
��� �����	
������� ��������� ���	 	������ 	����� �� 	��� �� ��� ��
�	����� ������	�������

�������������	��	��������
�������	����

�
�� ������� ������	� ������� ������� �������

����� �	 �� �
�� ����		 ��
�	����� ���� �������	 ��� ��� �� 	��� ������	�

��	�������	 ��� �� �	 �� ������ ��������� ���� ��� ��� �����
�		�����

���	 �	 ���	���
����	��� ���

�� ���� ���	
��	���

�������� ��� �

an author's https://oatao.univ-toulouse.fr/21416

http://doi.org/10.1145/3284432.3284471

Charles, Jack-Antoine and Ponzoni Carvalho Chanel, Caroline and Chauffaut, Corentin and Chauvin, Pascal and

Drougard, Nicolas Human-Agent Interaction Model Learning based on Crowdsourcing. (2018) In: 6th International

Conference on Human- Agent Interaction (HAI’18), 15 December 2018 - 18 December 2018 (Southampton, United

Kingdom).

Human-Agent Interaction Model Learning
based on Crowdsourcing

Jack-Antoine Charles
ISAE-SUPAERO,

Université de Toulouse,
France

Caroline P. C. Chanel
ISAE-SUPAERO,

Université de Toulouse,
firstname.lastname@isae-supaero.fr

Corentin Chauffaut
ISAE-SUPAERO,

Université de Toulouse,
France

Pascal Chauvin
ISAE-SUPAERO,

Université de Toulouse,
France

Nicolas Drougard
ISAE-SUPAERO,

Université de Toulouse,
France

ABSTRACT
Missions involving humans interacting with automated systems
become increasingly common. Due to the non-deterministic behav-
ior of the human and possibly high risk of failing due to human
factors, such an integrated system should react smartly by adapt-
ing its behavior when necessary. A promise avenue to design an
efficient interaction-driven system is the mixed-initiative paradigm.
In this context, this paper proposes a method to learn the model
of a mixed-initiative human-robot mission. The first step to set up
a reliable model is to acquire enough data. For this aim a crowd-
sourcing campaign was conducted and learning algorithms were
trained on the collected data in order to model the human-robot
mission and to optimize a supervision policy with a Markov De-
cision Process (MDP). This model takes into account the actions
of the human operator during the interaction as well as the state
of the robot and the mission. Once such a model has been learned,
the supervision strategy can be optimized according to a criterion
representing the goal of the mission. In this paper, the supervision
strategy concerns the robot’s operating mode. Simulations based
on the MDP model show that planning under uncertainty solvers
can be used to adapt robot’s mode according to the state of the
human-robot system. The optimization of the robot’s operation
mode seems to be able to improve the team’s performance. The
dataset that comes from crowdsourcing is therefore a material that
can be useful for research in human-machine interaction, that is
why it has been made available on our web site.

CCS CONCEPTS
• Information systems→Crowdsourcing; •Human-centered
computing → Human computer interaction (HCI); • Com-
puting methodologies→ Planning under uncertainty; Supervised
learning by classification; Maximum likelihood modeling; • Com-
puter systems organization → Robotics;

KEYWORDS
Human-Robot Interaction, Mixed-Initiative Mission, Crowdsourc-
ing, Markov Chain Learning, Markov Decision Process, Classifica-
tion

ACM Reference Format:
Jack-Antoine Charles, Caroline P. C. Chanel, Corentin Chauffaut, Pascal
Chauvin, and Nicolas Drougard. 2018. Human-Agent Interaction Model
Learning based onCrowdsourcing. In 6th International Conference onHuman-
Agent Interaction (HAI’18), December 15–18, 2018, Southampton, United King-
dom. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3284432.
3284471

1 INTRODUCTION
Human and artificial agent interaction is an actual research track
that covers various disciplines. Artificial intelligence, human factors
and sociology are few examples of involved topics. Due to the
increase of the decisional autonomy of artificial agents, e.g. robots,
autonomous cars and unmanned aerial vehicles (UAVs), the role
of the human operator is reduced regarding direct control, and
concentrated on higher level decisions, that are not automated for
practical, ethical or legal reasons. The use of automated planning for
artificial agents actions has been amplified by the recent technical
advances in artificial intelligence and machine learning. As an
example, convolutional networks led to artificial vision [31] and
popularized deep learning techniques, which played an important
role in the latest successes of decision making algorithms based on
Reinforcement Learning [33] and Planning under Uncertainty [18].

However, human operators are still vital in numerous scenarios.
In particular they are able to produce tactical, moral, social and
ethical decisions [22]. Such decisions are not (yet) assigned to ma-
chines. For instance, legal regimes need people for responsibility
assessment issues, encouraging human supervision of automated
systems.

On the other hand, this drastic change of the human operator
role in favor of system’s autonomy results in a new paradigm also
known as mixed-initiative [15]. Mixed-initiative human-robot in-
teraction considers human operators and artificial agents as a team
[22], in which each agent can seize the initiative from the other.
From the human operator’s point of view it is not always bear-
able or acceptable that such an artificial system could seize the
initiative, except if human cognitive capabilities or performance are
degraded. A study reports that human factors are involved in 80% of

HAI ’18, December 15–18, 2018, Southampton, United Kingdom

autonomous aerial vehicles accidents [36]. This fact is due to several
constraints experienced by humans during their missions. Stress,
high workload, fatigue or boredom, which can be induced respec-
tively by pressure (e.g. cause by a danger), complexity, hardness or
duration of their tasks, are some of the main problems encountered
by humans. As a result, an intelligent supervision system could
lend a strong hand in order to help the human operator and the
human-robot team to perform better.

Hence, an appropriate supervision strategy has to manage the
information given to the human operator, the task allocation be-
tween the human and the machine, as well as the machine policy
during its own tasks. In other words, the supervision strategy goal
is to drive human-machine teams firstly by allocating the tasks that
can be carried out by both the human and the machine, secondly,
by providing, or not, appropriate alarms to the human operator,
and finally by adapting actions of the machine according to the
human behavior.

