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On the Hausdorff Dimension of Bernoulli

Convolutions∗

Shigeki Akiyama, De-Jun Feng,

Tom Kempton and Tomas Persson

September 4, 2018

Abstract

We give an expression for the Garsia entropy of Bernoulli convolutions

in terms of products of matrices. This gives an explicit rate of con-

vergence of the Garsia entropy and shows that one can calculate the

Hausdorff dimension of the Bernoulli convolution νβ to arbitrary given

accuracy whenever β is algebraic. In particular, if the Garsia entropy

H(β) is not equal to log(β) then we have a finite time algorithm to

determine whether or not dimH(νβ) = 1.

1 Introduction

Bernoulli convolutions are a simple and interesting family of self-similar mea-

sures with overlaps. For β ∈ (1, 2), the Bernoulli convolution νβ is defined

as the weak-star limit of the family of measures ν
(n)
β given by

ν
(n)
β :=

1

2n

∑
a1···an∈{0,1}n

δ∑n
i=1 aiβ

−i .

∗Accepted Author Manuscript, published in International Mathematics Research No-
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The fundamental questions relating to the Bernoulli convolution νβ are whe-

ther it has Hausdorff dimension one, and if so, whether it is absolutely con-

tinuous.

Erdős proved that νβ is singular whenever β is a Pisot number [6], and it was

later proved by Garsia that in fact νβ has Hausdorff dimension less than one

whenever β is Pisot [14]. So far, Pisot numbers are the only class of β for

which it is known that νβ is singular. Garsia gave a small explicit class of β

for which νβ is absolutely continuous [13], until recently these were the only

examples of Bernoulli convolutions for which it was known that the Hausdorff

dimension is one. In [23] Solomyak proved that νβ is absolutely continuous

for Lebesgue-almost every β ∈ (1, 2).

A great deal of the recent progress on Bernoulli convolutions stems from

Hochman’s article [17], where it was proved that if νβ has Hausdorff dimen-

sion less than one then the sums in the definition of ν
(n)
β must be superexpo-

nentially close. This can only happen on a set of β of Hausdorff dimension

zero. Additionally, Hochman proved that if β is algebraic then dimH(νβ) can

be expressed in terms of the Garsia entropy of β, which will be defined in

Section 1.1.

Further recent progress was made by Breuillard and Varjú [4], where it was

proved that

H(β) ≥ 0.44 min{log 2, logMβ},
for any algebraic integer β ∈ (1, 2), where H(β) is the Garsia entropy of νβ
(see Section 1.1 for the definition) and Mβ is the Mahler measure of β defined

byMβ =
∏
|βi|>1 |βi|, where βi are the algebraic conjugates (including β itself)

of β. This implies that for an algebraic integer β ∈ (1, 2), dimH(νβ) = 1 if

0.44 min{log 2, logMβ} ≥ log β (see (1)).

In [5], Breuillard and Varjú showed, among other results, that

{β ∈ (1, 2) : dimH(νβ) < 1} ⊂ {β ∈ (1, 2) ∩Q : dimH(νβ) < 1},

where Q is the set of algebraic numbers. This, together with Hochman’s

results, has sparked renewed interest in the study of Garsia entropy for alge-

braic parameters. If one were able to show that Pisot numbers are the only

algebraic numbers corresponding to Bernoulli convolutions of dimension less

than one, this would show that all non-Pisot β give rise to Bernoulli convo-

lutions of dimension 1 (without the restriction that β should be algebraic).
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There have also been recent results on the absolute continuity of Bernoulli

convolutions. Shmerkin [22] proved further that νβ is absolutely continuous

for all β ∈ (1, 2)\E where E is a set of exceptions of Hausdorff dimension zero.

In [24], Varjú gave new explicit examples of absolutely continuous Bernoulli

convolutions. For a recent summary of progress on Bernoulli convolutions,

see [25].

In this article we are interested in expressing the Garsia entropy and the

dimension of Bernoulli convolutions νβ in terms of products of matrices.

There is some precedent for this, see in particular [8, 10], but these previous

ideas are based on tilings of the unit interval related to the construction

of νβ, and cannot be generalised to the non-Pisot cases. We use a different

approach to show that, for any algebraic integer β, one can construct matrices

whose products encode information about the Garsia entropy. In particular,

we give a sequence of lower bounds for the Garsia entropy which yield an

explicit rate of convergence in the Garsia entropy formula.

1.1 Statement of Results

Let Σ := {0, 1}N. For p ∈ (0, 1), let mp denote the (p, 1−p)-Bernoulli product

measure on Σ which gives weight p to digit 0 and weight 1−p to digit 1. For

β ∈ (1, 2), the transformation πβ : Σ→ R defined by

πβ : (ai)
∞
i=1 7→

∞∑
i=1

aiβ
−i,

maps the measure mp to a measure νβ,p on R. That is, νβ,p = mβ ◦ π−1
β . For

p = 1
2
, we get the Bernoulli convolution νβ = νβ, 1

2
, which was defined in the

previous section. For p 6= 1
2

we get a so-called biased Bernoulli convolution.

Given a word a1 · · · an ∈ {0, 1}n, let the cylinder set [a1 · · · an] be defined by

[a1 · · · an] = {b = (bi)
∞
i=1 ∈ Σ : b1 · · · bn = a1 · · · an}.

Given a sequence a = (ai)
∞
i=1 ∈ {0, 1}N, let

Nn(a) = Nn(a1, . . . , an) =

∣∣∣∣∣
{

(b1, . . . , bn) ∈ {0, 1}n :
n∑
i=1

biβ
−i =

n∑
i=1

aiβ
−i

}∣∣∣∣∣
3



and

Mn(a, p) =
∑

b1···bn∈{0,1}n∑n
i=1 biβ

−i=
∑n
i=1 aiβ

−i

mp[b1 · · · bn].

In what follows we write Mn(a) or Mn(a1 · · · an), de-emphacising the de-

pendence on p since we consider p to be fixed.

Let1

Hn(β, p) := −
∑

a1···an∈{0,1}n
mp[a1 · · · an] logMn(a1 · · · an, p).

Finally we let

H(β, p) := lim
n→∞

1

n
Hn(β, p).

