butyl-benzene, TBB refers to *tert*-butyl-benzene, TBMX is *tert*-butyl *m*-xylene, and benzene is abbreviated to B. Equilibrium data are given by Saito et al.³¹

PLEASE INSERT TABLE 3 HERE

 Table 3 Boiling and freezing points of some of the materials present in the process

material	normal boiling point, °C	freezing point, °C	reference
p-X	138.3	13.3	32
p-X m-X	139.1	-47.8	32
o-X	144.4	-25.2	32
TBMX	205.5	-17.0	32

3 Process design

The proposed process is used to produce 179.0 kmol/h *p*-xylene product with a purity of 99.7 wt % using 393.0 kmol/h fresh methanol and 215.0 kmol/h fresh toluene as feeds. Figure 3 presents the design procedure for the proposed *p*-xylene production process. First, process simulation of the existing process¹⁵ is conducted in Aspen Plus to construct a base case. Then, optimal operating conditions in the alkylation reactor are generated through sensitivity analysis and Sequential Quadratic Programming (SQP) optimization method built in Aspen Plus. The objective is to achieve complete methanol conversion subject to some constraints such as *p*-xylene selectivity constraints. After that, heat integration is conducted to improve energy efficiency of the proposed process. Finally, the proposed process is evaluated based on the total annualized cost and carbon emissions.

PLEASE INSERT FIGURE 3 HERE

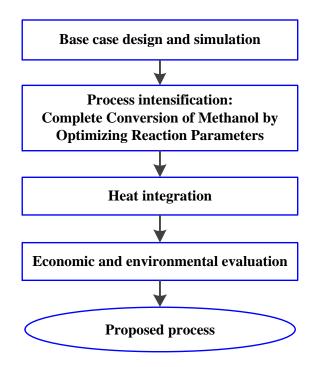


Figure 3 A systematic design procedure for the proposed *p*-xylene production process

3.1 Optimal operating conditions for the reactor

Some researchers have performed simulation of an isothermal packed bed alkylation reactor using the kinetic model of Valverde.^{15,25} To ensure fair comparison, the same reactor design¹⁵ is used here including the reactor type and size to ensure a fair comparison and demonstrate that the improvement is not contributed from changing the reactor size. The required key operating conditions for the reactor include toluene-to-methanol feed ratio m, temperature T, and pressure P. The objective is to maximize methanol conversion denoted as z, which is represented below:

$$z = \left(\frac{\text{inlet methanol-outlet methanol}}{\text{inlet methanol}}\right) \times 100$$
(11)

Subject to a set of constraints as follows:

The outlet flow rate of *p*-xylene from the reactor should exceed the minimum value of 187.0 kmol/h reported by Ashraf et al.¹⁵:

$$F_{p-X} \ge F_{p-X}^{\min} \tag{12}$$

The concentration of methanol in the alkylation reactor effluent should be less than a maximum concentration, which is assumed to be 0.3 wt %:

$$M\% \leq M\%^{\max} \tag{13}$$

The *p*-xylene selectivity (denoted as S_{p-X}) should also exceed a minimum value of selectivity, which is assumed to be 90.0 %:

$$S_{p-X} = \left(\frac{F_{p-X}}{F_{p-X} + F_{m-X} + F_{o-X}}\right) \times 100 \ge S_{p-X}^{\min}$$
(14)

The toluene conversion should exceed a minimum value, which is about 23.0 %:

$$X_{\text{toluene}} = \left(\frac{\text{inlet toluene-outlet toluene}}{\text{inlet toluene}}\right) \times 100 \ge X_{\text{toluene}}^{\min}$$
(15)

Besides eqs. 12-15, there are also other constraints such as mass and energy balances, which is implicitly implemented in Aspen Plus.

In addition, the toluene-to-methanol feed ratio m, temperature T, and pressure P must meet their lower and upper bounds, as described by the following equations:

$$m^L \le m \le m^U \tag{16}$$

$$T^{L} \le T \le T^{U} \tag{17}$$

$$P^L \le P \le P^U \tag{18}$$

The lower and upper bounds of the toluene-to-methanol feed ratio, temperature, and pressure can be determined based on sensitivity analysis tool implemented in Aspen Plus. The objective function and the constrains are expressed in Fortran statement in Aspen plus and solved using SQP optimization solver implemented in Aspen Plus.

3.2 Economic evaluation

The total annual cost (TAC), which consists of total operating cost (TOC) and total capital investment (TCI), is used to evaluate the economics of both the proposed process and the existing process.¹⁵ The TAC is defined in eq. 19.³³ Following the suggestion of Turton et al.³⁴, the shorter the payback period, the more profitable the project. Thus, a three-year payback period is taken in calculating TAC and the total annual operating time is assumed to be 7920 h/year.

$$TAC = \frac{TCI}{payback \ period} + TOC \tag{19}$$

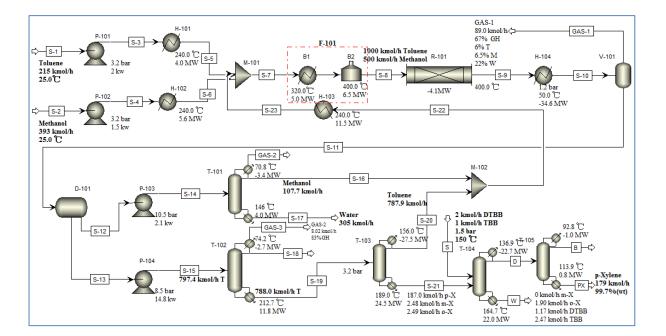
where, the TCI mainly involves equipment purchase cost (pump, heat, reactor, flash, decanter, and distillation columns) and the installation cost of the equipment, and the TOC mainly consists of utility cost (e.g., cost of steam, cooling water, and electricity used in heat exchangers,

pumps and furnace) and raw materials cost. The economic data for raw materials and utilities are given in Table 4. The inlet and outlet temperatures of cooling water are assumed to be 20 °C and 25 °C. Pipe and valves costs are neglected because they are much lower than utility and raw material cost. Note that TCI is directly calculated using Aspen Process Economic Analyzer $V8.4^{\text{@}}$ by importing flowsheet simulation results in Aspen Plus simulator. The calculation of TOC is much more complicated. To simplify the calculation, two assumptions are made. First, the fixed operating cost is not taken into account in the calculation of the TOC. Second, the cost of the additional DTBB and TBB that are used in the RD is not considered because their amount and cost is very small in terms of equipment and energy cost. It should be also noted that these two assumptions have no effect on the final comparative results due to the same amount of *p*-xylene produced in both the proposed process and the existing process.

PLEASE INSERT TABLE 4 HERE

component	price	unit	reference
raw materials			
toluene	770.0	\$/t	35
methanol	380.0	\$/t	35
utilities			
fuel	9.83	\$/GJ	36
LP steam (6 bar, $160 \degree C$)	7.78	\$/GJ	36
MP steam (11 bar, 184 °C)	8.22	\$/GJ	36
HP steam (42 bar, 254 °C)	9.83	\$/GJ	36
cooling water	0.10	\$/GJ	45
electricity	0.09	\$/kWh	45

Table 4 Economic data for raw materials and utilities


4 Results and Discussions

4.1 Base case

As mentioned earlier, the existing p-xylene production process proposed by Ashraf et al.¹⁵ is used as our base case. The process flowsheet is illustrated in Figure 4. The detailed stream information is presented in Table S1 of Supporting Information. Table 5 provides a

summary of the economic evaluation results from Aspen Process Economic Analyzer V8.4[®] where CI is capital investment and OC is the associated operating cost. The CI is obtained by the summation of equipment cost and labor cost associated with the project preparation (e.g., installation bulks) while equipment cost is bare equipment cost associated with material. Moreover, the equipment cost is the main cost in the project preparation.