Considering that the human behavior is not deterministic, as well
as environment dynamics, events occurring in a mixed-initiative
mission can be considered as uncertain. A classical automated
planning framework for probabilistic domains can be used to han-
dle such a mixed-initiative human-robot interaction problem: the
Markov Decision Processes (MDPs) [25]. MPDs allow to define the
goal of a given mission in terms of rewards valuating states of the
system. The optimization of MDPs consists in computing a strategy
maximizing the expected sum of rewards over time [2].

The drawback of using MDPs is the need for a precise transition
model, the which must faithfully represent the dynamics of the
system. On one hand, Reinforcement Learning (RL) [35] can be
explored in cases only a generative model is available to learn the
optimal actions during repetitive mission realizations. On another
hand, if a sufficient number of missions have been carried out
before hand, it is possible to learn the MDP’s parameters, and so,
MDP optimization algorithms can be applied to obtain the optimal
strategy.

This work is built based on this second approach. For this pur-
pose, a mixed-initiative mission, called Firefighter Robot game [8],
has been designed to reveal some general problems that occur
in human-machine interaction. This mission, which simulates a
remotely operated robot, is available on an opened website1. Adver-
tising was done in the authors’ (professional and social) networks
to encourage Internet users to carry out the mission in order to
collect as much anonymous data as possible. This crowdsourcing
platform has collected more than a thousand mission realizations,
allowing the application of machine learning techniques, namely
classification and Markov Chain learning, to define the parameters
of the MDP that models the mission.

This paper is organized as follows: firstly the designed mixed-
initiative mission available on the crowdsourcing platform is pre-
sented as well as the produced dataset. Then the methodology used
to learn a human-robot interaction model is given, followed by a
complete mission model definition in the form of an MDP. Finally
simulations are performed, evaluation results are presented and
future work is discussed.

1http://robot-isae.isae.fr

2 CROWDSOURCING FOR MASSIVE DATA
COLLECTION

As explained earlier, a crowdsourcing platform has been set up to
allow users to perform the mission called Firefighter Robot game.
This human-robot mission immerses the user in a scenario where
he plays a fireman who must cooperate with a robot that is present
in a small area with few trees. These trees have a weird tendency to
self-ignite for some unknown reason. Through the graphical user
interface (GUI) shown in Figure 1, the human operator gets the
position of the robot in a map (bottom center), as well as the video
streaming from its camera (top right).

The battery charge level of the robot decreases with time. How-
ever, when the robot is in the charging station, represented by a
red square on the ground, the battery recharges. If the battery is
empty and the robot is not on the red square, the mission fails and
is finished. All the information related to the robot is summarized
at the bottom right of the GUI.

The volume of water contained by the robot is not unlimited:
to recharge in water, the robot has to be in the water station rep-
resented by a blue square on the ground and the associated tank
has to contain enough water. For that, the human operator has
to fill this ground tank using the buttons on the left-side of the
interface: a tap, which can move horizontally by actuating a wheel
(top buttons), fills the tank when it is in the middle (which is an
unstable equilibrium). To actually fill the tank, the button bellow
(black tap) turns on the tap for few seconds. Leaks may appear on
the tank during the mission causing it to lose water: the button
below (black wrench) can be used to fix them.

With the help of this robot, the goal of the mission is to fight as
many fires as possible in a limited amount of time (tenminutes). The
temperature of the robot increases when it is too close to flames and
the mission terminates when it is too hot. The presence of fires is
supposed to be felt as a danger by the operator. The robot, when its
mode is “manual”, is controlled by the arrows (navigation) and the
space bar (shoot water) of the keyboard. In “autonomous” mode, the
robot drives itself with a hard-coded strategy, including shooting
water and the recharge of water or battery when necessary.

Figure 1: Graphical user interface (GUI) of the Firefighter
Robot mission. The score and remaining time are displayed
at the top left and the video from the robot is available at
the top right, above the robot position and status informa-
tion. The water reserve management task is displayed at the
bottom left of the interface.

HAI ’18, December 15–18, 2018, Southampton, United Kingdom

Integer Associated alarm
−1 No alarm displayed
0 “Low battery”
1 “Too-high temperature”
2 “Less than one minute before the end of the mission”
3 “The robot’s tank will soon be empty (2 shoots left)”
4 “The robot is in autonomous mode”
5 “The robot is in manual mode”
6 “The ground tank’s water level is low”

Table 1: The different alarms that can be displayed during
the mission as well as the associated integers, i.e. the num-
bers representing each of the alarms in the dataset.

For model learning purposes, the robot’s operating mode can
change randomly every ten seconds: it can be autonomous or it
can need for manual control. This uniform sampling technique
is used in order to get a balanced dataset (as much data under
both supervision actions) needed to learn model probabilities for
each action. Like the robot mode, the display of an alarm is also
considered as a supervision action. When an alarm can be displayed,
i.e.when the information it provides is true, the action of displaying
this alarm is also randomly selected, in order to get data from both
conditions (with and without alarms). The complete list of alarms
is given in Table 1.

Temperature, battery and external tank management, as well as
the score (number of extinguished fires) and the remaining time
should imply stress and pressure. Pretests revealed that both tasks
(robot control and water management inspired from MATB [6])
are complex enough to generate cognitive workload in the human
operator, notably highlighted by variations in her engagement [9].
Such a (degraded) mental state can impair the human operator’s
cognitive abilities, and thus increase the risk of mission failure.

2.1 A Human-Robot Mission Dataset
The total time of recorded missions reaches more than 85 hours. In
addition, in at least 55% percent of the whole samples, the human
operator interacts with the interface. For instance she clicks on the
interface, or uses the keyboard. Note that, each sample represents
the amount of data collected during one second.

