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Abstract

The last decade has experienced a rapid growth in volume and diversity of

biological data, thanks to the development of high-throughput technologies

related to web services and embeded systems. It is common that infor-

mation related to a given biological phenomenon is encoded in multiple

data sources. On the one hand, this provides a great opportunity for

biologists and data scientists to have more unified views about phenomenon

of interest. On the other hand, this presents challenges for scientists to find

optimal ways in order to wisely extract knowledge from such huge amount

of data which normally cannot be done without the help of automated

learning systems. Therefore, there is a high need of developing smart

learning systems, whose input as set of multiple sources, to support experts

to form and assess hypotheses in biology and medicine. In these systems,

the problem of combining multiple data sources or data integration needs

to be efficiently solved to achieve high performances.

Biological data can naturally be represented as graphs. By taking

graphs for data representation, we can take advantages from the access to a

solid and principled mathematical framework for graphs, and the problem

of data integration becomes graph-based integration. In recent years, the

machine learning community has witnessed the tremendous growth in the

development of kernel-based learning algorithms. Kernel methods whose

kernel functions allow to separate between the representation of the data

and the general learning algorithm. Interestingly, kernel representation

can be applied to any type of data, including trees, graphs, vectors, etc.

For this reason, kernel methods are a reasonable and logical choice for

graph-based inference systems. However, there is a number of challenges

for graph-based systems using kernel methods need to be effectively solved,
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including definition of node similarity measure, graph sparsity, scalability,

efficiency, complementary property exploitation, integration methods.

The contributions of the thesis aim at investigating to propose solutions

that overcome the challenges faced when constructing graph-based data

integration learning systems.

The first contribution is the definition of a decompositional graph

node kernel, named Conjunctive Disjunctive Node Kernel (CDNK), which

intends to measure the similarities between nodes of graphs. Differently

of existing graph node kernels that only exploit the topologies of graphs,

the proposed kernel also utilizes the available information on the graph

nodes. In CDNK, first, the graph is transformed into a set of linked

connected components in which we distinguish between “conjunctive” links

whose endpoints are in the same connected components and “disjunctive”

links that connect nodes located in different connected components. Then

the similarity between any couple of nodes is measured by employing a

particular graph kernel on two neighborhood subgraphs rooted as each

node. Next, it integrates the side information by applying convolution

of the discrete information with the real valued vectors associated to

graph nodes. Empirical evaluation shows that the kernel presents better

performance compared to state-of-the-art graph node kernels.

The second contribution aims at dealing with the graph sparsity

problem. When working with sparse graphs, i.e graphs with a high number

of missing links, the available information is not efficient to learn effectively.

An idea to overcome this problem is to use link enrichment to enrich

information for graphs. However, the performance of a link enrichment

strongly depends on the adopted link prediction method. Therefore, we

propose an effective link prediction method (JNSL). In this method, first,

each link is represented as a joint neighborhood subgraphs. Then link

prediction is considered as a binary classification. We empirically show that

the proposed link prediction outperforms various other methods. Besides,

we also present a method to boost the performance of diffusion-based

kernels, which are most popularly used, by coupling kernel methods with

link enrichment. Experimental results prove that the performances of

diffusion-based graph node kernels are considerably improved by using link

enrichment.

The last contribution proposes a general kernel-based framework for

graph integration that we name Graph-one. Graph-one is designed to over-
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come the challenges when handling with graph integration. In particular,

it is a scalable and efficient framework. Besides, it is able to deal with

unbanlanced settings where the number of positive and negative instances

are much different. Numerous variations of Graph-one are evaluated in dis-

ease gene prioritization context. The results from experiments illustrate the

power of the proposed framework. Precisely, Graph-one shows better per-

formance than various methods. Moreover, Graph-one with data integration

gets higher results than it with any single data source. It presents the ef-

fectiveness of Graph-one in exploiting the complementary property of graph

integration.
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Chapter 1

Introduction

The release of advanced technologies is one of the main reasons for the

revolution in various scientific research fields. In Biological and Medical

domain, modern technologies are making it not only easier but also more

economical than ever to undertake experiments and creating applications.

As a consequence, a vast amount of biological data in terms of volume

and type is generated through scientific experiments, published literatures,

high-throughput experiment technologies, and computational analysis. This

huge quantity of data are saved as biological datasets and made discoverable

through web browsers, application programming interfaces, scalable search

technology and extensive cross-referencing between databases. Biological

databases normally contain information about gene function, structure, lo-

calization, clinical effects of mutations and similarities of biological sequences

and structures.

The abundance of biological data, on the one hand, creates a golden

chance for biologists to extract useful information. However, it, on the

other hand, poses the challenge for scientists to wisely and effectively ex-

tract knowledge from such amount of data that normally cannot be done

without the help of automated learning systems. Hence, the task of devel-

oping high performance learning systems, which help sciencists to form and

assess hypotheses, plays an important role in the development of biology

and medicine.
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Figure 1.1: Yeast protein interaction network [2].

1.1 Why graph-based biological data integration?

Biological knowledge is distributed among general and specialized sources,

such as gene expression, protein interaction, gene ontology, etc. It is common

that information of a biological phenomenon is encoded over various hetero-

geneous sources. Each source captures different aspects of the phenomenon.

The distribution of information over sources provides us an unprecedented

opportunity to understand the phenomenon from multiple angles.

Therefore, the idea of data integration which allows multiple sources of

information to be treated in a unified way can in priciple lead to an im-

provement of biological learning systems, i.e. systems that process with

biological data. Despite the fact that data integration is a promising solu-

tion, it poses a challenge for machine learning experts and data scientists to

find out optimal solutions for combining multiple sources in a big space of

solutions.

Relations between entities encoded in biological sources can be natu-

rally represented in form of graphs (networks) whose vertices describe for

biological entities and links characterize the relations between entities. An
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example is the protein-protein interaction network (Figure 1.1) where each

vertex represents a protein and a link connecting two vertices if they inter-

act. Graph theory provides a mathematical abstraction for the description

of such relationships. Thus, using graphs to represent for biological data al-

lows us to i) access to a principled and solid mathematical framework built

for graphs that most scientists are familiar with, ii) develop concepts and

tools which are independent of the concrete applications. By using a graph

presentation, the problem of biological data integration now can be con-

verted into graph-based data integration. The final representation of data

obtained by integration is used as input for the construction of inference

systems (graph-based learning systems).

1.2 Kernel methods for graph-based data integra-

tion and challenges

Kernel methods whose best known member is support vector machine (SVM)

[28], has emerged as one of the most famous and powerful frameworks in ma-

chine learning. Kernel methods with the use of kernels allow to decouple

the representation of the data (via kernel function) from the specific learning

algorithm. Kernel representation is flexible and efficient and it provides a

principled framework that allows universal type of data to be represented,

including images, graphs, vectors, strings, etc. As a consequence, kernel

methods are the state-of-the-art learning technique for graph-based infer-

ence systems. However, there are a number of challenges that need to be

efficiently solved, if we desire to have high performance graph-based data

integration learning systems. Following are the main challenges: definition

of node similarity measure, graph sparsity, data integration method.

1.2.1 Definition of node similarity measure

In machine learning, one of the main factors which impacts on the perfor-

mance of learning systems is the definition of example similarity measure. In

our context, large-scale graph-based inference systems, examples are nodes

of graphs. Hence, it is necessary to have a good definition of node similar-

ity measure. Node similarity is normally measured by graph node kernels.

However, there is not a clear way to define a graph node kernel which can

be efficiently applied to a wide range of graphs.

3
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1.2.2 Graph sparsity

The input of a graph-based data integration system is a set of graphs which

often contain sparse graphs whose number of links is much less than the

number of possible links. This is typically due to the lack of information.

For instance, in the disease gene network, links connecting genes are formed

when genes are involved in the same diseases. However, new genes associated

to a certain disease could be discovered over time. This means that new links

could be added into the networks over time. At a given time, a number of

discovered links can be very limited, so discovered links cause the sparsity

problem. When working with sparse graphs, systems encounter difficulties

in performing an effective training since not enough information is available

to correctly learn the target function. As a consequence, an effective solution

helping to overcome the sparsity problem is crucial and needs to be proposed.

1.2.3 Scalability and efficiency

Given an adopted learning algorithm, the complexity of a large-scale graph-

based data integration learning system incurs with the growth of the input

graph set. In other words, the complexity of a graph-based learning system

strongly depends on the size and the number of graphs used as its input.

Therefore, scalability is an important property that a graph-based learning

system is supposed to possess. It allows systems to run in reasonable time

and with a reasonable memory consumption.

1.2.4 Data integration methods

Information encoded in multiple sources (graphs) provide complementary

views of the phenomenon of interest. Combining information from collective

sources helps to form a complete picture of the phenomenon or problem at

hand. Nonetheless, the search for efficient and scalable integration methods

that allow to improve the performance of the learning system with respect

to the same system where a single source of information is used, is normally

expensive.

1.3 Contributions

The contributions of the thesis focus on solutions to overcome the challenges

faced when working with large-scale graph-based biological data integration.
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The first contribution considers the problem of defining an effective

node similarity measure by introducing a novel graph node kernel, named

conjunctive disjunctive node kernel (CDNK). Most existing graph node

kernels are based on a notion of information diffusion which can be applied

to dense networks with high values of average node degree. However, a

drawback of these approaches is their relatively low discriminative capacity.

This is in part due to the fact that information is processed in an additive

and independent fashion which prevents them from accurately modeling

the configuration of each node context. To address this issue, we propose

to employ a decompositional graph kernel technique in which the similarity

function between graphs can be formed by decomposing each graph into

subgraphs and by devising a valid local kernel between the subgraphs. In

CDNK, to exploit its higher discriminative capacity, first the network is

decomposed into a collection of connected sparse graphs and then a suitable

kernel is developed.

The second contribution aims to propose solutions for graph sparsity

problem. Graph data integration methods take graphs as the input.

However, if graphs are sparse, the information is not efficient to learn. It

leads to low performance of graph data integration methods. A solution is

to enrich information on graphs by employing link enrichment. Neverthe-

less, the performance of a link enrichment method strongly relies on the

adopted link prediction. Therefore, we introduce a link prediction method,

which is adopted later on for link enrichment with the aim of solving

the problem of graph sparsity. We get the motivation from the current

link prediction methods that do not effectively exploit the contextual

information available in the neighborhood of each edge. In our method,

we propose to cast the problem as a binary classification task over the

union of the pairs of subgraphs located at the endpoints of each edge.

We model the classification task using a support vector machine endowed

with an efficient graph kernel and achieve state-of-the-art results on several

benchmark datasets. Moreover, we also proposes a method that boosts the

performance of diffusion-based kernels when working with sparse graphs by

tackling them with link enrichment methods. In particular, given a sparse

graph, our proposed method consists of two phases. In the first phase, a

link prediction method is employed to rank unobserved links based on their

probabilities to be related to missing links. The top links in the ranking are

then added into the graph. In the second phase, diffusion-based graph node

kernels are applied to the graph obtained from the first phase to compute

5
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the kernel matrix.

The last contribution presents a general framework, named Graph-one,

for graph integration. Graph-one is an efficient and scalable kernel-based

framework which is able to deal with the unbalanced settings. Therefore, can

overcome the challenges for large-scale graph-based integration. We evaluate

Graph-one by introducing its different variations (Scuba, PLC, DIGI) in the

context of disease gene prioritization. Experimental results illustrate that

i) Graph-one outperforms various methods, and ii) Graph-one with data

integration shows better performance than it with any single data source.

1.4 Thesis roadmap

The thesis is organized as follows:

Chapter 2 presents preliminary concepts, notations and comprehensive

review of the state-of-the-art in the field.

Chapter 3 proposes an effective convolutional graph node kernel,

Conjunctive Disjunctive Graph Node Kernel (CDNK).

Chapter 4 introduces solutions to solve the graph sparsity problem: a

novel link prediction method (JNSL) and a method to boost the perfor-

mance of diffusion-based kernels when working with sparse graphs.

Chapter 5 describes a general kernel-based framework, Graph-one for

large-scale graph-based data integration.

Chapter 6 summarizes the contributions of the thesis and discusses the

directions for future work.

1.5 List of publications

1. Dinh Tran Van, Alessandro Sperduti and Fabrizio Costa, Conjunctive

Disjunctive Node Kernel, the 25th European Symposium on Artificial

Neural Networks, Computational Intelligence and Machine Learning,

Bruges (Belgium), 26-28 April, 2017, ISBN 978-287587039-1.

2. Dinh Tran Van, Alessandro Sperduti and Fabrizio Costa, Link En-

richment for Diffusion-based Graph Node Kernels, the 26th Interna-
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tional Conference on Artificial Neural Networks, Alghero, Italy, 11-15,

Steptember, 2017.

3. Dinh Tran Van, Alessandro Sperduti and Fabrizio Costa, Joint Neigh-

borhood Subgraphs Link Prediction, the 24th International Confer-

ence on Neural Information Processing, Guangzhou, China, November

1418, 2017.

4. Guido Zampieri, Dinh Van Tran, Michele Donini, Nicol Navarin, Fabio

Aiolli, Alessandro Sperduti and Giorgio Valle, Scuba: scalable kernel-

based gene prioritization, BMC Bioinformatics, DOI 10.1186/s12859-

018-2025-5, 2018.

5. Dinh Tran Van, Alessandro Sperduti and Fabrizio Costa , Conjunctive

Disjunctive Node Kernel, Neurocomputing, 2018.

7



Dinh T.Van Kernel Methods for Graph-based Data Integration

8



Chapter 2

Background

In this chapter, we describe preliminary knowledge and notaions and com-

prehensive review of the state-of-the-art in the field used for the remaining

parts of the thesis. We aim to make it easy for readers to follow the expo-

sition of its original contributions.

2.1 Machine learning

Recently, machine learning has become a must-know term not only in

academia but also in daily life due to the popularity of it’s applications

in various fields. Machine learning can be considered as a branch of Artifi-

cial Intelligence which aims at providing systems the ability to automatically

adapt to their environment and learn from experience without being explic-

itly programmed. According to [64], machine learning is formally defined

as:

Definition 2.1.1. A computer program is said to learn from experience E

with respect to some task T and some performance measure P if its perfor-

mance on T , as measured by P , improves with experience E.

We denote D as a set of training examples which come from some gener-

ally unknown probability distribution. D is resulted from any observation,

measurement or recording apparatus for a certain domain A machine lean-

ring technique aims at exploiting D to build a general model about the

example space. This model is then used to produce sufficiently accurate

predictions in unseen examples.

9
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Machine learning algorithms can be classified into three paradigms: su-

pervised learning, unsupervised learning and reinforcement learning. Su-

pervised learning is the machine learning task of inferring a function from

labeled training examples in which each example is a pair consisting of an

entity and a desired output value (label). A supervised learning algorithm

analyzes the training data and forms an inferred function, which is used for

mapping unseen examples. Unsupervised learning is a machine learning task

that models a set of inputs where labeled examples are not available. Re-

inforcement Learning aims at designing machines and software agents that

can automatically determine the ideal behaviour within a specific context, in

order to maximize its performance. Simple reward feedback is required for

the agent to learn its behaviour; this is known as the reinforcement signal.

In this thesis, we focus on supervised learning scenario.

We consider a training set D generated by an unknown probability dis-

tribution P, D = {(x1, y1), (x2, y2), . . . , (xn, yn)} where xi ∈ X are instances

and yi ∈ Y are labels. The relations between xi and yi are defined by a true

function (target function) f : X 7−→ Y. What we desire to do is to learn the

function f . However, the only information we can access is from the training

set. Therefore, a supervised learning method aims at estimating a function

h based on D to be as close to f as possible. Depending on the domain of

Y, we can further group supervised learning into the following sub-groups:

• if Y ⊆ R, the problem is called regression;

• if |Y| = 2, we have a binary classification problem;

• if |Y| = n with n > 2, we have multi-class classification problem.

Besides, a multi-class learning is called multi-label if examples have more

than one label associated with. It is worth highlighting that there is normally

more than one possible choice for h. We refer each choice of h as a hypothesis

or model and the set of all possible h as hypothesis space, H. The goal of

the learning process is to find the final hypothesis that best approximates

the unknown target function. In order to measure the difference between a

hypothesis and the target function, the risk function is used:

R(h) =

∫
X×Y
L(h(x), y)dP (x, y), (2.1)

where L is a loss function that measures the classification error of h. An

example of the loss function for classification can be defined as:

L(h(x), y) = (h(x)− y)2.

10
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The optimal hypothesis is the one which minimizes the risk and it is the

solution of the following optimization problem:

h∗ = arg min
h∈H
R(h). (2.2)

Unfortunately, it is impossible to directly solve the optimization problem

described in eq. 2.1 since the probability distribution P in the true loss

function presented in eq. 2.2 is an unknown function and we only have

access to a finite training set D. In this case, an alternative approach is to

use the empirical loss instead of the true loss function. The empirical loss

function is defined over the training set as follows:

Remp(h) =
1

n

n∑
i=1

|h(xi)− yi|, (2.3)

where n is the number of traning examples. However, in order to use

Remp(h), we need to guarantee that the value of Remp(h) converges to the

value of R(h).

In the typical statistical learning framework, every data instance is em-

bedded in a suitable space. However, most real world data has no natural

representation as vectorial forms. Kernel methods have been successful in

various learning tasks on data represented by vectors, but structured forms,

including graphs. In this thesis, we are interested in investigating graph-

based integration methods. Therefore, in the next section we describe Ker-

nel methods.

2.2 Kernel methods

In classical machine learning techniques, each data instance is mapped to a

point in the feature space, x ∈ X −→ φ(x) ∈ F. Then a model is constructed

from the training set and is used to predict for unseen data. Although these

approaches have sucessfully applied in some cases, they share two common

limitations: i) If the dimension of the feature space is high, it leads to high

complexity algorithms. ii) It is difficult or even impossible in some cases to

find the mapping.

Kernel methods have been proposed and shown the state-of-the-art re-

sults in many cases of various fields. SVM [28] is a typical example of Kernel

methods. Unlike the presentation of data in traditional machine learning,

in kernel methods, data instances are not individually represented in the

feature space, instead they are represented by similarity measures between

11
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pairs of instance images, which are computed by using dot product. The dot

product of instance image pairs can be computed through input instances

only by kernel functions. Kernel functions enable kernel methods to operate

in a high-dimensional, implicit feature space without ever computing the

coordinates of the data in that space, but rather by simply computing the

inner products between the images of all pairs of data instances in the fea-

ture space. This operation is often computationally cheaper than the explicit

computation of the coordinates. Kernel functions have been introduced for

sequence data, graphs, text, images, as well as vectors. A kernel methods

can be modularized into two components: the design of a specific kernel

function and the design of a general learning algorithm (kernel machine).

2.3 Kernel functions

In kernel methods, the definition of kernel functions is independent from the

definition of general learning algorithms. Therefore, a given generl learning

algorithm can go with any kinds of kernel functions. A number of kernel

functions have been proposed for different types of data. In this section,

we first formally define what is a kernel function. We then introduce some

kernels defined on graphs that later on are used in our experiments.

Definition 2.3.1. Given a set of entities X, a function k : X× X 7−→ R is

called a kernel on X× X iff k is

• symmetric: it means k(x1, x2) = k(x2, x1), where x1, x2 ∈ X.

• positive semi-definite: that is
∑N

i=1

∑N
j=1 cicjk(xi, xj) ≥ 0 for any

N > 0, ci, cj ∈ R, and xi, xj ∈ X.

The similarity measures computed by a kernel over a set of in-

put instances can be represented in a matrix, called Gram matrix, K. K

is symmetric and positive semi-definite, i.e. its eigenvalues are non-negative.

K =


k(x1, x1) k(x1, x2) k(x1, x3) . . . k(x1, xn)

k(x2, x1) k(x2, x2) k(x2, x3) . . . k(x2, xn)
...

...
...

. . .
...

k(xn, x1) k(xn, x2) k(xn, x3) . . . k(xn, xn)

 .
The simplist kernel is Linear kernel which is defined on vectors, X ⊆ Rn:

kL(x1, x2) = xᵀ1x2, (2.4)

12
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Figure 2.1: The kernel trick transforms the data in a feature space where
the instances from the two classes may be linearly separable.

where x1, x2 ∈ X. This kernel suggests a systematic way to define kernels.

Given a general set of representations of entities X, we first project each

element in X into a vector space, called feature space, x ∈ X −→ φ(x) ∈ Rm

such that m � n. This is due to that fact that it is easier to find a linear

decision line in higer dimensional space (m). Next, we define a kernel as:

k(x1, x2) = φ(x1)ᵀφ(x2) (2.5)

Interestingly, any kernel defined on X, there exists a Hilbert space, F, and a

mapping φ : X −→ F such that k(x1, x2) = φ(x1)ᵀφ(x2), where x1, x2 ∈ X.

There are two problems we might face with if we would like to explic-

itly embed objects into a vector space. i) if m is too big, we face with the

high computation. ii) if data instances are in the structured forms (strings,

graphs, trees, etc), we need to transform them into vectorial forms. One way

is to decompose each instance into a set of sub-structures which are consid-

ered as elements of vectors. However, in general, there is not a clear way

to projecct instacnes in structured forms into feature space without loos-

ing much information. These limitations are effectively solved by using the

so called Kernel trick. The kernel trick (see Figure 2.1 for an illustration)

avoids the explicit mapping. Instead, it allows the operations (dot product)

between vectors in the feature space to be done by computing in the input

space. It is worth to notice that a kernel is considered as a similarity (prox-

imity) measure since its value computed for two objects is proportional to

their similarity.

