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Introduction

In the current context of sustainable development, the study of the state and evolution
of landscapes is a major challenge to understand and solve environmental problems. The
research on the relationship between ecological processes and spatial patterns aims to un-
derstand how the configuration and composition of the landscape affect biodiversity.

To address these questions, it is necessary to have a detailed mapping of the elements
that make up the landscape. "Detailed" means that it is important to get a map at several
levels : for a forest, it is necessary to map the tree species and dead timber on the ground.
Another example can be given for the meadows (see figure 1), where the type (permanent,
temporary ...) and the composition are spatial variables to extract.

(a) Temporary meadow. (b) Permanent meadow.

Figure 1: Example of meadows.

Although these spatial data are essential to many socio-ecological models, there is still
no mapping for all of these items at local scales. The national mapping data base does
not include a detailed "vegetation" layer. The development of this mapping is therefore an
important issue for the study of ecosystems.

Multispectral satellite sensors with high spatial resolution allow spatial identification
of these objects. But their spectral resolution does not allow a detailed analysis of plant
species, phenomenological stages or soil formation. In addition, the low temporal repeata-
bility (revisit time of a site) does not allow a significant inter-annual monitoring.

By their very high spatial and spectral resolution (sampling the spectrum into hundreds
of spectral bands), hyperspectral sensors significantly improve the capabilities of remote
sensing in this field (see figure 2). It is possible to accurately trace the plant species as well
as plant health of semi-natural elements observed. Similarly, the advent of time series of
satellite images provides access to a very useful phenomenological information to charac-
terize the response of landscapes to climate change.
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(a) Multispectral spectra.
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(b) Hyperspectral spectra.

Figure 2: Spectra of two different kind of poplar.

Thus, current images at high spectral and temporal dimension are able to provide valu-
able information on the status and evolution of landscapes observed (see figure 3). However,
the analysis of these images is complicated by the high spectral dimension and/or temporal
data. For a pixel, hundreds of spectral variables or tens of time variables are available. There
is a strong natural correlation between these variables and therefore redundant information.
This redundancy disrupts conventional processing algorithms that have been designed and
defined for low dimensional data (few spectral or temporal variables) [1]. This massive
flow of information generated necessitates the implementation of intelligent strategies for
computer processing.

Figure 3: Hyperspectral imaging concept.
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Sparse classification methods such as Support Vector Machine (SVM) seem to be appro-
priate to solve these problems. They are good supervised methods to recognize pattern
and it is possible to extend them for feature selection or feature extraction. Some of those
extensions are investigated in this internship.

The main goal of this internship was to extend the Leave-One-Out Cross-Validation of
the nonlinear parsimonious feature selection [2] presented in section 2.2.5 to a k-fold Cross-
Validation (section 2.2.2). The other objective was to compare these new methods, both
in term of accuracy and feature selection, to the existing methods, especially linear and
nonlinear SVM and Recursive Feature Elimination from nonlinear SVM.

I will first present a state of the art of the feature extraction. The second section present
the sparse classifications methods used during my internship; the Support Vector Machine
and the Nonlinear Parsimonious Feature Selection. Then a section on synthetic and real
data results will be presented. My last point will be a comparison of the leave-one-out cross-
validation and the k-fold cross-validation for the Nonlinear Parsimonious Feature Selection.

1 State of the art

The reduction of the spectral dimension has received a lot of attention [3]. According
to the absence or presence of training set, the dimension reduction can be unsupervised
or supervised. The former try to describe the data with a lower number of features that
minimize a reconstruction error measure, while the latter try to extract features that maxi-
mize the separability of the classes. One of the most used unsupervised feature extraction
is the principal component analysis (PCA) [4]. But it has been demonstrated that PCA is
not optimal for the purpose of classification [5]. Supervised method, such as the Fisher
discriminant analysis or the non-weighted feature extraction have shown to perform better
for the purpose of classification. Other feature extraction techniques, such as independent
component analysis [6], have been applied successfully and demonstrate that even SVM can
benefits from feature reduction [7]. However, conventional supervised techniques suffer
from similar problems than classification algorithm in high dimensional space.

Rather than supervised and unsupervised technique, one can also distinguish dimension
reduction technique into feature extraction and feature selection. Feature extraction returns
a linear/nonlinear combination of the original features, while feature selection returns a
subset of the original features. The latter is much more interpretable for the end-user. The
extracted subset corresponds to the most important features for the classification, i.e., the
most important wavelengths.

Feature selection techniques generally need a criterion, that evaluates how the model
built with a given subset of features performs, and an optimization procedure that tries to
find the subset of features that maximizes the criterion [8]. Several methods have been pro-
posed with that setting. For instance, an entropy measure and a genetic algorithm have been
proposed in[9, Chapter 9], but the band selection was done independently of the classifier,
i.e., the criterion was not directly related to the classification accuracy. Jeffries Matusita
distance and forward selection as well as some refinement techniques have been proposed
in [8]. However rather than extracting spectral features, the algorithm returns the average
over a certain bandwidth of contiguous channels, which can make the interpretation diffi-
cult and often leads to select a large part of the spectrum. Recently, forward selection and
genetic algorithm driven by the classification error has been proposed in [10].

Alternatively, a shrinkage method based on L1 norm and linear SVM has been inves-
tigated Tuia et al. [11]. The authors proposed a method where the features are extracted
during the training process. However, to make the method tractable in terms of computa-
tional load, a linear model is used for the classification which can limit the discriminating
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power of the classifier. Feature extraction has been also proposed for non-linear SVM [12]
where a recursive scheme is used to remove features that exhibit few influence on the deci-
sion function.

During this internship, several feature selection methods were implemented and dis-
cussed.

Table 1: Existing methods for feature extraction/selection.

Methods Reference Type of the method Features
PCA [4] Unsparse Extracted
ICA [6] Unsparse Extracted
Spectral interval extraction [8] Sparse Selected
Entropy measure [9] Sparse Selected
Forward selection [10] Sparse Selected
L1 SVM [11] Sparse Selected
RFE SVM [12] Sparse Selected
KPCA [13] Unsparse Extracted
KICA [14] Unsparse Extracted
Fisher discriminant analysis [15] Unsparse Extracted

2 Sparse classification methods

This section is divided into two subsections for each of the used methods. The first
subsection is about the Support Vector Machine, for which several sparse algorithms are
discussed. The second section deals with the Nonlinear Parsimonious Feature Selection,
which is a method for feature selection and classification based on Gaussian Mixture Model
and developed in this internship.

2.1 Support Vector Machine (SVM)

Support vector machines are supervised learning models with associated learning algo-
rithms that analyze data and recognize patterns. Given a set S of n labeled points of the
form :

S =
{
(xi , yi)|xi ∈RL, yi ∈ {−1,1}

}
i=1,...,n

SVM finds the maximum-margin hyperplane that separate the points having yi = 1 from
those having yi = −1. For a pixel xi , the corresponding label can be predicted by ŷi =
signf (xi). f is such that f (x) = wT x +w0, where w is the normal vector to the hyperplane.
It has been proved [16] that finding this hyperplane can be done by solving the following
equation :

min
f
λ

n∑
i=1

H(yi , f (xi)) +R(f ) (1)

whereH is called the cost function. For the conventional SVM,H is the Hinge-Loss function;

H(y,f (x)) = max(1− yf (x),0) = [1− yf (x)]+.

The term R is the regularization term. In most of the cases, R(·) = 1
2‖ · ‖

2
2 (L2-regularized

SVM), it penalizes the large components of the vector w. By changing the functions L and
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R, different kind of separating hyperplanes are obtained. The different cost functions are
presented in figure 4; the L2-loss function is the one that penalizes the most the wrong
classified. The logistic-loss function penalize the less the wrong classified but also penalize
the good classified. The hinge-loss function lies between the L2-loss and the logistic-loss.
For multiclass data, the separation is made for one class against the others. In that case, (1)
is solved C times (where C is the number of classes) with ∀i ∈ [1, . . . ,n], yi = 1 if xi belongs
to the class c (c ∈ [1, . . . ,C]) or yi = −1 if xi does not belong to the class c.

t

H(t)

Logistic-loss

Hinge-loss

L2-loss

-1 0 1 2

1

2

3

4

Figure 4: The different cost functions.