All anonymous data collected is available online2. The history of
each mission is saved in a comma-separated values (CSV) file i.e. in
the form of a table. The system status, that is themission context and
human-system interaction data, is recorded at every second. The
first line of the file is always the same since themission always starts
in the same initial state. Thus, the information actually generated
by the human-machine system goes from line 2 to line H + 1 (line
601 if no premature game over occurs) where H ∈ { 1, . . . ,600 } is
the process horizon.

The remaining mission time rt in seconds is the first column
and takes values from 600 to 600 − H . If H = 600 the mission is
completed until the end and without premature game over. Since
the missions are not always successful, not all missions have the
same duration.
2https://personnel.isae-supaero.fr/isae_ressources/caroline-chanel/horizon/

The next two columns correspond to the potential actions of the
human-robot team’s supervision system. Indeed the second column
contains the different operating modes taken by the robot during
the process: amt = 1 if the robot is autonomous during the second t ,
and amt = 0 if it is in manual mode. The third column contains the
alarms that can be triggered during the mission and is denoted by
aat . Please refers to Table 1 for alarm encoding details.

The next three columns describe the robot pose: ∀t ∈ { 0, . . . ,H },
(xt ,yt ,θt) ∈ ([−20,20]2×] − π ,π]). For instance, on the map such
as displayed on the GUI, or in Figure 2, the xt (resp. yt) increases
when the robot moves to the right (resp. goes up the map). The
angle θt is zero when the robot is oriented to the right and grows
in the trigonometric direction.

Then comes the column describing the condition of the trees
over time, i.e. which trees are on fire and which are not. A number
is assigned to each of the nine trees and their coordinates are given
in Table 2. By noting f it ∈ { 0,1 } the state of the tree i (1 for on
fire and 0 otherwise) at time t ∈ { 0, . . . ,H }, the value given in the
CSV file is the forest state ft =

∑9
i=1 f

i
t · 10

9−i . Thus, the resulting
binary number at ith digit, beginning from the left, denotes the
state of tree f it .

The next columns are dedicated to battery level bt ∈ [0,100]
and temperature Tt ∈ [20,240]. The mission fails and the interface
displays a game over when the battery is empty, bt = 0, or when the
temperature is too high,Tt ⩾ 240. Then, the successive water levels
of the tank embedded on the robot wr

t ∈ { 0,10, . . . ,90,100 } and
of the one on the groundwд

t ∈ [0,100] are given in the following
two columns. This last tank allows the robot to be filled during the
mission if containing enough water.

Leaks can appear at nine different points on the ground tank.
These points follow a 3 × 3 grid pattern. By ordering these points
from left to right then from top to bottom, the state of the point
i ∈ { 1, . . . ,9 } at the second t ∈ { 0, . . . ,H } is denoted by l it ∈ { 0,1 },
with 1 for leak at this point and 0 otherwise. As like the states of the
trees (ft), the values in this new column are lt =

∑9
i=1 l

i
t · 10

9−i .
Finally, the last four columns concern the operator’s actions

on the interface. Note that, in one second, several keyboard keys
could be pressed or several clicks on buttons (say n ∈ N) could
be performed. Thus, these three columns contain word sequences

tree x y
1 4.55076 14.66826
2 −0.7353 14.75052
3 −15.10146 15.76476
4 −2.6019 6.7425
5 −1.33158 10.02042
6 16.58292 −12.5847
7 16.87086 −16.01952
8 0.6078 −16.23906
9 −16.65378 −16.23906

red square (battery)
x y
0.0 −10.0

blue square (water)
x y

16.0 16.29

Table 2: Location of the trees and the blue and red squares in
themap (see Figure 2).When considering themap displayed
on the interface, the x-axis points to the right, the y-axis to
the top.

HAI ’18, December 15–18, 2018, Southampton, United Kingdom

Session 1: Learning

separated by dashes. The first contains the keyboard key sequences
used to control the robot,

kt E { "front", "back", "left", "right", "space" ln, with n EN.

These keys correspond respectively to the top, down, left and right
arrow keys, and to the space key. For exarnple consider the user's
actions when the mission duration is between t - 1 and t seconds.
If the "front" key is pressed, then the "right" key to turn the robot
and finally the "space" key to throw water, then the (t + l)th line of
this colurnn will contain for instance kt = "front-front-front-right
space". The second colurnn concerning hurnan behavior contains
the sequence of clicks on the interface buttons,

{"l ft". 'gh ". h". h" ("l ak '")9 " al "}n
Ct E e , n t , pus , wrenc , e _1 i=l • rm_ arm

with n E N. Buttons "left" and "right" control the tap of the water
management task, while "push" turns it on, and "wrench" turns
the mouse pointer into a wrench. When the user then clicks on
the leak i E { 1, ... , 9}, it disappears and adds "leak_i" to the clicks
sequence, e.g. Ct = "wrench-leak_2-wrench-leak_6". When a visual
alarm occurs, and the operator clicks on the button "I got it" to
remove it from the interface, it leads to the addition of the word
"rm_alarm" in this word sequence. The third colurnn related to
hurnan behavior records clicks and keys pressed by mistake, as:

et E { "down", "up", "click" ln, with n EN.

If et = "down-up-click" it means that, during second t, a key with
no effect was pressed, then such a key was released, and finally
an useless click was made. Finally, the last colurnn contains the
number of keyboard shortcuts used in the second t E N. Indeed, the
use of some buttons (narnely "left", "right", "push" and "wrench")
of the GUI (cf Figure 1) can be replaced by keyboard shortcuts
(respectively, "s", "d", "e" and "a" keys). Thus, this column contains
the number of times a shortcut has been used during the associated
second: Ut E N.

Note that the notation -1 for "No alarm displayed" (see Table 1)
is also used in these last four colurnns. If, in a time step t, no useful
key is pressed (resp. no click on buttons is performed, no useless
action has been taken, no keyboard shortcut is used), i.e. if n = 0,
then kt = -l (resp. Ct = -1, et = -1, Ut = -1). In the same way, if
the value in the dataset is -2, it means that the data is missing.