H(β, p) is called the Garsia entropy2 of νβ,p. In particular, we write Hn(β) =

Hn(β, 1/2) and H(β) = H(β, 1/2).

Hochman [17] proved that if β ∈ (1, 2) is an algebraic number then the

dimension of the Bernoulli convolution νβ,p is given by

dimH(νβ,p) = min

{
H(β, p)

log β
, 1

}
; (1)

see also [4] for a more detailed explanation.

In this article we are concerned with lower bounds for H(β, p), and hence

lower bounds for dimH(νβ,p), when β is an algebraic number. If β is not an

algebraic integer, i.e. not the root of a polynomial with integer coefficients

where the leading coefficient is 1, then H(β, p) = log 2. Thus we may restrict

our interest to algebraic integers.

Given an algebraic integer β = β(1) of degree d, let β(2), . . . , β(d) denote its

Galois conjugates, ordered by decreasing absolute value.

1It would be more standard to write

Hn(β, p) =
∑
x

M∗
n(x, p) logM∗

n(x, p),

where the sum is over all x having a representation x =
∑n

i=1 aiβ
−i and M∗

n(x, p) is just

Mn(a, p) for any a with x =
∑n

i=1 aiβ
−i. These expressions are clearly equivalent, we

find ours more convenient since we work only with sequences and since the above makes

the link with Lyapunov exponents of pairs of matrices more direct.
2Beware, there are two different conventions for the definition of Garsia entropy. Some

authors divide by log(β) in the definition.
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Theorem 1.1. Let β be an algebraic integer of degree d and let p ∈ (0, 1).

The Garsia entropy H(β, p) can be approximated with explicit error bounds.

In particular,

1

n
Hn(β, p)− C + l log(n+ 1)

n
≤ H(β, p) ≤ 1

n
Hn(β, p)

for all n ∈ N, where

C = log

2d
∏

i:|β(i)|6=1

1

||β(i)| − 1|
+ 1

 ,

and l is the number of conjugates of β of absolute value 1.

Theorem 1.1 is proved by giving lower bounds forH(β, p) in terms of products

of matrices.

Theorem 1.2. There exists a pair of non-negative matrices M0 = M0(β, p)

and M1 = M1(β, p), with rows and columns indexed by a set A, such that the

sequence

1

n
Ln(β, p) := − 1

n
sup
i∈A

∑
a1···an∈{0,1}n

mp[a1 · · · an] log

(∑
j∈A

(Ma1 · · ·Man)i,j

)
converges to H(β, p) from below as n→∞, and 1

n
Ln(β, p) ≤ H(β, p).

The set A is finite (with size bounded by C(β) given by (2)) whenever β

is hyperbolic, i.e. when it has no Galois conjugates of modulus one. In this

case the matrices M0,M1 are computable by a finite time algorithm. If β is

not hyperbolic then A might be countably infinite, but the matrices M0,M1

have at most two non-zero terms in any row.

Theorems 1.1 and 1.2 are proved by bounding the difference between Hn(β, p)

and Ln(β, p). When β is hyperbolic, and so A is finite, Theorem 1.2 can be

expressed in the more familiar form of the Lyapunov exponent of the pair of

matrices M0,M1.

Theorem 1.3. When β is hyperbolic, the sequence

1

n
L′n(β, p) := − 1

n

∑
a1···an∈{0,1}n

mp[a1 · · · an] log(‖Ma1 · · ·Man‖)

converges to H(β, p) as n→∞, and 1
n
L′n(β, p) ≤ 1

n
Ln(β, p) ≤ H(β, p). Here,

the norm that we use is the `∞ operator norm given by ‖B‖ = supi∈A
∑

j∈A |Bij|.
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An immediate corollary is that we can express the Garsia entropy as the

Lyapunov exponent of the matrices M0,M1 associated with the (p, 1 − p)-

Bernoulli product measure.

Corollary 1.4. If β is hyperbolic then the Garsia entropy H(β, p) is the limit

of the sequence

− 1

n
log‖Ma1 · · ·Man‖

for mp-a.e. a ∈ {0, 1}N.

That Corollary 1.4 follows from Theorem 1.3 is an immediate application of

the Furstenberg–Kesten theorem on random matrices [12].

2 Preliminary Results

In this section we recall some standard algebraic lemmas as well as ideas

about separation of polynomials originating in the work of Garsia [13].

Let β = β(1) ∈ (1, 2) be an algebraic integer of degree d. Let β(2), . . . , β(r)

denote the algebraic conjugates of β of modulus strictly larger than one,

β(r+1), . . . , β(r+l) conjugates of modulus 1, and β(r+l+1), . . . , β(d) conjugates

of modulus less than one.

The following lemmas are standard.

Lemma 2.1. If
∑n

i=1 εiβ
−i = 0 for εi ∈ {−1, 0, 1} then

n∑
i=1

εi(β
(j))−i = 0

for each j ∈ {2, . . . , d}.

Lemma 2.2. Let P be a polynomial with integer coefficients. Then the prod-

uct P (β)P (β(2)) · · ·P (β(d)) is an integer.

Note that this second lemma requires that β is an algebraic integer, i.e. the

root of a polynomial with integer coefficients whose leading term is 1. It does

not hold for all algebraic numbers.
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For n ≥ 0, define the set Vβ,n ⊂
[
−1

β − 1
,

1

β − 1

]
by

Vβ,n :=

{
x =

n∑
i=0

εiβ
n−i : εi ∈ {−1, 0, 1}

and

∣∣∣∣∣
n∑
i=0

εi(β
(j))n−i

∣∣∣∣∣ ≤ 1

|β(j)| − 1
for all j ∈ {1, . . . r}

}
.

Clearly, Vβ,n ⊂ Vβ,n+1. Let

Vβ :=
∞⋃
n=0

Vβ,n.

Lemma 2.3. Suppose that
∑n

i=0 εiβ
n−i = 0 for some n ≥ 1. Then

m∑
i=0

εiβ
m−i ∈ Vβ,m ⊂ Vβ

for each m ∈ {0, . . . , n}.

Proof. Suppose on the contrary that

m∑
i=0

εiβ
m−i 6∈ Vβ for some m ∈ {0, 1, . . . , n− 1}.

