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Abstract— The participation of volatile wind energy resources 

in the generation mix of power systems is increasing. It is 

therefore becoming more and more crucial for system operators 

to accurately predict the wind power generation across different 

short term horizons (5 to 60 minutes ahead) in order to 

adequately balance the system and maintain system security. 

This paper presents a comprehensive assessment of the influence 

of different parameters in artificial neural networks, such as the 

amount of historic data, batch size, number of hidden layers, 

number of neurons per hidden layer, and the amount of training 

data on the short term forecast accuracy. In order to identify the 

parameters which are most influential with respect to forecast 

accuracy, a sensitivity study isolating the various factors on a 

one-at-a-time basis has been performed. To minimize the forecast 

error across the investigated forecast horizons, the  developed 

neural networks use the feed forward back propagation 

algorithm. From the investigated cases it is concluded that a 

neural network with two hidden layers is most suitable for wind 

forecasting on the timeframes considered. Furthermore, with 

increasing forecast horizons (from 5 to 60 minutes ahead), better 

performance is achieved when neural networks contain increased 

neurons in the hidden layers and have enlarged training data 

sets. 

Index Terms—Artificial Neural Networks, Forecasting, 

MIGRATE, Wind Energy 

I. INTRODUCTION 

With increasing penetration of wind generation it becomes 

essential for system operators to accurately predict future wind 

power injections in the system, in order to ensure reliable and 

affordable supply of electricity. This forecasting is done 

across different time horizons. Forecast models can generally 

be divided in two categories: statistical models and physical 

models. Statistical models are preferred for forecast horizons 

up to six hours ahead, whereas physical models perform more 

accurately for longer forecast horizons. Statistical models 

mainly use past observed data, sometimes complemented with 

numerical weather prediction (NWP) data. Physical models 

mainly use NWP data. For statistical models, artificial neural 

networks (ANN) are among the top used forecasting 

techniques [1]. This research focuses on ANN-based statistical 

models for short term forecast horizons of 5, 15, 30, and 60 

minutes ahead. The 5 minutes forecast horizon (FH 5) is 

useful for ramp forecasting, which is crucial for power 

systems with high penetration of wind generation [2]-[4], an 

example of which is given in [5]. FH 15 and FH 60 are useful 

for intraday markets where quarter-hourly and hourly products 

are traded.  

The aim of this research is to investigate how the forecast 

accuracy across the different horizons is influenced by 

changes in the amount of historic data (HD), batch size (BS), 

number of hidden layers (HL), number of neurons per hidden 

layer (NHL), and the amount of training data (TD). 

Whereas a majority of the publications investigated the 

influence of the HD on the forecast accuracy, few have 

analyzed the impact of the HD combined with other aspects of 

the ANN’s structure. In one study, the influence of the HD size 

for a single 1 hour forecast was investigated. The forecasting 

algorithm contained 1 hidden layer with 3 neurons, with TD 

57%. It was found that the optimum size of the HD is 

dependent on the learning rate of the algorithm [6]. In another 

study the influence of HD on the forecast accuracy in terms of 

root mean square error for FH 30 is presented. The 

implemented forecasting algorithm contained 1 hidden layer, 

whereas the HD was varied from 3 to 8. It was concluded that 

the highest forecast accuracy is achieved for the ANN with HD 

8 [7]. In [8] the influence of HL and HD on the forecast 

accuracy was investigated. It was found that a simple ANN 

with HD 2 and no hidden layers performed the best in terms of 

forecast accuracy. 

The aim of these papers was to identify the ANN with the 

highest accuracy across one specific forecast horizon. 

Furthermore, the solution space considered in these papers is 

rather limited, as maximum two parameters were varied. 

Therefore there are still unresolved questions around the 

impact of proper tuning of the ANN’s parameters on the 

978-1-5386-5844-4/18/$31.00 ©2018 IEEE 



accuracy and how this differs across different forecast 

horizons. 

This paper addresses these points and presents insights in 

the combined influence of the HD, HL, NHL, TD, and BS on 

the forecast accuracy for forecast horizons 5, 15, 30, and 60 

minutes ahead. Also, for each of these forecast horizons the 

impact of properly tuning the ANN’s parameters is shown. 

With these insights it becomes possible to optimize only those 

parameters that have the biggest influence. 

II. RESEARCH METHOD 

The aim of this research is to examine the extent to which 

parameters and settings of the ANN influence the accuracy of 

wind power forecasts. The impact on forecast accuracy will be 

considered by observing the normalized mean absolute error. It 

should be noted that the focus of this work is not on 

minimizing the forecast error, but on observing how it is 

affected by variations in ANN properties. This influence is 

investigated for four different forecast horizons.  