Most kernels are defined on vectorial form of data among which Basis

Function kernel (RBF) [92] is the most used one. However, real-world data

often cannot be represented in the vectorial form without loosing important

information. Therefore, a high number of kernels are proposed to deal with

structured data, including trees, graphs, etc.

13
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Convolution kernels

On the development of kernels for structured data, R-convolution kernels

originally proposed in [43] and a generalization of the framework is proposed

in [80] can be considered as one of the most important frameworks. The basic

idea of convolution kernels is that the semantics of composite entities can

often be captured by a relation R between the entity and its parts. The

kernel between entities is then made up from kernels defined on different

parts.

Let x be a composite structure whose x1, x2, . . . , xN = x̂ are parts of x,

such that x ∈ X, xi ∈ Xi, i = 1, N and X,X1,X2, . . . ,XN are non-empty and

separable metric spaces. We define a relationR(x̂, x) on X1×X2×. . .×XN×X
is true iff x1, x2, . . . , xN are the parts of x. We denote with R−1 the inverse

relation of R and it is defined as R−1(x) = {x̂|R(x̂, x)}.
If there exists kernel ki defined on Xi, the similarity between x, y ∈ X is

defined on S× S, where S = {x|R−1(x) 6= ∅}, as:

K(x, y) =
∑

x̂∈R1(x), ŷ∈R1(y)

N∏
i=1

ki(xi, yi) (2.6)

K is referred as finite convolution, if R is finite. The zero expansion of K

to X×X is called R-convolution and it is denoted as K1 ?K2 ? . . .KN (x, y).

Theorem 1. If K1,K2, . . . ,KN are kernels on X1,X2, . . . ,XN , respectively,

and R is a finite relation on X1×X2× . . .×XN , then K1 ?K2 ? . . .KN (x, y)

is a kernel on X× X.

Constructing kernels

Kernels can be constructed from predefined kernels. Let k1, k2 be kernels

over X × X, X ⊆ Rn, α1, α2 ∈ R+, f(.) a real valued function on X, φ a

mapping X 7−→ RN , k3 a kernel over RN × RN , and Bn×n is a symmetric,

positive demi-definite. The following functions are kernels:

• k(x, y) = α1k1(x, y) + α2k2(x, y)

• k(x, y) = k1(x, y)k2(x, y)

• k(x, y) = f(x)f(y)

• k(x, y) = k3(φ(x), φ(y))

• k(x, y) = x
′
By
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The proof of above kernels and other ways to form kernels from pre-

defined kernels are presented in [76].

2.4 Kernel machines

In machine learning, there is a high number of techniques which aim at

finding linear relations in datasets which are represented in vectorical forms.

However, in many cases, the expected linear relations do not exist. A solu-

tion to overcome these situations is to first explicitly perform a non-linear

transformation of input instances into a higher dimensional space and then

search for linear relations in that space. Unlike traditional machine meth-

ods, kernel methods with the use of kernel functions are able to operate in a

high-dimensional space without ever computing the coordinates of the data

in that space, but rather by simply computing the inner products between

the images of all pairs of data in the feature space. This operation is often

computationally cheaper than the explicit computation of the coordinates.

A number of traditional machine learning methods exploiting dot prod-

ucts for computing can be turned into versions that exploit kernels, i.e.

replacing the dot products with kernel computations. Therefore, their ex-

pressive power are increased. Examples are Kernel Perceptron, Support

Vector Machines (SVM), Kernel Gaussian Processes, Kernel Principal Com-

ponents Analysis (PCA), etc. In the next sections, we will introduce in detail

two famous algorithms: Kernel Perceptron and SVM. For the simplicity, we

describe these algorithms in the context of binary classification.

2.4.1 Kernel Perceptron algorithm

Perceptron [13] is an old, online leanring algorithm which is based on error-

driven learning. It desires to learn a hyper-plane, wᵀx+b = 0 or wᵀx = 0 for

simplicity, to separate positive instances from negative ones in the training

set. It is then used to predict a label for each unseen instance, x, through the

sgn function. If wᵀx ≥ 0, the output of the Perceptron is ŷ = sgn(wᵀx) = 1,

otherwise ŷ = −1.

Perceptron works by first initilizing values for weight vector, w. It then

iteratively improves the performance by updating the weight vector when-

ever a misclassification is found in the training set. Consider yi and ŷi as

the true label and the predicted label for xi, respectively, if yi 6= ŷi, w is

updated as follows:

w ←− w + αyixi,
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where α ∈ (0, 1] is the learning rate. Suppose that n misclassified examples

are observed, the weight vector w can be expressed as:

w =
n∑
i=1

αyixi. (2.7)

The update of the weights is done if the current input is not misclassified.

This algorithm guarantees that a linear separation is found if it exists. When

the linear separation does not exist, a possible solution is to embed input

data into a higher dimensional space. By virtue of doing so, there is a higher

chance to have linear separation. However, when the algorithm operates in

a high dimensional space, it faces with the high complexity. As a conse-

quence, Kernel Perceptron method [14], an extension of original Perceptron,

is proposed to cope with high dimensional spaces.

Suppose that φ(x) is the image of x in feature space. We rewrite eq. 2.7

to compute the weight vector in the feature space as:

w =
n∑
i=1

αyiφ(xi).

Then we get

sgn(wᵀφ(x)) =

n∑
i=1

αyiφ(xi)
ᵀφ(xj).

One limitation of both Perceptron and Kernel Perceptron method is

that they are not able to find the optimal linear separation. Normally,

among all possible linear separations, there might exist some which show

bad predicting ability for unseen data. In the next section, we describe

SVM, a kernel method, which aims at finding an optimal hyperplane to

separate positive instances from negative ones.

2.4.2 Support Vector Machine

The original Support Vector Machine is a linear classifier and it was invented

by Vladimir N. Vapnik [90]. SVM became popular when Vladimir et al

introduced in [18] a way to create nonlinear classifiers by employing the

notion of kernel trick. In particular, a SVM searches for an optimal hyper-

plane in the feature space, H, through operations in input space only.

Given a set of training examples {(x1, y1), (x2, y2), . . . , (xN , yN )} in

which xi ∈ Rn and yi ∈ {±1}, we first assume that the examples in the
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training set are linearly separable. SVM tries to learn a decision function

fw,b(x) = wᵀx+ b, (2.8)

such that fw,b(xi)yi ≥ 0, b ∈ R is the bias, and w ∈ Rn is the norm vector.

This function forms two half-spaces of instances: h+ = {x : f(x) ≥ 1}
and h− = {x : f(x) ≤ −1}. The distance between these two half-spaces is

referred as margin and equal to 2
‖w‖ .

The optimal hyperplane is the solution of the below quadratic optimiza-

tion problem (primal form):

maximize
w,b

1

‖w‖
subject to yi(w

ᵀxi + b) ≥ 1.

(2.9)

It is equivalent to

minimize
w,b

1

2
‖w‖2

subject to yi(w
ᵀxi + 1) ≥ 1.

(2.10)

It is easier to use the dual form that can be obtained by the introduction of

Lagrangian multipliers. Since the the optimization is convex, the solution

of dual form is the same as primal form. The resulting Lagrange multiplier

equation we desire to optimize is

L(w, b, α) =
1

2
‖w‖2 −

N∑
i=1

αi [yi(w
ᵀxi + b)− 1] , (2.11)

where αi ≥ 0 are Lagrange multipliers. Solving Lagrangian optimization

eq. 2.11, we obtain values for w, b and α which determin a unique hyper-

plane. The xis corresponding to αis which differ from 0 are called support

vectors.

The formula of the hyperplane decision function eq. 2.8 can be rewritten

as:

f(x) =
N∑
i=1

yiαix
ᵀxi + b. (2.12)

In the case that the training set is not linearly separable, we can apply the

kernel trick to let SVM to operate in possibly higher dimensional Hilbert

space. By doing so, we hope in a higher dimensional space, there exist a

hyperplane that separates images of positive instances from the negative
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ones.

f(x) =
N∑
i=1

yiαiφ(x)ᵀφ(xi) + b. (2.13)

There are usually very few αis which are equal to 0. Therefore, it requires

a low computation to predict for unseen examples.

In practice, there are two problems that we need to take into account.

First, in many cases, the separating hyperplane does not exist in the feature

space due to the high level of noise in data. Second, the learning function is

so complex that it not only fits instances, but it also fits the noise. Therefore,

the function is able to classify the training set, but it fails to generalize for

unseen data. The latter problem is called overfitting. In order to solve such

problems, a solution one may think is to allow examples to violate eq. ??.

A soft margin SVM is introduced in which a trade-off between the mis-

takes on the training set and the complexity of the hypothesis is defined.

The optimization eq. 2.10 is modified by introducing slack variables ξi:

minimize
w,b,ξ

1

2
‖w‖2 + C

N∑
i=1

ξi

subject to yi(w
ᵀxi + 1) ≥ 1− ξi,

(2.14)

where ξi ≥ 0 and C is a constant which determines the trade-off between

margin maximazation and the training error minimization.

2.5 Kernels on graphs

Canonical machine learning methods take vectorial data, data that are rep-

resented by vectors of features, as their input. However, there are many

fields where data are not naturally represented by vectors, but by structured

forms in which graph is one of the most popular representation. Therefore,

the task of developing methods which are able to learn from structured data

in general or graphs in particular is very important. In this thesis, we focus

on graphs, a special type of structured data representation. An example

of data that can be represented by graph is the genetic network, where

each node represents a gene and each link is formed between two genes,

if they encode common protein(s). Another example is the social network

whose nodes are users and links depict friendship between users. Systems

that deal with problems where data are naturally represented as graphs are

called graph-based systems.
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One of the key points that determines the performance of a learning

system is the similarity measure definition. In our context is the similarity

measure definition between graphs. An idea is to find ways that map graphs

into vectorial forms: X 7−→ Rn, and then employ similarity functions defined

on vectors. However, the task of designing these mappings, which are able

to encapsulate all information in a vectorial form, is a difficult task since

they need to:

• map isomorphic graphs into the same vector;

• non-isomorphic graphs into different vectors;

• be efficient in terms of time computation and memory consumption.

Recently, kernel methods with the use of kernel functions have emerged

as one of the most powerful frameworks in machine learning. Kernel func-

tions are considered as similarity functions which can be defined on any type

of data representation. Therefore, the similarity measures defined on graphs

mostly are kernels. There are two groups of kernels defined on graphs. The

first group consists of kernels that aim at measuring the similalrities between

graphs and they are referred as graph kernels. To have an overview of graph

kernels, we recommend to readers a survey on graph kernels presented in

[93]. The second one includes kernels which intend to measure the similari-

ties between nodes inside graphs and are called graph node kernels or node

kernels in short. For analysis of different graph node kernels, we suggest to

read the work proposed in [34].

In the following, we first give formal definitions and notations related to

a graph. We then give an overview of graph kernels followed graph node

kernels.

Definition 2.5.1. A graph is a structure G = (V,E,Ln,Le) where V =

{v1, v2, . . . , vn} is the node (vertex) set, E = {(vi, vj)} ⊆ (V×V) is the link

(edge) set and Ln,Le are the node and edge function, respectively.

Definition 2.5.2. An undirected graph is a graph in which edges have no

orientation. The edge (u, v) is identical to the edge (v, u), i.e. they are not

ordered pairs, but sets {u, v} (or 2-multisets) of vertices. The maximum

number of edges in an undirected graph without a loop is n× (n− 1)/2.

Definition 2.5.3. An adjacency matrix A is a symmetric matrix used to

characterize the direct links between vertices vi and vj in the graph. Any

entry Aij is equal to wij when there exists a link connecting vi and vj, and

is 0 otherwise.
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Definition 2.5.4. The Laplacian matrix L is defined as L = D−A, where

D is the diagonal matrix with non-null entries equal to the summation over

the corresponding row of the adjacency matrix, i.e. Dii =
∑

j Aij.

Definition 2.5.5. The transition matrix of a graph G, denoted as P , is a

matrix in which each element Pij = Aij/
∑

iAij is the probability of stepping

on node j from node i.

We define the distance D(u, v) between two nodes u and v, as the number

of edges on shortest path between them. The neighborhood of a node u with

radius r, Nr(u) = {v | D(u, v) ≤ r}, is the set of nodes at distance no

greater than r from u. The corresponding neighborhood subgraph N u
r is

the subgraph induced by the neighborhood (i.e. considering all the edges

with endpoints in Nr(u)). The degree of a node u, deg(u) = |N u
1 |, is the

cardinality of its neighborhood. The maximum node degree in the graph G

is denoted by deg(G).

Table 2.1: Summary of some popular graph kernels. h: the hight, ns, ms:
number of nodes, edges in subgraphs, respectively.

Kernel Category Kernel Name Complexity

Sequence-based

Product graph [36, 94] O(n3)

Shortest path [15] O(n4)

Marginalized [47, 59] O(n3)

Subgraph-based

Weisfeiler-Lehman (WL) [77] O(m.h)

3-Graphlet [79] O(n3)

NSPDK [43] O(n× ns ×ms × log(ms))

WL Shortest Path [78] O(n4)

ST kernel for DAGs [30] O(n× logn)
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2.5.1 Graph kernels

The task of designing effcient and expressive graph kernels play an important

role in the development of graph-based predictive systems. One of the first

systematic works that strongly impacts on the development of research on

graph kernels is convolution or decomposition kernel [43] (see Section 2.3).

Existing graph kernels are decompositional kernels and can be classified into

two categories: sequence-based graph kernels and subgraph-based graph

kernels. The sequence-based graph kernels decompose graphs into “parts”

in sequence-based forms, such as paths and walks; meanwhile, the subgraph-

based graph kernels dissolve graphs into subgraphs. Table 2.1 is a summary

of some popular graph kernels. Following, we describe some of kernels in

each category.

2.5.1.1 Product graph kernel

Product graph kernel was originaly proposed in [36] with the aim to measure

the similarity between two labeled graphs by counting their common walks.

To compute the similarity between two graphs (factor graphs), first a graph,

called direct product graph, is constructed from two factor graphs. Then

the similarity is computed based on the obtained graph.

Formally, we consider two factor graphs G1 and G2 and Ln1, Ln2, Le1,

Le2 as the node and edge labeling functions of G1 and G2, respectively. We

define the direct product graph of G1, G2 as a graph G× = (V×, E×) where

• V× = {(u, v) : u ∈ V (G1) ∧ v ∈ V (G2) ∧ Ln1(u) = Ln2(v)};

• E× = {((u, v), (u′, v′)) ∈ V× × V× : (u, v) ∈ E(G1) ∧ (u′, v′) ∈ E(G2)

∧ Le1((u, v)) = Le2((u′, v′))}.

Given λ1, λ2, . . . (λi ∈ R, λi ≥ 0, ∀i ∈ N), the direct product kernel is defined

as follows

k(G1, G2) =

|V×|∑
i,j=1

[ ∞∑
n=0

λnA
n
×

]
ij

, (2.15)

if the limit exists, in which A× is the adjacency matrix of the direct product

graph G×. The computation of this limit is high, O(n6). There are different

modifications of this kernel that can be more efficient to compute, such as

the method proposed in [94] that has complexity of O(n3).

2.5.1.2 Shortest path kernels

The simple idea behind shortest path kernels is that they consider the com-

mon shortest paths between two graphs to measure their similarity. Al-
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though the computation of shortest paths in a graph can be computed in

polinomial time, taking into account shortest paths leads to some prob-

lems. First, the shortest paths between two nodes normally are not unique

and there has not been a way to deterministically choose one shortest path

among others. Second, if we keep all shortest paths into account, it would

lead to a NP-hard kernel. Although the shortest paths are not unique, the

length of them is unique. As a consequence, a shortest path graph kernel is

proposed in [15] with total runtime of O(n4).

Given two graphs G1, G2, we first construct their two corresponding

shortest graphs Gs1, Gs2, respectively. The shortest graph of a graph, G, is

a labeled graph defined as Gs = (Vs, Es) where

• Vs = V (G);

• Es = {(u, v) : u, v ∈ V (G)∧ |p(u, v)| ≥ 1} where p(u, v) is the number

of shortest paths connecting u and v;

• Le((u, v)) = D(u, v).

We then define the shortest graph kernel for G1 and G2 as follows:

ks(G1, G2) =
∑

(u1,v1)∈E(Gs1)

∑
(u2,v2)∈E(Gs2)

k1
walk((u1, v1), (u2, v2)), (2.16)

where k1
walk is a positive semi-definite kernel on 1-length walks.

2.5.1.3 Weisfeiler-Lehman kernels

The Weisfeiler-Lehman kernel framework is proposed in [78]. It is derived

from the kernel proposed in [77]. The idea is to first decompose each graph

into a sequence of graphs. Then the similarity between two graphs G and G′

is the summation of values computed by a given kernel defined on the two

corresponding graph sequences, derived from G and G′ by applying different

labeling functions.

Formally, the Weisfeiler-Lehman graph sequence of a given graph

G = (V,E,L) up to the height h is defined as:

{G0, G1, . . . , Gh} = {(V,E,L0), (V,E,L1), . . . , (V,E,Lh)},

where G0 = G, L0 = L, Lis (i = 1, h) are different labeling function on G.

Given two graphs G, G′ and a graph kernel k, the Weisfeiler-Lehman

kernel, kWL is defined as:

kWL(G,G′) = k(G0, G
′
0) + k(G1, G

′
1) + . . .+ k(Gh, G

′
h). (2.17)

22



Kernel Methods for Graph-based Data Integration Dinh T.Van

2.5.1.4 The neighborhood subgraph pairwise distance kernel

The NSPDK is an instance of convolution kernel [43] where given a graph

G ∈ G and two rooted graphs Au, Bv, the relation Rr,d(Au, Bv, G) is true iff

Au ∼= N u
r is (up to isomorphism ∼=) a neighborhood subgraph of radius r of

G and so is Bv ∼= N v
r , with roots at distance D(u, v) = d (see Figure 2.2). We

denote with R−1 the inverse relation that returns all pairs of neighborhoods

of radius r at distance d in G, R−1
r,d(G) = {Au, Bv|Rr,d(Au, Bv, G) = true}.

The kernel κr,d over G×G, counts the number of such fragments in common

in two input graphs:

κr,d(G,G
′
) =

∑
Au,Bv ∈ R−1

r,d(G)

A′u′ ,B
′
v′ ∈ R−1

r,d(G′)

1Au
∼=A′

u′
· 1Bv

∼=B′
v′
, (2.18)

where 1A∼=B is the exact matching function that returns 1 if A is isomorphic

to B and 0 otherwise. Finally, the NSPDK is defined as

K(G,G′) =
∑
r

∑
d

κr,d(G,G
′), (2.19)

where for efficiency reasons, the values of r and d are upper bounded to a

given maximal r∗ and d∗, respectively.

u v u

v

d=3

Figure 2.2: Example of a pairwise neighborhood subgraphs rooted at u with
radius r = 1 and distance d = 3.

2.5.2 Graph node kernels

Different from graph kernels which aim at measuring similarities between

graphs, graph node kernels intend to measure similarities between nodes

in graphs. The ideas behind graph node kernels are similar to graph ker-

nels. Therefore, they can also be devided into sequence-based graph node

kernels and subgraph-based graph node kernels. However, graph node ker-

nels attempt to exploit the configuration concerning two nodes in the graph

in order to define their similarity. Most available graph node kernels are

sequence-based graph node kernels and they are based on the diffusion phe-

nomenon. In other words, they consider paths connecting two given nodes
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in order to form their similarity. Table 2.2 is a summary of some popular

node graph kernels. In the following, we introduce some most used graph

node kernels.

Table 2.2: Summary of some popular sequence-based graph node kernels. t
is a constant

Kernel Category Kernel Name Complexity

Sequence-based

LEDK [52] O(n2)

MEDK [24] O(n2)

MDK [35] O(t× n2.373)

RLK [22] O(n2.373)

2.5.2.1 Laplacian exponential diffusion kernel

One of the most well-known kernels for graphs is the Laplacian exponential

diffusion kernel LEDK, as it is widely used for exploiting discrete structures

in general and graphs in particular. On the basis of the heat diffusion dy-

namics, Kondor and Lafferty proposed LEDK in [52]: imagine to initialize

each vertex with a given amount of heat and let it flow through the edges

until an arbitrary instant of time. The similarity between any vertex couple

vi, vj is the amount of heat starting from vi and reaching vj within the given

time. Therefore, LEDK can capture the long range relationship between

vertices of a graph to define the global similarities. Below is the formula to

compute LEDK values:

K = e−βL = I − βL+
βL2

2!
− . . . , (2.20)

where β is the diffusion parameter and is used to control the rate of diffusion

and I is the identity matrix. Choosing a consistent value for β is very

important: on the one side, if β is too small, the local information cannot

be diffused effectively and, on the other side, if it is too large, the local

information will be lost. LEDK is positive semi-definite as proved in [52].

The kernel requires to compute a matrix exponential which involves O(n3)
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operations using the Sylvester method, or O(n2) using the method proposed

in [106].

2.5.2.2 Exponential diffusion kernel

In LEDK, the similarity values between high degree vertices are generally

higher compared to those between low degree ones. Intuitively, the more

paths connect two vertices, the more heat can flow between them. This

could be problematic since peripheral nodes have unbalanced similarities

with respect to central nodes. In order to make the strength of individual

vertices comparable, a modified version of LEDK introduced by Chen et al

in [24] is called Markov exponential diffusion kernel MEDK and given by

the following formula:

K = e−βM . (2.21)

The difference with respect to the Laplacian diffusion kernel is the replace-

ment of L by the matrix M = (D−A− nI)/n where n is the total number

of vertices in graph. The role of β is the same as for LEDK. MEDK also

requires the matrix exponential, so it has the same complexity as LEDK.

