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Abstract

In this paper the hereditary behavior of hydroxyapatite-based composites used

for cranioplastic surgery is discussed in the context of material isotropy. Mix-

tures of collagen and hydroxiapatite composites are classified as biomimetic

ceramic composites with hereditary properties modeled in the paper fractional-

order calculus. Isotropy of the biomimetic ceramic is assumed and the thermo-

dynamic of restrictions among material parameters are provided. The proposed

formulation of the fractional-order isotropic hereditariness has been further ex-

ploited by means of a novel mechanical hierarchy that corresponds, exactly,

to the three-dimensional fractional-order constitutive model introduded in the

paper.
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1. Introduction

Cranioplastic neurosurgery is nowadays an important issue worldwide since it

is necessary both in traumatic therapies or in presence of specific oncologic

pathology. Cranioplasty is a surgical procedure that aims to re-establish the

skull integrity following a previous craniotomy due to the occurrence of trau-5

mas, tumors and/or congenital malformations. In all cases cranioplasty can be

considered as the conclusive action of a surgery initiated by the removal of a

bone operculum fig.1.

(a) (b)

Figure 1: cranioplasty surgery

Ideally, cranioplasty procedures should provide restoration of the protective

functions of the skull with maintenance of the original aesthetics and long-10

term mechanical performance [1] The ideal material for cranioplasty should

be chemically inert, biocompatible, biomechanically reliable, easily manufac-

tured, individually shaped, safe, and able to promote osteoblast migration. To-

day synthetic implants based on metallic (mainly titanium) or acrylic plaques

(mainly polymethylmeta-crylate or polyetheretherketone) are widely used in15

cranioplasty procedures. These are bioinert materials with good biocompati-
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bility, resistance to infections, ease of sterilization, ability to be subjected to

imaging diagnostics, and the capacity to undergo flexible design for adaptation

to different clinical cases. They exhibit good mechanical strength, which offers

adequate brain protection from external shocks. However, they present poor20

osteogenic and osteoconductive ability, thus resulting in a foreign body func-

tioning as a shell expected to provide brain protection, but connected to the

surrounding bone only by its perimeter contact surface. In order to overcome

many limitations an Hydroxyapatite (HA)-based material has been widely con-

sidered for decades as the gold standard for bone scaffolds, as its composition25

is very close to that of bone mineral, thus exhibiting excellent biocompatibility,

a low inflammatory reaction as well as good osteogenic ability and osteocon-

ductivity. The hydrophilic character of HA favors cell attachment and tight

adhesion of bone to the scaffold surface, which is a key target for the stability

of the bone/implant interface. Therefore, HA scaffolds presenting wide, open30

and interconnected multiscale porosity can induce extensive bone ingrowth and

penetration throughout the whole scaffold, partly thanks to the possibility of

massive fluid perfusion, which triggers and assists neovascularization. Hence,

cranial reconstruction using synthetic porous HA has recently become the sub-

ject of intense debate among surgeons, and it now represents a new concept in35

cranioplasty procedures. The custom-made concept was first applied to porous

hydroxyapatite because of the need to overcome the fragility of the material

itself. Among the advantages of HA-based prosthesis there is the important

issue of customization.

Indeed, in presence of cranioplasty the morphology of the bone to be re-40

placed with a synthetic prosthesis must match, completely, the original bone

to accelerate the osteointegration of the prosthesis [2, 3, 4] in the surgical hole.

In fig.(2 a-d) an human parietal bone and its synthetic prosthesis fig.(3 a-c)

have been obtained from at universitary neurosurgery hospital in Palermo. The

synthetic bone used for replacement is a CustomBone R© (Finceramica Faenza),45

namely custom-made, porous hydroxyapatite scaffolds with total porosity in the

range of 60 to 70 % and pore architecture based on macro-pores (> 100 micron
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) interconnected with micro-pores (5-10 micron). CustomBone R© scaffolds were

obtained by reproduction of the patients bone defect as modeled by 3D CT

scan and its represented as a composite ceramics material obtained from chem-50

ical deposition of hydroxyiapatite within a small fraction of collagen type I (see

fig.1a).

The use of biomimetic ceramics to replace cortical as well as trabecular bone

is well defined to technique in bone surgery [5]. Indeed the mechanical feature

of the prosthesis in terms of elastic moduli and the strength of the biomimetic55

composite of integration are very similar. However, the use of ceramic materials

to replace the bones of human head may involve different behavior in terms of

energy dissipation. Indeed biologic tissues show marked hereditariness that is

due to the reptation of the collagen chains of the material as well as to the fiber

recruitment in the tissues. Material hereditariness involves additional stresses60

that may be applied to the grafted ceramics prosthesis and may lead to fracture

propagation during patient follow-up [6].

The hereditary properties of bone in uniaxial test are represented by creep

J(t) and relaxation G(t) function that formulated in terms of power-law J(t) ∝

tβ and G(t) ∝ t−β with 0 ≤ β ≤ 1, yields accurate description of experimental65

data [5, 7, 8, 9, 10]. Power-laws hereditariness in conjuction with Boltzmann

superposition yields constitutive behavior in terms of the so-called fractional

integrals and derivatives. Fractional calculus may be considered as generaliza-

tion of the classical differential calculus to real-order integration and differen-

tiation
(
i.e.df

/
dt→ dβf

/
dtβ
)

with β ∈ [0, 1] as reported in classical references70

[11, 12, 13, 14, 15]. In such a context, uniaxial hereditariness [16, 17, 18, 19]

involving fractional order stress-strain relations have been reported since the be-

ginning of the twentyth century [20, 13] defining the so-called springpot element

[21, 22].

In presence of tensorial stress/strain state, as in continuum mechanic descrip-75

tion of biomimetic prosthesis, no generalities have been reported in scientific

literature to capture multiaxial hereditariness with fractional-order calculus, at

the best of authors’ knowledge. Indeed, in several cases, recently discussed
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(a) (b)

(c) (d)

Figure 2: human parietal bone
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(a) (b)

(c) (d)

Figure 3: CustomBone R© prosthesis morphology
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in scientific literature [23, 24] the use of power-laws without thermodynamic

restrictions to the parameters do not guarantee positive entropy rate for any80

strain/stress process involved by material.

In this paper a three axial constitutive relation describing material heredi-

tariness is discussed in the context of power-laws functional classes of the relax-

ation/creep functions. It will be shown that, under the assumption of material

isotropy, thermodynamical restrictions on the constitutive parameters allows85

to formulate the constitutive behavior in terms of a Caputo fractional deriva-

tive that is formally analogous to the constituitve behavior in uniaxial state of

stress/strain. Additionally a novel mechanical hierarchy

The paper is organized as follows: Generalities about fractional-order calcu-

lus and isotropic hereditariness are provided in sec.2; In sec.3 a mechanical hi-90

erarchy that corresponds exactly to the isotropic fractional-order hereditariness

is reported. Some conclusions about the proposed model of isotropic hereditari-

ness and the influence on the mechanics of the biomimetic ceramics prosthesis

have been withdrawn in sec.4

2. Power-law hereditariness of isotropic biomimetic ceramics95

In this section the constitutive relations in presence of power-law hereditariness

are outlined. In sec.2.1 main arguments of power-law hereditariness under uni-

axial stress/strain are shortly outlined. Generalization to the isotropic case is

defined in sec.2.2 and thermodynamic restrictions on the material parameters

is introduced in sec.2.3.100

2.1. Uniaxial power-law hereditariness: The fractional order constitutive equa-

tion

The constitutive behavior of materials in long-standing mechanical tests is de-

scribed by means of the well-known creep and relaxation functions, dubbed

J(t) and G(t), respectively. The linear superposition applied to a generic
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stress/strain history, namely σ(τ) and ε(τ) with τ ≤ t, yields:

σ(t) =

∫ t

0

G(t− τ)dε(τ) =

∫ t

0

G(t− τ)ε̇(τ)dτ (1a)

ε(t) =

∫ t

0

J(t− τ)dσ(τ) =

∫ t

0

J(t− τ)σ̇(τ)dτ (1b)

Eqs.(1a, b) are defined in terms of Boltzman superposition with dσ = σ̇dt

and dε = ε̇dt increments with [·] = d
dt . Creep and relaxation functions char-

acterize the material behavior and they must satisfy the conjugation relation105

Ĵ(s)Ĝ(s) = 1/s2, where s indicates the Laplace parameter and f̂(s) = L[f(t)]

the Laplace transform of the generic function f(t). In the context of materials

hereditariness, power-law representation of creep and relaxation functions, i.e.

J(t) and G(t), was introduced at the beginning of the last century [20],

G(t) =
Cβ

Γ(1− β)
t−β , (2a)

J(t) =
1

CβΓ(β + 1)
tβ (2b)

where Γ(·) is the Euler-Gamma function, β ∈ [0, 1] and Cβ > 0, are material

parameters, that may be estimated through a best-fitting procedure of experi-

mental data [25, 26]. Straightforward manipulations show that the power-law

functional class in eqs.(2a, b), satisfies the conjugation relation and it yields,

upon substitution in eqs. (1a, b) the constitutive relations:

σ(t) =
Cβ

Γ(1− β)

∫ t

0

(t− τ)−β ε̇(τ)dτ = Cβ

(
Dβ

0+ε
)

(t) (3a)

ε(t) =
1

CβΓ(β + 1)

∫ t

0

(t− τ)β σ̇(τ)dτ =
1

Cβ

(
Iβ0+σ

)
(t) (3b)

in terms of the Caputo fractional derivative and Riemann-Liouville fractional110

integral, respectively.

Use of power-laws and, as a consequence, of fractional-order operators is usu-

ally referred, in a rheological context [27], to the introduction of the springpot

element.

Springpot is a one-dimensional element defined in terms of two parameters,115

i.e. Cβ and β, 0 ≤ β < 1 and Cβ > 0 whose constitutive relation is re-
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ported in eqs.(3a,b). Such element with an intermediate behavior among elastic

springs and viscous dashpots, is widely used nowadays to define several types

of materials and as limiting cases, elastic (β = 0) and viscous elements (β = 1)

may be obtained. More precisely, a simple spring corresponds to β = 0 and120

dβf

dtβ
=
d0f

dt0
= f ; whilst, case of β = 1 corresponds to a first order derivative,

i.e.
dβf

dtβ
=
df

dt
= ḟ , which is a Newtonian dashpot.

2.2. Constitutive relation for isotropic power-law hereditariness

The extension of the constitutive relation presented in sec.2.1 to case and ten-

sorial strain/stress state is discussed in this section by means of effect superpo-125

sition.

Let us consider a 2nd-order stress tensor σ with component σij represented

in fig.(4) are with the respective symmetries namely σij = σji for i 6= j.

In the following we introduce the Voigt representation of the state variables

of the material in terms of vector representation of stress and strains tensors as:

σT (t) = [σ11 (t)σ22 (t)σ33 (t)σ32 (t)σ31 (t)σ12 (t)] (4)

εT (t) = [ε11 (t) ε22 (t) ε33 (t) 2ε32 (t) 2ε31 (t) 2ε12 (t)] (5)

where t is the current time and the mixed index stress and strain components,

namely σij (t) and εij (t) with i 6= j denote shear stress and strain, respectively.130

Let us assume that σij (t) = δij with δij the Kronecker tensor δij = 1 for i = j,

δij = 0 , for i 6= j and let us consider a single normal stress σii = 1 for (i =

1,2,3) reported in fig.4 a,b,c):

In such a context the evolution of the strain εii (t) along the stress direction

σii (t) and in the orthogonal planes reads:135

εii (t) = JL (t)σii = JL (t) (6a)

εkk (t) = εjj (t) = −Jυ (t)σii (6b)
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(a) (b) (c)

Figure 4: elementary representative cube

with i 6= j 6= k and i, j, k = 1, 2, 3.

In eqs.(6a-b) the function of JL (t) and Jυ (t) are the axial and the transverse

creep functions with respect to the stress direction, respectively. Under the

assumption of smooth load process σij(t) the presence of contemporaneous stress

σij(t) = σij(t)δij , with i = 1, 2, 3, may be account for by the integral.140

εii (t) =

∫ t

0

JL (t− τ) σ̇ii (τ)− Jυ (t− τ) [σ̇jj (τ) + σ̇kk (τ)] dτ (7)

with i 6= j 6= k and i,j,k=1,2,3, respectively.

In the context of material isotropy shear stains 2εij(t), (i 6= j), are not in-

volved by axial stress σii (t), but only by shear stress as σij(t) with i 6= j. The

evolution of the shear strain 2εij(t) due to a generic shear stress history σij(t)

may be obtained by superposition integrals by means of the shear creep function145

JT (·) as:

2εij (t) =

∫ t

0

JT (t− τ)σ̇ij (τ) dτ (8)

with i 6= j and i, j = 1, 2, 3. The constitutive equations reported in eqs.(7),(8)

may be reported in Voigt’ notation as:

ε (t) =

∫ t

0

J (t− τ)σ̇ (τ) dτ (9)
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where J(t) is creep functions matrix that is described as:

J (t) =

 J(A) (t) 0

0 J(T ) (t)

 (10)

where the elements of the axial creep matrix J(A)(t) are:

J
(A)
ij (t) = JL (t) δij − (1− δij) Jυ (t) (11)

with i, j = 1, 2, 3. The shear creep matrix J(T )(t) is a diagonal matrix gathering150

the shear creep functions JT (t) as:

J
(T )
ij (t) = JT (t) δij (12)

The three creep functions JL(t),Jυ(t) and JT (t) are related by a linear relation

that reads:

JT (t) = 2JL(t)− Jυ(t) (13)

that may be obtained with straightforward manipulations introducing a shear

stress state σij(t) that involves a shear strain state under isotropy assumption,

namely γij = 2εij (t) and evaluating the elongation and the stress along the

principal axes at angles of π/4.155

Under the assumption of linear elasticity the creep functions coincides with

the material compliance that reads JT = 1/G, JL = 1/E and Jυ = υ/E yielding,

after substitution in eq.(13):

1

G
= 2

(
1

E
+
υ

E

)
=

2 (1 + υ)

E
(14)

that is the well-known relation among elasticity moduli.