Then by definition, there exists j ∈ {1, . . . , r} such that∣∣∣∣∣
m∑
i=0

εi(β
(j))m−i

∣∣∣∣∣ > 1

|β(j)| − 1
.

Then ∣∣∣∣∣
m+1∑
i=0

εi(β
(j))m+1−i

∣∣∣∣∣ =

∣∣∣∣∣εm+1 + β(j)

m∑
i=0

εi(β
(j))m−i

∣∣∣∣∣
≥ |β(j)|

∣∣∣∣∣
m∑
i=0

εi(β
(j))m−i

∣∣∣∣∣− 1

>
|β(j)|
|β(j)| − 1

− 1 =
1

|β(j)| − 1
.
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Iterating this argument gives that∣∣∣∣∣
n∑
i=0

εi(β
(j))n−i

∣∣∣∣∣ > 1

|β(j)| − 1
.

But by Lemma 2.1 the quantity on the left hand side is equal 0, since∑n
i=0 εiβ

n−i = 0. This gives a contradiction.

Let

C(β) := 2d
r∏
j=1

1

|β(j)| − 1

d∏
k=r+l+1

1

1− |β(k)|
= 2d

∏
|β(j)|6=1

1

||β(j)| − 1|
. (2)

This is a product over all roots which do not have modulus one. The following

lemma is essentially due to Garsia, see also [11, 2, 20].

Lemma 2.4. For n ≥ 0, we have

|Vβ,n| ≤ C(β)(n+ 1)l + 1.

In particular, if β is hyperbolic then Vβ is finite.

Proof. Fix n ≥ 0. Let V ′β,n ⊂
[
−2

β − 1
,

2

β − 1

]
be given by

V ′β,n :=

{
x =

n∑
i=0

εiβ
n−i : εi ∈ {−2,−1, 0, 1, 2}

and

∣∣∣∣∣
n∑
i=0

εi(β
(j))n−i

∣∣∣∣∣ ≤ 2

|β(j)| − 1
for all j ∈ {1, . . . r}

}
.

For a non-zero x ∈ V ′β,n, given by

x =
n∑
i=0

εiβ
n−i

with εi ∈ {−2,−1, 0, 1, 2}, write

x(j) =
n∑
i=0

εi(β
(j))n−i, j = 1, . . . , d.

8



Then
d∏
j=1

|x(j)| ≥ 1, (3)

since
∏d

j=1 x
(j) is an integer, which is non-zero as x 6= 0.

Now for j ∈ {r + l + 1, . . . , d},

|x(j)| =

∣∣∣∣∣
n∑
i=0

εi(β
(j))n−i

∣∣∣∣∣ ≤
n∑
i=0

2|β(j)|n−i ≤ 2

1− |β(j)|
.

Furthermore, for j ∈ {2, . . . , r},

|x(j)| ≤ 2

|β(j)| − 1
,

since x ∈ V ′β,n.

Finally, for j ∈ {r + 1, · · · , r + l},

|x(j)| =

∣∣∣∣∣
n∑
i=0

εi(β
(j))n−i

∣∣∣∣∣ ≤
n∑
i=0

2 · 1n−i ≤ 2(n+ 1).

Then by (3),

|x| ≥ 1∏
i∈{2,...,d} |x(i)|

≥ C0(n),

where

C0(n) := 2−(d−1)

 ∏
j∈{2,...,r}

(|β(j)| − 1)

 1

(n+ 1)l

 ∏
j∈{r+1,...,d}

(1− |β(j)|)

 .

Hence, any x ∈ V ′β,n \ {0} has modulus at least C0(n).

Then for y, z ∈ Vβ,n with y 6= z, we have

0 6= y − z ∈ V ′β,n.

Hence |y−z| ≥ C0(n). This shows that any two different elements of Vβ,n are

separated by at least C0(n). Therefore, since Vβ,n ⊂ [−1/(β − 1), 1/(β − 1)],

this shows that Vβ,n contains at most

2

β − 1

1

C0(n)
+ 1 = C(β)(n+ 1)l + 1

elements.
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3 Matrices, Lyapunov Exponents, and Lower

Bounds for Garsia Entropy

We now show how the sets Vβ,n of the previous section have a natural graph

structure, which allows one to compute lower bounds for Garsia entropy.

Start with the sets Vβ,0 = {1, 0,−1} and A0 = {1, 0,−1}. At stage n ≥ 1 we

let Vβ,n = Vβ,n−1

⋃
An where

An = {βx− εn : εn ∈ {−1, 0, 1}, x ∈ An−1, βx− εn ∈ Vβ}.

If β is hyperbolic, we stop the algorithm at the stage n for which Vβ,n =

Vβ,n−1. Since in the hyperbolic case Vβ is finite, the algorithm must stop in

finite time with Vβ,n = Vβ. If β is not hyperbolic then Vβ may be countably

infinite, but Vβ,n grows at most polynomially in n.

For each x, y ∈ Vβ, draw a directed edge from x to y, labelled by ε ∈
{−1, 0, 1}, whenever y = βx+ ε. Call the resulting graph G.

There is a simple connection between the graph G and the quantities Nn(a).

Suppose that for a = (ai)
∞
i=1 and b = (bi)

∞
i=1 we have

n∑
i=1

aiβ
−i =

n∑
i=1

biβ
−i.

Then, by the definition of Vβ and Lemma 2.3, for each m ∈ {1, . . . , n} we

have

dm(a, b) := βm
m∑
i=1

(ai − bi)β−i ∈ Vβ.

Then, letting d0(a, b) := 0, we see that the word d0(a, b)d1(a, b) · · · dn(a, b)

follows a path from 0 to 0 on the graph G, following at each step i an edge

labelled by (ai − bi) ∈ {−1, 0, 1}.

Given a word a1 · · · an ∈ {0, 1}n and ε1 · · · εn ∈ {−1, 0, 1}n, we write

ε1 · · · εn ∼ a1 · · · an

if ai − εi ∈ {0, 1} for each i ∈ {1, . . . , n}. Then

Nn(a) =
∣∣{ε1 · · · εn ∼ a1 · · · an such that there is a path

from 0 to 0 in G obtained by following the edges ε1 · · · εn
}∣∣.

10



We can write down matrices which encode the choices of move εi available

given ai.