2.5.2.3 Markov diffusion kernel

The original Markov diffusion kernel MDK introduced by Fouss et al. [35]

exploits the idea of diffusion distance, which is a measure of how similar the

pattern of heat diffusion is among a pair of initialized nodes. In other words,

it expresses how much nodes ”influence” each other in a similar fashion. If

their diffusion ways are alike, the similarity will be high and, vice-versa, it

will be low if they diffuse differently. This kernel is computed starting from

the transition matrix P and by defining Z(t) = 1
t

∑t
τ=1 P

τ , as follows:

K = Z(t)Z>(t). (2.22)

MDK computes t matrix multiplications, each one with a cost of approx-

imately O(n2.373) by using the fastest algorithm [31, 81]. Therefore, its

complexity is O(t× n2.373).

2.5.2.4 Regularized Laplacian kernel

Another popular graph node kernel function used in graph mining is the

regularized Laplacian kernel RLK. This kernel function was introduced by

Chebotarev and Shamis in [22] and represents a normalized version of the
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random walk with a restart model. It is defined as follows:

K =

∞∑
n=0

βn(−L)n = (I + βL)−1, (2.23)

where the parameter β is again the diffusion parameter. RLK counts the

paths connecting two nodes on the graph induced by taking −L as the

adjacency matrix, regardless of the path length. Thus, a non-zero value

is assigned to any couple of nodes as long as they are connected by any

indirect path. RLK remains a relatedness measure even when the diffusion

factor is large, by virtue of the negative weights assigned to self-loops. The

kernel RLK requires a matrix inversion, the same complexity as matrix

multiplication O(n2.373).

2.6 Disease gene prioritization

The identification of the genes underlying human diseases is a major goal in

current molecular genetics research. Dramatic progresses have been made

since the 1980s, when only a few DNA loci were known to be related to dis-

ease phenotypes. Nowadays opportunities for the diagnosis and the design

of new therapies are progressively growing, thanks to several technological

advances and the application of statistical or mathematical techniques. For

instance, positional cloning has allowed to map a vast portion of known

Mendelian diseases to their causative genes [82, 19]. Despite the huge ad-

vances, much remains to be discovered. On December 21st 2016, the Online

Mendelian Inheritance in Man database (OMIM) registered 4,908 Mendelian

phenotypes of known molecular basis and 1,483 Mendelian phenotypes of

unknown molecular origin [4]. Moreover, 1,677 more phenotypes were sus-

pected to be Mendelian. But it is among oligogenic and poligenic (and

multifactorial) pathologies that the most remains to be elucidated: for the

majority of them, only a few genetic loci are known [82, 19].

Independently of the type of disease, the search of causative genes usually

concerns a large number of suspects. It is therefore necessary to recognise

the most promising candidates to submit to additional investigations, as

experimental procedures are often expensive and time consuming. Gene

prioritization is the task of ordering genes from the most promising to the

least. In traditional genotype-phenotype mapping approaches - as well as in

genome-wide association studies - the first step is the identification of the

genomic region(s) wherein the genes of interest lie. Once the candidate re-

gion is identified, the genes there residing are prioritized and finally analysed
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for the presence of possible causative mutations [82]. More recently, in new

generation sequencing studies this process is inverted as the first step is the

identification of mutations, followed by prioritization and final validation

[73]. Prioritization criteria are usually based on functional relationships,

co-expression and other clues linking genes together. In general, all of them

follow the “guilt-by-association” principle, i.e. disease genes are sought by

looking for similarities to genes already associated to the pathology of in-

terest [82].

In the last few years, computational techniques have been developed to

aid researchers in this task, applying both statistics and machine learning

[66]. Thanks to the advent of high-throughput technologies and new gener-

ation sequencing, a huge amount of data is in fact available for this kind of

investigations. In particular, computational methods are essential for multi-

omics data integration, that has been recognised as a valuable strategy for

understanding genotype-phenotype relationships [72]. In fact, clues are often

embedded in different data sources and only their combination leads to the

emergence of informative patterns. Furthermore, incompleteness and noise

of the single sources can be overcome by inference across multiple levels of

knowledge.

Several popular algorithms for pattern analysis are based on kernels,

which are mathematical transformations that permit to estimate the sim-

ilarity among items (in our case genes) taking into account complex data

relations [76]. Importantly, kernels provide a universal encoding for any

kind of knowledge representation, e.g. vectors, trees or graphs. When data

integration is required, a multiple kernel learning (MKL) strategy allows a

data-driven weighting/selection of meaningful information [41]. The goal

of MKL is indeed to learn optimal kernel combinations starting from a set

of predefined kernels obtained by various data sources. Through MKL the

issue of combining different data types is then solved by converting each

dataset in a kernel matrix.

Numerous MKL approaches have been proposed for the integration of

genomic data [96, 16] and some of them have been applied to gene prioriti-

zation [32, 102, 65, 103]. De Bie et al formulated the problem as a one-class

support vector machine (SVM) optimization task [32], while Mordelet and

Vert tackled it through a biased SVM in a positive-unlabelled framework

[65, 20]. Recently, Zakeri et al proposed an approach for learning non-linear

log-euclidean kernel combinations, showing that it can more effectively de-

tect complementary biological information compared to linear combinations-

based approaches [103]. However, as highlighted in a recent work by Wang

et al [96], current methods share two limitations: high computational costs
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- given by a (at least) quadratic complexity in the number of training ex-

amples - and the difficulty to predefine optimal kernel functions to be fed to

the MKL machine.

Let us formally define the problem of disease gene prioritization which

is later on employed in our empirical experiments to evaluate of different

methods. We consider a list of genes G = {g1, g2, ..., gn} that could either

be the full list of human genes or a subset of it. Considering a specific

disease, there exists a set Pi ⊆ G of genes known to be associated with

it. Its complementary set Ui = G − Pi contains genes that are not a priori

related to the disease, but we assume that inside Ui some positive genes, i.e.

causing the disease, are hidden. Gene priorization is a task that ranks the

genes in Ui based on their likelihood to be related to Pi.

2.7 Biological datasets

The development of computational biology makes a high number of bio-

logical datasets available. Many biological datasets can naturally be rep-

resented as networks which are later on used as the input of graph-based

biological systems. In biological networks, vertices are biological entities

(genes and proteins, etc) and links describe the relation between entities.

The relations can be discovered by either physical experiments and results

from inferring methods (systems). We describe how information from some

biological datasets are extracted and transformed into undirected networks,

represented by adjacency matricies. These networks will be employed in our

experiments for evaluating the performance of proposed algorithms.

Human Protein Reference Database (HPRD): database of curated

proteomic information pertaining to human proteins. It is derived from [49]

with 9,465 vertices and 37,039 edges. We employ the HPRD version used

in [21] that forms a graph which contains 7,311 vertices (genes) and 30503

links. In the graph, two vertices are linked if proteins encoded by their

corresponding genes interact.

BioGPS [99]: contains expression profiles for 79 human tissues, which

are measured by using the Affymetrix U133A array. Gene co-expression,

defined by pairwise Pearson correlation coefficients (PCC), is used to build

an unweighted graph. A pair of genes are linked by an edge if the PCC value

is larger than 0.5.

Pathways: datasets are obtained from the database of KEGG [69],

Reactome [91], PharmGKB [98] and PID [74], which contain 280, 1469, 99

and 2,679 pathways, respectively. A pathway co-participation network is

constructed by connecting genes that co-participate in any pathway.
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String [46]: the String database gathers protein information covering

seven levels of evidence: genomic proximity in procaryotes, fused genes, co-

occurrence in organisms, co-expression, experimentally validated physical

interactions, external databases and text mining. Overall, these aspects

focus on functional relationships that can be seen as edges of a weighted

graph, where the weight is given by the reliability of that relationship. To

perform unbiased evaluation we employed the version 8.2 of String from

which we extracted functional links among 17,078 human genes.

Phenotype similarity: we use the OMIM [61] dataset and the phe-

notype similarity notion introduced by Van Driel et al. [88] based on the

relevance and the frequency of the Medical Subject Headings (MeSH) vo-

cabulary terms in OMIM documents. We built the graph linking those genes

whose associated phenotypes have a maximal phenotypic similarity greater

than a fixed cut-off value. Following [88], we set the similarity cut-off to 0.3.

The resulting graph has 3,393 nodes and 144,739 edges.

Biogridphys: this dataset encodes known physical interactions among

proteins. The idea is that mutations can affect physical interactions by

changing the shape of proteins and their effect can propagate through protein

graphs. We introduce a link between two genes if their products interact.

The resulting graph has 15,389 nodes and 155,333 edges.

Biogridgen: Genetic interaction is the phenomenon through which the

effects of a gene are modified by one or several other genes. This occurs in

indirect way by means of knock-on effects of multiple physical interactions.

In practice, this is observed when the effects of two mutations in distinct

genes is not equal to the sum of the effects of the mutations alone. This

kind of interaction is complementary in respect to the physical one and is

important especially for complex diseases involving a large number of genes.

In the adjacency matrix, the entries of coordinates (i, j) and (j, i) are equal

to 1 if gene i and j interact. Otherwise, they are equal to 0.

Omim: OMIM is a public database of disease-gene association. Genes

implicated in the same disease are more likely to be involved in other similar

diseases as well. Therefore, Omim network is formed by connecting genes

which are involved in common disease(s).

2.8 Link prediction

We are witnessing a constant increase of the rate at which data is being pro-

duced and made available in machine readable formats. Interestingly it is

not only the quantity of data that is increasing, but also its complexity, i.e.

not only we are measuring a number of attributes or features for each data
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point, but we are also capturing their mutual relationships, that is, we are

considering non independent and identically distributed (non i.i.d.) data.

This yields collections that are best represented as graphs or relational data

bases and requires a more complex form of analysis. As cursory examples of

application domains are social networks, where nodes are people and edges

encode a type of association such as friendship or co-authorship; bioinfor-

matics, where nodes are proteins and metabolites, and edges represent a

type of chemical interaction such as catalysis or signaling; and e-commerce,

where nodes are people and goods, and edges encode a “buy” or “like” rela-

tionship. A key characteristic of this type of data collection is the sparseness

and dynamic nature, i.e. the fact that the number of recorded relations is

significantly smaller than the number of all possible pairwise relations, and

the fact that these relations evolve in time. A crucial computational task is

then the “link prediction problem” which allows to suggest friends, or pos-

sible collaborators for scientists in social networks, or to discover unknown

interactions between proteins to explain the mechanism of a disease in bio-

logical networks, or to suggest novel products to be bought to a customer

in an e-commerce recommendation system. Many approaches to link pre-

diction that exist in literature can be partitioned according to i) whether

additional or “side” information is available for nodes and edges or rather

only the network topology is considered and ii) whether the approach is

unsupervised or supervised.

Unsupervised methods are, in this setting, non-adaptive, i.e. they do not

have parameters that are tuned on the specific problem instance, and can

therefore be computationally efficient. In general they define a score for any

node pair that is proportional to the existence likelihood of an edge between

the two nodes. Adamic-Adar [6, 57] computes the weighted sum over the

common neighbors where the weight is inversely proportional to the (log

of) each neighbor node degree. The preferential attachment [12] method

computes a score simply as the product of the node degrees in an attempt

to exploit the “rich get richer” property of certain network dynamics. Katz

[48] takes into account the number of common paths with different lengths

between two nodes, assigning more weight to shorter paths. The Leicht-

Holme-Newman method [54] computes the number of intermediate nodes.

In [62] the score is derived from the singular value decomposition of the

adjacency matrix. Two methods, named Local Random Walk (LRW) and

Superposed Random Walk (SRW), are proposed in [56]. These methods

work based on random walk. Besides, graph node kernels, including [52, 24,

35, 22], can be applied to measure the similarities between nodes and link
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prediction is made based on these similarities. For more information of link

prediction methods, we refer readers to [58, 62].

Supervised link prediction methods convert the problem into a binary

classification task where links present in the network (at a given time) are

considered as positive instances and a subset of all the non links are consid-

ered as negative instances. Following [62], we can further group these meth-

ods into four classes: feature-based models, graph regularization models,

latent class models, and latent feature models. A Bayesian non-parametric

approach is used in [63] to compute a non-parametric latent feature model

that does not need a user defined number of latent features but rather in-

duces it as part of the training phase. In [62] a matrix factorization approach

is used to extract latent features that can take into consideration the out-

put of an arbitrary unsupervised method. The authors show a significant

increase in predictive performance when considering a ranking loss func-

tion suitable for the imbalance problem, i.e. when the number of negative

instances is much larger than the number of positive instances.

In general, supervised methods exhibit better accuracies compared to

unsupervised methods although incurring in much higher computational and

memory complexity costs.

2.9 Biological data integration

Data integration has attracted many researchers because of its important

role in building high performance learning systems for biological data (as

discussed in Chapter 1). As a consequence, there is a high number of data

integration methods which have been proposed in the last decades. Accord-

ing to [39], existing methods can be divided into three classes: early data

integration, late data integration, and intermediate data integration.

Early data integration first combines different data sources into a single

one. It then builds a model for inference. Typical approaches are proposed

in [53, 107, 65, 26, 50]. A common requirement for the methods in this class

is that data sources need to be transformed into a common representation.

This might lead to the problem of information loss.

Late data integration builds models for each data source separately. It

then combines different obtained models to have a unified one. A common

technique for combining is to use the majority voting policy. Late data

integration methods often show relatively low performance since models are

built from each dataset in isolation from others. Examples in this class are

[37, 95, 60, 67].
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Intermediate data integration combines data through inference of a joint

model. An advantage of this strategy is that it does not require any data

transformation. Therefore, it does not lead to the problem of information

loss. Usually, it shows high performance in many applications, including

[53, 37, 89, 107, 70].

2.10 Multiple kernel learning

A common way to represent data in data integration is using kernels since

kernels are well-known as universal methods for data representation (see Sec-

tion 2.3). First kernels are defined on each data source. Then the obtained

kernels are combined into a single higher abstract level of data representa-

tion. The combination is often performed by using multiple kernel learning

(MKL) algorithms [41, 96] (see [41] for a recent and quite exhaustive survey).

The task of Multiple Kernel Learning is to combine kernels derived from

multiple sources in a data-driven way with the aim of improving the accuracy

of a target kernel machine. MKL algorithms are normally in linear forms

because of the two following reasons. Firstly, the time required to solve the

associated optimization problem grows, normally more than linearly, w.r.t

the number of pre-defined kernels. Secondly, employing sophisticated algo-

rithms often do not significantly outperform the simple average of kernels.

However, most of them still require a long computation time and a high

memory consumption, especially when the number of pre-defined kernels is

high. To tackle these limitations, a scalable multiple kernel learning named

EasyMKL has been previously proposed [10]. This method focuses on learn-

ing a linear combination of the input kernels with positive linear coefficients,

namely

K =
R∑
r=1

ηrKr, ηr ≥ 0 , (2.24)

where (η1, . . . , ηR) is the coefficient vector and R is the number of kernels

to combine. For a fully supervised binary task, EasyMKL computes the

optimal kernel by maximizing the distance between positive and negative

examples. The base learner is a kernel-based approach for the optimization

of the margin distribution in binary classification or ranking [9].

In order to present its formulation, let us first define the probability

distribution γ ∈ RN+ representing weights assigned to training examples and

living in the domain Γ = {γ ∈ RN+ |
∑

i∈P γi = 1,
∑

i∈N γi = 1}, where N
is the set of negative examples. From this definition, it follows that any

element γ ∈ Γ represents a pair of points in the input space: the first one is
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constrained to the convex hull of positive training examples and the second

one to the convex hull of negative training examples. As stated above,

EasyMKL maximizes the distance between positive and negative examples,

optimizing the margin distribution at the same time. Under this notation,

the task can be posed as a min-max problem over variables γ and η as

follows:

max
η:‖η‖2≤1

min
γ∈Γ

(1− λ)γ>Y (
∑
r

ηrKr)Y γ + λ γ>γ . (2.25)

Here Y is a diagonal matrix containing the vector of example labels, +1 for

the positive and -1 for the negative. Optimization of the first term alone

leads to an optimal γ∗ representing the two nearest points in the convex

hulls of positive and negative examples, equivalently to a hard SVM task

using a kernel K [9]. The second term represents a quadratic regularization

over γ whose solution is the squared distance between positive and negative

centroids in the feature space. The regularization parameter λ ∈ [0, 1] per-

mits to tune the objective to optimize, by balancing between the two critical

values λ = 0 and λ = 1. When λ = 0 we obtain a pure hard SVM objective,

while when λ = 1 we get a centroid-based solution.

It can be shown that this problem has analytical solution in η, so that

the previous expression can be reshaped into:

min
γ∈Γ

(1− λ)γ>Y KsY γ + λ γ>γ , (2.26)

where Ks =
∑R

r Kr is the sum of the pre-defined kernels. This minimization

can be efficiently solved and only requires the sum of the kernels. The com-

putation of the kernel summation can be easily implemented incrementally

and only two matrices need to be stored in memory at a time. As shown in

[10], EasyMKL can deal with an arbitrary number of kernels using a fixed

amount of memory and a linearly increasing computation time.

Once the problem in eq. 2.26 is solved, we have an optimal γ∗ and we

are able to obtain the optimal kernel weights η∗r by using the formula:

η∗r =
γ∗Y KrY γ

∗∑R
r=1 γ

∗Y KrY γ∗
. (2.27)

The optimal kernel is thus evaluated as K∗ =
∑R

r η
∗
rKr. Finally, by replac-

ing Ks with K∗ in eq. 2.26, we can get the final probability distribution

γ∗.
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Chapter 3

Conjunctive Disjunctive Graph

Node Kernel

In this chapter, we propose an efficient graph node kernel, named con-

junctive disjunctive node kernel (CDNK), based on graph decompositions,

that not only is able to effectively take into account nodes context, but

also to exploit additional information available on graph nodes. The key

idea is to learn and generalize from small network fragments present in

the neighborhood of genes of interest. An empirical evaluation on several

biological databases shows that our proposal achieves state-of-the-art

results.

The methods proposed in [85, 84] are based on the content presented in this

chapter.

3.1 Motivation

As discussed before, node similarity measure definition is the key that

determines the performance of graph-based learning systems. The state

of the art graph node kernels used to measure node similarity, are based

on the notion of information diffusion, including LEDK [52], MEDK [24],

MDK [35], RLK [22], etc. These graph node kernels often show relatively

low discriminative capacity, especially when working with sparse graphs,

i.e. graphs whose high numbers of missing links. This is due to they share

two common limitations: first, they are based on the diffusion phenomenon
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which does not effectively exploit the nodes context; second, they are not

able to process the auxiliary information associated to graph nodes.

We propose a convolutional graph node kernel, the conjunctive disjunc-

tive node kernel, which is able to i) effectively exploit the nodes’ context,

ii) utilize the side information available on the graph nodes.

3.2 A new graph node kernel

Diffusion-based kernels compute the similarity between two nodes only on

the basis of how well they are connected within the graph. Thus, it can

be stated that they exploit the global topology of the graph to compute

the output. Small values of the diffusion parameter β can be used to give

more emphasis to shorter paths with respect to longer ones in order to

take into account the local topology around a node, however the effect of

this setting is homogeneous through the whole set of nodes. The kernel we

propose in this paper is, on the contrary, based on the exploitation of a more

detailed information on the local topology around a node. We obtain this

information by using, in a specific way, the similarity notion computed by the

neighborhood based decomposition kernel NSPDK [29]. The underpinning

idea of the new kernel is to capture local topological information by looking

at local small subgraphs in the neighborhood of the two nodes of interest.

This can be done, in principle, by a direct application of the NSPDK kernel

to the local subgraphs. In practice, when a node has a high degree, the local

subgraph may be quite large and, since NSPDK is based on exact matching,

the probability to have an exact match between the two local subgraphs

decreases with the increase of node degree. For this reason, we propose to

decompose the original graph into a set of sparse connected components

that singularly have lower node degree with respect to the original graph.

The above idea is then applied to these set of components, and the novel

kernel is computed by summing up all the obtained contributions from these

components. In addition to that, we also extend the definition of the kernel

in such a way to accommodate auxiliary node information encoded as real

vectors. In the following, we give a more detailed description of the proposed

kernel.

Given an input undirected labeled graph G = (V,E,L1,L2), the com-

putation of our kernel consists of two phases. In the first phase, a network

decomposition procedure is applied to transform the graph into a set of

linked sparse connected components. In this procedure, we define two dif-

ferent kinds of link: conjunctive and disjunctive, that we treat in distinct
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manners. Nodes linked by conjunctive edges are going to be used jointly

to define the notion of context and will be visible to the NSPDK neighbor-

hood graph kernel. Nodes linked by disjunctive edges are instead used to

define features based only on the pairwise co-occurrence of the genes at the

endpoints and are processed by our novel kernel. In the second step, the

similarity between any node couple (u, v) is computed by applying NSPDK

to the two neighborhood subgraphs rooted at nodes u and v, extracted from

the graph obtained from the first decomposition phase. In the following, we

describe each phase in detail.

3.2.1 Network decomposition

In biological networks, it is not uncommon to find nodes with high degrees.