Solving these optimization problems allows only a linear separation of the data. To ex-
tend the SVM to a nonlinear separation, we can use the kernel trick [16]. This allows to fit
the maximum-margin hyperplane in a transformed feature space. The transformation may
be nonlinear and the transformed space high or infinite dimensional; thus though the clas-
sifier is a hyperplane in the feature space, it may be nonlinear in the original input space.
This method is based on the use of a function K such as :

K(xi ,xj) = (h(xi))
T h(xj). (2)

In the feature space, the vector w has the following expression [16] w =
∑n
i=1αiyih(xi). The

function f can be expressed easily with the kernel function K ;

f (x) = wT h(x) +w0 =
n∑
i=1

αiyiK(xi ,x) +w0.

The main used kernels are the following :
– Linear

K(xi ,xj) = 〈xi ,xj〉 = xTi xj . (3)
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– Radial Basis Function (RBF) or Gaussian

K(xi ,xj) = e−γ‖xi−xj‖
2
. (4)

– dth-degree polynomial

K(xi ,xj) =
(
〈xi ,xj〉+ 1

)d
. (5)

To obtain the best accuracy, the optimal parameters need to be founded; the regularization
parameter λ and the scale parameter γ or the degree d. A k-fold cross-validation process has
been used and can be summarized as in figure 5. Further details about SVM can be found
in [17].

Train set:
S

xt,1, yt,1 xt,2, yt,2 xt,3, yt,3 . . . xt,k, yt,k

xT = xt,i , yT = yt,i
xt =

⋃
j,i
xt,j , yt =

⋃
j,i
yt,j

Train the model
on xt and yt with
parameters P

Compute the accuracy
ai of the model on yT

Parameters:
P

Divide the train set
into k subsets Si ,⋃
i=1,...,k

Si = S ,
⋂

i=1,...,k
Si = ∅

i = 1

If i < k, i← i+1
else, break

The accuracy for parameters P is A = 1
k

∑k
i=1 ai . The optimal set of parameters

are chosen with regard to the greatest accuracy A.

Figure 5: k-fold cross validation method.

2.1.1 L2 nonlinear

The non linear L2-regularized SVM are obtained with the RBF or the polynomial kernel,
the cost function used is the Hinge-Loss function. We used the library Libsvm [18] to train
and test the model. In non linear cases, it is not possible to compute the normal vector
to the hyperplane; one can not find easily the variables which have no influence on the
orientation of the hyperplane because the vector w is in a transformed space. The function
f can be evaluated but it is not possible to determine its parameters (w and w0). These L2-
regularized problems are not the main purpose of the internship because they do not allow
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to select explicitly features. However, they will be points of comparison for all the feature
selection methods presented in the following sections. Furthermore, the L2-regularized
SVM with the RBF kernel is used for the recursive feature selection presented in the next
section.

2.1.2 Recursive Feature Elimination (RFE)

The L2 nonlinear SVM are good classifiers but do not allow to select variables. However,
a method has been proposed [12] to use the nonlinear SVM to select variables. The objective
is to remove the variables that will change the less the orientation of the hyperplane while
preserving good accuracy rate (see figure 6). Removing variables makes the problem easier
to solve, however, this choice is delicate because it can lead to poor results if the wrong
variable is removed as it is shown in figure 6.

Figure 6: Evolution of the hyperplance when a variables is removed. When the variables x2
is removed, the separation is bad (94% of good classification), while the removal of the

variables x1 gives a better separation (99.8% of good classification).

The RFE is a method based on nonlinear SVM that allows to remove the less informative
feature. The vector w can not be computed from nonlinear SVM, instead, its norm for the
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current hyperplane can be calculated. Here, we will use the square of its norm for he current
hyperplane; ‖w‖2 =W 2(α). α denotes the current hyperplane,

W 2(α) =
∑
k,l

αkαlykylK(xk ,xl). (6)

This quantity and also the kernel can be easily computed. By using this property and as-
suming that the αi coefficients remain unchanged by removing the less informative feature
(i.e. the features that change the less the orientation of the hyperplane), it is possible to com-
pute W 2

(−i)(α) for all the feature subsets counting for all the features minus the considered
feature i. This quantity is computed without retraining the model. Successively, the feature
whose removal minimizes the change of the margin is removed, as shown in the following
equation:

fm = arg min
i∈[1,...,L]

|W 2(α)−W 2
(−i)(α)|.

To take into account multiclass data, the quantities W 2(α) and W 2
(−i)(α) are computed sep-

arately for each class. The selection criterion is evaluated for the sum over the classes of
W 2(α),

fm = arg min
i∈[1,...,L]

∑
cl

|W 2
cl(α)−W 2

cl,(−i)(α)|. (7)

To use this method, the number of feature to removed need to be specified. In our imple-
mentation, we decided to use a threshold δ ; when the decrease in term of accuracy after one
feature is removed is greater than δ, the feature removal stops. An other criterion used is the
maximum of variables maxvar that the algorithm is allowed to remove. If maxvar variables
have been removed, the feature removal stops. The RFE methods is presented in algorithm
1.

Algorithm 1 Recursive Feature Elimination.

Input: S, δ, maxvar
L← number of bands
variables← [1, . . . ,L] // Original features
id← [] // Pool of removed features
n← 1
Compute the nonlinear SVM model m and the corresponding accuracy a(n)
while 1 do
n← n+ 1
• Get the feature fm whose removal minimizes the change of the margin using eq. (7)
• Remove the feature fm from the learning set and from the original set of variables
• Add the variable fm to the pool of removed features
• Compute the nonlinear SVM model m and the corresponding accuracy a(n) using the
updated learning set
if The decrease in term of a > δ or length(id)=maxvar then

break
end if

end while

2.1.3 L1 linear

The use of a linear SVM is also interesting because it allows the use of other regulariza-
tion function more easily; the L1-regularization (i.e. R(·) = ‖ · ‖1) has been widely used for
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sparse learning [19]. It has the advantage to provide parsimonious solution; some of the
components of w are exactly zero. The advantage of having a sparse vector w is that the
considered variables j where wj = 0 are not relevant in the classification process and can be
removed without changing the classification accuracy. We used two different cost function;
the Logistic-loss,H(y,f (x)) = log(1+e−yf (x)) and the L2-loss,H(y,f (x)) = max(1−yf (x),0)2 =
[1− yf (x)]2

+ (see figure 4). We can see that the Logistic-Loss function is twice differentiable
but the L2-Loss function is not. It will lead to higher computation time if we use the L2-
Loss function instead of the Logistic-Loss function. To train and test the models, the library
Liblinear [20] has been used. It provides a faster and a more complete resolution of the
optimization problem than Libsvm.

2.1.4 Projection in a polynomial space of degree d

As it has been explained previously, it could be interesting to project the data into a
space where a linear separation correspond to a nonlinear separation in the original fea-
ture space. An interesting projective space is a polynomial space because the projection is
easy to calculate. When the data are projected, a L1-regularized linear SVM is used. It is
more interesting than a L2-regularized SVM with polynomial kernel because the vector w,
which gives the variables or combination of variables characterizing the hyperplane, will be
explicitly available. The projection function Φ is such that

R
L → H
x 7→ Φ(x)

where H is the projected space. The dimension of H can be easily found; dim(H) =
(L+d
L

)
.

When L is big (it is the case for hyperspectral images), the dimension ofH is huge. Therefore,
we will use here the projection in a polynomial space of degree 2 to reduce the number of
variables in the projected space. The pixel x is such as

x = [x1,x2, . . . ,xL]T .