In surnmary, the nurnber of colurnns of this Hurnan-Robot In
teraction dataset is equal to 16, and any line of such a CSV file
describing a Firefighter Robot mission is organized as follows:

mt = (rt,a'/',af ,Xt,Yt,Bt,ft,bt, Tt, wf, wf ,lt,kt,Ct,et,Ut)

where, mt is the line nurnber t + 1 describing events occurring
during the time segment)t - l,t) in seconds (or a constant initial
state if t = 0). As mentioned above, each mission (CSV) file is a
(H + 1) X 16 table. Each line is a 16-dimensional vector mt, thus the
dataset can be seen as the realization of a random variable sequence
of size H + 1 representing the mission process (mt)i0• Note that
only kt, Ct and et are not numbers.

In a few words, the following work assume that this sequence
is a Markov chain in order to benefit from the associated learning
and planning techniques. Next section describes the forma! mode!
used in this paper, the methodology applied to leam a human-agent
interaction mode!, as well as the overall mission mode!.

HAI '18, December 15-18, 2018, Southampton, United Kingdom

Figure 2: Map of the Firefighter Robot mission on which ap
pear data coming from a mission carried out on the website

and acquired by crowdsourcing. The target symbol in the
center is the initial location of the robot and the black (resp.
red) arrows are the successive robot's locations when the ro
bot is autonomous (resp. in manual mode). The current time
steps of the mission are the numbers displayed at the cur

rent location of the robot. Trees and locations of squares are
also displayed, as well as the terminal robot's location with

an "End" flag.

3 FORMAL MODEL

In this work, and as often in the context of hurnan-robot interaction,
the evolution of the system carmot be considered as determirùstic.
Indeed, human behavior and environmental dynamics are uncertain
and therefore require adequate modeling. The Markov Decision
Process (MDP) framework (25) is a convenient choice for planning
under uncertainty. This farnous stochastic control process is an
elegant way to mode! and solve probabilistic plarming problems.
Once the possible actions and system states have been identified,
the goal of the problem is defined using a reward function that
evaluates the utility of a state-action pair. This makes possible to
define the utility of an action sequence as the expected surn of
the rewards obtained over time given an initial state. The optinlal
sequence of actions is the one that maxinlizes such an expected
sum of rewards.

Formally, the (finite horizon) MDP mode! is defined as a tuple
(S,:1l, T,R,H), where:

• S is the finite set of states;
• :1I is the finite set of actions;
• T : S X :1l X S ➔ (0, 1) is the transition function, which

defines the probability p (s' 1 s,a) = T(s,a,s') of reaching
the state s' E S given that the action a E :1{ is performed in
state s ES;

• R : S × A → R is the reward function that values any
state-action pair;
• H ∈ N is the horizon, that is the duration of the process in
terms of discrete time steps3.

A policy π ∈ Π is a function that associates an action a ∈ A to
each possible context, that is, in the case of finite horizon MDPs
(H < +∞), to each state s ∈ S and time step t ∈ { 0, . . . ,H }:
π : S × { 0, . . . ,H − 1 } → A. Solving an MDP is finding a policy
that maximizes the expected amount of rewards up to time step H :

π∗ = argmax
π ∈Π

E

H−1∑
t=0

R
(
s,π (s,t)

) ������ s0 = s

. (1)

Such a policy defines the optimal action a ∈ A to perform in a given
state s ∈ S and time step t ∈ { 0, . . . ,H − 1 }, and can be computed
by Dynamic Programming [2] making use of the Bellman operator
applied to the optimal value function V ∗ defined by induction as
shown in Equation 2: the last optimal decision rule is π∗ (s,H − 1) =
argmaxa∈A R (s,a), V ∗1 = maxa∈A R (s,a), and ∀h ∈ { 2, . . . ,H },

π∗ (s,H − h) = argmax
a∈A

R (s,a) +

∑
s ′∈S

T (s,a,s ′) ·V ∗h−1 (s
′)

V ∗h (s) = max
a∈A

R (s,a) +

∑
s ′∈S

T (s,a,s ′) ·V ∗h−1 (s
′)

. (2)

Recent MDP algorithms [4, 16] explore dynamic properties of
the model (mainly using Monte-Carlo methods) to optimize actions
only for reachable states. Such methods help to decrease the time
and memory needed to solve MDPs with large state space.

In the case of the Firefighter Robot mission optimization, the
actions to choose over time are the supervision actions, i.e. robot
mode am ∈ { 0,1 } and alarm display aa ∈ { i }6i=−1 (see Table 1). As
a result, the action space is A = { 0,1 } × { i }6i=−1. The remaining
time is linked to the time step and the horizon by the equality
rt = H − t with H = 600. The remaining values in mt , i.e. after
removing amt , aat and rt , constitute the current state st ∈ S.

Note now that the state space defined in this way is not finite as
imposed in the definition. For instance the robot pose (xt ,yt ,θt), the
temperatureTt and the water level of the ground tankw

д
t are three

continuous variables. The battery level bt , the state of the forest ft
and the leaks on the ground tank lt are not continuous data, but they
have a large number of possible values (100, 29 and 29 respectively).
Since the operator can interact at any speed via keyboard andmouse,
if the connection is good, the variables encoding the keystroke
sequence kt , the click sequence ct and the error sequence et can
be very long word sequences, and so the number of possible word
combinations is also very large. The number of keyboard shortcuts
σt can also be very large for the same reason. Only the water level
wr
t in the robot tank has a limited number of possible values which

is equal to #wr
t = 11.

It is therefore necessary to discretize these state variables in
order to be able to treat the problem with the desired tools. In
addition, the discretization must be coarse enough to keep the state
space small so that the learning and planning algorithms can solve
the problem without too much memory or computation time.
3Note that in the most general definition, T and R could also depend on time t .

In this study, the learning process consists in the estimation of
the transition probability values, i.e. the transition function T , that
are still missing to fully define theMDP. Crowdsourcing data will be
used to estimate this function, but here again, a rough discretization
allows for the learning algorithms to give more reliable estimates.