Unfortunately these cases cannot be effectively processed by a neighborhood

based decomposition kernel (see Section ??) when these are based on the no-

tion of exact matches between parts. In fact, it quickly becomes impossible

to match neighborhood subgraphs rooted at high degree nodes. Since the

number of non-isomorphic graphs grows exponentially with the number of

nodes and edges, in a finite size network, matching large neighborhoods be-

comes improbable and as a consequence learning and generalizing becomes

hard.

In order to tackle this problem, we propose a deterministic procedure

to sparsify the network ”perceived” by the exact matching graph kernel.

In reality we maintain all the relational information, but we mark specific

edges so that a novel kernel is able to treat them differently during the

decomposition phase. The result is a procedure that decomposes the network

in a collection of sub-networks such that each sub-network is a large sparse

graph and all sub-networks are inter-linked only via marked edges.

Iterative k-core decomposition [11]: initially, all edges in the graph are

labeled as “conjunctive”; the node set is then partitioned into two sets,

low- and high-degree node sets, on the basis of the degree (computed only

considering conjunctive edges) of each node w.r.t. a threshold degree D,

the first set contains all nodes with degree smaller than or equal to D and

the second set includes the remaining ones. The node partition is used

to induce “disjunctive” edges: edges that have endpoints in different sets

are relabeled as disjunctive, while all the others stay conjunctive. Since

some nodes in the high-degree set may have some of their edges labeled as

disjunctive, the degree of such nodes is decreased. Thus, we can apply again

the k-core decomposition to the high-degree node set. We continue iterating
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Figure 3.1: Example of application of k-core decomposition using degree
threshold D = 3. Left: the input graph. Middle and Right: resulting
marking of the edges: an edge (u, v) is marked as disjunctive (represented
by dashed line) if either deg(u) ≤ 3∧deg(v) > 3 or deg(u) > 3∧deg(v) ≤ 3;
all remaining edges are marked as conjunctive (represented by solid line).

until possible i.e. until one of the two resulting sets, i.e. low-degree and

high-degree node sets, is empty.

Clique decomposition [83]: to model the notion that nodes in a clique

(i.e. completely connected subgraph) are tightly related, we summarize the

whole clique with a new ”representative” node. All the cliques with a number

of nodes greater than or equal to a given threshold C are identified. The

endpoints of all edges incident on the clique’s nodes are then moved to the

representative node. Disjunctive edges are introduced to connect each node

in the clique to the representative. Finally all edges with both endpoints in

the clique are removed.

In our work a graph G is transformed by first applying the iterative

k-core decomposition and then the clique decomposition on the resulting

sparser sub-networks.

3.2.2 The conjunctive disjunctive node kernel

We start from the Neighborhood Subgraph Pairwise Distance Kernel

(NSPDK) [29] and enhance it in 3 ways: 1) we allow the computation of a

node based kernel, 2) we distinguish two types of edges, namely ”conjunc-

tive” and ”disjunctive” edges to tackle the problem of high degree nodes,

and 3) we upgrade it to accommodate auxiliary node information encoded

as real vectors.

We define a node kernel K(u, u′) between nodes u and u′ belonging to

G∧∨ as follows. When computing distances to induce neighborhood sub-

graphs, only conjunctive edges are considered. When choosing the pair of

neighborhoods to form a single feature, we additionally consider roots u

and v that are not at distance d but such that u is connected to w via a
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Figure 3.2: Example of application of the clique decomposition step using
threshold C = 4. Left: the input graph; nodes colored in blue belong to
a clique of size 4. Right: the resulting graph after clique decomposition; a
representative node (green color) is introduced for the clique of size 4; edges
belonging to the clique are removed, while disjunctive edges are introduced
to connect each node in the clique to the representative; in addition, edges
not belonging to the clique but with one endpoint in clique’s nodes are
moved to the representative node.

disjunctive edge and such that w is at distance d from v (Figure 3.3 is an

illustration). In this way disjunctive edges can still allow an information

flow even if their endpoints are only considered in a pairwise fashion and

not jointly.

In order to obtain a formal definition of the proposed kernel, we start by

defining new specific notions of distance and neighborhood subgraph, which

only depends on conjunctive edges. With D∧(u, v) we denote the length

of a shortest path between u and v (belonging to G∧∨) where all edges

are conjunctive edges. We can then define N∧r (u) = {v | D∧(u, v) ≤ r}
and the conjunctive neighborhood subgraph N∧ur as the subgraph induced by

N∧r (u) only considering conjunctive edges. We can now define two relations:

the conjunctive relation R∧r,d,u(Aw, Bv, G
∧∨), which is true iff w = u and

D∧(w, v) = d and Aw ∼= N∧wr is (up to isomorphism ∼=) a conjunctive neigh-

borhood subgraph of radius r of G∧∨ as well as Bv ∼= N∧vr ; the disjunctive

relation R∨r,d,u(Aw, Bv, G
∧∨) which is true iff w = u and Aw ∼= N∧wr and

Bv ∼= N∧vr are true and ∃z s.t. D∧(z, v) = d ∧ (w, z) is a disjunctive edge.

We define κ∧∨r,d on the inverse relations R∧−1
r,d,u and R∨−1

r,d,u:

κ∧∨r,d (G∧∨u , G∧∨u′ ) =

∑
Au,Bv∈R∧−1

r,d,u(G∧∨)

A′
u′ ,B

′
v′∈R

∧−1
r,d,u′ (G

∧∨)

1Au
∼=A′

u′
· 1Bv

∼=B′
v′

+
∑

Au,Bv∈R∨−1
r,d,u(G∧∨)

A′
u′ ,B

′
v′∈ R∨−1

r,d,u′ (G
∧∨)

1Au
∼=A′

u′
· 1Bv

∼=B′
v′

.
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u
v

v'
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d=3

v'

v

u

u

Figure 3.3: Examples of two pairwise neighborhood subgraphs for the u
node with r = 1 and d = 3 using conjuctive and disjuctive edges. Left: input
graph where nodes v and v′ have a conjunctive shortest path (highlighted
in red) of length 3 with u; conjunctive neighborhood subgraphs of radius
1 for u (highlighted in green), v (highlighted in violet), v′ (highlighted in
yellow) are shown as well. Right: representation of the two induced pairwise
conjuctive neighborhood subgraphs.

The CDNK is finally defined as K(G∧∨u , G∧∨u′ ) =
∑
r

∑
d

κ∧∨r,d (G∧∨u , G∧∨u′ ),

where once again for efficiency reasons, the values of r and d are upper

bounded to a given maximal r∗ and d∗.

3.2.3 Additional node information

In order to integrate auxiliary real vector labeled information, we ”fuse” it

together with the discrete information using a convolution operation. In

more details, we proceed as follows. We compute a sparse vector represen-

tation for the neighborhood graph rooted at node u following [29]: for each

conjunctive neighborhood subgraph we calculate a quasi-isomorphism cer-

tificate hash code1; we then combine the hashes for the pair of neighborhoods

at each distance d and use the resulting integer as a feature indicator. This

yields a sparse vector representation associated to each node u in graph G∧∨.

We encode this feature extraction operation in the function φ : Gu 7−→ RN

where Gu is a rooted graph (note that N is very large2). We define a func-

tion ψ : Gu 7−→ RP which returns the vector information associated to node

1The graph hashing is obtained by hashing the sorted sequence of edge extended in-
formation which includes an invariant encoding of the endpoint labels (see [29]).

2 N ≈ 106, but one can trade-off a higher collision rate for the hash function for a
smaller dimension: in practice N ≈ 104 is often a reasonable compromise.
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u in the rooted graph Gu
3. We introduce the discrete convolution operator ?

between two vectors a, b ∈ RM defined as: (a ? b)[n] =
∑M−1

m=0 a[n−m]b[m]),

where a[n] is the n-th component of the vector. We define a new feature con-

structor function Ψ(G∧∨u ) = φ(G∧∨u )?ψ(G∧∨u ). Intuitively, the new construc-

tor will shift the auxiliary information vector to the position of the discrete

features in the sparse vector (summing the contributions when overlapping).

The CDNK is finally defined as:

K(G∧∨u , G∧∨u′ ) =
〈
Ψ(G∧∨u ),Ψ(G∧∨u′ )

〉
, (3.1)

Intuitively, when two rooted neighborhoods have matching structure and

auxiliary information, then they will obtain a large response from the kernel,

but if there is a discrepancy in either one of the sources of information, the

similarity will be penalized. Note that this approach differs from the idea

of combining two kernels (one for the structure and one for the auxiliary

information) via an operation that preserves the kernel properties (e.g. a

multiplication or a sum). In this case the computational complexity would

be quadratic, as the kernels have to be materialized via the associated Gram

matrix, here instead we are computing an explicit feature representation for

each individual rooted graph, allowing efficient learning in the primal space.

3.2.4 Hyper-parameter space

The proposed kernel is parametrized with five hyper-parameters: the thresh-

old degree D, which controls the maximal node degree by decomposing the

original network, the clique size threshold C, which controls the maximal

clique size that is not transformed into a single representative node, the max-

imal radius r∗, which controls the complexity of the interactions taken into

account jointly, the maximal distance d∗, which controls the locality of the

interactions, and the number of clusters P , which controls the ”resolution”

of the auxiliary information. A standard grid search or a random searcher

procedure is then employed in order to optimally tune the hyper-parameters

to the problem at hand. The presence of five hyper-parameters seem to yield

a large space to search. Note however that these hyper-parameters are inte-

gers and that often it is possible to specify a priori narrow ranges of feasible

values. For instance the maximal radius r∗ can likely take values in {1, 2, 3}
since higher values will lead to neighborhood subgraphs so large that in

practice they will never match exactly. The maximal distance d∗ can be set

3In our application case, the vector information associated to each node encodes the
multi-class similarity of the corresponding gene w.r.t. each of the P cluster c.f.r. Section
3.3.
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with small values when small world properties hold for the network under

consideration (as it is in our case). In Section 3.5.2 we empirically ana-

lyze the sensitivity of the prediction performance with respect to the hyper

parameters selection.

3.3 Graph node labeling

The proposed graph node kernel is able to exploit rich information associated

to each node (i.e. gene). Labels can be discrete entities and/or real valued

vectors. Here we discuss how to define these labels for the graphs derived

from BioGPS and Pathways.

Discrete labels: we designed two different approaches to associate genes

with discrete labels.

A first baseline approach is to use the same label for every node of the

graph. In this case, the underpinning information for the computation of the

kernel is just the topology of the neighborhood subgraphs. Since diffusion-

based kernels work primarily on topological information, this choice allows

us to compare the merits of different approaches on an equal footing.

The second approach aims to encode abstract information about genes

into the labels. The idea, in this case, is to allow downstream machine

learning algorithms to generalize from similar examples and to allow the

identification of overlooked but related genes. To this aim, we employ a

gene ontology (GO) [27] to construct binary vectors representing a bag-of-

terms encoding for each gene, i.e. an element of the binary vector is equal

to 1 if its corresponding GO-term is associated to the gene, and is equal

to 0 otherwise. The resulting vectors are then clustered using the k-means

algorithm into a user defined number of classes, P , so that genes with similar

description profiles receive the same class identifier as label.

Real vector labels: In addition to encoding the functional information

as a discrete label, we add a finer grained description by computing the

similarity score w.r.t. to each cluster and construct in this way a real val-

ued vector to associate with each gene. This is a way to induce a latent

characterization defined on the basis of the groups captured by the cluster-

ing procedure. Formally, given a vector v ∈ RM 4 we compute a similarity

vector S(v) = s1, s2, . . . , sP with entries si = 1
1+`(v,ci)

where `(v, ci) is the

Euclidean distance of v from the center of the ith cluster ci = 1
|Ci|
∑

x∈Ci
x

computed as the geometric mean of the elements in the cluster Ci. While

other notions of similarity can be used (e.g. the cosine similarity or a sim-

4M is the number of GO-terms, in our experiments M = 26,501.
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ilarity derived from a more flexible Mahalanobis distance), here we choose

the Euclidean distance for simplicity and will leave the investigation of al-

ternative distances and similarity notions for future work.

3.4 Empirical evaluation

In this section, we evaluate the performance of CDNK versus other graph

node kernels. Specifically, we focus on the following two questions:

• Q1: Does CDNK show better performance with respect to other graph

node kernels?

• Q2: Does the use of local topology (as envisioned in the proposed ker-

nel) and/or additional information (real vector labels) help to improve

the performance of CDNK?

3.4.1 Experimental settings and evaluation methods

We carry out experiments in the context of disease gene prioritization where

the aim is to build a learning system which allows to prioritize candidate

genes based on their probabilities of being associated to a given genetic

disease.

The learning pipeline typically used for this kind of tasks is described in

the following. In input the system takes: a genetic graph, a set of training

genes known to cause a specific genetic disease, a set of candidate genes

which are suspected to be involved as well in the disease. The selected graph

node kernel is applied to the genetic graph, so to obtain the corresponding

kernel matrix. The kernel matrix and the training genes are given in input

to a kernel machine to construct a model. The output of the obtained model

for the candidate genes is then used to prioritize them. The top ranked genes

are the ones supposed to have the highest likelihood of concurring in causing

the disease.

The experiments are performed on two separate networks derived from

the BioGPS and the Pathways datasets, described in Section 2.7. In Fig-

ure 3.4, we have plotted the node outdegree distribution of the two networks.

It can be observed that there are many nodes with a very high outdegree,

especially for the Pathways network, so the decomposition procedure is re-

ally important to drastically reduce it without loosing too much information

about the network topology.

We followed the experimental procedure described in [24, 23], where 12

diseases [40] are used. Each disease is associated to at least 30 positive
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Figure 3.4: Out degree distribution for nodes in the BioGPS network
(a), and the Pathways network (b). The inner figures are the zoom of the
corresponding outer ones without considering the degree 0.

genes. See Table A.1 for the list of genetic diseases and the number of

positive genes in each disease. For each disease, we construct a positive set

P with all positive (confirmed) disease genes, and a negative set N which

contains random genes associated at least to one disease class which is not

related to the class that is defining the positive set. In [24] the ratio between

the dataset sizes is chosen as |N | = 1
2 |P|. This is due to the fact that genes

known to be related to at least one genetic disease, but not to the considered

one, are well studied, so they have a low probability of being associated to

the current disease.

The experiments are performed on two separate networks derived from

BioGPS and Pathways datasets, described in Section 2.7. We follow the

experiment procedure in [24] where 12 diseases [40] are used in which each

disease is associated to at least 30 positive (known) genes (see Table A.1).

For each disease, we construct a positive set P with all positive (confirmed)

disease genes, and a negative set N which contains random genes associated

at least to one disease class which is not related to the class that is defining

the positive set. In [24] the ratio between the dataset sizes is chosen as

|N | = 1
2 |P|. This is due to the fact that genes known to be related to at

least a genetic disease, but not to the considered one, are well studied, so

they have a low probability to be associated to the current disease.

In order to compare the performance of different graph node kernels, i.e.

LEDK, MEDK, MDK, RLK, and CDNK., the learning algorithm is fixed.

The predictive performance of the system using each kernel is evaluated via

a leave-one-out cross validation: one gene is kept out in turn and the rest

are used to train an SVM model. We computed a decision score qi for the
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test gene gi as the top percentage value of score si among all candidate gene

scores, i.e. qi =
|{gj |si≥sj}|

N where N is the number of candidate genes. We

collected all decision scores for every gene in the test set to form a global

decision score list on which we computed the AUC-ROC.

3.4.2 Model selection

The hyper-parameters of the various methods were tuned using a 10-fold

cross validation. However, due to the non i.i.d. nature of the problem, we

emploied a stronger setup to ensure no information leakage. The dataset 0

(Connective) on which we validated the performance was never subsequently

used in the predictive performance estimation. The values for the diffusion

parameter β in LEDK and MEDK were sampled in {10−3, 10−3, 10−2, 10−1},
time steps t in MDK in {1, 10, 100} and RLK parameter β in {1, 4, 7}. For

CDNK, the degree threshold values, D, were sampled in {10, 15, 20}, clique

size threshold, C, in {4, 5}, maximum radius, r∗, in {1, 2, 3}, maximum

distance, d∗, in {0, 1, 2, 3, 4}, number of clusters P in {5, 7}. Fi-

nally, the regularization trade off parameter in the SVM was sampled in

{10−5, 10−4, 10−3, 10−2, 10−1, 1, 10, 102}. The optimal parameter values

of CDNK obtained by validation process are D = 20, C = 5, r∗ = 2, d∗ = 1,

P = 15 and the trade-off parameter of SVM is 10−2.

3.5 Results and discussion

Figures 3.7 and 3.8 report the AUC-ROC performance of the different

diffusion-based graph node kernels and the different variations of CDNK

on BioGPS and Pathways networks, respectively. In what follows, we an-

alyze the results to answer to the two research questions we posed at the

beginning of the section.

Concerning Q1, i.e. improvement on the performance of diffusion-based

graph node kernels, CDNK variations outperformed diffusion-based graph

node kernels in almost all cases on BioGPS network. For the moment,

we postpone the discuss of these cases. When looking at the Pathways

network, CDNK variations were outperformed by one of the diffusion-based

graph node kernels in only 3 out of 11 cases. When looking at the average

results, it is clear that CDNK variations are ranked first when considering

both the average AUC-ROC and the average rank with a difference, w.r.t.

the best diffusion-based kernel, ranging from 5.4% to 10% and from 1.2%

to 3.4% on BioGPS and Pathways, respectively. As a consequence, we

can conclude that CDNK variations show state-of-the art performance in
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graph node kernels for this task. Thus, the answer to question Q1 is positive.

Let now turn our attention to question Q2, i.e. whether the possibility

to use local topology and/or real valued information is useful to improve

performance. The first part of the question, i.e. usefulness of local topology,

can be answered by looking at results of CDNK3, where only discrete labels

defined by the baseline approach are used. If we look at results obtained on

BioGPS network, we see that CDNK3 outperforms diffusion-based kernels

with the exceptions of datasets 3, 7, 8, and 9, thus 7 times over 11. It

is important to stress, however, that on the average CDNK3 outperformed

the diffusion-based kernels of 10.19%, while it was outperformed on the

average of 6.05%. An even better scenario is observed for the Pathways

network, where only in one case (disease gene association 4) the performance

of CDNK3 was inferior of almost all diffusion-based kernels. Thus, it seems

that exploiting local topological information is actually important in many

cases. Regarding the integration of real valued vectors, we have to look at

variations CDNK2 and CDNK4, that exploit real valued labels based on GO.

It is readily evident that CDNK2 and CDNK4 improve on the performance

of diffusion-based kernels in most cases. Specifically, for BioGPS network,

CDNK2 is the best performer in absolute in 7 out of 11 datasets. Moreover,

its worst performance places it above all diffusion-based kernels. In turn,

CDNK4 is first in 3 datasets and second in 4 datasets, and again its worst

performance places it above all diffusion-based kernels. When looking at the

results for the Pathways network, CDNK4 is the best performer among all

kernels, while CNDK2 places in second position since even if it is first on

two datasets as well as RLK, RLK has a worst ranking score on most of the

other datasets. We can conclude that also the exploitation of real valued

information seems to improve the performance. Thus, also for question Q2

we can give a positive answer.

3.5.1 Degree distribution dependency analysis

Given the sensitivity of the kernel features to the node degrees, we analyze

in greater detail the relationship between the predictive performance and

the connectivity degree of each gene. We consider all test genes across the

11 training sets (note that the same gene could appear in multiple sets). We

bin all the test genes in 20 groups based on their connectivity degrees and

threshold the predictions at 0.5 to compute the group-wise accuracy score.

We report in Figure 3.5 the accuracy (in light grey) and the number of in-

stances (in dark grey) for each group. No clear monotone dependency seems
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Figure 3.5: Accuracy computed by grouping genes according to their con-
nectivity degree.

to exist between the value of the degree and the accuracy, with accuracies

above 0.7 distributed across all degrees.

3.5.2 Sensitivity analysis for hyper-parameters

We perform an empirical assessment of the sensitivity of the predictive per-

formance with respect to the hyper-parameters values. We limit our analysis

to the BioGPS network and to the disease termed Dermatological (id=2),

but analogous results can be obtained for other networks and diseases. We

variate each hyper-parameter in turn, keeping the remaining ones fixed to

the values identified by the model selection procedure. The results are re-

ported in Figure 3.6 and show that the approach is relatively stable with

a predictive performance that ranges from a maximum of 0.85 AUC ROC

to 0.83. For this domain it is also clear that the hyper-parameter space to

search is not large in practice, confirming our a-priori intuition that optimal

parameters are laying in a narrow range of low integer values.
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(a) (b)

(c) (d)

(e)

Figure 3.6: Performance of CDNK4 on the BioGPS network for disease
2 (Dermatological) w.r.t the change of most of the hyper-parameters: (a)
clique threshold (C); (b) degree threshold (d∗); (c) distance threshold (D);
(d) radius threshold (r∗); real vec size threshold (P ).
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3.6 Summary

We have shown how decomposing a network in a set of connected sparse

graphs allows us to take advantage of the discriminative power of CDNK, a

novel decomposition kernel, to achieve state-of-the-art results. Moreover, we

have also introduced the way to integrate “side” information in form of real

valued vectors when it is available on graph to get even better performance

of CDNK. In the next chapters, we apply CDNK to different tasks.
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Chapter 4

Solutions for Graph Sparsity

One of the problems that we often face with when constructing graph-based

learning systems is the graph sparsity problem, i.e. input graphs have a

high number of missing links. In this case, the systems can only access to

limited information, so they are not able to learn effectively. This leads to

low performance of the learning systems. In this chapter, we aim at in-

vestigating and proposing solutions to deal with the graph sparsity problem.