The knowledge of the creep function matrix, namely, J(t) in eq.(10) allows

for the definition of the relaxation matrix G(t) by means of the coniugation

relation as:

Ĝ(s)Ĵ(s) =
1

s2
I (15)

where I is the identity matrix and Ĝ(s), Ĵ(s) are the Laplace transforms of the

relaxation G(t) and the creep functions J(t) matrices.
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Straightforward manipulations of eq.(15) and inverse Laplace transform the

relaxation matrix may be written as:160

G (t) =

 G(A) (t) 0

0 G(T ) (t)

 (16)

where:

G
(A)
ij (t) = L−1

 1

s2
(
ĴL + Ĵυ

)(
ĴL − 2Ĵυ

)
[(ĴL − Ĵυ) δij + (1− δij) Ĵυ

]
(17a)

G
(T )
ij (t) = L−1

 1

s2
(
ĴL + Ĵυ

)
 δij (17b)

The observation of eqs.(17a),(17b) shows that in presence of material fading

memory the relaxation matrix G(t) is obtained in terms of a combination of

creep functions obtained by uniaxial creep tests. Similar considerations may

be also withdrawn from the observation that in uniaxial relaxation tests, the165

relaxation functions GL(t) is obtained in lateral free conditions, that is the strain

state involves ε11 6= ε22 6= 0 and ε33 = 1 and measuring only σ33(t) = GL (t)

relaxation with σ11 = σ22 = 0.

The knowledge of the relaxation matrix of the material G(t) allow to eval-

uate the stress vector as:

σ (t) =

∫ t

0

G (t− τ)ε̇ (τ) dτ (18)

The shear longitudinal and transverse relaxation functions namelyGT (t),GL(t)

and Gυ(t) are related by a linear equation similar to that involving creep func-170

tions in eq.(13) that reads:

GT (t) =
1

2
(GL (t)−Gυ (t)) (19)

allowing for the evaluation of the transverse relaxation Gυ(t) as:

Gυ (t) = 2GT (t)−Gυ (t) (20)
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In the following section the thermodynamic restrictions among the material

parameters used in power-law representation of isotropic material hereditariness

are outlined.

2.3. Power-law isotropic hereditariness: Thermodynamic restrictions175

Let us assume that relaxation functions in laterally restrained axial and torsion

shear tests, respectively, may be captured by power-laws with different order

(α 6= β) as:

GL (t) = G
(α)
L t−α + ḠL; GT (t) = G

(β)
T t−β + ḠT (21a)

Gυ (t) = 2
(
GT

(β)t−β + ḠT

)
−
(
GL

(α)t−α + ḠL

)
(21b)

with eq.(21b) obtained from the application of eq.(16). Physical dimensions of

the coefficients are [CL] = [CT ] = F/L2,
[
C

(α)
L

]
=

F

L2T−α
,
[
C

(α)
L

]
=

F

L2T−β
.180

Expression of the relaxation functions in eqs.(21a),(21b) yields the relaxation

matrix of the material in eq.(16) with elements in the block matrices G(A) (t)

and G(T) (t) reads:

G
(A)
ij = GL (t) δij + (1− δij)Gυ (t) (22a)

G
(T )
ij (t) = GT (t) δij (22b)

The observation of eqs.(22a), (22b) shows that the relaxation matrix involves

elements decaying with different power-law order β and α (α, β ∈ [0, 1]) as the185

functional classes in eqs. (21a), (21b) are replaced in eqs.(22a), (22b).

Coefficients and parameters involved in the power-law descriptions of the

material relaxation, namely, GL(t), Gυ(t) and GT (t) are related by thermody-

namic restrictions to ensure the requirement of positive entropy rate increment

[28]. Indeed, a dissipative simple solid is defined only if the restrictions:190

G (0) ≥ G (∞) ≥ 0 (23)

Ġ (0) ≥ 0 (24)
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are fulfilled by the relaxation matrix of the material as reported in basic refer-

ences on material hereditariness [29, 30, 31, 32].

Eqs.(24,25) are always satisfied assuming positive values of coefficients ḠL,

ḠT and G
(α)
L and G

(β)
T , whereas the latter eq.(25) is satisfied, only, as the eigen-

values of the first derivative of the matrix, namely, Ġ (0) are all negative. This195

requirement may be verified introducing a one-parameter family of relaxation

matrices defined on a real parameter δ as Gδ(t) = G(t+δ) and investigating the

behavior of the matrix family Ġδ(t) for limiting case of the parameter δ → 0.

The parameter-dependent matrix family Ġδ(t) is defined as:

Ġδ (t) =

 Ġ
(A)
δ (t+ δ) 0

0 Ġ
(T )
δ (t+ δ)

 (25)

where the elements of the matrix reads:

Ġ
(A)
δ (t+ δ) = −G(α)

L α(t+ δ)
−α−1

(26a)

Ġ
(T )
δ (t+ δ) = −G(β)

T β(t+ δ)
−β−1

(26b)

Ġ
(υ)
δ (t+ δ) = −2G

(β)
T β(t+ δ)

−β−1
+G

(α)
L α(t+ δ)

−(α+1)
(26c)

Observing that the one-parameter family Ġδ(t) leads, to the limit to:

lim
δ→0

Ġδ (t) = Ġ (t) (27)

We can infer the behavior of Ġ(t) from those of the family Gδ(t) and letting

δ → 0. In this regard, the requirement in eq.(25) may be obtained as:

−Ġ (0) = − lim
δ→0

Ġδ (t) ≥ 0 (28)

that is we evaluate the eigenvalues λi(δ) (i = 1, 2, ...6) of the matrix Ġδ(0) and

with the additional restraint −λi(δ) ≥ 0 (i = 1, 2, ...6) as δ → 0.200

14



The evaluation of the eigenvalues λi(δ) reads:

− λ1 (δ) = −λ2 (δ) = −2
(
ĠL (δ)− ĠT (δ)

)
≥ 0 (29a)

− λ3 (δ) = −λ4 (δ) = −λ5 (δ) = −ĠT (δ) ≥ 0 (29b)

− λ6 (δ) = −4ĠT (δ) + ĠL (δ) ≥ 0 (29c)

Substitution of eq.(26a),(26b) into eq.(29b) shows that the inequality is ful-

filled for C
(β)
T ≥ 0 and 0 ≤ β ≤ 1. Inequalities in eqs.(29a),(29c) read, after

substitution:

αGαδ
−(α+1) − βGβδ−(β+1) ≥ 0 (30a)

4βGβδ
−(β+1) − αGαδ−(α+1) ≥ 0 (30b)

that, after some straightforward manipulation, may be cast in a more suitable

form, taking natural logarithms as:

ln (Aαβ) ≥ (α− β) ln δ (31a)

ln

[
(Aαβ)

4

]
≤ (α− β) ln δ (31b)

where Aαβ = αG
(α)
L /

(
βG

(β)
T

)
. Inequalities in eqs.(30a)(30b) must be fulfilled

for any value of the parameter δ yielding that α = β. Moreover, in this latter

case the additional thermodynamical restriction holds true.

G
(β)
T ≤ C(β)

L ≤ 3C
(β)
T (32)

In passing we observe that the condition α = β holds true only for the

two terms (or one terms) description of the relaxation function in eq.(22a).205

Indeed, as we assume that the relaxation functions GL(t) and GT (t) involve

linear combinations of power-laws as:

GL (t) =

n∑
j=1

G
(αj)
L t−αj ;GT (t) =

m∑
i=1

G
(βi)
T t−βi (33)

with n and m the number of power-laws involved. Under such circumstances

thermodynamical arguments proposed this study yield proper same conditions
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among the order of the power-laws as:

max
j=1,N

(αj) = max
i=1,M

(βj) (34a)

min
j=1,N

(αj) = min
i=1,M

(βj) (34b)

The use of eq.(22a),(22b) substituted into the constitutive equations for the

three-axial hereditariness yields a relation among the stress vector and history

of the strain vector ε(t) as:

σ (t) = Gβ

∫ t

0

(t− τ)
−β
ε̇ (τ) dτ + Ḡ = Gβ

(
Dβ

0+ε
)

(t) + Ḡ (35)

where we assumed the Voigt representation of the relaxation tensor G (t) in

matrix form and we used the notation:

G (t) = Gβ
t−β

Γ (1− β)
+ Ḡ (36)

with the matrices:

Gβ (t) =



G
(L)
β G

(υ)
β G

(υ)
β 0 0 0

G
(υ)
β G

(L)
β G

(υ)
β 0 0 0

G
(υ)
β G

(υ)
β G

(L)
β 0 0 0

0 0 0 G
(T )
β 0 0

0 0 0 0 G
(T )
β 0

0 0 0 0 0 G
(T )
β


(37a)

G =



ḠL Ḡυ Ḡυ 0 0 0

Ḡυ ḠL Ḡυ 0 0 0

Ḡυ Ḡυ ḠL 0 0 0

0 0 0 ḠT 0 0

0 0 0 0 ḠT 0

0 0 0 0 0 ḠT


(37b)

The stress vector obtained as functional of the strain vector ε(t) in eq.(35)210

is the generalization of the constitutive equation reported in eq.(3a) under the

assumption of material isotropy.
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In the next section the multiaxial fractional-order hereditariness will be fur-

ther discussed introducing a mechanical hierarchy that yields the constitutive

model reported in eq.(35)215

3. Exact mechanical description of fractional-order isotropic heredi-

tariness

The stress/strain tensor outlined in sec.(2) requires a multiaxial constitutive

relation, as in eq.(35), that under the assumption of Ḡ = 0 generalizes eq.(3a).

The rheological element, namely the springpot, corresponding to eq.(3a) can220

not, however, be defined also for the isotropic description in sec.(2), namely for

the presence of shear stress/strain. A mechanical model that may be involved in

presence of normal and shear stress to be used in experimental test is represented

in fig.5

Figure 5: Rheologic elements

In such condition, the circular column of length, cross section A and radius R

under axial stress and shear stress related to the measured relative displacements

17



u(t) and twist angle ϕ(t) as:

F = K
(L)
β (Dβ

0+u) (t)

MT = K
(T )
β (Dβ

0+ϕ) (t)
(38)

where A = πR2 and JG = πR4/4 are the cross section and the polar moment225

of inertia of the circular cross-section represented in fig.5. The constitutive

equations in eq.(38) involves respectively for limiting cases: i) a linear elastic

spring (β = 0) ; ii) a linear viscous element (β = 1).

In the following we introduce a hierarchic mechanical model to capture the

axial and shear hereditariness assuming power-law description of the creep and230

relaxation functions for axial and shear stress/strain, respectively [33, 17, 34, 16].

The obtained mechanical hierarchy corresponds exactly to an axial and shear

springpots with the same order of time evolution/decay.

To this aim let us introduce an elastic column of unbounded length with

circular cross section of radius R. The elastic features of the column are non-

costant along the column axis and vary with the coordinate as:

E (z) =
Eα

Γ (1− α)
z−α; G (z) =

Gα
Γ (1− α)

z−α − 1 ≤ α ≤ 1 (39)

The column is externally restrained by a set of torsional and axial viscous dash-

pots fig.(5) with non-homogeneous viscosity η(z) as:

η (z) =
ηα

Γ (1 + α)
z−α − 1 ≤ α ≤ 1 (40)

Axial and torsional equilibrium along the column axis reads:

ηα
Γ (1 + α)

z−α2πR∆zu̇ (z, t) =
EαπR

2s(z + ∆z)
−α

Γ (1− α)
[u (z + ∆z, t)− u (z, t)] +

+
EαπR

2sz−α

Γ (1− α)
[u (z, t)− u (z −∆z, t)] (41)

235

ηα
Γ (1 + α)

z−α2πR2∆zϕ̇ (z, t) = GαπR
4(z + ∆z)

−α
[ϕ (z + ∆z, t)− ϕ (z, t)] +

+GαπR
4(z + ∆z)

−α
[ϕ (z, t)− ϕ (z −∆z, t)] (42)
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Figure 6: column with non-homogeneous viscosity
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Figure 7: elements of the column with non-homogeneous viscosity

that can be rewritten in differential form, letting ∆z → 0 as:

ηαz
−α

Γ (1 + α)

∂u (z, t)

∂t
=

EαRs

Γ (1− α)

∂

∂z

(
z−α

∂u (z, t)

∂z

)
(43a)

ηαz
−α

Γ (1 + α)

∂ϕ (z, t)

∂t
=

GαR

Γ (1− α)

∂

∂z

(
z−α

∂ϕ (z, t)

∂z

)
(43b)

Boundary conditions involving the differential fields u(z, t) and ϕ(z, t) in eqs.(43a),(43b)

read, respectively.

lim
z→∞

u (z, t) = 0 (44a)

lim
z→0

Eα
Γ (1− α)

z−α
∂u

∂z
= F0 (44b)

lim
z→∞

ϕ (z, t) = 0 (45a)

lim
z→0

Gα
Γ (1− α)

z−α
∂ϕ

∂z
= M0 (45b)

Mathematical operators and boundary conditions in eqs.(46a,b) are com-

pletely equivalent to those of a previous differential problem that has been solved

20



resorting to a non- linear mapping followed by Laplace transform [17, 35]. Such

a procedure yields a Bessel differential equation of second kind in terms of the

anomalous Laplace parameters. Position of the boundary conditions and inverse

Laplace transform provides solution in the form:

u0 (t) = u0 (z, t) = lim
z→∞

u (z, t) =
t−β

k
(L)
β

F0 = JL (t)F0 (46)

ϕ0 (t) = ϕ0 (z, t) = lim
z→∞

ϕ (z, t) =
t−β

k
(T )
β

M0 = JT (t)0 (47)

with:

k
(L)
β =

Γ (2β)
(
τβL

)
Eα21−2βΓ (β) Γ (1− β)

(48)

k
(T )
β =

Γ (2β)
(
τβL

)
Gα21−2βΓ (β) Γ (1− β)

(49)

with β = 1+α
2 and the relaxation times:

τL =
ηα
Eα

Γ (1− α)

Γ (1 + α)
(50)

τT =
ηα
Gα

Γ (1− α)

Γ (1 + α)
(51)

Effect superpositions provides, resorting to the fundamental equations of linear

viscoelasticity, the constitutive equations of the macroscopic variables as:

F0 (t) = k
(L)
β

(
Dβ

0+u0

)
(t) (52)

MT (t) = k
(T )
β

(
Dβ

0+ϕ0

)
(t) (53)

Eqs.(52),(53) are the constitutive equation at the macro-scale and, recalling

that F0 = σ33A and |τ | =

√
|t31|2 + |t32|2 = M0

2As the constitutive equation of

the material reads:

σ33 = G
(L)
β

(
Dβε33

)
(t) (54)

|τ | = G
(T )
β

(
Dβ |γ|

)
(t) (55)
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with the coefficients G
(L)
β and G

(T )
β that read:

G
(L)
β =

k̄
(L)
β l̄

A
G

(T )
β =

k̄
(T )
β

2As

R

l̄
(56)

and l̄ an internal length of the material. Eqs.(54),(55) the multiaxial constitu-

tive relations of the isotropic material and, henceforth, they proposed hierarchy

correspondent to the fractional-order isotropy introduce in the paper.