The projection Φ(x) can be explicited using x1,x2, . . . ,xL:

Φ(x) =
[
x1,x2, . . . ,xL,x

2
1,
√

2x1x2, . . . ,
√

2x1xL,x
2
2,
√

2x2x3, . . . ,x
2
L

]T
.

To illustrate the interest of the projection into a polynomial space of degree 2 and learn
a linear sparse model, I will take a toy example with x = [x1,x2] generated from a uniform
distribution U (−1,1) and two classes; the class 1 (blue) is attributed to the points where
x2

1 + x2
2 < 0.5, while the class 2 (red) attributed to the points where x2

1 + x2
2 > 0.55 (see figure

7). The variables needed to separate the two classes linearly, x2
1 and x2

2, are not available in
the original feature space.
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Figure 7: Original data set.

These two class can not be separated using a linear SVM; if we try, the vector w has
no zero components and the correct classification rate is 50.1%. The projection is Φ(x) =
[x1,x2,x

2
1,
√

2x1x2,x
2
2]. On these new variables, a linear separation can be correctly done (see

figure 8c) with an accuracy of 100%. The vectorw has two non-zero component correspond-
ing to the variables x2

1 and x2
2, which are the variables that allows to separate the best the

two class. This example shows how the projection can be useful; it allows to select not only
variables but combination of variable. It also permits to treat data with an accuracy greater
than the linear SVM alone. The main problem of the projection is the huge size of the pro-
jected space, that may slow the resolution of the equation (1).
For instance, for the university data set (presented in section 3.1), L = 103 witch leads to dim(H) =
5460 for a projection in a polynomial space of degree 2.
For the Hekla data set (presented in section 3.1), L = 157 witch leads to dim(H) = 12560 for a
projection in a polynomial space of degree 2.
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(a) (b)

(c) (d)

Figure 8: Variables of the projected data set.

2.2 Nonlinear parsimonious feature selection (NPFS)

One limitation of the SVM is that it can not do directly multiclass separation and its
computation time. Instead, a separation is made between one class and the others for each
class. Thus, the interpretation of the selected features is difficult. Furthermore, the feature
selection from the SVM are not very efficient (see section 3).

In this section, we propose to use multiclass separation using Gaussian Mixture Model.
Therefore, the yi ∈ [1, . . . ,C]i=1,...,n, are now the label of the class, C the number of classes
and nc the number of training pixels in class c (

∑C
c=1nc = n).

The forward feature selection works as follow. It starts with an empty pool of selected
features. At each step, the feature that improves the most the k-fold cross validation (k-CV)
estimation of the correct classification rate is added to the pool. The algorithm stops either
if the increase of the k-CV is too low or if the maximum number of features is reached. The
main contribution of this method is the fast update of the GMM and the fast update using
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the marginalization of the GMM.

2.2.1 Gaussian mixture model (GMM)

For a Gaussian mixture model, it is suppose that the observed pixel is a realization of a
L-dimensional random vector such as

p(x) =
C∑
c=1

πcp(x|c), (8)

where πc is the proportion of class c (0 ≤ πk ≤ 1 and
∑C
k=1πk = 1) and p(x|c) is a L dimen-

sional Gaussian distribution.

p(x|c) =
1

(2π)L/2|Σc|1/2
e−

1
2 (x−µc)

TΣ−1
c (x−µc),

where µc is the mean vector of class c and Σc the covariance matrix of class c.
Following the maximum a posteriori rule, a given pixel belongs to the class c if p(c|x) > p(k|x)
for all k = 1, . . . ,C (k , c). Using the Bayes formula, the posterior probability can be written
as follow

p(c|x) =
πcp(x|c)∑C
k=1πkp(x|k)

. (9)

Therefore, the maximum a posteriori rule can be written as

x belong to class c⇐⇒ c = arg max
k=1,...,C

πkp(x|k). (10)

By taking the log of the equation (10), the final decision rule is obtained (also known as
quadratic discriminant function),

Qk(x) = −
(
x −µk

)T
Σ−1
k

(
x −µk

)
− ln(|Σk |) + 2ln(πk) . (11)

Using standard maximization of the log-likelihood, the estimators of the model are given by

πnc =
nc
n
, (12)

µncc =
1
nc

nc∑
i=1

xi , (13)

Σ
nc
c =

1
nc

nc∑
i=1

(
xi −µncc

)(
xi −µncc

)T
. (14)

For the GMM, the "Hughes phenomenon" [21] is related to the estimation of the covari-
ance matrix. If the number of training samples is not enough for a good estimation, the
computation of the inverse and of the determinant in eq.(11) will be very unstable, leading
to poor classification accuracy. For instance for the covariance matrix, that number of pa-
rameters to estimate is equal to L×(L+1)

2 .
For instance, for the University data set (presented in section 3.1), L = 103 then 5356 parameters
have to be estimated so the minimum of training samples for the considered class is also 5356.
For the Hekla data set (presented in section 3.1), L = 157 then 12403 parameters have to be esti-
mated so the minimum of training samples for the considered class is also 12403.
Note that in that cases, the estimation will be possible but not accurate.
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2.2.2 k-fold cross-validation

The efficient implementation of the NPFS relies on the fast estimation of the GMM pre-
sented in 2.2.3 and the marginalization of the Gaussian distribution presented in 2.2.4, it
is possible to perform a k-CV and forward selection quickly. The GMM model need to be
learned just once during the whole training step. The algorithm 2 present a pseudo code of
the proposed method.

Algorithm 2 Simple forward k-CV feature selection.

Input: S, δ, maxvariables, k
Output: The set of selected variables id
C← number of classes
n← number of samples
d← number of variables
rep← 1
id← [] // Pool of selected features
variable← [1, . . . ,d] // Original features
Compute model for each class using eq. (12), (13) and (14)
Divide the set S into k sets Si (S =

⋃k
i=1Si)

while rep ≤maxvariable do
nv = length(variable) // Number of remaining variables
loocv← [0, . . . ,0] // Vector of size nv
for i = 1, . . . , k do

Update the model using Si as the removed samples
for j = 1, . . . ,nv do
id_t← [id,variable(j)]
Predict the class of the removed samples using the feature selected (id_t) and get
the corresponding accuracy A.
a(j) = a(j) +A

end for
end for
a← a

k
Get the maximum of a and the corresponding variable t
if The improvement in terms of a < δ then

break
else

Add the variable t to the pool id
Remove the variable t from the original set of variables

end if
rep← rep+ 1

end while

2.2.3 Updating the model

Here, it is shown that each parameter can be easily updated when a subset of S is re-
moved.
Proportion: The update rule for the proportion is

πn−vc =
nπnc − vc
n− v

, (15)
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where πn−vc and πnc are respectively the proportion of class c over n−v and n, v is the number
of samples removed from S , vc is the number of samples removed from class c (

∑C
k=1 vk = v)

(see appendix B.3.1 for proofs).
Mean vector: The update rule for the mean vector is

µnc−vcc =
ncµ

nc
c − vcµ

vc
c

nc − vc
, (16)

where µnc−vcc and µncc are respectively the mean vectors of class c computed over the nc − vc
and nc training samples, µvcc is the mean vector of the vc samples removed from class c (see
appendix B.3.2 for proofs).
Covariance matrix: The update rule for the covariance matrix is

Σ
nc−vc
c =

nc
nc − vc

Σ
nc
c −

vc
nc − vc

Σ
vc
c −

ncvc
(nc − vc)2

(
µvcc −µ

nc
c

)(
µvcc −µ

nc
c

)T
, (17)

where Σ
nc−vc
c and Σ

nc
c are respectively the covariance matrix of class c computed over the

nc −vc and nc training samples, Σvcc is the covariance matrix of the vc samples removed from
class c (see appendix B.3.3 for proofs).