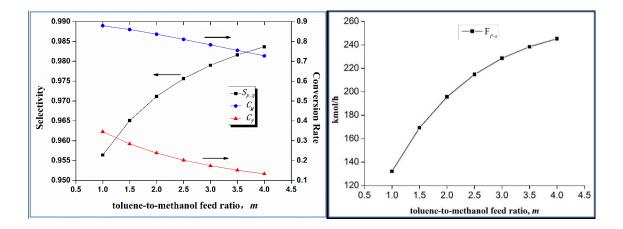
It can be concluded that the utility cost for raw materials heating accounts for 35.2 % of TOC, whilst it accounts for 64.7 % of TOC for the distillation separation system. Note that the overall reaction is exothermic. Thus, cooling water is used to maintain constant reaction temperature at 400 °C. Note that the cooling water cost for the reactor is negligible compared to the utility cost for raw material heating and distillation separation system.

PLEASE INSERT FIGURE 4 HERE

Figure 4 Process flow diagram for the base case

PLEASE INSERT TABLE 5 HERE

equipment	comments	value	CI (k\$)	OC(k\$/year)
P-101 (kw)	toluene pump	2.0	43.9	1.5
P-102 (kw)	methanol pump	1.5	42.0	1.0
P-103 (kw)	feed pump	2.1	60.9	3.2
P-104 (kw)	feed pump	14.8	76.3	25.1
H-101 (MW)	heater	4.0	133.9	1123.8
H-102 (MW)	heater	5.6	155.3	1569.6
H-103 (MW)	heater	11.5	271.7	3236.4
H-104 (MW)	condenser	34.6	392.3	98.6
F-101 (MW)	fired furnace	10.3	1520.7	2998.6
R-101 (MW)	alkylation reactor	4.1	373.0	11.7
V-101	flash vessel	-	2141	-
D-101	decanter	-	213.3	-
T-101 (^a C/R, MW)	methanol distillation column	3.4/4.0	792.0	948.5
T-102 (C/R, MW)	benzene distillation column	2.7/11.8	2334.3	3318.7
T-103 (C/R, MW)	toluene distillation column	27.5/24.5	4024.1	6943.9
T-104 (C/R, MW)	reaction distillation column	22.7/22.0	4562.7	5233.7
T-105 (C/R, MW)	p-xylene distillation column	1.0/0.8	734.9	147.1
total	-	-	15731.3	22661.4


It is also observed that there is a significant difference between condenser and reboiler duties in the benzene distillation column (T-102). The main possible reason is that there are a large amount of heavy components but small amount of light components in the feed to T-102. Therefore, much less distillate is obtained than that in the bottom, leading to much fewer duties required on the top and much more duties required in the bottom. In addition, the partial condenser rather than total condenser is used on the top for the separation of small amount of GH gases in the feed, which further reduces duties required in the condenser.

4.2 Optimal operating conditions for the reactor

Sensitivity analysis is conducted to investigate the effect of the three important operating parameters including the toluene-to-methanol feed ratio, operating temperature and pressure on methanol conversion, toluene conversion and p-xylene selectivity. Figure 5 illustrates the

effect of the toluene-to-methanol feed ratio, *m*, on methanol conversion rates, C_M , toluene conversion rates, C_T , *p*-xylene selectivity, $S_{P\cdot X}$ and *p*-xylene flowrate, $F_{P\cdot X}$. From Figure 5, it can be observed that the methanol conversion decreases along with the increase of *m*. The main possible reason is that the increase of *m* could lead to the decrease of the space time (weight of catalyst per unit feed flowrate of toluene, W_{cat}/F_T , (g h)/mol), which may decrease the reaction degree of methanol. From Figure 5, it can also be seen that when *m* increases, the *p*-xylene selectivity is increased due to ultralow residence time of *p*-xylene, which is in good agreement with those reported in the literature.¹⁸⁻²⁰ In other words, although the conversion of methanol can reach 98.7% when m = 1, the *p*-xylene selectivity is a bit low without satisfying its minimum requirement (187 kmol/h). In summary, it is very difficult to achieve the complete conversion of methanol and keep high *p*-xylene selectivity simultaneously by only adjusting the value of the toluene-to-methanol feed ratio, *m*.

PLEASE INSERT FIGURE 5 HERE

Figure 5 Effect of the toluene-to-methanol feed ratio, *m*, on methanol conversion rates, C_M , toluene conversion rates, C_T , *p*-xylene selectivity, S_{P-X} , and *p*-xylene flowrate, F_{P-X} where $T_R = 400.0$ °C, and $P_R = 3.0$ bar

In thermodynamic studies on toluene alkylation with methanol, Wang et al.³⁷ found the

alkylation of benzene, toluene and methanol, carbon deposition of toluene and methanol, and methanol self-transformation can take place spontaneously and irreversibly in forward direction. Methanol could be almost completely converted into low-carbon olefins and water during methanol self-transformation. Dung et al.³⁸ and Mehran et al.³⁹ concluded that low temperature and high pressure could inhibit the occurrence of side-chain alkylation of toluene, whilst high temperature and low pressure is favorable for inhibiting the occurrence of alkylation of toluene with light olefins. In addition, they found that the maximum toluene conversion and *p*-xylene selectivity was obtained around 427.0 °C.

Experimental results demonstrate that methanol conversion rate could reach around 100 % during the temperature range of 400.0~600.0 °C.²²⁻²⁴ Meanwhile, as illustrated by Ashraf et al.¹⁵, the selectivity of both xylene and *p*-xylene is more sensitive to the operating pressure. When the pressure is increased to 4.0 bar, the corresponding *p*-xylene selectivity decreases significantly although its conversion increases. Therefore, there is a trade-off between selectivity and conversion, providing an opportunity to achieve higher conversion with some minimum selectivity through optimization. The temperature and pressure of the reactor at 400.0~500.0 °C, 3.0~4.0 bar, respectively, are chosen as the optimization range.

The influences of the operating temperature and pressure on p-xylene selectivity and conversion rates of toluene and methanol are shown in Figures 6 and 7a–b, respectively.

PLEASE INSERT FIGURE 6 HERE

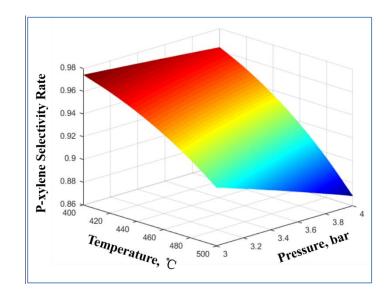
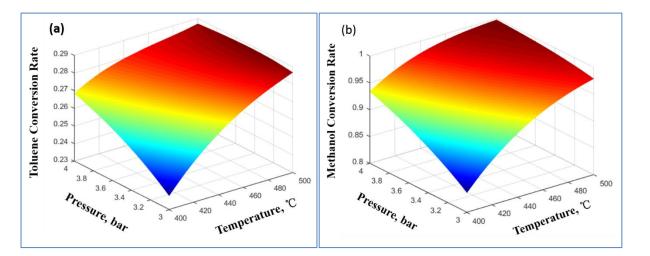



Figure 6 Effect of temperature and pressure on *p*-xylene selectivity when m = 2

PLEASE INSERT FIGURE 7 HERE

Figure 7 Effect of temperature and pressure on: (a) toluene conversion rate and (b) methanol conversion rate when m = 2

As shown in Figure 6, the selectivity of *p*-xylene decreases along with the increase in temperature and pressure. When the temperature is 500.0 °C and the pressure is 4.0 bar, the selectivity of *p*-xylene reaches only around 85.0 %, and the remaining 15.0 % are isomerization products (i.e., *o*-xylene and *m*-xylene). However, as the temperature decreases to 400.0 °C and the pressure changes to 3.0 bar, the selectivity of *p*-xylene can achieve above 97.0 %. From Figure 7a, the toluene conversion rate increases with the increase of

temperature and pressure, demonstrating both temperature and pressure are key factors in toluene alkylation. It can be seen from Figure 7b that the methanol conversion rate increases with the increase of the temperature and pressure and can reach 99.9 % at 500.0 °C and 4.0 bar. Therefore, it can be concluded that the main reaction involving toluene alkylation, the isomerization of *p*-xylene, and the conversion of methanol to hydrocarbons prefer high temperature and pressure.