4. Conclusions

The mathematical structure of the fractional-order isotropic hereditariness has240

been discussed in the paper. The study has been framed in the context of

biomimetic ceramics used in cranioplasty neurosurgery (i.e. CustomBone R©

”prosthesis”). The creep and relaxation functions of isotropic linear hered-

itarinnes have been particularized for power-law decays yielding a multi-axial

constitutive model in terms of fractional-order operators. Additionally a specific245

mechanical model has been introduced that correspond to the fractional-order

isotropic hereditariness. In future studies experimental campaigns involving

creep and relaxation of biomimetic ceramics will be reported to assess the va-

lidity of material isotropy. Additionally, the proposed hierarchy will be further

extended to deal with non-linear hereditariness as those observed in creep and250

relaxations of tendons and ligaments.
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Abstract

In this paper the authors deal with the hereditary behavior of hydroxyapatite-

based composites used for cranioplastic surgery. It is shown that biomimetic

prosthesis, possess an isotropic fractional-order material hereditariness due to

their microstructure architecture. The three-axial hereditariness is framed in

the context of fractional-calculus providing details about thermodynamical re-

strictions of memory functions used in the formulation. A mechanical model

that corresponds, exactly, to the three-axial fractional-order hereditariness is

also introduced in the paper.

Keywords: Biomimetic materials,cranioplasty, fractional calculus,

power-law hereditariness, isotropic hereditariness.
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1. Introduction

The cranioplastic neurosurgery is nowadays an important issue worldwide since

it is necessary both in traumatic therapies or in presence of specific oncologic
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pathology. Cranioplasty is a surgical procedure that aims to re-establish the

skull integrity following a previous craniotomy due to the occurrence of trau-5

mas, tumors and/or congenital malformations. In all cases cranioplasty can be

considered as the conclusive action of a surgery initiated by the removal of a

bone operculum fig.1.

(a) (b)

Figure 1: cranioplasty surgery

Ideally, cranioplasty procedures should provide restoration of the protective

functions of the skull with maintenance of the original aesthetics and long-10

term mechanical performance [1] The ideal material for cranioplasty should

be chemically inert, biocompatible, biomechanically reliable, easily manufac-

tured, individually shaped, safe, and able to promote osteoblast migration. To-

day synthetic implants based on metallic (mainly titanium) or acrylic plaques

(mainly polymethylmeta-crylate or polyetheretherketone) are widely used in15

cranioplasty procedures. These are bioinert materials with good biocompati-

bility, resistance to infections, ease of sterilization, ability to be subjected to

imaging diagnostics, and the capacity to undergo flexible design for adaptation

to different clinical cases. They exhibit good mechanical strength, which offers

2



adequate brain protection from external shocks. However, they present poor20

osteogenic and osteoconductive ability, thus resulting in a foreign body func-

tioning as a shell expected to provide brain protection, but connected to the

surrounding bone only by its perimeter contact surface. In order to overcome

many limitations an Hydroxyapatite (HA)-based material has been widely con-

sidered for decades as the gold standard for bone scaffolds, as its composition25

is very close to that of bone mineral, thus exhibiting excellent biocompatibility,

a low inflammatory reaction as well as good osteogenic ability and osteocon-

ductivity. The hydrophilic character of HA favors cell attachment and tight

adhesion of bone to the scaffold surface, which is a key target for the stability

of the bone/implant interface. Therefore, HA scaffolds presenting wide, open30

and interconnected multiscale porosity can induce extensive bone ingrowth and

penetration throughout the whole scaffold, partly thanks to the possibility of

massive fluid perfusion, which triggers and assists neovascularization. Hence,

cranial reconstruction using synthetic porous HA has recently become the sub-

ject of intense debate among surgeons, and it now represents a new concept in35

cranioplasty procedures. The custom-made concept was first applied to porous

hydroxyapatite because of the need to overcome the fragility of the material

itself. Among the advantages of HA-based prosthesis there is the important

issue of customization.

Indeed, in presence of cranioplasty the morphology of the bone to be re-40

placed with a synthetic prosthesis must match, completely, the original bone

to accelerate the osteointegration of the prosthesis [2, 3, 4] in the surgical hole.

In fig.(2 a-d) an human parietal bone and its synthetic prosthesis fig.(3 a-c)

have been obtained from at universitary neurosurgery hospital in Palermo. The

synthetic bone used for replacement is a CustomBone R© (Finceramica Faenza),45

namely custom-made, porous hydroxyapatite scaffolds with total porosity in the

range of 60 to 70 % and pore architecture based on macro-pores (> 100 micron

) interconnected with micro-pores (5-10 micron). CustomBone R© scaffolds were

obtained by reproduction of the patients bone defect as modeled by 3D CT

scan and its represented as a composite ceramics material obtained from chem-50

3



ical deposition of hydroxyiapatite within a small fraction of collagen type I (see

fig.1a).

The use of biomimetic ceramics to replace cortical as well as trabecular bone

is as well defined to technique in bone surgery [5]. Indeed the mechanical feature

of the prosthesis in terms of elastic moduli and the strength of the biomimetic55

composite of integration are very similar. However, the use of ceramic materials

to replace the bones of human head may involve in different behavior in terms

of energy dissipation loss. This feature is related to material hereditariness that

depends on the movements of the organic collagen chains in the real bone. In

such a case additionally long-term stress are applied to the grafted ceramics60

prosthesis and this may lead to fracture propagation during patient follow up

[6]. The mechanical hereditary behavior of the material bone is intrinsically

orthotropic, due to the self-organization of the bone tissues into osteons in

periostial bone and trabecular in the sponges bone.

The hereditary properties of bone in uniaxial test is to be described by the65

creep J(t) and the relaxation G(t) functions that are well represented by power-

law J(t) ∝ tβ and G(t) ∝ t−β with 0 ≤ β ≤ 1 [5, 7, 8, 9]. In presence of

multiaxial state of stress different relations for creep and relaxations may be

observed. The introduction of power-laws in the description of creep and relax-

ations yields that the constitutive behavior of the material is expressed in terms70

of the so-called fractional calculus[10, 11, 12, 13, 14] that is a generalization

of the classical differential calculus to real-order integration and differentiation

df
/
dt→ dβf

/
dtβ with β ∈ [0, 1]. In such a context, uniaxial hereditariness

involving fractional order stress-strain relations have been reported since the

beginning of the twentyth century [15, 12] defining the so-called springpot el-75

ement [16, 17]. The introduction of the 3D constitutive relation for power-law

hereditariness, as those shows by biomimetic prosthesis, has not been, how-

ever, sufficiently, investigated in scientific literature. Indeed, in several cases,

recently discussed in scientific literature [18] the use of power-laws without ther-

modynamic restriction on the parameters does not guarantee positive entropy80

increment for any strain/stress process.
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(a) (b)

(c) (d)

Figure 2: human parietal bone
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(a) (b)

(c) (d)

Figure 3: CustomBone R© prosthesis morphology
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In this paper the authors aim to formulate a thermodynamically consistent

three-axial constitutive relations involving power-laws in the context of mate-

rial isotropy. The proposed constitutive relation discussed in sec. 2.3 will be

analyzed in sec.3 providing the exact mechanical description of the three-axial85

isotropic fractional-order hereditariness. Some conclusions about the proposed

model of isotropic hereditariness and the influence on the mechanics of the

biomimetic ceramics prosthesis are withdrawn in sec.4

2. Power-laws hereditariness of isotropic biomimetic ceramics

In this section the thee-axial isotropic constitutive relations in presence of power-90

laws hereditariness is outlined. In sec.2.1 the main arguments of power-law

hereditariness under uniaxial condition are shortly outlined. The three-axial

isotropic constitutive relation are defined in sec.2.2.

2.1. Uniaxial power-law hereditariness: The fractional order constitutive equa-

tion95

The constitutive behavior of materials in long-standing mechanical tests is de-

scribed by means of the well-known creep and relaxation functions, dubbed

J(t) and G(t), respectively. The linear superposition applied to a generic

stress/strain history, namely σ(τ) and ε(τ) with τ ≤ t, yields,

σ(t) =

∫ t

0

G(t− τ)dε(τ) =

∫ t

0

G(t− τ)ε̇(τ)dτ (1a)

ε(t) =

∫ t

0

J(t− τ)dσ(τ) =

∫ t

0

J(t− τ)σ̇(τ)dτ (1b)

Eqs.(1a, b) are defined in terms of Boltzman superposition, where ḟ(t) =

df(t)/dt denotes the increment of the generic function f(t) as well as the stress

dσ = σ̇dt. and the strain dε = ε̇dt increments, respectively.

Convolution integrals in eqs.(1a, b) are completely described introducing the

functional class of creep and relaxation functions an phenomenological based100

experimental data.
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Creep and relaxation functions characterize the material behavior and they

must satisfy the conjugation relation Ĵ(s)Ĝ(s) = 1/s2, where s indicates the

Laplace parameter and f̂(s) = L[f(t)] the Laplace transform of the generic

function f(t).105

In the context of materials hereditariness, power-law representation of creep

and relaxation functions, i.e. J(t) and G(t), was introduced at the beginning of

the last century [15],

G(t) =
Cβ

Γ(1− β)
t−β , (2a)

J(t) =
1

CβΓ(β + 1)
tβ (2b)

where Γ(·) is the Euler-Gamma function, β ∈ [0, 1] and Cβ , are positive real

parameters, that may be estimated through a best-fitting procedure of experi-

mental data [19, 20]. Straightforward manipulations show that the power-law

functional class in eqs.(2a, b), satisfies the conjugation relation and it yields,

upon substitution in eqs. (1a, b) the constitutive relations:

σ(t) =
Cβ

Γ(1− β)

∫ t

0

(t− τ)−β ε̇(τ)dτ = Cβ

(
Dβ

0+ε
)

(t) (3a)

ε(t) =
1

CβΓ(β + 1)

∫ t

0

(t− τ)β σ̇(τ)dτ =
1

CβΓ(β)

∫ t

0

(t− τ)β−1σ(τ)dτ =

=
1

Cβ

(
Iβ0+σ

)
(t) (3b)

in terms of the Caputo fractional derivative and Riemann-Liouville fractional

integral, respectively.

Use of power-laws and, as a consequence, of fractional-order operators is

usually referred, in a rheological context [21], to the introduction of the spring-

pot element. Springpot is a one-dimensional element that is defined by means110

of two parameters, i.e. Cβ and β, 0 ≤ β < 1 and Cβ > 0 whose constitutive

relation is obtained by eqs.(3a,b). More precisely, a simple spring corresponds

to β = 0 and
dβf

dtβ
=
d0f

dt0
= f ; whilst, case of β = 1 corresponds to a first order

derivative, i.e.
dβf

dtβ
=
df

dt
= ḟ , which is a Newtonian rheological element.
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2.2. Multiaxial constitutive relation for isotropic power-law hereditariness115

The extension of the constitutive relation presented in sec.2.1 to case of mul-

tiaxial state of stress and/or of strain is analyzed here by means of the effects

superposition.

Let us consider a three-dimensional stress tensor σ with component σij

represented in fig.(4) with the respective symmetries namely σij = σji for i 6= j.120

In the following we introduce the Voigt representation of the state coordi-

nates of the material considered that involves vector representation of stress and

strains as:

σT (t) = [σ11 (t)σ22 (t)σ33 (t)σ32 (t)σ31 (t)σ12 (t)] (4)

εT (t) = [ε11 (t) ε22 (t) ε33 (t) 2ε32 (t) 2ε31 (t) 2ε12 (t)] (5)

where t is the current time and the mixed index stress ans strain components,

namely σij (t) and εij (t) with i 6= j denotes shear stress and strains, respectively.

Let us assume that σij (t) = δij with δij the kroneker, and considering one single

stress σii = 1 acting (i = 1,2,3) it yields (fig.4 a,b,c):

(a) (b) (c)

Figure 4: elementary representative cube
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εii (t) = JL (t)σii = JL (t) (6a)

εkk (t) = εjj (t) = −Jυ (t)σii (6b)

with i 6= j 6= k and i, j, k = 1, 2, 3. In eqs.(6a-b) the function of JL (t) and125

Jυ (t) are the axial and the transverse creep functions with respect to the stress

direction, respectively. Under the assumption of smooth load process σij(t) the

presence of contemporaneous stress σij(t) = σij(t)δij , with i = 1, 2, 3, may be

account for by the integral.

εii (t) =

∫ t

0

JL (t− τ) σ̇ii (τ)− Jυ (t− τ) [σ̇jj (τ) + σ̇kk (τ)] dτ (7)

with i 6= j 6= k and i,j,k=1,2,3, respectively. The assumption of isotropic

hereditariness yields that the shear stress 2εij(t) i 6= j, is not caused by axial

stress, and it involves only the shear stress σij(t). Under these assumption,

introducing the shear creep function JT (·) the constitutive relation for the shear

strain reads:

2εij (t) =

∫ t

0

JT (t− τ)σ̇ij (τ) dτ (8)

with i 6= j and i, j = 1, 2, 3.130

Direct form of constitutive equations in eqs.(7, 8) may be represented in

Voigt formulation as:

ε (t) =

∫ t

0

J (t− τ)σ̇ (τ) dτ (9)

where J(t) is creep functions matrix that may be reported in block matrix

formulation as:

J (t) =

 J(A) (t) 0

0 J(T ) (t)

 (10)

where the elements of the axial creep matrix J(A)(t) are:

J
(A)
ij (t) = JL (t) δij − (1− δij) Jυ (11)

with i, j = 1, 2, 3. The shear creep matrix J(T )(t) is diagonal matrix elements:

J
(T )
ij (t) = JT (t) δij (12)

10



The three creep functions JL(t),Jυ(t) and JT (t) are related by a linear relation

that reads:

JT (t) = 2JL(t)− Jυ(t) (13)

that may be obtained with straightforward manipulation among a pure shear

stress σij(t) corresponding to shear strain γij = 2εij (t) and correlating the

elongation along principals directions at angles of π/4 .