The methods introduced in [86, 87] are based on the content presented in

this chapter.

4.1 Motivation

Despite the increase of relational data, which are best presented by graphs,

in terms of diversity and amount, the number of relations between entities

encoded in data is much smaller than the number of possible relations. This

yields the problem of graph sparsity when we employ graphs to represent the

entity relations. The graph sparsity problem often leads to low performance

of graph-based learning systems since the information, which available, for

learning is restricted. For this reason, we need effective solutions to overcome

the graph sparsity issue.

An effective solution for the graph sparsity problem is to use link en-

richment methods. Given a graph, a link prediction aims at finding the

top un-observed links, i.e. links which have the highest possibilities of be-

ing missing links, to add into the graph. However, the performance of a
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link enrichment directly depends on the employed link prediction method.

Therefore, in the following sections, we first propose a novel, effective link

prediction method, named Joint Neighborhood Subgraphs Link Prediction.

We then propose a paradigm, called Link Enrichment for Diffusion-based

Graph Node Kernels, to boost the performance of graph-based kernels that

usually show low performance on sparse graphs.

4.2 Joint neighborhood subgraphs link prediction

method

Due to the importance of link prediction, there is a high number of link pre-

diction approaches which have been proposed and applied in a wide range

of fields (see Section 2.8). They can be classified into supervised and un-

supervised learning. Supervised methods normally show better accuracies

compared to unsupervised methods. However, they face with much higher

computational and memory complexity costs. Most link prediction methods

in both categories implicitly represent the link prediction problem and the

inference used to tackle it as a disjunction over the edges, that is, informa-

tion on edges is propagated in such a fashion so that for a node to have k

neighbors or k+1 does not make a drastic difference. We claim that this hy-

pothesis is likely putting a cap on the discriminative power of classifiers and

therefore we propose a novel supervised method, JNSL, that employs a con-

junctive representation. We call the method “joint neighborhood subgraphs

link prediction” (JNSL). The key idea here is to transform the link predic-

tion task into a binary classification, on suitable small subgraphs, which we

then solve using an efficient convolutional graph kernel method.

Given a labeled, unweighted graph, G = (V,E,L1,L2), the set E is par-

titioned into the subset of observed links (O) and the subset of unobserved

links (U). The set U is further devided into two subsets: missing links (Um),

i.e. links that have not discovered, and non-links (Un). We define the link

prediction problem as the task of ranking candidate links, i.e. links in U ,

from the most to the least probable of being missing links. In the next

sections, we first describe how links are represented in our method, and we

then show how we cast link prediction as a binary classication problem.

4.2.1 Link encoding as subgraphs union

Most methods for link prediction compute pairwise nodes similarities treat-

ing the nodes defining the candidate edge independently. Instead we propose
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Figure 4.1: Left) We represent with solid lines edges belonging to the train-
ing material and with a dotted line edges belonging to the test material.
Right) joint neighborhood subgraphs for an existing (green endpoints) (top)
and a non existing (red endpoints) link (bottom) (r = 2). These graphs will
receive a positive and a negative target, respectively.

to jointly consider both candidate endpoint nodes together with their ex-

tended “context”. To do so we build a graph starting from the two nodes

and the underlying network. Given nodes u and v, we first extract the two

neighborhood sets with a user defined radius r rooted at u and v to obtain

Nr(u) and Nr(v), respectively. We then consider the graphJ induced by

the set union Nr(u) ∪ Nr(u). Finally, we add an auxiliary node w and the

necessary edges to connect it to u and v.

4.2.2 Joint neighborhood subgraphs link prediction

In the link prediction problem we are given a graph G = (V,E,L1,L2)

and a binary target vector Y = {y(0,0), y(0,1), · · · , y(|V |,|V |)} where y(u,v) = 1

if (u, v) ∈ E and 0 otherwise. The training data is obtained consid-

ering a random subset of edges in Etr ∈ E and inducing a training

graph Gtr = (V,Etr). Note that the graph used for training does not

contain any of the edges that will be queried in the test phase. The

remaining edges Ets = E \ Etr are used to partition the target vectors:

Y tr = {y(u,v)|(u, v) ∈ Etr}, Y ts = {y(u,v)|(u, v) ∈ Ets}. We can now cast the

problem as a standard classification problem in the domain of graphs. Given

Gtr we build a train and test set as the corresponding joint neighborhood

subgraphs as detailed in Section 4.2.1 and Figure 4.1. We can now compute

a Gram matrix of the instances and solve the classification task using for

example the efficient LinearSVC library [3].
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4.2.3 Empirical evaluation

In this section, we carry out two separate experimental settings to evalu-

ate the performance of JNSL and compare it with various link prediction

methods which only exploit topological features.

In the first setting, we follow the experimental setting and procedure

performed in [62] in which 6 datasets belonging to different domains are

employed.

• Protein [95]: nodes are proteins and edges encodes a thresholded in-

teraction confidence between proteins. It has 2,617 nodes and 11,855

links with an average degree of 9.1.

• Metabolic [100]: nodes are enzyme and metabolites, edges are present

if the enzyme catalyzes for a reaction that include those chemical com-

pounds. It has 668 nodes and 2,782 links with an average degree of

8.3.

• Nips [5]: nodes are authors at the NIPS conference from the first to

the 12th edition. Links encode the co-authorhip relation, i.e. if two

authors have published a paper together. This network contains 2,865

nodes and 4,733 links with an average degree of 3.3.

• Condmat [55]: nodes are scientists working in condensed matter

physics, edges encode co-authorship. This network has 14,230 nodes

and 1,196 links with an average degree of 0.17.

• Conflict [38, 97]: nodes are countries and edges encode a conflict or

a dispute. We have 130 nodes and 180 links in total in this network

with an average degree of 2.5.

• Powergrid [45]: a network of electric powergrid in US. It has 4,941

nodes and 6,594 links. The average degree is 2.7.

We evaluate the performance of employed methods by splitting 10 times the

data in a train and a test part. For Protein, Metabolic, Nips and Conflict

networks, we use 10% of the edges to induce the training set while for Cond-

mat and Powergrid we use 90% of the links. On Condmat and Powergrid,

if we set a 10% for training, it would cause most nodes to have no observed

links in the training set, so, it makes difficult to predictions based solely on

the topological structure. The performance of each method is computed as

the average of the AUC-ROC over the 10 rounds.

In the second setting, we aims at applying diffusion-based graph node

kernels LEDK, MEDK, MDK, RLK (see Section 2.5.2) for link prediction
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and comparing their performances with JNSL. We test on three datasets

BioGridgen, Omim and HPRD presented in Section 2.7. Similar to the

first setting, we evaluate the performance of employed methods by splitting

10 times the data in a training (90%) and a testing part (10%). The

performance of each method is computed as the average of the AUC-ROC

over the 10 rounds.

Model Selection: The values of different parameters are chosen through

the model selection. Different hyper-parameters are set by using a mod-

ified 3-fold cross-validation procedure on the training set, that is, al-

ways considering only the training network, we use one fold for fit-

ting the parameters and the rest two folds for validating the effect of

the hyper-parameter choice. We tune the values of radius for extract-

ing subgraphs r in {1, 2}, λ in node label function in {10, 15}, for r∗

and d∗ parameters of NSPDK in {1, 2} and {1, 2, 3}, respectively. The

values for diffusion parameter β in LEDK and MEDK are sampled in

{10−3, 10−3, 10−2, 10−1}, time steps t in MDK in {1, 10, 100}, and RLK pa-

rameter β in {1, 4, 7}. Finally, the regularization tradeoff of the SVM is

picked up in {10−4, 10−3, 10−2, 10−1, 1, 10, 102, 103, 104}.

Figure 4.2: Performance of diffusion-based methods and JNSL on BioGrid-
gen, Omim and HPRD.
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Figure 4.3: Performance of link prediction methods on 6 datasets: Protein: 1; Metabolic: 2; Nips: 3, Condmat: 4, Conflict:
5, PowerGrid: 6. Legend: AA: Adamic-Adar, PA [12] preferential Attachment, SHP: Shortest Path, Sup-Top [62]: Linear
regression running on unsupervised scores, SVD [62]: Singular value decomposition, Fact+Scores [62]: Factorization with
unsupervised scores.
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4.2.4 Results and discussion

Figures 4.3 and 4.2 show the performance in AUC-ROC of different link

prediction in the first and second experimental setting, respectively (see

Tables B.2 and B.1 for more detail).

Concerning Figure 4.3, we can group methods into two groups based on

their performances: supervised methods, AA, PA, SHP, Sup-Top SVD, and

unsupervised methods, Fact+Scores, JNSL. The performance of supervised

methods are considerably higher than unsuperivsed ones in most cases, ex-

cept in the Conflict dataset where Sup-Top outperforms Fact+Scores, but

with a very small difference. Concerning supervised methods, JNSL outper-

forms Fact-Scores in all cases. The difference between their performance is

small in PowerGrid and Protein datasets with 0.5% and 0.8%, respectively.

And the big gap is in the Condmat dataset with 7.4%.

In Figure 4.2, it can be clearly seen that JNSL outperforms the compared

methods that use diffusion-based kernels which are unsupervised methods.

In particular, JNSL gets from 10.2%, 4.4% and 13.7% higher w.r.t the

rest methods on BioGridgen, Omim and HPRD, respectively. Related to

diffusion-based prediction methods, MDK and RLK present better results,

in all cases, than LEDK and MEDK.

4.2.5 Summary

We have presented a novel approach to link prediction in absence of side in-

formation that can effectively exploit the topological contextual information

available in the neighborhood of each edge. We have empirically shown that

this approach achieves very competitive results compared to other state-of-

the-art methods.

For the comming work, we will first investigate how to make use of

multiple and heterogeneous information sources when these are available

for nodes and edges. We then apply link prediction methods in general and

JNSL in particular to link enrichment for improving performance of learning

systems when dealing with sparse graphs (see Section 4.3).

4.3 Link enrichment for diffusion-based graph

node kernels

Diffusion-based graph node kernels, such as LEDK, MEDK, MDK and RLK

(see Section 2.5.2), are popularly used to measure graph node similarities.

Nevertheless, they show low discriminative capacity on sparse graphs due to
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two main reasons: i) the lower the average node degree is, the smaller the

number of paths through which information can travel, and ii) missing links

can end up separating a graph into multiple disconnected components. In

this case, since information cannot travel across disconnected components,

the similarity of nodes belonging to different components is null. To ad-

dress these problems we propose to solve a link prediction task prior to the

node similarity computation and start studying the question: how can we

improve the discriminative capacity of diffusion-based node kernels by using

link prediction? In this section, we take into account both the link predic-

tion literature (presented in Section 2.8) and the diffusion-based graph node

kernel literature (described in Section 2.5.2), select a subset of approaches

in both categories that seem well suited, focus on a set of node predict-

ing problems in the bioinformatics domain and empirically investigate the

effectiveness of the combination of these approaches on the given predic-

tive tasks. The encouraging result that we find is that all the strategies

for link prediction we examined consistently enhance the performance on

downstream predictive tasks, often significantly improving state of the art

results.

4.3.1 Method

Often the relational information that defines the graph structure is incom-

plete because certain relations are not known at a given time or have not

been yet investigated. When this happens the resulting graphs tend to be-

come sparse and composed of several disconnected components. Diffusion-

based kernels are not suited in these cases and so they show a degraded

predictive capacity. Our key idea is to introduce a link enrichment phase

that can address both issues and enhance the performance of diffusion-based

kernels.

Given a link prediction algorithm M , a diffusion-based graph node kernel

K and a sparse graph G = (V,E,L1,L2) where |V| = n and |E| = m, the

link enrichment method consists of two phases:

1. enrichment: the link prediction algorithm M is used to score all unob-

served links n(n−1)
2 −m. A score associated to a link represents for its

likelihood of being a missing link. The top scoring t links are added

to E to obtain E′ that defines the new graph G′ = (V,E′);

2. kernel computation: the diffusion-based graph node kernel k is applied

to graph G
′

to compute the kernel matrix K which captures the sim-
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ilarities between any couple of nodes, possibly belonging to different

components in the graph G.

The kernel matrix K can be used directly by a kernelized learning algo-

rithm, such as a support vector machine, to make predictive inferences.

4.3.2 Empirical evaluation

To empirically study the answer to the question: how can we improve

node similarity using link prediction? we would need to define a taxonomy

of prediction problems on graphs that make use of the notion of node

similarity and analyze which link prediction strategies can be effectively

coupled with specific node similarity computation techniques for each given

class of problems. In addition we should also study the quantitative relation

between the degree of missingness and the size of the improvement offered

by prepending the link prediction to the node similarity assessment. In this

section, we start such endeavor restricting the type of predictive problems

to that of node ranking in the sub-domain of gene-disease association

studies with a fixed but unknown degree of missingness given by the current

medical knowledge. More in detail, the task, known as gene prioritization,

consists of ranking candidate genes based on their probabilities to be

related to a disease on the basis of a given set of genes experimentally

known to be associated to the disease of interest. We have studied the

proposed approach on the following 4 datasets: BioGPS, HPRD, Phenotype

similarity and Biogridphys which we described in Section 2.7.

Evaluation method: to evaluate the performance of the diffusion

kernels, we follow the experimetal setting from [24] and used in Section

3.4. However, we employ 14 disease-gene associations with at least 30

confirmed genes (see Table B.3). For each disease, we construct a positive

set P with all confirmed disease genes. To build the negative set N , we

randomly sample a set of genes that are associated at least to one disease

class, but not related to the class which defines the positive set such that

|N | = 1
2 |P|. We replicate this procedure 5 times such that the positive set

is held constant, while the negative set varies. We assess the performance

of kernels via a modified 3-fold cross-validation, where, after partitioning

the dataset P ∪ U in 3 folds, we use one fold for training a model using

SVM, and the two remaining folds for testing. For each test gene gi, the

model returns a score si proportional to the likelihood of being associated

to the disease. Next a decision score qi is computed as the top percentage

value of si among all candidate gene scores. We collect all decision scores
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for every test genes to compute the area under the curve for the receiver

operating characteristic (AUC-ROC). The final performance on the disease

class is obtained by taking the average over 5 trials and 3 folds for each trial.

Model selection: the hyper-parameters of the various methods are set

using a 3-fold on training set as described previously. We try the values for

LEDK and MEDK in {0.01, 0.05, 0.1}, time steps in MDK in {3, 5, 10} and

RLK parameter in {0.01, 0.1, 1}. For CDNK, we set the degree threshold

value D in {10, 15, 20}, the clique size threshold C in {4, 5}, the maximum

radius r∗ in {1, 2}, the maximum distance d∗ in {2, 3, 4}. The number of

links used for the enrichment are chosen in {40%, 50%, 60%, 70%} of the

number of existing links. Finally, the regularization tradeoff in the SVM is

chosen in {10−4, 10−3, 10−2, 10−1, 1, 10, 102, 103, 104}.

4.3.3 Results and discussion

Figures 4.4, 4.5, 4.6 and 4.7 show the average performance on BioGPS,

Biogridphys, HPRD and Omim, respectively. Note that each resource yields

a graph with different characteristic sparsity and number of components.

We compare the average AUC-ROC scores in two scenarios: plain diffusion

kernel (in green color) and diffusion kernel on a modified graph G′ (in red

color) which includes the novel edges identified by a link prediction. Here

we report the aggregated results (a detailed breakdown is available in Tables

B.4 - B.12).

The noteworthy result is how consistent the result is: each link prediction

method improves each diffusion kernel algorithm, and on average using link

prediction yields a 15% to 20% relative error reduction for diffusion-based

kernels. What varies is the amount of improvement, which depends on the

coupling between the four elements: the disease, the information source, the

link prediction method and the diffusion kernel algorithm. In particular,

we obtain that the largest improvement is obtained for disease 3 (Connec-

tive) where we have a maximum improvement of 20% ROC points, while

the minimum improvement is for disease 8 (Immunological) with a minimal

improvement of 0% ROC points. On average, the largest improvement is

of 13% ROC points, while the smallest improvement is on average of 1%

ROC point. Such stable results are of interest since diffusion-based kernels

are currently state-of-the-art for gene-disease prioritization tasks, and hence

a technique that can offer a consistent and relatively large improvement

can have important practical consequences in the understanding of disease

mechanisms.
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Figure 4.4: The AUC-ROC performance using kernels with and without
using link enrichment on BioGPS. Table B.3 shows the ID-Disease list.

4.3.4 Summary

In this section, we have proposed the notion of link enrichment for diffusion-

based graph node kernels, that is, the idea of carrying out the computation

of information diffusion on a graph that contains edges identified by link

prediction approaches. We have discovered a surprisingly robust signal that

indicates that diffusion-based node kernels consistently benefit from the cou-

pling with similarity-based link prediction techniques on large scale datasets

in biological domains.
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Figure 4.5: The AUC-ROC performance using kernels with and without
using link enrichment on Biogridphys. Table B.3 shows the ID-Disease list.

Figure 4.6: The AUC-ROC performance using kernels with and without
using link enrichment on HPRD. Table B.3 shows the ID-Disease list.
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Figure 4.7: The AUC-ROC performance using kernels with and without
using link enrichment on Omim. Table B.3 shows the ID-Disease list.
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Chapter 5

Graph-based Data Integration

Approaches

As discussed in the Chapter 1, there is a high need of proposing graph-based

integration methods which allow to build high performance graph-based pre-

dictive systems. The task of designing such methods is not trivial due to its

requirements. In particular, a good graph-based integration should possess

the following features. First, it needs to effectively exploit the complemen-

tary property of graph combination. Indeed, each graph encodes an aspect

of a considered phenomenon. Therefore, combining graphs together would

bring a more unified view of that phenomenon which is useful for leanring

systems. Second, it is required to be scalable to deal with the constant

increase of data sources resulting from different researches in which each

research views the phenomenon from a certain angle. Third, it should be

efficient, i.e. it is required to execute in a reasonable time and with limited

memory consumption. Last, the performance of a graph-based system using

graph integration shows better performance than it using any single graph.

In this chapter, we propose a general kernel-based framework for

graph-based biological data integration, named Graph-one, that meets the

above requirements. In what follows, we first show the flow of Graph-one,

followed by the description for each step of the flow. We then evaluate

Graph-one by introducing different variations of Graph-one created under

the general framework for disease gene prioritization.
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The method proposed in [104] is based on the content presented in this

chapter.

5.1 Graph-one: a general kernel-based framework

for graph-based data integration

In this section, we describe Graph-one, a kernel-based general framework

for graph-based data integration.

5.1.1 Graph-one flow

Figure 5.1.2 shows the flow of Graph-one which aims at finding an effec-

tive and efficient kernel that represents a set of data sources. Precisely, our

framework consists of four main steps: graph construction, graph layer com-

bination, kernel definition and kernel learning. Given a set of data sources

that encode information of a certain phenomenon, S = {S1, S2, . . . , Sp}. In

the following, we explain each step in detail.

• Graph construction: for each data source Si ∈ S, we build an undi-

rected, unweighted, labeled graph Gi. As a consequence, we obtain a

set of graphs {G1, G2, . . . , Gp}. We consider this graph set as a single

graph G where each graph of the set is one layer, G = {L1, L2, . . . , Ln}.

• Graph layer combination: we allow different graph layers to be com-

bined in specific ways. By doing so, a combined layer would have richer

information w.r.t every single layer used to combine. Therefore, it can

be useful for learning process. For example, sparse graph layers can be

combined to get a denser layer which allows diffusion-based kernels to

perform better. As a consequence of the combining process, we obtain

a graph G′ = {L1, L2, . . . , Lq} such that q ≤ p.

• Kernel definition: we apply suitable graph node kernels to each graph

layer Li ∈ G′ (see Section 2.5.2) with various selected parameter val-

ues. Given a graph node kernel applying a layer, different tuple values

of its parameters define different kernel matrices. Thus, we obtain a

set of kernel matrices in which each matrix encodes a different node

similarity measure in a layer.

• Kernel learning: we employ UEasyMKL (see Section 5.1.2), a scal-

able MKL algorithm that is able to effficiently deal with unbalanced

settings, to get an optimal positive linear combination of predefined
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computed kernels in a data driven way. As a result, we achieve a kernel

which is likely to be better than every base kernel.

The final kernel can be fed into any kernel machine to build a model for

different tasks of interest: classification, regression, etc.

Graph-one meets the requirements for graph-based data integration de-

scribed above. First, it allows to define various kernels from each graph layer

in which each kernel would capture the node similarity in a specific way. The

obtained kernels defined on all graph layers are combined into a single one.

Therefore, the final kernel encodes a unified view of information from all

layers. Second, Graph-one is a scalable and efficient framework due to the

properties of the adopted multiple kernel learning, UEasyMKL. UEasyMKL

can deal with an arbitrary number of kernels using a fixed amount of mem-

ory and a linearly increasing computation time w.r.t the number of defined

kernels. Interestingly, Graph-one is desinged to handle with unbalanced set-

tings, i.e. high difference between number of positive and negative examples.

Moreover, the graph layer combination step in the framework lets users to

decide which graph layers should be combined. The combination decision

are based on propertices of graph layers. The performance of Graph-one is

evaluated in disease gene prioritization context (see Section 5.2).

