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“In fondo, si vive sempre e solo quello che si vuole vivere. È da lì che si deve ripartire.

Per desiderare quello che si ha già. Senza passare il tempo a sperare che forse un giorno

tutto sarà diverso. Perché tutto è già diverso, non appena si fa la pace con i propri

ricordi. Quelli che smetteranno di accompagnarci solo quando avremo ritrovato quei

profumi e quei rumori, la fine della fatica, l’inizio della gioia.”

Michela Marzano, ‘Volevo essere una farfalla’, 2011





Abstract

The human brain is as much fascinating as complicated: this is the reason why it has

always captured scientists’ attention in several fields of research, from biology to medicine,

from psychology to engineering. In this context various non-invasive technologies have

been optimized in order to allow the measure of signals, able to describe brain activities.

These data, derived from measurement methods that largely differ in their nature, have

opened the door to new characterizations of this organ, that highlighted the main

features of its operating principles. Brain signals indeed have revealed to be fluctuating

during time, both during a specific task, and when we are not carrying on any activities.

Furthermore, a selective coordination among different regions of the brain has emerged.

As engineers, we are particularly attracted by the description of our brain as a

graph, whose nodes and edges can be representative of several different elements, at

distinct spatial scales (from single neurons to large brain areas). In the last decades, wide

attention has been devoted to reproduce and explain the complex dynamics of the brain

elements by means of computational models. Graph theory tools, as well as the design of

population models, allow the exploitation of many mathematical tools, helpful to enlarge

the knowledge of healthy and damaged brains functioning, by means of brain networks.

Interestingly, the incapability of human brains to work properly in case of disease, has

found to be correlated with dysfunctions in the activity of mitochondria, the organelles

that produce large part of the cells’ energy. In particular, specific relationships have been

reported among neurological diseases and impairments in mitochondrial dynamics, which

refers to the continuous change in shape of mitochondria, by means of fusion and fission

processes. Although the existing link between brain and mitochondria is still ambiguous

and under debate, the huge amount of energy required by our brain to work properly

suggests a larger mitochondrial-dependence of the brain than of the other organs.

In this thesis we report the results of our research, aimed to investigate a few aspects

of this complex brain-mitochondria relationship. We focus on mitochondrial dynamics

and brain network, as well as on suitable mathematical models used to describe them.

Specifically, the main topics handled in this work can be summarized as follows.
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Population models for mitochondrial dynamics. We propose a modified prey-

predator non-linear population model to simulate the main processes, which take part

in the mitochondrial dynamics, and the ones that are strongly related to it, without

neglecting the energy production process. We present two possible setups, which differ in

the inclusion of a feedback link between the available energy and the formation of new

mitochondria. We discuss their dynamics, and their potential in reproducing biological

behaviors.

Brain signals: comparison of datasets derived through different technologies.

We analyze two different datasets of brain signals, recorded with various methods

(functional magnetic resonance imaging, fMRI, and magnetoencephalography, MEG),

both in condition of no activity and during an attentional task. The aim of the analysis

is twofold: the investigation of the spontaneous activity of the brain, and the exploration

of possible relationships between the two different techniques.

Brain network: a Kuramoto-based description. We analyze empirical brain data

by means of their oscillatory features, with the purpose of highlighting the characteristics

that a computational phase-model should be able to reproduce. Hence, we use a

modified version of the classic Kuramoto model to reproduce the empirical oscillatory

characteristics.

Analysis and control of Kuramoto networks. Most of the theoretical contribution

of this thesis refers to analytical results on Kuramoto networks. We analyze the topo-

logical and intrinsic conditions required to achieve a desired pattern of synchronization,

represented by fully or clustered synchronized configuration of oscillators.



Sommario

Il cervello umano è tanto affascinante quanto complesso: questo è il motivo per cui ha

sempre attirato l’attenzione degli scienziati in molteplici ambiti di ricerca, dalla biologia

alla medicina, dalla psicologia all’ingegneria. In questo contesto, diverse tecnologie non

invasive sono state ottimizzate per permettere la misurazione di segnali, atti a descrivere

l’attività cerebrale. Questi dati, derivanti da metodi di misura che differiscono molto

nella loro natura, hanno aperto la porta a nuove descrizioni di quest’organo, che a loro

volta hanno evidenziato le caratteristiche principali delle sue funzionalità. In particolare,

è emerso come i segnali cerebrali fluttuino nel tempo, sia durante lo svolgimento di una

particolare operazione, sia nei periodo di completa inattività. Inoltre, è stata individuato

un coordinamento specifico e selettivo tra le diverse regioni del cervello.

In quanto ingegneri, la nostra attenzione è principalmente focalizzata sulla descrizione

del cervello umano come un grafo, i cui nodi ed archi possono assumere il ruolo di

elementi diversi, a seconda della specifica scala spaziale di interesse (siano essi descrittivi

di singoli neuroni o intere aree cerebrali). Negli ultimi decenni, un notevole impegno è

stato applicato per riprodurre e spiegare le complesse dinamiche degli elementi cerebrali

attraverso l’utilizzo di modelli matematici. Infatti, la teoria dei grafi e il design di

modelli di popolazione permettono lo sfruttamento di molti strumenti matematici, utili

per ampliare la conoscenza del funzionamento del nostro cervello, sia in stato di salute,

sia in malattia, attraverso la definizione di reti cerebrali.

È affascinante come l’incapacità del cervello umano di operare correttamente in caso

di malattia sembri essere correlato ad alcune disfunzioni dell’attività dei mitocondri, gli

organelli che producono la maggior parte dell’energia cellulare. In particolare, sono state

riportate delle relazioni specifiche tra alcune malattie neurologiche e il danneggiamento

della dinamica mitocondriale, ossia il continuo cambio di forma e lunghezza dei mitocondri,

tramite i processi di fusione e fissione. Nonostante l’effettiva esistenza di un collegamento

tra il cervello e i mitocondri sia ancora ambiguo ed oggetto di dibattito tra gli scienziati, la

considerevole quantità di energia richiesta dal cervello umano per lavorare correttamente

suggerisce che il cervello, più degli altri organi, sia dipendente dall’attività mitocondriale.
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In questo lavoro di tesi sono riportati i risultati della nostra ricerca, atta ad investigare

alcuni aspetti di questa complessa relazione tra cervello e mitocondri. Ci siamo quindi

concentrati sulla dinamica mitocondriale e sul concetto di rete cerebrale, oltre che sui

modelli matematici idonei alla loro descrizione matematica. Qui di seguito sono riportati

e riassunti i principali argomenti trattati in questo manoscritto.

Modelli di popolazione per la dinamica mitocondriale. Proporremo un modello

di popolazione non lineare ispirato ai modelli preda-predatore per simulare tutti i processi

principali che prendono parte alla dinamica mitocondriale e quelli che sono fortemente

connessi ad essa, incluso il processo di produzione di energia. Nello specifico, presenteremo

due possibili configurazioni, che si differenziano nella presenza o meno di un collegamento

in retroazione tra la quantità di energia libera disponibile e la formazione di nuovi

mitocondri. Verrà quindi discussa la dinamica di entrambe le configurazioni e la loro

capacità di riprodurre i comportamenti biologici osservati nella realtà.

Segnali cerebrali: confronto tra dataset ottenuti tramite tecnologie differenti.

Riporteremo l’analisi di due dataset di segnali cerebrali registrati con diversi metodi

(risonanza magnetica funzionale, fMRI, e magnetoencefalografia, MEG), sia in assenza

di attività, sia durante lo svolgimento di un compito di attenzione. Quest’analisi ha un

duplice obiettivo: lo studio dell’attività cerebrale spontanea e l’esplorazione di possibile

relazioni esistenti tra le due diverse tecniche di misura.

Rete cerebrale: una descrizione basata sul modello Kuramoto. Ci soffermer-

emo sull’analisi di dati cerebrali empirici evidenziando le loro proprietà oscillatorie, con

lo scopo di sottolinearne le caratteristiche che un modello matematico di fase dovrebbe

essere in grado di riprodurre. Quindi, riporteremo una versione modificata del modello

Kuramoto classico che abbiamo utilizzato per riprodurre le caratteristiche oscillatorie

osservate empiricamente.

Analisi e controllo di reti di Kuramoto. La maggior parte del contributo teorico

di questo lavoro di tesi comprende alcuni risultati analitici riguardo reti di oscillatori

Kuramoto. Riporteremo quindi l’analisi atta a determinare le condizioni intrinseche e

topologiche necessarie per ottenere un desiderato pattern di sincronizzazione, relativo sia

ad una configurazione di oscillatori interamente sincronizzata, sia sincronizzata a gruppi.
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Notation and acronyms

Notation Description

Sans Serif font algorithm name

A set

|A| cardinality of set A

x vector

xi or [x]i i-th element of vector x

A or [aij ] ([aijk]) matrix or tensor

aij or [A]ij ([A]ijk) the (i, j) ((i, j, k)) element of matrix (tensor) A

ai i-th column of matrix A

1d vector of ones of size d× 1

1⊥
d orthogonal complement of 1d

0d zero-vector of size d× 1

0d1,d2 zero-matrix of size d1 × d2

Id identity matrix of dimension d

A(t) amplitude of a complex signal

j immaginary unit

N set of natural numbers

R set of real numbers

R≥0 set of positive real numbers (R≥0 := (0, +∞))

Rd Euclidean d-dimensional space

Rd1×d2 space of real matrices with d1 rows and d2 columns

C set of complex numbers

pij path from i to j on a spanning tree

N (µ, Σ) Gaussian distribution with mean µ and covariance Σ

U([umin, umax]) Uniform distribution within interval umin, . . . , umax

:= (=:) the left (right) side is defined by the right (left) side

≈ the left side is approximately equal to the right side

An the n-th power of a square matrix
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AT (xT) transposed matrix (vector)

A−1 the inverse matrix of matrix A

| · | absolute value

‖ · ‖F Frobenius norm

‖ · ‖∞ infinite norm

◦ outer product (x ◦ y = xyT)

� Hadamard product

� element-wise division

Im(A) image of the space spanned by the columns of A

Im(A)⊥ orthogonal subspace of Im(A)

σ(A) set of the eigenvalues of matrix A

ker(A) kernel of the space spanned by the columns of A

det(A) determinant of matrix A

<[·] real part

H [·] Hilbert transform

111v(·) indicator function of variable v

ẋ(·) derivative of x
∂
∂tx(t, s) partial derivative of x with respect to t

D+f(·) right-hand derivative of f
dn

dtn n-times differentiation

f |(a)(t) value of function f evaluated at point t = a



xiii

Symbols Description

ax(·) analytical signal related to time series x(·)

θxi
(·) or θi(·) phase referred to time series xi(·)

V (·) Lyapunov function

G graph

V set of nodes of a graph

E set of edges of a graph

T spanning tree

P partition

L(·) Lagrangian function

LG Laplacian matrix of the graph G

δ(·, ·) Kronecker delta function

P(·) probability function

pval significance p-value used in ANOVA or t-test

F F-value of ANOVA test

# number of
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Abbreviation Description

AD Alzheimer’s Disease

ADP adenosine diphosphate

ALS Amyotrophic Lateral Sclerosis

AMPK AMP-activated protein kinase

ATP adenosine triphosphate

BLP band-limited power

BOLD blood oxygen level-dependent signal

Ca2+ calcium ions

cAMP cyclic adenosine 3’,5’-monophosphate

CAPs coactivation patterns

cKM classic Kuramoto model

Coh cross-coherence

CMRO2 cerebral metabolic rate of oxygen

DAN dorsal attention network

DBS deep brain stimulation

DCM dynamic causal model

DJ− 1 Parkinsonism associated deglycase protein

DMN default mode network

Dnm1l dynamin 1-like protein

Drp1 dynamin-related protein 1

DTI diffusion tensor imaging

EEG electroencephalography

e.g. for example

ERR α (γ) estrogen-related receptor alpha (gamma))

ETC electron transport chain

FADH2 flavin adenine dinucleotide reduced form

FC functional connectivity

FHN FitzHugh-Nagumo model

FHUs functional hereditary units

Fis1 fission 1 homologue protein

fMRI functional magnetic resonance imaging

GC Granger causality

GDAP1 anglioside-induced differentiation-associated protein 1

GH Greenberg-Hastings model

GTP guanosine triphospate
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H+ protons

HD Huntington’s Disease

HRF heamodynamic response function

ICA indipendent components analysis

i.e. id est

INs interneurons

KL Kullback-Lieber divergence

KM (modified version of) Kuramoto model

MAPK mitogen-activated protein kinase

MEG magnetoencephalography

Mfn1 (2) mitofusin 1 (2) protein

MI mutual information

Mid immunoglobulin D-binding protein

Mff mitochondrial fission factor

mtDNA mitochondrial DNA

mTOR mammalian target of rapamycin

NADH nicotinamide adenine dinucleotide reduced form

NAMPT nicotinamide phosphoribosyltransferase

n.c. nullcline

NNTF non-negative tensor factorization

NRF-1 (-2) nuclear respiratory factor 1 (2)

ODE ordinary differential equation

Oma1 metalloendopeptidase

Opa1 dynamin-like 120 kDa protein

OXPHOS oxidative phosphorylation

p38 mitogen-activated protein kinases

PCA principals components analysis

PD Parkinson’s Disease

p.d.f. probability density function

PGC-1α peroxisome proliferator-activated receptor gamma co-activator

1-alpha

Pink1 PTEN-induced putative kinase 1

PNs pyramidal neurons

PPA point process analysis

PPAR-γ peroxisome proliferator-activated receptor gamma

resp. respectively
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RN Rulkov neuron model

ROI region of interest

ROS reactive oxygen species

RS resting state

rs-fMRI resting state functional magnetic resonance imaging

RSNs resting state networks

SAM sorting and assembly machinery

SC structural connectivity

SIRT1 sirtuin 1

SQUID superconducting quantum interference device

s.t. such that

TFAM mitochondrial transcription factor A

TFB transcription factor B

VIS visual network

w.r.t. with respect to
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1
Motivation

“Nobody realizes that some people expend tremendous energy merely to be normal.”

Albert Camus, Notebooks 1942-1951

Since the beginning of time, mankind has been attracted by the complexity of the

world around them. Humans tried to shed light on the unknown, be it very small (as

atoms and molecules), or extremely large (as the outer space). However, one of the most

complex existing systems is the human body in itself, with its anatomical, physiological,

and psychological natures. It is often said that our body is a perfect machine, where a

huge number of different processes combine one each other in order to let us all live any

instant of our life.

Research fields have majored in several topics related to the understanding of the

human beings’ functioning, in order to improve and extend people lifespans. So far, much

progress has been done and nowadays we have the opportunity of knowing our anatomy

and our behavior nature very well. Nevertheless, we still have to face some monsters,

whose essence is not fully understood, yet. One of the main mysteries is represented by

the neurodegenerative diseases, which still affect our society, without we can actively

react. Let us think for instance to Parkinson’s or Alzheimer’s Diseases.

Everyone knows that the brain is an incredibly complex system: a human brain

comprises about 100 billion neurons connected by about 100 trillion synapses, which
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are anatomically organized over multiple scales of space and functionally interacting

over multiple scales of time. All of this creates a humongous network of parallel and

distributed computational units, that can be considered as a biological hardware from

which all our thoughts, feelings, and behaviors emerge. Therefore, it is not surprising

that the understanding of how brain works is one of the most interesting challenges that

involve scientists from several fields, ranging from neuroscience, to engineering, from

medicine, to psychology. However, relatively simple processes such as cognition, attention,

and memory, are so complicated that despite decades of intense research we have not

really solved the puzzle of how these mechanisms work, yet.

From the modern brain networks science, it emerged that some basic principles

may be able to describe the complexity of brain structures, connections and processes.

Thus, in the last years an improved collaboration among different scientific fields (from

neuroscience, to engineering, from psychology, to physics) is developing, aimed to provide

a deeper (even not complete) understanding of the brain.

What is more, many clinical diseases, that are still not fully understood and treatable,

like Parkinson’s Disease, Alzheimer’s Disease, dementia and schizophrenia, are found to

be interpreted as disorders of such human brain networks. Hence, new insights on useful

therapies are pusher objectives of this modeling challenge.

Central to current thinking about brain networks is the concept of the connectome,

which was coined in 2005 by Olaf Sporns, Giulio Tononi, and Rolf Kötter (Sporns et al.

(2005)), and independently in a PhD dissertation by Patric Hagmann (Hagmann (2005)),

to describe a matrix representing all possible pairwise anatomical connections among

elements of the brain. Nowadays this term is used with a wider meaning, referring both

to anatomical and functional connections within the brain. Despite it will be described in

detail throughout this thesis, in short, functional links have to be thought as a measure

of similarity among signals measured at different spatial areas of the brain. Then, the

mathematical and conceptual developments in complex network science, together with

the evolution of technologies for measuring nervous systems set the bases for a new

conception of the study of the connectome in its whole. To this aim, different tools can

be used (from mathematical, to behavioral methods), depending on the specific target,

the different time and the spatial scale that we are interested in.

In particular, as researchers in automation engineering, we are especially attracted

by the description of the human brain as a dynamical system evolving over a graph, and

its analysis through the tools offered by control systems and graph theory. From our

point of view, brain networks can be depicted as populations of neurons (or larger brain

areas), whose dynamics depends on their internal structural and functional connections.
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Specifically, we describe this ensemble as a population of agents, which are able to

synchronize and desynchronize during time, by assuming more or less coherent pattern

behaviors as time goes on and which cooperatively act towards a task accomplishment.

This framework allows us to think of brain areas as a group of oscillators, whose dynamics

can be described by their phases’ dynamics.

We hence make extensive use of mathematical models useful to describe complex

systems of oscillators. In particular we are interested in networks, whose agents behave

like a single sub-network, where all elements have the same dynamics, or where groups or

clusters of agents are characterized by similar within-group and different between-groups

dynamics.

The theoretical description of these phenomena is motivated by evidences coming

from experimental brain data. Indeed, we will analyse real neuronal data, in order to

recognize in the empirical signals, characteristics and features that we would be able to

reproduce by means of computational tools. In particular, we are interested in understand

how the brain networks work in resting-state, that is when we are not doing anything

(but neither sleeping), and how they are able to switch to a condition of task-doing, when

we want to perform a specific action. With respect to the experimental data, different

measurements of brain signals are now available, but they are very different one another,

and they often describe only indirect measures of the true neural activity. Thus, the

relationship among different data, and their possible combination is still unclear among

neuroscientists. To discuss this aspect, in this work we present a comparison of two

datasets referred to the same activity, but recorded with different technologies: we focus

on pros and cons of each modality and on the consistency of information that can be

derived, to identify which features are useful to achieve new insights on the large set of

unresolved questions.

When we think of the brain as a network of interconnected nodes (that is a graph),

we cannot neglect the huge budget of energy that it needs to work properly. To this aim,

the neuron cells are equipped with a larger number of mitochondria than the other cells

of our body. Mitochondria indeed are the organelles inside eukaryotic cells, whose most

prominent roles are to produce ATP, the energy currency of the cell, through respiration,

and to regulate cellular metabolism. We observe that there is a complex relation between

mitochondria and brain. Although many sides of this link are still unknown, a number of

evidences suggests a strong correlation among mitochondrial dysfunction and neurological

diseases. Our interest in mitochondria analysis emerges from these aspects, and we

focus on the description of the so-called mitochondrial dynamics, a process describing

continuous change of shape and location of these organelles, which continuously fuse and
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split up during time. Some mathematical models have already been proposed in the

literature to describe this phenomenon; however, we believe that they do not account

for some important properties, such as the analytic tractability, or the link between

mitochondrial dynamics and the main mitochondrial function (that is energy production).

Specifically, we focus on providing a mathematical framework, which is complete and

analyzable at the same time, with a particular attention on the relationship between

mitochondrial dynamics and energy demand.

In summary, this work is aimed to analyze and characterize some aspects of the

complex relationship that exists among mitochondria and brain. This relation, indeed,

emerges from empirical observations (such as the coexistence of mitochondrial and

neuronal dysfunction in neurological disorders, and the large demand of mitochondrial-

produced energy by the brain), but it is still unclear. Specifically, we make use of system

theory applied on networks of coupled oscillators, to characterize brain networks and

their synchronized, or desynchronized dynamics. Figure 1.1 depicts an overview of the

main topics, which are discussed in this thesis, and whose direct or indirect links motivate

all our research.

Undoubtedly, this is only a small tile of the whole set of relationships that characterizes

this complex system. However, we hope that our work may be useful to complete a little

part of this unresolved, amazing puzzle.

Contents

1.1 Contribution and outline . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Brain, energy, and mitochondrial dynamics . . . . . . . . . . . . . 8
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(1975)), and we investigated the topological and intrinsic conditions that can lead to the

formation of sub-networks within the whole population of nodes. On the other hand, we

proposed a simple, yet complete, prey-predator population model for the mitochondrial

dynamics and other phenomena related to it.

As the underling connection between these processes, we detected the availability of

energy. Indeed, energy production is exactly the main function of these organelles,

and this fact may be the most relevant connection with the brain, which requires a

large amount of energy to fulfil all its tasks. In addition, the ongoing fluctuations and

oscillations, which characterize the neuronal activity, and which lead to the formation of

brain networks, induce a considerable expenditure of energy.

The remaining part of this chapter and the following ones are organized as described

below, where we list also the already published contributions.

Chapter 1. Starting from the main motivations which guide our research, a large

amount of attention is devoted to the concept of energy production and requirement,

which is at the basis of the complex relationship among mitochondria, brain, and

brain activity. In addition we report a brief description of two neurological diseases,

characterized by the coexistence of mitochondrial and oscillatory dysfunctions.

Chapter 2. It describes mitochondria and mitochondrial dynamics from a biological

point of view, and provides the preliminary information required to understand the

hypotheses of the mathematical model presented in the following chapter.

Chapter 3. In this chapter we propose a modified prey-predator population model to

simulate the main processes, which take part in the mitochondrial dynamics, and the

ones that are strongly related to it. We present two possible setups, and we discuss their

behavior at the equilibrium, as well as their sensitivity to the most important parameters.

Chapter 4. Chapter 4 contains an introduction to the activity of the brain, and

the different techniques used to measure this activity. Then we focus on the graph

representation of the brain, and the mathematical tools offered by information and

systems theory, useful to analyze and characterize the signals of the brain.

Chapter 5. In this chapter we analyze two real datasets of brain signals recorded with

different techniques and in different conditions, with the twofold aim of investigating the

spontaneous activity of the brain, and exploring possible relationships between the two

different techniques.
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Chapter 6. After an introduction of the concept of synchronization among agents,

in this chapter a subset of the empirical dataset analyzed in Chapter 5 are examined,

from a synchronization point of view. The purpose is to highlight the features that

a computational phase-model should be able to reproduce. In addition, we use the

Kuramoto model to reproduce the oscillatory characteristics of the measured data.

Related publication:

• Favaretto, C. and Cenedese, A. (2016). On brain modeling in resting-state as a

network of coupled oscillators. In 2016 IEEE 55th Conference on Decision and

Control (CDC), pages 4190–4195.

Chapter 7. The most part of the theoretical contribution of this manuscript is con-

tained in this chapter, which reports our analytical results on Kuramoto model and

the topological and intrinsic conditions required to achieve a desired synchronized, or

clustered synchronized configuration within a network of coupled oscillators.

Related publications:

• Cenedese, A. and Favaretto, C. (2015). On the synchronization of spatially coupled

oscillators. In 2015 54th IEEE Conference on Decision and Control (CDC), pages

4836–4841.

• Favaretto, C., Bassett, D. S., Cenedese, A., and Pasqualetti, F. (2017a). Bode

meets kuramoto: Synchronized clusters in oscillatory networks. In 2017 American

Control Conference (ACC), pages 2799–2804.

• Favaretto, C., Cenedese, A., and Pasqualetti, F. (2017b). Cluster synchronization

in networks of kuramoto oscillators. In IFAC World Congress.

• Tiberi, L., Favaretto, C., Innocenti, M., Bassett, D. S., and Pasqualetti, F. (2017).

Synchronization patterns in networks of kuramoto oscillators: A geometric approach

for analysis and control. arXiv preprint arXiv:1709.06193. [accepted for CDC

2017].

Chapter 8 This chapter offers some concluding remarks and some food for thought on

possible future works.

Complementary work not included in the thesis:

• Cenedese, A., Favaretto, C., and Occioni, G. (2016). Multi-agent swarm control

through kuramoto modeling. In 2016 IEEE 55th Conference on Decision and

Control (CDC), pages 1820–1825.
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• Pasqualetti, F., Favaretto, C., Zhao, S., and Zampieri, S. (2018). Fragility and

controllability tradeoff in complex networks. [submitted to ACC 2018].

1.2 Brain, energy, and mitochondrial dynamics

In this section we address the physiological aspects that relate brain functioning and

neurons oscillations with mitochondrial dynamics and energy supply. Specifically, we

describe the complex network of relationships among these elements, in order to highlight

the requirements for each part of the whole system to work properly. This section is

hence aimed to define the common theme that motivates all the results presented in this

manuscript, and that revolves around the production and the requirement of energy.

1.2.1 Brain and energy

Although it represents only the 2% of the total human body weight, the human brain

consumes the 20% of the total oxygen consumption (McKenna et al. (2006)), and the

neurons are one of the most metabolically active cell types in our body. However, despite

the well-known facts about brain’s large energy budget, a clear understanding of how it

is apportioned among the many ongoing functional processes in neurons and glial cells

(i.e. cells that surrounds and supports neurons in the central nervous system) is still

missing. The metabolic activity of the brain consists largely in the oxidation of glucose

to carbon dioxide and water, resulting in the production of large amounts of energy in

the form of adenosine triphosphate (ATP). While spontaneous activity of the brain, in

a condition of rest, has been previously considered merely to be noise, more recently,

it has been revealed to be essential in order to understand the brain function. Indeed

(and surprisingly), most of the brain energy consumption is related to intrinsic activity

that is not driven by responses to external stimuli (Mitra and Raichle (2016)), while

energy associated with evoked brain activity accounts for less than 5% of the total brain

energy budget. Thus, the metabolic activity of the brain is remarkably constant over

time (baseline activity), even though mental and motor activity widely vary (Raichle

and Gusnard (2002)). Moreover, from functional analysis of brain signals during rest,

it has emerged a significant correlation of the spontaneous infra-slow (less than 0.1 Hz)

fluctuations within specific functional areas in the brain.

Hence, thanks to the modern imaging techniques (functional magnetic resonance

imaging, fMRI, magnetoencephalography, MEG, and positron emission tomography, PET)

used to analyse the functioning of the brain, it has emerged that there is a relationship

between brain energy metabolism and cellular activity (Smith et al. (2002); Hyder et al.
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(2002)). Specifically, the change in oxygen consumption induced by stimulation has

shown to be proportional to the change in spike frequency. The nature of the ongoing

intrinsic activity, that needs this large amount of brain’s energy, is however not clear,

yet. Moreover, the scenario is complicated by the cellular heterogeneity of the brain,

where different cell types have distinctive metabolic profiles (Magistretti and Allaman

(2015)), and a particular distinction exists between neurons and astrocytes (the most

numerous and diverse neuroglial cells in the central nervous system). Over the last years,

various approaches have been used to establish the energy budget of the brain (Attwell

and Laughlin (2001); Harris et al. (2012); Hyder et al. (2013)), and it appears that

the 75-80% of the energy is consumed by neurons, while the remaining part is used for

glia-based processes. Specifically, most of the energy used by neurons for signaling (the

ensemble of communication process that governs basic activities of cells and coordinates

all cell actions) appears to be consumed at the synapse (Harris et al. (2012); Rangaraju

et al. (2014)), the point at which a nervous impulse passes from one neuron to another.

1.2.2 Energy and mitochondria

Given that our brain needs a large amount of energy in order to work properly, we

now report a brief description of the ATP production in human cells. Most commonly

the cells use ADP (adenosine diphosphate) as a precursor molecule and then add a

phosphorus to it. In eukaryotes this process can occur either in the soluble portion of the

cytoplasm (cytosol) or in the energy-producing structures called mitochondria. In short, a

mitochondrion is a double-membrane system, consisting of inner and outer mitochondrial

membranes separated by an intermembrane space. The inner membrane forms numerous

folds (cristae), which extend into the interior (or matrix) of the organelle. Each of

these components plays distinct functional roles, with the matrix and inner membrane

representing the major working compartments of mitochondria (see Chapter 2).