Under the assumption linear elasticity the creep functions coincides with the

material compliance that reads JT = 1/G, JL = 1/E and Jυ = υ/E yielding,

after substitution in eq.(13):

1

G
= 2

(
1

E
+
υ

E

)
=

2 (1 + υ)

E
(14)

that is the well-known relation among elasticity moduli. The knowledge of the

creep function matrix, namely, J(t) in eq.(10) allows for the definition of the

relaxation matrix G(t) by means of the coniugation relation as:

Ĝ(s)Ĵ(s) =
1

s2
I (15)

where I is the identity matrix and ˆG(s), ˆJ(s) are the Laplace transforms of the

relaxation G(t) and the creep J(t) matrices. Straightforward manipulations of135

eq.(15) and inverse Laplace transform the relation matrix may be written as:

G (t) =

 G(A) (t) 0

0 G(T ) (t)

 (16)

where:

G
(A)
ij (t) = L−1

 1

s2
(
ĴL + Ĵυ

)(
ĴL − 2Ĵυ

)
[(ĴL − Ĵυ) δij + (1− δij) Ĵυ

]
(17a)

G
(T )
ij (t) = L−1

 1

s2
(
ĴL + Ĵυ

)
 δij (17b)

11



The observation of eqs.(17 a,b) shows that in presence of material fading mem-

ory, that is material hereditariness there is a need to obtain the relaxation

functions in the relaxation matrix G(t) from a combination of creep functions140

obtained by uniaxial creep tests. Similar considerations hold true also assuming

that from uniaxial traction relaxation tests, the relaxation functions GL(t) is

obtained in lateral free conditions that is the specific state of strain involves

ε11 6= ε22 6= 0 and ε33 = 1 measuring only the decay of the axial stress σ33(t)

but with applied lateral stress σ11 = σ22 = 0.145

Summing up, the aforementioned considerations show that the relaxation

matrix G(t) cannot be obtained from uniaxial traction/torsion relaxation.

Similar but less intuitive arguments hold about the relation among the shear,

GT (t), longitudinal and transverse relaxation functions namely GL(t) Gυ(t) that

reads:

GT (t) =
1

2
(GL (t)−Gυ (t)) (18)

allowing, the evaluation of the transverse relaxation Gυ(t) as:

Gυ (t) = 2GT (t)−Gυ (t) (19)

The relations among the creep and relation functions involved in isotropic mate-

rial hereditariness in eqs.(13, 19) do not depend on the specific functional class

used to capture experimental data.150

In the following section, the introduction of power-law hereditariness for the

3D constitutive equation is found in the context of thermodynamical restriction

to introduce some constrains on material parameters.

2.3. The isotropic fractional-order hereditariness

In this section we assume that relaxation functions are expressed as:

GL (t) =
C

(L)
α t−α

Γ (1− α)
+ CL (20a)

GT (t) =
C

(T )
α t−α

Γ (1− α)
+ CT (20b)
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where C
(υ)
α = 2C

(T )
α − C

(L)
α and C

(υ)
= 2CT − CL and Gυ (t) according to155

eq.(19). Under these circumstances, the relaxation matrix of the material may

be represented as

G (t) = Cα
t−α

Γ (1− α)
+ C̄ (21)

Where the matrix:

Cα =

 C
(A)
α 0

0 C
(T )
α

 (22a)

C̄ =

 C̄
¯
(A)

0

0 C̄(T )

 (22b)

and

C
(A)
ij = C(L)

α δij + (1− δij)C(υ)
α ; C̄ij = C̄(A)δij + (1− δij) C̄(υ) (23)

The use of eq.(21) substituted into the constitutive equations for the tree-axial

hereditariness yields a relation among the value of the stress vector and history

of the strain vector ε(t) as:

σ (t) = Cα

∫ t

0

(t− τ)
−α
ε̇ (τ) dτ + C̄ = Cα (Dα

0+ε) (t) + C̄ (24)

The stress vector in eq.(24) in terms of the strain vector ε(t) is the three-axial

generalization of the constitutive equation reported in eq.(3a).

In the following section we show that, under the assumption of material160

isotropy, there are some restrictions on the expressions of the power-laws used

for GL(t) and GT (t).

2.4. Power-laws 3D hereditariness: Thermodynamic restrictions

In this section, we assume that the relaxation tests conducted for the restrained

axial and shear relaxations may be captured by power-laws with dotted decay165

order (α 6= β) as:

GL (t) = C
(α)
L t−α + ḠL; GT (t) = C

(β)
T t−β + ḠT (25a)

Gυ (t) = 2
(
CT t

−β + ḠT
)
−
(
CLt

−α + ḠL
)

(25b)
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with eq.(24b) obtained from the application of eq.(18). Physical dimensions of

the coefficients are [CL] = [CT ] = F/L2,
[
C

(α)
L

]
=

F

L2T−α
,
[
C

(α)
L

]
=

F

L2T−β
.

The observation of eq.(24a, b) yields a relaxation matrix containing two different

power-laws with orders β and α (α, β ∈ [0, 1]). It may be observed that the170

relaxation matrix must satisfy some thermodynamic restrictions [22] about the

functional class of the elements collected in the matrix, namely GL(t), Gυ(t)

and GT (t). Indeed, a dissipative material is guaranteed, only if the restrictions:

G (0) ≥ G (∞) ≥ 0 (26)

Ġ (0) ≥ 0 (27)

are fulfilled by the relaxation matrix [23, 24, 25, 26]. It can be verified that

eqs.(26,27) are always satisfied assuming positive values of coefficients ḠL, ḠT175

and C
(α)
L and C

(β)
T , whereas the latter eq.(26) is satisfied, only, as the eigenvalues

of the first derivative of the matrix, namely, Ġ (0) are all negative. In order

to check this requirement we introduce a one-parameter family of relaxation

matrices defined on a real parameter δ as Gδ(t) = G(t+δ)(t) and we investigated

the behavior of the matrix family Ġδ(t).180

In this regard matrix Ġ(t) reads:

Ġδ (t) =

 Ġ
(A)
δ (t+ δ) 0

0 Ġ
(T )
δ (t+ δ)

 (28)

where the elements of the matrix reads:

Ġ
(A)
δ (t+ δ) = −C(α)

L α(t+ δ)
−α−1

(29a)

Ġ
(T )
δ (t+ δ) = −C(β)

T β(t+ δ)
−β−1

(29b)

Ġ
(υ)
δ (t+ δ) = −2C

(β)
T β(t+ δ)

−β−1
+ C

(α)
L α(t+ δ)

−(α+1)
(29c)

Observing that the one-parameter family Ġδ(t) leads, to the limit to:

lim
δ→0

Ġδ (t) = Ġ (t) (30)

14



We can infer the behavior of Ġ(t) from those of the family Gδ(t) and letting

δ → 0. In this regard, the requirement in eq.(27) may be obtained as:

−Ġ (0) = − lim
δ→0

Ġδ (t) ≥ 0 (31)

that is we evaluate the eigenvalues λi(δ) (i = 1, 2, ...6) of the matrix Ġδ(0) and

we require that simultaneously −λi(δ) ≥ 0 (i = 1, 2, ...6) as δ → 0. Evaluation

of the eigenvalues λi(δ) reads:

− λ1 (δ) = −λ2 (δ) = −2
(
ĠL (δ)− ĠT (δ)

)
≥ 0 (32a)

− λ3 (δ) = −λ4 (δ) = −λ5 (δ) = −ĠT (δ) ≥ 0 (32b)

− λ6 (δ) = −4ĠT (δ) + ĠL (δ) ≥ 0 (32c)

Substitution of eq.(29a,b) into eq.(32 b) shows that the inequality is fulfilled for

C
(β)
T ≥ 0 and 0 ≤ β ≤ 1. The inequalities in eqs.(32 a,c) read, after substitution:

αCαδ
−(α+1) − βCβδ−(β+1) ≥ 0 (33a)

4βCβδ
−(β+1) − αCαδ−(α+1) ≥ 0 (33b)

that, after some straightforward manipulation, may be cast in a more suitable

form, taking natural logarithms.

ln (Aαβ) ≥ (α− β) ln δ (34a)

ln

[
(Aαβ)

4

]
≤ (α− β) ln δ (34b)

where Aαβ = αC
(α)
L /β

(
C

(β)
T

)
. The two inequalities in eqs.(34 a,b) must be

fulfilled for any value of the parameter δ yielding that α = β. Moreover, in this

latter case the additional thermodynamical restriction holds true.

CT ≤ CL ≤ 3CT (35)

In passing we observe that the condition α = β holds true only for the two

terms (or one terms) description of the relaxation function in eq.(25 a).
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Indeed, as assume that the relaxation functions GL(t) and GT (t) involve

linear combinations of power-laws:

GL (t) =

N∑
j=1

C
(j)
L t−αj ;GT (t) =

M∑
i=1

C
(i)
T t−βi (36)

with N and M the number of power-laws involved. The thermodynamical argu-

ments proposed this study yields that:

max
j=1,N

(αj) = max
i=1,M

(βj) (37a)

min
j=1,N

(αj) = min
i=1,M

(βj) (37b)

185

In the next section the multiaxial fractional-order hereditariness will be fur-

ther discussed introducing a mechanical hierarchy that corresponds exactly to

the multiaxial constitutive model expressed in eq.(24).

3. The exact mechanical representation of three-axial fractional-order

isotropic hereditariness190

Relaxation functions in eq.(25b) corresponds to an exact rheological model that

generalizes the 1D springpot reported in eq.(7). The mechanical model gen-

eralizing the one-dimensional springpot has been recently reported in recent

scientific literature [27, 28, 29, 30]. The main difference among the uniaxial

springpot and multiaxial case the presence of pure shear stress and strain in the195

3D rheology.

These effect may be construed as we introduce a torsional rheologic element

reported in the correspondent figures of the eqs.(38-40) that are represented by

the constitutive relation.
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F = kLu =
EA

L
u

Mt = kTϕ =
GJT
L

ϕ

(38)
200

F =
C

(L)
β A

L

(
Dβu

)
(t)

Mt =
C

(T )
β JT

L

(
Dβϕ

)
(t)

(39)

F =
ηLA

L
u̇

Mt =
ηTJT
L

ϕ̇

(40)

where we denoted Jt and A the torsional inertia and the cross-section of the

model, respectively.

The constitutive equations in eqs.(38,40) involves respectively: i) a linear205

elastic spring ; ii) a linear viscous element and iii) a linear shear springpot.

In the following we introduced a hierarchic mechanical model to capture the

axial and shear hereditariness assuming power-law description of the creep and

relaxation functions for axial and shear stress/strain, respectively [31, 28, 32, 27].

The obtained mechanical hierarchy corresponds exactly to an axial and shear210

springpots with the same order of time evolution/decay.

To this aim let us introduce an elastic column of unbounded length with

circular cross section of radius R. The elastic features of the column are non-
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costant along the column axis and vary with the coordinate as:

E (z) =
Eα

Γ (1− α)
z−α; G (z) =

Gα
Γ (1− α)

z−α − 1 ≤ α ≤ 1 (41)

The column is externally restrained by a set of torsional and axial viscous dash-

pots fig.(5) with non-homogeneous viscosity η(z) as:

η (z) =
ηα

Γ (1 + α)
z−α − 1 ≤ α ≤ 1 (42)

Axial and torsional equilibrium along the column axis reads:

Figure 5: column with non-homogeneous viscosity

ηα
Γ (1 + α)

z−α2πR∆zu̇ (z, t) =
EαπR

2s(z + ∆z)
−α

Γ (1− α)
[u (z + ∆z, t)− u (z, t)] +

+
EαπR

2sz−α

Γ (1− α)
[u (z, t)− u (z −∆z, t)] (43)
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Figure 6: elements of the column with non-homogeneous viscosity

ηα
Γ (1 + α)

z−α2πR2∆zϕ̇ (z, t) = GαπR
4(z + ∆z)

−α
[ϕ (z + ∆z, t)− ϕ (z, t)] +

+GαπR
4(z + ∆z)

−α
[ϕ (z, t)− ϕ (z −∆z, t)] (44)

that can be rewritten in differential form, letting ∆z → 0 as:

ηαz
−α

Γ (1 + α)

∂u (z, t)

∂t
=

EαRs

Γ (1− α)

∂

∂z

(
z−α

∂u (z, t)

∂z

)
(45a)

ηαz
−α

Γ (1 + α)

∂ϕ (z, t)

∂t
=

GαR

Γ (1− α)

∂

∂z

(
z−α

∂ϕ (z, t)

∂z

)
(45b)

Boundary conditions involving the differential fields u(z, t) and ϕ(z, t) in eqs.(45a,b)

read, respectively.

lim
z→∞

u (z, t) = 0 (46a)

lim
z→0

Eα
Γ (1− α)

z−α
∂u

∂z
= F0 (46b)

lim
z→∞

ϕ (z, t) = 0 (47a)

lim
z→0

Gα
Γ (1− α)

z−α
∂ϕ

∂z
= M0 (47b)
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The mathematical operators and the boundary conditions in eqs.(46a,b) are

completely equivalent to those of a previous differential problem that has been

solved resorting to a non- linear mapping followed by Laplace transform [28, 33].

Such a procedure yields a Bessel differential equation of second kind in terms

of the anomalous Laplace parameters. Position of the boundary conditions and

inverse Laplace transform provides solution in the form:

u0 (t) = u0 (z, t) = lim
z→∞

u (z, t) =
t−β

k
(L)
β

F0 = JL (t)F 0 (48)

ϕ0 (t) = ϕ0 (z, t) = lim
z→∞

ϕ (z, t) =
t−β

k
(T )
β

M0 = JT (t)M0 (49)

with:

k
(L)
β =

Γ (2β)
(
τβL

)
Eα21−2βΓ (β) Γ (1− β)

(50)

k
(T )
β =

Γ (2β)
(
τβL

)
Gα21−2βΓ (β) Γ (1− β)

(51)

with β = 1+α
2 and the relaxation times:

τL =
ηα
Eα

Γ (1− α)

Γ (1 + α)
(52)

τT =
ηα
Gα

Γ (1− α)

Γ (1 + α)
(53)

Effect superpositions provides, resorting to the fundamental equations of linear

viscoelasticity, the constitutive equations of the macroscopic variables as:

F0 (t) = k
(L)
β

(
Dβ

0+u0

)
(t) (54)

M0 (t) = k
(T )
β

(
Dβ

0+ϕ0

)
(t) (55)

Eqs.(54, 55) are the constitutive equation at the macro-scale and, recalling that

F0 = σ33A and |τ | =

√
|t31|2 + |t32|2 = M0

2As the constitutive equation of the

material reads:

σ33 = C
(L)
β

(
Dβε33

)
(t) (56)
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|τ | = C
(T )
β

(
Dβ |γ|

)
(t) (57)

with the coefficients C
(L)
β and C

(T )
β that read:

C
(L)
β =

k
(L)
β l̄

A
C

(T )
β =

k
(T )
β

2As

R

l̄
(58)

and l̄ an internal length of the material.