Based on the above analysis, the lower and upper bounds of the operating temperature, pressure and toluene-to-methanol feed ratio, *m*, are thus obtained, as shown in Table 6.

PLEASE INSERT TABLE 6 HERE

Table 6 Lower and upper bounds of toluene-to-methanol feed ratio, temperature and pressure

operating variables	lower bounds	upper bounds
temperature, °C	400.0	500.0
pressure, bar	3.0	4.0
toluene-to-methanol feed ratio, m	1	4

The optimization model **PM** is solved using SQP optimization solver implemented in Aspen Plus on a desktop with Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz, 8 GB memory. The optimal values are obtained within 5 minutes and they are listed in Table 7.

PLEASE INSERT TABLE 7 HERE

 Table 7 Optimal operating conditions for the reactor

	T, °C	P, bar	Space time, W/F _T , (g h)/mol	т	\mathbf{S}_{p-X}	${}^{a}C_{T}$	${}^{a}C_{M}$
Base case	400.0	3.0	2.5	2.0	97.7	23.0	65.5
optimized	442.5	4.0	3.4	1.8	92.0	28.2	98.0
^a C _T represen	nts toluene	e conversio	on and C _M represents methanol	convers	sion.		

For a fair comparison, the production rate of p-xylene is maintained at 179.0 kmol/h in the proposed process, which is the same as the base case. After optimization, the reduced loss

of toluene is sent back to the alkylation reactor and the conversion of toluene is increased, so that the amount of *p*-xylene can be kept same with that in base process although lower selectivity as compared with the base process. Meanwhile, in the existing process, the feed methanol for the alkylation reactor consists of two parts: one part is amount of 107.0 koml/h methanol that recovered from distillation system, the other part is amount of 393.0 koml/h fresh methanol to maintain a quantitative *p*-xylene production. However, in the optimized process, a complete reaction of methanol took place in the alkylation reactor, only a flowrate of 393.0 kmol/h fresh methanol is needed to maintain the same *p*-xylene production.

4.3 The optimal p-xylene production process

The flow diagram for the optimal p-xylene process with methanol conversion of 98.0 % is illustrated in Figure 8. The detailed stream information is given in Table 8. The mixture of methanol and toluene is fed at 442.5 °C and 4.0 bar to reactor R-101. Methanol is almost completely converted in reactor R-101 compared to the base case. Trace amount of methanol in the bottom of the flash tank is fed to decanter D-101. Since methanol does not appear in the water-rich phase, methanol recovery system is not required. In addition, the flow rate of recycle stream S-18 is 512.0 kmol/h and the toluene fresh feed is set at 215.0 kmol/h (i.e., recycle-to-feed ratio = 2.38) to maintain a quantitative yield of *p*-xylene. The rest of the process in Figure 8 is the same as the base case in Figure 4. Eventually, a flow rate of 179.0 kmol/h *p*-xylene product with a purity of 99.7 wt % is obtained. In addition, in the benzene distillation column (T-101), less than 0.06 % of toluene is found in the top liquid product without recovery, whilst it is more than 1.18 % in Figure 4 (the existing process¹⁵). The reason is not because of improper design of the distillation column in Ashraf et al.¹⁵, but because the

conversion rate of toluene in the p-xylene reactor of the existing process is lower than the

optimal process resulting in a larger load of toluene in distillation process.