Cellular and mitochondrial energy production. Mitochondria consume about

90% of mammalian oxygen and use it to synthesize ATP. Specifically, mitochondria

intervene in the last phase of cellular catabolism, after the enzymatic reactions of

intermediate metabolism, which degrade carbohydrates, fats and proteins into smaller

molecules such as pyruvate, fatty acids and amino acids, respectively. Through β-

oxidation and the Krebs cycle, mitochondria then transform these energetic elements in

NADH and FADH2, which are next degraded by the mitochondrial respiratory chain in a

process called oxidative phosphorylation (OXPHOS). During this process, the electrons

liberated by the oxidation of NADH and FADH2 are passed along a series of carriers,
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which consists of four enzyme complexes (complexes I to IV), and two mobile electron

carriers (coenzyme Q and cytochrome c), and finally transferred to molecular oxygen.

The whole set of these carriers is referred as respiratory chain or electron transport

chain (ETC). NADH and FADH2 hence play the role of energy substrate, through which

the transfer of electrons from complex I or II to complex IV mediates the extrusion of

protons (H+) from the mitochondrial matrix to the intermembrane space, leading to

a proton electrochemical potential gradient across the inner mitochondrial membrane,

which is known as the proton-motive force. The proton-motive force is used to drive

gradient-dissipating activities, including the generation of ATP by ATP synthase, which

is the main pathway for the return of protons into the matrix. This gradient is determined

by two components, which are the membrane potential ∆Ψm, which arises from the net

movement of positive charge across the inner mitochondrial membrane, and a chemical

potential (the pH gradient). Finally, ATP is transported outside the mitochondrion to

the cytosol by the adenine nucleotide translocator (ANT) and exchanged for ADP. The

membrane potential contributes most of the energy (typically ∼ 150 mV÷ 180 mV) that

is stored in the gradient. Specifically, at any instant of time, ∆Ψm represents the balance

between the processes that contribute to the generation of the proton gradient, and those

that consume it.

The ATP turnover reactions (which includes its synthesis, consumption and transloca-

tion) and the protons leaks of the inner mitochondrial membrane regulate the respiration

rate by affecting ∆Ψm (see Figure 1.2). When ∆Ψm increases, the rate of respiration is

inhibited, whereas a decrease in ∆Ψm causes an acceleration in the respiration rate.

I

II

Q III Cyt c IV

NADH

FADH2

H2O

↑ ∆Ψm ↓

− +

H+ leaks ATPturnover
reactions

e-

e-

e- e- e-

Figure 1.2: Electron transport chain. The ATP turnover reactions (synthesis, consump-
tion and translocation) and the proton leaks of the inner mitochondrial membrane regulate
the rate of respiration by affecting the mitochondrial membrane potential ∆Ψm. An increase
(↑) in ∆Ψm has an inhibitory effect (−) on the rate of respiration, whereas a decrease (↑) in
∆Ψm will accelerate the respiration rate (+). (Adapted from Moncada and Erusalimsky (2002)

[Fig. 1]).
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ATP regulation in the brain

A brief description of how the brain regulates its energy supply in response to different

information processing tasks is here made available. To sustain neuronal function

and the relative huge energy demand, the brain has developed neurovascular coupling

mechanisms in order to increase the flow of blood to regions in which neurons are

active. From recent studies it has emerged that neurotransmitter-mediated signaling

(particularly by glutamate) has a major role in regulating cerebral blood flow, and

that much of this control is mediated by astrocytes. The vascular energy supply

by neural activity is largely mediated by feedforward mechanisms. During these

processes, neurons either signal directly to blood vessels or activate astrocytes to

release vasoactive agents onto the vessels (Attwell et al. (2010)).

Specifically, the regulation of ATP in the brain can be represented through a block

diagram as in Figure 1.3. It is provided by the combination of two feedback loops:

the outer one on its own would provide relatively poor control; it is a legacy from

the control of glycolysis in simple cells. The main contribution is due to the inner

feedback loop, which, together with the outer one, ensures a consistent homeostatic

steady state level of ATP. However, this level is not sufficient in neurons, where extra

ATP is required by signaling; thus, the brain energy metabolism has to accommodate

rapid changes in ATP levels. This transient demand of energy is supplied by a fast

feedforward loop, through which astrocytic lactate is released.

neuron

astrocyte

Glycolityc
regulator

Glycolysis
Oxidative

phosphorylation

Oxidative
phosphorylation

regulator

Lactate
feedforward

Energy
demand
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Required
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Figure 1.3: Energy regulation and control structure for brain energy metabolism. For
most of the human cell types, the ATP supplies are regulated by a combination of two
feedback loops (Glycolytic regulator, and Oxidative phosphorylation regulator). The
extra ATP required by the neurons within the brain, associated with rapid transient ATP
demands, is provided through a fast feedforward lactate loop. (Adapted from Wellstead

and Cloutier (2012)).
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1.2.3 Mitochondrial dynamics and energy metabolism

Accepted that a good functioning of the brain is strictly related to good mitochondrial

performance in energy production, it is interesting now to explore the relationship between

energy metabolism and mitochondrial dynamics. Indeed, as mobile organelles that are

organized in dynamic networks, mitochondria continuously join by the process of fusion

and divide by the process of fission. This machinery of fusion and fission is referred

by biologists as mitochondrial dynamics. In Lu (2011), the authors discuss the possible

bidirectionality of this relation, such that organelles’ energy production depends on shape

changes of the mitochondria, and meanwhile fusion and fission processes are regulated by

the energy state of the cell. Here we summarize this bidirectional relation, which links the

mitochondrial capability of ATP production, with the mitochondrial membrane potential

∆Ψm, and with the proteins involved in fusion and fission processes. As we will see in

Chapter 2, the proteins that regulate mitochondrial fusion at most are the mitofusins

Mfn1 and Mfn2, and dynamin-like 120 kDa protein Opa1. They are dynamin-related

proteins, anchored in the mitochondrial membranes, and show GTPase activity (GTPase

is a large family of hydrolase enzymes that can bind and hydrolyze guanosine triphosphate,

GTP), which is essential for their mitochondria-fusing activity. Instead, the most relevant

proteins identified as fission mediators are Drp1 (dynamin-related protein 1), DNM1l

(dynamin 1-like protein), and fission 1 homologue protein (Fis1).

Possible control of mitochondrial dynamics by energy metabolism. The idea

that mitochondrial dynamics may be regulated by the energy state is supported by some

studies that show that mitochondrial fusion is altered by the collapse of ∆Ψm, through

the cleavage of Opa1 (Legros et al. (2002); Ishihara et al. (2003); Duvezin-Caubet et al.

(2006)). Furthermore, the phosphorylation of Drp1 by cAMP-dependent kinase activates

mitochondrial fission. Other works proposed the idea that Opa1, Mfn1, Mfn2 and Drp1

all require GTP to be performing, thus supporting the hypothesis of a bioenergetic

control of the mitochondrial dynamics. Indeed, the GTP formation by the Krebs cycle

followed by GTP extrusion by the ANT could directly modulate mitochondrial fusion

(Ježek and Plecitá-Hlavatá (2009); Ježek et al. (2010)). Moreover, Opa1 has shown to be

∆Ψm-dependent, since a loss in mitochondrial membrane potential triggers the cleavage

of long isoforms of Opa1 to shorter form, reducing the ability for mitochondrial fusion

(Legros et al. (2002)). These are only some examples of evidences used to corroborate

this first hypothesis. Yet, how these master regulators of energy metabolism interact

with the mitochondrial fusion and fission proteins also remains to be investigated.
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Possible control of energy metabolism by mitochondrial dynamics. Conversely

to the hypothesis described above, other evidences validated the idea that mitochondrial

dynamics may regulate energy metabolism, and not be regulated by it. For instance,

Tondera et al. (2009) evidenced a rapid stress-induced mitochondrial hyperfusion, accom-

panied by an increase in mitochondrial ATP production. Although the mechanism was

not completely clear, it may be hypothesized that mitochondrial fusion could increase

the speed of diffusion of energy metabolites within the mitochondrial tubules. Similarly,

the overexpression of Mfn2 causes the increase of ATP production and glucose oxidation

(Bach et al. (2005)). Opa1 may contribute to control energy production, since the removal

of m-AAA protease, which cleaves Opa1 in a ∆Ψm-dependent manner, limits the ability

of OXPHOS to supply ATP under conditions of high energy requirement (Ehses et al.

(2009)). Therefore, this observation supposes that changes in mitochondrial membrane

composition control energy metabolism, thus highlighting the complexity of the whole

system.

Given the high level of complexity of these correlated phenomena, it is likely that no-

one of the presented hypotheses is independent from the other, and that the relationship

between mitochondrial dynamics and energy metabolism is actually bidirectional. However

new investigations are needed to fill all the gaps.

1.2.4 Energy, mitochondria and neuronal oscillations

So far, we have introduced the existing link among brain, energy and mitochondria (and

mitochondrial dynamics). However, we have not mentioned any possible connection of

energy (and hence mitochondria) and the oscillatory activity of the brain, yet. Thus, in

this section we highlight the complex set of relationships existing between mitochondria

and brain signals’ oscillations, going through the large amount of energy required to

sustain neuronal oscillatory activity.

As we will discuss in Chapters 4, 5, and 6, functional magnetic resonance imaging

(fMRI) allows to record brain signals from different regions at the same time, as an

undirected measure of the electrical activity of the brain. Through these data, we are able

to define the so-called functional connectivity (FC) maps, that describe how correlated

the activity of different brain areas is. As we will discuss in Chapter 4, these maps

lead to consider the human brain as a network of nodes (brain areas, for instance) with

some specific topological characteristics that guarantee an optimal information sharing

among each of its parts. Specifically, brain areas are not uniformly connected, but a

small-world topology can be identified. That is, the network has clustering properties

similar to a regular lattice and path length similar to a random network. Moreover,
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in the complex system of brain, some regions act like hubs, since they have a number

of connected neighbors that largely exceeds the average. The presence of these hubs

increases the efficiency of the communication within brain areas. However, very less is

known about the physiological significance of this particular topology (small-worldness

and hubs presence). The link between different importance of nodes within the network

and its meaning can be analyzed through the combination of fMRI with other sources

of data, such as EEG (electroencephalography), which describe the frequency-specific

electrophysiological dynamics underlying synchronous fMRI-derived fluctuations.

For instance, a collections of evidences of correlation between FC and oscillations in

the gamma-band (γ-oscillations) have been summarized in Lord et al. (2013), where the

authors remarked how the relationship between fMRI synchronization patterns and γ-

band dynamics is coherent with the established role of this band’s dynamics in supporting

distributed neurocognitive phenomena, which require the coordination of large neuronal

ensembles. Namely, high frequency oscillations are thought to support the sharing

of information arising from distributed neural sources, thus enabling several mental

operations. The generation of γ-frequency oscillations has been related to the reciprocal

connectivity between membrane potentials of large ensambles of pyramidal neurons (PNs)

and fast-spiking inhibitory interneurons (INs). In addition, the authors supported the

idea that local γ-band activity may become synchronized across anatomically distant

regions in the brain thanks to the self-organization of the brain activity into a critical

state, thus enabling functional integration in large-scale networks.

Although there are several evidences of the correlation among mitochondrial dysfunc-

tion and abnormal patterns of synchronization in brain signals, the exact relationship

between these two phenomena is still unknown. The direct link between network syn-

chronization and energy demands may be found in the high local energy consumption in

the brain due to the maintenance of ionic homeostasis across neuronal cell membrane

during high frequency network oscillations. (Lord et al. (2013)). Thus, the retention of

γ-oscillations likely requires strong mitochondrial performance in providing ATP.

At this point, it is reasonable to assert that the metabolic processes in the brain not

only have the role to sustain basic physiological functions required in every tissues of the

human body to the survival of the same tissue, but also may be necessary in order to

shape the functional network topology of the brain.

Certainly, the mitochondrial function is not the only responsible for the network

activity of the brain, and it cannot be separated from the glucose supply, critical to the

sustain of high frequency oscillations. For instance, one hypothesis is that in specific

disorders, the impaired glucose uptake may trigger the reorganization of synchronized
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network activity in the brain to a topological configuration which is less metabolically

expensive, but which also leads to the detriment of integration capacity (Lord et al.

(2013)). In addition, the relationship could be bidirectional: this may be the case of

schizophrenia, where the development of metabolic disorder may be the consequence

(and not the cause) of abnormal network connectivity, which requires more glucose

consumption by the brain, and a consequent reduced glucose uptake by peripheral tissues.

1.2.5 Mitochondria and the brain

At this point, a complex link between brain and mitochondrial function cannot be

neglected. This relationship has emerged even more strongly during the last decades,

when the idea that neurological disorders may be linked to mitochondrial dysfunction

rose among scientists. The relationship between these two typologies of disorders is

not unrealistic, if we consider the large energy consumption of the brain and the main

role played by mitochondria, responsible for the ATP production. As mobile organelles,

mitochondria undergo transport and trafficking to the areas of cells where they are most

needed. Hence their number within the cells changes in relation to the amount of energy

required in the specific tissue. Therefore, it is not surprising that neurons within the

brain are highly populated by mitochondria and are sensitive to potential mitochondrial

dysfunction in ATP producing.

Indeed, one evidence of this relationship between mitochondria and brain can be

found in the neurological disorders that have been identified to have mitochondrial

dysfunction as a component of their pathogenesis (Chan et al. (2016)). In addition to

the primary mitochondrial disorders, which are due to mitochondrial or nuclear DNA

mutations, and cause defects in the respiratory chain, other multi-organ diseases have

been recently identified as secondary mitochondrial disorders. The most popular examples

are Parkinson’s Disease (PD) (Abou-Sleiman et al. (2006)), Alzheimer’s Disease (AD)

(Moreira et al. (2010)), Huntington’s Disease (HD) (Oliveira (2010)), Amyotrophic Lateral

Sclerosis (ALS) (Hervias et al. (2006)), and psychiatric disorders such as schizophrenia

and bipolar disorder (Clay et al. (2011)). All of the mentioned disorders are examples of

neurodegenerative diseases, thus confirming the hypothesis of a strong relation among

the two biological fields. Furthermore, mitochondrial dysfunctions increase with age, and

age is the most impairment risk factor for these neurodegenerative diseases.

Intriguingly, most of the neurological diseases that are classified as secondary mito-

chondrial disorders, are also affected by dysfunctions in neuronal network activity or

neuronal oscillations.
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Neurological diseases and mitochondrial dynamics. Recent studies have iden-

tified that several neurological diseases are not only related to the mitochondria, but

specifically to mitochondrial dynamics (fission and fusion), biogenesis (formation of new

mitochondria) and mitophagy (elimination of damaged mitochondria). In addition to

their direct effects on mitochondrial shape, length, number, and location, mitochondrial

dynamics are critical for the maintenance of the integrity and homogeneity of mitochon-

dria. Indeed, impaired mitochondrial fusion has been reported to cause mutations and

deletion in the mitochondrial DNA, thus resulting in the accumulation of dysfunctional

mitochondria. Due to the lack of efficient DNA repair systems, mitochondria are relatively

vulnerable to deleterious damage, thus defective mitochondria need to be cleared in a

timely manner. Specifically, mitochondrial fission has been shown to participate in the

elimination of damaged mitochondria by mitophagy. Moreover, as highlighted in the

previous section, mitochondrial fusion and fission proteins could be directly involved in

the assembly of respiratory complexes, underscoring the important role of mitochondrial

dynamics in regulating mitochondrial function.

The deficiency of almost all mitochondrial fusion and fission regulators or the expres-

sion of dominant negative mutants of mitochondrial fusion and fission regulators impairs

mitochondrial movement and proper localization, leading to mitochondrial depletion in

neurites and synapses and eventually to dendritic spine and synaptic loss (Baloh (2008);

MacAskill et al. (2009)).

The crucial role of mitochondrial dynamics for neuronal function is evidenced by the

fact that genetic mutations in key regulators of mitochondrial dynamic cause dominantly

inherited neurological diseases. Some examples can be found in Table 1.1, where the

diseases are reported with the coexisting altered phenomena of mitochondrial dynamics.

Although the widespread presence of mitochondrial dynamic abnormalities and

dysfunction in various neurodegenerative diseases suggests that the cause of altered

mitochondrial dynamics could be multifactorial, emerging studies have implied that the

manipulation of mitochondrial dynamics may be a common therapeutic approach to

improve mitochondrial and neuronal function and prevent neurodegeneration. Thus our

interest motivates the employment of a mathematical and control theoretic modeling

approach to get new insights on the mechanisms of mitochondrial dynamics and their

regulation.
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Impared
Disorders

phenomenon
Species References

ALS ↑ fission rat Song et al. (2013)
AD ↑ fission mouse Cho et al. (2009)
HD ↑ fission human, mouse, rat Haun et al. (2013)
PD ↑ fission human Santos et al. (2015)

ARSACS ↓ fission human, mouse
Bradshaw et al. (2016)
Girard et al. (2012)

ARCMT2K ↓ fission human Niemann et al. (2009)

CMT4A ↓ fission human
Cuesta et al. (2002)
Niemann et al. (2009)
Sivera et al. (2010)

CMT2K ↓ fission human
Niemann et al. (2009)

CMT2A2 ↓ fusion human, rat
Misko et al. (2012)
Züchner et al. (2004)
Misko et al. (2012)

ADOA ↓ fusion human, rat
Zanna et al. (2007)

Table 1.1: Examples of mitochondrial fusion and fission impairment in neurological diseases
(see Flippo and Strack (2017), Table 1). Abbreviations: ALS, Amyotrophic lateral sclerosis;
AD, Alzheimer’s Disease; HD, Huntington’s Disease; PD, Parkinson’s Disease; ARSACS,
Autosomal-recessive spastic ataxia of Charlevoix-Sanguenay; ARCMT2K, Autosomal recessive
Charcot-Marie-Tooth Disease, type 2K; CMT4A, Autosomal recessive Charcot-Marie-Tooth
Disease, type 4A; CMT2K, Autosomal dominant Charcot-Marie-Tooth disease; CMT2A2,
Autosomal dominant Charcot-Marie-Tooth disease, type 2A2; ADOA, Autosomal dominant

optic atrophy.

1.2.5.1 Motivational examples

To explain how mitochondrial and neurological dysfunctions occur together, and how

network activity and neuronal oscillations are related to these pathologies, we briefly

report some characteristics of Huntington’s and Parkinson’s Diseases.

Huntington’s Disease (HD). Originally known as Huntington chorea due to the

classic symptom of dancing movement (chorea), HD occurs as a consequence of a mutation

in the huntingtin gene. It presents with cognitive and psychiatric disturbances and motor

impairment (Sturrock and Leavitt (2010)). As other neurological disorders, HD is

extremely difficult to nurse, since it is only at the larger stage of the disease, when it

is very hard to reverse the degeneration process, that the main symptoms emerge. The

evidence of mitochondrial dysfunction in HD are threefold: first, severe respiratory chain

defects, especially in complex II-III (Gu et al. (1996)); second, there are evidence of

regionally-specific damage in the mitochondrial DNA (mtDNA), especially within the

parietal, frontal and temporal cortex of HD patients (Polidori et al. (1999); Horton
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et al. (1995)). Finally, more recently, also links among HD and impaired mitochondrial

dynamics have emerged through immunohistochemical analysis of mitochondria extracted

from medium spiny neurons in patients’ brain. Specifically, the analysis has shown

disrupted mitochondrial morphology that results from increased fission and reduced

fusion, creating fragmented mitochondria (Kim et al. (2010)). Mutant huntingtin binds to

the mitochondrial fission protein Drp1 (Song et al. (2011)) and upregulates its enzymatic

activity increasing mitochondrial fission, that leads to several downstream impairments,

like reduced mitochondrial biogenesis, synaptic degeneration, and impaired mitochondrial

trafficking (Shirendeb et al. (2011)).

From a neuronal network point of view, EEG analysis in HD patients revealed several,

and sometime controversial, abnormal oscillatory patterns in EEG power, which correlates

with neurological and neurocognitive impairment of the patients (see De Tommaso et al.

(2003); Painold et al. (2010); Starr et al. (2008), just to mention a few).

Parkinson’s Disease (PD). Another progressive disease that combines neurological

and motor disorders is Parkinson’s Disease. Indeed, PD patients present both motor

symptoms, like tremor, rigidity, and bradykinesia, and cognitive impairments, as well as

psychiatric symptoms (Aarsland et al. (2010); Forsaa et al. (2010)). PD has been related to

the loss in dopaminergic neurons of substantia nigra pars compacta in the basal ganglia,

and to the misfolding of the presynaptic protein, α-synuclein. Similarly to HD, the

relationship between PD and mitochondrial dysfunction is widely accepted by scientists

(Exner et al. (2012)). Specifically, PD not only correlates with significant impairment

within the respiratory chain, but also with an high deletion in mitochondrial DNA in the

substantia nigra (Bender et al. (2006)). Furthermore, the mutation of three specific genes

(Parkin, Pink1 and DJ− 1), associated with PD patients, highlights the relation of this

disease with mitochondrial dynamics and mitophagy. Parkin encodes proteins needed

to recruit damaged mitochondria and promote autophagy. Moreover it is also at the

core of other mitochondrial functions, including prevention of mitochondrial swelling and

protection against mitochondrial cell death. Pink1 mutation causes a fragmentation of

mitochondria, which leads to the disruption of mitochondrial morphology. At physiologic

levels, both mitochondrial fission and mitophagy are beneficial, working together to

eliminate damaged and depolarized mitochondria, however, an impairments of either

process can lead to increased oxidative stress and reduced ATP production (Archer

(2013)). Finally, DJ− 1 mutations cause increased vulnerability to oxidative stress (ROS)

and hypersensitivity to complex I inhibition.

The link between PD and neuronal network activity emerges from abnormal EEG

oscillatory activities observed in PD patients, characterized by a reduction in the alpha
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and beta rhythm activity, concurrent with an increase in the slower delta and theta wave

activity (Soikkeli et al. (1991)). Moreover, recent surgical procedures (see, for instance,

Deep Brain Stimulation, DBS), have revealed excessive high frequency synchronization in

subthalamic nucleus and basal ganglia, in patients with tremor (Levy et al. (2000, 2002)).

However, the exact mechanism through which this network reorganization happens, is

still unclear.
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Background: mitochondria, energy and

mitochondrial dynamics

“Over the long term, symbiosis is more useful than parasitism. More fun, too. Ask any

mitochondria.”

Larry Wall, 1997

First discovered in the 1800s, mitochondria are rod-shaped organelles, found in nearly

all eukaryotes, including plants, animals, fungi, and protists. They are large enough to

be observed with a light microscope, and the name mitochondria was coined to reflect

the way they looked to the first scientists to observe them, stemming from the Greek

words for thread and granule. For many years after their discovery, mitochondria were

commonly believed to transmit hereditary information, until the mid-1950s, when a

method for isolating the organelles intact was developed and the modern understanding

of mitochondrial function was worked out.

The elaborate structure of a mitochondrion is very important to the functioning of

the organelle (see Figure 2.1).

Two specialized membranes encircle each mitochondrion present in a cell, dividing the

organelle into a narrow intermembrane space and a much larger internal matrix, each of

which contains highly specialized proteins. The inner membrane is highly convoluted so
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Figure 2.1: Cartoon of a mitochondrion and its parts. (Images from Semedo (2015)).

that a large number of folds called cristae are formed.

Mitochondria are multi-functional organelles of the eukaryotic cell, with a main

function consisting in generating ATP through oxidative phosphorylation (OXPHOS)

and a broader involvement into other processes like fatty acid oxidation, apoptosis, cell

cycle and cell signaling (Tam et al. (2015)). However, mitochondria are also a main

cause of cell destruction due to the production of reactive oxygen species (ROS) that

can damage DNA and proteins (Disatnik et al. (2015)). Mitochondrial dysfunctions in

regulating these concurrent and competing tasks are hence very dangerous for the whole

organism and have been associated with aging and a large number of diseases, including

cardiovascular, metabolic and neurological pathologies.

One of the main peculiarities of these organelles consists in possessing their own

genome, the so-called mitochondrial DNA (mtDNA), which encodes proteins involved in

OXPHOS and, as a consequence, in the ATP production. The composition of mtDNA

can vary with respect to the different cell type and tissue, and, moreover, in the same cell

a condition of heteroplasmy can be observed (Tam et al. (2015)), which corresponds to the

coexistence of wild type and mutant mtDNA. It has been noted that age-related deficit

in mitochondrial functions is associated with the accumulation of mutant mtDNA within

the cells and more generally mutations in mtDNA (e.g. point mutations, rearrangements

and deletions) can have drastic consequences in cell life.

Contents
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2.1 Mitochondria and mitochondrial dynamics

Mitochondria are organized in a dynamic tubular network that is continuously reshaped by

opposite processes of fusion and fission among mitochondria. This dynamics changes the

morphology of the organelles and influences their sub-cellular location and function (Guo

et al. (2013)). Specifically, mitochondrial fusion is the process by which two mitochondria

merge in order to form a unique organelle, whereas fission describes the division of

a fused mitochondrion into two organelles. This fusion/fission machinery, referred as

mitochondrial dynamics, enables the exchange of mitochondrial components among

different organelles in the cell, including metabolites, proteins and mtDNA: in this way,

protein products of wild type mtDNA can complement missing and defective proteins

due to mutant mtDNA (Tam et al. (2015)). Impairment in either fusion or fission can

limit mitochondrial motility and energy production as well as increase oxidative stress

and, more specifically, the failure of this machinery has been shown to be linked with

neurodegenerative and metabolic diseases.

It is widely accepted that mitochondrial dynamics (fusion and fission), together with

mitochondrial autophagy (mitophagy, i.e. the mitochondrial degradation) and biogenesis

(the formation of new mitochondria) constitute a quality control process, which is able

to maintain mitochondrial health by performing a segregation of the dysfunctional

mitochondria. This process makes damaged mitochondria unable to fuse and subjected to

elimination. Remarkably, mitochondria seem indeed equipped with the ability to regulate

and adapt their metabolic capacity and mtDNA through this dynamic behaviour (Hyde

et al. (2010)).

In this interplay scenario, understanding the process, through which mitochondria

perform a quality control of mtDNA integrity and the preservation of their bioenergetic

function, becomes important and of large interest among the scientists. Mitochondrial

performance can be measured with respect to their bioenergetic capacity (i.e. ATP

production), damage accumulation (ROS production and accumulation of mutant mtDNA)

and metabolic fitness (Chauhan et al. (2014)). In addition, mitochondrial health is linked

to the measurement of the membrane potential ∆Ψm, which has been shown to be linearly

related with the ATP production in an unstressed situation (Patel et al. (2013)).

More interestingly from our point of view, the central role of mitochondria in cell life

justifies the existence of multiple (and robust) control layers ruled by the cell in order

to coordinate the mitochondrial activity between bioenergetic demands and external

stimuli. In particular, in (Hyde et al. (2010)) the authors differentiate between local
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and global control, which play at individual mitochondrial level and at whole cell level,

respectively. The former can yield to a loss of mitochondrial membrane potential ∆Ψm

and stimulate the isolation of the mitochondrial units from the network in order to

increase the probability of mitophagy, whereas the latter is related to the cell cycle. In

this picture, mitochondrial biogenesis is a key phase of the cell cycle, which increase

mitochondrial mass, respiratory capacity and energy production.

2.1.1 Phenomena description and regulation

Given these premises, the rationale behind our work is to design a mathematical model to

analyze the full mitochondrial dynamics as a system of different phenomena that jointly

yield quality control over the cell health. In general, such an approach can provide a

systemic overview of the interplay among the several concurrent relations in order to gain

a deeper comprehension of the cell self-regulation loops. In particular, this model can

help to analytically study the role of each phenomenon and of a possible feedback link

with the ATP demand to support the experiment design phase for more targeted studies.

In order to simplify the dynamics and highlight the regulation loops of interest, the

main phenomena and reaction species that are considered in the model are summarized

in the schematic picture of Fig. 2.2 and recalled in the following.