4. Conclusions215

The mathematical structure of the fractional-order isotropic hereditariness has

been discussed in the paper. The study has been framed in the context of

biomimetic ceramics used in cranioplasty neurosurgery (i.e. CustomBone R©

”prosthesis”). The creep and relaxation functions of isotropic linear heredi-

tarinnes have been particularized for power-law decays yielding a multi-axial220

constitutive model in terms ofg fractional-order operators. Additionally a spe-

cific mechanical model has been introduced to describe the three-axial consti-

tutive model expend in terms of fractional-order operator. In future studies

experimental campaigns involving creep and relaxation of biomimetic ceramics

will be reported to assess the validity of material isotropy. Additionally, the pro-225

posed hierarchy will be further extended to deal with non-linear hereditariness

as those observed in creep and relaxations of tendons and ligaments.
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Abstract

We discuss the hereditary behavior of hydroxyapatite-based composites used for

cranioplastic surgery in the context of material isotropy. We classify mixtures of

collagen and hydroxiapatite composites as biomimetic ceramic composites with

hereditary properties modeled by fractional-order calculus. We assune isotropy

of the biomimetic ceramic is assumed and provide thermodynamic of restric-

tions for the material parameters. We exploit the proposed formulation of the

fractional-order isotropic hereditariness further by means of a novel mechan-

ical hierarchy corresponding exactly to the three-dimensional fractional-order

constitutive model introduced.
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plasty is a surgical procedure that aims to re-establish the skull integrity fol-

lowing a previous craniotomy due to the occurrence of traumas, tumors and/or5

congenital malformations. In all cases cranioplasty can be considered as the

conclusive action of a surgery initiated by the removal of a bone operculum, see

fig.1.

(a) (b)

Figure 1: (a) cranioplasty surgery, Policlinico Giaccone Palermo; (b) preclinical analysis

Ideally, cranioplasty procedures should provide restoration of the protective

functions of the skull with maintenance of the original aesthetics and long-10

term mechanical performance [1]. The ideal material for cranioplasty should be

chemically inert, biocompatible, biomechanically reliable, easily manufactured,

individually shaped, safe, and able to promote osteoblast migration. Nowa-

days synthetic implants based on metallic (mainly titanium) or acrylic plates

(mainly polymethylmeta-crylate or polyetheretherketone) are widely used in15

cranioplasty procedures. These are bioinert materials with good biocompati-

bility, resistance to infections, ease of sterilization, ability to be subjected to

imaging diagnostics, and the capacity to undergo flexible design for adaptation

to different clinical cases. They exhibit good mechanical strength, which offers

2



adequate brain protection from external shocks. However, they present poor20

osteogenic and osteoconductive ability, thus resulting in a foreign body func-

tioning as a shell expected to provide brain protection, but connected to the

surrounding bone only by its perimeter contact surface. In order to overcome

many limitations an Hydroxyapatite (HA)-based material has been widely con-

sidered for decades as the gold standard for bone scaffolds, as its composition25

is very close to that of bone mineral, thus exhibiting excellent biocompatibility,

a low inflammatory reaction as well as good osteogenic ability and osteocon-

ductivity. The hydrophilic character of HA favors cell attachment and tight

adhesion of bone to the scaffold surface, which is a key target for the stability

of the bone/implant interface. Therefore, HA scaffolds presenting wide, open30

and interconnected multiscale porosity can induce extensive bone ingrowth and

penetration throughout the whole scaffold, partly thanks to the possibility of

massive fluid perfusion, which triggers and assists neovascularization. Hence,

cranial reconstruction using synthetic porous HA has recently become the sub-

ject of intense debate among surgeons, and it now represents a new concept in35

cranioplasty procedures. The custom-made concept was first applied to porous

hydroxyapatite because of the need to overcome the fragility of the material

itself. One of the advantages of HA-based prosthesis is customization.

Indeed, in the presence of cranioplasty, the morphology of the bone to be

replaced with a synthetic prosthesis must match completely the original bone40

to accelerate the osteointegration of the prosthesis [2, 3, 4] in the surgical hole.

In fig.(2 a-d) a human parietal bone and its synthetic prosthesis, see fig.(3 a-c)

have been obtained from a university neurosurgery hospital in Palermo. The

synthetic bone used for replacement is a CustomBone R© (Finceramica Faenza),

namely custom-made, porous hydroxyapatite scaffolds with total porosity in the45

range of 60 to 70 % and pore architecture based on macro-pores (> 100 micron)

interconnected with micro-pores (5-10 micron). CustomBone R© scaffolds were

obtained by reproduction of the patients bone defect as modeled by 3D CT

scan. They are made of a composite ceramics material obtained from chemical

deposition of hydroxyiapatite with a small fraction of collagen type I (see fig.1a).50

3



(a) (b)

Figure 2: (a) human parietal bone, Policlino Giaccone Palermo; (b) human parietal bone

lateral section, Policlino Giaccone Palermo

The use of biomimetic ceramics to replace cortical as well as trabecular bone

is a well- defined technique in bone surgery [5]. Indeed the mechanical features

of the prosthesis in terms of elastic moduli and the strength of the biomimetic

composite of integration are very similar. However, the use of ceramic materials55

to replace the bones of a human head may involve different behaviors in terms

of energy dissipation. Indeed, biologic tissues show marked hereditariness due

to the reptation of the collagen chains of the material as well as to the fiber

recruitment in the tissues. Material hereditariness involves additional stresses

that may be applied to the grafted ceramics prosthesis and may lead to fracture60

propagation during patient follow-up [6].

The hereditary properties of bone in uniaxial test are represented by creep

J(t) and relaxation G(t) functions formulated in terms of power-law J(t) ∝ tβ

and G(t) ∝ t−β with 0 ≤ β ≤ 1, yielding an accurate description of experimen-

tal data [5, 7, 8, 9, 10]. Power-laws hereditariness in conjuction with Boltzmann65
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(a) (b)

Figure 3: (a) CustomBone R© prosthesis morphology; (b) CustomBone R© lateral section of

superposition yields the constitutive behavior in terms of so-called fractional

integrals and derivatives. Fractional calculus may be considered as a general-

ization of the classical differential calculus to real-order integration and differen-

tiation
(
i.e.df

/
dt→ dβf

/
dtβ
)

with β ∈ [0, 1] as reported in classical references

[11, 12, 13, 14, 15]. In such a context, uniaxial hereditariness [16, 17, 18, 19]70

involving fractional order stress-strain relations has been reported since the be-

ginning of the 20th century [20, 13] defining the so-called springpot element

[21, 22].

In the presence of tensorial stress/strain state, as in the continuum mechan-

ics description of biomimetic prosthesis, no generalities have been reported in75

the scientific literature to capture multiaxial hereditariness with fractional-order

calculus, to the best of the authors’ knowledge. Indeed, in several cases recently

discussed in the scientific literature [23, 24], the use of power-laws without ther-

modynamic restrictions the parameters does not guarantee positive entropy rate

for any strain/stress process involved by material.80

In this paper, a 3D constitutive relation describing material hereditariness is

discussed in the context of power-laws functional classes of the relaxation/creep

functions. We show that, under the assumption of material isotropy, thermo-

dynamical restrictions on the constitutive parameters allow us to formulate the

5



constitutive behavior in terms of a Caputo fractional derivative that is formally85

analogous to the constitutive behavior in uniaxial state of stress/strain.

The paper is organized as follows. Section 2 provides generalities about

fractional-order calculus and isotropic hereditariness; section 3 reports a me-

chanical hierarchy that corresponds exactly to the isotropic fractional-order

hereditariness. Section 4 provides some conclusions about the proposed model90

of isotropic hereditariness and the influence on the mechanics of the biomimetic

ceramics prosthesis.

2. Power-law hereditariness of isotropic biomimetic ceramics

In this section we outline the constitutive relations in the presence of power-law

hereditariness, including the main arguments of power-law hereditariness under95

uniaxial stress/strain, generalization to the isotropic case, and thermodynamic

restrictions on the material parameters.

2.1. Uniaxial power-law hereditariness: The fractional order constitutive equa-

tion

We describe the constitutive behavior of materials in long-standing mechanical

tests is described by means of the well-known creep and relaxation functions,

dubbed J(t) andG(t), respectively. The linear superposition applied to a generic

stress/strain history, namely σ(τ) and ε(τ) with τ ≤ t, yields:

σ(t) =

∫ t

0

G(t− τ)dε(τ) =

∫ t

0

G(t− τ)ε̇(τ)dτ (1a)

ε(t) =

∫ t

0

J(t− τ)dσ(τ) =

∫ t

0

J(t− τ)σ̇(τ)dτ (1b)

Eqs.(1a, b) are defined in terms of Boltzman superposition with dσ = σ̇dt100

and dε = ε̇dt increments, where [·] = d
dt . Creep and relaxation functions char-

acterize the material behavior and they must satisfy the conjugation relation

Ĵ(s)Ĝ(s) = 1/s2, where s indicates the Laplace parameter and f̂(s) = L[f(t)] is

the Laplace transform of the generic function f(t). In the context of materials
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hereditariness, power-law representation of creep and relaxation functions, i.e.105

J(t) and G(t), was introduced at the beginning of the last century [20],

G(t) =
Cβ

Γ(1− β)
t−β , (2a)

J(t) =
1

CβΓ(β + 1)
tβ (2b)

where Γ(·) is the Euler-Gamma function, β ∈ [0, 1] and Cβ > 0, are material

parameters, that may be estimated through a best-fitting procedure of experi-

mental data [25, 26]. Straightforward manipulations show that the power-law

functional class in eqs.(2a, b) satisfies the conjugation relation and it yields,

upon substitution in eqs. (1a, b) the following constitutive relations:

σ(t) =
Cβ

Γ(1− β)

∫ t

0

(t− τ)−β ε̇(τ)dτ = Cβ

(
Dβ

0+ε
)

(t) (3a)

ε(t) =
1

CβΓ(β + 1)

∫ t

0

(t− τ)β σ̇(τ)dτ =
1

Cβ

(
Iβ0+σ

)
(t) (3b)

in terms of the Caputo fractional derivative and Riemann-Liouville fractional

integral, respectively.

Use of power-laws and, as a consequence, of fractional-order operators is usu-

ally connected, in a rheological context [27], to the introduction of the springpot110

element.

Springpot is a one-dimensional element defined in terms of two parameters,

i.e. Cβ and β, 0 ≤ β < 1 and Cβ > 0 whose constitutive relation is reported in

eqs.(3a,b). Such element with an intermediate behavior among elastic springs

and viscous dashpot, is widely used nowadays to define several types of materials115

including as limiting cases, elastic (β = 0) and viscous elements (β = 1). More

precisely, a simple spring corresponds to β = 0 and
dβf

dtβ
=
d0f

dt0
= f ; whilst the

case of β = 1 corresponds to a first order derivative, i.e.
dβf

dtβ
=
df

dt
= ḟ , which

is a Newtonian dashpot.

2.2. Constitutive relation for isotropic power-law hereditariness120

The extension of the constitutive relation presented in section 2.1 and tensorial

strain/stress state are discussed in this section by means of effect superposition.
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Let us consider a 2nd-order stress tensor σ with component σij represented

in fig.(4) with the symmetries σij = σji for i 6= j.

In the following we introduce the Voigt representation of the state variables

of the material in terms of vector representation of stress and strains tensors as:

σT (t) = [σ11 (t)σ22 (t)σ33 (t)σ32 (t)σ31 (t)σ12 (t)] (4)

εT (t) = [ε11 (t) ε22 (t) ε33 (t) 2ε32 (t) 2ε31 (t) 2ε12 (t)] (5)

where t is the current time and the mixed index stress and strain components,125

namely σij (t) and εij (t) with i 6= j denote shear stress and strain, respectively.

Let us assume that σij (t) = δij and let us consider a single normal stress σii = 1

for (i = 1,2,3).

In such a context the evolution of the strain εii (t) along the stress direction

σii (t) and in the orthogonal planes reads:130

εii (t) = JL (t)σii = JL (t) (6a)

εkk (t) = εjj (t) = −Jυ (t)σii (6b)

with i 6= j 6= k and i, j, k = 1, 2, 3. In eqs.(6a-b) JL (t) and Jυ (t) are the

axial and the transverse creep functions with respect to the stress direction,

respectively. Under the assumption of smooth load process σij(t) the presence

of contemporaneous stress σij(t) = σij(t)δij , with i = 1, 2, 3, may be accounted

for by the integral135

εii (t) =

∫ t

0

JL (t− τ) σ̇ii (τ)− Jυ (t− τ) [σ̇jj (τ) + σ̇kk (τ)] dτ (7)

with i 6= j 6= k and i,j,k=1,2,3, respectively.

In the context of material isotropy shear strains 2εij(t), (i 6= j), are not

involved by the axial stress σii (t), but only by the shear stress as σij(t) with

i 6= j. The evolution of the shear strain 2εij(t) due to a generic shear stress

8



history σij(t) may be obtained by superposition integrals by means of the shear140

creep function JT (·) as:

2εij (t) =

∫ t

0

JT (t− τ)σ̇ij (τ) dτ (8)

with i 6= j and i, j = 1, 2, 3. The constitutive equations reported in eqs.(7),(8)

may be reported in Voigt notation as:

ε (t) =

∫ t

0

J (t− τ)σ̇ (τ) dτ (9)

where J(t) is the creep functions matrix that is described as:

J (t) =

 J(A) (t) 0

0 J(T ) (t)

 (10)

where the elements of the axial creep matrix J(A)(t) are:

J
(A)
ij (t) = JL (t) δij − (1− δij) Jυ (t) (11)

with i, j = 1, 2, 3. The shear creep matrix J(T )(t) is a diagonal matrix gathering145

the shear creep functions JT (t) as:

J
(T )
ij (t) = JT (t) δij (12)

The three creep functions JL(t),Jυ(t) and JT (t) are related by a linear relation

that reads:

JT (t) = 2JL(t)− Jυ(t) (13)

that may be obtained, with straightforward manipulations, by introducing a

shear stress state σij(t) that involves a shear strain state under isotropy as-

sumption, namely γij = 2εij (t), and as evaluating the elongation and the stress

along the principal axes at angles of π/4.150

Under the assumption of linear elasticity, the creep functions coincide with

the material compliance, which reads JT = 1/G, JL = 1/E and Jυ = υ/E.

After substitution in Eq.(13), this yields:

1

G
= 2

(
1

E
+
υ

E

)
=

2 (1 + υ)

E
(14)

9



that is the well-known relation among elasticity moduli.

Knowledge of the creep function matrix J(t) in Eq.(10) allows for the def-

inition of the relaxation matrix G(t) by means of the coniugation relation as:

Ĝ(s)Ĵ(s) =
1

s2
I (15)

where I is the identity matrix and Ĝ(s), Ĵ(s) are the Laplace transforms of the

relaxation G(t) and the creep functions J(t) matrices.