PLEASE INSERT TABLE 8 HERE

Table 8 Stream data for p-xylene production from the optimized process

Stream		S-1	S-2	S-7	S-8	GAS-1	S-12	GAS-2
mole flow	kmol/h	215.24	393.00	1132.74	1226.93	96.87	750.58	8.61
mass flow	kg/h	19832.30	12592.60	80633.10	80633.10	2728.20	70932.70	252.59
vapor fraction		0.00	0.00	1.00	1.00	1.00	0.00	0.00
temperature	°C	25.00	25.00	240.00	442.50	25.00	21.00	42.44
pressure	bar	1.00	1.00	4.00	4.00	1.10	8.20	8.00
			Compo	onent Mole I	Flow			
Toluene	kmol/h	215.24	0.00	727.29	515.56	1.82	513.69	0.00
Methanol	kmol/h	0.00	393.00	393.00	8.40	0.12	2.09	0.09
p-X	kmol/h	0.00	0.00	1.90	189.58	0.23	189.34	0.00
Water	kmol/h	0.00	0.00	0.00	384.60	13.50	2.23	0.15
Benzene	kmol/h	0.00	0.00	10.49	18.24	0.20	18.03	0.24
GH	kmol/h	0.00	0.00	0.00	94.19	80.97	8.84	8.13
m-X	kmol/h	0.00	0.00	0.06	8.21	0.01	8.20	0.00
o-X	kmol/h	0.00	0.00	0.01	8.16	0.01	8.15	0.00
TBB	kmol/h	0.00	0.00	0.00	0.00	0.00	0.00	0.00
DTBB	kmol/h	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TBMX	kmol/h	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Stream name		S-14	S-17	S-19	S	W	В	PX
Stream name mole flow	kmol/h	S-14 750.6	S-17 205.08	S-19 524.50	S 6.00	W 23.57	B 8.50	PX 179.00
-	kmol/h kg/h			524.50				
mole flow	kg/h	750.6	205.08	524.50	6.00	23.57	8.50	179.00
mole flow mass flow		750.6 70932.7	205.08 21753.30	524.50 48208.20	6.00 914.54	23.57 2951.12	8.50 716.70	179.00 19003.00
mole flow mass flow vapor fraction	kg/h	750.6 70932.7 0.00	205.08 21753.30 0.00	524.50 48208.20 1.00	6.00 914.54 0.00	23.57 2951.12 1.00	8.50 716.70 0.00	179.00 19003.00 0.00
mole flow mass flow vapor fraction temperature	kg/h °C	750.6 70932.7 0.00 21.09	205.08 21753.30 0.00 184.25 3.00	524.50 48208.20 1.00 240.00	6.00 914.54 0.00 150.00 1.50	23.57 2951.12 1.00 156.19	8.50 716.70 0.00 59.00	179.00 19003.00 0.00 109.05
mole flow mass flow vapor fraction temperature	kg/h °C	750.6 70932.7 0.00 21.09	205.08 21753.30 0.00 184.25 3.00	524.50 48208.20 1.00 240.00 4.00 ponent Mole 1	6.00 914.54 0.00 150.00 1.50	23.57 2951.12 1.00 156.19	8.50 716.70 0.00 59.00	179.00 19003.00 0.00 109.05
mole flow mass flow vapor fraction temperature pressure	kg/h °C bar	750.6 70932.7 0.00 21.09 8.20	205.08 21753.30 0.00 184.25 3.00 Compo	524.50 48208.20 1.00 240.00 4.00 ponent Mole 1	6.00 914.54 0.00 150.00 1.50 Flow	23.57 2951.12 1.00 156.19 1.06	8.50 716.70 0.00 59.00 0.40	179.00 19003.00 0.00 109.05 0.43
mole flow mass flow vapor fraction temperature pressure Toluene	kg/h °C bar kmol/h	750.6 70932.7 0.00 21.09 8.20 513.59	205.08 21753.30 0.00 184.25 3.00 Compo 1.35	524.50 48208.20 1.00 240.00 4.00 512.05	6.00 914.54 0.00 150.00 1.50 Flow 0.00	23.57 2951.12 1.00 156.19 1.06 0.00	8.50 716.70 0.00 59.00 0.40 1.28	179.00 19003.00 0.00 109.05 0.43 0.07
mole flow mass flow vapor fraction temperature pressure Toluene Methanol	kg/h °C bar kmol/h kmol/h	750.6 70932.7 0.00 21.09 8.20 513.59 2.09	205.08 21753.30 0.00 184.25 3.00 Compo 1.35 0.00	524.50 48208.20 1.00 240.00 4.00 0nent Mole 1 512.05 0.00	6.00 914.54 0.00 150.00 1.50 Flow 0.00 0.00	23.57 2951.12 1.00 156.19 1.06 0.00 0.00	8.50 716.70 0.00 59.00 0.40 1.28 0.00	179.00 19003.00 0.00 109.05 0.43 0.07 0.00
mole flow mass flow vapor fraction temperature pressure Toluene Methanol p-X	kg/h °C bar kmol/h kmol/h kmol/h	750.6 70932.7 0.00 21.09 8.20 513.59 2.09 189.34	205.08 21753.30 0.00 184.25 3.00 Compo 1.35 0.00 187.44	524.50 48208.20 1.00 240.00 4.00 000000 512.05 0.00 1.90	6.00 914.54 0.00 150.00 1.50 Flow 0.00 0.00 0.00	23.57 2951.12 1.00 156.19 1.06 0.00 0.00 7.84	8.50 716.70 0.00 59.00 0.40 1.28 0.00 1.24	179.00 19003.00 0.00 109.05 0.43 0.07 0.00 178.37
mole flow mass flow vapor fraction temperature pressure Toluene Methanol p-X Water	kg/h °C bar kmol/h kmol/h kmol/h kmol/h	750.6 70932.7 0.00 21.09 8.20 513.59 2.09 189.34 2.23	205.08 21753.30 0.00 184.25 3.00 Compo 1.35 0.00 187.44 0.00	524.50 48208.20 1.00 240.00 4.00 00000 512.05 0.00 1.90 0.00	6.00 914.54 0.00 150.00 1.50 Flow 0.00 0.00 0.00 0.00 0.00	23.57 2951.12 1.00 156.19 1.06 0.00 0.00 7.84 0.00	8.50 716.70 0.00 59.00 0.40 1.28 0.00 1.24 0.00	179.00 19003.00 0.00 109.05 0.43 0.07 0.00 178.37 0.00
mole flow mass flow vapor fraction temperature pressure Toluene Methanol p-X Water Benzene	kg/h °C bar kmol/h kmol/h kmol/h kmol/h	750.6 70932.7 0.00 21.09 8.20 513.59 2.09 189.34 2.23 18.03	205.08 21753.30 0.00 184.25 3.00 Compo 1.35 0.00 187.44 0.00 0.00	524.50 48208.20 1.00 240.00 4.00 512.05 0.00 1.90 0.00 10.48	6.00 914.54 0.00 150.00 1.50 Flow 0.00 0.00 0.00 0.00 0.00 0.00	23.57 2951.12 1.00 156.19 1.06 0.00 0.00 7.84 0.00 0.00	8.50 716.70 0.00 59.00 0.40 1.28 0.00 1.24 0.00 5.98	179.00 19003.00 0.00 109.05 0.43 0.07 0.00 178.37 0.00 0.00
mole flow mass flow vapor fraction temperature pressure Toluene Methanol p-X Water Benzene GH	kg/h °C bar kmol/h kmol/h kmol/h kmol/h kmol/h	750.6 70932.7 0.00 21.09 8.20 513.59 2.09 189.34 2.23 18.03 8.84	205.08 21753.30 0.00 184.25 3.00 Compo 1.35 0.00 187.44 0.00 0.00 0.00	524.50 48208.20 1.00 240.00 4.00 512.05 0.00 1.90 0.00 10.48 0.00	6.00 914.54 0.00 150.00 1.50 Flow 0.00 0.00 0.00 0.00 0.00 0.00 0.00	23.57 2951.12 1.00 156.19 1.06 0.00 0.00 7.84 0.00 0.00 0.00 0.00	8.50 716.70 0.00 59.00 0.40 1.28 0.00 1.24 0.00 5.98 0.00	179.00 19003.00 0.00 109.05 0.43 0.07 0.00 178.37 0.00 0.00 0.00 0.00
mole flow mass flow vapor fraction temperature pressure Toluene Methanol p-X Water Benzene GH m-X	kg/h °C bar kmol/h kmol/h kmol/h kmol/h kmol/h kmol/h	750.6 70932.7 0.00 21.09 8.20 513.59 2.09 189.34 2.23 18.03 8.84 8.20	205.08 21753.30 0.00 184.25 3.00 Compo 1.35 0.00 187.44 0.00 0.00 0.00 8.14	524.50 48208.20 1.00 240.00 4.00 0000 512.05 0.00 1.90 0.00 10.48 0.00 0.06	6.00 914.54 0.00 150.00 1.50 Flow 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	23.57 2951.12 1.00 156.19 1.06 0.00 0.00 7.84 0.00 0.00 0.00 0.00 0.15	8.50 716.70 0.00 59.00 0.40 1.28 0.00 1.24 0.00 5.98 0.00 0.00	179.00 19003.00 0.00 109.05 0.43 0.07 0.00 178.37 0.00 0.00 0.00 0.00 0.02
mole flow mass flow vapor fraction temperature pressure Toluene Methanol p-X Water Benzene GH m-X o-X	kg/h °C bar kmol/h kmol/h kmol/h kmol/h kmol/h kmol/h kmol/h	750.6 70932.7 0.00 21.09 8.20 513.59 2.09 189.34 2.23 18.03 8.84 8.20 8.15	205.08 21753.30 0.00 184.25 3.00 Compo 1.35 0.00 187.44 0.00 0.00 0.00 8.14 8.14	524.50 48208.20 1.00 240.00 4.00 512.05 0.00 1.90 0.00 10.48 0.00 0.06 0.01	6.00 914.54 0.00 150.00 1.50 Flow 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	23.57 2951.12 1.00 156.19 1.06 0.00 0.00 7.84 0.00 0.00 0.00 0.00 0.15 7.60	8.50 716.70 0.00 59.00 0.40 1.28 0.00 1.24 0.00 5.98 0.00 0.00 0.00	179.00 19003.00 0.00 109.05 0.43 0.07 0.00 178.37 0.00 0.00 0.00 0.00 0.00 0.02 0.50

PLEASE INSERT FIGURE 8 HERE

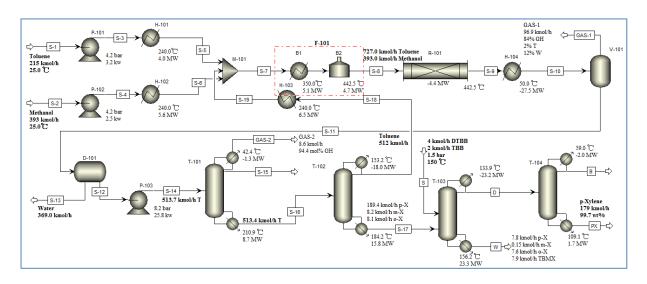


Figure 8 Process flow diagram for the proposed p-xylene production with almost complete methanol conversion

The detailed economic evaluation results for the proposed p-xylene production process

in Figure 8 are provided in Table 9.