Let x1, x2, . . . be some ordering of the elements of Vβ, with x1 = 0. Let

A = {1, . . . , |Vβ|} if Vβ is finite, and N otherwise. We want to write down

matrices M0 and M1 such that, for a word a1 · · · an,

(Ma1 · · ·Man)i,j =
∑

b1···bn∈{0,1}n
βnxi+

∑n
l=1(al−bl)βn−l=xj

mp[b1 · · · bn]. (4)

Let M0 be the |Vβ| × |Vβ| matrix such that

(M0)i,j =


1− p if xj = βxi − 1

p if xj = βxi
0 otherwise

,

and let M1 be the |Vβ| × |Vβ| matrix such that

(M1)i,j =


1− p if xj = βxi
p if xj = βxi + 1

0 otherwise

.

Lemma 3.1. 1. For xi, xj ∈ Vβ,

(Ma1 · · ·Man)ij =
∑

b1···bn∈{0,1}n
βnxi+

∑n
l=1(al−bl)βn−l=xj

mp[b1 · · · bn].

2. If
∑n

i=1 aiβ
−i =

∑n
i=1 ciβ

−i for some a1 · · · an, c1 · · · cn ∈ {0, 1}n, then

Ma1 · · ·Man = Mc1 · · ·Mcn .

Proof. Part 1 follows immediately from the definition of M0 and M1, and

part 2 follows directly from part 1.

In particular,

Mn(a) = (Ma1Ma2 · · ·Man)11 ,

and so we have immediately that

Hn(β, p) = −
∑

a1···an∈{0,1}n
mp[a1 · · · an] log ((Ma1Ma2 · · ·Man)11) .

As Hn(β, p) is subadditive, 1
n
Hn(β, p) forms a sequence which converges to

H(β, p). We have H(β, p) ≤ 1
n
Hn(β, p).

11



3.1 Lower Bounds

For an algebraic integer β, we define

Ln(β, p) : = − sup
i∈A

∑
a1···an∈{0,1}n

mp[a1 · · · an] log

(∑
j∈A

(Ma1 · · ·Man)i,j

)

= − sup
i∈A

∫
a∈{0,1}N

log

(∑
j∈A

(Ma1 · · ·Man)i,j

)
dm(a).

Since

M11 ≤
∑
j∈A

M1j

for any non-negative matrix M , we have, by choosing i = 1 in the above

definition, that Ln(β, p) ≤ Hn(β, p). Here, and in much of what follows, we

note the minus in the definition of Hn(β, p) and Ln(β, p) which reverses a lot

of inequalities.

Lemma 3.2.

Ln+m(β, p) ≥ Ln(β, p) + Lm(β, p).

Proof. For i ∈ A, a ∈ Σ we have∑
j∈A

(Ma1 · · ·Man+m)i,j =
∑
j∈A

∑
k∈A

(Ma1 · · ·Man)i,k(Man+1 · · ·Man+m)k,j

=
∑
k∈A

(Ma1 · · ·Man)i,k

(∑
j∈A

(Man+1 · · ·Man+m)k,j

)

≤
∑
k∈A

(Ma1 · · ·Man)i,k

(
sup
l∈A

∑
j∈A

(Man+1 · · ·Man+m)l,j

)
.

It follows that

Ln+m(β, p) =− sup
i∈A

∫
a∈{0,1}N

log

(∑
j∈A

(Ma1 · · ·Man+m)i,j

)
dm(a)

≥− sup
i∈A

sup
l∈A

∫
a∈{0,1}N

∫
b∈{0,1}N

(
log

(∑
k∈A

(Ma1 · · ·Man)i,k

)

+ log

(∑
j∈A

(Mb1 · · ·Mbm)l,j

))
dm(a)dm(b)

=Ln(β, p) + Lm(β, p).
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Proposition 3.3. Let β ∈ (1, 2) be an algebraic integer. Then the sequence(
1
n
Ln(β, p)

)
satisfies

1

n
Hn(β, p)− 1

n
log(C(β)(n+ 1)l + 1) ≤ 1

n
Ln(β, p) ≤ H(β, p) ≤ 1

n
Hn(β, p).

Proof. We have proved that Ln(β, p) is superadditive. Since Hn(β, p) is sub-

additive, 1
n
Hn(β, p) converges to H(β, p) and 1

n
Hn(β, p) ≥ 1

n
Ln(β, p), we see

that

H(β, p) ∈
( 1

n
Ln(β, p),

1

n
Hn(β, p)

)
for all n ∈ N. Hence we need only to prove the left hand inequality.

Let

Xn :=

{
n∑
i=1

aiβ
−i : ai ∈ {0, 1}

}
.

For x ∈ Xn let Mx,n := Ma1 · · ·Man for any of the words a1 · · · an for which

x =
n∑
i=1

aiβ
−i.

This is well defined due to Lemma 3.1. Now

Ln(β, p) :=− sup
i∈A

∑
a1···an∈{0,1}n

mp[a1 · · · an] log

(∑
j∈A

(Ma1 · · ·Man)i,j

)

=− sup
i∈A

∑
x∈Xn

(Mx,n)1,1 log

(∑
j∈A

(Mx,n)i,j

)
=−

∑
x∈Xn

(Mx,n)1,1 log
(
(Mx,n)1,1

)
− sup

i∈A

∑
x∈Xn

(Mx,n)1,1 log

(∑
j∈A(Mx,n)i,j

(Mx,n)1,1

)
.

The first term here is Hn(β, p). Since
∑

x∈Xn(Mx,n)1,1 = 1, we move this

inside the log in the second term, and using the concavity of log we get

Ln(β, p) ≥ Hn(β, p)− sup
i∈A

log

(∑
x∈Xn

∑
j∈A

(Mx,n)i,j

)
.
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Now recall that (Mx,n)i,j counts, for any a1 · · · an such that
∑n

l=1 alβ
−l = x,

the total measure of the words b1 · · · bn for which

βnxi +
n∑
l=1

(al − bl)βn−l = xj.