The table 2 allows to compare the difference in term of computation time between re-
calculating the model and updating the model (the percentage expresses the rapidity com-
pared to the other method). We can note that the error made are more numerical errors and
will not have a big impact on the classification. In most of the cases, updating the model is
at least 70% faster than re-training the model. In our case, the model need to be updated
k×nv (where nv is the number of remaining variables). On hyperspectral images, where the
number of variables is important, this gain of time can lead to substantial computation time
if the model was re-computed instead of updated. This gain of time is much more important
when a leave-one-out cross validation (section 2.2.5) is done (in that case, k = n).

Table 2: Computation time comparison, a fifth of
the samples has been removed (L = 200, 8 classes).

Number of samples Re-compute the model Update the model Mean error on
the covariance matrix

800 (160 removed) 3.22e-03 s, (56.4 %) 7.39e-03 s 4.22e-17
4000 (800 removed) 1.01e-02 s 5.96e-03 s, (40.7 %) 4.48e-17
8000 (1600 removed) 2.85e-02 s 7.17e-03 s, (74.8 %) 4.57e-17
40000 (8000 removed) 1.44e-01 s 3.14e-02 s, (78.2 %) 5.19e-17
80000 (16000 removed) 2.76e-01 s 5.01e-02 s, (81.8 %) 6.37e-17
800000 (160000 removed) 2.78e+00 s 5.13e-01 s, (81.5 %) 1.30e-16
42776 (8555 removed) 6.79e-02 s 1.35e-02 s, (80.1 %) 1.13e-11
(University data set)
10227 (2045 removed) 2.69e-02 s 8.50e-03 s, (68.4 %) 2.69e-13
(Hekla data set)

2.2.4 Marginalization of Gaussian distribution

To get the GMM over a subset of the original set of feature (i.e. the pool of selected
feature), it is only necessary to drop the non selected features from the mean vector and the
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covariance matrix [22]. for instance, let x = [xs,xns], where xs and xns are respectively the
selected and the non-selected variables. The mean vector and the covariance matrix can be
written as :

µ = [µs,µns]
T , (18)

Σ =
[
Σs,s Σs,ns
Σns,s Σns,ns

]
. (19)

The marginalization over the non-selected variables shows that xs is also a Gaussian dis-
tribution with mean vector µs and covariance matrix Σs,s. Hence, once the full model is
learned, all the sub-models built with a subset of the original variables are available at no
computational cost.

2.2.5 Leave-one-out cross-validation

When a few training samples are available, it is wiser to resort to leave-one-out cross
validation (only one sample xn is removed from S). The update rules are still valid and
easier to write (v = vc = 1, µvcc = xn, Σvcc = 0). It is also possible to get a fast update of the
decision function when the removed sample does not belong to the class c; the only changing
parameter in equation (11) is the proportion. Therefore, the update of the decision rule can
be written as follows

Qnc−1
c (xn) =Qncc (xn) + 2ln(

n− 1
n

). (20)

An update rule for the case where the sample belongs to the class c can be written by us-
ing the Cholesky decomposition of the covariance matrix and rank-one downdate, but the
downdate is not numerically stable and not used here. A pseudo code for the LOOCV is
detailed in algorithm 3 in appendix B.4.

3 Experimental results

3.1 Data set

For the test of the efficiency of the algorithms, synthetic data were generated. A noise
from a uniform distribution is generated over the L bands and the classes are assigned based
on the value of the variables for each sample. The separation for each variables is linear, but
the separations of the class is not linear but just piecewise linear. The synthetic data are very
useful because they help to prove that the selected variables from the different methods are
effectively the variables of interest defined by the user. An example of synthetic data set is
presented in figure 9.
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Figure 9: Synthetic data with 2 discriminant features over the 200 available.

Two real data sets have been used in the experiments. The first data set has been acquired
by the ROSIS sensor during a flight campaign over Pavia, northern Italy;

• 103 spectral channels from 430nm to 860nm recorded,

• 9 classes defined,

• 42776 referenced pixels.

The second data set has been acquired in the region surrounding the volcano Hekla in Ice-
land by the AVIRIS sensor;

• 157 spectral channels from 400nm to 1840nm recorded,

• 12 classes defined,

• 10227 referenced pixels.

For each data set, 50, 100 and 200 training pixels per class were randomly selected and
the remaining referenced pixels were used for the validation. 50 repetitions were done for
which a new training set have been generated. All the k-fold cross-validation were done
with k = 5.

3.2 Results on synthetic data set

• Feature selected
The table 3 shows that the simple forward algorithms are very efficient because they
select 3, 4 or at most 5 features over the 200 available. In the pool of the selected fea-
tures, there are always the discriminant ones. When a lot of samples are available, the
simple forward algorithms always select only the discriminant features.
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The linear SVM also select the discriminant features. However, the number of selected
features is much more important than the simple forward algorithms. This is due to
the the method of multiclass classification; for each class, a lot of different features are
selected. However, the discriminant features are always selected for all the classes.

Table 3: Number of selected features for synthetic data with 3 discriminant
features over the 200 available (8 classes).

nc = 50 nc = 100 nc = 200
Liblinear: L1-regularized, L2-loss 7.9± 0.6 10.2± 1.1 13.6± 1.8
Simple forward LOOCV (δ = 0.50) 3.2± 0.2 3.2± 0.2 3.0± 0.0
Simple forward k-CV (δ = 0.50) 3.5± 0.3 3.1± 0.1 3.0± 0.0

• Accuracy
The tables 4 shows an other advantage of the simple forward algorithms; their ac-
curacy is better by at least 15% than the L1-regularized linear SVM. However, these
synthetic data are not really linearly separable in one versus all multiclassification (see
figure 9). It explain the poor results of the linear SVM. Furthermore, the improvement
in term of accuracy for the linear SVM is of about 3% between nc = 50 and nc = 200
while the improvement for the simple forward algorithms is at least of 5%.

Table 4: Accuracy for synthetic data with 3 discriminant
features over the 200 available (8 classes).

nc = 50 nc = 100 nc = 200
Liblinear: L1-regularized, L2-loss 69.2± 3.7 71.9± 1.4 72.8± 0.4
Simple forward LOOCV (δ = 0.50) 84.9± 4.0 88.2± 1.2 90.4± 0.5
Simple forward k-CV (δ = 0.50) 84.0± 5.5 88.2± 1.3 90.2± 0.8

• computation time
Also in term of computation time, the forward algorithms are faster (some seconds)
compared to the L1-regularized linear SVM (about 15 minutes).

The results on synthetic data allows to point out some big advantages of the simple
forward algorithms; they select few features and always the good ones, they have a good ac-
curacy for short computation time. However, even if the linear SVM has a bad classification
accuracy, it also select the good features with reasonable computation time.

3.3 Results on real data set

In this section, the following color code is used; blue correspond to L1-regularized linear
SVM, black correspond to the SVM with polynomial kernel or the L1-regularized linear
SVM on the data projected in the polynomial space of degree 2, green correspond to the
nonlinear SVM with gaussian kernel and red correspond to the simple forward algorithms.
The best result for each training setup is reported in bold face.
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3.3.1 Accuracy

Table 5: Mean and variance of the accuracy
for the proposed methods.

nc = 50 nc = 100 nc = 200
University
Liblinear: L1-regularized, Logistic-loss 75.1± 2.5 77.3± 1.4 78.5± 0.7
Liblinear: L1-regularized, L2-loss 74.8± 2.6 76.9± 1.9 78.2± 0.8
Liblinear: L1-regularized, Logistic-loss, projected 81.0± 2.8 83.6± 1.3 85.5± 0.4
Libsvm: RBF kernel 82.9± 3.4 86.5± 1.6 88.8± 0.6
Libsvm: RBF kernel 84.8 ± 3.4 88.4± 1.4 90.8 ± 0.3
RFE (RBF kernel, δ = 0.10) 84.7± 4.0 88.4 ± 0.9 90.8 ± 0.3
Simple forward LOOCV (δ = 0.50) 84.2± 4.4 86.3± 3.2 87.7± 3.1
Simple forward k-CV (δ = 0.50) 83.4± 7.6 85.9± 3.1 87.9± 1.9