With straightforward manipulations of Eq.(15) and inverse Laplace trans-

form, the relaxation matrix may be written as:155

G (t) =

 G(A) (t) 0

0 G(T ) (t)

 (16)

where:

G
(A)
ij (t) = L−1

 1

s2
(
ĴL + Ĵυ

)(
ĴL − 2Ĵυ

)
[(ĴL − Ĵυ) δij + (1− δij) Ĵυ

]
(17a)

G
(T )
ij (t) = L−1

 1

s2
(
ĴL + Ĵυ

)
 δij (17b)

Eqs.(17a),(17b) show that in the presence of material fading memory, the re-

laxation matrix G(t) is obtained as a combination of creep functions relative

to uniaxial creep tests. Similar considerations may be also withdrawn from the

observation that in uniaxial relaxation tests, the relaxation function GL(t) is ob-160

tained in lateral free conditions, that is the strain state involves ε11 6= ε22 6= 0

and ε33 = 1 and measuring only σ33(t) = GL (t) relaxation with σ11 = σ22 = 0.

Knowledge of the relaxation matrix of the material G(t) allows to evaluate

the stress vector as:

σ (t) =

∫ t

0

G (t− τ)ε̇ (τ) dτ (18)

The longitudinal shear and transverse relaxation functions GT (t),GL(t) and

10



Gυ(t) are linearly related by an equation that is similar to the one involving

creep functions in Eq.(13), reading:165

GT (t) =
1

2
(GL (t)−Gυ (t)) . (19)

The latter allows for the evaluation of the transverse relaxation Gυ(t), as:

Gυ (t) = 2GT (t)−Gυ (t) (20)

In the following section, we derive the thermodynamic restrictions among

the material parameters used in power-law representation of isotropic material

hereditariness.

2.3. Power-law isotropic hereditariness: Thermodynamic restrictions

Let us assume that relaxation functions in laterally restrained axial and torsion170

shear tests may be captured, respectively, by power-laws with different order

(α 6= β) as:

GL (t) = G
(α)
L t−α + ḠL; GT (t) = G

(β)
T t−β + ḠT (21a)

Gυ (t) = 2
(
GT

(β)t−β + ḠT

)
−
(
GL

(α)t−α + ḠL

)
(21b)

with Eq.(21b) obtained from the application of Eq.(16). The physical di-

mensions of the coefficients are [CL] = [CT ] = F/L2,
[
C

(α)
L

]
=

F

L2T−α
,[

C
(α)
L

]
=

F

L2T−β
.175

The expressions of the relaxation functions in Eqs.(21a),(21b) yield the re-

laxation matrix of the material in Eq.(16), with elements in the block matrices

G(A) (t) and G(T) (t) reading:

G
(A)
ij = GL (t) δij + (1− δij)Gυ (t) (22a)

G
(T )
ij (t) = GT (t) δij (22b)

We see that the relaxation matrix involves elements decaying with different

power-laws of order β and α (α, β ∈ [0, 1]).180
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The coefficients and parameters involved in the power-law descriptions of the

material relaxation, namely, GL(t), Gυ(t) and GT (t) are related by thermody-

namical restrictions to ensure the requirement of positive entropy rate increment

[28]. Indeed, a dissipative simple solid is defined only if the restrictions:

G (0) ≥ G (∞) ≥ 0 (23)

Ġ (0) ≥ 0 (24)

are fulfilled by the relaxation matrix of the material as reported in basic refer-185

ences on material hereditariness [29, 30, 31, 32].

Eqs.(23,24) are always satisfied by assuming positive values of the coefficients

ḠL, ḠT and G
(α)
L and G

(β)
T , whereas Eq.(25) alone is satisfied as the eigenvalues

of the first derivative of the matrix, namely, Ġ (0) are all negative. This re-

quirement may be verified by introducing a one-parameter family of relaxation190

matrices defined on a real parameter δ as Gδ(t) = G(t + δ), and by studying

the behavior of Ġδ(t) for the limiting case δ → 0.

The parameter-dependent family of matrices Ġδ(t) is defined as:

Ġδ (t) =

 Ġ
(A)
δ (t+ δ) 0

0 Ġ
(T )
δ (t+ δ)

 (25)

where the elements read:

Ġ
(A)
δ (t+ δ) = −G(α)

L α(t+ δ)
−α−1

(26a)

Ġ
(T )
δ (t+ δ) = −G(β)

T β(t+ δ)
−β−1

(26b)

Ġ
(υ)
δ (t+ δ) = −2G

(β)
T β(t+ δ)

−β−1
+G

(α)
L α(t+ δ)

−(α+1)
(26c)

Observe that the one-parameter family Ġδ(t) tends to the limit:

lim
δ→0

Ġδ (t) = Ġ (t) (27)

We can infer the behavior of Ġ(t) from that of Gδ(t), and by letting δ → 0. In

this regard, the requirement in Eq.(24) may be recast as:

−Ġ (0) = − lim
δ→0

Ġδ (t) ≥ 0 (28)
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that is we evaluate the eigenvalues λi(δ) (i = 1, 2, ...6) of the matrix Ġδ(0) and

with the additional constraints −λi(δ) ≥ 0 (i = 1, 2, ...6) as δ → 0.

The evaluation of the eigenvalues λi(δ) gives:

− λ1 (δ) = −λ2 (δ) = −2
(
ĠL (δ)− ĠT (δ)

)
≥ 0 (29a)

− λ3 (δ) = −λ4 (δ) = −λ5 (δ) = −ĠT (δ) ≥ 0 (29b)

− λ6 (δ) = −4ĠT (δ) + ĠL (δ) ≥ 0 (29c)

Substitution of Eq.(26a),(26b) into Eq.(29b) shows that the inequality is fulfilled

for C
(β)
T ≥ 0 and 0 ≤ β ≤ 1. The inequalities (29a),(29c) read, after substitution:

αGαδ
−(α+1) − βGβδ−(β+1) ≥ 0 (30a)

4βGβδ
−(β+1) − αGαδ−(α+1) ≥ 0 (30b)

that, after some straightforward manipulation, may be cast in a more suitable

form, taking natural logarithms as:

ln (Aαβ) ≥ (α− β) ln δ (31a)

ln

[
(Aαβ)

4

]
≤ (α− β) ln δ (31b)

where Aαβ = αG
(α)
L /

(
βG

(β)
T

)
. Inequalities in eqs.(31a)(31b) must be fulfilled195

for any value of the parameter δ yielding that α = β. Moreover, in this latter

case the additional thermodynamical restriction holds true.

G
(β)
T ≤ C(β)

L ≤ 3C
(β)
T . (32)

In passing, we observe that the condition α = β holds true only for the

two terms (or one term) description of the relaxation function in Eq.(22a).

Indeed, as we assume that the relaxation functions GL(t) and GT (t) involve200

linear combinations of power-laws as:

GL (t) =

n∑
j=1

G
(αj)
L t−αj ; GT (t) =

m∑
i=1

G
(βi)
T t−βi (33)
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with n and m the number of power-laws involved. Under such circumstances, the

thermodynamical arguments proposed in this study yield the same conditions

among the order of the power-laws as:

max
j=1,N

(αj) = max
i=1,M

(βj) (34a)

min
j=1,N

(αj) = min
i=1,M

(βj) (34b)

Substitution of Eq.(22a),(22b) into the constitutive equations for the three-

axial hereditariness yields a relation among the stress vector and the history of

the strain vector ε(t) as:

σ (t) = Gβ

∫ t

0

(t− τ)
−β
ε̇ (τ) dτ + Ḡ = Gβ

(
Dβ

0+ε
)

(t) + Ḡ (35)

where we have embraced the Voigt representation of the relaxation tensor G (t)

in matrix form and we have used the notation:

G (t) = Gβ
t−β

Γ (1− β)
+ Ḡ (36)

with the matrices:

Gβ (t) =



G
(L)
β G

(υ)
β G

(υ)
β 0 0 0

G
(υ)
β G

(L)
β G

(υ)
β 0 0 0

G
(υ)
β G

(υ)
β G

(L)
β 0 0 0

0 0 0 G
(T )
β 0 0

0 0 0 0 G
(T )
β 0

0 0 0 0 0 G
(T )
β


(37a)

G =



ḠL Ḡυ Ḡυ 0 0 0

Ḡυ ḠL Ḡυ 0 0 0

Ḡυ Ḡυ ḠL 0 0 0

0 0 0 ḠT 0 0

0 0 0 0 ḠT 0

0 0 0 0 0 ḠT


(37b)

The stress vector obtained as a functional of the strain vector ε(t) in Eq.(35)

is the generalization of the constitutive equation reported in Eq.(3a) under the205

assumption of material isotropy.
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In the next section the multiaxial fractional-order hereditariness will be fur-

ther discussed by introducing a mechanical hierarchy that yields the constitutive

model reported in Eq.(35)

3. Exact mechanical description of fractional-order isotropic heredi-210

tariness

The stress/strain tensor outlined in section (2) requires a multiaxial constitutive

relation, as in Eq.(35), that under the assumption of Ḡ = 0 generalizes Eq.(3a).

The rheological element, namely the springpot, corresponding to Eq.(3a)

can not, however, be defined also for the isotropic description in Section (2),215

namely for the presence of shear stress/strain. A mechanical model that may be

involved in the presence of normal and shear stress to be used in experimental

test is represented in Fig.5

Figure 4: Rheologic elements

Under such conditions, the circular column of height H, cross section A and

radius R under axial stress and shear stress related to the measured relative

15



displacements u(t) and twist angle ϕ(t) provides these equilibrium equations:

F = K
(L)
β (Dβ

0+u) (t)

MT = K
(T )
β (Dβ

0+ϕ) (t)
(38)

where JG = πR4/4 is the polar moment of inertia of the circular cross-section

represented in Fig.5. The constitutive equation(38) involve for limiting cases: i)220

a linear elastic spring (β = 0); and ii) a linear viscous element (β = 1), respec-

tively.

In the following, we introduce a hierarchic mechanical model to capture the

axial and shear hereditariness assuming power-law description of the creep and

relaxation functions for axial and shear stress/strain, respectively [33, 17, 34, 16].225

The obtained mechanical hierarchy corresponds exactly to an axial and shear

springpots with the same order of time evolution/decay.

To this aim let us introduce an elastic column of unbounded length with

circular cross section of radius R. The elastic features of the column are non-

costant along the column axis and vary with the coordinate as:

E (z) =
Eα

Γ (1− α)
z−α; G (z) =

Gα
Γ (1− α)

z−α − 1 ≤ α ≤ 1 (39)

The column is externally restrained by a set of torsional and axial viscous dash-

pots fig.(5) with non-homogeneous viscosity η(z) as:

η (z) =
ηα

Γ (1 + α)
z−α − 1 ≤ α ≤ 1 (40)

Axial and torsional equilibrium along the column axis reads:

ηα
Γ (1 + α)

z−α2πR∆zu̇ (z, t) =
EαπR

2s(z + ∆z)
−α

Γ (1− α)
[u (z + ∆z, t)− u (z, t)] +

+
EαπR

2sz−α

Γ (1− α)
[u (z, t)− u (z −∆z, t)] (41)

ηα
Γ (1 + α)

z−α2πR2∆zϕ̇ (z, t) = GαπR
4(z + ∆z)

−α
[ϕ (z + ∆z, t)− ϕ (z, t)] +

+GαπR
4(z + ∆z)

−α
[ϕ (z, t)− ϕ (z −∆z, t)] (42)
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Figure 5: column with non-homogeneous viscosity
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Figure 6: elements of the column with non-homogeneous viscosity

that, can be rewritten in differential form, by letting ∆z → 0 as:

ηαz
−α

Γ (1 + α)

∂u (z, t)

∂t
=

EαRs

Γ (1− α)

∂

∂z

(
z−α

∂u (z, t)

∂z

)
(43a)

ηαz
−α

Γ (1 + α)

∂ϕ (z, t)

∂t
=

GαR

Γ (1− α)

∂

∂z

(
z−α

∂ϕ (z, t)

∂z

)
(43b)

The boundary conditions involving the differential fields u(z, t) and ϕ(z, t) in

Eqs.(43a),(43b) read, respectively.

lim
z→∞

u (z, t) = 0 (44a)

lim
z→0

Eα
Γ (1− α)

z−α
∂u

∂z
= F0 (44b)

lim
z→∞

ϕ (z, t) = 0 (45a)

lim
z→0

Gα
Γ (1− α)

z−α
∂ϕ

∂z
= M0 (45b)

Mathematical operators and boundary conditions in Eqs.(46a,b) are com-

pletely equivalent to those of a previous differential problem that has been
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solved by resorting to a non- linear mapping followed by Laplace transforms

[17, 35]. Such a procedure yields a Bessel differential equation of second kind

in terms of the anomalous Laplace parameters. The position of the boundary

conditions and inverse Laplace transform provides the solution in the form:

u0 (t) = u0 (z, t) = lim
z→∞

u (z, t) =
t−β

k
(L)
β

F0 = JL (t)F0 (46)

ϕ0 (t) = ϕ0 (z, t) = lim
z→∞

ϕ (z, t) =
t−β

k
(T )
β

M0 = JT (t)0 (47)

with:

k
(L)
β =

Γ (2β)
(
τβL

)
Eα21−2βΓ (β) Γ (1− β)

(48)

k
(T )
β =

Γ (2β)
(
τβL

)
Gα21−2βΓ (β) Γ (1− β)

(49)

with β = 1+α
2 and the relaxation times:

τL =
ηα
Eα

Γ (1− α)

Γ (1 + α)
(50)

τT =
ηα
Gα

Γ (1− α)

Γ (1 + α)
(51)

The Superposition principle provides, by resorting to the fundamental equations

of linear viscoelasticity, the constitutive equations of the macroscopic variables,

as:

F0 (t) = k
(L)
β

(
Dβ

0+u0

)
(t) (52)

MT (t) = k
(T )
β

(
Dβ

0+ϕ0

)
(t) (53)

Eqs.(52),(53) are the constitutive equation at the macro-scale and, by recalling

that F0 = σ33A and |τ | =
√
|t31|2 + |t32|2 = M0

2As , the constitutive equations of

the material read:

σ33 = G
(L)
β

(
Dβε33

)
(t) (54)
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|τ | = G
(T )
β

(
Dβ |γ|

)
(t) (55)

where the coefficients G
(L)
β and G

(T )
β read:

G
(L)
β =

k̄
(L)
β l̄

A
G

(T )
β =

k̄
(T )
β

2As

R

l̄
(56)

and wherel̄ is an internal length of the material. Eqs.(54),(55) are the multiaxial230

constitutive relations of the isotropic material and, henceforth, correspond to

the hierarchy introduced by the fractional-order isotropy.