This can be rewritten as

βnxi + βnx−
n∑
l=1

blβ
n−l = xj. (5)

In order to sum this over all x ∈ Xn and j ∈ A, we count for each b1 · · · bn ∈
{0, 1}n the number of x ∈ Xn for which an equation of the form (5) is

satisfied. This gives∑
x∈Xn

∑
j∈A

(Mx,n)i,j =
∑
x∈Xn

∑
j∈A

∑
b1···bn∈{0,1}n

(5) holds

mp[b1 · · · bn]

=
∑

b1···bn∈{0,1}n
mp[b1 · · · bn] · |Xn(i, b1 · · · bn)|,

where

Xn(i, b1 · · · bn) =

{
x ∈ Xn : βnxi +

(
βnx−

n∑
l=1

blβ
n−l
)
∈ Vβ

}
.

But now the separation arguments of Lemmma 2.4 give that, for a fixed i and

b1 · · · bn, sums of the form βnx−
∑n

l=1 blβ
n−l are separated by at least C0(n)

unless they are equal. This bounds the number of elements of Xn(i, b1 · · · bn).

Indeed, all possible values of

βnx−
n∑
l=1

blβ
n−l, x ∈ Xn(i, b1 · · · bn),

are contained in the interval
[
−βnxi − 1

β−1
,−βnxi + 1

β−1

]
and they are sep-

arated by at least C0(n). Hence βnx−
∑n

l=1 blβ
n−l may attain at most

2

β − 1

1

C0(n)
+ 1

14



different values, that is

|Xn(i, b1 · · · bn)| ≤ 2

β − 1

1

C0(n)
+ 1 = C(β)(n+ 1)l + 1.

Thus ∑
x∈Xn

∑
j∈A

(Mx,n)i,j =
∑

b1···bn∈{0,1}n
mp[b1 · · · bn]|Xn(i, b1 · · · bn)|

≤ (C(β)(n+ 1)l + 1), (6)

and so

Ln(β, p) ≥ Hn(β, p)− log(C(β)(n+ 1)l + 1).

This completes the proof of both Theorem 1.1 and 1.2.

As pointed out by one of the referees, Proposition 3.3 has the following

interesting consequence.

Corollary 3.4. Let β ∈ (1, 2) be an algebraic number. Then H(β, p) is

continuous in p, and so is dimH νβ,p.

It arises a natural question whether dimH νβ,p is continuous in p for every

real β ∈ (1, 2). To our best knowledge, the question is open. Nevertheless,

it is known that dimH νβ,p is always lower semi-continuous in (β, p) (see e.g.

[18, Theorem 1.8]).

3.2 A matrix form for the hyperbolic case

We briefly comment on two alternative lower bounds which work for the

hyperbolic case and are much easier to work with. Let

L′n(β, p) := −
∑

a1···an∈{0,1}n
mp[a1 · · · an] log(‖Ma1 · · ·Man‖) .

L′n(β, p) differs from Ln(β, p) in that the supremum over i ∈ A happens

inside the summation. Thus L′n(β, p) ≤ Ln(β, p).

Lemma 3.5. When the set Vβ is finite, we have

H(β, p) = lim
n→∞

1

n
L′n(β, p).

15



Proving this lemma completes the proof of Theorem 1.3.

Proof. Following the proof of Proposition 3.3 (or simply applying Lemma 9.9

in [26]) gives exactly

L′n(β, p) ≥ Hn(β, p)− log(
∑
x∈Xn

‖Mx,n‖).

But

− log(
∑
x∈Xn

‖Mx,n‖) = − log(
∑
x∈Xn

max
i∈A

∑
j∈A

(Mx,n)i,j)

≥ − log(
∑
x∈Xn

∑
i∈A

∑
j∈A

(Mx,n)i,j)

≥ − log(|A|(C(β) + 1),

where the last line uses inequality (6) (with l = 0), summing both sides over

i ∈ A. Then

1

n
L′n(β, p) ≥ 1

n
Hn(β, p)− 1

n
log(|A|(C(β) + 1)),

giving that 1
n
L′n(β, p) converges to H(β, p) as required.

Norms of random products of matrices are extremely well studied, and so

putting our lower bound for H(β, p) in the above form may yield useful

computations.

We now describe another bound from below on H(β, p), which is computa-

tionally very simple, and which is sometimes sufficient to conclude that the

Hausdorff dimension of νβ,p is 1.

Proposition 3.6. Suppose that Vβ is finite. Let λ be the largest eigenvalue

of the matrix ((1− p)M0 + pM1). Then

− log λ ≤ H(β, p),

and hence dimH νβ ≥ min
{

1, − log(λ)
log(β)

}
.
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Proof. We use the norm ‖M‖1 =
∑

i,j |Mi,j|. For non-negative matrices A

and B, we have ‖A‖1 + ‖B‖1 = ‖A+B‖1.

We have

1

n
L′n(β, p) = − 1

n

∑
a1···an

mp[a1 · · · an] log

(
‖Ma1 · · ·Man‖

)
≥ − 1

n

∑
a1···an

mp[a1 · · · an] log

(
‖Ma1 · · ·Man‖1

)
≥ − 1

n
log

( ∑
a1···an

mp[a1 · · · an]‖Ma1 · · ·Man‖1

)
= − 1

n
log

(∥∥∥∥ ∑
a1···an

mp(a1 · · · an)Ma1 · · ·Man

∥∥∥∥
1

)
= − 1

n
log
∥∥∥((1− p)M0 + pM1

)n∥∥∥
1
.

By Proposition 3.3, 1
n
L′n(β, p) is a lower bound on H(β, p) and since

lim
n→∞

1

n
log
∥∥∥((1− p)M0 + pM1

)n∥∥∥
1

= log λ,

we have H(β, p) ≥ − log λ.

Since computing eigenvalues is extremely rapid, this approach is the one that

we use in practice for proving that dimH(νβ,p) = 1 for a variety of examples.

3.3 Computational ideas and examples

In this section we describe how to use Proposition 3.3 to get explicit bounds

on H(β) = H(β, 1/2) and hence on dimH νβ for specific examples. For the

remainder of the article we concern ourselves only with the case of unbiased

Bernoulli convolutions, and no longer include p as a variable.

Suppose β is hyperbolic. Then one easily writes a computer program which

finds the (finite) graph G and the matrices M0 and M1. By Proposition 3.3,

we have
1

n
Ln(β) ≤ H(β) ≤ 1

n
Hn(β).