Hekla
Liblinear: L1-regularized, Logistic-loss 90.3± 1.0 93.9± 0.5 95.6± 0.1
Liblinear: L1-regularized, L2-loss 89.9± 1.2 94.4± 0.2 96.4± 0.3
Liblinear: L1-regularized, Logistic-loss, projected 91.6± 0.6 94.8± 0.1 96.3± 0.1
Libsvm: Polynomial kernel 84.6± 1.6 91.4± 0.4 95.5± 0.1
Libsvm: RBF kernel 90.4± 1.6 95.6 ± 0.3 96.8 ± 1.1
RFE (RBF kernel, δ = 0.10) 90.2± 1.8 95.6 ± 0.3 96.8 ± 1.1
Simple forward LOOCV (δ = 0.50) 92.5 ± 1.2 94.8± 0.7 95.9± 0.3
Simple forward k-CV (δ = 0.50) 92.4± 1.2 94.6± 0.6 95.8± 0.3

• University data set
We can see that the linear SVM has the worst results. However, the Logistic-loss linear SVM
has slightly better results than the L2-loss linear SVM.
The accuracy of the SVM with polynomial kernel is slightly better (2%-3%) than the accu-
racy on the projected data with a linear SVM. The accuracy of theses methods are still better
than the accuracy of the linear SVM on original data.
The simple forward algorithms and the SVM with RBF kernel have similar results. The SVM
with RBF kernel has the greatest accuracy (with or without RFE) when the simple forward
algorithms are slightly worse. We can note that the difference between the SVM with RBF
kernel and the simple forward algorithms is lower than 3%. When the number of samples
per class increase, the accuracy of the simple forward algorithms does not increase a lot
(2%-3%) while the accuracy of the nonlinear SVM increase significantly (6%-8%).

• Hekla data set
The different methods obtained similar accuracy; the greatest accuracy is reached by the
simple forward algorithms for nc = 50 and by the SVM with RBF kernel for nc = 100 and
nc = 200. The worst results are obtained with the SVM with polynomial kernel.
The good accuracy of the linear SVM suggest that these data set can be easily linearly sepa-
rable. It also explains the results of the linear SVM on projected data, which is better than
the SVM with polynomial kernel.
The linear SVM performs slightly worse in term of accuracy than the SVM with RBF kernel
or the simple forward algorithms.
We can note that the difference between the SVM with RBF kernel and the simple forward
algorithms is lower than 2%. When the number of samples per class increase, the accuracy

April 2014 - September 2014 Page 20/46



Clément Dechesne

3 En tsi, ENSEEIHT

Final internship
Report

of the simple forward algorithms does not increase a lot (3%-4%) while the accuracy of the
nonlinear SVM increase significantly (6%-7%).

In term of accuracy, the nonlinear SVM with RBF kernel has in general the greatest ac-
curacy. However, the simple forward algorithms are also very efficient. The efficiency of the
L1-regularized linear SVM depends on the data (the Hekla data set is more linearly separa-
ble than the University data set) and does not have the best results. The projection in the
polynomial space has better results that the L1-regularized SVM on original data, but it is
still worse than the nonlinear SVM with RBF kernel or the simple forward algorithms.

3.3.2 Selected features

Table 6: Mean and variance of the number of selected features for the proposed methods.

nc = 50 nc = 100 nc = 200
University
Liblinear: L1-regularized, Logistic-loss 61.6± 5.1 78.3± 5.1 92.3± 2.7
Liblinear: L1-regularized, L2-loss 42.0± 3.3 44.0± 2.1 56.2± 2.8
Liblinear: L1-regularized, Logistic-loss projected 52.0%± 29.4% 56.7%± 25.8% 76.2%± 24.9%
RFE (RBF kernel, δ = 0.10) 98.4± 54.3 99.1± 12.8 99.3± 12.8
Simple forward LOOCV (δ = 0.50) 6.4± 1.3 6.5 ± 0.7 6.9 ± 1.2
Simple forward k-CV (δ = 0.50) 6.1 ± 1.0 6.6± 1.0 7.0± 0.8

Hekla
Liblinear: L1-regularized, Logistic-loss 157.0± 0.0 157.0± 0.0 157.0± 0.0
Liblinear: L1-regularized, L2-loss 157.0± 0.0 157.0± 0.0 157.0± 0.0
Liblinear: L1-regularized, Logistic-loss projected 93.6%± 14.0% 91.7%± 17.1% 92.7%± 15.8%
RFE (RBF kernel, δ = 0.10) 154.7± 4.2 155.2± 1.8 155.3± 1.2
Simple forward LOOCV (δ = 0.50) 7.6± 1.7 8.5± 1.4 8.8± 0.7
Simple forward k-CV (δ = 0.50) 7.3 ± 1.0 8.2 ± 1.1 8.6 ± 0.9

• University data set
The simple forward methods select a few variables (6 or 7); it is less than 7% of the total of
the original features.
The linear SVM selects a lot of variables (about 40% of all the variables for the method which
select the less features). It is interesting to note the difference in the number of selected fea-
tures between the L2-loss and the Logistic-loss; the L2-loss selects fewer variables. This is
due to the greater weight accorded to a missclassification (see figure 4); the regularization
parameter λ can be small, ensuring a great sparseness (see figures 22, 23 and 24).
The RFE does not remove a lot of variables (4 or 5 variables removed).
The linear SVM on projected data selects 52% to 76% of the projected variables (5460 vari-
ables) which is more than the original number of variables. The original features are nearly
always selected and many different combination of features are selected.

• Hekla data set
The simple forward also selects a few variables (7 or 8); it is less than 6% of the total of the
original features.
The RFE removes only some variables (2 or 3 variables removed).
The linear SVM does not select any variables. If we look to the figure 25, 26 and 27 in ap-
pendix C, we can see that if we accept to reduce the accuracy, the linear SVM would be able
to select from 70% to 80% of the total number of variables (there would be 20% to 30% of
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zeros in the vector w). It is still too much compared to the number of variables selected by
the simple forward algorithms.
The linear SVM on projected data extracts 92% to 93% of the projected variables (12560
variables) which is still more than the original number of variables. On this image, the se-
lected features are equally spread.

The simple forward algorithms seem to be the more appropriate in term of number of
selected features. The L1-regularized linear SVM can select features, but the number of
features selected highly depends on the data; for one set the L1-regularized linear SVM
was able to select features while it was not for the other set. The RFE is not relevant for
feature selection, only a few features are removed from the set; it is as if no features have
been selected. The features extracted with the L1-regularized SVM on projected data are not
interesting; the number of extracted features is greater than the original number of features.

3.3.3 Computation time

• University data set
In term of computation time, the simple forward algorithms are the fastest (some seconds).
The linear SVM is also fast (some minutes). The nonlinear SVM comes just after with sub-
stantial computation time (∼ 15 minutes). The computation time for the RFE is much worse
(some hours). The worst computation time is obtained on the projected data using the linear
SVM (about 50 hours for nc = 200).

• Hekla data set
The computation time are in general slightly longer than the one obtained on the University
data set. This is due to the greater number of spectral variables and number of samples.
For the linear SVM on projected data, computation time are much more longer than the one
observed on the University data set (about 160 hours for nc = 200).

3.3.4 Classification maps

The different methods have been applied on real hyperspectral images. In these appli-
cation, the spatial information has not been taken into account; each pixel has been treated
without regard to the value of its neighbors.

To reduce computation time all the methods were trained with 500 samples per class for
the University data set and 300 samples per class for the Hekla data set.