4. Conclusions

The mathematical structure of the fractional-order isotropic hereditariness has

been discussed in this paper. The study has been framed in the context of235

biomimetic ceramics used in cranioplasty neurosurgery (i.e. CustomBone R©

”prosthesis”). The creep and relaxation functions of isotropic linear heredi-

tarinnes have been particularized for power-law decays, yielding a multi-axial

constitutive model in terms of fractional-order operators. Additionally, a spe-

cific mechanical model has been introduced, which corresponds to the fractional-240

order isotropic hereditariness. In future studies experimental campaigns involv-

ing creep and relaxation of biomimetic ceramics will be reported to assess the

validity of material isotropy. Additionally, the proposed hierarchy will be fur-

ther extended to deal with non-linear hereditariness as those observed in creep

and relaxations of tendons and ligaments.245
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plasty is a surgical procedure that aims to re-establish the skull integrity fol-

lowing a previous craniotomy due to the occurrence of traumas, tumors and/or5

congenital malformations. In all cases cranioplasty can be considered as the

conclusive action of a surgery initiated by the removal of a bone operculum see

fig.1.

(a) (b)

Figure 1: cranioplasty surgery, Policlinico Giaccone Palermo

Ideally, cranioplasty procedures should provide restoration of the protective

functions of the skull with maintenance of the original aesthetics and long-10

term mechanical performance [1]. The ideal material for cranioplasty should be

chemically inert, biocompatible, biomechanically reliable, easily manufactured,

individually shaped, safe, and able to promote osteoblast migration. Nowa-

days synthetic implants based on metallic (mainly titanium) or acrylic plates

(mainly polymethylmeta-crylate or polyetheretherketone) are widely used in15

cranioplasty procedures. These are bioinert materials with good biocompati-

bility, resistance to infections, ease of sterilization, ability to be subjected to

imaging diagnostics, and the capacity to undergo flexible design for adaptation

to different clinical cases. They exhibit good mechanical strength, which offers

2



adequate brain protection from external shocks. However, they present poor20

osteogenic and osteoconductive ability, thus resulting in a foreign body func-

tioning as a shell expected to provide brain protection, but connected to the

surrounding bone only by its perimeter contact surface. In order to overcome

many limitations an Hydroxyapatite (HA)-based material has been widely con-

sidered for decades as the gold standard for bone scaffolds, as its composition25

is very close to that of bone mineral, thus exhibiting excellent biocompatibility,

a low inflammatory reaction as well as good osteogenic ability and osteocon-

ductivity. The hydrophilic character of HA favors cell attachment and tight

adhesion of bone to the scaffold surface, which is a key target for the stability

of the bone/implant interface. Therefore, HA scaffolds presenting wide, open30

and interconnected multiscale porosity can induce extensive bone ingrowth and

penetration throughout the whole scaffold, partly thanks to the possibility of

massive fluid perfusion, which triggers and assists neovascularization. Hence,

cranial reconstruction using synthetic porous HA has recently become the sub-

ject of intense debate among surgeons, and it now represents a new concept in35

cranioplasty procedures. The custom-made concept was first applied to porous

hydroxyapatite because of the need to overcome the fragility of the material it-

self. One of the advantages of HA-based prosthesis there is the important issue

of customization.

Indeed, in the presence of cranioplasty, the morphology of the bone to be40

replaced with a synthetic prosthesis must match completely the original bone

to accelerate the osteointegration of the prosthesis [2, 3, 4] in the surgical hole.

In fig.(2 a-d) a human parietal bone and its synthetic prosthesis fig.(3 a-c)

have been obtained from a university neurosurgery hospital in Palermo. The

synthetic bone used for replacement is a CustomBone R© (Finceramica Faenza),45

namely custom-made, porous hydroxyapatite scaffolds with total porosity in the

range of 60 to 70 % and pore architecture based on macro-pores (> 100 micron)

interconnected with micro-pores (5-10 micron). CustomBone R© scaffolds were

obtained by reproduction of the patient’s bone defect as modeled by 3D CT

scan. They are made of a composite ceramics material obtained from chemical50

3



deposition of hydroxyiapatite with a small fraction of collagen type I (see fig.1a).

The use of biomimetic ceramics to replace cortical as well as trabecular bone

is well- defined technique in bone surgery [5]. Indeed the mechanical features

of the prosthesis in terms of elastic moduli and the strength of the biomimetic

composite of integration are very similar. However, the use of ceramic materials55

to replace the bones of a human head may involve different behaviors in terms

of energy dissipation. Indeed, biologic tissues show marked hereditariness due

to the reptation of the collagen chains of the material as well as to the fiber

recruitment in the tissues. Material hereditariness involves additional stresses

that may be applied to the grafted ceramics prosthesis and may lead to fracture60

propagation during patient follow-up [6].

The hereditary properties of bone in uniaxial test are represented by creep

J(t) and relaxation G(t) functions formulated in terms of power-law J(t) ∝ tβ

and G(t) ∝ t−β with 0 ≤ β ≤ 1, yielding accurate description of experimental

data [5, 7, 8, 9, 10]. Power-laws hereditariness in conjuction with Boltzmann65

superposition yields the constitutive behavior in terms of so-called fractional

integrals and derivatives. Fractional calculus may be considered as a gener-

alization of the classical differential calculus to real-order integration and dif-

ferentiation
(
i.e.df

/
dt→ dβf

/
dtβwithβ ∈ [0, 1]

)
as reported in classical refer-

ences [11, 12, 13, 14, 15, 16, 17, 18]. In such a context, uniaxial hereditariness70

[19, 20, 21, 22] involving fractional order stress-strain relations has been reported

since the beginning of the 20th century [23, 16] defining the so-called springpot

element [24, 25].

In the presence of tensorial stress/strain state, as in the continuum mechanics

description of biomimetic prosthesis, no generalities have been reported in the75

scientific literature to capture multiaxial hereditariness with fractional-order

calculus, to the best of the authors’ knowledge. Indeed, in several case, recently

discussed in the scientific literature [26, 27, 28], the use of power-laws without

thermodynamic restrictions the parameters does not guarantee positive entropy

rate for any strain/stress process involved by material.80

In this paper, a 3D constitutive relation describing material hereditariness is
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(a) (b)

(c) (d)

Figure 2: human parietal bone, Policlino Giaccone Palermo

5



(a) (b)

(c) (d)

Figure 3: CustomBone R© prosthesis morphology
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discussed in the context of power-laws functional classes of the relaxation/creep

functions. We show that, under the assumption of material isotropy, thermo-

dynamical restrictions on the constitutive parameters allow to formulate the

constitutive behavior in terms of a Caputo fractional derivative that is formally85

analogous to the constitutive behavior in uniaxial state of stress/strain.

The paper is organized as follow: sec.2 provides generalities about fractional-

order calculus and isotropic hereditariness; sec.3 reports a mechanical hierarchy

that corresponds exactly to the isotropic fractional-order hereditariness. Sec.4

provides some conclusions about the proposed model of isotropic hereditariness90

and the influence on the mechanics of the biomimetic ceramics prosthesis.

2. Power-law hereditariness of isotropic biomimetic ceramics

In this section we outline the constitutive relations in the presence of power-law

hereditariness, including the main arguments of power-law hereditariness under

uniaxial stress/strain; generalization to the isotropic case and thermodynamic95

restrictions on the material parameters.

2.1. Uniaxial power-law hereditariness: The fractional order constitutive equa-

tion

We describe the constitutive behavior of materials in long-standing mechanical

tests is described by means of the well-known creep and relaxation functions,

dubbed J(t) andG(t), respectively. The linear superposition applied to a generic

stress/strain history, namely σ(τ) and ε(τ) with τ ≤ t, yields:

σ(t) =

∫ t

0

G(t− τ)dε(τ) =

∫ t

0

G(t− τ)ε̇(τ)dτ (1a)

ε(t) =

∫ t

0

J(t− τ)dσ(τ) =

∫ t

0

J(t− τ)σ̇(τ)dτ (1b)

Eqs.(1a, b) are defined in terms of Boltzman superposition with dσ = σ̇dt

and dε = ε̇dt increments, where [·] = d
dt . Creep and relaxation functions char-100

acterize the material behavior and they must satisfy the conjugation relation

Ĵ(s)Ĝ(s) = 1/s2, where s indicates the Laplace parameter and f̂(s) = L[f(t)] is

7



the Laplace transform of the generic function f(t). In the context of materials

hereditariness, power-law representation of creep and relaxation functions, i.e.

J(t) and G(t), was introduced at the beginning of the last century [23],105

G(t) =
Cβ

Γ(1− β)
t−β , (2a)

J(t) =
1

CβΓ(β + 1)
tβ (2b)

where Γ(·) is the Euler-Gamma function, β ∈ [0, 1] and Cβ > 0, are material

parameters, that may be estimated through a best-fitting procedure of experi-

mental data [29, 30]. Straightforward manipulations show that the power-law

functional class in eqs.(2a, b) satisfies the conjugation relation and it yields,

upon substitution in eqs. (1a, b) the following constitutive relations:

σ(t) =
Cβ

Γ(1− β)

∫ t

0

(t− τ)−β ε̇(τ)dτ = Cβ

(
Dβ

0+ε
)

(t) (3a)

ε(t) =
1

CβΓ(β + 1)

∫ t

0

(t− τ)β σ̇(τ)dτ =
1

Cβ

(
Iβ0+σ

)
(t) (3b)

in terms of the Caputo fractional derivative and Riemann-Liouville fractional

integral, respectively.

Use of power-laws and, as a consequence, of fractional-order operators is usu-

ally connected, in a rheological context [28], to the introduction of the springpot

element.110

Springpot is a one-dimensional element defined in terms of two parameters,

i.e. Cβ and β, 0 ≤ β < 1 and Cβ > 0 whose constitutive relation is reported in

eqs.(3a,b). Such element with an intermediate behavior among elastic springs

and viscous dashpot, is widely used nowadays to define several types of materials

including as limiting cases, elastic (β = 0) and viscous elements (β = 1). More115

precisely, a simple spring corresponds to β = 0 and
dβf

dtβ
=
d0f

dt0
= f ; whilst,

case of β = 1 corresponds to a first order derivative, i.e.
dβf

dtβ
=
df

dt
= ḟ , which

is a Newtonian dashpot.
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2.2. Constitutive relation for isotropic power-law hereditariness

The extension of the constitutive relation presented in sec.2.1 and tensorial120

strain/stress state is discussed in this section by means of effect superposition.

Let us consider a 2nd-order stress tensor σ with component σij represented

in fig.(4) with the symmetries σij = σji for i 6= j.

In the following we introduce the Voigt representation of the state variables

of the material in terms of vector representation of stress and strains tensors as:

σT (t) = [σ11 (t)σ22 (t)σ33 (t)σ32 (t)σ31 (t)σ12 (t)] (4)

εT (t) = [ε11 (t) ε22 (t) ε33 (t) 2ε32 (t) 2ε31 (t) 2ε12 (t)] (5)

where t is the current time and the mixed index stress and strain components,

namely σij (t) and εij (t) with i 6= j denote shear stress and strain, respectively.125

Let us assume that σij (t) = δij and let us consider a single normal stress σii = 1

for (i = 1,2,3) reported in fig.4 a,b,c):

(a) (b) (c)

Figure 4: elementary representative cube: (a)only σ11, (b)only σ22, (c) only σ33

In such a context the evolution of the strain εii (t) along the stress direction

9



σii (t) and in the orthogonal planes reads:

εii (t) = JL (t)σii = JL (t) (6a)

εkk (t) = εjj (t) = −Jυ (t)σii (6b)

with i 6= j 6= k and i, j, k = 1, 2, 3.130

In eqs.(6a-b) JL (t) and Jυ (t) are the axial and the transverse creep func-

tions with respect to the stress direction, respectively. Under the assumption

of smooth load process σij(t) the presence of contemporaneous stress σij(t) =

σij(t)δij , with i = 1, 2, 3, may be accounted for by the integral

εii (t) =

∫ t

0

JL (t− τ) σ̇ii (τ)− Jυ (t− τ) [σ̇jj (τ) + σ̇kk (τ)] dτ (7)

with i 6= j 6= k and i,j,k=1,2,3, respectively.135

In the context of material isotropy shear strains 2εij(t), (i 6= j), are not

involved by the axial stress σii (t), but only by the shear stress as σij(t) with

i 6= j. The evolution of the shear strain 2εij(t) due to a generic shear stress

history σij(t) may be obtained by superposition integrals by means of the shear

creep function JT (·) as:140

2εij (t) =

∫ t

0

JT (t− τ)σ̇ij (τ) dτ (8)

with i 6= j and i, j = 1, 2, 3. The constitutive equations reported in eqs.(7),(8)

may be reported in Voigt notation as:

ε (t) =

∫ t

0

J (t− τ)σ̇ (τ) dτ (9)

where J(t) is the creep functions matrix that is described as:

J (t) =

 J(A) (t) 0

0 J(T ) (t)

 (10)

where the elements of the axial creep matrix J(A)(t) are:

J
(A)
ij (t) = JL (t) δij − (1− δij) Jυ (t) (11)

10



with i, j = 1, 2, 3. The shear creep matrix J(T )(t) is a diagonal matrix gathering

the shear creep functions JT (t) as:145

J
(T )
ij (t) = JT (t) δij (12)

The three creep functions JL(t),Jυ(t) and JT (t) are related by a linear relation

that reads:

JT (t) = 2JL(t)− Jυ(t) (13)

that may be obtained, with straightforward manipulations, by introducing a

shear stress state σij(t) that involves a shear strain state under isotropy as-

sumption, namely γij = 2εij (t), and as evaluating the elongation and the stress

along the principal axes at angles of π/4.

Under the assumption of linear elasticity, the creep functions coincide with

the material compliance, that reads JT = 1/G, JL = 1/E and Jυ = υ/E. The

substitution in eq.(13), this yields:

1

G
= 2

(
1

E
+
υ

E

)
=

2 (1 + υ)

E
(14)

that is the well-known relation among elasticity moduli.150

Knowledge of the creep function matrix J(t) in eq.(10) allows for the def-

inition of the relaxation matrix G(t) by means of the coniugation relation as:

Ĝ(s)Ĵ(s) =
1

s2
I (15)

where I is the identity matrix and Ĝ(s), Ĵ(s) are the Laplace transforms of the

relaxation G(t) and the creep functions J(t) matrices.

Straightforward manipulations of eq.(15) and inverse Laplace transform the

relaxation matrix may be written as:

G (t) =

 G(A) (t) 0

0 G(T ) (t)

 (16)

11



where:155

G
(A)
ij (t) = L−1

 1

s2
(
ĴL + Ĵυ

)(
ĴL − 2Ĵυ

)
[(ĴL − Ĵυ) δij + (1− δij) Ĵυ

]
(17a)

G
(T )
ij (t) = L−1

 1

s2
(
ĴL + Ĵυ

)
 δij (17b)

Eqs.(17a),(17b) show that in the presence of material fading memory, the re-

laxation matrix G(t) is obtained as a combination of creep functions relative

to uniaxial creep tests. Similar considerations may be also withdrawn from the

observation that in uniaxial relaxation tests, the relaxation function GL(t) is ob-

tained in lateral free conditions, that is the strain state involves ε11 6= ε22 6= 0160

and ε33 = 1 and measuring only σ33(t) = GL (t) relaxation with σ11 = σ22 = 0.