PLEASE INSERT TABLE 9 HERE

Table 9 Economic evaluation results for the	e proposed <i>p</i> -xylene production process
---	--

equipment	comments	value	IC (k\$)	OC (k\$/year)
P-101	toluene pump	3.2	43.9	2.1
P-102	methanol pump	2.5	42.8	1.7
P-103	feed pump	25.8	57.4	18.4
H-101 (MW)	heater	4.0	200.7	1120.7
H-102 (MW)	heater	5.6	215.1	1577.5
H-103 (MW)	heater	6.5	371.6	1831.0
H-104 (MW)	condenser	27.5	361.8	78.5
F-101 (MW)	fired furnace	9.7	1432.9	2825.6
R-101 (MW)	alkylation reactor	4.4	421.2	12.5
V-101	flash vessel	-	173.3	-
D-101	decanter	-	173.0	-
T-101 (^a C/R, MW)	benzene distillation column	1.3/8.7	1381.5	2431.0
T-102 (^a C/R, MW)	toluene distillation column	18.0/15.8	2044.4	4483.1
T-103 (^a C/R, MW)	reaction distillation column	23.2/23.3	4981.5	5300.5
T-104 (^a C/R, MW)	p-xylene distillation column	1.7/1.4	1112.7	386.2
total cost	-	-	13013.8	20068.8
^a C represents Condenser	and R represents Reboiler			

Similarly, in Table 9, we also can find that there is such a significant difference between the condenser and reboiler duties of the benzene distillation column (T-101), the main reason for this is the same as the benzene distillation column (T-102) in section 4.1. In addition, we also compare the economics of the proposed *p*-xylene production process with the base case (i.e., existing process¹⁵). The main results about heaters and distillation columns are presented in Table 10. The total capital cost (TCI) and total operating cost (TOC) are significantly reduced by 17.3 % and 21.8 %, respectively compared to those of the base case. This is mainly because of the removal of methanol recovery and recycles system, and the reduction of toluene recycle amount.

PLEASE INSERT TABLE 10 HERE

Table 10 Comparative results for the base case and the proposed process

type		base case (the existing process ¹⁵)		posed process
•	TCI (k\$)	TOC (k\$/year)	TCI (k\$)	TOC (k\$/year)
pumps	223.1	30.8	144.1	22.2
heaters	2473.9	9027.0	2582.1	7433.3
distillation columns	12448.0	16591.9	9520.1	12600.8
other units	586.3	11.7	767.5	12.5
total	15731.3	204687.2	13013.8	19094.6
savings (%)			17.3	21.8

4.4 Heat Integration

As seen from Figure 8, the reactor outlet flow in the proposed process (see Figure 8) can provide 27.5 MW of energy without effective utilization. To improve energy efficiency of the proposed process and reduce the operating cost further, heat integration is conducted using Aspen Energy Analysis^{40,41}, which is based on pinch analysis method. The heat exchanger network (HEN) is automatically created based on the pinch analysis using Aspen Energy Analysis.⁴²⁻⁴⁴ The minimum temperature approach, ΔT_{min} is assumed to be 10.0 °C.

4.4.1 HEN for the proposed process. The data on hot and cold streams in the proposed process are listed in Table 11. The composite curve of cold and hot streams in the proposed process is shown in Figure 9.

Temperature (°C) 1.0×10⁸ 3.0×10⁸ 2.0×10⁸ 5.0×10⁸ 4.0×10⁸ Enthalpy (kJ/h)

PLEASE INSERT FIGURE 9 HERE

Figure 9 The composite curve of cold and hot logistics in the proposed process

PLEASE INSERT TABLE 11 HERE

Table 11 Thermodynamic data of hot and cold streams in the proposed proce	Table 11 Thermod	vnamic data	of hot and col	d streams in the	proposed proces
--	--------------------------	-------------	----------------	------------------	-----------------

	inlet temperature,	outlet temperature,	heat duty,	MCp,
stream	°C	°C	kJ/h	kJ/C h
S-9_To_S-10	442.5	50.0	9.917×10^{7}	4.123 ×10 ⁵
S-3_To_S-5	25.0	240.0	1.440×10^{7}	2.882×10^{7}
S-4_To_S-6	25.0	240.0	2.026×10^{7}	9.078×10^{7}
S-18_To_S-19	153.2	240.0	2.352×10^{7}	1.190×10^{6}
S-7_To_S-8	240.0	442.5	3.533 ×10 ⁷	1.749×10^{5}
V-101_heat	50.0	25.0	3.522×10^{6}	1.409×10^{5}
To Condenser@T-101_TO_GAS-2	147.2	42.4	4.588×10^{6}	8.737×10^4
To Reboiler@T-101_TO_S-16	209.0	210.9	3.118 ×107	1.614×10^{7}
To Condenser@T-102_TO_S-18	153.7	153.2	6.476 ×10 ⁷	1.310×10^{8}
To Reboiler@T-102_TO_S-17	184.0	184.2	5.692 ×107	3.040×10^8
To Condenser@T-103_TO_D	137.0	133.9	8.268×10^{7}	4.246 ×10 ⁷

To Reboiler@T-103_TO_W	145.7	156.2	8.041×10^7	1.150 ×10 ⁷
To Condenser@T-104_TO_B	73.7	59.0	7.236×10^{6}	5.789×10^{5}
To Reboiler@T-104_TO_PX	108.9	109.1	6.174×10^{6}	7.391×10^{7}

PLEASE INSERT FIGURE 10 HERE

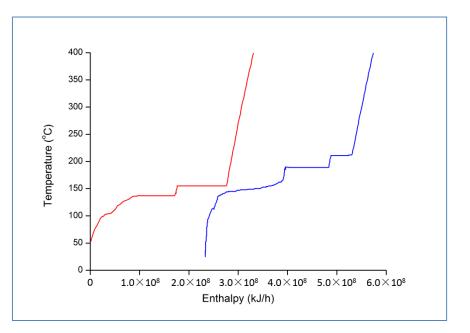

	125.0°C	18.0 N	4W						0.5 M	W 5.	2 MW		21.3	MW		124.0°C
LP stream ge Air	35.0°C	T			124.	6°C			1	24.5°C	11	24.5°C	-		4.0 M	W 30.0°C
	-25.0°C				<u>1.3 M</u>	W						34.5°		•	33.0°C	<u>-24.</u> 0°C
Refrigerant 1	442.5°C	5.1	MW	_	-	180.0°C	2					1.0 M	W 8.7°C			50.0°C
S-9 To S-10	153.7°C		342.9°C	220	. 0°C	-	184.	8°C	18	80.0°C	135.0°C	H	101.4°	:	102.8°C	153.2°C
To Condense	T-102 To S-1 147.2°C	18														42.4°C
To Condense		AS-2								13	^{35.0} 0.8 M	rw				133.9°C
To Condense						-						136.9	•			59.0°C
To Condense														2.0 M	w	25.0°C
V-101 heat	442.5°C ^{4.}	7 MW												1	.0 MW	
S-7 To S-8		350.0°C				_								1	.0 M W	<u>240</u> .0°C
S-3 To S-5	240.0°C	550.0 0		210.	.0°C	165.0		5 MW		1	25.0°C	-				25.0°C
0.4 T 0.4 1	240.0°C	0.2	MW		210.0°C		1	165.0°C 0	.2 MW		125.0°C					25.0°C
S-4 To S-6	240.0°C					0.3 M	W		0.9	MW		4.9	MW			153.2°C
S-18 To S-19	210.9°C		5.7 I	мw				155.2°C		T			8.7	MW		209.0°C
To Reboiler	184.2°C													15.8	MW	184.0°C
,	0T-102 To S 156.2 C	-17									22.3	MW				145.7°C
To Reboiler@												Ī				108.9°C
To Reboiler@	ўТ-104 То Р. 1000.0°С	x								1.7	MW					400.0°C
Fired heat	250.0°C		249.	9°C	249.9	°C								249.3°C		249.0°C
HP stream MP stream	175.0°C		().2 M	1W			174.9°C	174.9°C		174.8°C					174.0°C