The University of Pavia’s maps results are presented in figure 10. The Hekla’s maps
results results are presented in figure 11. These maps do not allow to see the difference
between the used methods, especially for the simple forward algorithms. Nevertheless, they
reflect the results presented in section 3.3.1; the SVM has the greatest results, the simple
forward algorithms perform slightly worse in term of accuracy. For the University data set,
the linear SVM has poor results. For the Hekla data set, the linear SVM has similar results
to other methods.

The absence of spacial information makes the maps very noisy. For the simple forward
algorithms, the probability of belonging to a class is available, and the implementation of a
Markov chain could be possible and would make the maps more reliable.

April 2014 - September 2014 Page 22/46



Clément Dechesne

3 En tsi, ENSEEIHT

Final internship
Report

April 2014 - September 2014 Page 23/46



Clément Dechesne

3 En tsi, ENSEEIHT

Final internship
Report

(a) RGB colored image of
the University of Pavia

(b) Ground truth of the
University of Pavia

(c) Map estimated with a
SVM using a RBF kernel

(d) Map estimated with a
linear SVM

(e) Map estimated with the
simple forward LOOCV

(f) Map estimated with the
simple forward k-CV

Figure 10: Maps obtained with the different methods on the University scene.
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(a) RGB colored image of the
Hekla volcano

(b) Ground truth of the Hekla
volcano

(c) Map estimated with a SVM
using a RBF kernel

(d) Map estimated with a linear
SVM

(e) Map estimated with the
simple forward LOOCV

(f) Map estimated with the
simple forward k-CV

Figure 11: Maps obtained with the different methods on the Hekla scene.

4 Leave-One-Out Cross-Validation versus
k-fold Cross-Validation

4.1 Accuracy

In term of accuracy, the two algorithms are similar. However, the LOOCV work better
than the k-CV when few samples are available. Indeed, in that case, the covariance matrices
of the GMM might be ill-conditioned and it occurs numerical errors on eq.(11). The LOOCV
will lead to small change on the covariance matrix while the k-CV might exacerbate the ill-
conditioning of the covariance matrix.
When a lot of samples are available, the k-CV is a bit more efficient than the LOOCV; only
one sample is removed from a large number of samples (when nc is large), the parameters
of the GMM are not a lot changed;

πn−1
c =

nπnc − 1
n− 1

≈ πnc ,

µnc−1
c =

ncµ
nc
c − x

vc
n

nc − 1
≈ µncc ,

Σ
nc−1
c =

nc
nc − 1

Σ
nc
c −

nc
(nc − 1)2

(
xn −µncc

)(
xn −µncc

)T
≈ Σ

nc
c ,

Qnc−1
c (xn) =Qncc (xn) + 2ln(

n− 1
n

) ≈Qncc (xn).
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In that case, the k-CV will occur more variability while the LOOCV would have the same
effect as marginalize the original GMM.

4.2 Selected features

In term of selected features, the two algorithms are also similar. For a given training set
of the University of Pavia with nc = 200, 6 features are selected with the k-CV and 7 features
are selected with the LOOCV (see figure 12). On this image, a channel width is about 4nm.
From these selected features, three were the same for both methods; 607nm, 780nm and
784nm. Two channel were very close, 548nm and 725nm for the k-CV and 544nm and
721nm for the LOOCV. One was close, 485nm for the k-CV and 510nm for the LOOCV. The
last feature selected by the LOOCV is at 704nm, which is also close to the feature at 725nm
for the k-CV and 721nm for the LOOCV.
If the process is repeated, the result in term of selected features by the two methods is
similar; about 35% of the selected features are identical and the others selected features are
close in term of wavelenghts.

For a given training set of Hekla with nc = 200, 9 features are selected with the k-CV and
9 features are selected with the LOOCV (see figure 13). On this image, a channel width is
about 9nm. From these selected features, four were the same for both methods; 483.1nm,
621.5nm, 990.8nm and 1507.7nm . Two channel were very close, 446.2nm and 501.5nm for
the k-CV and 455.4nm and 492.3nm for the LOOCV. Three were close, 880.0nm, 1092.3nm
and 1673.8nm for the k-CV and 926.2nm, 1064.6nm and 1590.8nm for the LOOCV.
If the process is repeated, the result in term of selected features by the two methods is
similar; about 40% of the selected features are identical and the others selected features are
close in term of wavelenghts.

The table 7 shows the number of features selected by both the k-CV and the LOOCV for
a given set over 50 repetitions.

The figures 14 present the most selected features for the University of Pavia data set.
1000 random repetitions have been done with nc = 200 and the features shaded in the fig-
ures have been selected at least 10% time times using k-CV. The width of the spectral do-
main indicates the variability of the selection. The high correlation between adjacent bands
makes the bands selection "unstable"; for a given training set, the band b would be selected,
but for another randomly selected training set, it might be the band b + 1 or b + 1. It is a
limitation of the simple forward algorithms.
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Figure 12: selected features on the University of Pavia data set (nc = 200) from the simple
forward algorithms. Green bars correspond the feature selected by the k-CV, blue bars
correspond to the feature selected by the LOOCV, red bars correspond to the feature

selected by both the k-CV and the LOOCV. The mean value of each class are represented in
continuous colored lines.
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Figure 13: selected features on the Hekla data set (nc = 200) from the simple forward
algorithms. Green bars correspond the feature selected by the k-CV, blue bars correspond
to the feature selected by the LOOCV, red bars correspond to the feature selected by both

the k-CV and the LOOCV. The mean value of each class are represented in continuous
colored lines.

Table 7: Mean and variance of the number of selected features by both the k-CV and the
LOOCV.

nc = 50
Image Hekla Uni
Number of features selected 2.1± 1.4 1.7± 1.3

nc = 100
Image Hekla Uni
Number of features selected 2.8± 2.1 2.3± 1.5

nc = 200
Image Hekla Uni
Number of features selected 3.7± 2.8 2.4± 1.6
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Figure 14: Most selected spectral domain for the University of Pavia. Gray bars correspond
to the most selected part of the spectral domain. The mean value of each class are

represented in continuous colored lines.

4.3 Computation time

The main difference between the two algorithms is on the computation time; the k-CV
is faster than the LOOCV. This is due to the number of time the model need to be updated;
for the LOOCV, the model need to be updated n times for one feature removal (where n is
the number of samples) while it must be updated only k times for one feature removal for
the k-CV (in general, k is a small integer). For the University of Pavia data set with nc = 200,
the k-CV takes on average 2.9 seconds to select features while the LOOCV takes on average
34.3 seconds to select features. For the Hekla data set with nc = 200, the k-CV takes on
average 8.6 seconds to select features while the LOOCV takes on average 100 seconds to
select features.
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Conclusion

During this internship, traditional sparse classification methods such as SVM have been
applied on hyperspectral images. Based on these methods, some algorithms have been in-
vestigated to select features, without great success. A new method of feature selection has
been developed; the LOOCV NPFS. It has been tested, improved and established itself as
a good sparse method to classify non linearly hyperspectral images and select features. In-
deed, the linear SVM has poor results and select too many features, even when the data are
projected into a polynomial space. The linear SVM has reasonable computation time when
it is applied on the original data but the computation time explode when the linear SVM is
applied to projected data. The nonlinear SVM has the greatest classification accuracy but
does not allow to select features and has important computation time. When a RFE is ap-
plied to the nonlinear SVM, the number of remaining feature is still big and computation
time are bigger. The simple forward algorithms are the most adapted to the problematic
of the internship; is has a good classification rate, select few features and has small com-
putation time. The extension of the LOOCV to k-CV also allows to treat data with a lot of
samples with better accuracy. For better results, the LOOCV can be used when few samples
are available and the k-CV can be used when a lot of samples are available.

Further work could be the improvement of the simple forward algorithms with a back-
ward step to ensure that the selected features are are the most pertinent. A method to
remove the variability due to the high correlation between adjacent bands. A continuous
interval selection strategy, such as in [8], could be implemented. Other study could be done
to take into account the spatial information. A further work can be done on the study of
the extracted bands; indeed, we can see in figure 14 that the red-edge (between 700nm and
750nm) is extracted. It is a marker of plant activity [23]. It would be also interesting to
apply the algorithms presented in this internship to multi-temporal data, and interpret the
extracted dates.