5.1.2 Scalable unbalanced multiple kernel learning:

UEasyMKL

In Section 2.10, we introduce EasyMKL, a scalable, efficient kernel inte-

gration approach. However, in many applications, we often observe strong

imbalance between the number of positive and negative examples, making

it more difficult to build high performance learning systems. Disease gene

prioritization is a typical example where given a genetic disease, the num-

ber of positive genes known to be associated to the disease is much smaller

than the number of the unknown genes. For this reason, inspired by a pre-

vious work proposed in [71], we propose a novel MKL algorithm, based on

EasyMKL, that we name UEasyMKL. UEasyMKL is not only scalable and

efficient, as it inherits from EasyMKL, but also able to deal with unbalanced

settings.

In order to clearly present our method, we first need to highlight the

different contributions given by positive and unlabelled examples. In many

cases, a portion of unlabeled instances are selected and considered as the

negative ones. We define K+, K− and K+− the sub-matrices of Ks, kernel

concerning the positive set only, pertaining to positive-positive, unlabelled-

unlabelled and positive-unlabelled instance pairs, respectively. Schemati-
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cally, we have:

Ks =

(
K+ K+−

K−+ K−

)
,

where K−+ is the transpose of K+−. In other words, K+ contains the

degree of similarities between positive instances, K− contains the degree

of similarities between unlabelled instances and K+− includes the degree

of similarities between positive-unlabelled example pairs. In the same way,

we define γ+ and γ− as the probability vectors associated to positive and

unlabelled examples, respectively.

Under this change of variables, we reformulate eq. 2.26 as:

min
γ∈Γ

γ>+K
+γ+ + 2 γ>+K

+−γ− + γ>−K
−γ− + λ+γ

>
+γ+ + λ−γ

>
−γ− .

In this new formulation, the original EasyMKL problem is obtained by set-

ting λ+ = λ− = λ
1−λ . However, due to the unbalanced PU nature of the

problem, i.e. the number of positive instances is much smaller than the

number of unlabeled ones, we are interested in using two different regular-

izationss. In our case, we decide to fix a priori the regularization parameter

λ− = +∞, corresponding to fixing λ = 1 over unlabelled examples only.

Then, the solution of part of the objective function is defined by the uni-

form distribution γ− = ( 1
n ,

1
n , . . .

1
n) ≡ u, where n is the number of unlabelled

examples.

We inject this analytic solution of part of the problem in our objective

function as

min
γ∈Γ+

γ>+K
+γ+ − 2 γ>+K

+−u + u>K−u + λ+γ
>
+γ+ + λ−u

>u,

where Γ+ = {γ ∈ Rm+ |
∑

i:yi=1 γi = 1, γj = 1/n ∀j : yj = −1} is the probabil-

ity distribution domain where the distributions over the unlabelled examples

correspond to the uniform distribution. It is trivial that u>K−u and λ−u
>u

are independent from the γ+ variable. Then, they can be removed from the

objective function obtaining

min
γ∈Γ+

γ>+K
+γ+ − 2 γ>+K

+−u+ λ+γ
>
+γ+. (5.1)

In this expression, we only need to consider the entries of the kernel Ks

concerning the positive set, avoiding all the entries with indices in the un-

labelled set. The complexity becomes quadratic in the number of positive

examples m, which is always much smaller than the number of examples
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to prioritize. Moreover, this algorithm still depends linearly on the number

of kernels R and the overall time complexity is then O(m2 · R). In this

way, we greatly simplify the optimization problem, while being able to take

into account the diverse amount of noise present in positive and unlabelled

example sets.

Like in Section 2.10, after solving the problem of eq. 5.1 we use eq.

2.27 to compute the optimal kernel weights. Next, we solve again the Scuba

optimization problem to get the final optimal probability distribution γ∗.

The likelihood to be positive of every test example is given by the vector of

scores s defined as

s = K∗Y γ∗, (5.2)

where K∗ is the final kernel matrix, computed by K∗ =
∑R

r η
∗
rKr. We apply

the formula 5.3 to compute scores for the test examples as:

s = Kt∗Y γ∗ , (5.3)

where Kt∗ is the final test kernel matrix, obtained by taking the weighted

sum over all test kernel matrices:

Kt∗ =
∑

r η
∗
rK

t
r,

Kt∗,Kt
rs are matrices of size (p, q) with p, q are the number of test examples

and training examples, respectively. More particularly, a score for si of the

test example gi is computed as:

si =
∑

j yjγ
∗
jK

t∗
ij .

In words, si is the weighted sum over the weighted similarities between the

test example gi and all examples in the training set gjs. Once we get the

scores for test examples, candidate examples are then prioritized based on

the score values.
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Figure 5.1: Graph-one general framework flow for graph-based data integration where (1) Graph construction, (2) Layer
combination , (3) Kernel definition, (4) Kernel learning.
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5.2 Graph-one for disease gene prioritization

In this section, we evaluate the performance of Graph-one through the dis-

ease gene prioritization, one of the main tasks in Biomedicine as discussed

in Section 2.6. Since Graph-one is a general framework which allows users

to define their preference in some steps. Different choices lead to differ-

ent variations of Graph-one. Here, we propose three variations for disease

gene prioritization: Scuba, DIGI and PLC. These variations are evaluated

and compared with various methods by using two separate experimental

settings: Cross-validation and Unbiased evaluation. By performing these

experiments, we would like to have answers for following questions.

• Does Graph-one show better performance comparing to other methods

for disease gene prioritization?

• Does Graph-one with graph integration show better results in com-

parison to it with any single graph?

• Is Graph-one stable in term of performance between its variations?

5.2.1 Graph-one variations for disease gene prioritization

We propose three variations created under Graph-one general kernel-based

framework.

Graph-one: Scuba

We introduce Scuba as a variation of Graph-one. Consider a n-layer graph

G = G1, G2, . . . , Gn where Gi ∈ G is derived from the source Si ∈ S. In

this method, kernels are separately defined on every single graph layer, i.e.

different kernels with different parameter values are applied on each Gi ∈ G.

As a consequence, we get a set of kernel matrices Ki = {Ki1,Ki2, . . . ,KiH}
for each layer Gi. By collecting all kernels from all Ki, we achieve a final

kernel matrix set K =
⋃n
i∈I Ki comprising L ·H matrices. Next, all matrices

in K and the training are fed into UEasyMKL to obtain the final kernel K.

In this way, we directly use UEasyMKL to perform an automatic selection

of optimal kernel parameters. As the method is an instance of Graph-one,

it inherits the strength of the general graph integration framework.

We apply Scuba for experiments in Section 5.2.2 with three diffusion-

based kernels. Each kernel is used to define three kernel matrices from each

graph layer. The value for λ+ is chosen by employing k-fold cross valida-

tion on the training set, using the the grid of values {0, 0.1, 0.2, . . . , 1}.
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Kernel parameter values are set as follows: {0.01, 0.04, 0.07} for MEDK,

as suggested in [26] and used in [24], {2, 4, 6} for MDK and {1, 10, 100}
for RLK, as suggested in [35]. Besides, we use Scuba in two cases: using

plain diffusion-based kernels (Scuba1), using diffusion-based kernels associ-

ated with link enrichment (Scuba2).

Figure 5.2: Disjunctive Interconnection Graph Integration Illustration.

Graph-one: disjuctive interconnection graph integration (DIGI)

We consider a graph including n layers G = {G1, G2, . . . , Gn} where Gi ∈ G
is derived from Si ∈ S. In this method, we first process and combine all

graph layers in a specific way. We then apply CDNK, which is defined

in Chapter 3, with different parameter value tuples on the obtained graph

to get a set of kernel matrices. These kernel matrices are then fed into

UEasyMKL to get a final kernel matrix. More precisely, the method consists

of the following steps:

• Graph decomposition: for each graph layer Gi ∈ G, we apply the

network decomposition procedure proposed in Section 3.2.1 to have a

graph composed of linked sparse connected components.

• Graph combination: consider a layer tuple Gi, Gj (Gi, Gj ∈ G) and

two nodes u ∈ Gi, v ∈ Gj such that u and v are both represent for

a same entity, we connect u and v by a “disjuctive” link. As the

consequence, we achieve a graph G
′

whose nodes represeting the same

entities are linked by disjuctive links. Figure 5.2 is a visualization for

this graph integration idea.
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• Similarity definition: we employ CDNK to define similarity for the

similarity for any couple of genes. The similarity between two genes gi
and gj is the summation of similarity of between their corresponding

nodes on all layers.

For experiments in Section 5.2.2, we use values for parameters of graph

decomposition procedure and CDNK the same as experiments in Section

3.4

Graph-one: partial layer combination (PLC)

Here we propose another variation of Graph-one, named PLC. Given a

graph with n layers G = {G1, G2, . . . , Gn} in which Gi ∈ G is derived

from source Si ∈ S. We first partition G into a m subsets of graph layers:

C = {C1, C2, . . . , Cm} such that Ci ⊂ G and Ci ∩ Cj = ∅. We then apply the

same graph combination procedure in DIGI to each subset Ci ∈ C. As a

consequence, we get a new graph G′ = {L1, L2, . . . , Lm} in which Li is the

combined graph from Ci.
For each Li derived from Ci such that | Ci |> 1, we apply CDNK to define

kernel matrices. Meanwhile, for each Li derived from Ci such that | Ci |= 1,

we employ diffusion-based kernels to defined kernel matrices. All defined

kernel matrices obtained from all graph layers are fed into UEasyMKL to

get a final kernel.

In Cross-validation setting presented in the next section, we partition

the graph set into two subsets: { BioGPS, HPRD } and { Pathways }, since

BioGPS, HPRD layers are sparser comparing to Pathways layer.

5.2.2 Experiments and results

Cross-validation

As a first evaluation of Graph-one, we followed the experimental protocol

used by Chen et al to test predictive performance of other prioritization

methods [23]. In this setting, we employed three data sets: BioGPS, HPRD

and Pathways (see Section 2.7), which we borrowed from the authors of

the work. To perform the experiments, we employed known gene-disease

associations from OMIM, grouped into 20 classes on the basis of disease

relatedness by Goh et al [40]. Among those classes we selected the 12 with

at least 30 confirmed genes. We then built a training set consisting of a

positive set P and an unlabelled set U for each of them. P contains all its

disease gene members. U is constructed by randomly picking genes from

known disease genes such that |U| = 1
2 |P|. The unlabelled genes relate to at
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least one disease class, but do not relate to the current class. We chose the

genes in U from the other disease genes because we assume that they were

less likely to be associated to the considered class. In fact, disease genes are

generally more studied and a potential association has more chances to have

already been identified.

After that, leave-one-out cross validation was used to evaluate the per-

formance of the algorithm. Iteratively, every gene in the training set was

selected to be the test gene and the remaining genes in P and U were used

to train the model. Once the model was trained, a score list for the test gene

and all genes associated to no disease was computed. Then, we computed

a decision score for each test gene representing the percentage of candidate

genes ranked lower than it. We collected all decision scores for every gene

in all disease classes to form a global decision score list. The performance of

Scuba was measured by calculating the area under the curve (AUC) in the

receiver-operating-characteristic plot obtained from the decision score list.

The AUC expresses the probability that a randomly chosen disease gene is

ranked above a randomly picked non-disease gene for any disease class.

In this setting, we compare not only the performance between Graph-

one variations, but also the performance between Graph-one with other

methods for disease gene prioritization, including F3C3 [23], MRF [24], DIR

[26], GeneWanderer [50] and Avg, our implementation that takes an average

of kernels defined on graph layers as the final representation for datasets.

Figure 5.3 shows the performance of Graph-one variations (Scuba1,

Scuba2, PLC and DIGI) along with other methods, while Figure 5.4 presents

the performance of Scuba in two cases: using single graph and graph integra-

tion. It can be seen from Table 5.3 that all variations of Graph-one perform

significantly better than the other methods (also see Table C.1), getting an

AUC from 3.8% and 4.9% greater than F3PC and Avg, respectively. Among

Graph-one variations, DIGI and Scuba2 show slightly better than Scuba1

and PLC. This first proves again the benifit of stacking link enrichment with

diffusion-based kernels. Second, this illustrates the stability of performances

between Graph-one variations. Besides, the effectiveness of Graph-one for

data integration is shown in Table 5.4. Graph-one with data integration

presents higher performance in most of diseases (11 out of 12) w.r.t it with

any single data source.

Unbiased evaluation

Although the previous evaluation is useful to compare Graph-one with other

methods, predictive performance in cross-validation experiments may be
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inflated compared to real applications. Indeed, the retrieval of known disease

genes can be facilitated by various means. One mean is the crosstalk between

data repositories: for example, KEGG [69] draws its information also from

medical literature. Moreover, often the discovery of the link between a gene

and a disease coincides with the discovery of a functional annotation or of

a molecular interaction. In practice, instead, researchers are interested in

novel associations, which in most cases are harder to find due to a lack of

information around them.

To achieve a thorough evaluation of Graph-one, we test it in a more

realistic setting, following the work of Börnigen et al [17]. In this study,

eight gene prioritization web tools were benchmarked as follows. Newly

discovered gene-disease associations were collected over a timespan of six

months, gathering 42 test genes associated to a range of disorders. As

soon as a new association was discovered, each web tool was queried with a

disorder-specific set of positive genes P to prioritize a set of candidates U
containing the corresponding test gene (or to prioritize the whole genome

where possible). In other words, the test gene was treated as unlabelled to

simulate the re-discovery of its association with the disease. Rank positions

of the 42 test genes were ultimately used to assess the ability of the tools

to successfully prioritize disease genes. The idea behind this procedure is

to anticipate the integration of the associations in the data sources and so

avoid biased predictions.

In order to test Graph-one in this setting, we backdate our data to a

time prior to May 15, 2010 by employing String v8.2 data [46] and Omim

(see Section 2.7). After that, we recovere positive sets and test genes from

the original publication and we followe its experimental protocol as follows

[17]. We performe prioritizations for each test gene in two distinct cases:

genome-wide and candidate set-based prioritizations. In any genome-wide

prioritization all genes in the String dataset - except those in P - belong to

U and were prioritized. In any candidate set-based prioritization, the set of

candidates U was constructed by considering all genes with Ensembl [1] gene

identifier within the chromosomal regions around the test gene, in order to

get on average 100 candidates. In both cases, we normalize the ranking

positions over the total number of considered genes in order to get median,

mean and standard deviation of the normalize ranks for test genes. We

also compute the true positive rate (TPR) relatively to some representative

thresholds (5%, 10% and 30% of the ranking) and the AUC obtained by

averaging over the 42 prioritizations.

Along with Graph-one, we evaluated in this setting also MKL1class [102]

and ProDiGe [65], two state-of-the-art kernel based gene prioritization meth-
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ods. In Table 5.1, it is possible to see performances for all three methods.

The significance of rank median differences between Scuba and competing

methods was assessed by Wilcoxon signed rank tests, one for each compari-

son. At a significance threshold of 0.05, Scuba achieves significantly higher

performances in genome-wide tasks compared to both baselines. In the can-

didate set-based setting, it performs significantly better than ProDiGe and

better, although not significantly, than MKL1class. These differences can be

visually appreciated in Figure 5.5, where we compare the rank distributions

of test genes obtained by the three methods. Scuba and MKL1class present

moderate rank differences, particularly in the central region of the ranks.

On the other hand, differences between Scuba and ProDiGe are smaller

(Pearson r = 0.98 in both cases) and almost all in favour of Scuba.

In Table 5.2 we show results for Graph-one compared to the results

obtained in the work of Börnigen et al, pertaining to eight prioritization

systems [17]. In genome-wide predictions, Graph-one (Scuba1 and DIGI)

dominates over the other tools. On predictions over smaller candidate sets,

DIGI shows the best results, meanwhile Scuba1 is still competitive although

the results achieved by GeneDistiller [75], Endeavour [8] and ToppGene

[25] are relatively good. It is important to underline that in this case con-

sidered tools rely on different data sources, so we are comparing different

prioritization systems rather different algorithms. Furthermore, tools are in

some cases unable to provide an answer to a given task, depending on the

underlying data sources (for more details see the original work [17]). We

report the fraction of prioritizations on which tools are actually evaluated

as response rate. This table has the purpose of showing the potentiality of

Graph-one relatively to what is easily accessible by non-bioinformaticians.

However, since we used the String data for instance Graph-one:Scuba1 is

directly comparable with Pinta [17, 68].

Next, we expanded this validation by employing gene-disease annotations

derived from the Human Phenotype Ontology (HPO) [51]. This resource

gathers information from several databases and makes available its monthly

updates, permitting to trace the annotations history. We downloaded the

HPO build 29 - dating March 2013 - and build 117 of February 2017. We

compared the two annotations corresponding to these versions of HPO and

extracted the gene-disease associations that were added in this time gap. We

concentrated on the multifactorial diseases covered in the previous analysis,

that could possibly have some previously undiscovered associations. We thus

analyzed how the obtained genes are ranked in genome-wide prioritizations

of the previous analysis, applying the same performance measures as before.
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The outcome is an analogous evaluation, but this time target genes are those

extracted from HPO.

In Table 5.3 results for Scuba1, MKL1class and ProDiGe are shown.

We can observe a slightly different trend compared to previous results, with

Scuba and ProDiGe having very close performance and MKL1class being

significantly worse than Scuba. As a confirmation, in Figure 5.5 we can

see that there is no clear difference between test genes rank distributions

for Scuba and ProDiGe. Instead, MKL1class ranks several test genes neatly

lower compared to Scuba, with the associated Pearson correlation coefficient

dropping to r = 0.85.

5.2.3 Discussion

Gene prioritization is progressively becoming essential in molecular biology

studies. In fact, we are assisting to a continuous proliferation of a variety of

omic data brought by technological advances. In the near future it is then

likely that more heterogeneous knowledge will have to be combined. More-

over, the classes of biological agents to be prioritized are going to enlarge.

For instance, we are only beginning to understand the complex regulation

machinery involving non-coding RNA and epigenetic agents. It is estimated

that around 90.000 human long non coding genes exist, whose functional

implications are progressively emerging [105]. Facing this challenge, the

development of novel methods is still strongly needed in order to enhance

predictive power and efficiency.

Compared to the considered benchmark kernel methods - MKL1class

and ProDiGe - Graph-one has some important advantages. ProDiGe is one

of the first proposed kernel-based PU learning method for gene prioritization

[65]. It implements a PU learning strategy based on a biased SVM, which

over-weights positive examples during training. In order to reach scalability

to large datasets, it leverages a bagging procedure. Like ProDiGe, Scuba

implements a learning strategy based on a binary classification set up, but

from a different perspective. In a PU problem, the information on positive

labels is assumed secure, while the information on negative labels is not. In

terms of margin optimization, this translates in unbalanced entropy on the

probability distributions associated to the two sets of training examples. It

is then required to regularize more on the unlabelled class - having higher

entropy - and in the limit of maximum uncertainty we get the uniform

distribution.

MKL1class implements another effective approach for data integration,

namely single class learning. This means that the model is obtained solely
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based on the distribution of known disease genes, disregarding unlabelled

ones. Graph-one has enhanced scalability compared to MKL1class, as it in-

volves the optimization of the 1-norm of the margin vector from the different

kernels. In contrast, MKL1class optimizes its 2-norm, which is more compu-

tationally demanding. Importantly, another distinctive feature of Graph-one

is a time complexity dependent on the number of positive examples and not

on the number of total examples. As a consequence, Scuba can exploit the

information on the whole data distribution and at the same time scale to

large datasets without the need of sub-sampling the examples. This may be

of great advantage as typically disease genes are orders of magnitude less

numerous than the candidates.

Results from two different evaluation settings show that our proposed

method Graph-one outperforms many existing methods, particularly in

genome-wide analyses. Compared to the two considered existing kernel-

based methods, Graph-one performances (considering AUC) are always

higher, and often significantly higher. Moreover, Graph-one has two main

levels of scalability that make it particularly suitable for gene prioritization

Altogether, our results show that Graph-one is a valuable framework to

achieve efficient prioritizations, especially in large-scale investigations.
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Figure 5.3: The performance of different techniques in the experimental
setting of Chen et al [23] expressed in terms of AUC. Except for our Graph-
one’s variations, and the average kernels (Avg), these results were taken
from that work.
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Figure 5.4: The performance of Graph-one (Scuba1): using single layer and combine all layers.
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Table 5.1: Performances of Graph-one, MKL1class and ProDiGe in the unbiased setting of Börnigen et al [17]. Values refer
to predictions on all the 42 gene-disease associations. Rank difference p-values were obtained using Wilcoxon signed rank
tests comparing separately Scuba1/MKL1class and Scuba1/ProDiGe ranks differences. Asterisks indicate significance of the
tests at a threshold of 0.05.

Tool/Method Rank Rank TPR in top TPR in top TPR in top AUC Rank difference
median average 5% (%) 10% (%) 30% (%) p-value

Genome-wide prioritization methods

Scuba1 10.55 20.48±23.53 33.3 47.6 78.6 0.80 -
MKL1class [102] 13.30 23.42±23.23 21.4 47.6 69.0 0.77 2.5 ·10−2 *

ProDiGe [65] 11.73 24.45±27.33 31.0 45.2 71.4 0.76 3.0 ·10−7 *

Candidate set-based prioritization methods

Scuba1 12.95 23.32±25.46 28.6 45.2 73.8 0.78 -
MKL1class [102] 15.07 25.63±24.73 23.8 40.5 61.9 0.76 9.7 ·10−2

ProDiGe [65] 14.41 26.39±29.09 26.2 40.5 71.4 0.75 2.7 ·10−3 *
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Table 5.2: Performances of Graph-one variations and of some gene prioritization web tools in the unbiased setting of Börnigen
et al [17]. Response rate is the percentage of gene-disease associations considered by each tool. Values for Suspects were
computed on the first 27 associations only (highlighted by a).