A. Artificial Neural Network 

An ANN acts as a black box that maps inputs to outputs. In 

the case of wind power forecasting, it aims to map inputs such 

as past wind power values or NWP data to future wind power 

values. It will learn this input-output mapping by being trained 

and optimized. Full details about ANNs can be found in [9]. A 

brief summary of their basic form and function is provided 

here. Figure 1 illustrates the general architecture of an ANN.  
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 Fig. 1 Artificial Neural Network: General Architecture 

 

The generalized ANN shown in Figure 1 consists of an input 

layer, one or more hidden layers, an output layer, and several 

synapses with their associated weighting factors. Each layer 

contains a number of neurons. With respect to the application 

of wind power forecasting, the input layer can consist of either 

previously observed values of the wind power generation or 

numerical weather prediction data (such as wind speed, 

pressure, and temperature). A single neuron in the input layer is 

assigned to each input variable. The number of neurons in the 

hidden layers can be chosen arbitrarily. An activation function 

is used to determine the weighting factors of the neurons in the 

last hidden layer. The dimension of the output layer is 

determined by the number of outputs being forecasted. The 

activation function implemented in the ANN in this work is the 

rectifier function. The rectifier function is widely used due to 

its low forecast error and high sparsity [10]. Based on the 

objective function of the ANN’s optimizer, the weighting 

factors are updated using the feed forward back propagation 

(FFBP) technique [11]. The algorithm for the FFBP technique 

can be decomposed in four steps. In the first step the input data 

is fed into the ANN, after which a forecasted value is 

produced. In the second step, the forecasted output is compared 

to the actual observed value. The error is back propagated to 

the output layer. In the third step, the back propagation 

continues to the hidden layers. In the final step, the weights are 

updated. This algorithm stops when the predefined number of 

epochs (i.e. optimization iterations) has been reached. The 

target of the implemented objective function is to minimize the 

mean absolute error. 

The ANN developed for this paper is modelled in Python 

[12]. The parameters that were kept constant during the 

analysis are given in Table I. 

TABLE I.  FIXED PARAMETERS OF ANN 

Parameter Parameter Domain Value 

Epochs Forecast Algorithm 100 

Activation Function Forecast Algorithm Rectifier Linear Unit [10] 

Output Layer Neurons ANN Architecture 1 

Optimizer Forecast Algorithm Adam [13] 

 

The FH for which analyses were carried out are 5, 15, 30, 

and 60 minutes ahead. For forecast horizons up to six hours 

ahead better accuracies are typically achieved when using 

historical observed wind power generation values as inputs 

instead of NWP data [14]–[16]. In total 27 cases combining 

different permutations of the following ANN parameters were 

investigated for each FH (see Table V in Appendix A for full 

details):  

 Number of inputs, i.e. the historic data set (HD): 5, 

10, 20. 

 Number of hidden layers (HL): 1, 2, 3.  

 Number of neurons per hidden layer (NHL):  100% 

(i.e. equal to the number of neurons in the input 

layer) and 50% (i.e. equal to the average of the 

neurons in the input and output layer). 

 Size of the training data set (TD): 50% and 80% of 

the test data. 

 Batch size (BS), i.e. amount of observations after 

which the weighting factors are updated: 5, 10, 20. 

The characteristics of the Base Case are given in Table II. 

The Base Case is defined as an approximate midpoint for the 

parameters to be varied, however it should be noted that this is 

an arbitrary selection. The aim is to establish the impact of 

variation of these parameters on the forecast error. 

TABLE II.  BASE CASE VARIABLES  

Variable Value 

HD 10 

HL 2 

NHL 50 % 

TD 80 % 

BS 10 



B. Data 

The data used for this research was retrieved from the 

WIND Prospector Toolkit of USA’s National Renewable 

Energy Laboratory, and belongs to a small wind park of 16 

MW (Site ID 8501) [17]–[20]. Observed NWP data (wind 

direction, wind speed, air temperature, surface air pressure, and 

air density) and wind active power generation data with a 

resolution of 5 minutes are available for the time span 2007–

2012. The statistical parametric t-test was performed 

successfully (i.e. rejection of the null hypothesis) on the data 

sets to determine if all the data belonged to the same 

population. 

C. Forecast Error: Mean Absolute Error 

When assessing the accuracy of different forecasts, root 

mean square error (RMSE) and mean absolute error (MAE) are 

the most commonly used accuracy metrics [21]. As RMSE is 

more sensitive to outliers (i.e. larger errors are penalized 

heavier) [22], the normalized MAE (nMAE) will be used as 

measure for the forecast accuracy. The nMAE is calculated as 

in Equation (1). 
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(1) 

In Equation (1) PMAX is the maximum active power 

generation of the wind farm, n is the number of observations, yi 

is the observed wind generation for time step i, and yip is the 

forecasted wind generation for time step i.  