For me, this internship has been a good experience; it has allowed me to improve my
knowledge on classification methods and how to apply them on hyperspectral images. I
also learned a lot about sparse models and sparse methods for feature selection. This in-
ternship strengthened my liking for the research in remote sensing and will be helpful for
the doctoral thesis about the extraction of forest characteristics by joint analysis of multi-
spectral or hyperspectral imaging and 3D LIDAR data I will make for the next three years.
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Appendices

A Data resizing

During the optimization problem, a scalar product is computed. Resize the data is there-
fore needed to ensure that each band has the same influence. The bands with a large am-
plitude will have more impact on the classification than the band with a small amplitude if
the data are not resized.

A.1 No rescale

< x,y >=
L∑
i=1

xiyi

A.2 Rescale between 0 and 1

x̃ =
x −m
M −m

< x̃, ỹ > = <
x −m
M −m

,
y −m
M −m

>

= <
x

M −m
,

y
M −m

> − < m
M −m

,
x

M −m
> − < m

M −m
,

y
M −m

> + <
m

M −m
,

m
M −m

>

=
L∑
i=1

1

(Mi −mi)2

(
xiyi −mi (xi + yi) +m2

i

)
=

L∑
i=1

xiyi

(Mi −mi)2︸            ︷︷            ︸
<x,y>

−
L∑
i=1

mixi
(Mi −mi)2︸            ︷︷            ︸
<m,x>

−
L∑
i=1

miyi

(Mi −mi)2︸            ︷︷            ︸
<m,y>

+
L∑
i=1

mimi
(Mi −mi)2︸            ︷︷            ︸
||m||2

Where m =min(x) ∈RL and M =max(x) ∈RL.

A.3 Rescale between −1 and 1

x̃ = 2× x −m
M −m

− 1
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< x̃, ỹ > = < 2× x −m
M −m

− 1,2×
y −m
M −m

− 1 >= 4 <
x −µ
M −m

,
y −µ
M −m

>

=
L∑
i=1

1

(Mi −mi)2

(
4xiyi + 2(Mimi − (Mi +mi) (xi + yi)) +M2

i +m2
i

)
= 4

L∑
i=1

1

(Mi −mi)2

(
xiyi −µi (xi + yi) +µ2

i

)

= 4


L∑
i=1

xiyi

(Mi −mi)2︸            ︷︷            ︸
<x,y>

−
L∑
i=1

µixi

(Mi −mi)2︸            ︷︷            ︸
<µ,x>

−
L∑
i=1

µiyi

(Mi −mi)2︸            ︷︷            ︸
<µ,y>

+
L∑
i=1

µiµi

(Mi −mi)2︸            ︷︷            ︸
||µ||2


with µ =

M +m
2

Where m =min(x) ∈RL and M =max(x) ∈RL.

A.4 Standardize

x̃ =
x −µ
σ

< x̃, ỹ > = <
x −µ
σ

,
y −µ
σ

>

= <
x
σ
,
y
σ
> − <

µ
σ
,
x
σ
> − <

µ
σ
,
y
σ
> + <

µ
σ
,
µ
σ
>

=
L∑
i=1

1

σ2
i

(
xiyi −µi (xi + yi) +µ2

i

)
=

L∑
i=1

xiyi
σ2
i︸   ︷︷   ︸

<x,y>

−
L∑
i=1

µixi
σ2
i︸   ︷︷   ︸

<µ,x>

−
L∑
i=1

µiyi
σ2
i︸   ︷︷   ︸

<µ,y>

+
L∑
i=1

µiµi
σ2
i︸   ︷︷   ︸

||µ||2

Where µ ∈RL is the mean of x and σ ∈RL is the standard deviation of x.

A.5 Effect of the resizing

The drawback of using m =min(x) ∈ RL and M =max(x) ∈ RL is that an outlier will lead
to poor results. The standardization is the resizing operation that lead to the best results
(see table 8).

Table 8: Effect of the resizing; accuracy for the University data set,
Liblinear; L1-regularized, Logistic-loss, 50 samples per class.

Not resized Rescaled between 0 and 1 Rescaled between −1 and 1 Standardized
73.0± 3.0 73.3± 2.7 74.0± 2.9 75.1± 2.5
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On figure 15, we can observe the impact of the different resizing methods on real data.
We can see big variation between the bands on the original data. The rescaling between 0
and 1 (figure 15c) or between -1 and 1 (figure 15d) reduce this variation. The standardiza-
tion corrects the more effectively this problem (figure 15b); the variation between the bands
is nearly suppressed.

(a) (b)

(c) (d)

Figure 15: Effect of the resizing of the data on the 20 first bands of the University data set.

B Simple forward feature selection

B.1 Notations

Here, the following notations are used. n : number of samples.
nc : number of samples in class c.
πnc : proportion of the samples of class c relative to the n total samples.
µncc : mean vector of the class c containing nc samples.
Σ
nc
c : covariance matrix of the class c containing nc samples.

µrc : mean vector of the v samples removed from the class c.
Σrc : covariance matrix of the v samples removed from the class c.

µrc =
1
v

nc∑
j=nc−v+1

xj
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Σrc =
1
v

nc∑
j=nc−v+1

(
xj −µrc

)(
xj −µrc

)T
B.2 Estimators

B.2.1 Proportion

πnc =
nc
n

(21)

B.2.2 Mean vector

µncc =
1
nc

nc∑
i=1

xi (22)

B.2.3 Covariance matrix

Σ
nc
c =

1
nc

nc∑
i=1

(
xi −µncc

)(
xi −µncc

)T
(23)

B.2.4 Decision rule

Qk(x) = −
(
x −µk

)T
Σ−1
k

(
x −µk

)
− ln(|Σk |) + 2ln(πk) (24)

B.3 Updating formulas

We need to estimate the proportion, the mean vector and the covariance matrix when v
samples are removed from the learning set.

B.3.1 Proportion

If the v removed samples xj , j = nc − v + 1, . . . ,nc belong to the class c

πn−vc =
nc − v
n− v

=
nπnc − v
n− v

else

πn−vc =
nc
n− v

=
nπnc
n− v
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B.3.2 Mean estimation

If the v removed samples xj , j = nc − v + 1, . . . ,nc belong to the class c

µncc =
1
nc

nc∑
i=1

xi

=
1
nc

nc−v∑
i=1

xi +
1
nc

nc∑
j=nc−v+1

xj

=
nc − v
nc

µnc−vc +
1
nc

nc∑
j=nc−v+1

xj

µncc = µnc−vc +
v
nc

(
µrc −µ

nc−v
c

)
(25)

µnc−vc =
ncµ

nc
c − vµrc
nc − v

(26)
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B.3.3 Covariance matrix estimation

If the v removed samples xj , j = nc − v + 1, . . . ,nc belong to the class c

Σ
nc
c =

1
nc

nc∑
i=1

(
xi −µncc

)(
xi −µncc

)T

=
1
nc

nc∑
i=1


xi −µnc−vc − 1

nc

nc∑
j=nc−v+1

(
xj −µnc−vc

)
︸                  ︷︷                  ︸

S




xi −µnc−vc − 1

nc

nc∑
j=nc−v+1

(
xj −µnc−vc

)
︸                  ︷︷                  ︸

S



T

=
1
nc

nc∑
i=1

((
xi −µnc−vc

)(
xi −µnc−vc

)T
+

1
nc2SS

T − 1
nc

(
xi −µnc−vc

)
ST − 1

nc
S
(
xi −µnc−vc

)T )