17



Expressed as a bound on dimH νβ, it says

min

{
1,

1

n

Ln(β)

log β

}
≤ dimH νβ ≤ min

{
1,

1

n

Hn(β)

log β

}
.

Given an n one can, with a computer, calculate numerically the above lower

and upper bounds on H(β) and dimH νβ. Unfortunately, the convergence is

quite slow, and the computational complexity is high, since evaluating Ln(β)

and Hn(β) involves summing over 2n different sequences.

There is a way to somewhat improve the convergence by pruning the graph

G. Call a vertex x redundant if there is no path to {0} from x along edges

in the graph. Clearly, a vertex is redundant, if and only if all edges from the

vertex lead to redundant vertices. We remove all redundant vertices from

G and get a new graph which we denote by G ′. Using instead this pruned

graph to define L̃n(β) in the same way as the definition of L′n(β), the above

bounds on H(β) and dimH νβ hold with L′n(β) replaced by L̃n(β).

Example 3.7. To illustrate the above, we let β be the largest root of the

equation

β4 − β3 − β2 + β − 1 = 0.

Here β ≈ 1.5129 has one other conjugate β(2) larger than one in modulus,

β(2) ≈ −1.1787. β also has two conjugates less than one in modulus, both of

which are complex. G consists of 71 vertices and G ′ consists of 21 vertices.

Using the graph G and n = 9, we find that

1

n

L′n(β)

log β
= 0.77199 ≤ H(β)

log β
≤ 1.5763 =

1

n

Hn(β)

log β
.

Using instead the pruned graph G ′ and n = 9, we find that

1

n

L̃n(β)

log β
= 1.0006 ≤ H(β)

log β
.

We conclude that dimH(νβ) = 1. We remark that this result does not fol-

low from the aforementioned work of Breuillard and Varjú [4], since in this

example
0.44 min{log 2, logMβ}

log β
≈ 0.6146 < 1.
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As is illustrated in the above example, even if the upper and lower bounds

are far apart, they can still be useful to prove that the Hausdorff dimension

is 1. For the number β in the example it is sufficient to take n = 9 in order

to prove that the dimension is 1. For some other numbers, one needs to take

larger values of n, resulting in very long computation times.

3.3.1 Using Proposition 3.6

We now give some examples to show the advantage of using Proposition 3.6.

The key advantage of this proposition lies in the fact that eigenvalues are

numerically quick to compute.

Example 3.8. We take β as in Example 3.7. Proposition 3.6 gives

H(β)

log β
≥ 1.3867

and hence dimH νβ = 1.

The lower bound for H(β, p) given in Proposition 3.6 is not tight. By looking

at Bernoulli convolutions associated with Pisot numbers one can see how far

off the true value it is for some examples.

Example 3.9. Let β be the Golden ratio. Alexander and Zagier showed

that that dimH νβ = 0.995570 . . . [3]. Proposition 3.6 gives

H(β)

log β
≥ 0.9924

and hence dimH νβ ≥ 0.9924.

The fact that the dimension of the Bernoulli convolution in the previous ex-

ample is known so accurately is due to special properties of the Golden ratio.

Outside of a special class of Pisot numbers known as multinacci numbers,

there are not many examples of Pisot numbers for which the Hausdorff di-

mension of νβ was known to three decimal places before the present work,

see [16]. See also [8], in which Feng calculated the Hausdorff dimension with

high precision for multinacci numbers.

Below, we give an example of what information can be obtained from Propo-

sition 3.6 for Pisot numbers that are not multinacci numbers.
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Example 3.10. Let β be the Pisot number given by β3 − β − 1 = 0. Since

β is a Pisot number, we have dimH νβ < 1. Proposition 3.6 gives

H(β)

log β
≥ 0.99999.

Hence 0.99999 ≤ dimH νβ < 1 and we have obtained the Hausdorff dimension

of νβ to five decimal places.

In fact, the numbers in Examples 3.9 and 3.10 already appeared in a work

of Lau [19], but not in connection with Hausdorff dimension. The link be-

tween the lower bound for dimH(νβ) of our Proposition 3.6 and Lau’s Mean

Quadratic Variation Dimension are explained in Section 4. We will then

see that the lower bound obtained in Example 3.10 follows from Lau’s work

together with that of Ngai [21].

Finally, we apply our methods to the study of hyperbolic β of degree 4 and

5.

Example 3.11. Let β satisfy

a5β
5 + a4β

4 + · · ·+ a0 = 0

with each ai ∈ {−1, 0, 1}. Suppose that β is hyperbolic. Then either β is

Pisot and νβ has Hausdorff dimension less than one, or β is not Pisot and

νβ has dimension one. The computations are given in Tables 1 and 2, which

shows all hyperbolic β that are roots of a {−1, 0, 1}-polynomial of degree 2,

3, 4 or 5. Paul Mercat has also done these computations and confirms our

results (private communication).

4 Connections with mean quadratic variation

dimension

In this section, we give an interesting relation between the lower bound − log λ
log β

which follows from Proposition 3.6, and another quantity (the so-called mean

quadratic variation dimension or L2-spectrum) of Bernoulli convolutions. To

begin with, let µ be a Borel probability measure in Rd with compact support.
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Polynomial β type lower bound (− log λ
log β ) size of G′

x2 − x− 1 1.6180 Pisot 0.99240 5

x3 − x2 − x− 1 1.8393 Pisot 0.96422 7

x3 − x2 − 1 1.4656 Pisot 0.99912 49

x3 − x− 1 1.3247 Pisot 0.99999 179

x4 − x3 − x2 − x− 1 1.9276 Pisot 0.97333 9

x4 − x3 − x2 + x− 1 1.5129 not Pisot 1.38670 21

x4 − x3 − 1 1.3803 Pisot 0.99999 1253

x4 − x3 + x2 − x− 1 1.2906 not Pisot 2.50349 9

x4 − x2 − 1 1.2720 not Pisot 1.98480 25

x4 − x− 1 1.2207 not Pisot 1.61576 1253

x4 + x3 − x2 − x− 1 1.1787 not Pisot 3.49147 21

Table 1: Lower bounds on dimH νβ for all hyperbolic β of degree 2, 3 and 4.

If the lower bound is larger than one, then dimH νβ = 1.