Biogenesis. Mitochondrial biogenesis can be defined as the growth and division of

pre-existing mitochondria. Its functional purpose is to maintain mitochondrial quality

and ensure sufficient ATP production (Nilsson et al. (2015)). Mitochondrial biogenesis is

regulated in response to external stimuli and cellular stress through signaling cascades

and transcriptional complexes that promote the formation and assembly of mitochondria

(Dominy and Puigserver (2013); Tam et al. (2015)). It can be induced by exercise, fasting,

thermogenesis, oxidative stress, and inflammatory cell stress (Cherry and Piantadosi

(2015)). Furthermore, in order to maintain a correct mitochondrial biogenesis, a coor-

dination of more than a thousand of proteins is needed. Since the majority of these

proteins are encoded in the nucleus, there exists a process for targeting, importing and

assembling1 to ensure a correct mitochondrial dynamics (Jornayvaz and Shulman (2010)).

The activity of multiple transcription factors during the mitochondrial biogenic

process is coordinately regulated by the transcriptional co-activator PPARγ (namely the

peroxisome proliferator-activated receptor γ co-activator 1-α, PGC-1α).

PGC-1α is a co-transcriptional regulation factor, which plays a central role in the

1The sorting and assembly machinery (SAM) is a protein complex that operates after the translocase
of the outer membrane, to mediate insertion of β-barrel proteins into the outer mitochondrial membrane.
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Figure 2.2: Schematic representation of mitochondrial dynamics. Healthy mitochondria are
in green, damaged ones are brown and the free ATP level are depicted as batteries. Biogenesis
(upper-left corner) is regulated by factor PGC-1α, which activates a set of transcription factors
(NRF-1, NRF-2, ERR, RXR, PPAR), and is clearly depending on the ATP level (through
energy deprivation and the ratio AMP/ATP). Fusion/fission machinery (center) is controlled
by the balance of Pink1 and Parkin through Drp1, Opa1, Mfn1 and 2. Mitophagy (bottom-left
corner) is driven by aging through ROS and OXPHOS and directly by mtDNA mutation.
Damaged, healthy and fused mitochondria (obtained from fusion of damaged and healthy)

contribute to the generation of energy.

regulation of mitochondrial biogenesis and is itself regulated by other factors, as AMPK

and p38 MAPK. In particular, PGC-1α induces mitochondrial biogenesis by activating

transcription factors, as NRF-1 and NRF-2, which promote and regulate the expression of

TFAM and TFBs (Dominy and Puigserver (2013); Jornayvaz and Shulman (2010)), PPARs

and ERRs α and γ. The two orphan nuclear receptors ERR α and γ target a common

set of promoters involved in the uptake of energy substrates, production, and transport

of ATP across the mitochondrial membranes (Ventura-Clapier et al. (2008)). With a

structure and a function similar to those of PGC-1α, PGC-1β induces mitochondrial

biogenesis and increases basal oxygen consumption (Jornayvaz and Shulman (2010)). The

main signaling modules that control mitochondrial biogenesis are AMP-Activated Protein

Kinase (AMPK), calcium signaling, cAMP pathway and mTOR pathway. Since we are

particularly interested in the relationship between ATP and mitochondrial dynamics, we
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focus on AMPK. In particular, AMPK regulates biogenesis by controlling intracellular

energy metabolism in response to acute energy need. It is activated by the augmented

ratio AMP/ATP led by β-GPA. Essential to this process there are the AMPK-mediated

activation of PGC-1α and SIRT1. AMPK can directly phosphorylate and activate

PGC-1α (Jäger et al. (2007)). On the other side, through NAMPT-dependent and

-independent mechanisms, AMPK is also able to increase NAD+ levels, which promotes

SIRT1 activity and the activation of PGC-1α. Hence, AMPK, SIRT1 and PGC-1α

together play a fundamental role in response of situations of caloric restriction and

exercise (Dominy and Puigserver (2013)). It has been shown that a decrease in the

AMPK activity appears during aging and can be related to mitochondrial dysfunction

and impairment of intracellular lipid metabolism (Jornayvaz and Shulman (2010)).

Since most of the signaling involved in the regulation of biogenesis is very hard to

be measured (when it can be measured at all), the biogenesis regulation loop is here

modeled through an Hill function, a mathematical tool often used to describe several

reactions steps by means of only one contribution term. Given our purpose of studying

the relation between the mitochondrial dynamics and the energetic level, we assume that

an Hill function depending on the free ATP level can be used to describe this biogenesis

feedback regulation.

Mitophagy. Mitophagy refers to the degradation of mitochondria through lysosomes.

It can be both random and selective, since it is related to two different cell states. In

the first case, mitophagy takes part to whole cell autophagy, while in the second case, it

selectively degrades only defective mitochondria. In particular, we are interested in the

latter, since it enables a sort of quality control of the health level of the cell: through

this process, damaged organelles are hence isolated and subsequently catabolized via

lysosomal degradation.

One of the most analyzed mitophagy pathway involves two genes, Pink1 and Parkin.

Specifically, Pink1 is a mitochondrial localized kinase, imported and degraded with the

mitochondria. The accumulation of Pink1 phosphorylates several proteins to recruit and

activate Parkin Okatsu et al. (2015). Then, Parkin targets the autophagic membrane and

enables mitophagy. Since Parkin is selectively enriched on dysfunctional mitochondria,

healthy organelles are less subjected to degradation.

Interestingly, the energetic state of the cell regulates also this phenomenon: namely, mi-

tophagy increases during oxidative conditions, which promote ATP production. Although

it can seem in contrast with the idea that ATP is produced by healthy mitochondria, it

is worth to be noticed that enhanced respiratory chain activity may lead to an increased

production of reactive oxygen species with detrimental effects on mitochondrial func-
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tions. On the other side, in situations of energy demand, mitophagy promotes energetic

efficiency through the degradation of dysfunctional organelles (Mishra and Chan (2016)).

It has been reported that mutations of Pink1 and Parkin are linked to Parkinson’s

disease (Jones (2010)) and a dysfunction of mitophagy has been related to Hunting-

ton’s disease and other neurodegenerative diseases (Hwang et al. (2015)), although the

mechanism is not well known yet.

Fusion-fission. Fusion and fission represents the two main processes of mitochondrial

dynamics, and refers to the ability of these organelles to merge each other, and to split

up. The opposite phenomena of fusion and fission help mitochondria to regulate the

cellular ATP production and minimize the accumulation of mutant mtDNA during aging

(Chauhan et al. (2014)).

As a matter of fact, the fusion process involves mitochondria with high mitochondrial

membrane potential ∆Ψm, which is related to healthy organelles, and it has been observed

that approximately 30% of fusion events are followed by fission leading to a statistically

significant difference in the ∆Ψm of the two daughter organelles. This asymmetry

influences the relative capacity for ATP and reactive oxygen species (ROS) production

of the two daughters, playing a main role in quality maintenance, although it is currently

not well understood. Nonetheless, this fact suggests that mtDNA occurrences, which

provoke bioenergetic dysfunction and loss of ∆Ψm, would be selectively excluded from

the mitochondrial network by fission and subjected to mitophagy (Hyde et al. (2010);

Patel et al. (2013)).

Since mitochondria are supplied with two different membranes (outer and inner), two

fusion steps are needed, mediated by three large GTPases of the dynamin superfamily:

Mitofusin 1 and 2 (Mfn1 and Mfn2) and Optic Antrophy (Opa1) (Qi et al. (2013); Chauhan

et al. (2014)). Specifically, Mfn1 and Mfn2 are responsible of the outer membrane fusion,

whereas Opa1 allows the fusion of the inner membrane.

Fusion rate is not constant over the whole organism, yet it is cell type and tissue

dependent. Similarly, this phenomenon seems to assume different levels of importance

in different tissue: for example, since it influences the OXPHOS activity, through

the regulation of mtDNA levels, mitochondrial fusion becomes particularly relevant

in cerebellar mitochondria. Moreover, it has been shown that the morphology of the

mitochondria within the cells induces different energetic states of the cells: elongated

mitochondria increase ATP production, and, on the other way, conditions that increase

mitochondrial ATP function enhance fusion (Mishra and Chan (2016)).

Conversely, a decrease in fusion rate causes mitochondrial fragmentation and reduces

content exchange between mitochondria, which seems to be related to mitochondrial
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dysfunctions. This situation of impaired fusion can be linked to issues of the membrane

potential, namely, when the membrane potential dissipates, the long isoform of Opa1 is

completely cleaved and inactivated by the activation of Oma1, led by several sources of

cellular stress.

In the case of a mtDNA-related disease, cells defect in OXPHOS and this can cause

defects in the inner membrane fusion. Then, dysfunctional mitochondria remain isolated

mitochondria and are more likely subjected to mitophagy. In this way, cells implement

a quality control strategy preventing the spread of mtDNA mutations to wild-type

mitochondria.

In literature, other hypotheses on the regulation of fusion have been proposed: some

studies showed that oxidative stress can enhance fusion (Shutt et al. (2012)), whereas other

researchers linked MAPK pathway with Mfn1 (Pyakurel et al. (2015)). Moreover, other

authors have suggested that fusion is controlled by local concentration of GTP (Boissan

et al. (2014)).

On the other hand, mitochondrial fission is regulated by dynamin-related protein 1

(Drp1), a large GTPase obtained by the mitochondrial outer membrane through several

receptor proteins (Mff, Fis1, Mid49, Mid50) (Mishra and Chan (2016)).

Drp1 regulation is a complex mechanism, which includes, among others, phospho-

rylation, that can both enhance and inhibit Drp1, depending on the site. Inhibition of

Drp1 causes mitochondrial tubulation and, as a consequence, promotes ATP production

and limits mitochondrial degradation. On the other side, inhibition of mitochondrial

OXPHOS enhances fission phenomena.

Therefore, fission regulation can also happen at the level of the Drp1 receptor proteins.

In particular, it has been observed that a loss of mitochondrial fission factor (Mff) results

in a dramatic mitochondrial elongation (Losón et al. (2013)). The connection between

energy deficiency and fission increase is due to the fact that Mff is a phosporylation

substrate for AMP kinase, which in turn activates Mff and fission (Toyama et al. (2016)).

As a final remark, we report that the fission phenomenon is related not only to the

organelles morphology, but also to mitochondrial transport, mitophagy and apoptosis.

Most interestingly, several diseases, particularly neurodegenerative and cardiovascular

ones, have been associated with a loss of mitochondrial fusion-fission balance.

Damage/aging. Under the term damage we gather several phenomena that can affect

mitochondria health and, in particular, we focus on those that can be related to aging.

Aging has been widely correlated with the accumulation of ROS, which promotes

an increase of mutations in mtDNA. In addition, dysfunctional mtDNA can induce
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more oxidative stress, damaging mitochondrial membrane proteins and lipids, and hence

compromising the ATP production capacity of mitochondria (Chauhan et al. (2014)).

Mutations in mtDNA can cause defects in the OXPHOS process. In a single cell

both wild-type and mutant mtDNA can coexist and define a condition of heteroplasmy.

Moreover, the mtDNA composition can vary with respect to different tissues. Mutant

mtDNA molecules have been shown to accumulate with age in a variety of tissues and

organisms, thus reinforcing the hypothesis that mutant mtDNA possibly contribute to

the general age-related decline in mitochondrial function observed in almost all tissues

(Chinnery et al. (2002)).

For what concerns ROS, it could be increased by the inhibition of the respiratory

chain, which leads to a reduction of its electron-carrying components and a consequent

increase in ROS production. Moreover, inhibition of ATP synthesis can also lead to a

reduction of respiratory carriers and an increase in mitochondrial membrane potential,

which also promotes radicals production.
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3
Mitochondrial dynamics and energy: a

mathematical model

“All models are wrong, but some are useful”

George E.P. Box

In this chapter we propose a prey-predator non-linear mathematical model to describe

the dynamic relations between a population of healthy, damaged and fused mitochondria

and the available ATP within a cell. We assume that the sub-population of fused

mitochondria is composed by the organelles generated by the fusion between healthy and

damaged mitochondria (a couple of damaged mitochondria cannot fuse together, while

the product of the fusion of two healthy organelles remains in the healthy population).

In particular, our objective is to design a model and to define an analysis procedure

aimed to capture the essence of the population processes (easily associated to the

observed phenomena), and to highlight the principal regulation loops that play a role

into mitochondrial dynamics.

In this regard, we take into account the cell demand in response to some energetic

stress and the ATP production by healthy, damaged and fused mitochondria.

In particular, we conjecture and model a feedback loop driven by ATP to regulate

the mitochondrial biogenesis: loosely speaking, a decrease of the free ATP level implies
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an increase in biogenesis, in order to enlarge the mitochondrial mass and make the cell

able to respond to possible energy demands by the cell. Throughout the chapter, we will

use the expression free ATP level to indicate the quantity of available ATP in the cell

(measured in moles).

Although the effects of the dynamics on the free ATP level are the result of a

complex reaction chain, we believe that modeling the ATP as the explicit output of the

mitochondrial population system allows a significant insight into the energy production

process for regulatory purposes.

To validate the relevance of this feedback loop, we employ tools from system theory to

analyze both a model with fixed biogenesis rate, where the feedback is not present, and a

more complex model where this link is enabled.

Both these models represent the interplay between biogenesis and mitophagy through

damage/aging and the dynamic machinery of fusion and fission as two different processes.

Also, the fluxes from healthy to damaged population due to damage-related phenomena

(which incorporates both mutants mtDNA and ROS production) are quantitatively

described through ODEs, together with the different ability in producing energy by

healthy, damaged and fused classes. The ATP consumption by the cell is considered as a

function of an external input u, which can be considered fixed or variable during time.

Each of these phenomena is described through a specific rate constant: we implement

a sensitivity analysis of the populations’ size and the available ATP level with respect

to each parameter, in order to understand the particular role of each process into the

complex mitochondrial quality control.

These models are here formalized and analyzed through system theoretical tools to prove

that they are well-posed and to infer the parameters’ condition that guarantees the

system stability. In particular, our approach highlights that the presence of a feedback

allows to regulate the mitochondrial dynamics even in presence of unexpected events or

exogenous disturbances related to the energy demand by the cell. By means of stochastic

and sensitivity analyses, we tested the capability of the model to account for different

observed behaviors.

In this context, as a scenario example, it will be discussed how the phenomena of biogenesis,

fission/fusion and mitophagy interact in a situation of increased damage affecting the

nominal free ATP level produced by the mitochondria, in order to compensate for the

damage and support the energy demand. As often appears in natural phenomena, this

can be regarded as a robustness property of the system to improve the survival possibility.

Conversely, from a translational medicine perspective, this may suggest the possible

target of a specific control action in order to compensate for a situation of damage.
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Notation

For sake of clarity and in order to avoid ambiguities, we now report the symbols

used in this chapter. The parameters of the models are reported in Table 3.1.

xh [mol]: state variable (quantity of healthy mitochondrial population)

xd [mol]: state variable (quantity of damaged mitochondrial population)

xf [mol]: state variable (quantity of fused mitochondrial population)

xATP [mol]: state variable (quantity of free available ATP)

x = [ xh xd xf xATP ]T: state vector variable

x̄ = [ x̄h x̄d x̄f x̄ATP ]T: equilibrium state vector

ū [s−1]: steady state value for ATP consumption rate

σ(F): set of the eigenvalues of matrix F

λ: eigenvalue variable (λ1, λ2, λ3: eigenvalues with the larger real part)

ΠF(λ): characteristic polynomial of matrix F

A, B, C, D, E, F : constant values

r, `: constant ratios among model parameters

C
(1)
pos, C

(2)
pos, Cψ12 : systems of conditions

x∗-n.c.: nullcline of state variable x∗ (∗ ∈ {h,d, f,ATP})

den(x̄d): denominator of xd-n.c as a function of x̄d

x̄ATP,u: new steady state of xATP, when the input u 6= ū

∆x̄ATP and ∆ū: variation of x̄ATP and u w.r.t. the nominal steady state

W (s): transfer function (ω0: natural frequency; ξ: damping coefficient)

Tr: rise time of the 2-nd order system

Ts,2%: settling time (2%) of the 2-nd order system
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3.1 The model

The approach proposed in this work consists in describing mitochondrial dynamics

through a prey-predator model, where the roles of preys and predators are played by

healthy mitochondria (xh) and damaged mitochondria (xd), respectively. These two

classes are also allowed to fuse themselves and give raise to the healthy-damaged fused

mitochondria (xf)1. Moreover, the model includes the dynamics of the free ATP within

the cell, as produced by the whole mitochondrial population and consumed in response

to some energetic stress.

With reference to the schematic of Fig. 3.1 we consider the main phenomena of

interest as related to a specific dynamic rate.

α

δ
ϕ

ψ1

ψ2

µ

β

ε η

u

(a) without feedback

α

δ
ϕ

ψ1

ψ2

µ

β

ε η

u

(b) with feedback

Figure 3.1: Model of the mitochondrial dynamics of Fig. 2.2. The energetic stress input u is
represented by the red arrow, while all the other phenomena are indicated by the black arrows.
The characteristic rate parameters are indicated (α: biogenesis; δ: damage; µ: mitophagy;
ϕ: fusion among healthy and damaged mitochondria; ψ1: fission to healthy organelles; ψ2:
fission to damaged mitochondria; β, η, ε: ATP prodution by healthy, fused, and damaged
mitochondria, respectively). Models (a) and (b) differ for the feedback loop from free ATP

level to biogenesis (dark gray bold arrow).

Biogenesis (α [s−1]) We consider that the biogenesis flux depends on rate α [s−1]. At

first, this parameter is chosen not to change in response to variation in the level

of free ATP concentration (Fig. 3.1(a)): α = α0. However, as motivated by the

description in Sec. 2.1.1, we propose also a model in which the rate of the biogenesis

flux is depending on the free ATP level (Fig. 3.1(b)): since we are interested in the

1We recall that we consider the fusion between healthy mitochondria as nourishing the healthy class,
while damaged mitochondria cannot fuse within the damaged class.
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activation of PGC-1α through AMPK (see Chapter 2 for details), we design the

biogenesis rate as the sum of a constant rate α0 and an Hill function of the ATP

level (xATP), characterized by a constant value α, a constant k and a coefficient h:

α = α0+α1/
(
k + xhATP

)
. In this way we introduce a feedback loop ATP-dependent,

which itself includes several reaction steps.

The choice of using a non-constant biogenesis rate is common in literature, where

different strategies can be found. Namely, whereas in Figge et al. (2012) it is

described as a function of the mitophagy effect, in Patel et al. (2013) the biogenesis

rate is characterized by a sigmoidal function with respect to the difference between

the actual number of mitochondria and the nominal one. As a consequence, the

formation of new mitochondria is subjected to a feedback control to avoid instability.

The authors of Dalmasso et al. (2017) proposed to design mitochondrial biogenesis

as an ATP-dependent function, as we do; nevertheless, we use a different model

and an ATP-biogenesis link that can be analytically studied.

Mitophagy (µ [s−1]) As suggested by Hoitzing et al. (2015) and Patel et al. (2013), we

design the mitophagy rate, due to Pink1 and Parkin activation, through a constant

rate. In order to include the selective enrichment of Parkin in dysfunctional

isolated mitochondria, we assume that mitophagy can affect only unfused damaged

organelles, whereas the other classes cannot be degraded.

Fusion (ϕ [mol−1 s−1]) Because mitochondria spend the majority of their life cycle

as solitary organelles Hyde et al. (2010), in our model fusion between healthy

mitochondria is not described. On the other hand, the mechanism through which

healthy and damaged mitochondria mix up and redistribute their health among the

daughter-organelles is still not so clear and hence of research interest. Hence, fusion

between healthy and damaged mitochondria together is represented explicitly in

the model through a constant rate, following the idea proposed in Hoitzing et al.

(2015) and Dalmasso et al. (2017).

Fission (ψ1 [s−1], ψ2 [s−1]) A fraction of fusion events is shown to be followed by

statistically significant difference in the health level of the two daughters. This

fact is due to the fission redistribution of the health quality within the cell, by

the isolation of the damaged part: two different rate values ψ1 and ψ2 are used to

describe the flux from fused to healthy mitochondria and from fused to damaged

ones, respectively. This choice allows us to test the model behavior for different

rates ratio.

Damage (δ [s−1]) The possible mitochondrial damages caused by mutant mtDNA, ROS
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production or aging are all included into the same process of damage.

Since we gather different sources of damage with the same rate, as a first approxi-

mation we assume that δ is constant as in Patel et al. (2013) and Dalmasso et al.

(2017).

Energy: The energetic state of the cell is dependent on mitochondria morphologies Mishra

and Chan (2016), therefore the ATP turnover is modelled as the sum of the ATP

production by healthy (β [s−1]), damaged (ε [s−1]), and fused (η [s−1]) mitochondria.

Also, the bioenergetic demand from the cell is given as the input (u), which causes

a decrease of the free ATP level.

The overall system dynamics follows as a set of non-linear ordinary differential equations

(ODEs) referring to the size of healthy xh, damaged xd and fused xf mitochondrial

subpopulations, and the quantity of free energy (in form of ATP) xATP, which are

summarized into the state vector x := [ xh xd xf xATP ]T:

ẋh = αxh + ψ1xf − δxh − ϕxhxd (3.1a)

ẋd = δxh + ψ2xf − ϕxhxd − µxd (3.1b)

ẋf = ϕxhxd − (ψ1 + ψ2)xf (3.1c)

ẋATP = βxh + εxd + ηxf − u · xATP (3.1d)

where

α = α0 (3.2a)

in case of no energetic feedback (model (3.1)-(3.2a) as in Fig. 3.1(a)), and

α = α0 +
α1

k + xATP
(3.2b)

in the case with energetic feedback (model (3.1)-(3.2b), Fig. 3.1(b)). A list of the nominal

parameters’ meaning and value is given in Table 3.1.

3.1.1 Equilibrium analysis without the ATP feedback loop

One of the main characteristics of a dynamical system is the description of its behavior

around the equilibrium points (if any), defined as the steady state x̄ := [ x̄h x̄d x̄f x̄ATP ]T

and constant input ū, such that ẋ
∣∣∣
(x=x̄, u=ū)

= 04.

Specifically, model (3.1)-(3.2a) is characterized by two equilibria: the first (trivial

equilibrium) with all species’ dimensions equal to zero (x̄ = 04) and any value for the
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Parameters Values Biological evidence

and description (Tested Range) and literature

δ [s−1] 9.5× 10−2 Variable w.r.t.
damage rate ([0.05− 0.2]) internal/external factors
α0 [s−1] Optimized value in

biogenesis rate
5.77× 10−4 or 0

Dalmasso et al. (2017)
α1 [mol s−1] 1× 10−9 Regulated by cellular

biogenesis rate ([0.01− 2]× 10−9) stress (Boland et al. (2013))
k [mol]

Hill constant of biogenesis rate
1× 10−9

h
1

Hill coefficient of biogenesis rate
µ [s−1] 2× 10−1 Optimized value in

mitophagy rate ([0.01− 0.5]) Dalmasso et al. (2017)
ϕ [mol−1 s−1] 8.3× 10−2 Time scale of minutes

fusion rate ([0.01− 0.2]) (Twig et al. (2008))
ψ1 [s−1] 4.17× 10−2 Time scale of minutes

fission rate (to healthy) ([0.001− 0.1]) (Twig et al. (2008))
ψ2 [s−1] 4.17× 10−2 Time scale of minutes

fission rate (to damaged) ([0.001− 0.1]) (Twig et al. (2008))
β [s−1]

ATP production rate (by healthy)
0.1

ε [s−1]
ATP production rate (by damaged)

0.01

η [s−1]
ATP production rate (by fused)

0.5

u [s−1] 0.1
ATP consumption rate ([0.001− 0.25])

Table 3.1: Description of the nominal parameters of the model (3.1) and (3.2).

input u, represents a situation where all population species disappear and it is of no

interest for the study. The latter, instead, is not null and is given by a more complex

expression:

x̄h =
µ (ψ1 + ψ2) (α0 − δ)
ϕ [(δ − α0)ψ1 + δψ2]

, x̄d =
(ψ1 + ψ2) (α0 − δ)

ϕψ2
(3.3a)

x̄f =
ϕ

ψ1 + ψ2
x̄hx̄d, x̄ATP =

βx̄h + εx̄d + ηx̄f

ū
. (3.3b)

Beyond the specific value of the equilibrium point (3.3), its equations impose α0 > δ

(yielding a biogenesis rate larger than the damage rate) and ψ2 >
α0−δ
δ ψ1 in order to

keep the quantities positive.
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Stability analysis of the equilibrium points. The stability of both equilibria of

model (3.1)-(3.2a) can be studied through system linearization, which leads to the state

matrices F(x̄,ū) and G(x̄,ū):

˙x− x̄ = F(x̄,ū) (x− x̄) + G(x̄,ū) (u− ū) , (3.4)

with

F(x̄,ū) :=




α0 − δ − ϕx̄d −ϕx̄h ψ1 0

δ − ϕx̄d −ϕx̄h − µ ψ2 0

ϕx̄d ϕx̄h − (ψ1 + ψ2) 0

β ε η −ū




=


 F̃(x̄,ū) 03

? −ū


 ,

G(x̄,ū) :=




0

0

0

x̄ATP



.

Thanks to the lower-triangular structure of F(x̄,ū), we can assert that the set of the

eigenvalues of the matrix is defined as σ(F(x̄,ū)) = {σ(F̃(x̄,ū)), −ū}, and we can hence

focus our analysis on σ(F̃(x̄,ū)).

At first, we study the stability of the null equilibrium x̄ = 04. In this case, we have

F̃(04,ū) :=




α0 − δ 0 ψ1

δ −µ ψ2

0 0 − (ψ1 + ψ2)


 ,

whose spectrum is σ(F̃(04,ū)) = {α0 − δ, −µ, − (ψ1 + ψ2)}. Hence, the stability of the

zero steady state depends on the sign of α0 − δ.

For the nonzero equilibrium (3.3), the analytical expression of the eigenvalues of matrix

F̃(x̄,ū) cannot be derived. However the stability of x̄ can be analyzed by considering the

sign of the characteristic polynomial’s coefficients. Specifically we have:

ΠF̃(λ) = λ3 + λ2
[
ψ1B

ψ2
+
µα0ψ2

A
+ C

]
+

+ λ

[
µ

Aψ2

(
−BCψ2

2 + α0ψ1ψ2B + δψ2BC −B
2C2 + α0ψ

2
2C
)]

+ µBC,
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where ΠF̃(λ) := det(λI3 − F̃(x̄,ū)), and we have defined

A := δ(ψ1 + ψ2)− α0ψ1 = δC − α0ψ1 > 0,

B := α0 − δ > 0,

C := ψ1 + ψ2 > 0,

under the conditions due to the positiveness of species’ size

C
(1)
pos :=




α0 > δ

ψ2 >
α0−δ
δ ψ1

. (3.5)

Since the coefficients of λ3 and λ2 and the constant term are all positive, according

to Routh’s Stability Criterion (Routh (1877)), the stability depends on the sign of the

coefficient of the linear term λ. Specifically, we have that near the equilibrium point (x̄, ū),

the non-linear system (3.3) is asymptotically stable if also that coefficient is positive, and

it is unstable otherwise. Obviously, the sign depends on the choice of the parameters set

and, specifically, it is positive if and only if the rate of fission to healthy mitochondria ψ1

obeys the following equation:

ψ1 >
δ(r − 1)

[
r
(
`2 − k + 1

)
+ 2`2 + 3`+ 1

]

`2(`+ 1)
, (3.6)

where the two quantities ` > 0 and r > 1 are such that

ψ2 = ` · ψ1, and α0 = r · δ.

By recalling condition (3.5), it has to be k > α0−δ
δ . The value of the coefficient k can

be tuned in order to favor either the healthy or the damaged mitochondria after fission.

Specifically, the relationship ψ1 > ψ2 is achieved if and only if the following condition

holds:

Cψ12 :=




k ∈

]
α0−δ
δ , 1

[

0 < α0−δ
δ < 1 ⇔ 0 < δ < α0 < 2δ

To summarize, from the stability analysis of the equilibria, it follows that the null steady

state is asymptotically stable if α0 < δ, which means that the rate of new births caused by

biogenesis is less than the rate of damage, with the consequent activation of mitophagy.

Conversely, with respect to the more interesting non-null equilibrium, an opposite
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condition α0 > δ is stated to ensure variables’ positivity. This condition implies a

continuous growth of the healthy population xh. This growth drives the system to

divergence if a balance condition (3.6) between fission to healthy and fission to damaged

does not hold.