Figure 10 The HEN diagram from the proposed *p*-xylene production process after heat integration

The HEN diagram from the proposed *p*-xylene production process is illustrated in Figure 10. As shown in Figure 10, the reactor effluent (i.e., S9) is first used to preheat the inlet stream (S-7) of the combustion furnace from 240 °C to 350.0 °C, resulting in significant energy reduction in the furnace from 9.7 MW to 4.7 MW. The surplus low-temperature heat is then used to provide energy for fresh and recycle streams (S-3, S-4, and S-18) and produce LP steam. As shown in the figure, the remaining heat energy in this stream (S-9) first supplies energy to the recycle stream because the recycle stream requires a relatively large number of

heat and then partially heats up the fresh stream. The thermal coupling of coolers with the reboilers in *p*-xylene separation process also could reduce the energy consumption. The top vapor from T-103 (S-D) is used to provide energy for the reboiler of T-104 (S-PX). After heat integration, the operating cost is decreased by 3123.9 k\$/year compared to that in Figure 8 without heat integration.

4.4.2 HEN for the base case. To fairly compare with the base case, we also conduct heat integration for the base in Figure 4. The hot and cold streams for the base case are given in Table 12. The composite curve is illustrated in Figure 11.

PLEASE INSERT FIGURE 11 HERE

Figure 11 The composite curve of cold and hot logistics in the existing process

PLEASE INSERT TABLE 12 HERE

Table 12 Thermodynamic data for hot and cold streams in the existing process	Table 12 Thermod	vnamic data	for hot and co	ld streams in t	the existing process
---	--------------------------	-------------	----------------	-----------------	----------------------

	inlet temperature o	utlet temperature	heat duty,	MCp,
stream	°C	°C	kJ/h	kJ/°C h
S-9_To_S-10	400.0	50.0	1.245×10^{8}	6.409 ×10 ⁵
S-22_To_S-23	136.1	240.0	4.157×107	1.804×10^{6}
S-3_To_S-5	25.0	240.0	1.444×10^{7}	2.112×10^5

25.0	240.0	2.016 ×10 ⁷	4.840 ×10 ⁵
240.0	400.0	3.733 ×10 ⁷	2.337 ×10 ⁵
105.8	70.8	1.211×10^{7}	1.955×10^{6}
145.8	145.9	1.437×10^{7}	2.376 ×10 ⁸
142.8	74.2	9.824×10^{6}	2.880×10^{5}
211.5	212.7	4.253 ×10 ⁷	3.760×10^{7}
156.4	156.0	9.906 ×10 ⁷	2.350×10^{8}
188.8	189.0	8.818×10^{7}	8.000×10^{8}
137.8	136.9	8.168×10^{7}	1.540×10^{8}
147.4	164.7	7.940×10^{7}	6.576×10^{6}
107.3	92.8	3.315×10^{6}	3.088×10^{5}
113.8	113.9	2.345×10^{6}	3.261×10^{7}
	240.0 105.8 145.8 142.8 211.5 156.4 188.8 137.8 147.4 107.3	240.0400.0105.870.8145.8145.9142.874.2211.5212.7156.4156.0188.8189.0137.8136.9147.4164.7107.392.8	240.0 400.0 3.733×10^7 105.8 70.8 1.211×10^7 145.8 145.9 1.437×10^7 142.8 74.2 9.824×10^6 211.5 212.7 4.253×10^7 156.4 156.0 9.906×10^7 188.8 189.0 8.818×10^7 137.8 136.9 8.168×10^7 147.4 164.7 7.940×10^7 107.3 92.8 3.315×10^6

PLEASE INSERT FIGURE 12 HERE

₽ stream generation 35.0°C			124.9°C 124.	.5°C		0.9	MW	30.0°
Air 400.0°C	5.0 MV	V 6.5 MW		63.8 °	Č	34.5°C	34.3°C 33.5°C	50.0°
-9 To S-10 156.5°C	32	220.0°C 220.0°C	² 4.0 MW	\rightarrow	137.1°C		126.6°C 14	.0 MW
Condenser@T-103 To S-: 142.8°C	20		165.4°C	•				74.2°
Condenser@T-102 To GA 137.8°C	4S-3	1	35.0°C		0.8 MV	• V 1.8 MW		136.9
Condenser@T-104 To D	<u> </u>			137.7°C				92.8°
107.3°C Condenser@T-105 To B 105.8°C							•	70.8
Condenser@T-101 To GA	AS-2						3.4 MW	240.0
-7 To S-8 240.0°C	320.0°C	0.2 MW	210.0°C					25.0
-4 To S-6 240.0°C	0.3 MW		210.	_{.0°C} 5.4 MW				25.0
-22 To S-23				147.6°C 3.	7 MW			136.1
-22 10 S-23 212.7°C Reboiler@1-102 To S-19					i	25.4°C 11.8 N	IW	211.5
189.0°C							24.5 MV	V 188.8
	1	22.0 N	IW				Ť	147.4
o Reboiler@T-103 To S-2 164.7°C								145.8
o Reboiler@T-103 To S-2 164.7°C o Reboiler@T-104 To W 145.9°C								
) Reboiler@T-103 To S-2 164.7 C) Reboiler@T-104 To W 145.9 C Reboiler@T-101 To S-7 113.9 C	,		_ _					113.8
D Reboiler @ T-103 To S-2 I64.7 C P Reboiler @ T-104 To W 145.9 C Reboiler @ T-101 To S-7 I13.9 C Reboiler @ T-105 To PX	,		•		•			
D Reboiler@T-103 To S-2 164.7 C D Reboiler@T-104 To W 145.9 C D Reboiler@T-101 To S-7 113.9 C D Reboiler@T-105 To PX					•			113.8 400.0 249.0

Figure 12 The HEN diagram for the existing *p*-xylene production process

Figure 12 illustrates the HEN diagram from the base case (i.e., the existing p-xylene production process). From Figure 12, it can be observed that the reactor effluent is first

utilized to heat up the stream (S-7) to the temperature of 320.0 °C before the inlet of the furnace, and reducing the energy consumption of the furnace from 10.4 MW to 5.4 MW. the surplus energy is utilized for preheating fresh and recycle streams (S-3, S-4, and S-22). In addition, the top vapor from T-103 and T-104 are utilized to provide energy for the reboilers of T-101 and T-105, respectively. After heat integration, the operating cost is decreased by 1846.5 k\$/year compared to the reference process in Figure 4 without heat integration.

4.5 Overall economic and environmental impacts

The overall economic and environmental impacts are summarized in Table 13. The Environmental impact is based on indirect CO_2 emissions, which mainly correspond to electricity and thermal energy consumption in the *p*-xylene production process. Note that the electricity consumption is negligible compared to the thermal energy consumption in the process. The CO_2 emissions associated with thermal energy consumption is assumed to be 8.87×10^8 ton CO_2/kJ .³⁵

As shown in Table 13, the TOC for the proposed process is further reduced by 15.6 % after heat integration, whilst it for the existing process is about 7.2 % after heat integration. The overall total annual cost (TAC) value of the existing process and the proposed process are calculated using eq. 19. The TAC for the proposed process after heat integration is reduced by 4.71 % compared to the existing process without heat integration.