Tool/Method Response Rank Rank TPR in top TPR in top TPR in top AUC
rate (%) median average 5(%) 10(%) 30(%)

Genome-wide prioritization methods

Scuba1 100 10.55 20.48±23.53 33.3 47.6 78.6 0.80
DIGI 100 4.73 12.72±18.20 52.4 59.5 85.7 0.87

Candid [44] 100 18.10 27.35±24.62 21.4 33.3 64.3 0.73
Endeavour [8] 100 15.49 21.47±22.37 28.6 38.1 71.4 0.79

Pinta [68] 100 19.03 23.52±23.58 26.2 31.0 71.4 0.77

Candidate set-based prioritization methods

Scuba1 100 12.95 23.32±25.46 28.6 45.2 73.8 0.78
DIGI 100 6.10 13.70±17.98 50.0 59.5 88.1 0.86

Suspects [7] 88.9a 12.77a 24.64±26.42a 33.3a 33.3a 63.0a 0.76a

ToppGene [25] 97.6 16.80 34.53±35.31 35.7 42.9 52.4 0.66
GeneWanderer-RW [50] 88.1 22.10 29.55±26.28 16.7 26.2 61.9 0.71

Posmed-KS [101] 47.6 31.44 42.07±30.98 4.7 7.1 23.8 0.58
GeneDistiller [75] 97.6 11.11 15.37±13.77 26.2 47.6 78.6 0.85

Endeavour [8] 100 11.16 18.41±21.39 26.2 42.9 90.5 0.82
Pinta [68] 100 18.87 25.23±24.72 28.6 31.0 71.4 0.75
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Table 5.3: Performances of Graph-one, MKL1class and ProDiGe in the expanded unbiased setting involving seven multi-
factorial diseases. Values refer to predictions on 48 gene-disease associations. Rank difference p-values were obtained using
Wilcoxon signed rank tests comparing separately Scuba/MKL1class and Scuba/ProDiGe ranks differences. Asterisks indicate
significance of the tests at a threshold of 0.05.

Method Rank Rank TPR in top TPR in top TPR in top TPR in top AUC Rank difference
median average 1% (%) 5% (%) 10% (%) 30% (%) p-value

Genome-wide prioritizations

Scuba1 8.13 17.45±22.33 10.4 41.7 58.3 79.2 0.83 -
MKL1class [102] 14.28 25.79±26.96 2.1 27.1 45.8 66.7 0.74 1.2 ·10−5 *

ProDiGe [65] 7.89 18.40±23.77 10.4 43.8 54.2 79.2 0.82 9.5 ·10−2
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5.3 Summary

In this chapter, we propose a general kernel-based framework for large-scale

graph-based integration, named Graph-one. We theoretically and practically

show that Graph-one meets the necessary requirements for graph-based inte-

gration methods: effective exploitating the graph integration complementary

property, scalability, efficiency. Besides, it is able to handle with unbalance

settings. Interestingly, Graph-one allows to create different variations under

its general framework.

We evaluate Graph-one performance and compare it with various meth-

ods through disease gene prioritization context by using introducing its four

different variations. The results in many cases illustrate that Graph-one

shows state-of-the-art performance in disease gene prioritization and it is

potential to apply for graph-based integration systems.
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Figure 5.5: Comparison of normalized ranks predicted by Scuba and com-
peting kernel methods. Normalized test genes rank distributions predicted
by Scuba, MKL1class and ProDiGe for test genes in (a) genome-wide prior-
itizations in the unbiased evaluation of Table 5.1 - (b) candidate set-based
prioritizations in the unbiased evaluation of the Table 5.1 - (c) genome-wide
prioritizations in the expanded unbiased evaluation of the Table 5.3. In all
cases, each point represents a test gene and lower values on the axes indicate
better predictions. Genes lying on a diagonal have the same rank according
to both methods considered on a plot. The further a gene lies above (below)
a diagonal and the better it was ranked by Scuba (MKL1class/ProDiGe)
compared to MKL1class/ProDiGe (Scuba). In each plot we show the Pear-
son correlation coefficient r between the test genes rank distributions and
its associated p-value.
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Chapter 6

Conclusion and Future Work

The abundance of biological data have been made available thanks to the

rapid technological advances. In order to effectively extract useful knowledge

from such huge data, automated systems are needed to support biologists in

forming and assessing hypotheses. Biological data are distributed in differ-

ent sources. Each source encrypts a piece of information related to a certain

biological phenomenon and normally contains interactions between biolog-

ical entities that can be naturally represented by graphs. Besides, it has

been well known that a comprehensive understanding of a biological phe-

nomenon can only come from a joint analysis of all data sources associated

with that phenomenon. For these reasons, a high number of graph-based

data integration learning systems have been proposed and applied to solve

different tasks. Despite a high number of proposed methods for graph-based

integration, the performance is still far from actual expectation. This is due

to the challenges that graph-based integration methods need to effectively

solve to have high performance: node similarity measure definition, graph

sparsity, scalability, efficiency and complemetary propery exploitation. In

this thesis, we investigated solutions to overcome those challenges with the

target of having high performance graph-based integration learning systems.

6.1 Graph node measure definition

Graph node measure definition is one of the main factors which is respon-

sible for the performance of any graph-based integration learning system.

Node similarities are normally measured by graph node kernels. However,
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most graph node kernels are based on diffusion phenomenon. They do not

often show high discriminative capacity and also do not allow to process with

auxiliary information available on graph nodes. In Chapter 3, we propose a

high discriminative convolutional graph node kernel, CDNK. We start from

NSPDK, a kernel for measuring graph similarities, and adapt it to measure

graph node similarities. CDNK takes an undirected, labeled graph for the in-

put. First, it transforms the graph into a collection of linked connected com-

ponents in which conjunctive and disjunctive links are introduced. Nodes

linked by conjunctive links are jointly used to define the notion of context,

while nodes linked by disjunctive edges are employed to define features based

only on the pairwise co-occurrence of nodes at the endpoints. Second, the

similarity between any node couple is measured by adopting NSPDK on two

neighborhood subgraphs rooted as each node, extracted from the obtained

graph. Last, CDNK integrates the “side” information available in form of

real valued vectors by updating the computation of CDNK considering the

discrete convolution of the discrete information with the real valued vectors.

The empirical experiments on several biological networks on the context of

disease gene prioritization show that our kernel outperforms the compared

diffusion-based graph node kernels.

6.2 Graph sparsity

Graph-based integration learning systems take a set of graphs as the input.

Despite the fact that huge amount of data have been made available, there

exist a high number of graphs which are sparse, i.e. the number of links on

a graph is much less than the possible links. This creates a challenge for

graph-based learning systems, since the available information is not efficient

to learn. A reasonable solution is to recover missing links and add into

graphs. This task is known as link enrichment. However, the performance

of link enrichment methods strictly depend on the employed link prediction

methods which intend to predict the probability of being missing links for

each unobserved one. However, most existing link prediction methods do

not show high discriminative power since they implicitly represent the link

prediction problem and the inference used to tackle it as a disjunction over

the edges. In the Chapter 4, we first propose an effective link prediction

method and we then show the way to boost the performance of diffusion-

based kernels when dealing with sparse graphs.

We propose a link prediction method, named joint neighborhood sub-

graphs link prediction (JNSL). In this method, we first use a joint neigh-

borhood subgraphs rooted at each node of a node couple as to represent
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the “link” between them. We then cast the problem of link prediction

as a standard classification in the domain of graphs in which NSPDK is

adopted for example similarity measure. Experiments on various networks

illustrate JNSL outperforms many state-of-the-art topology-based link pre-

diction methods.

Diffusion-based node kernels are popularly used for dense graphs. In

case of sparse graphs, they relatively show low performance. We introduce

an approach to boost the performance diffusion-based kernels by coupling

link enrichment with diffusion kernels. More precisely, we perform link en-

richment on the input graphs applying kernels. This is due to proper link

enrichment helps to enrich the information of the graph, so it allows kernels

to capture more information. We evaluate the effectiveness of this approach

by comparing plain diffusion kernels and diffusion kernels with link enrich-

ment. We carry out experiments on four different graphs in the context of

disease gene prioritization on four graphs. The results show that associating

diffusion kernels with link enrichment improve their average peroformance

in all cases.

6.3 Graph-one: an efficient, scablable framework

for graph-based integration

Graph-based integration methods can be considered as the backbone for the

graph integration learning systems. Proposing such methods are challenging

since they need to meet the above requirements. In Chapter 5, we propose

a general kernel-based framework for graph-based integration, Graph-one.

Given a set of data sources, it first constructs a graph whose each layer is

derived from a data source. It then allows different graph layers to combine

by a user defined combination function, so the obtained graph has less than

or equal to the number of graph layers compared to the previous one. Next,

various graph node kernels are applied on every layer to achieve a set of

kernel matrices. These kernel matices are fed into an efficient, scalable MKL,

UEasyMKL, to get a final kernel matrix. Finally, the final kernel matrix is

used as the input for a kernel machine to build models for prediction.

Graph-one is a framework that meets all the requirements for graph

integration. First, link enrichment can be applied on sparse graph layers to

enrich the performance of kernels. Second, it is efficient and scalable because

of the adoption of UEasyMKL that allow to deal with high number of kernels

in a constant memory consumption and linear computation time w.r.t the

number of defined kernels. Next, it effectively exploits the complementary
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property of data integration since various kernels are defined on each graph

layer and these kernels are combined in a data driven way to get a final

representation. Besides, using Graph-one is able to deal with unbalanced

setting as shown in Chapter 5.

We practically evaluate the performance of Graph-one by introducing

different variations created under the general framework and applying them

to disease gene prioritization: Scuba, PLC and DIGI. The exmperimental re-

sults show that Graph-one variations outperform many compared methods,

including some kernel-based data integration ones.

6.4 Future work

For future work, we keep investigating on graph-based integration because

of its important role in the development of graph-based learning systems.

In particular, we plan to focus on the following topics.

6.4.1 Graph side information

We often observe the availability of side information associated to nodes

and/or links of graphs. These side information provide a complement for

graph topological information. Therefore, methods defined on graphs are

supposed to effectively not only exploit topological information, but also side

information. In this thesis, our two proposed methods, JNSL and CDNK,

do not fully exploit all information sources. Therefore, we will investigate to

propose methods which are able to wisely combine all information available

on graphs so that the performance of JNSL and CDNK will be improved.

6.4.2 Graph combination

Graph-one general framework allows graph layers to be combined in the user

defined ways. Although we have proposed a graph combination method in

DIGI, it is not clear in general that which layers should be combined together

and how to combine them. We also put this problem in our future work.

We aim at introducing suggestions for users to decide not only which layers

should be combined, but by which ways to combine.

6.4.3 Applications

We theoretically show the strength of Graph-one for graph integration. How-

ever, we only practically show its performance on the disease gene prioriti-

zation context. Therefore, we plan to apply Graph-one in further contexts
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with two purposes. First, we would like to check the stability. Second, we

investigate solutions to overcome problems arisen when applying to other

contexts so that we can improve the strength of Graph-one in general.
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[11] José Ignacio Alvarez-Hamelin, Luca Dall’Asta, Alain Barrat, and

Alessandro Vespignani. k-core decomposition: A tool for the visu-

alization of large scale networks. arXiv preprint cs/0504107, 2005.
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[51] Sebastian Köhler, Nicole A Vasilevsky, Mark Engelstad, Erin Foster,
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Chapter A

Conjunctive Disjunctive Graph

Node Kernel

Table A.1: Indices and gene number of genetic disease classes.

Index Disease Number

0 Connective 35

1 Cardiovascular 75

2 Dermatological 54

3 Developmental 37

4 Endocrine 62

5 Hematological 106

6 Immunological 94

7 Metabolic 159

8 Muscular 55

9 Ophthalmological 61

10 Renal 42

11 Skeletal 35
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Table A.2: Predictive performance on 11 gene-disease associations in percentage using network induced by the BioGPS. Best
results in bold. We report the AUC ROC and the rank for each kernel method. CDNK11: ontology for discrete labels,
CDNK12: ontology for both discrete and vector labels, CDNK21: uniform discrete labels and CDNK22: uniform discrete
labels and ontology for real vector labels.

BioGPS

Disease LEDK MDK MEDK RLK CDNK11 CDNK12 CDNK21 CDNK22

1 51.9/8 57.4/7 59.0/6 59.2/5 65.1/4 69.5/3 72.0/2 72.3/1

2 81.7/5 78.5/6 75.2/7 75.0/8 88.3/1 88.8/1 83.2/4 84.8/3

3 64.3/6 59.6/8 71.6/3 71.8/2 65.5/5 72.5/1 61.4/7 67.9/4

4 65.3/7 58.2/8 67.8/6 67.8/5 71.9/4 78.7/1 73.8/3 76.7/2

5 64.0/8 64.1/7 66.5/5 66.2/6 75.9/4 76.2/3 77.8/2 78.2/1

6 74.6/5 70.2/8 71.0/7 71.2/6 79.3/3 83.7/1 77.2/4 80.0/2

7 73.0/5 66.7/7 75.4/3 75.6/2 68.8/6 73.9/4 66.1/8 77.4/1

8 74.4/8 76.8/3 76.2/5 76.4/4 74.7/7 77.7/1 76.1/6 76.9/2

9 71.5/2 65.6/8 67.7/6 69.9/3 66.8/7 71.7/1 67.9/5 68.1/4

10 54.0/6 50.3/8 56.1/5 51.1/7 77.6/4 82.7/1 77.7/3 78.3/2

11 58.2/7 51.3/8 59.3/6 59.3/5 71.8/4 80.2/1 74.8/2 74.0/3

AUC 66.6 63.5 67.8 67.6 73.2 77.8 73.5 75.9

Rank 6.09 7.09 5.36 4.82 4.45 1.64 4.18 2.27
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Table A.3: Predictive performance on 11 gene-disease associations in percentage using network induced by the Pathways.
Best results in bold. We report the AUC ROC and the rank for each kernel method. CDNK11: ontology for discrete labels,
CDNK12: ontology for both discrete and vector labels, CDNK21: uniform discrete labels and CDNK22: uniform discrete
labels and ontology for real vector labels.

Pathways

Disease LEDK MDK MEDK RLK CDNK11 CDNK12 CDNK21 CDNK22

1 74.7/8 76.4/7 78.7/6 78.8/5 80.2/4 82.4/2 82.8/1 82.3/3

2 55.1/8 64.9/7 76.6/6 76.6/5 81.1/2 80.3/4 80.1/3 81.9/1

3 55.0/8 62.7/7 64.1/5 65.6/4 67.1/3 63.6/6 69.7/2 71.4/1

4 54.3/8 65.2/6 73.7/1 73.7/2 66.1/5 68.1/3 64.0/7 67.3/4

5 52.9/8 55.7/7 62.7/5 62.7/6 68.3/2 69.6/1 66.2/4 68.1/3

6 83.4/8 92.7/7 96.5/2 96.5/1 93.0/6 94.1/5 94.5/4 94.9/3

7 84.5/7 88.3/8 89.4/2 89.5/1 88.5/6 88.5/5 89.0/3 88.7/4

8 53.7/8 65.6/7 72.0/6 72.3/5 72.5/4 72.5/3 74.9/2 75.3/1

9 52.5/8 64.9/5 64.2/7 64.2/6 81.3/1 81.0/3 80.1/2 79.8/4

10 68.8/6 65.4/8 74.4/5 74.4/4 66.9/7 76.8/2 75.2/3 78.7/1

11 53.7/8 69.2/7 74.6/5 74.1/6 77.0/3 78.7/1 75.1/4 77.3/2

AUC 62.6 70.1 75.2 75.3 76.5 77.8 77.4 78.7

Rank 7.73 6.82 4.55 4.09 3.91 2.27 3.18 2.45
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Chapter B

Solutions for Graph Sparsity

B.1 Joint neighborhood subgraphs link prediction

Table B.1: The AUC-ROC performance of link prediction methods on 3
datasets. In bold the highest score.

Methods

Datasets LEDK(%) MEDK(%) MDK(%) RLK(%) JNSL(%)

BioGridgen 53.6±0.5 52.0±0.6 56.7±0.4 59.7±1.3 69.9±1.5

Omim 66.2±0.8 57.1±0.7 68.1±1.5 68.1±0.9 72.5±1.4

HPRD 58.0±1.2 58.0±1.2 64.9±1.2 63.5±0.7 78.6±1.8
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Table B.2: The AUC-ROC performance of link prediction methods on 6 datasets. Legend: AA: Adamic-Adar, PA [12]
preferential Attachment, SHP: Shortest Path, Sup-Top [62]: Linear regression running on unsupervised scores, SVD [62]:
Singular value decomposition, Fact+Scores [62]: Factorization with unsupervised scores.

Datasets

Methods Protein(%) Metabolic(%) Nips(%) Condmat(%) Conflict(%) PowerGrid(%)

AA 56.4±0.5 52.4±0.5 51.2±0.2 56.7±1.4 50.7±0.8 58.9±0.3

PA 75.0±0.3 52.4±0.5 54.3±0.5 71.6±2.6 54.6±2.4 44.2±01.0

SHP 72.6±0.5 62.6±0.4 51.7±0.3 67.3±1.8 51.2±1.4 65.9±1.5

Katz 72.7±0.5 60.8±0.7 51.7±0.3 67.3±1.7 51.2±1.4 65.5±1.6

Sup-Top 75.4±0.3 62.8±0.1 54.2±0.7 72.0±2.0 69.5±7.6 70.8±6.2

SVD 63.5±0.3 53.8±1.7 51.2±3.1 62.9±5.1 54.1±9.4 69.1±2.6

Fact+Scores 79.3±0.5 69.6±0.2 61.3±1.9 81.2±2.0 68.9±4.2 75.1±2.0

JNSL 80.1±0.8 72.5±0.7 62.1±0.8 88.6±2.3 72.0±0.9 75.6±0.7
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B.2 Link enrichment for diffusion-based graph

node kernels

In this section, we present in detail the results obtained from the experiment

described in 4.3.2. We report the performance on 14 disease gene classes and

four different biological graphs induced by BioGPS, Biogridphys, HPRD and

Omim. For each disease class and graph, we show the average AUC(%) for

each diffusion-based graph node kernel in two cases: plain diffusion kernel

(denoted by ”-” and followed by kernel notation) and diffusion kernel on a

modified graph obtained by link enrichment process (denoted by + followed

by notation of kernel which is used for link enrichment). We notate each

kernel as follow: A: LEDK, B: MEDK, C: MDK, D: RLK, E: CDNK.

Table B.3: Indices of genetic disease classes.

Index Disease

1 Cancer
2 Cardiovascular
3 Connective
4 Dermatological
5 Developmental
6 Endocrine
7 Hematological
8 Immunological
9 Metabolic
10 Muscular
11 Neurological
12 Ophthalmological
13 Renal
14 Skeletal

115



D
in

h
T

.V
an

K
ern

el
M

eth
o
d

s
for

G
rap

h
-b

ased
D

ata
In

tegration

Table B.4: Average predictive performance on 14 gene-disease associations using four different graphs induced by the BioGPS,
Biogridphys, Hprd and Omim. We report the average AUC-ROC (%) and standard deviations for all difussion-based kernels
with (+) and without (-) link enrichment.

BioGPS Biogridphys Hprd Omim

Disease - + - + - + - +

1 60.3±1.5 63.4±1.0 73.1±4.1 77.1±2.9 75.5±0.2 77.5±0.9 85.3±1.1 86.9±1.5

2 53.7±1.4 63.4±3.8 56.6±3.4 61.3±4.1 57.1±0.9 60.2±1.8 75.0±2.2 76.5±2.4

3 50.2±0.4 58.6±3.0 58.9±5.9 67.5±7.7 61.8±3.6 70.7±3.8 77.3±1.8 83.1±0.9

4 61.5±0.9 72.2±2.2 65.7±4.1 74.6±4.2 67.3±1.1 71.9±2.2 90.2±1.2 92.1±1.2

5 55.1±0.4 61.7±0.9 54.2±4.8 60.7±4.0 57.7±1.6 67.0±1.8 76.4±0.8 81.9±1.5

6 60.8±0.9 67.9±2.2 60.6±3.6 65.9±3.5 66.8±1.3 71.9±2.3 79.9±2.4 83.3±1.2

7 68.1±1.4 73.4±0.7 57.7±3.2 63.7±4.0 68.9±2.1 72.5±1.2 81.0±1.2 84.1±1.0

8 69.2±2.3 74.0±2.2 68.1±3.6 72.6±2.5 76.6±2.2 80.3±2.8 85.4±2.2 91.0±1.0

9 62.0±1.6 64.5±1.4 68.7±4.6 71.7±4.3 68.4±2.5 75.0±3.2 78.5±0.2 80.6±0.6

10 67.5±2.9 72.9±1.8 58.8±3.2 66.1±3.8 65.8±3.4 74.4±2.6 86.1±0.6 87.8±0.3

11 58.7±1.8 62.3±1.5 58.2±1.2 61.6±1.7 60.1±1.1 64.2±1.5 82.0±1.4 83.6±0.9

12 64.0±1.3 73.6±1.7 59.3±2.1 67.0±2.8 60.8±1.1 68.8±2.8 82.0±1.8 85.9±1.7

13 56.5±0.9 63.3±2.4 55.8±1.1 65.1±4.2 66.4±1.3 71.8±1.7 83.1±2.8 87.5±2.5

14 55.2±0.3 62.3±1.2 55.6±1.6 63.5±4.0 66.3±2.3 71.1±2.8 97.4±0.1 99.0±0.4

AUC 60.2±0.3 66.7±1.2 60.8±1.6 67.0±4.0 65.7±2.3 71.2±2.8 82.8±0.1 86.0±0.4
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Table B.5: Predictive performance on 14 gene-disease associations using
network induced by the BIOGPS.