3.1 Variable Selection and Trade-off in
Granularity

In this work we make the hypothesis that a rough discretization can
allow a better estimation of the transition function T . Indeed such
a processing increases the number of occurrence - in the database
resulting from crowdsourcing - of the states thus defined. In this
way the learning is based on a larger number of samples which
should improve the accuracy of T .

Moreover the curse of dimensionality [3] prevents us from start-
ing our supervision study of human-robot team with too many
variables otherwise the learning and planning problems will not
be practically solvable. Hence, this sub-section is dedicated to the
description of the MDP actually learned and solved for this first
study on the Firefighter Robot dataset.

The selected state variables are limited to discretized versions of
xt , yt , θt , bt , wr

t , ft , and kt . These variables seem to be the most
relevant to take into account in order to optimize supervision to
drive the human-robot system. Indeed, the state of the forest is
the state of the system on which the goal of the mission depends.
The robot’s pose and water level are system’s states that are quite
directly related to fire extinction, so theywere also chosen. The level
of battery can lead to the end of a game, and therefore a sub-optimal
mission given the chosen reward function. Finally, the sequence of
keyboard keys used is a source of information about the operator
that must be taken into account to allow the supervisory system to
adapt to human behavior.

The robot positions are discretized according to a grid 3×3whose
cells have the same size: pos ∈ {NE,N ,NW ,E,C,W ,SE,S ,SW }.
Thresholds are defined for the battery and water level to discretiza-
tion into two values: (bat ,wat) ∈ { “nominal”,“low” }2. The total de-
scription of the condition of the trees requires a variable with 29 pos-
sible values. We therefore keep only the number of fires in progress
f ire =

∑9
i=1 f

i
t ∈ { 0, . . . ,9 }. A variable space is also introduced to

encode if the user presses the space key during the current second:
space = 1{“space”∈kt } ∈ { 0,1 }. The variable end = 1{bt=0} ∈ { 0,1 }
symbolizing game overs is also introduced. The state variables nec-
essary to define the reward function we had in mind have already
been introduced. Since the goal of the human machine team is to
keep the trees in good condition, the reward function can be defined
as: R (s,a) = R (s) = R (end, f ire) = (1 − end) · (9 − f ire). Note that,
the reward function depends only on end (no more reward if the
mission fails) and on f ire , but it does not depend on the action
a ∈ A.

The following section presents a technique for discretizing the
remaining variables, namely the sequence of pushed keys kt and
the orientation θt . This leads to a variable called int (for “human’s
intention”) and taking nine possible values. We thus have seven
state variables st = (pos,wat ,bat , f ire,space,end ,int) ∈ S forming
a state space of size #S = 9 × 2 × 2 × 10 × 2 × 2 × 9 = 12960. In
this way, the size of the state space will not prevent the problem

HAI ’18, December 15–18, 2018, Southampton, United Kingdom

from beeing solved, i.e. optimized strategy computation using a
state-of-the-art MDP solver will be possible.

3.2 Interaction Model Learning
Although the discretization of the rotation θt would be easy to
implement, the discretization of the keyboard key sequences kt is
less direct. There is no intuitive and simple partition to make. While
there are many clustering algorithms for continuous and numerical
data [19, 32], the literature on clustering of less structured data is
quite poor. Thanks to the technique presented in this section, these
two variables will in fact be used to estimate the movement that
the operator wants (intends) the robot to perform.

Knowledge of the human operator’s intentions can only be ben-
eficial to a supervision system of a human-machine team. For ex-
ample, suppose that the robot is in autonomous mode in an area
where it generally has more difficulty moving than when the human
controls it. If the operator presses the directional keys and seems
to want to move the robot in a satisfactory direction, a good super-
vision system would change the robot mode from autonomous to
manual. Remember that the robot’s hard-coded strategy when in
autonomous mode is not optimal, so the human operator could also
observe that a better strategy is possible and thus manipulate the
keyboard keys to regain control over the robot. On the other hand,
if the supervision system detects that the operator’s intention is to
move in a direction that is suboptimal for the mission, for example
to move away from the charging area when the battery is low, it
would be optimal by switching to autonomous mode.

Thus, the variables θt and kt will be discretized into the opera-
tor’s intentions about the robot’s movements. To do this, we will
use a sub-dataset from our crowdsourcing database: the robot poses
(xt ,yt ,θt) and keyboard key sequences kt during the time steps
when the robot is in manual mode. In this mode, the keyboard
keys have an effect on the robot’s movement. Apart from possible
transmission delays, packet losses, obstacles on the way and the
shape of the robot’s velocity, it seems possible to reliably predict
the robot’s movement from its orientation and the sequence of
directional keys used. Since, in this mode, most of the effects on the
robot are those desired by the operator, such predictions provide us
with a function of θt and kt , having as a value a probable intention
of the user. It is then sufficient to discretize the movements of the
robot to be predicted to obtain a discretization of the couple (θt ,kt).
Indeed the latter will be replaced by its prediction. For instance,
even when it has no effect on the robot (e.g. obstacle or autonomous
mode), a sequence of “front” keys will be replaced by the operator’s
intention to move forward.

In this work we consider the changes in the robot’s position:
(xt+1 − xt ,yt+1 − yt) ∈ R2. These motions are simply discretized
into the following values:

mot ∈ L = { “NoMot”,“N”,“S”,“O”,“E”,“NE”,“SE”,“SO”,“NO” } ,

i.e. the fact the robot does not move much, the cardinal and the
inter-cardinal directions. These values will be used as labels to learn
the prediction function with a supervised classification algorithm.
Data concerning the keyboard keys kt are provided to the classifier
as follows. For each key ∈

{
“front”,“back”,“left”,“right”

}
and for

each line of the sub-dataset (corresponding of a time step t of a

mission), a truncated number of occurrences of the key in the se-
quence is computed: keyoct = min(

∑
key∈kt 1,10). The input data

of the classifier are then (f rontoct ,back
oc
t ,le f t

oc
t ,riдht

oc
t ,θt) ∈

{ 0, . . . ,10 }4×[−π ,π]: these values will be used to predict the user’s
intent.