=
1
nc

nc∑
i=1

((
xi −µnc−vc

)(
xi −µnc−vc

)T )
+

1
nc2SS

T − 1
nc2

nc∑
i=1

((
xi −µnc−vc

)
ST + S

(
xi −µnc−vc

)T )
=

1
nc

nc−v∑
i=1

((
xi −µnc−vc

)(
xi −µnc−vc

)T )
+

1
nc

nc∑
j=nc−v+1

((
xj −µnc−vc

)(
xj −µnc−vc

)T )
+

1
nc2SS

T

− 1
nc2

nc∑
i=1

((
xi −µnc−vc

)
ST + S

(
xi −µnc−vc

)T )
=

nc − v
nc

Σ
nc−v
c +

1
nc

nc∑
j=nc−v+1

((
xj −µnc−vc

)(
xj −µnc−vc

)T )
+

1
nc2SS

T

− 1
nc

((
µncc −µ

nc−v
c

)
ST + S

(
µncc −µ

nc−v
c

)T )
=

nc − v
nc

Σ
nc−v
c +

1
nc

nc∑
j=nc−v+1

((
xj −µnc−vc

)(
xj −µnc−vc

)T )
+

1
nc2SS

T − 2
nc2SS

T

=
nc − v
nc

Σ
nc−v
c +

1
nc

nc∑
j=nc−v+1

((
xj −µnc−vc

)(
xj −µnc−vc

)T )

− 1
nc2

nc∑
j=nc−v+1

(
xj −µnc−vc

) nc∑
j=nc−v+1

(
xj −µnc−vc

)T
=

nc − v
nc

Σ
nc−v
c +

1
nc

nc∑
j=nc−v+1

((
xj −µnc−vc

)(
xj −µnc−vc

)T )

− 1

(nc − v)2

nc∑
j=nc−v+1

(
xj −µncc

) nc∑
j=nc−v+1

(
xj −µncc

)T
=

nc − v
nc

Σ
nc−v
c +

v
nc

Σrc +
ncv

(nc − v)2

(
µrc −µ

nc
c

)(
µrc −µ

nc
c

)T
− v2

(nc − v)2

(
µrc −µ

nc
c

)(
µrc −µ

nc
c

)T
=

nc − v
nc

Σ
nc−v
c +

v
nc

Σrc +
v

nc − v
(
µrc −µ

nc
c

)(
µrc −µ

nc
c

)T
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Σ
nc−v
c =

nc
nc − v

Σ
nc
c −

v
nc − v

Σrc −
ncv

(nc − v)2

(
µrc −µ

nc
c

)(
µrc −µ

nc
c

)T
(27)

Useful formulas

nc∑
j=nc−v+1

(
xj −µncc

)
= v

(
µrc −µ

nc
c

)

S = nc
(
µncc −µ

nc−v
c

)
=

nc∑
j=nc−v+1

(
xj −µnc−vc

)
=

nc∑
j=nc−v+1

xj − ncµncc −
∑nc
k=nc−v+1xk

nc − v


=

1
nc − v

nc∑
j=nc−v+1

(nc − v)xj −ncµncc +
nc∑

k=nc−v+1

xk


=

nc
nc − v

nc∑
j=nc−v+1

(
xj −µncc

)

nc∑
j=nc−v+1

(
xj −µnc−vc

)(
xj −µnc−vc

)T
=

nc∑
j=nc−v+1

((
xj −µrc +µrc −µ

nc−v
c

)(
xj −µrc +µrc −µ

nc−v
c

)T )

= vΣrc + v
(
µrc −µ

nc−v
c

)(
µrc −µ

nc−v
c

)T
+

nc∑
j=nc−v+1

((
xj −µrc

)(
µrc −µ

nc−v
c

)T )
︸                                   ︷︷                                   ︸

0

+
nc∑

j=nc−v+1

((
µrc −µ

nc−v
c

)(
xj −µrc

)T )
︸                                   ︷︷                                   ︸

0

= vΣrc + v
(
µrc −

ncµ
nc
c − vµrc
nc − v

)(
µrc −

ncµ
nc
c − vµrc
nc − v

)T
= vΣrc +

nc
2v

(nc − v)2

(
µrc −µ

nc
c

)(
µrc −µ

nc
c

)T
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B.4 LOOCV algorithm

Algorithm 3 Simple forward LOOCV feature selection.

Input: S,δ,maxvariables
Output: The set of selected variables id
C← number of classes
n← number of samples
d← number of variables
rep← 1
id← [] // Pool of selected features
variable← [1, . . . ,d] // Original features
Compute model for each class using eq. (12), (13) and (14)
while rep ≤maxvariable do
nv = length(variable) // Number of remaining variables
loocv← [0, . . . ,0] // Vector of size nv
for j = 1, . . . ,nv do
id_t← [id,variable(j)]
Compute the decision function with the marginalized model
loocv_tp← 0
for i = 1, . . . ,n do

for k = 1, . . . ,C do
if yi = k then

Update the model
Compute the decision function

else
Compute the decision function

end if
end for
yloo← arg maxk=1,...,CQk(xi)
loocv_tp← loocv_tp+ (yloo = yi)

end for
loocv(j)← loocv_tp

n
end for
Get the maximum of loocv and the corresponding variable t
if The improvement in terms of loocv < δ then

break
else

Add the variable t to the pool id
Remove the variable t from the original set of variables

end if
end while
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C Figures

Figure 16: Accuracy and number of selected features as a function of δ for a synthetic data
set (3 discriminant variables over the 200 available, 8 classes) using the leave-one-out

method.
The greatest accuracy is obtained when the 3 discriminant variables are selected,

otherwise, the accuracy decrease.

Figure 17: Accuracy and number of selected features as a function of δ for a synthetic data
set (3 discriminant variables over the 200 available, 8 classes) using the k-fold method.

The greatest accuracy is obtained when the 3 discriminant variables are selected,
otherwise, the accuracy decrease.
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Figure 18: Accuracy and number of selected features as a function of δ for the University
data set using the leave-one-out method.

Figure 19: Accuracy and number of selected features as a function of δ for the University
data set using the k-fold method.
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Figure 20: Accuracy and number of selected features as a function of δ for the Hekla data
set using the leave-one-out method.

Figure 21: Accuracy and number of selected features as a function of δ for the Hekla data
set using the k-fold method.
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(a) (b)

Figure 22: Sparseness of the vector w (% of zeros) for each class and cross-validation
accuracy (% of good classification) as a function of the regularization parameter for the
University data set using the L1-regularized linear SVM (nc = 50). The red dotted line
correspond to the value of λ that corresponds to the greatest cross validation accuracy.

(a) (b)

Figure 23: Sparseness of the vector w (% of zeros) for each class and cross-validation
accuracy (% of good classification) as a function of the regularization parameter for the
University data set using the L1-regularized linear SVM (nc = 100). The red dotted line
correspond to the value of λ that corresponds to the greatest cross validation accuracy.
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Figure 24: Sparseness of the vector w (% of zeros) for each class and cross-validation
accuracy (% of good classification) as a function of the regularization parameter for the
University data set using the L1-regularized linear SVM (nc = 200). The red dotted line
correspond to the value of λ that corresponds to the greatest cross validation accuracy.

Figure 25: Sparseness of the vector w (% of zeros) for each class and cross-validation
accuracy (% of good classification) as a function of the regularization parameter for the

Hekla data set using the L1-regularized linear SVM (nc = 50). The red dotted line
correspond to the value of λ that corresponds to the greatest cross validation accuracy.
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Figure 26: Sparseness of the vector w (% of zeros) for each class and cross-validation
accuracy (% of good classification) as a function of the regularization parameter for the

Hekla data set using the L1-regularized linear SVM (nc = 100). The red dotted line
correspond to the value of λ that corresponds to the greatest cross validation accuracy.

Figure 27: Sparseness of the vector w (% of zeros) for each class and cross-validation
accuracy (% of good classification) as a function of the regularization parameter for the

Hekla data set using the L1-regularized linear SVM (nc = 200). The red dotted line
correspond to the value of λ that corresponds to the greatest cross validation accuracy.
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