Indeed, in the specialized literature, some authors proposed to constrain the parameters of

biogenesis and mitophagy through a relation such that the total number of mitochondria

within the cell does not vary (Hoitzing et al. (2015)). With the similar aim of bounding

the increase of population, in Patel et al. (2013) biogenesis is regulated by a feedback

with respect to the total number of mitochondria, in such a manner that the larger the

difference between the actual number and the nominal number becomes, the more the

biogenesis parameter decreases.

However, the main drawback of this description is related to the incapability of the

system to respond to a possible increase/decrease of the energy demand (input u), which

reflects the level of stress of the cell and a consequent energy consumption. In fact, from

the equilibrium expression (3.3), it can be noticed that the mitochondrial numerousness

does not depend on the input at the equilibrium ū, while, instead, the free ATP level

dynamics does:

∂x̄h

∂ū
=
∂x̄d

∂ū
=
∂x̄f

∂ū
= 0,

∂x̄ATP

∂ū
= −

βx̄h + εx̄d + ηx̄f

ū2
< 0.

Specifically, an increased energy stress level at the equilibrium from ū causes a decrease

in the level of the free ATP of a factor 1/ū2: the system is not able to react to such

variation, and the free ATP level rapidly goes to zero, leading the cell to termination.

See Figure 3.2, where we consider

∆x̄ATP := x̄ATP,u − x̄ATP, (3.7a)

∆ū := u− ū, (3.7b)

where x̄ATP,u is the new steady state value of free ATP when the input has a fixed value

u different from ū.

However, biological evidence differs significantly from this description, since both

biogenesis and mitophagy are regulated by the metabolic sensor AMP-activated protein

kinase AMPK, which is in turn activated in response to biological stress (decreased ATP

production) (Mihaylova and Shaw (2011)). Therefore, this link needs to be accounted for

in the dynamical model by including a direct loop between the biogenesis rate and the

level of free ATP within the cell. Furthermore, we choose not to add such dependence

on the mitophagy process, since this latter phenomenon is implicitly considered by the
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(a) State trajectory of the mitochondrial
population (from equations (3.8)-(3.1b)-(3.1c))

(b) Trajectory of the free ATP level (from
equation (3.1d))

Figure 3.3: State trajectory of system (3.1)-(3.2b): simulation with nominal parameters (see
Table 3.1), with the steady state as initial conditions. At time t = 50 s the biogenesis stress
input u is doubled, yielding a suddenly decrease in the free ATP level: however, thanks to the
feedback loop between ATP and ẋh, the system reacts to this increased ATP consumption

and reaches a new equilibrium point.

xf -n.c.: x̄f =
ϕx̄hx̄d

ψ1 + ψ2
, (3.9a)

xATP-n.c.: x̄ATP =
βx̄h + εx̄d + ηx̄f

ū
=
(
βx̄h + εx̄d + ηϕ

x̄hx̄d

ψ1 + ψ2

)
1
ū
. (3.9b)

Then, by combining Equations (3.8) and (3.1b), the nullclines for xh and xd assume the

following forms:

xh-n.c.: x̄h = − (ψ1 + ψ2)
D · x̄2

d + E · x̄d + F

den(x̄d)
(3.10a)

xd-n.c.: x̄d = (ψ1 + ψ2)
δx̄h

(ψ1 + ψ2)µ+ ϕψ1x̄h
(3.10b)

where

D := ϕεψ2 > 0

E := ϕkūψ2 + δε (ψ1 + ψ2) > 0

F := ū (ψ1 + ψ2) (δk − α1)

den(x̄d) := ϕ2ηψ2x̄
2
d + ϕ (ψ1 + ψ2) (βψ2 + δη) x̄d + δ (ψ1 + ψ2)2 β > 0

The shape of equations (3.10) is very useful to derive new insight on the dynamics of the

system. Specifically, we can identify four main observations, summarized below.



3.1 The model 43

o1. From equation (3.10b), we can note that the equilibrium value x̄d is always non-

negative and xd-nullcline is always monotonically increasing with respect to x̄h,

and it tends to (ψ1 + ψ2) δ
ϕψ1

for x̄h → +∞. As expected, its supremum value is

directly proportional to damage and fission (from fused to damaged) rates, whereas

it is inversely proportional with respect to the fusion rate.

o2. The nullclines of xf and xATP are both monotonically increasing w.r.t. the other

variables, but x̄ATP decreases in response of the increase of ū.

o3. As for xh-nullcline, since the quantity den(x̄d) is always positive, the polynomial

D · x̄2
d + E · x̄d + F has to be negative, in order to ensure x̄h > 0. This condition

induces a bound for the possible value of x̄d, which has to be comprised between

the two roots of the polynomial. Because the coefficients D and E are positive,

for each parameters choice, we know that the sign of the roots of the polynomial

depends on the sign of coefficient F . Specifically

1. if F > 0 (which implies α1 < δk), both the two roots are negative and hence

there is no possible positive value of x̄d leading to a positive value of x̄h;

2. if F < 0 (which implies α1 > δk), one root is negative and the other is positive

and equal to −E+
√
E2−4D·F
2D . As a consequence, we have that

x̄h > 0 ⇐⇒ C
(2)
pos :





0 < x̄d < xmax
d , xmax

d := −E+
√
E2−4DF
2D

α1 > δk

Moreover, we have that x̄h tends to u(α1−δk)
δβ (which is positive if α1 > δk) when

x̄d tends to zero, and that x̄h tends to zeros as x̄d tends to xmax
d .

o4. From the previous point and equation (3.10b), we can conclude that also x̄h should

be bounded. If the bound is an upper or a lower bound depends on the choice of

the set of parameters. Specifically, we have

[(ψ1 + ψ2)δ − xmax
d ϕψ1]︸ ︷︷ ︸

>0

if δ(1+`)>
ϕkū`+δε(1+`)

2εK

x̄h < xmax
d (ψ1 + ψ2)µ, where ` =

ψ2

ψ1
.

(See Appendix A.1 for details).

The nullclines for the non-trivial equilibrium (x̄ 6= 04) obtained with nominal parameters

can be observed in Figures 3.4, where the black dot represents the equilibrium point

related to the chosen parameters.
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with

F2 =




α1
k+xATP

− δ − ϕxd −ϕxh ψ1 − α1xh

(k+xATP)2

δ − ϕxd −ϕxh − µ ψ2 0

ϕxd ϕxh − (ψ1 + ψ2) 0

β ε η −u



,

G =




0

0

0

−xATP



.

The stability of the trivial equilibrium, which describes the situation when all the species

disappear, can be analyzed by evaluating F2 at x̄ = 04. In that case, it is

F2|(04,ū) =




α1
k − δ 0 ψ1 0

δ −µ ψ2 0

0 0 − (ψ1 + ψ2) 0

β ε η −u



,

whose eigenvalues are σ
(
F2|(04,ū)

)
= {α1/k − δ, −µ, −(ψ1 + ψ2), −ū}. Hence the zero

equilibrium is asymptotically stable if α1/k < δ, and it is unstable if α1/k < δ. We

cannot affirm anything for α1/k = δ. Furthermore, condition α1/k < δ is inconsistent

with the existence of the non-trivial equilibrium, since it describes a situation where the

new births rate is smaller than the damage rate.

To discuss the stability of the (more interesting) non-trivial equilibrium state, we

consider:

F2|(x̄,ū) =




α1
k+x̄ATP

− δ − ϕx̄d −ϕx̄h ψ1 − α1x̄h

(k+x̄ATP)2

δ − ϕx̄d −ϕxh − µ ψ2 0

ϕx̄d ϕx̄h − (ψ1 + ψ2) 0

β ε η −ū



, (3.12)

where x̄ obeys equations (3.9) and (3.10). As the analytical evaluation of the eigenvalues

is impossible, due to the non-zero entry in position (1, 4), we discuss the stability of this

equilibrium in a statistic manner, through an eigenvalues random analysis.

Eigenvalues of (3.12) random analysis. We considered the rate constants related

to biogenesis (α1), mitophagy (µ), fusion (ϕ) and fission (ψ1 and ψ2) and we let them
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vary one by one within a reasonable interval. For each value assumed by the considered

parameter, we evaluated the equilibrium value and the eigenvalues of the relative Jacobian,

when varying all the other parameters in a random way, within an uniform interval

centred in their nominal value, with a radius of 0.1% of the same nominal value. Then,

we evaluated the asymptotic stability and the oscillations probabilities (as the mean over

100 simulations for each value of the parameter). Figure 3.5 shows the results.

(a) Biogenesis (b) Mitophagy (c) Fusion (d) Fission to
healty

(e) Fission to
damaged

Figure 3.5: Probability of asymptotic stability (blu line) and probability of all real (stable)
eigenvalues of the Jacobian, with respect to the parameters of biogenesis (α1), mitophagy
(µ), fusion (ϕ), and fission (ψ1, ψ2). All the results are the mean values over one hundred
simulations for each value of the examinated parameters. For each simulation all the other
parameters are randomly chosen within an uniform interval around their nominal value (see

the main text for the details).

Specifically, system stability is always preserved, except for α1 < δk, which refers

to the case such that the non-trivial equilibrium does not exist. However, most of the

time, the modes of the system are oscillatory stable, with the only exception for low

values of biogenesis rate α1, which lead to some cases of damping oscillatory behavior. In

Section 3.2 we report the results of the sensitivity analysis of the eigenvalues in response

to parameters’ variations. Importantly, it has to be noticed that in all the spanned

situation, the stability of the equilibrium state is always preserved. Thus we can suppose

that the proposed model is well-posed.

3.2 Sensitivity analysis

The analysis of the sensitivity of the steady state with respect to the parameters’ value is

a very useful tool to quantify the role of each phenomenon within the complex machinery

of mitochondrial dynamics. Specifically, the larger the relative value of the sensitivity,

the more important the involved phenomenon.
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3.2.1 Sensitivity analysis of species steady state

In Figure 3.6 the results of the sensitivity analysis of the steady state of the species is

depicted, and specifically the scaled sensitivity values are shown. From these results, we

can immediately assert the main roles of the parameters involved into the biogenesis

phenomena to modulate the steady state of the proposed system. In particular, while

Figure 3.6: The figure shows the results of the scaled sensitivity analysis performed for the
steady state value of all the state variables with respect to each fixed parameters and also

with respect to the fixed input value u.

there is a positive correlation between α1 and all the species at the equilibrium, a

negative correlation involves the parameter h, which appears at the denominator of the

Hill function. However, for sake of simplicity, we have assumed h ≡ 1. In both cases, it

has to be noticed that the fused population of mitochondria is the more affected by these

parameters, whereas the damaged one is the least. The value of the energetic stress u

has a similar role, except for the ATP value, which obviously decreases when u increases.

Moreover, since an augmented value of the free ATP level let the number of new birth

decrease, all the parameters involved in the ATP production phenomenon (β, ε and η)

are anti-correlated with the steady state values of the mitochondrial populations’ size.

The decrease of the damaged population numerousness caused by mitophagy (see rate µ)

causes a reduction of fused mitochondria, but also an augmented number of the healthy

population. This phenomenon finds its reason in biological evidences, from which it has

been noticed than mitophagy and biogenesis are linked phenomena that enable a quality

control within the cell. The role of both fusion and fission is easily understandable by

the mathematical description of the model (3.1). An increase in fusion rate ϕ causes a

drop in the healthy and damaged populations followed by a rise in the fused one. Fission

to healthy (ψ1) and fission to damaged (ψ2) have an opposite role in the steady state

values for what concerned the healthy and the damaged mitochondria, whereas they both

make the fused population decrease. Intriguingly, ϕ, psi1 and ψ2 have different role with
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respect to the free level of ATP at the equilibrium. While the first and the last cause an

ATP reduction, the second one let it increase. However this fact can be easily interpreted

as a consequence of the increased or decreased amount of healthy mitochondria caused

by these phenomena.

(a) Mitochondria amount vs α1 (b) Free ATP amount vs α1 (c) Real part of σ(F2|(x̄,ū)) vs α1

(d) Mitochondria amount vs δ (e) Free ATP amount vs δ (f) Real part of σ(F2|(x̄,ū)) vs δ

(g) Mitochondria amount vs µ (h) Free ATP amount vs µ (i) Real part of σ(F2|(x̄,ū)) vs µ

Figure 3.7: The first two columns show the steady state values of the mitochondrial population
size when the parameters related to biogenesis α1, damage δ, and mitophagy µ vary. The right
column instead shows, in a logarithmic scale, the real part of the eigenvalues of the Jacobian
evaluated at the non-trivial equilibrium point, as a function of the variable parameters. The

dotted and dashed lines highlight the nominal value of each parameter.

The analysis of the role of each parameter relatively to the steady state behavior of

the model continues in Figures 3.7 and 3.8, where we report the values achieved at the

equilibrium point by all the state variables, together with the real part of the eigenvalues
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(a) Mitochondria amount vs ϕ (b) Free ATP amount vs ϕ (c) Real part of σ(F2|(x̄,ū)) vs ϕ

(d) Mitochondria amount vs ψ1 (e) Free ATP amount vs ψ1 (f) Real part of σ(F2|(x̄,ū)) vs ψ1

(g) Mitochondria amount vs ψ2 (h) Free ATP amount vs ψ2 (i) Real part of σ(F2|(x̄,ū)) vs ψ2

Figure 3.8: The first two columns show the steady state values of the mitochondrial population
size when the parameters related to fusion ϕ, fission to healthy ψ1, and fission to damaged ψ2

vary. The right column instead shows, in a logarithmic scale, the real part of the eigenvalues
of the Jacobian evaluated at the non-trivial equilibrium point, as a function of the variable

parameters. The dotted and dashed lines highlight the nominal value of each parameter.

of the Jacobian matrix evaluated at the equilibrium, as a function of one parameter at a

time, while the other parameters are fixed to their nominal value. Specifically, we let

parameters α1, δ and µ vary as regards Figure 3.7, while Figure 3.8 refers to parameters

ϕ, ψ1 and ψ2. For all the observed behaviors, the shape of the steady state variables

reflects the sensitivity analysis performed above (see Figure 3.6). However here we can

also observe the shape of the sensitivity, and the effective reached steady state values.

The real part of the eigenvalues are always negative, thus confirming the asymptotic
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stability of the system around the different equilibria points. In particular, it is worth to

be noted the role of parameter α1 (see Figures 3.7(a), 3.7(b), and 3.7(c)): for very low

values of this rate, which refers to the situation α1 < δk, the system directs to the zero

(stable) equilibrium, since the other one is unstable (as discuss in Subsection 3.1.2).

To summarize, we can assert that this sensitivity analysis validates our choice of

using a feedback relationship among the free ATP level and biogenesis rate, in the sense

that the value of this rate has the most effect on the health level of the cell and on the

free ATP availability within it.

(a) Mitochondria amount vs u (b) Free ATP amount vs u (c) Real part of σ(F2|(x̄,ū)) vs u

Figure 3.9: The first two columns show the steady state values of the mitochondrial population
size when the energetic stress input u varies. The right column instead shows, in a logarithmic
scale, the real part of the eigenvalues of the Jacobian evaluated at the non-trivial equilibrium
point, as a function of the variable input. The dotted and dashed lines highlight the nominal

value of u.

Finally, to analyse how the system reacts in response to different values of energy

stress by the cell, the previous plots have been generated also with respect to the input

signal u variation. By observing Fig. 3.9 we can see that when the level of stress is very

low, the free level of ATP achieves its maximum value, but the mitochondrial populations

tend all to zero, and the equilibrium tends to the instability. In fact, the case u = 0 is not

depicted, since the zero equilibrium with the nominal parameters (with α1 > δk) is not

stable, as previously discussed. However, when the energetic stress increases, the system

is able to react and let the mitochondrial populations increase, in order to maintain a

sufficiently large level for free ATP. If compared with Figure 3.2, referred to the model

with fixed biogenesis rate, where the augmented u causes a total disappearance of the

free ATP, in this case, we have only a slight decrease. This fact is also appreciated in

the simulation example seen in Figure 3.3(b). As the input u tends to infinity, however,

the level of free ATP goes to zero and the system equations for the dynamics of the

mitochondrial populations (3.1a), (3.1b) and (3.1c) tend to assume the same form of

system (3.1), when α1 is replaced with α1/k.
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3.2.2 Sensitivity analysis of reactions’ fluxes steady state

The sensitivity analysis task is a useful tool also to discuss the variation in fluxes of the

biological reactions at the equilibrium when the parameters vary. Following a similar

investigation process performed for the sensitivity analysis of the steady state values

of the species, in this subsection we present the results of the fluxes sensitivity at the

equilibrium.

Figure 3.10 shows the results of the analysis divided for groups of reactions. Specifically,

in Fig. 3.10(a) the scaled sensitivity of the steady state fluxes of biogenesis, damage and

mitophagy are depicted. As imaginable, all the fluxes increase when parameters α1 and

µ, related to biogenesis and mitophagy, respectively, increase. Interestingly, an increase

in the damage rate δ does not imply an increased flux of damage, since the decreasing

in biogenesis causes also a decreased damage flux. However, the flux of mitochondria

depletion increases when δ become larger. Moreover, an augmented value of µ implies a

larger flux for all the three reactions, since a smaller amount of mitochondria produces

a lower level of free ATP and a consequent need of new births. The role of fusion and

fission rates with respect to these reactions are different. At first, we can observe that a

larger value of ϕ can increase the quality of the cell, in the sense that the mitophagy

phenomenon decreases. Nevertheless, since it is also anti-correlated with the flux of

biogenesis, parameters ϕ and ψ1,2 should be accurately tuned, in order to maintain a

required quality level.

The manner by which the variation of the parameters influences the fluxes of fusion

and fission is presented in Figure 3.10(b). Similarly to the previous analyses, also these

variable are sensitive to α1, h and u at most. Again, they are all negatively correlated

with the increase of ATP production (see β, η and ε effects). Intriguingly, all these

reactions are negatively sensitive to damage and mitophagy rates, thus suggesting that

a situation of high damage within the cell can cause a decrease in the fusion-fission

machinery efficiency. The rate of fusion and fission are related in a direct way to their

fluxes, however it is worth noting that an augmented rate of fission (both to healthy and

damaged population) cause a (more or less significant) increasing in the flux of fusion at

the equilibrium.

Finally, Figure 3.10(c) reports the scaled sensitivity of the fluxes related to production

and consumption of ATP. Even if a complex set of phenomena can be observed in this

image, we can note again that the most relevant parameters are the ones related to

biogenesis and ATP consumption phenomena. Here, as expected, it can be found also

an increased relevance of β, η an ε, due to their direct relationship with the observed

fluxes. Among the other parameters, the most important is δ, which causes a decreased
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(a) Biogenesis, damage and mitophagy

(b) Fusion and fission

(c) ATP production and consumption

Figure 3.10: The figures show the results of the scaled sensitivity analysis performed for the
steady state fluxes value of all the biological reactions with respect to each fixed parameters and
with respect to the fixed input value u. Specifically, (a) refers to the processes of biogenesis,
damage and mitophagy; (b) is related to fusion and fission processes; (c) focuses on the

processes that involve the free ATP state variable.
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production of ATP by healthy and fused mitochondria, and a consequent drop in the

ATP production, since the size of free ATP will be decreased. From the remaining results,

we can observe that the production of ATP can be enhanced differently by the tuning of

ϕ and the fission rates, as for the ATP production. However, the role of these parameters

is not very sizeable, if compared with the others.

(a) Fluxes vs α1 (b) Fluxes vs α1 (c) Fluxes vs α1

(d) Fluxes vs δ (e) Fluxes vs δ (f) Fluxes vs δ

(g) Fluxes vs µ (h) Fluxes vs µ (i) Fluxes vs δ

Figure 3.11: The figures show the steady state fluxes values of the biological reactions when
the parameters related to biogenesis α1, damage δ, and mitophagy µ vary. Specifically, the first
column refers to the phenomena of biogenesis, damage and mitophagy, the central columns
focuses on fusion and fission fluxes, and finally the left column regards the fluxes related to
the ATP level. The dotted and dashed lines highlight the nominal value of each parameter.

Figures 3.11 and 3.12 report the values of the reactions’ fluxes at the equilibrium

as a function of the varied parameters. All the plots reflect the results discussed above,
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(a) Fluxes vs ϕ (b) Fluxes vs ϕ (c) Fluxes vs ϕ

(d) Fluxes vs ψ1 (e) Fluxes vs ψ1 (f) Fluxes vs ψ1

(g) Fluxes vs ψ2 (h) Fluxes vs ψ2 (i) Fluxes vs ψ2

Figure 3.12: The figures show the steady state fluxes values of the biological reactions when
the parameters related to fusion ϕ, fission to healthy ψ1, and fission to damaged ψ2 vary.
Specifically, the first column refers to the phenomena of biogenesis, damage and mitophagy,
the central columns focuses on fusion and fission fluxes, and finally the left column regards
the fluxes related to the ATP level. The dotted and dashed lines highlight the nominal value

of each parameter.

but they also depicted the specific values assumed by the fluxes and the shape of their

variation in response to the change of each analyzed parameter. The main role of α1

observed in Figure 3.10 can be noted also in these plots, where the variation of α1 causes

the most rapid change of all the fluxes’ value.

Given the considerable sensitivity of the fluxes with respect to energetic stress observed

in Figure 3.10, we report also the values of the fluxes when u varies (see Figure 3.13). As

expected, all the equilibrium fluxes increase as the value of u increases. This is one of
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(a) Fluxes vs u (b) Fluxes vs u (c) Fluxes vs u

Figure 3.13: The figures show the steady state fluxes values of the biological reactions when
the fixed value of the bioenergetic stress u varies with respect to its nominal value. Specifically,
the first column refers to the phenomena of biogenesis, damage and mitophagy, the central
columns focuses on fusion and fission fluxes, and finally the left column regards the fluxes
related to the ATP level. The dotted and dashed line highlights the nominal value of the ATP

consumption rate.

the strong point of this proposed dynamical system, with respect to the one with fixed

biogenesis rate.

3.2.3 Sensitivity analysis of the transient response

The analysis of an high order non-linear model is often performed through its approxi-

mation to a second-order linear model around an equilibrium point. Specifically, this

strategy can be useful to evaluate some transient characteristics of the system, that

describe how fast it is to respond to a step input. However, this kind of analysis is as

useful as good the approximation is. Thus, if the low-order linear system is sufficient to

describe the non-linear complex dynamics, it can be a warning alarm that the latter is

actually too complex to describe the desired phenomenon. In this subsection we present

an analysis of the transient response and we show that the complexity of our non-linear

system is not overdone, since the linear approximation is not able to fully describe the

phenomena observed through the more complex one.

One of the most interesting aspect of a biological system refers to its performances

in responding to an input signal arrived from the cell. In particular, in a mitochondrial

dynamic framework, it can be useful to understand how quickly the systems reaches a

new equilibrium in response to a sudden increase of the ATP request from the cell. This

property can be studied through a transient analysis of the model step response.

To analytically evaluate the transient response, we can approximate the fourth-order

linearized system (3.4) with a second-order one, by considering only the slower modes

related to the eigenvalues with the larger real part, λ1, λ2 (<[λ1] ≥ <[λ2]). The transfer
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function W (s) from the input to the output of the system is:

W (s) =
W0

s2 + 2ξω0s+ ω2
0

, (3.13)

where ω0 =
√
<[λ1]<[λ2] is the natural frequency and ξ = −<[λ1]+<[λ2]

2ω0
is the damping

coefficient.

In order to characterize the transient response, we consider two quantities, the rise

time Tr, defined as the time required for the response to rise from 10% to 90% of its final

value, and the settling time Ts,2%, which is the time required for the response curve to

reach and stay within a range of certain percentage (here 2%) of the final value. These

two quantities can be approximated as follows:

Tr ≈
ln(9)
|<[λ1]|

, Ts,2% ≈





4
|<[λ1]| , if λ2 and λ3 complex conjugated

4
ξω0

, otherwise
,

where λ3 is the third eigenvalue with the largest real part.

(a) Transient quantities vs α1 (b) Transient quantities vs δ (c) Transient quantities vs µ

(d) Transient quantities vs ϕ (e) Transient quantities vs ψ1 (f) Transient quantities vs ψ2

Figure 3.14: The figures show the rise time (blue line) and the transient time (red line)
evaluated through the approximation of the non-linear fourth order model (3.1) with a second-
order linear model around the equilibrium state (3.13), as a function of the main parameters
of the models. As in the previous figures, the dotted and dashed line highlights the nominal

values of the considered parameters.
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Figure 3.14 shows the values of the approximated rise time and settling time when

each of the most relevant parameters is varied, one at a time. In particular, we can

observe that the two values vary very similarly one each other, and they use to decrease

as the parameters increase, except for ϕ and ψ1. However, the transient quantities are

not particularly sensitive to these two parameters, since they remain almost constant as

ϕ and ψ1 vary. From this figures, we can hence note that a more rapid response of the

system does not mean a healthier cell, in fact both Tr and Ts decrease when δ, and ψ2

increase, which yields a larger number of damaged mitochondria within the cell.

(a) Transient time vs α1 (b) Transient time vs δ (c) Transient time vs µ

(d) Transient Time vs ϕ (e) Transient time vs ψ1 (f) Transient time vs ψ2

Figure 3.15: The figures show the transient time of all the state variables (xh green, xd red,
xf yellow, xATP purple) as a function of the main parameters of the models. These quantities
have been evaluated through the software Copasi R© 4.19. As in the previous figures, the dotted

and dashed line highlights the nominal values of the considered parameters.

A less approximated values of these quantity, as a function of the system parameters,

can be observed in Figure 3.15, derived through the software Copasi R© 4.19. These

pictures show the transient time for each state variable, evaluated through simulations.

Intriguingly, the transient time of free ATP is always fixed to 10 s, independently of the

values of the parameters, whereas different behavior can be observed for the other system

variables. Specifically, the fused population has a transient time, which is free-standing

with respect to all parameters, except for fission parameters ψ1 and ψ2, whose decrease

causes a strong increase of the fused transient time. For what concerning the healthy

and damaged mitochondria, their characteristic times decrease together when α1 or
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ϕ increase, while they are differently influenced by the other parameters’ change. In

particular the larger δ, the smaller the transient time for healthy mitochondria, and the

larger the damaged one, until they become equivalent when δ reaches twofold its nominal

value. A similar (but slower) behavior can be observed in consequence of ψ2 changes.

The opposite can instead be noticed when the mitophagy rate µ increases. An augmented

value of ψ1 causes only a slightly decrease in the transient time of damaged population,

while the one of the healthy is independent.

Even if an interpretation of these sensitivity analysis is not easy to derive, two main facts

should be highlighted: at first, in all cases, we can observe that the fused mitochondria

are slower to react than the other sub-populations. This fact can be actually explained

if considering that the size of the fused sub-population depends on how many healthy

and damaged mitochondria are available at the same time. Second, if we compare

Figures 3.14 and 3.15, we can assert that the second-order linear system approximation

cannot describe the actual transient characteristics of the fourth-order non-linear system

with a sufficient precision. Thus confirming that the complexity of our model is required,

in order to describe the interested phenomena.

3.3 How to apply a control action?

One of the main advantages of devising and using synthetic systems to describe specific

biological phenomena is the opportunity to test and predict the system behavior in

response to a model change, be it endogenous (e.g. change of parameters) or exogenous

(e.g. external stimuli). In particular, one main issue to be solved in this context can be

expressed as follows.

How can we control a situation of “disorder” in mitochondrial dynamics by means of an

external input? Which target should we choose for a possible control action?

To try and answer these open questions we attempt to predict which rate constants

should be better to regulate so as to ensure a behavior similar to the healthy one as

more as possible. To this aim, we present a combined sensitivity analysis with respect

to a situation of increased damage rate. In particular, the nominal rate constant δ is

here replaced with δ̃ = 10× δ and it is observed how the equilibrium point changes w.r.t.

variations of every possible pair of the other main parameters. Specifically, we let α1, µ,

ϕ, ψ1 and ψ2 vary.