Using Gradient Boosting algorithm [5, 11] available in scikit-
learn library [24] the resulting classifier c : { 0, . . . ,10 }4×[−π ,π]→
L reached an accuracy of 87.5% to predict the motion associated
to the robot’s orientation and the keystrokes sequence. Using the
prediction int = c (kt ,θt) ∈ L of this classifier instead of the couple
(kt ,θt) allows to consider directly the intention of the human oper-
ator at the level of the MDP state st , while benefiting from a coarse
discretization of this couple of variables. The partition defining the
discretization of (kt ,θt) is

{
c−1 ({l })

}
l ∈L

, that is #L = 9 subsets.

4 LEARNING DYNAMICS AND COMPUTING
AN OPTIMAL STRATEGY

Now that the choice of variables and their discretization has been
implemented, it remains to define the transition function from the
crowdsourcing data i.e. for each current state-action pair (s,a) ∈
S ×A, and for each next state s ′ ∈ S, the probability value of such
a transition: T (s,a,s ′) ∈ [0,1] with

∑
s ′∈S T (s,a,s

′) = 1. Indeed,
once this function T is estimated, the desired MDP is fully defined
and a planning algorithm can be used to optimize the supervision
strategy. The next subsection deals with learning, while the next
one deals with planning.

4.1 Independence Assumptions and Markov
Transition Learning

We used the Pomegranate4 library [30] to learn the parameters of
the MDP based on the seven state variables described above. In
fact this library is meant to learn the transition matrix of Markov
Chains (MCs) by using maximum likelihood estimates. The trick
here is that when subjected to a constant strategy, an MDP be-
comes a Markov Chain. In this paper, we propose to build a strategy
to decide only on the robot mode amt ∈ { 0,1 }. Future work will
deal with alarms aat ∈ { i }

6
i=−1. Two classes of sample transitions

should then be differentiated. Those starting from manual mode
(amt = 0), and those starting from autonomous mode (amt = 1).
They could be separately given as input to the MC parameters
learning algorithm which should return two transition matrices:
one is [T (s,0,s ′)](s,s ′)∈S2 and the other [T (s,1,s ′)](s,s ′)∈S2 , both
of size 129602.

Unfortunately, this number of system states prevents the learn-
ing algorithm of the Pomegranate library from being used directly,
and it is necessary to trick once again to compute this transition
function. The trick here consists in computing transition matrices
on a sub-group of variables. This method is made possible by first
assuming that the variables at time step t + 1 are independent of
each other conditionally to the variables in step t (i.e. conditionally
to the past since the Markov property is already assumed), regard-
less of the action chosen before the transition. An MDP whose
variables have this independence property is called a factored MDP

4https://pomegranate.readthedocs.io

HAI ’18, December 15–18, 2018, Southampton, United Kingdom

Session 1: Learning

St St+l St St+l St St+l

DAG of an MC Factored process Additional temporal
transition hypothesis independence assumptions

Figure 3: Without any assumption of independence, the Di

rected Acyclic Graph (DAG) defining the Bayesian network

representing the variables during a transition is complete

(left). Assuming that the variables of the same time step are

independent of each other, conditional on the past, the DAG

becomes a complete bipartite graph (center). Finally, other

independence hypotheses also make it possible to delete

some arrows (right).

(13, 14). Note that this formalism is used in the International Proba
bilistic Planning Competition5 (IPPC), using the Relational Dynamic
Influence Diagram language (RDDL (29)) that we'll use in the next
subsection for strategy optimization. Complying with this frame
work is not a very strong assumption. Indeed, if the initial MDP has
n variables, it is always possible to subdivide the time steps into
n sub-steps during which only one variable makes its transition
while the others remain constant: thus, by considering the MDP
equipped with these new intermediate time steps, the variables are
indeed independent conditional on the past. In our case we simply
assume that the variables are conditionally independent, without
subdividing the time steps.

More formally, let us denote the seven considered variables
by (v:):

=l
' i.e. St = (v}, ... ,vi). The independence properties

assumed in the factored framework implies that it exists seven
functions (Ti)i=l' one for each variable, such that T(st,at,St+1) =
TT;=1 Ti(st,at,v:+1). The function Ti is the transition function of
variable v;. Thus, by representing uncertainty dynamics with Di
rected Acyclic Graph (DAG) (23), the resulting graph is bipartite
and complete as shown in Figure 3, such that the two sets of nodes
constituting the bipartition of the bipartite graph are the set of
variables at time t and the set of variables at time t + 1. In addition
to enabling a more efficient optimization of the MDP strategy in
different uncertainty models (7, 10, 14) (by decreasing the time
spent to compute the optimal policy), this characteristic will enable
the learning algorithm to compute an estimation of the transition
function T. For this purpose, however, it is necessary to identify
additional variable independence, this time in temporal terrns.

The transition probability of each variable does not depend on
ail previous variables. For example, the battery level depends on

5https://ipc2013-probabilistic.bitbucket.io/

HAI '18, December 15-18, 2018, Southampton, United Kingdom

the previous battery level, but not on the previous water level (and
vice versa). In other words, conditional on the other variables of
the same time step t, the battery level at time t is independent of
the water level at time t + 1. By introducing this kind of expert
knowledge on the independences of variables, some arrows can be
removed from the bipartite graph representing the transition un
certainty. Figure 3 illustrates also this last pruning operation. More
concretely, for each transition function T; (associated with variable
Vi), there is a subset of variables W; c { v1, V2, . .. , V7) such that
Ti(v1,v2, ... ,v-,,v;) = Ti(W;,v;), where primed variables repre
sent next variable while unprirned ones stand for current variables.
In the resulting DAG, this subset Wi is the set of parents of v;. The
idea used here is that the calculation of the transition function T;
only requires transition samples concerning only the variables in
Wi, so the learning algorithm is run several times (:<li E { 1, ... , 7 }),
but on fewer variables (because #Wi < 7) and therefore with di
mensions that can be handled. Note that the learning algorithm
returns the values of T(Wi,a, Wf) = p (W/ 1 Wi,a), Va E .91, so
the transition function of variable v; can be computed by summing
over variables Zi = W; \ { v;):