For x ∈ Rd and r > 0, let Br(x) denote the closed ball centered at x of radius

r. For q ∈ R, the Lq-spectrum of µ is defined as

τ(µ, q) = lim inf
r→0

log Θµ(q; r)

log r
,

where

Θµ(q; r) = sup
∑
i

µ(Br(xi))
q, r > 0, q ∈ R, (7)

and the supremum is taken over all families of disjoint balls {Br(xi)}i with

xi ∈ supp(µ). In the case q = 2, τµ(2) is also called the mean quadratic

variation dimension of µ (see [19]).

By definition, τ(µ, 1) = 0 and τ(µ, q) is a concave function of q over R. It

follows that τ(µ,q)
q−1

is monotone decreasing over (1,∞), and so τ ′(µ, 1+) ≥
τ(µ,q)
q−1

for each q > 1. In [21], Ngai proved that dimH(µ) ≥ τ ′(µ, 1+). As

a consequence, dimH(µ) ≥ τ(µ,q)
q−1

for every q > 1; moreover, the equality

dimH µ = τ(µ,q)
q−1

, if it holds for some q > 1, will imply that τ(µ, ·) is affine

over [1, q].

The concept of Lq-spectrum plays a fundamental role in multifractal analysis.

In [19], Lau computed the L2-spectrum of the Bernoulli convolution νβ when

β is a Pisot number. As pointed out by one of the referees, in the Pisot case
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Polynomial β type lower bound (− log λ
log β ) size of G′

x5 − x4 − x3 − x2 − x− 1 1.9659 Pisot 0.98357 11

x5 − x4 − x3 − x2 − 1 1.8885 Pisot 0.98227 739

x5 − x4 − x3 − x2 + 1 1.7785 Pisot 0.99576 947

x5 − x4 − x3 − x2 + x− 1 1.7924 not Pisot 1.12741 13

x5 − x4 − x3 − x− 1 1.8124 Pisot 0.98243 349

x5 − x4 − x3 − x+ 1 1.6804 not Pisot 1.17467 139

x5 − x4 − x3 − 1 1.7049 Pisot 0.99304 339

x5 − x4 − x3 + x− 1 1.5499 not Pisot 1.1971 1133

x5 − x4 − x3 + x2 − 1 1.4432 Pisot 0.99998 5385

x5 − x4 − x2 − x− 1 1.6851 not Pisot 1.1072 1265

x5 − x4 − x2 − x+ 1 1.5262 not Pisot 1.4420 139

x5 − x4 − x2 − 1 1.5702 Pisot 0.99986 841

x5 − x4 − x2 + x− 1 1.4036 not Pisot 1.3664 1239

x5 − x4 − x− 1 1.4971 not Pisot 1.4216 57

x5 − x4 + x2 − x− 1 1.2628 not Pisot 2.4946 131

x5 − x4 + x3 − x2 − x− 1 1.4076 not Pisot 1.9447 11

x5 − x4 + x3 − x2 − 1 1.2499 not Pisot 1.8291 1617

x5 − x4 + x3 − x− 1 1.2083 not Pisot 3.3882 11

x5 − x3 − x2 − x− 1 1.5342 Pisot 0.99983 2635

x5 − x3 − x2 − x+ 1 1.3690 not Pisot 1.8252 947

x5 − x3 − x2 − 1 1.4291 not Pisot 1.6106 43

x5 − x3 − x2 + x− 1 1.2828 not Pisot 2.5554 13

x5 − x3 − 1 1.2365 not Pisot 1.4629 11173

x5 − x3 + x2 − x− 1 1.2000 not Pisot 3.1452 947

x5 − x2 − 1 1.1939 not Pisot 1.9356 3387

x5 − x− 1 1.1673 not Pisot 2.2193 2807

x5 + x3 − x2 − x− 1 1.1436 not Pisot 4.3718 97

x5 + x4 − x3 − x2 − 1 1.1595 not Pisot 4.3005 13

x5 + x4 − x3 − x− 1 1.1408 not Pisot 4.6298 139

x5 + x4 − x2 − x− 1 1.1237 not Pisot 2.5707 6485

Table 2: Lower bounds on dimH νβ for all hyperbolic β of degree 5. If the

lower bound is larger than one, then dimH νβ = 1.
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there is certain coincidence between the numerical estimates of our bound
− log λ
log β

in Tables 1 and 2 and that of the L2-spectrum of νβ given by Lau [19].

The following result justifies this connection.

Proposition 4.1. Suppose that β ∈ (1, 2) is a Pisot number. Let λ be the

largest eigenvalue of the matrix ((1− p)M0 + pM1). Then

τ(νβ,p, 2) = − log λ

log β
.

Moreover, dimH(νβ,p) >
τ(νβ,p, q)

q − 1
for any q > 1.

Proof. Let β be a Pisot number in (1, 2). The second part of the proposition

follows from the fact that τ(νβ,p, q) is strictly concave over the region (0,∞).

This fact comes from some results obtained in [7, 9]. Indeed, by Theorem

5.2 in [7], there exist `, r ∈ N and a tuple of non-negative r × r matrices

(A1, . . . , A`) such that
∑`

i=1Ai is irreducible and for any q > 0,

τ(νβ,p, q) = −P (q)

log β
,

where P (q) := limn→∞
1
n

log
∑

i1···in∈{1,...,`}n(‖Ai1 · · ·Ain‖1)q. Suppose on the

contrary that τ(νβ,p, ·) is not strictly concave on (0,∞). Then τ(νβ,p, ·) is

affine on some interval (a, b) with 0 < a < b, and so is the function P (·). This

implies that (see the proof of Theorem 1.8 in [9]) (A1, . . . , A`) has uniform

exponent modulo 0 in the sense that there exist c, t > 0 such that for each

n ∈ N and any i1 · · · in ∈ {1, . . . , `}n,

either Ai1 . . . Ain = 0 or c−1tn ≤ ‖Ai1 · · ·Ain‖1 ≤ ctn.

Furthermore, this implies that νβ,p is absolutely continuous (see Theorem 6.2

of [9]), which gives a contradiction since νβ,p is singular ([6]).