Figure 3.16 represents the ratio between the free ATP level at the equilibrium in

the modified setting and the free ATP level reached with the nominal parameters, as a

function of the parameters. In other words, it consists in a double sensitivity analysis to
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Figure 3.16: Heat maps of x̄ATP/x̄ATP,nom in a situation of δ̃ = 10 × δ. The panel shows
the ratio between the free ATP level at the equilibrium in the modified setting and the free
ATP level reached with the nominal parameters, as a function of each pair of parameters,
considered one at a time. The closer to one the ratio is, the more useful the choice of that
specific pair of the parameters is, in order to restore a level of free ATP similar to the one

obtained in a nominal background, even in an abnormal situation.

highlight the rate constants that mostly influence this ratio: as we can see from the heat

map plots, the free ATP level is more sensitive to variations in biogenesis rate (α1) than

to variations in all the other analyzed parameters (first plot row). Moreover, a specific

choice of α1 let the system reach a level of free ATP equivalent to the one reached in a

nominal setting, even in condition of increased damage. In practice, this discussion can be

useful to set the direction to take in order to implement a control law and bring the ATP

availability back to the nominal value. In this case, we can conjecture that the control

law should target the biogenesis phenomenon, so as to increase its rate. Moreover, this

results reinforce our conjecture on the role of biogenesis rate in mitochondrial dynamics,

and the choice of relate the ATP level with this phenomenon.
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3.4 Discussion and contribution

Our study follows the line of research in modeling mitochondrial dynamics of the last

decades.

In this sense, in order to provide a first taxonomy of the related works and place

our contribution in this context, the models that have appeared in literature can be

categorized w.r.t. the presence or not of the spatial framework. Indeed, the movement

of mitochondria along the microtubules network is one of the factors that influence the

phenomenon of fusion-fission within the mitochondrial population. However, depending

on the scale and the scope of each model, authors have chosen whether to take this

aspect into account (Dalmasso et al. (2017); Tam et al. (2015, 2013); Patel et al. (2013);

Sukhorukov et al. (2012)) or not (Figge et al. (2012); Mouli et al. (2009); Kowald and

Kirkwood (2011); Hoitzing et al. (2015)). Our model, in particular, does not represent

the spatial dynamics of the mitochondria, since it describes the phenomena on a larger

scale, where the factors that influence the fusion-fission properties are not examined at

the specific scale of single mitochondria but at the population level.

Many authors address the issue of the mitochondria quality level for the benefit

of the hosting cells. In order to highlight how the quality of a cell can vary within a

range of different levels, Figge et al. (2012) proposes a probabilistic model, which uses

a master equation approach to describe the evolution of the probability P (q, t) during

time, where q = 0, 1, . . . , Q represents the quality level and Q is the highest possible

level. To analyze the mitochondrial function during aging, the author modeled the

phenomena of fusion-fission (as a single one), mitophagy, biogenesis and two different

types of damage (a random molecular damage and an infectious molecular one, which

includes mutations of mtDNA). By representing each mitochondrion as a vector of ten

functional hereditary units (FHUs), which can be intact or damaged, Mouli et al. (2009)

in practice uses a sort of quality range level within 0 and 10 for each mitochondrion.

This description lets the author implement selective fusion and mitophagy phenomena

with respect to the level of activity of each organelle and it proves that the choice of a

selective fusion improves the performance, especially in the case of higher fusion-fission

frequencies. Differently from Figge et al. (2012), here the dynamics evolves along a life

cycle for each mitochondria, even if each phenomenon is characterized by a respective

probability. Moreover, fusion and fission are treated as distinct phenomena, where fission

always follows a fusion event and can redistribute the intact and damaged FHUs among

the daughters mitochondria.

More detailed models, which use the discrete range for the health quality, have been

proposed in Dalmasso et al. (2017), Tam et al. (2015, 2013), Patel et al. (2013), where the
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spatial description is also included. The former considers a static 2D spatial framework,

represented as a circle with a fixed diameter containing a central nucleus, and a variable

number of mitochondria. The mobility of each mitochondria depends on its position inside

the cell. Specifically, the author defines the perinuclear area, where mitochondria have

low velocity magnitude, and the bulk cytosolic area, characterized by the high velocity

magnitudes of the mitochondria. Moreover, that work assumes that small mitochondria

move faster than large ones. Dalmasso et al. (2017) describes the mitochondrial dynamics

through an agent-based discrete model characterized by a complex fusion-fission cycle

simulated for each mitochondrion, integrated with the phenomena of biogenesis and

degradation and with the description of energetic stress. The dynamical rules are all

updated at each cycle; for instance, the fusion phenomenon can hence take place even

if two mitochondria are sufficiently closed one each other and if their masses are upper

bounded. Also Tam et al. (2015, 2013) consider a static spatial framework by partitioning

a 2D circular cell into a certain number of compartments. Fusion is hence influenced

by the space because only mitochondria within the same or adjacent compartments can

fuse each other. Even more complex is the model proposed in Patel et al. (2013), where

unfused mitochondria are supposed to move along cytoskeletan filaments with a certain

rate, such that the rate of fusion changes depending on the fact that none, one or both

the two mitochondria that are experiencing fusion are moving at the time of the event.

Even if all these models may appear to convey more details than that proposed in our

work, they suffer from the limitation of not being analytically treatable and they cannot

be described by systems and control tools, which are required to allow the design of a

control framework. This observation allows us to better state our contribution as follows.

c1. Being inspired by these aforementioned models (and by other simpler ones as

in Hoitzing et al. (2015); Kowald and Kirkwood (2011)), we propose a prey-

predator mathematical model, which at the same time is able to describe all the

major phenomena of the mitochondrial dynamics and the damage degradation, and

is also analytically treatable and coherent with observed phenomena.

c2. Moreover, our model differs from many of the other ones for taking into account the

energetic framework, which plays a key role in the mitochondrial quality control.

Inspired by Patel et al. (2013), which describes the biogenesis rate as a function of

the total number of mitochondria, we include a feedback loop between the available

ATP level within the cell and the biogenesis rate. This approach results in helping

to understand how mitochondria behave in order to guarantee a sufficiently free

ATP level, available to be consumed in response to a certain cell signal.
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c3. The structure of the dynamical equations that are formulated yields the definition

of a sensitivity analysis of the state variables with respect to all the parameters

(including the input term), similarly to Dalmasso et al. (2017), as well as a study of

the transient response to a step input due to an unexpected energetic stress, which

affects the cell. In particular, a situation of impaired phenomenon can be tested by

manipulating one of the nominal parameters related to the respective phenomenon:

our proposed model can hence suggest in which part of the dynamics mechanism

we should intervene in order to restore a normal (nominal) condition.

To mimic the complex set of phenomena that compose mitochondrial dynamics, our

mathematical model exploits a prey-predator description in order to allow for an easy

reading of the dynamical behavior of the mitochondrial population and to promote

a tool to be used to simulate and test different hypotheses during an experimental

design phase in biology. This model can be particularly useful to provide an insight into

the relationship between biogenesis and ATP availability, an issue that is still not be

completely understood, and into the mechanism of exchange that happens during fission.

Moreover, the presence of the feedback link between free ATP and biogenesis can easily

describe how the cell is able to maintain a desired level of bioenergetic function, whereas

the rate constants of fusion and fission can be analyzed to test different possible fission

protocols. This concept is inherent in many biological system to provide self-healing

capabilities to such systems. Since a wide number of neurodegenerative diseases have

been referred in literature with mitochondrial dysfunctions, from a control theory point of

view, this mathematical tool can support a qualitative understanding of which direction

should be taken in order to improve the health level of cells in case of undesired situations.

This is one of the most open and interesting question nowadays (Boland et al. (2013)).

Future work. In line with the recently discoveries on the role of mitochondrial dynamics

into several cell’s functions and its influence in a number of diseases, control system

theory can provide helpful tools for the formulation and the discussion of models and

controls, which can support the understanding of different mechanisms and suggest a

regulatory loop for dysfunctional frameworks.

There are several improvements that can be envisaged and applied in order to make

these tools more targeted and useful. First, with respect to the proposed model, we think

of an extension of our prey-predator model into a set of multiple sub-classes, which can

play as prey and predator for other different sub-classes at the same time.

Moreover, it could be surely interesting to implement a feedback loop for each rate

constant (not only w.r.t. biogenesis), which links the available quantity of ATP with all
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steps in mitochondrial dynamics and approaches the problem as a sort of Multi-Input

Single-Output (MISO) system.

Indeed, one of the most interesting aspect is the design of specifically customized control

laws that can provide a substantial help to suggest and predict treatments and therapy

of different diseases.

Finally, this model and its derivations to follow should be clearly tested and validated

against the experimental evidences, for example through measurements of mitochondrial

dynamics, as data related to the mitochondrial membrane potential ∆Ψm or measurements

of the mitochondrial biogenesis and mitophagy phenomena rates.
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4
Background: brain physiology and brain networks

“The chief function of the body is to carry the brain around.”

T. A. Edison

There are a number of physiological processes that happen in the brain, and go on

beyond the anatomy. What happens when a neuron is active is that it is receiving an

input through its dendrites and then it is sending out information electrically through the

axons (it is sending out little pulse of electrical activity or spikes, which travel down the

axon into the axon terminals that then connect into the dendrites of other neurons which

process that information). Refer to Figure 4.1 to follow this description. There is also a

chemical activity which happens at the end of the axon terminals during the connections

event, that happens at the synapse cleft (a tiny opening between two neurons). Thus, it

is not an electrical conduction which happens between those two, but it is chemically

based. Specifically, there are neurotrasmitters which are released from the axon terminal

and they are taken up by the dendrites. This communication process requires other cells

to support that activity and the introduction of oxygen and glucose in order to give

enough energy for all of these processes to happen. Most of this metabolic demand is

associated with the post synaptic changes.

Oxygen and glucose are required to be delivered in order to support these processes

and they come from the blood, which is characterized by two different oxygenation
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requires about 10% of RS energy, thus it is often referred as the tip of the iceberg

of brain metabolism (Raichle (2003)).

This chapter has the purpose of presenting the preliminary notions on the different

typologies of brain activity and some specific measurement techniques often used to

record brain signals. Moreover, we report several mathematical tools useful when

describing and analyzing these empirical data.

To this aim we cannot help but introduce the connectome, namely the description of

the human brain as a graph of nodes, where these nodes can be interpreted at different

scale, from single neurons, to large brain areas. This approach let us make use of systems

and network theory in order to characterize the brain, both anatomically and functionally.
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4.1 Different data to describe brain activity

In recent years, researchers from different fields have used several neuroimaging techniques

(as fMRI, MEG, EEG, and PET) to get new insights on human brain functions. However,

such non-invasive techniques are an indirect measure of the actual brain activity, which

can only be estimated from the data. The combination of different modalities may be

a useful tool to overcome this limitation and to be more confident of the results. On

the other hand, this combination can bring to new discoveries only if the relationship

among the modalities itself is well known. In Figure 4.2 we report the spatio-temporal

resolution of several measurement methods (see the gray box for a brief description of

the whole set of methods).

Among all the techniques used to measure the activity of the brain, we are particularly

interested in functional magnetic resonance imaging (fMRI) and magnetoencephalogra-

phy (MEG), since we had the opportunity to analyze real datasets derived from these

techniques and we have addressed the problem of finding the possible relationship among

them in some specific situations. Moreover, while fMRI data are usually measured to

evaluate resting-state networks, MEG data may be more useful when specific tasks are

performed. Here we report a brief description of these two signals and some results on

their combination already reported in the literature.
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Figure 4.2: Spatio-temporal resolution of some of the most used methods for measuring brain
activity. As noted, high-precision, invasive methods such as single unit recordings have high
spatial and temporal resolution, but are not scalable to large-scale neural systems. On the other
hand, non-invasive methods, such as EEG, MEG and functional MRI, are scalable but have
poor spatial resolution. Filled areas refer to the technologies discussed throughout this thesis.
Abbreviations: EEG, electroencephalography; fMRI, functional magnetic resonance imaging;
MEG, magnetoencephalography; PET, positron emission tomography; VSD, voltage-sensitive
dye; 2-DG, 2-deoxyglucose. See the main text and the gray box for a description of the

measurement techniques. (Inspired by Fornito et al. (2016) [Fig. 2.1.1]).

4.1.1 fMRI data

Functional magnetic resonance imaging (fMRI) measures brain activity by detecting

changes associated with blood flow that follows the changes in neuronal activity. Oxygen-

rich blood and oxygen-poor blood have different magnetic properties, related to the

hemoglobin that binds oxygen in blood. This fact causes a small effect on the MR signal,

which is slightly stronger if the blood is more oxygenated. Moreover, an increase in neural

activity leads to the blood being more oxygenated. These two aspects together make the

blood-oxygen-level dependent (BOLD) signal detected by fMRI an indirect measure of

the brain activity. (See Figure 4.3(a) for a description of the BOLD signal generation).

This transient increase in MR signal is usually termed the BOLD hemodynamic response

function (HRF). An example of the impulsive HRF is reported in Figure 4.3(b). Since

it relies on the same principles as MRI, fMRI features a very high spatial resolution

(∼ 1mm). However, the hemodynamic response is much slower than the neuronal

response and it takes several seconds for the HRF to peak in response to a stimulus
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4.1.2 MEG data

Magnetoencephalography (MEG) measures the magnetic fields induced above the scalp

surface generated by the ionic currents flowing inside and outside neurons, driven mainly

by excitatory postsynaptic activity (Figure 4.4). Specifically, these currents can be

modelled as current dipoles, that are short segments along which the current flows from

a source to a sink. For a detectable field, hundreds of thousands dentrites must be active

synchronously. In theory, by using MEG devices, the sum of magnetic fields produced

both by primary and volume currents are measured. However, in some brain regions,

which can be approximated as a sphere with homeogeneous conductivity, the effect of

volume currents may be negligible, and we can assume that the measured signal represents

mainly the true neuronal activity (Pizzella et al. (2014)).

The magnetic sensors used to measure MEG signals are the superconducting quantum

interference devices (SQUIDs), which are superconducting magnetic flux-to-voltage

transducers featuring extremely low noise, with a field sensibility of about 1 fT Hz1/2.

We remand to Clarke and Braginski (2006) for an extensive description. The sensor

array is rigid and cannot be adjustable to the patient’s head. A typical MEG system is

composed by several hundred channels arranged on an helmet surface, and it measures

simultaneously the magnetic field at multiple points over the scalp. See Della Penna et al.

(2014) for a review of the existing MEG systems.

Since the MEG signals are measured outside the brain, a so-called MEG inverse

problem has to be solved in order to estimate the source locations and their amplitudes

as a function of time/frequency. Differently from the forward problem, aiming to predict

the electromagnetic field generated by an arbitrary source configuration, the inverse

problem is ill-posed, because a set of observations can be associated with infinite solutions.

However, some information on source the configuration, and the use of suitable constraints

make possible to define a problem with a unique solution (see Figure 4.5).

The spatial resolution of MEG technique is limited to about 5 mm, however its high

temporal resolution of ∼1 ms makes possible the study of the dynamics of brain activity

during time (see Figure 4.2).

1The estimation of the HRF has been performed with the method reported in Prando et al. (2017),
and it goes beyond the scope of this manuscript.
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by means of voltage fluctuations resulting from ionic current within the neurons of the brain.

Electron microscopy images the passage of electrons through a tissue specimen that has

been stained with heavy metal elements. Some electrons pass through the tissue while others

are scattered, creating a contrast that can be used to resolve anatomical features.

Light microscopy is an optical imaging technique that uses visible light to image small

structures. Its resolution is thus limited by the visible wavelength of light.

Local field potential from an array of electrodes embedded in the culture surface provides

a rich measure of activity with spatial resolution in the order of a few neurons per electrode.

Patch clamp techniques are laboratory techniques in electrophysiology used to study ionic

currents in individual living cells, tissue sections, or patches of cell membrane. This method

is especially useful in the study of excitable cells, such as neurons.

Positron-emission tomography is a technique used to observe metabolic processes in the

body. Specifically, it detects pairs of gamma rays emitted indirectly by a positron-emitting

radionuclide, which is introduced into the body on a biologically active molecule.

Voltage-sensitive dyes are dyes that change their spectral properties in response to voltage

changes. They are able to provide linear measurements of firing activity of single neurons,

large neuronal populations or activity of myocytes.

2-deoxyglucose imaging makes use of 2-DG, a known surrogate molecule that is useful

for inferring glucose uptake and metabolism. Changes in 2-DG are used to identify changes

in regional brain activity.

4.2 Graph theory and the brain

Graph theory plays a main role to understand the structure and function of several

complex systems. The human brain is extremely complex, and naturally described by an

interconnected distributed system. Thus it is natural to assume that graph theory may

also be very useful for neuroscience. Specifically, brain networks may be graph-based

represented in terms of square connectivity matrices, where each row (column) represents

a different brain region (node in the graph) and each matrix element refers to an edge of

the graph, indicating how connected each couple of areas is.

Graph theory have been taken part in neuroscience at different scales: from the

microscopic scale of C. elegans (1998), to the macroscopic scale of human neuroimaging

(from ∼2005), passing through the mesoscopic scale of tract-tracing data on the cat and

the macaque (∼2001).

Thanks to this graph-based representation of brain networks, we can exploit several

tools of graph theory in order to analyze, model and understand the functioning of the
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whole brain or of a part of it. Depending on the specific application we are interested in,

the matrix representation of the brain may change and describe a different connectivity

map among the defined nodes.

Although it cannot be used to model every single detail of the brain, one of the

main advantages of the use of graph theory for neuroscience is the simplicity. A graph

is indeed able to reduce the myriad intricacies of the brain to a collection of nodes and

edges, which can either be static or dynamic, and which can be implemented using an

accessible mathematical language. However, the challenge is still to link topological

metrics on abstract, simple graphs to biological mechanisms at cellular and molecular

levels. Moreover, graph theoretical methods have the amazing characteristic of being

generalizable to study complex systems of very different nature and scales. Multiscale

measurements of brain networks indeed allow to recognize the same topological or

dynamical features of the brain at different levels of analysis.

In summary, graph theory is a powerful tool for developing a coherent understanding

of brain network organization that cuts across spatial and temporal scales, and which

allows an understanding of how the connectome relates to a much broader class of complex

systems.

In our research, we have focused on the meso- and macroscales of brain networks, and

we neglect microscale analysis. Thus, in all what follows, only few information on the

study of the brain at microscale is reported, while larger attention is devoted to larger

scales analyses.

4.2.1 Connectivity maps

Three classes of brain connectivity are usually considered: structural connectivity (SC),

functional connectivity (FC), and effective connectivity (EC) (Bullmore and Sporns

(2009); Fornito et al. (2013); Friston (2011)). Each of these different connectivity maps

can be evaluated through a specific set of data typology (see Figure4.6).

Structural connectivity. SC refers to the anatomical connections among neural

elements. At different scales, these connections may assume distinct forms, such as

axons and synapses between neurons at the microscale, or large-scale fiber bundles or

fasciculi linking cortical and subcortical areas at meso- and macroscales. The structural

connectivity maps can hence be measured using techniques as electron microscopy

(micro), axonal tract-tracing (meso), and diffusion MRI (macro). In theory, structural

connectivity should be directed, since each axon has a source and a target. However, it is

often represented as undirected, as some measures are not able to resolve the directionality,
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or macroscale is considered, the interpretation of the FC map can be summarized as

follows:

task-induced FC: it refers to a condition such that the participant is doing a

particular task, seeing what areas of the brain respond when the task is being

performed, in a different way from when the task is not being performed;

rsFC: it is a representation of which areas in the brain seem to respond functionally

similarly in a spontaneous way. In the context of resting-state activity, it is more

convenient to go beyond the cellular scale and focus on the mesoscale, where groups

of several neurons are considered together and define brain areas.

From coordinated analyses of rsFC and SC, a direct relationship among the two

maps has emerged. Specifically, if two brain areas are structurally connected, then

it is likely possible that they are also functionally linked during RS (Damoiseaux

and Greicius (2009); Greicius et al. (2009); Van Den Heuvel and Pol (2010); Van

Den Heuvel et al. (009a)). However, the opposite is not necessarily true, since

the functional communication among areas does not imply that there is a direct

anatomical link among them (Koch et al. (2002)).

FC map can be either directed or undirected, depending of the measure used to estimate

it. For instance, in case of Pearson’s correlation coefficient, the resulted FC is undirected,

whereas Granger causality analysis yields a directed functional connectivity map (These

measures will be described in Section 4.3.3).

Effective connectivity. While FC connectivity is estimated at the level of measured

data, EC refers to the neuronal, sometime not measurable, level, and it includes infor-

mation about the causality and direction of the connections. Therefore, it is always

a directed map among the nodes. Specifically, the functional connectivity map may

be considered as the consequence of the effective connectivity. The same data used to

estimate FC can be used to infer EC, however, the analysis can be computationally very

expensive.

4.2.2 The connectome network

Apparently, a lot of different ways may be used to associate a network to the connectome

(i.e. the description of the human brain as a graph of nodes). However, if we want to

represent the brain as a graph, we have to ensure that this graph matches with the

known characteristics of the brain, that we report here. At first, in general, the nodes

we define should be spatially embedded, since nervous systems exist in physical space
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and spatial constraints have an important influence on network topology (Bullmore

and Sporns (2012)). Then, they should be intrinsically homogeneous, and represent

a coherent functional entity. On the other hand, they should also be extrinsically

distinct or heterogeneous, allowing a differentiation among them based on some relevant

characteristics. Second, to be realistic, the edges may reflect the connectivity feature of

the brain areas. Both structural and functional connections are inherently directed: as

mentioned in the previous section, structurally speaking, each connection has a source and

a target, while functionally, there is a causal relationship among brain areas. However,

some measurement techniques do not allow to resolve the directionality in SC, and

several metrics used to define FC are symmetric. Then, we have to take into account the

variability of the edges in terms of weights and type. In SC the strength of links varies in

terms of the number of connecting fibers, the cross-sectional area, conduction speed and

numerous other physical parameters. Functionally, different pairs of brain regions vary

over time in their propensity for synchronization. In addition, the communication among

pairs of nodes may have very different nature, such as chemical or electric, and function,

e.g. excitatory and inhibitory interactions, or positive and negative correlations.

Another very important property that has to be considered when projecting the brain

into a network is its dynamics, which obviously changes with respect to the scale we are

considering. Since we are specifically interested in meso- and macroscale descriptions,

structural connectivity changes over periods spanning days to years in accordance with

developmental programs or experience-dependent plasticity (Zatorre et al. (2012)), thus

it is usually considered as constant. FCs instead display different dynamics, depending

on the measured data. Even though it is slower than the fast dynamics of neuronal

ensembles that rapidly synchronize and desynchronize, the larger sales’ dynamics are also

evident. Faster time-scales are readily accessible with invasive recording techniques or

non-invasively with EEG and MEG (Figure 4.2). Functional MRI represents only slower

dynamics, although computational modeling suggests that rapid dynamics contribute to

BOLD signal fluctuations (Deco et al. (2008)).

As reported in Fornito et al. (2016), the ideal brain graph should have the following

fingerprint:

1. spatial embedding,

2. heterogeneity of node properties,

3. directionality of connectivity,

4. weight of connectivity,

5. heterogeneity of edge types,

6. dynamic changes in network organization.
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Nevertheless, this is an ideal representation of the brain, which is very hard to implement.

Hence, current maps and models capture some of these properties and do not capture

others. We take this description into account in Chapters 5 and 6, where brain networks

and models are built and discussed.

4.3 The activity of the brain

Brain rhythms. The combined electrical signals produced by neurons in the brain

generate oscillations (brain waves). Thus, the brain activity is related with the concept

of synchronization, which, in first place, can be thought as a measure of how coherent

the behavior of different agents is. Synchronized activity between and within neuronal

assemblies produce brain rhythms, that are fully described by their amplitude, frequency

and phase. Traditionally, brain rhythms have been classified with respect to their

frequency content, since the different frequency bands of brain oscillations are supposed

to have functional significance, and to represent the brain strategy for processing parallel

information and controlling co-occurrent processes at different spatial and temporal

scales.

Specifically, as measured through MEG, a significant delta band activity (1-4 Hz)

has been related to sleep activity in healthy subjects, while theta band power (4-7.5 Hz)

has been shown to increase in arousal and working memory tasks. The best known

frequency band is alpha (8-12 Hz), which correlates with rest condition. For instance,

alpha suppression during the execution of a task is correlated with the activation of

the recruited cortical areas (Pfurtscheller and Da Silva (1999)). Motor processing,

sensorimotor control, sensory-motor integration, corticospinal coupling and proprioception

are instead correlated with beta frequency band (15-25 Hz). Finally, oscillations above

30 Hz (gamma band) have been related to activity of limited cortical areas for stimulus

selection, feature integration, pattern recognition, attention, multisensory integration,

sensorimotor integration, pain processing, empathy and memory (Pizzella et al. (2014)).

Figure 4.7 shows an example of a filtered time series extracted from a dataset of MEG

signals.

4.3.1 Resting state (RS) activity

For several years, the existence of slow correlated fluctuations during rest has not been

considered, and only task-induced activity was investigated. However, this kind of slow

activity was particularly disturbing for studies aiming to detect only task-related (evoked)

neuronal activations, since this ongoing activity was found to contribute for the variance
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Figure 4.7: Example of filtered MEG data at different frequency bands. The used dataset
and the selected bands are the same which will be considered in Chapter 5.

observed in evoked cortical responses (Arieli et al. (1996)). Thus, it became necessary to

define a baseline (or default-mode) activity, which confirms that it exists a spontaneous

activity of the brain, that cannot be considered simply as noise. Hence, when switching

from rest to a particular task, not only activation of the task-related areas is observed,

but also deactivation in certain other areas, suggesting that those ones are areas actively

engaged during RS. In particular, further analyses provided evidence for the existence

of a cohesive default mode network (DMN) (Greicius et al. (2003)), which involved a

specific set of brain areas that are more functionally connected during resting-state than

during any other tasks. Moreover, in this regime, also other groups of brain regions

exhibit correlated activations, even if revealed to be more connected during some specific

task than in rest.

The investigation on the nature of the mechanism underlying baseline brain activity

has attracted considerable attention in the last years from several perspectives. The

reason is that not only resting-state activity represents 90% of brain metabolism, but also

the baseline activity appears to be dynamically regulated and varying under a wide range

of physiological and pathological conditions (Raichle (2003); Shulman et al. (1997)). The

function of the RS activity is not still completely understood, however one of the most

intriguing hypotheses is that it reflects, at least in part, ongoing processes of synaptic

plasticity, which are related to the post-processing of incoming information.

The interest on studying resting-state behaviors increases even more, if we consider

that a large number of studies have reported altered resting brain activity in a wide range
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of mental illness. Among all, these results have provided new insights on dysfunctional

mechanisms and possible treatments of them. For instance, from functional analyses of

the brain networks in Alzheimer’s Disease it emerged that some topological features of

healthy rsFC, like small-world properties, are not recovered in case of AD. On the other

hand, schizophrenia seems to be related to a general decrease in rsFC values, suggesting

that schizophrenia may arise from the disrupted functional integration of segregated

brain areas. Many other mental diseases result to be correlated with abnormal functional

connectivity in rest; however, the research in this field is still in process and a lot of new

moves might be done.

One of the most used technique to analyze functional dynamics during resting-state

is fMRI. However it is worth noting that, as an indirect measure of the brain activity,

the BOLD signal cannot accurately assessed the exact neural mechanism at the origin of

the observed fluctuations. Furthermore, this measure is sensitive to physiological noise,

like heart and respiratory signals, which is nowadays not completely removable.

4.3.2 Task-induced activity

When studying task-induced activity in the brain, the aim is to identify the brain

mechanism elicited by the specific task-related stimulus. Thus, one of the most widely

used strategies consists in selecting a battery of stimuli that reflect very specific tasks for

the brain and defining the baseline activity of the brain before the onset of each stimulus.

Many repetitions of the same tasks are typically considered, so that, it is possible to

identify and characterize the spatial and temporal response of the brain with respect to

a rest condition.

Moreover, event-related cortical activity can be divided into evoked and induced

components, which have different functional descriptions. The functional role of induced

activity is assigned to top-down modulation through backward connections and lateral

interaction, whereas in evoked components the bottom-up driving processes predominate

(Tallon-Baudry and Bertrand (1999)). The difference between evoked and induced

components can be in practice identified in their phase-response to timed event: while

evoked responses are phase-locked to the stimulus, induced responses show trial-to-trial

variation in latency (Chen et al. (2012)). However, this distinction goes beyond the

object of this thesis, and we will use the two terms evoked and induced as synonyms.

4.3.3 Mathematical tools to describe brain’s activities

In the previous sections we have introduced the different typologies of brain activity,

and we have mentioned that functional or effective connectivity maps may be useful to
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describe the existing relationship among the activity of different brain areas. However,

we have not presented the mathematical tools usually implemented in order to derive

such connectivity maps, so far. In this Section we report a brief exploration of the main

mathematical measures used to define FC maps, since we will refer to this kind of maps

in the following chapters. Nevertheless, some of these tools can be used also to infer EC

maps, when the data refers to the source level.