Ti(Wi,a,v;) = I T;(Wi,a, W/) = IP (v;,z; 1 Wi,a).
z� z�

4.2 Strategy Optimization and Simulation

Results

The MDP that is finally obtained is illustrated in the form of a Dy
narnic Bayesian Network (DBN) (21) in Figure 4. This is a minimal

,

,

,

§}-------_..._St+l

'

'

Figure 4: The DBN of the learned MDP for the Firefighter Ro

bot game. Primed (resp. unprimed) variables represent next

(resp. current) variables.

modeling choice while remaining understandable for human being
and tractable considering learning and policy optimization. In order
to evaluate our model, we simulated the process thus defined in
order to estimate the expected total reward, i.e. the criterion that
we want to maximize (see Equation 1). To do this, the problem
was written in RDDL format using the transition functions (Ti)7i=1
learned previously.

These simulations were carried out under four different condi-
tions. In each condition, 300 simulations were performed: with a ran-
dom strategy (at each time step t , p (at = 0) = p (at = 1) = 0.5),
with a constant manual strategy (∀t , at = 0), with a constant
autonomous strategy (∀t , at = 1) and with an online strategy op-
timization provided by PROST6 [16]. This algorithm implements
Trial-based Heuristic Tree Search (THTS) [17] with the settings of
IPPC 2014. The action selection of the solver UCB1 is used, de-
scribed by [1] for Multi-armed Bandit problems and used in the
solver UCT [18]. It also uses the Partial Bellman backup function
[17] and samples unsolved outcomes using its probability. Finally,
the results obtained during these simulations are compared with
those obtained using data collected via the crowdsourcing platform,
in which the policy is random. More precisely, the average of total
reward was computed with 678 missions that players have not left
voluntarily (by leaving the interface) but performed entirely or
failed because of a game over.

The results (expectation of the total reward) are illustrated in
Figure 5, with the standard errors of the data coming from the 300
simulations. The estimation of the expected total reward is 1409.08
when crowdsourcing data is used. This value is close to that ob-
tained by simulating the mission with a random policy (1465.52),
which is reassuring as to the adequacy of reality with the MDP
learned. The strategy of setting the robot mode to manual mode at
all times leads to the lowest performance in terms of average total
reward on simulations (1206.29). Simulations with a constantly au-
tonomous robot give a much higher average total reward (1693.73),
which is not contradictory to reality: the mission being multi-task,
the operator cannot control the robot all the time. Thus, an au-
tonomous robot is more beneficial for the mission than a manual
robot. Finally, the optimized online strategy provides slightly better
results (1803.56). Note that this strategy is not the optimal strategy,
and that offline (and time consuming) resolution can provide a
much higher total reward.

These initial results confirm us in the idea that a supervision
strategy, based on the states of the human-robot system and calcu-
lated using a decision model under uncertainty, can be used and
improved in order to obtain better team performance.

5 CONCLUSION AND FUTUREWORK
Instead of defining a probabilistic model with expert or arbitrary
parameters, this paper proposes a methodology to learn an human-
agent interaction model from crowdsourcing data collection. Our
probabilistic interaction model takes into account human actions
on the keyboard and random environment changes using the tran-
sition function T of an MDP defined thanks to machine learning
techniques. A reliable T function should enable MDP solvers to

6https://bitbucket.org/tkeller/prost/wiki/Home

CS RD CM CA OP

0

1,000

2,000

3,000

Average of total reward

Figure 5: Estimation of expected total reward E
[∑H

t=0 R (st)
]
.

On the left (CS), the average on the crowdsourcing data.
Other values are the average of rewards computed based on
300 simulations of the MDP with a random policy (RD), a
constantmanual policy (CM), a constant autonomous policy
(CA) and a policy optimized with an MDP solver (OP).

optimize the supervision policy in accordance with the real human-
robot interaction and mission considered.

Offline optimization of the strategy will be performed in future
workwith state-of-the-art algorithms [4, 16] to achieve near optimal
solutions for such an MDP model. The policy computed will be
deployed in laboratory conditions and on the project’s website for
an evaluation of the overall system’s performance. Moreover, if we
consider that the difficulty of the mission leads the human operator
into degraded mental states (mental fatigue, working memory load
[27], attentional tunneling [26], etc.) the estimation of the operator’s
mental state could enrich the representation of the system described
by the MDP. Clearly, a human mental state is not a fully observable
state variable. In this case, the use of Partially Observable Markov
Decision Process [34] could be a promise avenue to model such a
human-agent interaction problem.

Finally, one could explore frameworks able to provide a gener-
ative model [12, 28], that is a simulator, based on collected data
described in this paper. The development of such a simulator could
be explored in order to apply Reinforcement Learning techniques
[20, 35] to learn the supervisory policy based on simulated mis-
sions. Evenmore, automated discretization, as clustering algorithms,
could be used to infer a possible smarter discretization while keep-
ing a sufficiently low number of clusters to ensure reliable transition
function estimates.

ACKNOWLEDGMENTS
This work was supported by a chair grant from Dassault Aviation
(CASAC).

HAI ’18, December 15–18, 2018, Southampton, United Kingdom

REFERENCES
[1] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time analysis of

the multiarmed bandit problem. Machine learning 47, 2-3 (2002), 235–256.
[2] Richard Bellman. 1954. The theory of dynamic programming. Bull. Amer. Math.