Disease -A +A +B +C +D +E -B +A +B +C +D +E

1 61.8 63.8 62.5 63.7 63.9 63.4 57.9 62.8 62.8 62.2 62.6 62.2

2 55.6 67.5 62.3 70.4 69.5 63.5 52.0 62.8 57.3 57.9 60.1 58.3

3 50.3 62.3 61.2 63.6 61.9 60.0 49.5 57.0 55.1 56.1 57.2 55.2

4 61.3 73.9 73.1 73.3 73.7 73.9 62.7 72.7 67.9 72.5 74.7 68.5

5 55.7 62.8 60.6 63.2 62.9 62.9 55.1 61.7 61.0 62.9 62.6 60.5

6 60.1 68.8 66.8 70.4 69.4 67.4 59.7 66.1 62.2 68.2 67.0 63.4

7 68.8 73.6 73.0 73.6 74.2 73.4 67.7 73.5 73.1 74.2 74.8 72.1

8 71.1 77.9 72.3 76.5 77.8 73.2 65.6 71.7 70.8 70.4 71.8 70.9

9 62.4 63.8 63.1 64.4 64.3 63.8 63.7 66.9 65.7 67.2 66.7 66.5

10 69.4 72.9 71.2 74.5 72.6 71.8 62.5 73.6 70.4 72.7 71.9 71.1

11 60.0 63.9 63.1 64.6 63.6 63.3 58.4 61.4 61.9 61.4 61.8 61.7

12 64.4 76.2 73.5 76.1 75.2 73.2 61.9 71.2 70.3 71.7 72.3 70.5

13 57.2 66.1 62.4 65.8 63.0 59.3 55.1 63.7 63.5 62.4 61.8 60.6

14 55.4 61.7 61.7 61.6 63.0 60.1 55.0 63.7 64.8 62.1 63.1 62.5

AUC 61.0 68.2 66.2 68.7 68.2 66.4 59.1 66.3 64.8 65.8 66.3 64.6

Table B.6: Predictive performance on 14 gene-disease associations using
network induced by the BIOGPS.

Disease -C +A +B +C +D +E -D +A +B +C +D +E

1 60.4 65.2 63.6 64.7 65.3 64.6 61.1 63.0 62.2 63.0 63.3 62.5

2 53.0 67.5 64.2 66.8 66.9 65.1 54.4 63.7 59.7 59.8 63.8 61.0

3 50.4 62.7 52.8 61.8 62.3 57.1 50.4 57.4 56.7 56.9 58.6 56.1

4 60.2 74.0 72.4 72.8 74.3 74.9 61.9 72.0 68.2 69.6 71.7 69.9

5 54.8 60.8 61.1 61.4 61.5 61.9 54.8 61.2 60.2 61.9 61.5 61.3

6 62.0 70.6 67.6 70.8 69.5 66.1 61.3 70.0 67.0 69.3 69.5 67.6

7 66.0 73.4 71.7 72.5 72.9 73.2 69.8 73.7 73.3 73.7 74.1 73.4

8 71.4 76.9 73.9 75.3 76.0 74.0 68.7 75.0 73.3 74.4 74.2 72.8

9 59.3 64.2 62.1 63.6 63.3 62.4 62.4 64.4 63.7 65.0 64.7 64.3

10 69.6 75.9 74.4 76.1 76.2 73.9 68.4 72.8 70.2 73.5 71.8 70.5

11 56.0 61.4 58.1 61.7 61.9 60.0 60.6 63.5 63.1 63.5 63.6 62.8

12 65.4 74.2 72.7 73.6 74.2 74.0 64.5 76.2 73.4 74.3 74.6 74.3

13 57.3 67.2 60.5 67.3 67.7 63.5 56.4 63.3 61.7 61.7 63.3 60.5

14 55.5 63.1 60.0 62.3 63.8 63.2 54.9 62.0 61.8 62.0 62.4 61.1

AUC 60.1 68.4 65.4 67.9 68.3 66.7 60.7 67.0 65.3 66.3 66.9 65.6
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Table B.7: Predictive performance on 14 gene-disease associations using
network induced by the BIOGRIDphys.

Disease -A +A +B +C +D +E -B +A +B +C +D +E

1 76.4 79.2 77.8 77.8 79.6 78.3 73.2 79.7 75.0 73.9 79.5 74.9

2 60.5 66.4 61.6 60.8 67.3 63.4 52.3 63.3 55.5 53.0 61.3 53.8

3 62.2 77.2 67.7 67.4 77.2 69.2 49.1 65.2 53.7 51.8 70.0 54.2

4 69.2 79.7 75.4 75.0 79.1 76.3 63.5 77.5 73.9 71.9 77.9 72.7

5 59.2 66.6 63.3 62.1 67.5 62.7 50.2 59.5 56.2 53.4 58.7 55.0

6 63.1 69.7 66.7 66.7 70.1 67.1 54.4 62.9 60.3 58.7 63.0 59.0

7 60.1 67.2 62.3 61.8 72.2 61.8 53.2 64.1 60.3 59.1 67.8 59.1

8 70.6 75.1 71.0 71.1 75.7 71.8 62.9 73.6 68.0 67.4 74.5 67.6

9 69.1 72.1 70.5 70.5 72.3 73.7 61.3 69.2 63.6 62.1 69.0 64.9

10 61.3 70.4 65.6 66.7 70.4 68.1 57.3 67.4 60.8 60.3 68.6 60.3

11 58.9 64.0 61.4 60.6 64.1 62.1 56.2 61.5 59.3 58.4 61.4 59.6

12 61.0 68.3 70.8 66.3 69.5 67.4 59.6 68.6 67.6 67.1 69.4 66.7

13 55.4 66.3 64.7 57.3 69.1 61.7 57.6 71.5 67.2 66.2 71.9 68.3

14 57.4 68.7 61.4 60.9 72.4 64.3 53.2 64.7 60.0 57.8 64.5 58.9

AUC 63.2 70.8 67.2 66.1 71.9 67.7 57.4 67.8 63.0 61.5 68.4 62.5

Table B.8: Predictive performance on 14 gene-disease associations using
network induced by the BIOGRIDphys.

Disease -C +A +B +C +D +E -D +A +B +C +D +E

1 66.4 75.6 69.9 72.1 79.2 73.5 76.6 80.0 78.2 78.1 80.2 78.7

2 54.4 63.6 57.5 57.8 65.9 58.7 59.3 66.5 61.8 59.5 65.9 62.8

3 60.0 74.0 60.6 60.3 74.0 65.5 64.4 76.3 68.7 68.4 76.3 71.4

4 60.2 73.3 65.1 67.3 71.8 67.3 70.1 79.5 76.9 75.8 79.7 76.7

5 48.6 61.9 56.5 55.4 62.7 57.4 58.7 66.0 62.6 60.9 64.6 61.1

6 61.7 68.8 65.2 64.5 68.8 65.2 63.2 69.5 67.1 67.1 70.1 67.3

7 56.4 65.5 58.5 58.8 68.7 60.3 61.3 66.8 63.1 62.3 71.1 62.5

8 66.8 74.0 73.1 74.0 74.6 72.5 72.3 75.3 72.3 72.3 75.4 72.7

9 74.0 78.5 75.1 75.6 79.1 75.1 70.4 73.0 71.6 71.7 72.6 74.8

10 54.4 66.9 64.1 61.3 68.2 58.7 62.3 71.0 66.5 67.3 70.8 68.3

11 58.4 64.5 60.0 60.5 63.9 61.4 59.1 62.9 61.0 60.3 63.2 61.8

12 55.9 66.9 56.9 65.4 66.7 64.4 60.8 67.2 70.1 66.1 68.5 67.1

13 54.8 66.2 64.4 58.7 69.4 63.5 55.2 65.5 64.1 57.0 68.1 60.9

14 55.1 66.6 59.7 57.5 67.6 62.6 56.4 67.5 61.7 60.7 68.7 64.1

AUC 59.1 69.0 63.3 63.5 70.0 64.7 63.6 70.5 67.6 66.3 71.1 67.9
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Table B.9: Predictive performance on 14 gene-disease associations using
network induced by the HPRD.

Disease -A +A +B +C +D +E -B +A +B +C +D +E

1 75.5 77.7 77.8 76.7 77.9 76.1 75.1 77.2 77.0 76.5 76.0 75.9

2 56.6 61.1 58.6 59.6 63.5 58.6 55.9 59.5 56.6 58.0 60.2 58.0

3 61.2 73.0 69.0 71.3 76.1 67.9 56.1 70.0 61.1 67.7 71.1 63.3

4 67.3 74.9 71.0 70.9 74.1 69.7 65.5 72.7 68.6 68.0 71.8 67.5

5 57.6 66.9 65.6 68.6 68.4 68.2 55.1 67.3 62.9 64.5 66.5 62.6

6 67.1 73.7 72.0 72.1 73.5 69.3 64.8 71.8 69.8 69.1 68.6 66.4

7 68.8 73.6 72.4 72.7 73.7 71.9 65.5 71.9 69.4 71.6 72.4 69.8

8 76.2 82.4 76.7 81.9 83.3 77.1 73.4 80.7 73.6 79.5 82.3 74.8

9 68.2 76.2 75.6 71.2 74.5 77.3 64.4 72.2 70.9 68.6 69.4 76.0

10 66.0 76.2 75.9 74.6 76.6 73.8 60.4 74.9 71.8 69.2 71.0 69.4

11 60.5 65.2 63.2 64.4 65.0 63.8 58.3 64.1 60.7 62.7 63.2 61.5

12 61.9 69.8 69.3 68.5 72.1 64.3 60.5 68.8 68.8 67.6 68.0 63.0

13 67.6 72.2 71.9 73.3 72.6 71.4 65.1 71.5 69.4 69.4 69.7 67.1

14 68.4 74.1 72.7 71.8 74.1 71.2 64.6 70.5 66.7 67.8 66.9 67.5

AUC 65.9 72.6 70.8 71.3 73.2 70.0 63.2 70.9 67.7 68.6 69.8 67.3

Table B.10: Predictive performance on 14 gene-disease associations using
network induced by the HPRD.

Disease -C +A +B +C +D +E -D +A +B +C +D +E

1 75.6 78.2 78.0 78.8 78.6 77.1 75.6 78.2 78.1 77.7 78.8 77.7

2 58.0 62.5 60.6 60.7 63.0 60.7 58.0 60.4 59.2 60.0 63.5 59.2

3 65.5 73.4 70.7 73.5 76.6 69.4 64.4 72.0 70.1 73.7 74.6 70.2

4 68.1 73.9 73.2 72.0 74.3 71.3 68.3 75.1 72.1 71.2 74.0 71.5

5 59.0 68.1 67.1 67.2 68.3 66.9 59.0 68.5 66.7 69.0 68.2 67.8

6 68.3 75.5 72.2 75.3 73.8 71.9 67.1 73.4 72.3 72.1 73.6 70.7

7 71.1 73.5 72.7 72.8 74.2 73.1 70.1 73.3 72.3 72.9 73.5 72.4

8 77.6 82.3 78.8 81.4 83.3 79.2 79.3 82.7 80.0 82.9 83.2 80.3

9 71.0 77.5 77.1 77.2 77.5 81.0 69.8 76.0 75.6 72.5 75.3 78.8

10 67.1 77.0 69.9 73.8 77.5 74.8 69.6 76.3 75.2 76.8 77.1 75.2

11 60.3 65.2 63.4 67.2 65.6 64.4 61.3 65.8 63.5 65.1 65.1 64.5

12 59.2 71.7 70.9 68.6 73.0 64.2 61.7 70.9 69.7 69.7 72.0 64.3

13 65.3 73.3 71.1 73.3 73.3 71.8 67.7 74.1 72.5 74.0 73.2 71.7

14 63.4 72.4 67.1 67.3 73.7 72.1 68.7 74.3 72.5 71.8 74.5 73.9

AUC 66.4 73.2 70.9 72.1 73.8 71.3 67.2 72.9 71.4 72.1 73.3 71.3
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Table B.11: Predictive performance on 14 gene-disease associations using
network induced by the OMIM.

Disease -A +A +B +C +D +E -B +A +B +C +D +E

1 84.9 86.9 85.6 87.4 86.7 85.8 84.4 86.3 85.3 85.9 85.9 85.4

2 76.6 78.4 78.4 78.8 78.4 78.4 75.7 77.1 77.4 77.3 77.1 77.1

3 78.4 83.3 83.3 83.8 83.2 84.6 74.4 82.1 80.8 82.5 82.4 82.2

4 91.3 93.0 93.0 93.0 93.0 93.1 89.3 93.0 91.5 92.6 93.0 92.1

5 76.1 82.3 79.7 84.1 80.4 80.7 75.6 83.9 79.6 84.3 82.4 79.9

6 81.9 84.7 83.7 83.9 84.6 83.8 79.1 82.7 80.8 83.6 84.1 80.8

7 81.2 85.2 84.5 84.1 84.9 83.2 79.5 84.3 82.8 82.2 84.3 81.9

8 84.3 90.5 91.4 91.0 90.5 92.2 83.9 90.1 89.8 89.7 90.1 90.9

9 78.8 80.6 80.4 80.8 80.4 80.4 78.2 79.9 79.9 80.1 80.3 80.4

10 86.3 87.6 87.6 87.6 87.6 87.6 86.7 88.1 88.1 88.1 88.1 88.1

11 83.3 84.6 84.6 84.6 84.6 84.6 79.8 83.0 81.7 83.1 82.9 82.2

12 82.0 87.3 85.2 87.0 86.8 85.3 79.8 85.3 81.9 87.2 85.4 81.8

13 85.0 88.6 88.9 88.6 89.4 89.2 84.1 88.9 88.6 89.4 89.6 89.1

14 97.4 99.2 98.6 99.2 99.2 99.5 97.2 99.3 98.2 99.1 99.1 99.6

AUC 83.4 86.6 86.1 86.7 86.4 86.3 82.0 86.0 84.8 86.1 86.0 85.1

Table B.12: Predictive performance on 14 gene-disease associations using
network induced by the OMIM.

Disease -C +A +B +C +D +E -D +A +B +C +D +E

1 87.3 89.7 88.7 90.2 89.5 88.4 84.7 86.8 85.5 86.5 86.5 85.7

2 71.2 72.9 72.1 72.1 72.8 72.1 76.4 78.0 78.0 78.2 78.0 78.0

3 78.9 84.2 83.3 84.2 84.0 84.2 77.5 82.7 82.6 83.2 82.9 83.6

4 88.8 90.2 90.0 90.2 90.0 90.0 91.4 92.9 92.8 92.8 92.9 93.1

5 77.7 82.2 80.6 83.5 83.1 82.5 76.3 82.3 80.1 83.8 81.3 80.9

6 76.3 82.4 81.9 82.0 83.7 82.2 82.2 84.9 83.8 83.8 84.6 84.5

7 82.7 85.4 84.1 85.4 85.8 84.1 80.6 84.6 83.9 84.3 83.9 83.3

8 89.3 91.6 91.3 91.8 91.7 92.4 84.3 90.5 90.1 90.5 90.3 93.5

9 78.5 81.5 81.5 81.5 81.5 81.5 78.6 80.4 80.4 80.8 80.4 80.4

10 85.1 88.0 88.0 88.1 88.3 88.0 86.0 87.5 87.5 87.6 87.5 87.5

11 82.0 82.9 82.8 82.7 82.8 82.6 83.0 84.4 84.4 84.4 84.4 84.4

12 84.7 87.8 86.5 88.2 87.7 85.9 81.3 86.5 83.8 86.4 86.3 85.0

13 78.2 83.1 83.1 83.1 83.8 83.1 85.0 88.5 88.5 88.5 89.0 88.5

14 97.5 98.7 98.2 98.4 98.6 98.7 97.4 99.2 98.3 99.2 99.2 99.5

AUC 82.7 85.7 85.2 85.8 86.0 85.4 83.2 86.4 85.7 86.4 86.2 86.3
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Chapter C

Graph-based Data Integration

Approaches

Table C.1: The performance of different techniques in the experimental
setting of Chen et al [23] expressed in terms of AUC. Except for our Graph-
one’s variations, these results were taken from that work. The p-values
indicate significance of the pairwise AUC differences with respect to Scuba
AUC [42]. Asterisks indicate significance of the test (p-value < 0.05) of
Scuba1 with compared methods.

Method AUC(%) p-value

F3PC [23] 0.830 1.39 ·10−4 *
MRF [24] 0.731 <10−6 *
DIR [26] 0.716 <10−6 *

GeneWanderer [50] 0.711 <10−6 *
Avg 81.9 <10−6 *

Scuba1 87.6 -
Scuba2 88.3 -
PLC 86.8 -
DIGI 88.1 -
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Table C.2: Scuba1 AUC performance for each disorder in the evaluation of gene prioritization tools [17]

Disease Associated genes genome-wide candidate set

Abdominal aortic aneurysm ENSG00000136848 0.77 0.84

Alcohol dependence ENSG00000148680 0.98 0.98

Arthrogryposis ENSG00000152818 0.98 1.0

Asthma ENSG00000182578 0.93 0.94

Autosomal recessive primary microcephaly ENSG00000075702 0.41 0.44

Behcet’s disease ENSG00000136634 0.98 0.97

Bipolar schizoaffective disorder ENSG00000146276 0.97 0.98
ENSG00000139618

Complex heart defect ENSG00000121068 0.98 1.0

Congenital anomalies of the kidney and the urinary tract ENSG00000164736 0.97 0.96
ENSG00000178188

Congenital diaphragmatic hernia ENSG00000004961 0.86 0.87
ENSG00000154309

Crohn’s disease ENSG00000176920 0.89 0.89
ENSG00000185651
ENSG00000069399

122



K
ern

el
M

eth
o
d

s
for

G
ra

p
h

-b
ased

D
ata

In
tegration

D
in

h
T

.V
an

Disease Associated genes genome-wide candidate set

Dursun syndrome ENSG00000141349 0.58 0.46

Ehlers-Danlos syndrome ENSG00000169105 0.99 1.0

Esophageal squamous cell carcinoma ENSG00000138193 0.3 0.23
ENSG00000101276

Leprosy ENSG00000111537 0.96 0.9

Lung adenocarcinoma ENSG00000073282 0.89 0.84

Methylmalonic aciduria ENSG00000167775 0.9 0.93

Metopic craniosynostosis ENSG00000106571 0.98 0.98

Mitochondrial complex I deficiency ENSG00000177646 0.95 0.96

Multiple sclerosis ENSG00000120088 0.83 0.84

Myelodysplastic syndromes ENSG00000106462 0.81 0.83

Nasopharyngeal carcinoma ENSG00000085276 0.81 0.8
ENSG00000127863

Nonsyndromic cleft lip/palate ENSG00000148175 0.82 0.8

Parkinson’s disease ENSG00000175104 0.82 0.8

Periventricular heterotopia ENSG00000102103 0.54 0.45

Primary biliary cirrhosis ENSG00000142606 0.82 0.77
ENSG00000142539
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Disease Associated genes genome-wide candidate set

Psoriasis ENSG00000056972 0.96 1.0

Retinal-renal ciliopathy ENSG00000054282 1.0 1.0

Single-suture craniosynostosis ENSG00000124813 0.98 0.98

Smooth pursuit eye movement abnormality ENSG00000099901 0.27 0.2

Testicular germ cell tumor ENSG00000137090 0.5 0.41
ENSG00000171681

Tetralogy of Fallot ENSG00000145012 0.74 0.67

Type 2 diabetes ENSG00000182247 0.21 0.19
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Table C.3: Scuba1 AUC performance for single disorders considered in 5.3 in
the main text. These are the multifactorial diseases employed by Börnigen
et al [17] with at least a new gene annotation between March 2013 and
February 2017 as reported by the Human Phenotype Ontology [51].

Disease Associated genes genome-wide

Behcet’s disease ENSG00000162594 0.87
ENSG00000168811
ENSG00000138378
ENSG00000163823
ENSG00000136869
ENSG00000183542
ENSG00000164307
ENSG00000026103
ENSG00000206340
ENSG00000206450
ENSG00000134882

Bipolar schizoaffective disorder ENSG00000175344 0.68
ENSG00000138592
ENSG00000151702
ENSG00000124782
ENSG00000171988
ENSG00000176986

Crohn’s disease ENSG00000140368 0.90

Parkinson’s disease ENSG00000064692 0.89
ENSG00000153234
ENSG00000116675
ENSG00000159082
ENSG00000184381
ENSG00000138246

Primary biliary cirrhosis ENSG00000128604 0.76
ENSG00000181634
ENSG00000105329
ENSG00000110777
ENSG00000064419
ENSG00000016602
ENSG00000141076
ENSG00000106089
ENSG00000132912
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Disease Associated genes genome-wide

Psoriasis ENSG00000206237 0.94
ENSG00000196126
ENSG00000179344
ENSG00000206306
ENSG00000163599
ENSG00000206240
ENSG00000077150
ENSG00000141527
ENSG00000198246

Smooth pursuit eye movement abnormality ENSG00000104133 0.73
ENSG00000171385
ENSG00000020922
ENSG00000070610
ENSG00000013503
ENSG00000167658
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