4.3.3.1 Functional connectivity maps and RSNs estimation

To define FC networks during resting-state it is not possible to use the same strategies

used to infer evoked functional networks (see subsection 4.3.2), during which they are

captured by comparing a measure of brain activity during a particular task with baseline

data sets. However, several approaches have been used to define resting-state networks

(RSNs), such as correlation measures, coherence analysis, independent components

analysis (ICA), principal component analysis (PCA), mutual information (MI), and phase

locking evaluation (PLV).

Among all the aforementioned measures, we describe here how to evaluate linear

correlation and phase locking value, since we will refer to these particular quantities in

the following chapters. However, an illustration of the other measures is reported in

Appendix A.2.

One of the most widely applied method to infer functional interactions is the estimation

of the Pearson’s linear correlation coefficient between each pair of temporal signals

x(·) and y(·), which is defined by

ρxy :=
∑T
t=1 [(x(t)− x̄)(y(t)− ȳ)]√∑T

t=1(x(t)− x̄)2
√∑T

t=1(y(t)− ȳ)2
=

σ2
xy

σxσy
∈ [−1, 1], (4.1)

where T is the number of time instant used to estimate the correlation coefficient,

x̄ =
∑T
t=1 x(t)/T is the mean value of signal x(·) across time, σx =

√∑T
t=1(x(t)− x̄)2/T

is the standard deviation of x(·), and finally σ2
xy =

∑T
t=1 [(x(t)− x̄)(y(t)− ȳ)] /T is

the cross-covariance among signals x(·) and y(·). A high positive correlation indicates

cooperation and integration between the signals; a correlation close to zero indicates no

linear relationship; a negative correlation (or anticorrelation) indicates antagonism and

segregation. By shifting one of the two time series with respect to the other, it is possible
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to infer the lagged correlation ρxy(τ) as follows:

ρxy(τ) =
∑T
t=1 [(x(t)− x̄)(y(t− τ)− ȳ)]√∑T
t=1(x(t)− x̄)2

√∑T
t=1(y(t)− ȳ)2

∈ [−1, 1]. (4.2)

Note that equations (4.1) and (4.2) are such that ρxy(0) = ρxy. In particular, two levels

of analysis are possible through this metrics:

1. seed-based correlation, which looks at the correlation between one specific region

and the rest of the network. This kind of analysis requires some information on the

main activation sites of a certain RSN, and then, the co-activations seed map can

be built by overlapping the correlation maps of each seed;

2. correlation matrix, which estimates all possible functional connections among each

pair of region, and which can be analyzed through graph theory to evaluate the

topological properties of such matrix, and to infer its functional modules and hubs.

When using (4.1) to quantify the functional connectivity map, some key properties are

to be considered. First of all, ρxy only estimate the linear dependence among signals,

discarding possible non-linear correlations, that are instead captured by other measures,

as MI or synchronization analysis. Second, the correlation coefficient is sensitive to

indirect effects, which arise when two nodes show correlated activity even in absence of a

direct anatomical connection (Rubinov and Sporns (2010); Smith et al. (2011); Zalesky

et al. (2012)), thanks to a third, intermediary node, or to a common driving stimulus

(co-activation), or fluctuations in physiological and neuromodulatory processes. One of

the main drawback of this functional measure is that it does not distinguish between

the two principal coupling modalities hypothesized to underline brain function, that are

phase coupling, and amplitude coupling. Phase coupling quantifies the consistency of

the relative phase between two signals that oscillate with the same frequency2, whereas

amplitude coupling is typically quantified as the correlation of the amplitude envelopes

of the signals (Figure 4.8).

A different measure to describe functional relationships among signals, by means

of phase cohesiveness, is the phase locking value (PLV), which indicates how locked

are the phases of two signals during time. Given two signals xi(·) and xk(·), and their

respectively phases θi(t) and θk(t), their PLV is estimated as:

PLVθiθk
=

∣∣∣∣∣
1
T

T∑

t=1

ej[θk(t)−θi(t)]

∣∣∣∣∣ ∈ [0, 1], (4.3)

2As discussed in Chapter 7, phase synchronization requires frequency synchronization to be achieved.
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Figure 4.8: Examples of the two principal coupling modes of neurophysiological signals:
phase and amplitude coupling. Top: phase coupling between two electrophysiological signals.
Left shows an example of two signals in perfect phase synchrony with zero lag. The peaks and
troughs of the oscillations occur at the same time. Right shows an example of phase synchrony
with a non-zero lag. In this case, the phase of one signal is shifted with respect to the other,
but the relationship is consistent across the recording period. Bottom: amplitude correlation
is a measure of the correlation of the envelopes (shown in red) of two simultaneous oscillatory
signals. Amplitude correlation can be measured between oscillatory signals of the same or
different underlying carrier frequencies. Amplitudes can be positively correlated or negatively
correlated. Here there is positive amplitude correlation between two oscillatory signals of the
same (left) and different (right) underlying carrier frequencies. Phase coherence and amplitude
correlation are independent of one another. This is exemplified in the bottom-left panel, in
which the amplitudes of the two oscillations are correlated but the underlying oscillations are

not phase coherent. (Images adapted from Siegel et al. (2012) [Fig. 1])

where T is the number of time instants used to estimate the PLV. Its value is always

bounded by 0 and 1, and specifically, it is equal to 0 if the two phases are fully unlocked,

while it is equal to 1 if they mantain the same distance at each instant of time (|θj(t)−

θi(t)| = γ, for all t = 1, . . . , T ).

In addition to define a complete functional relation among each pairs of nodes, the

aim is also to find a method in order to divide all the brain areas (nodes) in a certain

number of subsets (groups, clusters), such that each node has a behavior coherent with

the other nodes in the same cluster, but different from the nodes of the other groups.

We use terms module, cluster, group and community interchangeably throughout this

and following sections. Given a set of observations during time, there are several data

clustering methods, among which we differentiate between hierarchical algorithms and

centroid-based algorithms. The hierarchical algorithms may in turn be categorized

into two broad classes: agglomerative and divisive. The first group includes methods

that start with individual data points and group them together into larger clusters, while

the latter includes methods starting with all nodes in a single cluster and attempt to find
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divisions that delineate cohesive subsets of observations. The basic idea of centroid-based

clustering instead is to define clusters based on the distance of each member of the group

and the so-called centroid of the cluster itself, which is considered as representative for

the whole community. Even though an exhaustive review of all the proposed clustering

methods goes beyond the scope of this thesis, in Appendix A.4.1 we report a brief

description of the most widely used algorithms in brain network, that we will exploit in

the following sections.

While agglomerative hierarchical clustering requires the definition of rules used to

aggregate element based on similarity measures, divisive hierarchical clustering does not,

since it can be computed using standard graph theoretic methods, and it may be used to

distinguish between communities consistently at each resolution scale (see Appendix A.4.1

for further details).

The main advantage of hierarchical clustering methods is that they do not need prior

information on the number of groups that should be found from the data. However, they

do not even give any information to determine whether the clustering solution obtained

at one level is more valid or reliable than another.

In order to overcome this problem, in Newman and Girvan (2004) a modularity-based

approach has been proposed, which should be able to measure also the quality of a

partition at each scale of the clustering solution. Without going into the details of the

algorithm, in Appendix A.4.1 we report the definition of the so-called modularity index,

which can be evaluated once a partition of nodes has been defined.

The modularity index can either be used to quantify the quality of a partition that

has been defined using any method for community detection, as a post-hoc test, or it

can been incorporated into the clustering algorithm itself. Among several computational

algorithms that have been proposed to implement a method to identify directly the best

partition of a graph, the Louvain algorithm (Blondel et al. (2008)) is one of the most

widely used methods, thanks to its computational low cost and accuracy.

Co-activation patterns of synchronized areas Rather then applying a clustering

algorithm to the brain areas, other approaches are based on clustering time-frame instead

of nodes, in order to define a certain number of co-activation patterns involving many

(possible overlapping) brain regions (Tagliazucchi et al. (2012); Liu and Duyn (2013);

Liu et al. (2013)). To do that, two similar (but different) methods have been proposed in

the literature.

In Tagliazucchi et al. (2012), the authors support the idea that important information

is compressed in few timing points, which are sufficient to derive the RSNs and their

activation maps. After having normalized each measured BOLD signal by its own
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standard deviation, they select the time points at which the signal is higher then a

selected threshold (they specifically used one standard deviation as threshold). Then,

they use an algorithm implemented in MATLAB R©, based on the detection of connected

components in co-activated first neighbors graph, in order to detect spatial clusters of

activated voxels. This method, although simple, has been proved to recognised networks

of areas coherent with the ones reported in literature. Furthermore, it allows not only

the detection of networks, but also the specific time period during which they are more

or less active. This method is referred as point process analysis (PPA).

Not long after, a similar method has been proposed (Liu and Duyn (2013); Liu

et al. (2013)), which, rather than selectively averaging time points of activity increase

in a seed region, classifies and averages time points with similar spatial distributions of

activity using the k-means clustering algorithm to define co-activation patterns (CAPs).

Specifically, after clustering, the time frames assigned to the same cluster are simply

averaged, resulting in K maps (or CAPs). These CAPs are then normalized by the

standard error (within cluster and across time frames) to generate Z-statistic maps, which

quantify the degree of significance to which the CAP map values (for each voxel) deviate

from zero. The idea under this strategy is that by averaging selectively frames, finer

details regarding spontaneous co-activations of multiple brain regions may be extracted.

4.3.3.2 Clusters’ dynamics estimate

All the functional connectivity measures described above are static measures, which can

be used to detect the RSNs, but not their dynamics. As one of our aims is the analysis of

spatio-temporal patterns of synchronization during time, we need to introduce some tools

to handle this task. Specifically, we will employ two different methods, which have been

both used to describe synchronization patterns in brain networks (Ponce-Alvarez et al.

(2015); Allen et al. (2014)), both based on the definition of tensor matrices of dynamic

functional connectivity. These modalities are based on methods to derive patterns of

synchronization.

Tensor-FC definition. The basis idea to analyze the variability of functional connec-

tivity consists in defining a tensor (or three-dimensional matrix) T ∈ RN×N×L, which

describes the functional connectivity map among regions at L ≤ T instants of time, being

T the total time steps of the measured signals. In literature, several definitions of tensors

can be found. Specifically we considered two cases, the first of which (t1) is applicable

during phase coupling analysis only, whereas the latter (t2) can be employed during any

kinds of analysis, by selecting a suitable FC metric.
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t1. By considering L = T , tensor T ∈ RN×N×T can quantify the phase distance among

nodes, in such a way that

[T]ijt = |θj(t)− θi(t)|, ∀ i, j = 1, . . . , N ∀ t = 1, . . . , T, (4.4)

or its binary version Tb ∈ RN×N×T :

[Tb]ijt =





1, if |θj(t)− θi(t)| < φ,

0, otherwise
∀ i, j = 1, . . . , N ∀ t = 1, . . . , T, (4.5)

where φ is a selected threshold angle within the interval [0, π].

t2. Otherwise, the sliding windows method can be applied: it divides the whole set of

time instants into L windows of W time points each, used to evaluate the functional

connectivity (with respect to a desired metrics) at time point l (FC(l)) through the

values of the signals within the time interval [l −W/2, l +W/2], with l = 1, . . . , L.

In this way, a tensor T ∈ RN×N×L of FCs is defined, such that [T]ijl = [FC(l)]ij .

While the sliding windows-based tensor is analyzable through both the methods, which we

are going to describe, a tensor defined with respect to the instantaneous phase difference

is preferably to be referred only to the fist method.

Non-negative tensor factorization (NNTF). Non-negative tensor factorization

can be seen as an higher-order Principal component analysis (PCA), as it is based on the

canonical decomposition of a tensor representing the synchronization networks during

time. The aim is hence to find an approximation T̃ (or T̃b) of tensors T (or Tb), which

can be decomposed into K rank-one positive tensors in the form:

T ≈ T̃ =
K∑

i=1

ai ◦ bi ◦ ci, ai ∈ R
N , bi ∈ R

N , ci ∈ R
T , (4.6)

where ◦ is the outer product of vectors (x◦y = xyT). The idea is to find the integer K and

the set of positive factor matrices A = [a1, . . . ,aK ] ∈ RN×K , B = [b1, . . . ,bK ] ∈ RN×K ,

and C = [c1, . . . , cK ] ∈ RT×K , which best approximate the original tensor with respect
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to a specific norm (in this case we consider the Frobenius norm ‖ · ‖F):

{K,A,B,C} = arg min
K,A,B,C

‖T− T̃‖2F, (4.7a)

s.t.





A,B,C ≥ 0

K ∈ N

, (4.7b)

where the symbol ≥ means that each element of matrices A, B, and C is non-negative.

Since at each time step t, it is [T]ijt = [T]jit, we have A = B. The interesting part of this

decomposition is its interpretation in terms of synchronization patterns’ dynamics. In

particular, the column vectors of A represent the K communities, and the i-th element of

vector aj , [aj ]i can be interpreted as the participation weight of node i to the community

j. On the other hand, the K columns of matrix C are a measure of the activation level

of the K communities during time (the t-th element of vector cj , [cj ]t, is the activation

level of cluster j at time step t). This particular configuration allows the definition of

clusters of nodes different from a partition, since each node may take part to different

communities, with different participation weights. Moreover, each community is not

static, but its activity level may change during time. Finally, at each time step t, the

strength of community i is defined as the sum of all the participation weights of the

community multiplied by its activation level at time t:

si(t) = [ci]t
N∑

j=1

[ai]j ∈ R, ∀ i = 1, . . . ,K, ∀ t = 1, . . . , T. (4.8)

A measure of the global strength of the network during time is directly derived as the

sum over all the single si(t):

S(t) =
K∑

i=1

si(t), ∀ t = 1, . . . , T. (4.9)

Dynamic-FC clustering. Given a tensor of FC maps, for each l = 1, . . . , L, the upper

triangular part of the symmetric FC(l) matrix can be vectorized, in order to achieve a

matrix of dimension N(N − 1)/2× L, whose column l is the functional connectivity at

time l, and whose row i is the evolution of link i during time. In other words, in this

way we are characterizing the dynamics of the edges of the brain graph, rather than the

dynamics of the nodes. Then different strategies can be chosen. For instance, clustering

methods can be applied to clusterize instants of time with similar functional coupling

together, and to define a set of states given by the centroids of each cluster. Otherwise, a



4.3 The activity of the brain 87

correlation matrix among each of the L columns can be evaluated, and used as an input

for a modularity clustering as described above, to define a set of modules with similar

characteristics. Again, the average across the columns which participate to the same

module can be used to describe the synchronized networks.

By evaluating the occurrence of each pattern during the whole period, a description

of the dynamics of the RSNs is quantified. However, unlike NNFT, this method assumes

that at each time point l only one pattern is active, and it does not admit the co-activation

of different networks with different activity level in the same time. Moreover, as other

clustering methods, this approach needs some a priori information on the correct number

of clusters, or at least some metrics to quantify the goodness of each different choice.

4.3.4 Task-induced activity estimation

When comparing task-induced response with resting-state activity, we can suppose that

task and ongoing conditions sum linearly and we can evaluate the first by subtracting the

baseline from the measured signal during task. Otherwise, a more sophisticated method

to estimate the non-linear relationship among the two components can be used, such as

the dynamic causal model (DCM) (Friston et al. (2003)). The central idea behind DCM

is to treat the brain as a deterministic non-linear system that is subjected to inputs

describing a specific task. More recently a stochastic version of DCM has been proposed

to describe the resting-state dynamics rather than the task-induced one (Friston et al.

(2014)). In that case, the deterministic input is replaced with a stochastic input, which

refers to endogenous fluctuations. As during our research we have not dealt with DCM,

we remand to Friston et al. (1995, 2014) for further details about this computational

technique.
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5
fMRI and MEG: a task-induced comparison

“The human brain produces in 30 seconds as much data as the Hubble Space Telescope

has produced in its lifetime.”

K. Kording

In Section 4.1 we mentioned the great role that a combination of different technologies

may have in finding new insights on the activity of our brain. However, before combining

results obtained from different data, it is necessary to analyze the peculiarity of both

modalities and highlight similarities and differences.

We are specifically interested in fMRI and MEG technique (see Sections 4.1.1 and 4.1.2),

whose relationship is still under debate. A comparison among them focused only on

resting-state dynamics can be misleading, due to the physiological differences of the two

signals. Thus, we address this problem by observing the response to a specific task, when

it is measured by means of fMRI or MEG techniques.

In this chapter we treat this problem focusing on a specific visual-attentional task.

After a brief introduction on the relationship between fMRI and MEG signals, and a

recall of the main results on the same task experiment reported in Spadone et al. (2015)

obtained only with fMRI data, the aim of this chapter is twofold and it is summarized in

what follows.
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RSNs: prior for task, or idling state? First of all, starting from the results reported

in Spadone et al. (2015) for what concerns fMRI data, here we carry on with the analysis

and we investigate whether similar results emerge from MEG data. To this aim, we

measure how slow fluctuations of MEG signals change from rest to task and across different

frequency bands. Specifically, two hypotheses on the role of resting-state networks have

to be tested.

h1a. RSNs represent spatio-temporal priors for task networks, and their modulation

contributes to task-evoked responses. This means that the FC during rest recalls

task-dependent behavior, thus providing a sort of prediction about coming stimuli.

This hypothesis is supported by several works, which report the stability of the

RSNs topography across behavioral states (Arfanakis et al. (2000); Fransson (2006)),

and an high level of similarity between RSNs and task networks involved by common

cognitive tasks (Smith et al. (2009); Cole et al. (2014)).

h1b. RSNs reflect a state of idling of the brain, which has to be reorganized in order to

let task-dependent interactions emerge. Other works (Gao et al. (2013); Fornito

et al. (2012)), which show the reconfiguration of resting-state connectivity during

task are taken as support for this second hypothesis.

MEG and fMRI relationship: investigation on task-induced correlation As

second purpose, we investigate the relationship among BOLD signals and electrophysio-

logical fluctuations when switching from resting-state to a specific task. Specifically we

test two possibilities:

h2a. MEG and fMRI signals respond to a visual-attentional stimulus in a fully indepen-

dent manner. This idea is supported by the different nature of these brain signals,

which describe distinct physiological phenomena evoked by the same stimuli.

h2b. Although their different nature, fMRI and slow (amplitude) MEG fluctuations

reflect the same evoked neural activity. Thus, a larger correlation (be it positive

or negative) emerges during task, than at rest. This hypothesis is supported by

an emerging consensus that BOLD signal fluctuations correlate with band-limited

power (BLP) fluctuations, especially in α and β frequency bands (Brookes et al.

(2011); Stevenson et al. (2011)).

The several analyses reported in this chapter have been performed using MATLAB R©

2017b and RStudio R© software.
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Notation

Throughout this chapter we will adopt the following notation in order to discern

the functional connectivity matrices obtained from N > 0 time series, w.r.t. the

technology (fMRI, or MEG), the considered subject, the frequency band (only for

MEG), and the condition (rest, task, or the difference matrix task-rest).

FCfMRI(s, c) ∈ RN×N represents the FC matrix obtained from the fMRI

dataset of subject s ∈ {1, . . . , Ns} in condition c ∈ {R, T, T− R}, where R, T

and T− R indicates rest, task, and task-rest conditions, respectively.

FCfMRI(c) ∈ RN×N represents the FC matrix obtained from the fMRI dataset,

as the average over the FCs of all the Ns subjects in condition c ∈ {R, T, T− R}.

FCMEG(s, f, c) ∈ RN×N represents the FC matrix obtained from the MEG

dataset of subject s ∈ {1, . . . , Ns}, within frequency band f ∈ {δ, θ, α, β, γ1, γ2},

in condition c ∈ {R, T, T− R}.

FCMEG(f, c) ∈ RN×N represents the FC matrix obtained from the MEG

dataset within frequency band f ∈ {δ, θ, α, β, γ1, γ2}, as the average over the

FCs of all the Ns subjects, in condition c ∈ {R, T, T− R}.

Moreover, FCn
∗ ∈ RNn×Nn represents the sub-matrix related to the sub-network

n ∈ {D, V, DV}, where D, V, DV stand for DAN, VIS, and DAN-VIS, respectively,

and FC∗ indicates one of the matrices defined above. (See Section 5.2.1 for the sub-

networks’ definition). [FC∗]ij refers to the element at row i and column j of matrix

FC∗. Finally, the notation FCfMRI, FCMEG, or FCMEG(f), without the condition

argument, is used in general to distinguish among the different technologies and/or

frequencies used to infer the FC matrix. FC(c) instead, refers to the functional

connectivity matrix in condition c, without discerning among fMRI and MEG.
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5.1 MEG and fMRI

Despite the two signals MEG and fMRI have fundamentally different properties, they

are likely to originate from similar underlying physiological processes, thus suggesting

that a relationship among them is highly probable. Unfortunately, a direct comparison

between the two signals can be very tricky, considering the spatial limitation of MEG,

and the temporal limitation of fMRI.

A comparison among modalities has been performed with task-driven studies and

through functional connectivity approaches. The first one regards the BOLD and MEG

signals response to specific stimuli, and it has been implemented at two levels: spatial

or temporal. On the other hand, functional connectivity approaches try to find some

relationship among functional networks obtained from fMRI or MEG data. Far from

the idea of furnishing an exhaustive review of the evidences reported in literature, here

we report a brief summary of the main results on spatial and temporal cross-modality

relation.

Task-driven studies Spatial comparison between BOLD and MEG is corrupted by

a high level of ambiguity due to the fact that errors of different nature are involved

when the co-registration of MEG and fMRI functional data at the same anatomical

coordinate space is implemented. Despite all the difficulties, some evidences of a close

spatial relationship among the two modalities have been reported in previous works,

including task induced changes in fMRI and oscillatory power in multiple frequencies

MEG signals (Stevenson et al. (2011, 2012); Winterer et al. (2007)). These and other

evidences encouraged some authors to use fMRI spatial information as a prior to the

reconstruction of MEG data during the resolution to the inverse problem (see Henson

et al. (2010); Ahlfors and Simpson (2004) as an example).

To overcome the ambiguities of spatial relationship among modalities, it can be useful to

consider also a temporal comparison among them. From different works (Zumer et al.

(2010); Mukamel et al. (2005)) it has emerged an high degree of negative correlation

between stimulus-induced BOLD responses and induced changes in neuronal oscillatory

amplitude in alpha and beta frequency bands, while a positive correlation has been

observed in higher bands. This fact may suggest a difference in functionality, e.g. low

frequency responses may present long range thalamo-cortical or cortico-cortical interaction,

whereas high frequency responses may represent localised networks (Hall et al. (2014)).

Overall, evidence suggests that this relationship is very complex, and it is unlikely that a

simple one-to-one correspondence exists between BOLD and oscillations in any individual

frequency band (Winterer et al. (2007)).
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5.2 Task description and preliminary notions

Task description. We report here the description of the considered task as described

in Spadone et al. (2015).

Stimuli were generated using the MATLAB Psychtoolbox-3 (Brainard (1997); Pelli (1997);

Kleiner et al. (2007)) and consisted of two drifting Gabor patches with the following

parameters: 2 cycle/◦ spatial frequency, 0.7 ◦/s drift rate, and 3◦ diameter. The two

gratings were presented at opposite symmetrical locations on the horizontal meridian

at an eccentricity of 5.5◦ from central fixation for the whole duration of the experiment.

Participants were instructed to maintain central fixation on a central cross while covertly

directing attention to one of the two patches to briefly detect the presented targets. The

targets consisted of a brief (150 ms) change of the patch orientation in either clockwise

or anticlockwise direction, which occurred, on average, every 9 s. The to-be-attended

location was indicated by the appearance of a peripheral cue consisting of a 300 ms

isoluminant change in the color (pink and cyan) simultaneously applied to the two

patches. The relevant cue color (e.g., pink) to be attended for a whole block of trials was

shown at the beginning of each block at fixation and counterbalanced across blocks. A

cue could appear in the same location as the previous one (stay cue) or in the opposite

location (shift cue), indicating that the attention had to be shifted. A pseudo-random

stimulus sequence was designed to obtain short periods of consecutive cues (two, three,

or four cues) of the same type (stay or shift). Cues appeared randomly every two, three,

or four sampling times within a temporal window of ±400 ms centred on the sampling

time. After each cue, either zero, one, or two targets could be presented (see Figure 5.1

for an example of the display sequence). The cue correctly predicted the location of the

target with 80% probability (valid trials) but did not predict when the target would

appear, thus providing no temporal information. In 20% of the trials, the target appeared

at the uncued location (invalid trials). Participants were instructed to discriminate

orientation changes as fast as possible by pressing a key of a response pad with their

right middle or index finger to indicate clockwise or anticlockwise changes, respectively.

The subjects selection has been performed by means a preliminary behavioral session.

Then the selected subjects performed the actual fMRI session, which included 15 min of

resting-state scans followed by ∼ 45 min of the experimental task (the task session was

composed by 12 fMRI runs of 3.5 min each).
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tim
e

attend pink

attended stream

shift right cue
[300 ms]

stay right cue
[300 ms]

valid right target
[150 ms]

invalid left target
[150 ms]

relevant colour to be attended

attend pink attend cyan

Figure 5.1: Example of the display sequence in the visuospatial attention task. At the
beginning of the block, the relevant color to be attended is shown (pink). After an attended
stream, the isoluminant change in the color appears: since the pink appears on the right, the
cue indicates that the target would probably be on the right (shift right cue). The permanence
of pink color on the right side, during the following isoluminant cue, indicates to keep attention
on likely right-targets. Indeed, after another attended stream, the patch on the right changes
orientation (valid target). However, the target which follows takes place in the uncued location
(left), and it is referred as an invalid target. (The illustration of a single pair of Gabor patches

is taken from Capotosto et al. (2013), [Fig.1])

5.2.1 Methods

fMRI data acquisition. The data used to perform our analysis refer to 161 right-

handed healthy subjects, and they have been kindly shared by the University of Chieti.

All the information related to the fMRI signals acquisition and the ROIs definition can

be found in Spadone et al. (2015). Specifically, the regions of interest (ROIs) are N = 14,

and 12 of them belong to two specific resting-state networks: the dorsal attention (DAN),

and the visual network (VIS). Specifically there are ND = 6 ROIs within DAN and

NV = 6 ROIs within VIS. Table 5.1 shows the selected ROIs (which represent the nodes

of our graph) together with the MNI coordinates of their centres. BOLD images were

motion-corrected within and between runs, corrected for across-slice timing differences,

resampled into 3-mm isotropic voxels, and warped into 711–2C space, a standardized

1In Spadone et al. (2015) 18 subjects have been used to derive the reported fMRI-based results.
However, we used only 16 of these 18 subjects.
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atlas space (Talairach and Tournoux (1988); Van Essen (2005)). Preprocessing included

a whole brain normalization correcting for changes in overall image intensity between

BOLD runs. Each ROI reported in Table 5.1 is composed of a set of voxels (whose

number varies across different ROI), and a time series of T = 480 time points during rest

and T = 1368 during task (sampling time dt = 1/Fs, Fs = 0.535 Hz) has been recorded

from each voxel. Finally, the dynamics of the single ROI has been evaluated as the mean

over the time series of all the voxels that belong to the considered region of interest.

MNI coordinates
network label name (hemisphere)

x y z

DAN

L-dFEF dorsal frontal eye fields (left) -25 -6 67
L-pIPS posterior intraparietal sulcus (left) -23 -81 45
L-SPL superior parietal lobule (left) -19 -68 57

R-dFEF dorsal frontal eye fields (right) 23 -8 63
R-pIPS posterior intraparietal sulcus (right) 33 -78 35
R-SPL superior parietal lobule (right) 11 -68 60

PreCu precuneus -1 -64 49
none

R-vTPJ ventral temporoparietal junction (right) 44 -53 16

VIS

L-MT middle temporal visual area (left) -40 -76 -7
L-V3AV7 dorsal occipital visual cortex (left) -26 -86 6
L-V4V8 ventral occipital visual cortex (left) -24 -81 -19
R-MT middle temporal visual area (right) 40 -80 1

R-V3AV7 dorsal occipital visual cortex (right) 31 -86 10
R-V4V8 ventral occipital visual cortex (right) 35 -72 -12

Table 5.1: ROIs selected as nodes of the network and their MNI coordinates. See Figure 5.2
for a spatial characterization.