As best practice dictates, for each FH a comparison is made 

between accuracies of the developed ANN and the persistence 

model [14]. In the persistence model, the predicted value for 

time step i is equal to the observed value at time i-1. New 

forecast should perform at least better than persistence. 

For each of the 108 cases (27 cases per forecasting horizon), 

the ANN is trained using the data from 2007 [17]–[20]. After 

the training, the ANN is evaluated by calculating the nMAE for 

each year of data (2008 – 2012). The final nMAE reported per 

case in this paper is the average nMAE over the 5 years of that 

case. An example for case 15 for FH 5 is given in Table III. 

These results represent one of the lowest error cases achieved. 

TABLE III.  NMAE FOR CASE 15 (FH=5) 

Year nMAE 

2008 2.778 % 

2009 2.398 % 

2010 2.622 % 

2011 2.442 % 

2012 2.469 % 

Final nMAE 2.542 % 

III. RESULTS & DISCUSSION  

In Figure 2, the nMAE distribution is given for FH 5, 15, 

30, and 60 minutes. The points on the graph are equally spread 

around a circle (the angle has no significance). Accuracies on 

the outer circle of 0.3 need to be disregarded: the ANN in these 

cases did not give any output. From Figure 2 it can be observed 

that the developed forecast algorithms have a low bias across 

all the investigated horizons. On the other hand, with 

increasing forecast horizon, the general trend observed is one 

of an increasing variance. Low bias-low variance algorithms 

are preferred, as these result in algorithms with the lowest 

errors [23]. There is, however, always a trade-off between the 

bias and the variance. 

 

 
Fig. 2 nMAE Distribution for Different Forecast Horizons 

 

In Figure 3, the nMAE of the wind power forecast is given 

for all the cases across the four forecasting horizons. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A. Forecast Horizon: 5 Minutes 

For this FH, the best forecast accuracies (i.e. a lowest 

nMAE) is achieved for HD 20. This observation is independent 

on NHL and BS, as shown in Figure 4. In 8 of the 9 cases, an 

ANN with NHL 50%  outperforms an ANN with NHL 100%. 

Only with HD 5, the ANN with HL 1 performs better. In all the 

other cases, the ANNs with HL 2 have a higher accuracy. The 

general trend is that with increasing dimension of HD, cases 

with TD 80% result in a slightly better performance. As the 

number of inputs is lower in the case with HD 5, the ANN can 

be trained relatively better with less data. Therefore the case 

with TD 50% and HD 5 achieves a higher performance. When 

combining the variables, the best performance is achieved for 

an ANN with HL 2, NHL 50%, HD 5, TD 50% and BS 20. The 

average nMAE over the 5 years is 2.54%. 

  

 
Fig. 3 Forecast Performance across Four Different Forecast Horizons 

 



B. Forecast Horizon: 15 Minutes 

The observation is that with HD 5, the highest accuracy is 

achieved for BS 20. With HD 20 and BS 5 the highest accuracy 

is achieved for the case with NHL 50%. With HD 20 and BS 10 

the highest accuracy is achieved for NHL 100%. In 6 out of the 

9 cases, an ANN with NHL 50% outperforms an ANN with NHL 

100%. In the remaining cases, NHL 100% results in a slightly 

lower nMAE. With HD 5, the ANN with HL 2 performs the 

best. With HD 10, the ANN with HL 3 layers performs best. 

With HD 20, no reliable result is achieved. For HD 5, the best 

performance is achieved for TD 80%. For HD 10 and HD 20, 

lowest nMAE achieved for TD 50%. When combining the 

variables, the best performance is achieved for an ANN with 

HL 2, NHL 50%, HD 10, TD 80% and BS 10. The average 

nMAE over the 5 years is 3.96%. 

C. Forecast Horizon: 30 Minutes 

In 4 out of 6 cases, HD 10 resulted in a better performance. 

In all the cases NHL 50% outperforms ANN with  NHL 100%. 

The best performance is achieved with HL 2. For HD 5 and 

HD 20 best performance is achieved with TD 50%. For HD 10, 

best performance is achieved with TD 80%. After combining 

various values of the parameters, the best performance is 

achieved for an ANN with HL 2, NHL 50%, HD 10, TD 80% 

and BS 10. The average nMAE over the 5 years is 5.15%.  