PLEASE INSERT TABLE 13 HERE

type	before hea	t integration	after heat	_	
	the existing	the proposed	the existing	the proposed	savings
	process	process	process	process	
TIC (k\$)	15731.3	13013.8	16121.5	12668.2	-
TOC (k\$/year)	25661.4	20068.8	23814.9	16945.0	
RMC (k\$/year)	175961.0	175961.0	175961.0	175961.0	-
TAC (k\$/year)	206866.2	200367.7	205149.7	197128.7	4.71%
heating duty (kJ/h)	3.404×10^{8}	2.678×10 ⁸	2.494×10 ⁸	1.964×10 ⁸	-
cooling duty (kJ/h)	3.305×10^{8}	2.616×10 ⁸	2.396×10 ⁸	1.902×10^{8}	-
CO_2 emissions (t $CO_2/t_{p-xylene}$)	1.54	1.25	1.15	0.92	40.2 %
toluene loss (%)	1.18	0.06	-	-	-

Table 13 Comparative results on economic and environmental impacts for the proposed process and the existing process

It can be also concluded that significant reduction of CO2 emissions is achieved using the proposed process, which is 40.2% less than that using the existing process. This is mainly because of the removal of the methanol recovery column, decreasing recycled quality of toluene using the proposed p-xylene process and heat integration. It should be mentioned that the Toluene loss in the benzene column for the proposed process is much lower than that in the existing process.

5 Conclusions

In this work, an intensified *p*-xylene production process through toluene alkylation was proposed and a systematic design procedure was proposed including thermodynamic and kinetic insight analysis, process simulation, sensitivity analysis, and optimization through Sequential Quadratic Programming tool implemented in Aspen Plus. It was found that the methanol conversion could reach 98.0 % with *p*-xylene selectivity of 92.0 % when the operating temperature reached 442.5 °C, the pressure was about 4 bar and the toluene-to-methanol feed ratio was 1.8. Such *p*-xylene production process led to the removal of methanol recovery column, less toluene loss, and much less recycle toluene in the

downstream. After heat integration, the proposed p-xylene process could achieve a reduction of 4.71 % in overall TAC and of 40.2% in CO₂ emissions compared to the existing p-xylene process without heat integration. The proposed p-xylene process provides an alternative way for p-xylene production, which is more sustainable. In the future, sensitivity analysis on the effect of the variations in the optimal operating conditions on the process performance will be investigated and efficient process control system will be proposed to guarantee the operating parameters are well controlled to be or close to the set-points when variations in the optimal operating conditions occur.

Acknowledgment

We acknowledge the financial support provided by the National Natural Science Foundation of China (No. 21878028, 21606026); the Fundamental Research Funds for the Central Universities (No. 106112017CDJQJ228809); Chongqing Research Program of Basic Research and Frontier Technology (No. CSTC2016JCYJA0474); and Hundred Talents Program of Chongqing University.

Supporting Information

The supporting Information is available free of charge via the Internet at http://pubs.acs.org/.

The detailed stream information of the existing process (base case) see in Table S1, these formulas of factor see in Eqs. S1-S4, and the iterative algorithm block diagram of calculating effectiveness diffusion coefficient De see in Figure S1.

or mol/(g h atm)

1	
2	
3 4	Nomenclature
5 6	$A_i = pre-exponential factor, mol/(g h atm2) or mol/(g h atm2$
7 8 9	$k_i = rate \ constant, \ mol/(g \ h \ atm^2) \ or \ mol/(g \ h \ atm)$
10 11	$E_i = activation energy, kJ/mol$
12 13 14	De= effectiveness diffusion coefficient, m ² /s
15 16	p = pressure, atm
17 18 19	K_i^R = equilibrium constant, –
20 21	wt = mass percent, %
22 23 24	$S_p = p$ -xylene selectivity, %
25 26 27	F_T = toluene molar flow rate, kmol/h
28 29	F_M = methanol molar flow rate, kmol/h
30 31 32	$F_{p-X} = p$ -xylene molar flow rate, kmol/h
33 34	$F_{m-X} = m$ -xylene molar flow rate, kmol/h
35 36 37	$F_{o-X} = o$ -xylene molar flow rate, kmol/h
38 39	W = catalyst weight, kg
40 41 42	Subscripts
43 44	i = reaction number
45 46 47	T = toluene
48 49 50	M = methanol
51 52	m-X = m -xylene
53 54 55	o-X = o-xylene
56 57	p-X = p-xylene
58 59	
60	Compounds

B = benzene

- DTBB = di-*tert*-butyl-benzene
- GH = light gaseous hydrocarbons
- TBB = *tert*-butyl-benzene
- TBMX = *tert*-butyl *m*-xylene

References

1. Chadwick, S. S. Ullmann's Encyclopedia of Industrial Chemistry. *Reference Services Review* **1988**, *16* (4), 31-34.

2. Meyers, R. A. Handbook of petroleum refining processes, 3rd ed. McGraw-Hill: **1986**; p 8.

3. Maneffa, A.; Priecel, P.; Lopez-Sanchez, J. A. Biomass-Derived Renewable Aromatics: Selective Routes and Outlook for p-Xylene Commercialization. *Chemsuschem.* **2016**, *9*(*19*), 2736-2748.

4. Ouyang, Q.; Yin, S. F.; Chen, L.; Zhou, X. P.; Au, C. T. A new catalytic process for high-efficiency synthesis of p-xylene by methylation of toluene with CH_3Br . *AIChE J.* **2013**, *59* (2), 532-540.

5. Kim, J. C.; Kim, T. W.; Kim, Y.; Ryoo, R.; Jeong, S. Y.; Kim, C. U. Mesoporous MFI Zeolites as High Performance catalysts for Diels-Alder Cycloaddition of Bio-derived Dimethylfuran and Ethylene to Renewable p-Xylene. *Appl. Catal. B-Environ.* **2017**, *206*, 490-500.

6. Dawagreh, A. K. M. A., Disproportionation of Toluene to Produce Benzene and, p-Xylene: A Review. J. Sci. Ind. Res. 2001, 60 (4), 319-327.

7. Mitra, B.; Kunzru, D. Enhancing p-xylene productivity for disproportionation of toluene in microstructured reactors. *Chem. Eng. Process.* **2013**, *64* (2), 48-56.

8. Haag, W. O.; Olson, D. H. Selective disproportionation of toluene. US Patent 4097543, **1978**.

9. Maher, G. F.; Nemeth, L. T. Liquid phase process for C8 alkylaromatic isomerization. US Patent 6872866, March 29, 2005.

10. Tsai, T. C.; Liu, S. B.; Wang, I. Disproportionation and transalkylation of alkylbenzenes over zeolite catalysts. *Appl. Catal. A-Gen.* **1999**, *181(2)*, 355-398.

11. Moreira, M. A.; Ferreira, A. F. P.; Santos, J. C.; Loureiro, J. M.; Rodrigues, A. E. Hybrid Process for o- and p-Xylene Production in Aromatics Plants. *Chem. Eng. Technol.* **2015**, *37(9)*, 1483-1492.

12. Lide, D. R. CRC Handbook of Chemistry and Physics, 92nd Edition. 2011, p3-550.

13. Faramawy, S., Selective Toluene-Methanol Alkylation over Modified ZSM-5 Zeolite Catalysts. *Petrol. Sci. Technol.* **1999**, *17*(*3-4*), 249-271.

14. Brown, S. H.; Mathias, M. F.; Ware, R. A.; Olson, D. H., Selective para-xylene production by toluene methylation. U.S. Patent 6504072 B1, January 7, **2003**.

15. Ashraf, M. T.; Chebbi, R.; Darwish, N. A. Process of p-Xylene Production by Highly Selective Methylation of Toluene. *Ind. Eng. Chem. Res.* **2013**, *52(38)*, 13730-13737.

16. Liu, H. Y.; Zhu, J.; Wang, Y. D.; Yu, O. B.; Xu, T. J. Effect of operating conditions on alkylation of toluene with methanol. *Petrol. Sci. Technol.* **2017**, *35*(2), 148-154.