Data filtering. The fMRI signals have been low-pass filtered within the band [0, 0.17]Hz,

since no significant differences in the power spectral density after 0.17 Hz have been

revealed (Spadone et al. (2015)).

Functional connectivity maps evaluation for fMRI data. For each subject s ∈

{1, . . . , Ns} and each condition c ∈ {R, T, T− R}, FCfMRI(s, c) is defined as the cross-

correlation matrix (see Equation (4.1)) computed between all of the time series related

to the selected ROIs. For the task dataset, the connectivity between each ROI pair

was assessed by computing the Pearson’s correlation coefficients (4.1) between all ROIs

voxel pairs for each run and averaging across runs. Then, the correlation matrices were
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0 1

L-dFEF R-dFEF

L-pIPS R-pIPS

L-SPL R-SPL

(a) DAN network

0 1

PreCu vTPJ

(b) None

0 1

L-MT R-MT

L-V3aV7 R-V3aV7

L-V4V8 R-V4V8

(c) VIS network

Figure 5.2: ROIs representation by sub-networks: (a) DAN, (b) none, (c) VIS.
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Frequency band Symbol Range [Hz]

delta δ [1.5, 4.5]
theta θ [3.5, 8.5]
alpha α [7.5, 15]
beta β [13, 31]

gamma1 γ1 [29, 51]
gamma2 γ2 [49, 121]

Table 5.2: Frequency bands definition used in the analysis of MEG signals.

transformed by means of the Fisher z transform:

z(ρ) =
1
2

ln
[

1 + ρ

1− ρ

]
. (5.1)

The same procedure was used for the resting-state dataset using the same window length

as for the task runs and overlapping windows to obtain the same number of averages.

Finally, FCfMRI matrices for individual ROIs pairs during rest and task execution were

obtained by averaging correlation values of all subjects and voxels within the analyzed

ROIs pair.

MEG data acquisition. The MEG activity was measured at the University of Chieti,

and refers to the same 16 healthy subjects as in the fMRI data, even if it has been recorded

in different sessions. Participants performed three sessions of resting-state scan and

two sessions of task scan. After ICA (independent component analysis) decomposition,

MEG signals were reconstructed in the source-space domain with a sampling frequency

Fs = 1025 Hz. Then each of the three components of the source-space current density

vector at every voxels has been filtered with Chebyshev Type II filters in six frequency

bands (see Table 5.2).

Band limited power (BLP) has hence been computed for the filtered data as in

De Pasquale et al. (2010):

pi(t) =
1
Tp

∫ t+Tp/2

t−Tp/2
|qi(u)|2du, qi(t) = [ qi,x(t) qi,y(t) qi,z(t) ]T ∈ R

3, (5.2)

where qi(t) is the source-current density vector at ROI i at time t, and Tp =150 ms

is the width of the sliding window used to evaluate the BLP. This averaging applies

a low-pass filter with a stop-band which begins at frequency 6.7 Hz to |qi(·)|2. This

frequency has been selected by considering the power spectrum density of the signal
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and selecting the frequency above which the spectral density was flat, that indicates

only white noise contribution. BLP has been evaluated at successive time increments of

dt = 20 ms, with a sliding window overlapping of 87%. The BLP signal is characterized

by a slower dynamics than the original signal (see Figure 5.3 as an example), and it has

been shown to be more related to the fMRI dynamics (Betti et al. (2013)).

z

y

x

time

time

Filtered signal

BLP

Figure 5.3: Representation of the MEG signal related to the region L-dFEF. Left: depiction
of the selected ROI in the brain. Centre: x, y, and z components of α-band filtered source-
current density signal qi(·). Right: band limited power of the filtered signal, evaluated as

Equation (5.2).

Functional connectivity maps evaluation for MEG data. Similarly to FCfMRI,

FCMEG matrices are defined as cross-correlation matrices for all frequency bands. For

each session (3 sessions of rest, 2 sessions of task), the connectivity between each ROIs

pair was assessed by computing the Pearson’s correlation coefficients (4.1) between the

BLP signals in sliding windows of ∼ 40 s, that are non-overlapping during task and with

50% of overlapping in rest (to achieve a similar number of windows in both conditions).

Then, the correlation matrices were transformed by means of the Fisher z transform (5.1).

Finally, frequency-dependent FCMEG matrices for individual ROIs pairs were obtained

by averaging correlation values of all sliding windows and subjects within the considered

ROIs pair. Importantly, to avoid misleading correlations due to the ROIs proximity, a

mask matrix has been applied to discard inaccurate functional connections among too

close nodes (see Figure 5.6).
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Inter-subjects intra-modality coherence To quantify the intra-modality coher-

ence among different subjects, we evaluate two quantities, namely a similarity and a

dissimilarity measure.

Similarity measure: the similarity between the FC matrices of different subjects, we

evaluated the Pearson’s correlation coefficient among the vectorized FC maps of every

possible pairs of subjects, thus obtaining a vector of Ns × (Ns − 1) correlation coefficient

for each condition (R, T), or T-R), for each techniques (MEG, fMRI) and, in case of

MEG, for each frequency bands. Then the mean coherence value for each combination of

factors has been evaluated as the mean over the Ns × (Ns − 1) elements (see Figure 5.9),

and a t-test has been used to test the non-zero correlation hypotheses. The relatively

small dimension of the single sub-networks allows the evaluation of the coherence value

only at the whole network level, since a correlation among a small set of data would not

be significant (However, to be thorough, in Figure A.1 the results on the sub-networks

are reported).

Dissimilarity measure: to quantify the difference between the FC matrices derived from

different subjects, we consider each pair of subject and we performed the following steps:

1. we selected the techniques, sub-network, frequency and condition of interest and

we normalized the full population selected matrices by dividing each matrix by the

maximum entry among all of them;

2. then, for each pair of subjects, we evaluated the Hamming distance between the

two normalized sub-networks, and we divided it by the number of entries of the

interested sub-network. In this way, a vector of Ns × (Ns − 1) distance values is

obtained.

Finally, we analyzed the resulted values by means of boxplots (see Figures 5.9 and A.2),

to visualize the median and the sparsity of this dissimilarity quantity across different

combination of factors.

Structural comparison among fMRI and MEG maps The structure of matrices

FCfMRI and FCMEG are compared by means of two different measure, namely the matrix

density and the Hamming distance. In order to evaluate both these measures, we first

consider a vector of threshold values tr = [ 0 0.05 · · · 1 ]T. For each entry tr,i of

this vector, we define a sign matrix associated to FCfMRI and one associated to each

FCMEG(f), both during rest and during task. Given a value tr,i and a FC, the relative

sign matrix F̃C is defined as follows:
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s1. Evaluate the maximum value M := maxij [FC]ij , and the minimum value m :=

minij [FC]ij .

s2. Define the sign matrix F̃C, such that

[F̃C(tr,i)]ij =





+1, if ([FC]ij > 0) and ([FC]ij ≥ tr,i ×M)

−1, if ([FC]ij < 0) and ([FC]ij ≤ tr,i ×m)

0, otherwise

(5.3)

In this manner, for each modality, and for each frequency, we obtain a sign matrix

for every threshold value tr,i. These matrices are used to estimate the two measures

mentioned above.

Matrix density Given a sign matrix, its density is defined as the number of non-zero

entry of the matrix divided by the total number of the entries of the same matrix #F̃C

(disregarding the masked elements). In other words, for each threshold value tr,i, and for

each condition (rest and task), the density is defined as:

d (FCfMRI(c), tr,i) :=
#
(
F̃CfMRI(c, tr,i) 6= 0

)

#F̃CfMRI

∈ [0, 1], (5.4a)

d (FCMEG(f, c), tr,i) :=
#
(
F̃CMEG(f, c, tr,i 6= 0)

)

#F̃CMEG

∈ [0, 1]. (5.4b)

This quantity measures the distribution of the relative weights of the considered matrix.

Specifically, we estimated this quantity for each of the 16 subjects, and we considered

the mean over them.

Hamming distance In order to evaluate the structural difference between FCfMRI

and FCMEG matrices, for each condition (rest, task), for each frequency, and for each

threshold value, we computed the Hamming distance between the relative sign matrices,

as follows:

h (f, c, tr,i) :=

∑
ij

∣∣∣[F̃CfMRI(c, tr,i)]ij − [F̃CMEG(f, c, tr,i)]ij
∣∣∣

#F̃C
∈ [0, 2]. (5.5)

The smaller the Hamming distance, the more similar are the two considered matrices.
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5.2.2 fMRI results reported in Spadone et al. (2015)

In this paragraph we briefly report the results obtained through the analysis of fMRI

data in Spadone et al. (2015) that we would like to compare with results obtained with

MEG data. In summary, the authors reported that in the transition from rest to task the

functional architecture of the VIS and DAN was relatively preserved. However, during

the visuospatial attention task (requiring either maintenance of the focus of processing on

a stream of visual stimuli or a shift of attention to a competing visual stream) a decrease

of correlation in the VIS and an increase of temporal correlation between frontoparietal

regions of the DAN and visual regions bilaterally has been shown. Relatively to the

hypotheses h1a. and h1b., these results are consistent with a dynamic reorganization of

active visual connections from task to rest and the idling hypothesis of RSNs. The resting

connectivity in the DAN was instead relatively unaffected during attention, potentially

indicating a role for spontaneous ongoing activity as a prior for attention selection (see

Figure 5.4 for a representation of the FCfMRI matrices). Note that these changes in

functional connectivity have not been analyzed trial by trial, but they reflect adjustments

of connectivity that occur during a task block or a series of trials, such as in our shift/stay

cue analysis.

REST TASK TASK−REST

DAN

VIS

Figure 5.4: Functional connectivity map during rest (left), task (centre) and the difference
between FCfMRI(T) and FCfMRI(R). FC(·) matrices are obtained from the average across
voxels pairs and subjects of the z-Fisher-transformed Pearson’s correlation coefficients2. The

nodes are in the same order as in Table 5.1.

2The FCfMRI’s reported here have been obtained with data from 16 subjects, while the matrices
shown in Spadone et al. (2015) refer to 18 subjects.
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5.3 Task-induced modulation of MEG data

In order to investigate hypotheses h1a. and h1b. on the role of resting-state oscillations

with respect to the considered set of ROIs, by means of MEG BLP signals, we first test

task-induced modulation of frequency-dependent FCMEG(f) matrices. Before performing

this analysis, we report a test on the BLP modulation, to be considered as a control

measure to verify the goodness of MEG data’s quality. Specifically, in line with current

literature, we expect larger BLP values in the α and β bands (Wen and Liu (2016)),

when compared with the others. Moreover no significant change in the BLP is foreseen

when switching from rest to task condition.

5.3.1 Task-induced modulation of BLP

As a control measure to verify the goodness of MEG data, we focus now on the mean value

of the BLP signals, in order to test if there is a significant effect of the frequency band, rest

or task condition, and network membership. Therefore, we applied a Three-Ways ANOVA

with network (DAN, VIS, none), frequency (δ, θ, α, β, γ1, γ2) and condition (rest, task)

as factors and the mean BLP value of each ROI as variable. The results indicate a non-

significant three-ways interaction, but a significant interaction of network and frequency

(F = 7.71; pval < 3 × 10−12) (see Figure 5.5(a)). No significant interaction among

frequency and condition (F = 0.88; pval = n.s.) or network and condition (F = 2.17;

pval = n.s.) emerges. Finally, there is no significant main effect of condition (F = 0.52;

pval = n.s.), but a significant main effect both of network (F = 72.75; pval < 2× 10−31)

and frequency (F = 84.21; pval < 3× 10−82). See Figures 5.5(b) and 5.5(c).

Post-hoc analyses show that the mean BLP is larger in the α-band than in the other

frequencies, followed by the β-band (all pval < 5×10−2, Bonferroni corrected). Specifically,

the BLP signal in ROIs belonging to the DAN network, or to neither networks in α-band

is significant higher than other combinations of network and frequency (all pval < 5×10−2,

Bonferroni corrected). The DAN network finally resulted to be characterized by a greater

mean BLP than the VIS network and the nodes outside the networks (both pval < 5×10−2,

Bonferroni corrected).

In summary, the task condition does not modulate significantly the mean BLP values

of the ROIs, although a non-significant increase during task is observed in all frequency

bands, but in the α-band. The signals, whose sources belong to the DAN network, has a

larger mean power than the others, both in rest and in task. Finally, α and β bands are

characterized by the larger values of power in both conditions.
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(a) Frequency-network interaction (b) Frequency main factor (c) Network main factor

Figure 5.5: Representation of the two- and one-level significant interactions resulted from
a Three-Ways ANOVA with network (DAN, VIS, none), frequency (δ, θ, α, β, γ1, γ2) and
condition (rest, task) as factors and the mean BLP value of each ROI as variable (y-axis).

5.3.2 Task-induced modulation of FCMEG

A qualitative analysis of the matrices FCMEG (see Figure 5.6) in resting state and

during task (as well as their differences) in the six frequency bands leads to some

considerations. First, α and β bands seem to be characterized by higher FCMEG values

than the other bands, both in rest and during task. Second, it can be observed a

general decrease in correlation from rest to task, especially in α frequency band. Third,

stronger intra-hemisphere than inter-hemisphere connections are conjectured. Finally,

as an interesting insight, it can be observed that switching from rest to task seems to

produce an increase in the FCMEG values between specific regions (R-dFEF/R-SPL,

R-pIPS/R-SPL, L-V4V8/R-V4V8) both in higher (strongly) and lower (slightly) bands.

In order to verify the correctness of these observations, we performed several Two-Ways

ANOVA tests to analyze the condition factor (rest, task) modulation of FCMEG value of

each pair of ROIs belonging to DAN and VIS networks3, when it interacts with frequency

(δ, θ, α, β, γ1, γ2), hemisphere (intra-hemispheric or inter-hemispheric connections),

or network (within or between network correlations) factors. The results indicate a

significant interaction between frequency and condition (F = 35.99; pval < 3 × 10−16)

and a significant interaction between network and condition (F = 11.92; pval < 6× 10−4).

See Figures 5.7(a) and 5.7(b), respectively. No significance emerges from condition and

hemisphere factors interaction (F = 0.1132; pval = n.s.), where only the main factors

hemisphere (F = 608.09; pval < 2× 10−16) and condition (F = 446.42; pval < 2× 10−16)

are significant.

Post-hoc analyses indicate that stronger correlations are found in the α and β bands (with

higher values in α), as expected (pval < 5× 10−2, Bonferroni corrected). Interestingly,

3Three-Ways ANOVA tests has been performed as well, but they all resulted to be not significant.
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fMRI delta theta alpha beta gamma1 gamma2
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DAN VIS

Figure 5.6: Functional connectivity maps during rest, task and their difference (task-rest)
obtained with fMRI data and MEG data at different frequency bands. The matrices FCfMRI

and FCMEG are obtained from the average across voxels’ pairs and subjects of the z-Fisher-
transformed Pearson’s correlation coefficients. A mask matrix has been applied to discard
inaccurate connections among too close ROIs (white cells). The nodes are in the same order

as in Table 5.1.

the α-band emerges among the others (see Figure 5.7(a)): the more relevant decrease

of FCMEG during task with respect to the condition of rest is observed in the α-band

(pval < 5×10−2, Bonferroni corrected). Furthermore, as presumed, while at rest condition

no significant difference emerges when within- and between-networks interactions are

compared, during task, cross-network (DAN-VIS) connections are significantly weaker

than within network links (see Figure 5.7(b)), thus confirming the networked structure

of the matrices FCMEG(T).

In summary, while a general decrease of correlation has been detected in all the

bands, the α-band (which is characterized by the highest connectivity both in rest and in

task) differs from the others for the magnitude of this decrease. Moreover, this analysis

highlights networked specificity of the connections induced by task.

5.3.2.1 Temporal vs spatial modulation of FCMEG

From the results presented above, it emerges a weak networked structure, which becomes

significant only during task, and an hemispheric main factor modulation. However, by

observing Figure 5.6, the cross-network DAN-VIS seems to be particularly affected by



5.3 Task-induced modulation of MEG data 105

(a) Frequency-condition interaction (b) Network-condition interaction

Figure 5.7: Representation of the two-levels significant interactions resulted from two Two-

Ways ANOVA tests with FCMEG value of each pair of ROIs belonging to DAN or VIS networks
as variable (y-axis). (a) Two-Ways ANOVA with frequency (δ, θ, α, β, γ1, γ2), and condition

(rest, task) as factors. (b) Two-Ways ANOVA with network (within or between network
correlations), and condition (rest, task) as factors.

hemispheric modulation. On the other hand, both Figure 5.6 and the previous results

suggest a significant temporal modulation of the FC networks, which interacts with other

factors.

In order to investigate the relationship among spatial and temporal FCMEG mod-

ulation, we performed a Three-Ways ANOVA test with FCMEG value of each pair of

ROIs belonging to DAN or VIS networks as variable and frequency (δ, θ, α, β, γ1, γ2),

hemisphere (intra-hemispheric or inter-hemispheric connections), and network (within or

between network correlations) as factors. The results indicate a non-significant three-level

interaction (F = 0.98; pval = n.s.), whereas all two-level interactions are significant:

network-hemisphere (F = 40.65; pval < 2 × 10−10), frequency-hemisphere (F = 6.23;

pval < 9× 10−6), and frequency-network (F = 3.62; pval < 3× 10−3).

Post-hoc analyses confirm our conjecture regarding the DAN-VIS cross network, indeed

the difference between intra- and inter-hemispheric connections (where intra connections

are generally stronger than inter links) significantly enlarge (pval < 5× 10−2, Bonferroni

corrected) in DAN-VIS with respect to within network interactions (see Figure 5.8(a)). As

shown in Figure 5.8(b), the interaction among hemisphere and frequency factors reinforces

the role of α band, which is characterized by a significantly larger difference between

intra- and inter-hemispheric connections, than the other frequency bands (pval < 5×10−2,

Bonferroni corrected). Finally, from post-hoc analyses on the interaction between fre-

quency and network factors in the FCMEG modulation, it emerges the stronger temporal

modulation, if compared with the spatial-network characterization. Indeed, even if a

significant interaction has been resulted, the most modulation is frequency-driven, as can

be noted in Figure 5.8(c). To confirm this, the Three-Ways ANOVA test shows significant
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main factors of frequency and hemisphere, but not significant network main factor.

(a) Network-hemisphere interaction (b) Hemisphere-frequency
interaction

(c) Frequency-network interaction

Figure 5.8: Representation of the two-levels significant interactions resulted from a Three-

Ways ANOVA test with FCMEG value of each pair of ROIs belonging to DAN or VIS networks
as variable (y-axis), and frequency (δ, θ, α, β, γ1, γ2), hemisphere (intra-hemispheric or
inter-hemispheric connections), and network (within or between network correlations) as

factors.

In summary, the hemisphere factor modulation strengthens the difference both between

within- and cross-network interactions, as well as the frequency-dependent FC links.

Specifically, the DAN-VIS cross-network and the α-band are characterized by higher

hemisphere specificity.

5.3.2.2 Task-induced variation in inter-subjects coherence

Inter-subjects differences among each frequency-dependent FCMEG(f) matrix highlight

one of the main limitation of these data, where the use of population models to describe

the behavior of a set of subjects is still questionable.

To quantify the intra-modality coherence, we have evaluated the Pearson’s correlation

coefficient among the vectorized functional connectivity maps of each possible pair of

subjects, thus obtaining a vector of Ns×(Ns−1) correlation coefficients for each frequency

band. Then we performed a t-test for each band to evaluate if the mean over all the

coefficients is significant larger than zero. The same approach has been used for fMRI

data. Figure 5.9(a) illustrates the mean and the confidence interval of the intra-modal

coherence value for rest and task when the whole network is considered (See Figures A.1

for the DAN and the VIS networks, and for the DAN-VIS cross-network). In both

conditions, but the VIS network, all the values are significant larger than zero, but, as

expected, they vary from rest to task. Specifically, central bands (within θ and γ1) results

more inter-subjects coherent during task, while, δ and γ2 has almost the same behavior.

The high spatial resolution of fMRI technique induces a larger coherence among inter-

subjects functional connectivity during task, when only the task-related sub-networks



5.3 Task-induced modulation of MEG data 107

are considered. On the contrary, when the whole network is analyzed, switching from

resting-state to the task activity induces a general decreasing in population coherence.

This fact is confirmed from the analyzed fMRI data, which are characterized by a task-

induced decreased coherence in the whole network, while the sub-networks specific FC

are more similar across subjects during task (the (dis)similarity is evaluated in terms of

the normalized Frobenius norm of the matrix difference. See Figure A.2(f)).

MEG technique, however, is characterized by lower spatial resolution, thus a different

behavior may be noticed. Specifically, as mentioned above, a general population alignment

during task is observed at the level of the whole network, both in terms of increased

correlation, and of reduced distance (see Figure A.2). Nevertheless, due to the higher

temporal resolution of MEG technique, as expected, we can distinguish among frequency-

specific behavior. In particular, as shown in Figures 5.9 and A.2, a larger consistency and

a smaller difference among the subjects’ FC are to be noticed in α and β frequency bands

than in the other bands. However, from Figures 5.9(b), 5.9(c) and 5.9(d) it emerges

that β band is characterized by larger distance across subject within single networks and

cross-networks during task, than at rest, while higher frequency bands show opposite

behaviors. Thus confirming that β is more active during resting-state than during task

(Betti et al. (2013)).

From rest to task: no modulation of BLP but a significant modulation of

FCMEG. Our results indicate that the analyzed task does not modulate the BLP value

itself, but it modulates the functional relationship among each pair of BLP signals, if

compared with the functional correlation values obtained during rest.

This fact confirms that the analyzed networks (DAN and VIS), which have been selected

through their fMRI response profile during the attention task (Spadone et al. (2015)), are

still task-related when MEG signals are considered, thus confirming the analyses described

in Betti et al. (2013). Specifically, the attention task causes a general decrease in the

FCMEG in all the analyzed frequency bands. This result is in line with those obtained in

Betti et al. (2013), where a visual task of natural scenes viewing is considered. Coherently

with our findings, in that work a decrease in the within-network BLP correlation is

observed especially in the α and β bands. The modulation of the FCMEG matrices induced

by task reflects also a general decrease of the variability of each functional correlation

value across subjects. This result suggests that beyond the individual variability of the

resting state, which is generally larger in MEG than in fMRI, the task induces a decrease

of this variability, since all the subjects are asked to perform the same visual-attentional

action.



108 fMRI and MEG: a task-induced comparison

(a) Whole network
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Figure 5.9: Intra-modality coherence among subjects. (a) Average and confidence interval
of the Pearson’s correlation coefficients evaluated between the vectorized FC of each pair of
subjects in the whole network. (b)÷(d) Boxplots of the Frobenius norm of the difference
among each pair of FC matrices at different frequencies (normalized w.r.t. to the maximum
value of the entries among all the population) derived from different subjects, normalized by

the number of matrix’ entries.

Hemisphere-dependent behavior: intra-hemispheric connections are stronger

than inter-hemispheric ones. As already discussed in De Pasquale et al. (2010) for

what concerned the DAN network, our results show a significant difference between intra

and inter-hemispheric functional correlation of BLP signals in all the analyzed frequency

bands. In particular, stronger correlations have been found between regions of the same

hemisphere.

Moreover, both frequency and network factors combine singularly with the hemisphere

factor: the intra- or inter-hemispheric condition indeed strengthens the divergence among

different frequencies, and among within or between networks interactions.

As observed in De Pasquale et al. (2010), fMRI networks are largely stationary and

bilateral, with no relevant differences among within and across-hemispheres couplings;

this difference between fMRI and MEG results is probably due to the non-stationarity

showed by MEG networks.
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Frequency-dependent behavior: the main role of temporal modulation. One

of the main advantages of using MEG data is the high temporal resolution, which

allows a frequency-specific analysis, that is not doable with fMRI signals. Our results

indeed confirm the significance of the frequency factor both in power and in functional

connectivity values. Specifically, what emerges from this study is the specificity of α and

β frequency bands, when compared with the others.

First of all, the BLP signals are significantly higher in α than in the other frequencies.

Interestingly, whereas all the BLP mean values generally increase during task (even if

not significantly), a (non-significant) decrease is instead observed in α-band. However,

the relevant role of α-band is strongly remarked when the FCMEG’s are considered. This

specific band is hence characterized by a general stronger connectivity among ROIs,

and by a more relevant decrease of connection than all the other frequencies, during

task. These results are coherent with a large part of the literature about FCMEG results

(Pizzella et al. (2014); Marzetti et al. (2013); Hipp et al. (2012); De Pasquale et al.

(2010); Betti et al. (2013); Engel et al. (2013)), where the strongest correlation in the

α-band has been generally observed (sometimes in conjunction with the β-band, see

Hipp et al. (2012)). In other works the increase of FCMEG(α) is shown to be related

to specific networks as in this case (DAN Pizzella et al. (2014); Marzetti et al. (2013);

De Pasquale et al. (2010); VIS Engel et al. (2013); or DAN-VIS Pizzella et al. (2014);

Engel et al. (2013)), whereas it is shown to decrease during task in the VIS network (see

Betti et al. (2013)). This general strong connectivity of the α-band, which importantly

decreases during task, is also combined with the absence of the networked structure

(between-network connections are stronger than within-network links in this frequency),

which is conversely observable in the other frequencies.

Overall, the functional analysis performed to MEG data highlights the larger role of

temporal/frequency modulation than spatial modulation, with a significant hemispheric

factor.

Idling state or prior: multiple answers. Regarding the tested hypotheses (h1a)

and (h1b), our results suggest different answers with respect to different frequency

bands and networks. Specifically, while hypothesis (h1a) prevails in the highest bands

(γ1 and γ2), which do not show a significant condition factor, lower bands report a

significant decrease in functional connections, especially in α. This task-modulation in

lower frequencies hence suggests that resting-state patterns describe a state of brain

inactivity, which has to be reorganized to perform this specific task. On the other hand,

the distinction between within and between function connections’ strength becomes more

evident during task than during rest (where the condition is not a significant factor) in β
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and γ1 frequencies. Specifically, within DAN connections become significantly stronger

than DAN-VIS cross-interactions. This fact confirms assumption (h1a) for the DAN

network at these frequencies, thus verifying what observed with fMRI analysis. Indeed,

in Spadone et al. (2015), the resulted relative stability of the connection pattern in the

DAN has been related to a possible centrality of this network, far away from the influence

of sensory stimuli.

5.4 MEG vs fMRI: FC-based comparison

The relationship between the results obtained with fMRI and MEG data has been

analyzed at different levels: at first, we compared the pattern within the matrices FCfMRI

and FCMEG by means of Pearson’s correlation. Then we considered the FC matrices as

adjacency matrices that describe the relations among nodes (the ROIs) and compared

them with respect to structural measures. Specifically, we evaluated the full network

similarity and the single sub-network similarity, in a manner similar to that adopted in

Garcés et al. (2016).

Note: Importantly, to achieve a meaningful comparison, we applied to each FCfMRI(c)

matrix the same mask used to describe all the MEG derived matrices, and we considered

the non-masked values only (see Figure 5.6).

5.4.1 Overall and network-based comparison

From a qualitative analysis of Figure 5.6 and from the analysis of MEG data presented

above, we speculate that the global networked architecture of the functional connectivity

maps remains the same from fMRI and MEG, both in rest and in task. However, some

dissimilarities can be distinguished between the two modalities. Specifically, the significant

increase in cross-network correlation, observed with fMRI data, does not emerge by means

of MEG data in any frequency band, where a decrease in FCDV

MEG is always observed

when switching from rest to task. Nevertheless, in higher bands (γ1 and γ2) this decrease

of cross-network functional connections is smaller than in other bands (see Figure 5.7(a)).

Thus, we speculate that such lower decrease may drive to a positive correlation with fMRI

results. Moreover, in α band this reduction of cross-network functional connections from

rest to task is significantly larger than in the other frequencies. Therefore, our hypothesis

is that a negative correlation may exist between FCDV

fMRI(T− R) and FCDV

MEG(α, (T− R)).

Finally, from the difference among functional connectivities during task and rest in the

DAN network FCDV(T− R) (Figure 5.6), it can be hypothesized a positive correlation

among fMRI and δ, β and γ’s frequency bands, where an increase in the intra-right-
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hemispheric connections emerges, similarly to what happens with BOLD data.