Soc. 60, 6 (11 1954), 503–515. http://projecteuclid.org/euclid.bams/1183519147
[3] Richard Ernest Bellman. [n. d.]. Rand Corporation (1957). Dynamic programming

([n. d.]).
[4] Blai Bonet and Hector Geffner. 2012. Action Selection for MDPs: Anytime AO*

Versus UCT.. In AAAI.
[5] Leo Breiman. 1997. Arcing the edge. Technical Report. Technical Report 486,

Statistics Department, University of California at Berkeley.
[6] J Raymond Comstock Jr and Ruth J Arnegard. 1992. The multi-attribute task

battery for human operator workload and strategic behavior research. (1992).
[7] Karina Valdivia Delgado, Scott Sanner, Leliane Nunes De Barros, Fábio Gagliardi

Cozman, et al. 2011. Efficient solutions to factoredMDPswith imprecise transition
probabilities. Artificial Intelligence 175, 9-10 (2011), 1498–1527.

[8] Nicolas Drougard, Caroline Ponzoni Carvalho Chanel, Raphaëlle N Roy, and
Frédéric Dehais. 2017. Mixed-initiative mission planning considering human
operator state estimation based on physiological sensors. In IROS Workshop
on Human-Robot Interaction in Collaborative Manufacturing Environments (HRI-
CME).

[9] Nicolas Drougard, Raphaëlle N Roy, Sébastien Scannella, Frédéric Dehais, and
Caroline Ponzoni Carvalho Chanel. 2018. Physiological Assessment of Engage-
ment during HRI: Impact of Manual vs Automatic Mode. In 2nd International
Neuroergonomics Conference.

[10] Nicolas Drougard, Florent Teichteil-Königsbuch, Jean-Loup Farges, and Didier
Dubois. 2014. Structured Possibilistic Planning Using Decision Diagrams.. In
AAAI. 2257–2263.

[11] Jerome H Friedman. 2002. Stochastic gradient boosting. Computational Statistics
& Data Analysis 38, 4 (2002), 367–378.

[12] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In Advances in neural information processing systems. 2672–2680.

[13] Carlos Guestrin, Milos Hauskrecht, and Branislav Kveton. 2004. Solving factored
MDPs with continuous and discrete variables. In Proceedings of the 20th conference
on Uncertainty in artificial intelligence. AUAI Press, 235–242.

[14] Jesse Hoey, Robert St-Aubin, Alan Hu, and Craig Boutilier. 1999. SPUDD: Stochas-
tic planning using decision diagrams. In Proceedings of the Fifteenth conference on
Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc., 279–288.

[15] Shu Jiang and Ronald C Arkin. 2015. Mixed-Initiative Human-Robot Interaction:
Definition, Taxonomy, and Survey. In Systems, Man, and Cybernetics (SMC), 2015
IEEE International Conference on. IEEE, 954–961.

[16] Thomas Keller and Patrick Eyerich. 2012. PROST: Probabilistic Planning Based
on UCT.. In ICAPS.

[17] Thomas Keller and Malte Helmert. 2013. Trial-Based Heuristic Tree Search for
Finite Horizon MDPs.. In ICAPS.

[18] Levente Kocsis and Csaba Szepesvári. 2006. Bandit based monte-carlo planning.
In ECML, Vol. 6. Springer, 282–293.

[19] Stuart Lloyd. 1982. Least squares quantization in PCM. IEEE transactions on
information theory 28, 2 (1982), 129–137.

[20] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
Nature 518, 7540 (2015), 529.

[21] Kevin Patrick Murphy and Stuart Russell. 2002. Dynamic bayesian networks:
representation, inference and learning. (2002).

[22] William D Nothwang, Michael J McCourt, Ryan M Robinson, Samuel A Burden,
and J Willard Curtis. 2016. The human should be part of the control loop?. In
Resilience Week (RWS), 2016. IEEE, 214–220.

[23] Judea Pearl. 2014. Probabilistic reasoning in intelligent systems: networks of plausi-
ble inference. Elsevier.

[24] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[25] Martin L Puterman. 2014. Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons.

[26] Nicolas Régis, Frédéric Dehais, Emmanuel Rachelson, Charles Thooris, Sergio
Pizziol, Mickaël Causse, and Catherine Tessier. 2014. Formal detection of atten-
tional tunneling in human operator–automation interactions. IEEE Transactions
on Human-Machine Systems 44, 3 (2014), 326–336.

[27] Raphaëlle N Roy, Stephane Bonnet, Sylvie Charbonnier, and Aurélie Campagne.
2013. Mental fatigue and working memory load estimation: interaction and
implications for EEG-based passive BCI. In Engineering in Medicine and Biology
Society (EMBC), 2013 35th Annual International Conference of the IEEE. IEEE,
6607–6610.

[28] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,
and Xi Chen. 2016. Improved techniques for training gans. In Advances in Neural
Information Processing Systems. 2234–2242.

[29] Scott Sanner. 2010. Relational dynamic influence diagram language (rddl): Lan-
guage description. Unpublished ms. Australian National University (2010), 32.

[30] Jacob Schreiber. 2018. Pomegranate: fast and flexible probabilistic modeling in
python. Journal of Machine Learning Research 18, 164 (2018), 1–6.

[31] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu, Rob Fergus, and
Yann LeCun. 2013. Overfeat: Integrated recognition, localization and detection
using convolutional networks. arXiv preprint arXiv:1312.6229 (2013).

[32] Jianbo Shi and Jitendra Malik. 2000. Normalized cuts and image segmentation.
IEEE Transactions on pattern analysis and machine intelligence 22, 8 (2000), 888–
905.

[33] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural
networks and tree search. Nature 529, 7587 (2016), 484–489.

[34] Richard D. Smallwood and Edward J. Sondik. 1973. The Optimal Control of
Partially Observable Markov Processes Over a Finite Horizon. Vol. 21. INFORMS.
1071–1088 pages.

[35] Richard S Sutton and Andrew G Barto. 1998. Reinforcement learning: An intro-
duction. Vol. 1. MIT press Cambridge.

[36] Kevin W. Williams. [n. d.]. A Summary of Unmanned Aircraft Accident/Incident
Data: Human Factors Implications. U.S. Department of Transportation, Federal
Aviation Administration, Civil Aerospace Medical Institute ([n. d.]).

HAI ’18, December 15–18, 2018, Southampton, United Kingdom