17. Wang, C.; Zhang, Q.; Zhu, Y.; Zhang, D.; Chen, J.; Chiang, F. K. p-Xylene selectivity enhancement in methanol toluene alkylation by separation of catalysis function and shape-selective function. *Molecular Catalysis* **2017**, *433*, 242-249.

18. Breen, J.; Burch, R.; Kulkarni, M.; Collier, P.; Golunski, S. Enhanced para-xylene selectivity in the toluene alkylation reaction at ultralow contact time. *J. Am. Chem. Soc.* **2005**, *127(14)*, 5020-5021.

19. Breen, J. P.; Burch, R.; Kulkarni, M.; Mclaughlin, D.; Collier, P. J.; Golunski, S. E. Improved selectivity in the toluene alkylation reaction through understanding and optimising the process variables. *Appl. Catal. A-Gen.* **2007**, *316(1)*, 53-60.

20. Sotelo, J. L.; Uguina, M. A.; And, J. L. V.; Serrano, D. P. Deactivation Kinetics of Toluene Alkylation with Methanol over Magnesium-Modified ZSM-5. *Ind. Eng. Chem. Res.* **1993**, *35*(4), 2548-2554.

21. Zhao, Y. Preparation of catalyst with high selectivity and high stability for para-xylene. PhD Thesis, Dalian University of Technology, **2011**.

22. Li, Y.-G.; Xie, W.-H.; Yong, S. The acidity and catalytic behavior of Mg-ZSM-5 prepared via a solid-state reaction. *Appl. Catal. A-Gen.* **1997**, *150*(2), 231-242.

23. Wang, Q. X.; Chen G. Q. Studies of Mg-ZSM-5 Zeolite Catalyst: I. Preparation of Mg-ZSM-5 and It's Properties. *Petrochemical Technology* **1988**, *17*, 288-292.

24. Young, L. B.; Butter, S. A.; Kaeding, W. W. Shape selective reactions with zeolite catalysts. III. Selective in xylene isomerization, toluene-methanol alkylation, and toluene disproportionation over ZSM-5 zeolite catalysts. *J. Catal.* **1982**, *13*(45), 418-432.

25. Palomino, J.L.V. Alquilación de tolueno con metanol mediante catalizadores de zeolita ZSM-5 modificados. PhD Thesis, Complutense University of Madrid, **1991**.

26. Mantha, R.; Bhatia, S.; Rao, M. S. Kinetics of deactivation of methylation of toluene over H-ZSM-5 and hydrogen mordenite catalysts. *Ind. Eng. Chem. Res.* **1991**, *30*(2), 281-286.

27. Bhat, Y. S.; Halgeri, A. B.; Praaada Rao, T.S.R. Kinetics of Toluene Alkylation with Methanolon HZSM-8ZeoliteCatalysts. *Ind. Eng. Chem. Res.* **1989**, *28*, 890-894.

28. Vayssilov, G.; Yankov, M.; Hamid, A. ChemInform Abstract: Para-Selective Alkylation of Toluene with Methanol over ZSM-5 Zeolites. A Kinetic Model. *Appl. Catal. A-Gen.* **1993**, *94*, 117-130.

29. Yang, H. S.; Tang, X. N.; Zhang B.; Shang S. Y.; And Guo Y. J. Optimization of toluene-methanol alkylation simulation. *Computers and Applied Chemistry*. **2016**, *33(03)*, 269-272.

30. Venkataraman, S.; Chan, W. K.; Boston, J. F. Reactive distillation using ASPEN PLUS. *Chem. Eng. Prog.* **1990**, *86*(*8*), 45-54.

31. Saito, S.; Michishita, T.; Maeda, S. Separation of meta- and para-xylene mixture by distillation accompanied by chemical reactions. *J. Chem. Eng. Jap.* **1971**, *4*(*1*), 37-43.

32. Franck, H. G.; Stadelhofer, J. W. Industrial Aromatic Chemistry. Springer-Verlag. 1988.

33. Yang, A.; Lv, L. P.; Shen, W. F.; Dong, L. C.; Li, J.; Xiao, X. Optimal Design and Effective Control of the tert-Amyl Methyl Ether Production Process Using an Integrated Reactive Dividing Wall and Pressure Swing Columns. *Ind. Eng. Chem. Res.* **2017**, *56*, 14565-14581.

34. Turton, R. Analysis, Synthesis and Design of Chemical Processes: Pearson New International Edition. Prentice-Hall international series in the physical and chemical

engineering sciences. 2003.

35. Alexander, M. N.; Onur, O.; Christodoulos, A. F. Production of benzene, toluene, and xylenes from natural gas via methanol: Process synthesis and global optimization. AIChE J. **2015**, 62(5), 1531-1556.

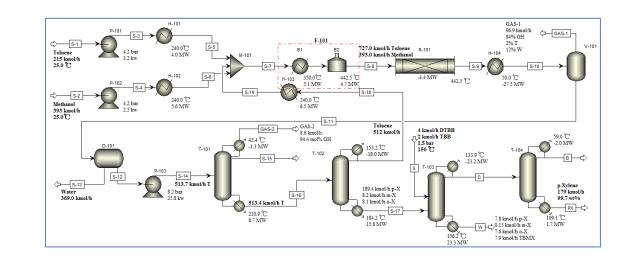
36. Luyben, W. L. Principles and Case Studies of Simultaneous Design. Wiley & Sons: 2011.

37. Li, W.; Zhu, J. L.; Hua-Bao, L. I.; Wang, Y. H. Thermodynamic analysis and calculation of alkylation of toluene with methanol. *Chem. Eng.* **2008**, *36*(*10*), 48-51.

38. Vu, D. V.; Miyamoto, M.; Nishiyama, N.; Egashira, Y.; Ueyama, K. Selective formation of para-xylene over H-ZSM-5 coated with polycrystalline silicalite crystals. *J. Catal.* **2006**, *243(2)*, 389-394.

39. Ghiaci, M.; Abbaspur, A.; Arshadi, M.; Aghabarari, B. Internal versus external surface active sites in ZSM-5 zeolite: Part 2: Toluene alkylation with methanol and 2-propanol catalyzed by modified and unmodified H₃PO₄/ZSM-5. *Appl. Catal. A-Gen.* **2007**, *316*(1), 32-46.

40. Cui, C.; Sun, J. Coupling design of interunit heat integration in an industrial crude distillation plant using pinch analysis. *Appl. Therm. Eng.* **2017**, 117, 145-154.


41. Kong, L.; Wu, Y.; Maravelias, C. T. Simultaneous Utility and Heat Exchanger Area Targeting for Integrated Process Synthesis and Heat Integration. *Ind. Eng. Chem. Res.* **2017**, *56*, 11847-11849.

42. Yoon, S. G.; Lee, J.; Park, S. Heat integration analysis for an industrial ethylbenzene plant using pinch analysis. *Appl. Therm. Eng.* **2007**, *27*(5), 886–893.

43. Li, B. H.; Chang, C. T. Retrofitting Heat Exchanger Networks Based on Simple Pinch Analysis. *Ind. Eng. Chem. Res.* **2010**, *49*(8), 3967-3971.

44. Ibrahim, D.; Jobson, M.; Gosalbez, G. G. Optimization-based Design of Crude Oil Distillation Units using Rigorous Simulation Models. *Ind. Eng. Chem. Res.* **2017**, *56*(23), 6728-6740.

45. Yang. Y.; Liu, J.; Shen, W. F.; Li, J.; Chien, I. L. High-efficiency utilization of CO₂ in the methanol production by a novel parallel-series system combining steam and dry methane reforming, *Energy*. **2018**, 158, 820-829.

ACS Paragon Plus Environment