Knowledge of the relaxation matrix of the material G(t) allows to evaluate

the stress vector as:

σ (t) =

∫ t

0

G (t− τ)ε̇ (τ) dτ (18)

The longitudinal shear and transverse relaxation functions GT (t),GL(t) and

Gυ(t) are linearly related by an equation that is similar to the one involving

creep functions in eq.(13), reading:

GT (t) =
1

2
(GL (t)−Gυ (t)) (19)

the latter allows for the evaluation of the transverse relaxation Gυ(t), as:

Gυ (t) = 2GT (t)−Gυ (t) (20)

In the following section, we derive the thermodynamic restrictions among165

the material parameters used in power-law representation of isotropic material

hereditariness.
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2.3. Power-law isotropic hereditariness: Thermodynamic restrictions

Let us assume that relaxation functions in laterally restrained axial and torsion

shear tests may be captured, respectively, by power-laws with different order170

(α 6= β) as:

GL (t) = G
(α)
L t−α + ḠL; GT (t) = G

(β)
T t−β + ḠT (21a)

Gυ (t) = 2
(
GT

(β)t−β + ḠT

)
−
(
GL

(α)t−α + ḠL

)
(21b)

with eq.(21b) obtained from the application of eq.(16). Physical dimensions of

the coefficients are [CL] = [CT ] = F/L2,
[
C

(α)
L

]
=

F

L2T−α
,
[
C

(α)
L

]
=

F

L2T−β
.

The expressions of the relaxation functions in eqs.(21a),(21b) yield the re-

laxation matrix of the material in eq.(16), with elements in the block matrices175

G(A) (t) and G(T) (t) reading:

G
(A)
ij = GL (t) δij + (1− δij)Gυ (t) (22a)

G
(T )
ij (t) = GT (t) δij (22b)

We see that the relaxation matrix involves elements decaying with different

power-laws of order β and α (α, β ∈ [0, 1]). Start here the functional classes in

eqs. (21a), (21b) are replaced in eqs.(22a), (22b).

The Coefficients and parameters involved in the power-law descriptions of the180

material relaxation, namely, GL(t), Gυ(t) and GT (t) are related by thermody-

namical restrictions to ensure the requirement of positive entropy rate increment

[31]. Indeed, a dissipative simple solid is defined only if the restrictions:

G (0) ≥ G (∞) ≥ 0 (23)

Ġ (0) ≥ 0 (24)

are fulfilled by the relaxation matrix of the material as reported in basic refer-

ences on material hereditariness [32, 33, 34, 35].185

Eqs.(23,24) are always satisfied by assuming positive values of the coefficients

ḠL, ḠT and G
(α)
L and G

(β)
T , whereas eq.(25) alone is satisfied as the eigenvalues
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of the first derivative of the matrix, namely, Ġ (0) are all negative. This re-

quirement may be verified by introducing a one-parameter family of relaxation

matrices defined on a real parameter δ as Gδ(t) = G(t + δ), and by studying190

the behavior of Ġδ(t) for the limiting case δ → 0.

The parameter-dependent family of matrices Ġδ(t) is defined as:

Ġδ (t) =

 Ġ
(A)
δ (t+ δ) 0

0 Ġ
(T )
δ (t+ δ)

 (25)

where the elements read:

Ġ
(A)
δ (t+ δ) = −G(α)

L α(t+ δ)
−α−1

(26a)

Ġ
(T )
δ (t+ δ) = −G(β)

T β(t+ δ)
−β−1

(26b)

Ġ
(υ)
δ (t+ δ) = −2G

(β)
T β(t+ δ)

−β−1
+G

(α)
L α(t+ δ)

−(α+1)
(26c)

Observe that the one-parameter family Ġδ(t) tends to the limit:

lim
δ→0

Ġδ (t) = Ġ (t) (27)

We can infer the behavior of Ġ(t) from that of Gδ(t), and by letting δ → 0. In

this regard, the requirement in eq.(24) may be recast as:

−Ġ (0) = − lim
δ→0

Ġδ (t) ≥ 0 (28)

that is we evaluate the eigenvalues λi(δ) (i = 1, 2, ...6) of the matrix Ġδ(0) and

with the additional constraints −λi(δ) ≥ 0 (i = 1, 2, ...6) as δ → 0.

The evaluation of the eigenvalues λi(δ) gives:

− λ1 (δ) = −λ2 (δ) = −2
(
ĠL (δ)− ĠT (δ)

)
≥ 0 (29a)

− λ3 (δ) = −λ4 (δ) = −λ5 (δ) = −ĠT (δ) ≥ 0 (29b)

− λ6 (δ) = −4ĠT (δ) + ĠL (δ) ≥ 0 (29c)
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Substitution of eq.(26a),(26b) into eq.(29b) shows that the inequality is fulfilled

for C
(β)
T ≥ 0 and 0 ≤ β ≤ 1. The inequalities (29a),(29c) read, after substitution:

αGαδ
−(α+1) − βGβδ−(β+1) ≥ 0 (30a)

4βGβδ
−(β+1) − αGαδ−(α+1) ≥ 0 (30b)

that, after some straightforward manipulation, may be cast in a more suitable

form, taking natural logarithms as:

ln (Aαβ) ≥ (α− β) ln δ (31a)

ln

[
(Aαβ)

4

]
≤ (α− β) ln δ (31b)

where Aαβ = αG
(α)
L /

(
βG

(β)
T

)
. Inequalities in eqs.(31a)(31b) must be fulfilled

for any value of the parameter δ yielding that α = β. Moreover, in this latter195

case the additional thermodynamical restriction holds true.

G
(β)
T ≤ C(β)

L ≤ 3C
(β)
T (32)

In passing, we observe that the condition α = β holds true only for the

two terms (or one term) description of the relaxation function in eq.(22a). In-

deed, as we assume that the relaxation functions GL(t) and GT (t) involve linear

combinations of power-laws as:200

GL (t) =

n∑
j=1

G
(αj)
L t−αj ;GT (t) =

m∑
i=1

G
(βi)
T t−βi (33)

with n and m the number of power-laws involved. Under such circumstances, the

thermodynamical arguments proposed in this study yield the same conditions

among the order of the power-laws as:

max
j=1,N

(αj) = max
i=1,M

(βj) (34a)

min
j=1,N

(αj) = min
i=1,M

(βj) (34b)
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Substitution of eq.(22a),(22b) into the constitutive equations for the three-

axial hereditariness yields a relation among the stress vector and the history of

the strain vector ε(t) as:

σ (t) = Gβ

∫ t

0

(t− τ)
−β
ε̇ (τ) dτ + Ḡ = Gβ

(
Dβ

0+ε
)

(t) + Ḡ (35)

where we have embraced the Voigt representation of the relaxation tensor G (t)

in matrix form and we have used the notation:

G (t) = Gβ
t−β

Γ (1− β)
+ Ḡ (36)

with the matrices:

Gβ (t) =



G
(L)
β G

(υ)
β G

(υ)
β 0 0 0

G
(υ)
β G

(L)
β G

(υ)
β 0 0 0

G
(υ)
β G

(υ)
β G

(L)
β 0 0 0

0 0 0 G
(T )
β 0 0

0 0 0 0 G
(T )
β 0

0 0 0 0 0 G
(T )
β


(37a)

G =



ḠL Ḡυ Ḡυ 0 0 0

Ḡυ ḠL Ḡυ 0 0 0

Ḡυ Ḡυ ḠL 0 0 0

0 0 0 ḠT 0 0

0 0 0 0 ḠT 0

0 0 0 0 0 ḠT


(37b)

The stress vector obtained as a functional of the strain vector ε(t) in eq.(35)

is the generalization of the constitutive equation reported in eq.(3a) under the

assumption of material isotropy.205

In the next section the multiaxial fractional-order hereditariness will be fur-

ther discussed by introducing a mechanical hierarchy that yields the constitutive

model reported in eq.(35)
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3. Exact mechanical description of fractional-order isotropic heredi-

tariness210

The stress/strain tensor outlined in sec.(2) requires a multiaxial constitutive

relation, as in eq.(35), that under the assumption of Ḡ = 0 generalizes eq.(3a).

The rheological element, namely the springpot, corresponding to eq.(3a) can

not, however, be defined also for the isotropic description in sec.(2), namely for

the presence of shear stress/strain. A mechanical model that may be involved215

in the presence of normal and shear stress to be used in experimental test is

represented in fig.5

Figure 5: Rheologic elements

Under such conditions, the circular column of height H, cross section A and

radius R under axial stress and shear stress related to the measured relative

displacements u(t) and twist angle ϕ(t) provides these equilibrium equations:

F = K
(L)
β (Dβ

0+u) (t)

MT = K
(T )
β (Dβ

0+ϕ) (t)
(38)

where A = πR2 and JG = πR4/4 are the cross section and the polar moment

of inertia of the circular cross-section represented in fig.5. The constitutive
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equations in eq.(38) involve for limiting cases: i) a linear elastic spring (β = 0);220

and ii) a linear viscous element (β = 1), respectively.

In the following, we introduce a hierarchic mechanical model to capture the

axial and shear hereditariness assuming power-law description of the creep and

relaxation functions for axial and shear stress/strain, respectively [36, 20, 37, 19].

The obtained mechanical hierarchy corresponds exactly to an axial and shear225

springpots with the same order of time evolution/decay.

To this aim let us introduce an elastic column of unbounded length with

circular cross section of radius R. The elastic features of the column are non-

costant along the column axis and vary with the coordinate as:

E (z) =
Eα

Γ (1− α)
z−α; G (z) =

Gα
Γ (1− α)

z−α − 1 ≤ α ≤ 1 (39)

The column is externally restrained by a set of torsional and axial viscous dash-

pots fig.(5) with non-homogeneous viscosity η(z) as:

η (z) =
ηα

Γ (1 + α)
z−α − 1 ≤ α ≤ 1 (40)

Axial and torsional equilibrium along the column axis reads:

ηα
Γ (1 + α)

z−α2πR∆zu̇ (z, t) =
EαπR

2s(z + ∆z)
−α

Γ (1− α)
[u (z + ∆z, t)− u (z, t)] +

+
EαπR

2sz−α

Γ (1− α)
[u (z, t)− u (z −∆z, t)] (41)

ηα
Γ (1 + α)

z−α2πR2∆zϕ̇ (z, t) = GαπR
4(z + ∆z)

−α
[ϕ (z + ∆z, t)− ϕ (z, t)] +

+GαπR
4(z + ∆z)

−α
[ϕ (z, t)− ϕ (z −∆z, t)] (42)

that, can be rewritten in differential form, by letting ∆z → 0 as:

ηαz
−α

Γ (1 + α)

∂u (z, t)

∂t
=

EαRs

Γ (1− α)

∂

∂z

(
z−α

∂u (z, t)

∂z

)
(43a)

ηαz
−α

Γ (1 + α)

∂ϕ (z, t)

∂t
=

GαR

Γ (1− α)

∂

∂z

(
z−α

∂ϕ (z, t)

∂z

)
(43b)
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Figure 6: column with non-homogeneous viscosity
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Figure 7: elements of the column with non-homogeneous viscosity

Boundary conditions involving the differential fields u(z, t) and ϕ(z, t) in eqs.(43a),(43b)

read, respectively.

lim
z→∞

u (z, t) = 0 (44a)

lim
z→0

Eα
Γ (1− α)

z−α
∂u

∂z
= F0 (44b)

lim
z→∞

ϕ (z, t) = 0 (45a)

lim
z→0

Gα
Γ (1− α)

z−α
∂ϕ

∂z
= M0 (45b)

Mathematical operators and boundary conditions in eqs.(46a,b) are com-

pletely equivalent to those of a previous differential problem that has been solved

by resorting to a non- linear mapping followed by Laplace transform [20, 38].

Such a procedure yields a Bessel differential equation of second kind in terms

of the anomalous Laplace parameters. Position of the boundary conditions and

20



inverse Laplace transform provides solution in the form:

u0 (t) = u0 (z, t) = lim
z→∞

u (z, t) =
t−β

k
(L)
β

F0 = JL (t)F0 (46)

ϕ0 (t) = ϕ0 (z, t) = lim
z→∞

ϕ (z, t) =
t−β

k
(T )
β

M0 = JT (t)0 (47)

with:

k
(L)
β =

Γ (2β)
(
τβL

)
Eα21−2βΓ (β) Γ (1− β)

(48)

k
(T )
β =

Γ (2β)
(
τβL

)
Gα21−2βΓ (β) Γ (1− β)

(49)

with β = 1+α
2 and the relaxation times:

τL =
ηα
Eα

Γ (1− α)

Γ (1 + α)
(50)

τT =
ηα
Gα

Γ (1− α)

Γ (1 + α)
(51)

Superpositions principle provides, by resorting to the fundamental equations of

linear viscoelasticity, the constitutive equations of the macroscopic variables, as:

F0 (t) = k
(L)
β

(
Dβ

0+u0

)
(t) (52)

MT (t) = k
(T )
β

(
Dβ

0+ϕ0

)
(t) (53)

Eqs.(52),(53) are the constitutive equation at the macro-scale and, by recalling

that F0 = σ33A and |τ | =
√
|t31|2 + |t32|2 = M0

2As , the constitutive equations of

the material read:

σ33 = G
(L)
β

(
Dβε33

)
(t) (54)

|τ | = G
(T )
β

(
Dβ |γ|

)
(t) (55)
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where the coefficients G
(L)
β and G

(T )
β read:

G
(L)
β =

k̄
(L)
β l̄

A
G

(T )
β =

k̄
(T )
β

2As

R

l̄
(56)

and wherel̄ is an internal length of the material. Eqs.(54),(55) are the multiaxial

constitutive relations of the isotropic material and, henceforth, correspond to230

the hierarchy introduced to the fractional-order isotropy.

4. Conclusions

The mathematical structure of the fractional-order isotropic hereditariness has

been discussed in this paper. The study has been framed in the context of

biomimetic ceramics used in cranioplasty neurosurgery (i.e. CustomBone R©
235

”prosthesis”). The creep and relaxation functions of isotropic linear heredi-

tarinnes have been particularized for power-law decays, yielding a multi-axial

constitutive model in terms of fractional-order operators. Additionally, a specific

mechanical model has been introduced, that correspond to the fractional-order

isotropic hereditariness. In future studies experimental campaigns involving240

creep and relaxation of biomimetic ceramics will be reported to assess the va-

lidity of material isotropy. Additionally, the proposed hierarchy will be further

extended to deal with non-linear hereditariness as those observed in creep and

relaxations of tendons and ligaments.
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