Next we prove the first part of the proposition, i.e. τ(νβ,p, 2) = − log λ
log β

. For

this purpose, we first claim that for each q > 0, there exists a constant

C = C(β, p, q) > 0 such that

C−1un(q) ≤ Θνβ,p(q; β
−n) ≤ Cun(q), (8)

where Θ is defined as in (7) and

un(q) :=
∑

a1···an∈{0,1}n
mp[a1 · · · an]((Ma1 · · ·Man)1,1)q−1.
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To prove (8), for each n ∈ N, we define an equivalence relation ∼n on

{1, . . . , `}n by

a1 · · · an ∼n b1 · · · bn if
n∑
i=1

aiβ
−i =

n∑
i=1

biβ
−i,

and let Ωn := {1, . . . , `}n/ ∼n be the corresponding quotient set. Define

two maps S0, S1 : R → R by Si(x) = (x + i)/β, i = 0, 1. Write for brevity

Sa1···an = Sa1 ◦ · · · ◦ San . It is clear that Sa1···an = Sb1···bn if and only if

a1 · · · an ∼n b1 · · · bn. Hence by the self-similarity of νβ,p,

νβ,p =
∑

a1···an∈{0,1}n
mp[a1 · · · an] νβ,p◦S−1

a1···an =
∑

[a1···an]∈Ωn

(Ma1 · · ·Man)1,1 νβ,p◦S−1
a1···an ,

(9)

recalling that
∑

b1···bn∈{0,1}n:b1···bn∼na1···anmp[b1 · · · bn] = (Ma1 · · ·Man)1,1. Since

β is a Pisot number, there exists an integer N such that for any n ∈ N
and any interval ∆ ⊂ I := supp(νβ,p) = [0, 1/(β − 1)] of length β−n, there

are at most N many elements [a1 · · · an] ∈ Ωn such that Sa1···an(I) ∩ ∆ 6=
∅ (see e.g. [19, 7]). Applying this property and (9) one can show (with

some additional standard arguments) that Θνβ,p(q; β
−n) is comparable to∑

[a1···an]∈Ωn
((Ma1 · · ·Man)1,1)q (i.e. the ratios between them are uniformly

bounded away from 0). We leave the details to the reader. Now it is easy to

see that
∑

[a1···an]∈Ωn
((Ma1 · · ·Man)1,1)q = un(q), and so (8) holds.

In the end, we show that un(2) is comparable to vn(2), where

vn(2) :=
∑

a1···an∈{0,1}n
mp[a1 · · · an]‖Ma1 · · ·Man‖1.

This will conclude our desired result since we have already proved that

limn→∞(log vn(2))/n = log λ in the proof of Proposition 3.6.

Clearly vn(2) ≥ un(2), and

vn(2) =
∑

[a1···an]∈Ωn

(Ma1 · · ·Man)1,1‖Ma1 · · ·Man‖1

≤
∑

[a1···an]∈Ωn

(‖Ma1 · · ·Man‖1)2 =: wn(2).

For two elements [b1 · · · bn], [a1 · · · an] ∈ Ωn, we say that [b1 · · · bn] is a neigh-

bour of [a1 · · · an] if there exist i, j ∈ A such that βnxi +
∑n

l=1(al− bl)βn−l =
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xj. Assume that n is large enough so that βnxi − xj 6= βnxi′ − xj′ when

(i, j) 6= (i′, j′). Then by the definition (4), we have

‖Ma1 · · ·Man‖1 =
∑

(Mb1 · · ·Mbn)1,1,

where the sum is over all the neighbours [b1 · · · bn] of [a1 · · · an] in Ωn. Since

any element in Ωn has at most |A|2 many neighbours, and conversely each

element in Ωn is the neighbour of at most |A|2 many elements in Ωn. It

follows that

wn(2) =
∑

[a1···an]∈Ωn

(‖Ma1 · · ·Man‖1)2

=
∑

[a1···an]∈Ωn

 ∑
[b1···bn]∈Ωn

[b1···bn] is a neighbour of [a1···an]

(Mb1 · · ·Mbn)1,1


2

≤ |A|4
∑

[a1···an]∈Ωn

 ∑
[b1···bn]∈Ωn

[b1···bn] is a neighbour of [a1···an]

((Mb1 · · ·Mbn)1,1)2


≤ |A|6

∑
[b1···bn]∈Ωn

((Mb1 · · ·Mbn)1,1)2 = |A|6un(2).

Hence we obtain that un(2) ≤ vn(2) ≤ wn(2) ≤ |A|6un(2). That is, un(2)

and vn(2) are comparable. It completes the proof of the proposition.

Remark. When β ∈ (1, 2) is a hyperbolic algebraic integer, the above proof

can be adapted to show that τ(νβ,p, 2) ≤ − log λ
log β

.

5 Further Comments

1. As can be seen from Table 2, when β has Galois conjugates close to

1 in modulus the graph G can be very large. In these cases, calcu-

lating the graph G may not be the most efficient way of proving that

νβ has dimension 1. In a follow up article we show how one can per-

form counting estimates broadly similar to those of [15, 16] on a higher
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dimensional self-affine set with contraction ratios equal to the Galois

conjugates of β. These estimates often yield that dimH(νβ) = 1, and

work even in the case of non-hyperbolic β.

2. A short argument of Mercat (personal communication) shows that

H(β) ≤ log(β) whenever β is a Salem number. Therefore it will hold

that Ln(β) < log(β) for all n ∈ N and so our finite time approximation

methods will not be able to show that dimH(νβ) = 1 for β Salem.

3. According to Lemma 2.4, Vβ is finite if β is hyperbolic. Is it true that

if β is a non-hyperbolic algebraic integer, then Vβ is infinite?

If we in the definition of Vβ only consider β and not its conjugates, and

define

Ṽβ,n :=

{
x =

n∑
i=0

εiβ
n−i : εi ∈ {−1, 0, 1}

and

∣∣∣∣∣
n∑
i=0

εiβ
n−i

∣∣∣∣∣ ≤ 1

β − 1

}
,

Ṽβ :=
∞⋃
n=0

Ṽβ,n,

then, according to a result by Akiyama and Komornik [1], Ṽβ is finite

if and only if β is a Pisot number.
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±λn (an Erdős problem). Ann.

of Math. (2), 142(3):611–625, 1995.
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