D. Forecast Horizon: 60 Minutes 

In terms of the batch size, the best performance is achieved 

for BS 5. When HD 5, the lowest nMAE is achieved with NHL 

100%. For HD 10 and HD 20, NHL 50% results in a higher 

accuracy. When varying the number of hidden layers, it is 

observed that an ANN with HL 3 outperforms ANNs with HL 

2 or HL 1. Also, with increasing HD, a higher TD leads to 

increased accuracy. The overall best performance, when 

combining the various parameters, is achieved for an ANN 

with HL 2, NHL 100%, HD 5, TD 80% and BS 5. The average 

nMAE over the 5 years is 6.15%. 

The variables for the best performing ANN for each FH are 

given in Table IV. These models were between 43% and 52% 

more accurate than persistence. As expected, with increasing 

FH the accuracy is decreasing. 

TABLE IV.  VARIABLES OF BEST PERFORMING ANN 

FH Case HL NHL BS TD HD nMAE 

5 15 2 50 % 20 50 % 5 2.54 % 

15 0 2 50 % 10 80 % 10 3.96 % 

30 7 2 50 % 20 80 % 10 5.15 % 

60 18 2 100 % 5 80 % 5 6.15 % 

From the 27 investigated cases per forecasting horizon, it 

can be concluded that for each horizon the best performance is 

achieved when the ANN contains two hidden layers. 

Furthermore, with increasing forecast horizons, better 

performance is achieved when the neural networks contain 

relatively more neurons in the hidden layers. Up to 30 minutes 

ahead, 50% neurons (i.e. 3 neurons for FH 5; 5 neurons for FH 

15 and FH30) results in the best accuracy. For FH 60 the best 

accuracy is achieved with 100% neurons (i.e. 6 neurons).  The 

amount of training data required for optimal forecasting 

increased from 50% for FH 5, to 80% for the other FHs. A 

comparison between the best and worst performance is given in 

Figure 5, which clearly shows the benefits of optimal selection 

of ANN parameters. 

IV. CONCLUSIONS  

The aim of this research was to investigate the extent to 

which certain parameters and settings of an artificial neural 

network influence the accuracy of wind power forecasts across 

four short term forecast horizons: 5, 15, 30, and 60 minutes 

ahead. The results presented in this paper are based on 27 

specific cases for each of the four forecast horizons. From 

these investigated cases it is observed that with increasing 

forecast horizons the variance of the forecast accuracy is 

increasing, whereas the bias remains low. 

Furthermore, it can be concluded that the best performance 

is achieved when the neural network contains two hidden 

layers, independent of the forecast horizon. With increasing 

forecast horizons, better performance is achieved when neural 

networks contain increased neurons (100% instead of 50%) in 

the hidden layers and have enlarged training data sets (80% 

instead of 50%). The influence of the batch size and the 

historic data size on the forecast accuracy are dependent on the 

structure of the artificial neural network. When correctly 

choosing the ANN parameters, the nMAE decreases for FH 5 

from 30% to 2.54%, for FH 15 from 30% to 3.96%, for FH 30 

from 30% to 5.15% and for FH 60 from 30% to 6.15%. 

Compared  to persistence, all models achieved at least 43% 

increased accuracy. As the influence of several parameters on 

 
Fig. 4 Influence of Historic Data Size on nMAE for FH 5 

*The actual nMAE at HD 10 is 30% (no results). For illustration 

purposes the nMAE is fictively fixed at 12%. 

 

 

 
Fig. 5 Comparison between Best Case and Worst Case 

 



the forecast performance is now known, an optimization of the 

architecture of the artificial neural network, can be carried out 

with the aim to minimize the forecast error. 
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APPENDIX A 

TABLE V.  PARAMETERS OF INVESTIGATED CASES 

 

Case HD HL NHL
 BS TD 

0 (Base Case) 10 2 50 % 10 80 % 

1 5 2 50 % 10 80 % 

2 20 2 50 % 10 80 % 

3 5 2 50 % 5 80 % 

4 10 2 50 % 5 80 % 

5 20 2 50 % 5 80 % 

6 5 2 50 % 20 80 % 

7 10 2 50 % 20 80 % 

8 20 2 50 % 20 80 % 

9 5 3 50 % 20 80 % 

10 10 3 50 % 20 80 % 

11 20 3 50 % 20 80 % 

12 5 1 50 % 20 80 % 

13 10 1 50 % 20 80 % 

Case HD HL NHL
 BS TD 

14 20 1 50 % 20 80 % 

15 5 2 50 % 20 50 % 

16 10 2 50 % 20 50 % 

17 20 2 50 % 20 50 % 

18 5 2 100 % 5 80 % 

19 10 2 100 % 5 80 % 

20 20 2 100 % 5 80 % 

21 5 2 100 % 10 80 % 

22 10 2 100 % 10 80 % 

23 20 2 100 % 10 80 % 

24 5 2 100 % 20 80 % 

25 10 2 100 % 20 80 % 

26 20 2 100 % 20 80 % 