In what follows we report the statistical tests used to investigate our speculations.

To quantify the similarity among the results obtained from fMRI and MEG data,

for every frequency band f , we considered all possible pairs of subjects (s, r), and for

each of them, we estimated the Pearson’s correlation ρ(·, ·) among the upper-diagonal of

FCfMRI(s, c) and FCMEG(r, f, c), with s, r = 1, . . . , Ns. Note that

ρ (FCfMRI(s, c), FCMEG(r, f, c)) 6= ρ (FCfMRI(r, c), FCMEG(s, f, c)) .

In this manner, we obtained a vector of Ns
2 correlation values ρ, whose average ρ̄fMRI,MEG

has been used to define the cross-modal correlation of the functional connectivity for the

whole population:

ρ̄fMRI,MEG(f, c) =
1
N2
s

Ns∑

s=1

Ns∑

r=1

ρ (FCfMRI(s, c), FCMEG(r, f, c)) , (5.6)

with f ∈ {δ, θ, α, β, γ1, γ2} and c ∈ {R, T, T− R}. This quantity was evaluated

for the whole network (5.6), and for each separated network (DAN, D-ρ̄fMRI,MEG; VIS,

V-ρ̄fMRI,MEG; DAN-VIS, DV-ρ̄fMRI,MEG):

D-ρ̄fMRI,MEG(f, c) =
1
N2
s

Ns∑

s=1

Ns∑

r=1

ρ
(
FCD

fMRI(s, c), FCD
MEG(r, f, c)

)
,

V-ρ̄fMRI,MEG(f, c) =
1
N2
s

Ns∑

s=1

Ns∑

r=1

ρ
(
FCV

fMRI(s, c), FCV
MEG(r, f, c)

)
,

DV-ρ̄fMRI,MEG(f, c) =
1
N2
s

Ns∑

s=1

Ns∑

r=1

ρ
(
FCDV

fMRI(s, c), FCDV
MEG(r, f, c)

)
.

The first hypothesis that we have tested is the similarity among the general architecture

of the FC matrices both in rest and in task. To test it, we considered ρ̄fMRI,MEG(f, ·)

for the whole network as a measure of this similarity. See Figure 5.10, where the mean

values are reported with their confidence level, for each frequency band. As shown,

ρ̄fMRI,MEG(f, ·) in rest and task are positive at each frequency band, with larger values

at task than at rest. To test the significance of this result, for each band we performed a

t-test to determine whether these values are significant greater than zero. The results

show that this similarity measure is significantly greater than zero (pval < 5× 10−2) in

both conditions (rest and task) and for all frequency bands, but for δ band at rest.

To investigate our second hypothesis regarding fMRI-MEG relationship in the DAN-
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Figure 5.10: Averaged correlation among fMRI and MEG functional connectivity maps
ρ̄fMRI,MEG(f, c), evaluated as described in the main text, regarding the whole network. Coloured
markers represent significantly positive (or negative) values, while black markers stand for non

significant results.

VIS cross-network, we focused on DV-ρ̄fMRI,MEG(·, T− R) (see Figure 5.11(c), yellow line).

Among all the values, the more interesting results show a negative correlation fMRI-MEG

in α band and a positive one at γ’s, as expected. Again, to test the significance for

DV-ρ̄fMRI,MEG(α, T− R) and DV-ρ̄fMRI,MEG(γi, T− R) (with i equal to 1 or 2) to be

negative and positive, respectively, we performed a t-test over all the values. All the

interesting tests gave a pval < 5× 10−2, thus confirming our hypothesis.

Furthermore, a One-Way ANOVA test applied to the cross-modality correlation in task−rest

FC in DAN-VIS (DV-ρ̄fMRI,MEG(·, T− R)) shows a significant frequency factor (F = 5.12;

pval < 1.2× 10−4), with a significant lower correlation with α band than with γ1 and γ2

(pval < 5× 10−2, Bonferroni corrected) (see Figure 5.12).

Finally, with the same reasoning we tested the supposed positive correlation among

fMRI and δ, β and γ’s frequency bands in the DAN network, when considering the

difference among task- and rest-functional connectivities. In this case, specific t-test

analyses show a significant positive D-ρ̄fMRI,MEG(θ, T− R), D-ρ̄fMRI,MEG(β, T− R), and

D-ρ̄fMRI,MEG(γ1, T− R), while the null hypothesis of zero correlation with γ2 cannot be

rejected.

In summary, our analysis confirmed what was initially believed. At first, we observed

a global conservation in the MEG functional connectivities of the architecture of the

network observed during fMRI analysis (both at rest and during task). This result is

coherent with other works where topography of fMRI and MEG networks have been

shown to be similar during rest (Brookes et al. (2011)) and movie observation (Betti

et al. (2013); Muthukumaraswamy and Singh (2008)). Second, a different fMRI-MEG

relationship across different networks and different frequencies has emerged. Specifically,
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(a) DAN network (b) VIS network

(c) DAN-VIS network

Figure 5.11: (a)÷(c) Averaged correlation among fMRI and MEG functional connectivity
maps ρ̄fMRI,MEG(f, ·), evaluated as described in the main text, regarding the DAN (a), VIS
(b), or DAN-VIS (c) networks. Coloured markers represents significantly positive (or negative)

values, while black markers stand for non significant results.
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we reported a significant anti-correlation between fMRI and α band when switching

from a condition of rest to task, together with a positive significant correlation in higher

frequency bands (γ1 and γ2), which is in line with Betti et al. (2013).

5.4.2 Frequency and/or condition modulation

At this point, we wanted to test whether the general cross-modality correlation increases

during task than during rest, and whether this fact happens differently with respect

to the frequency band. This is supported by the idea that the specificity of this task

should align the results obtained with different technologies, at least for what concerns

the cross-network relationship (DAN-VIS), since the task involves a co-activation of the

two networks.

To test this possible frequency and/or condition modulation, a Two-Ways ANOVA

test was performed on the inter-modality correlation variables, with frequency band and

condition (rest, or task) as factors. The test was applied both for the whole network, and

for the single networks (DAN, VIS, DAN-VIS).

As reported in Figure 5.13(a), the results show a significant interaction of frequency

and condition in the whole network (F = 3.63; pval < 2.79 × 10−3), with a general

significant (pval < 5× 10−2, Bonferroni corrected) larger correlation among fMRI results

and higher (from β to γ2) frequency bands than lower ones (from δ to α). Moreover a

significant increase in cross-modality similarity in task than in rest results in δ, β and γ1

bands (all pval < 5× 10−2, Bonferroni corrected).

No significant interaction of factors or condition modulation emerges in the VIS network,

whereas both the main factors are significant: frequency (F = 18.6753; pval < 2× 10−16),

with β band significantly more correlated with fMRI than γ2 (pval < 5× 10−2, Bonferroni

corrected); condition (F = 4.5085; pval < 3.39 × 10−2), with a significantly larger

correlation at rest than at task (pval < 5× 10−2, Bonferroni corrected).

Finally, interestingly, in the cross-network DAN-VIS, no significant interaction among

factors is observed, but both significant main effects of condition (F = 15.7898; pval <

7.25× 10−5) and frequency (F = 4.9189; pval < 1.74× 10−4) emerge (see Figures 5.13(c)

and 5.13(d)). Specifically, a larger alignment among fMRI and MEG results can be

observed during task if compared with rest (pval < 5 × 10−2, Bonferroni corrected).

Moreover α band is significantly more correlated with fMRI than γ2 (pval < 5 × 10−2,

Bonferroni corrected).
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(a) Whole network (b) DAN network

(c) DAN-VIS network (d) DAN-VIS network

Figure 5.13: (a)-(b) Result of the Two-Way ANOVA test applied to the cross-modality
correlation in rest and task FC in the whole (a) or in the DAN (b) network with frequency
and condition as factor. The bars represent the confidence intervals. (c)-(d) Main factors
evidence of the Two-Way ANOVA test applied to the cross-modality correlation in rest and
task FC in the DAN-VIS network with frequency and condition as factor. The bars represent

the confidence intervals.
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Figure 5.14: Density of the FC matrices, estimated as described in Section 5.2.1, as a
function of the threshold vector tr. Each plot represents the density of FCMEG of a specific
frequency band evaluated during rest (colored continuous line) and during task (colored dotted
line), compared with the density of FCfMRI(R) (black continuous line) and FCfMRI(T) (black

dotted line).

5.4.3 Structural comparison

In order to compare the FC maps obtained through the two modalities, in different

condition of rest or task, we analyzed the density of these matrices as a function of a

threshold value (see Section 5.2.1). The results show that fMRI-derived FC’s do not vary

in their density when switching from resting-state to task, while in all frequency-band,

d (FCMEG(f,R), tr,i) ≥ d (FCMEG(f,T), tr,i) (see Figures 5.14, and A.3÷A.5). This fact

is observed both when the whole network is considered, and when only a sub-network

(DAN, VIS, or DAN-VIS) is visualized. From this analysis it emerges that in α and

β bands the FC are characterized by larger relative weights, if compared with higher

frequency bands: indeed, d (FCMEG(α), tr,i) and d (FCMEG(β), tr,i) tend to decrease

only when a certain threshold is reached. Moreover, the shape of the density functions

obtained at lowest bands (δ and θ) are the most comparable with the ones obtained with

fMRI data, at least when the whole network is observed.

A quantitative comparison between the structure of the FC’s obtained with fMRI

and MEG data has been addressed by means of Hamming distance (see Section 5.2.1), as

a function of the threshold vector tr. Two main observations emerge from this analysis:

firstly, the shape of these functions is very different among different sub-network (see

Figures 5.15 and A.6÷A.8), and secondly, this distance largely decreases when switching

from rest to task, if we consider either the whole network or the DAN-VIS cross-network.

Specifically, while the distance between FCfMRI and FCMEG, or between FCDV

fMRI and
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Figure 5.15: Hamming distance between FCfMRI and FCMEG in resting-state (continuous
line) and during task (dashed lines), evaluated as described in Section 5.2.1, as a function of
the threshold vector tr. The different boxes and colors represent different frequency bands. In

this figure, the case of whole network is represented.

FCDV

MEG reaches its maximum value when almost every entries are considered (i.e. low

threshold values), a different behavior is observed in the DAN and VIS networks. In

particular, in these networks an opposite behavior emerges, which is characterized by

large distance when few entries are considered (high threshold values) and very low

distance otherwise. A second aspect to be noticed regards the relevant distance decrease

during task in the DAN-VIS cross-network, and the consequent decrease observed also in

the whole network. Since the density values do not vary largely from rest to task at low

threshold values, this decrease in distance cannot be owing to the density value. More

likely, this fact can be related to a task-induced increase in similarity between different

modalities. Interestingly, this behavior is not frequency-specific, but it is observed in all

the different bands.

MEG vs fMRI: correlated task-induced frequency-dependent behavior. In

summary, our results lead to the confirmation of hypothesis (h2b), at the expense of its

opposite (h2b). However, as expected, the answer is not unique, but it is frequency-

dependent, since the temporal modulation of the FCMEG’s leads to different MEG-fMRI

relationship w.r.t. the considered frequency band. Indeed, we confirm that during task

inter-modal similarity significantly increases in the cross-network interaction, while a

significant decrease is observed within the DAN network, especially in α band. This is

coherent with Betti et al. (2013) and in line with our speculative hypothesis that the

specificity of the task should align the results obtained with different technologies, for
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what concerns the cross-network relationship (DAN-VIS). This result is confirmed both by

an overall comparison among the functional connectivities, and by a structural comparison

performed through the definition of two metrics, namely the matrix density and the

Hamming distance between fMRI- and MEG-derived FC. The structural analysis indeed

highlights a strong distance decrease from rest to task in the cross-network (DAN-VIS),

independently from the considered frequency.

5.5 Conclusion

In this chapter we addressed the problem of fMRI and MEG comparison, with a twofold

purpose. Specifically, we used MEG frequency-dependent BLP signals to test different

hypotheses on the role of resting-state functional correlation evidence, similarly to what

reported in Spadone et al. (2015) for fMRI data. The two assumptions to be tested

((h1a) and (h1b)) consisted in assigning to the RSNs the role of prior for task-induced

activity networks, or the role of idling state, respectively. Similarly to the results of

Spadone et al. (2015), our answer is network-specific, since the relative stability of the

DAN network is confirmed by our tests, especially in β and γ1 bands. However, from our

analysis also a frequency-dependent answer emerged. Indeed, FCMEG values in lower

bands (with most evidences in α band) have been shown to be significantly modulated

by task-condition, thus suggesting a reorganization of the brain functional connections in

response to the considered task.

These preliminary results, together with a qualitative analysis of frequency-dependent

FCMEG and FCfMRI matrices (Figure 5.6), suggest that fMRI and MEG signals are not

fully independent one each other, but they may be explained by correlated task-evoked

effects. Specifically, the global networked architecture of the functional connectivity maps

remains the same from fMRI to MEG, especially during task, with some dissimilarities

between the modalities. In particular, the significant increase in cross-network correlation,

observed with fMRI data, does not emerge by means of MEG data in any frequency bands,

where a decrease in DAN-VIS cross-network correlation is always observed when switching

from rest to task. However, the lower decrease in γ’s frequencies positively correlates

with fMRI results. On the other hand, the significantly larger reduction of cross-network

functional connection from rest to task in α band shows negative correlation with fMRI

task-induced modulation. To summarize, we interpret the increased inter-modalities

relationship (positive or negative) during task, when compared with rest, by proposing

that they are not completely unconnected, but they are differently modulated by the

same stimuli.
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This analysis is only a preliminary study on the relationship between fMRI and

MEG response in this interesting visuospatial attention task. Indeed, the detailed

investigation of these different measured signals is the first step in order to design a

suitable mathematical model, that should be able to reproduce the observed behaviors.

In Chapter 6 we will propose a different strategy to analyze the same fMRI data used

in this chapter during resting-state from a synchronization point of view. In our opinion,

this is another useful investigation to implement in order to achieve even more insights

on the human brain activity.



6
Synchronization: a motivational evidence

“Figure out the rhythm of life and live in harmony with it.”

Lao Tzu

Over the last decades a large number of theoretical and experimental studies have

been aimed to investigate the nature of correlated patterns during resting state (RSNs).

However, the significance of functional connectivity in brain activity during rest is still

under debate, and it cannot be completely understood. One aspect which is widely

accepted is the remarkable match between the resting-state functional connectivity

matrix (rsFC) and the neuroanatomical (or structural) network (SC). This is the reason

why various computational models have been used in order to predict the functional

connectivity structure starting from the knowledge of the anatomical connections among

different brain areas (see Cabral et al. (2014) for a recent review).

The explorative dynamics of the resting-state regime, during which different states

(the RSNs) are visited over time, and subsequently deactivated, makes this regime very

appealing from a dynamical system point of view. Indeed, it can be considered as a

non-stationary dynamical process, where a fixed point cannot be defined. The aim of

mathematical models is hence to understand how this kind of behavior can emerge from

the anatomical architecture of the brain. Specifically, the brain can be described as

a complex system, where collective dynamics of groups of neurons define a dynamical
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unit, which obeys some specific dynamical equations, in the spontaneous state. The

parameters of these population models can be tuned in order to describe different kinds

of brain regimes. Therefore, computational models may be helpful to bridge the gap

between structural and functional connectivity.

In Section 4.3 we have introduced the idea that the brain can be interpreted as

a generator of brain waves. Thus, in literature, it has been described as a system of

oscillators, whose dynamics can be characterized by the dynamics of their phases. This

kind of brain network description introduces us to the synchronization phenomenon,

which has been of great interest among scientists of several fields during the last decades.

Synchronization over networks depends on the oscillators’ dynamics, the interaction

topology, and the coupling strengths, and the combination of these various factors can

be quite intricate.

In order to characterize the complex oscillatory dynamics of the brain, different

typologies of computational models have been used in literature to describe the RS

dynamics. Among all these models, thanks to its compactness, Kuramoto model (KM)

stands out.

Before modeling the brain dynamics (especially in resting-state) by means of com-

putational models, a clear understanding of the oscillatory characteristic of the brain

(or some specific brain areas) is necessary. To this aim, in the first part of this chapter

we analyze the resting-state subset of the fMRI dataset described in Chapter 5, in order

to recognized the oscillatory features of the network and to identify the peculiarities

that a mathematical model should be able to reproduce. Specifically, we use some of the

previously introduced measures (see 4.3.3), together with other quantities, to analytically

and qualitatively describe the synchronization patterns emerging among the nodes of the

network.

In the second part of this chapter, we will show how a modified version of the KM

may be used in order to reproduce the oscillatory behavior of the considered brain regions,

thus highlighting the great potential power of this population phase-model as a tool to

gain new insights on the dynamic activity of the brain.
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Notation

In this chapter we will deal only with datasets recorded through fMRI technique,

during a resting-state condition. As a consequence, we simplify the notation used in

Chapter 5 as follow:

FC(s) := FCfMRI(s, R) ∈ RN×N represents the FC matrix obtained from the

fMRI dataset of subject s ∈ {1, . . . , Ns} at rest.

FC := FCfMRI(R) ∈ RN×N represents the FC matrix obtained from the fMRI

dataset, as the average over the FC’s of all the Ns subjects at rest.

Since different mathematical measures can be used to evaluate the functional connec-

tivity maps, we will refer to FC(m)(·), or FC(m), to highlight that the measure m has

been selected to infer the functional connections among nodes. As described later,

m ∈ {PLV, ρ}. As in the previous chapter, FCn
∗ ∈ RNn×Nn represent the sub-matrix

related to the sub-network n ∈ {D, V, DV}, where D, V, DV stand for DAN, VIS,

and DAN-VIS, respectively, and FC∗ indicates one of the matrices defined above.

(See Section 5.2.1 for the sub-networks’ definition). [FC∗]ij refers to the element at

row i and column j of matrix FC∗.

Moreover, to describe the functional connectivities dynamics, we make use of three-

dimensional tensors, with the following notation:

Tb
s ∈ RN×N×T represents the binary tensor referred to FC(s), as described

by equation (4.5), where T is the number of time steps and s ∈ {1, . . . , Ns}.

T̃b
s (K) ∈ RN×N×T represents the best rank-K approximation of Tb

s , by means

of the NNFT algorithm (see Section 4.3.3.2).

6.1 Synchronization: an introduction

The scientific interest in synchronization of coupled oscillators can be traced back a long

time ago, when the Dutch mathematician and physicist Christiaan Huygens (1629-95)

used the phrase odd sympathy in a letter to the Royal Society of London (Huygens

(1897)), to describe the tendency of two pendulums to synchronize, or desynchronize,

when mounted together on the same beam. This was one of the first observations of the

phenomenon of coupled harmonic oscillators, which have many applications in physics
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(see Pikovsky et al. (2003); Blekhman (1988) for a detailed historical review). Indeed,

synchronization of coupled oscillators is ubiquitous in nature (Lewis et al. (2014); Strogatz

(2000)), from the cohesive flocking of birds (Giardina (2008)) to the orchestrated firing of

neurons (Nordenfelt et al. (2013); Ferrari et al. (2015)) to the dynamics of man-made

networks, including power grids and computer networks (Nishikawa and Motter (2015)).

Research on synchronization phenomena focuses on ascertaining the main mechanisms

responsible for collective synchronous behavior among members of a given population.

To attain a global coherent activity, interacting oscillatory elements are required. Both

internal and external stimuli may drive the rhythmical activity of each element. Despite

the complexity that can be at the basis of these (sometime very different in nature)

phenomena, a lot of effort has been done in the last decades to understand the essence of

synchronization in terms of a few basic principles. As reported in Acebrón et al. (2005),

two main ideas can be exploited in order to tackle this problem.

(i) In several biological phenomena, the rhythmical activity of each element is described

in terms of a physical variable that evolves regularly in time until reaching a specific

threshold. When this threshold is reached, the element emits a pulse, which is

transmitted to the neighborhood. This is, for instance, the case of the action

potential for neurons in the brain, or for cardiac cells). After the onset of this

action potential, the system resets the state of the element, and a new cycle starts.

In other word, the behavior of this element can be seen as the dynamics of an

oscillator, characterized by a specific period. In this context, the concept of phase

is directly defined, and it refers to a periodic measure of the elapsed time after the

beginning of the cycle. When a single element produces a pulse, then the periods

of its neighbors modify, becoming shorter or longer than their nominal duration.

Thus a complex population-level behavior emerges, due to the contribution of

pulse-coupled oscillators.

(ii) Consider now an ensemble of non-linear phase-oscillators (i.e. a population of non-

linear oscillators moving in a globally attracting limit cycle of constant amplitude),

and suppose that they are coupled sufficiently weakly to ensure that they will not

be taken away from the global limit cycle. Thus, the evolution of the whole system

is completely described through only one degree of freedom: the phase dynamics of

each element.

Although the higher level of intuition given by the framework (i), the second one

is easier to be described by means of mathematical models, especially in case of large

populations of oscillators. Thus, large part of the existing literature focused on the
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description of phase-oscillators’ networks with the purpose of characterizing existing

phenomena. Even thought the Winfree model (Winfree (1967)) was too hard to be

solved in its general version, it was Winfree, who realized that synchronization can be

understood as a threshold process. Specifically, he showed that when the coupling among

oscillators is strong enough, a macroscopic fraction of them synchronizes to a common

frequency.

However, the difficulties on the tractability of Winfree model allowed the introduction

of other simplified models. In this context, the model proposed by Kuramoto (Kuramoto

(1975)) emerged. He analyzed a model of phase oscillators running at arbitrary intrinsic

frequencies and coupled through the sine of their phases difference. Kuramoto model

has the twofold advantage, of being simple enough to me mathematical tractable, yet

sufficiently complex to describe non-trivial existing phenomena.

6.2 Useful synchronization measures

In order to extract the amplitude and the phase from fMRI data, or simulated data,

let us consider the analytic signal representation ax(t) of each time series x(t), whose

definition is here reported.

Definition 6.2.1 (Analytic signal representation). Given a real signal x : R→ R,

its analytic representation ax(·) is a complex signal defined as

ax : R→ C

t 7→ ax(t) = x(t) + jH [x(t)] = Ax(t)ejθx(t),
(6.1a)

where H [·] is the Hilbert transform (Papoulis (1960)) of x(·):

H : R→ R

x(t) 7→ H [x(t)] = lim
ε→0

1
π

∫

|τ−t|>ε

x(τ)
t− τ

dτ.
(6.1b)

�

The amplitude and the phase related to the signal x are hence defined as the amplitude

Ax and phase θx of its analytic representation.

At the network level, the synchrony among the phases θi of a group of N oscillators
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can be evaluated by means of the order parameters R and Φ, jointly defined as

R(t)ejΦ(t) =
1
N

N∑

i=1

ejθi(t), (6.2)

whereR(t) measures phase uniformity at time t, and varies between 0 (fully desynchronized

state) and 1 (fully synchronized state), and Φ(t) represents the phase of the global

ensemble. The standard deviation of R(·), referred as σR, is used to quantify the degree

of metastability of the system (Shanahan (2010)).

To quantify the pairwise phase relation between two given brain regions i and k,

recall that the phase locking value (4.3) is a useful tool. For convenience’s sake, we report

here its expression:

PLVθiθk
=

∣∣∣∣∣
1
T

T∑

t=1

ej[θk(t)−θi(t)]

∣∣∣∣∣ ,

whose value ranges from 0 (complete phase independence) to 1 (perfect phase locking:

constant difference among θi and θk, across time). In this way a possible FC is directly

defined as a matrix FC(PLV) ∈ RN×N , whose entries are set as [FC(PLV)]ij = PLVθiθj
, for

all i and j. This measure can be compared with another FC matrix (FC(ρ)), evaluated

by means of Pearson’s correlation coefficient (4.1) among the time series xi and xj (and

not only their phases), whose entries are given by

[
FC(ρ)

]
ij

=
σ2
xixj

σxi
σxj

∈ [−1, 1]. (6.3)

6.3 Analysis pipeline

In order to characterize fMRI resting-state data from a synchronization point of view, we

need to determine the workflow, or analysis pipeline, used to recognize the features of

the measured data that we would like to reproduce by means of computational models.

To design our specific pipeline, we refer to Ponce-Alvarez et al. (2015) and we adapt the

proposed methods to fit our aims. Although we are focusing on a specific subset of brain

areas to be coherent with the results presented in the previous chapter, in Appendix A.8

we complete the analysis by showing the results obtained by applying the same pipeline

to a set of real data describing the whole brain by means of 66 brain areas.
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The workflow of our analysis is composed by the following steps:

s1. data acquisition and filtering (see Section 5.2.1, restricted to the resting-state

session);

s2. analytical signal representation and phase evaluation;

s3. analysis of both global and network-specific synchronization during time;

s4. characterization of the phase difference among nodes through the estimation of its

probability density function (p.d.f.) (Abramowitz and Stegun (1964));

s5. definition of a functional connectivity map based on the phase locking value and

comparison with the correlation matrix among the original signal;

s6. analysis of the time-varying synchronization patterns.

In the last part of this chapter, the same analysis steps are applied to the KM to perform

a qualitative comparison with the real data. Specifically, we will focus on the shape of

the phase difference p.d.f. function among nodes, on the dynamics of the synchronization

metrics during time, and finally on the patterns of synchronized states.

Phase evaluation. In order to evaluate the phase evolution of each brain area, we

applied the Hilbert transform (6.1b) to the filtered BOLD signals xi(·) to obtain the

associated analytical signals of the form Ai(·)ejθi(·), where Ai and θi stand for Axi
and

θxi
, respectively, for easiness of notation. Thus Ai(·) represents the evolution of the

amplitude of each time series, and θi(·) is the associated phase. Then, the first and the

last ten time steps were discarded, in order to avoid border effects. The total time point

of each time series hence becomes T = 460.

Global and network-specific synchronization The synchronization level among

ROIs has been evaluated by means of the absolute value of the order parameter, R(·),

defined as (6.2). Specifically, we considered:

R(t) =

∣∣∣∣∣
1
N

N∑

i=1

ejθi(t)

∣∣∣∣∣ , (6.4a)

RD(t) =

∣∣∣∣∣∣
1
ND

∑

i∈DAN

ejθi(t)

∣∣∣∣∣∣
, (6.4b)

RV(t) =

∣∣∣∣∣∣
1
NV

∑

i∈VIS

ejθi(t)

∣∣∣∣∣∣
, (6.4c)

RDV(t) =

∣∣∣∣∣∣
1

ND +NV

∑

i∈(DAN∪VIS)

ejθi(t)

∣∣∣∣∣∣
, (6.4d)
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(a) Whole network (b) DAN (c) VIS (d) DAN-VIS

Figure 6.3: Probability density function (p.d.f.) of the phase differences across all pairs of
brain regions, all time steps and all subjects.

(a) Whole network (b) DAN

(c) VIS (d) DAN-VIS

Figure 6.4: Temporal evolution of the p.d.f. of the phase difference among each pair of nodes
(from one subject). The colour indicates the value of the p.d.f. at each time step (left y-axis).
The white lines represents the absolute value of the order parameter R(t) related to the same
subject (right y-axis). Subfigure (a) is referred to the whole graph, whereas subfigures (b),

(c) and (d) refer to DAN, VIS and DAN-VIS networks, respectively.

Functional connectivity maps. In this framework, the functional connectivity map

is directly defined through the PLV (4.3) and it is referred as FC(PLV) ∈ RN×N , as

described above. Recall that the phase locking value between a pair of phases measures

how much the difference among the two phases vary during time: the more constant

the difference, the higher the respective PLV. Thus, a PLV equal to 1 does not mean a

perfect overlapping of the phases during time, rather it means that the phases evolve

with the same dynamics, preserving the same distance among them. In this way, FC(PLV)

and R(·) describe two different properties of the networks, since the latter is a measure
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of the similarity among phases.

To achieve more robust measures of PLV, for each pair of brain regions, we evaluated

the PLV across sliding windows of ∼40 s, and then the FC(PLV) matrix has been defined

as the mean over all the windows. Figure 6.5(a) shows the result. At this point, it

may be interesting to compare the obtained functional map with the one given by

equation (6.3), when the filtered signals are considered (rather than only their relative

phases). Figure 6.5(b) show the FC(ρ), obtained as an average across the same sliding

windows used to derive FC(PLV). From Figure 6.6 we can observe the relationship among

the two functional measures.

Across all the subjects, the probability density function of the values of each entry of

the functional connectivity matrix FC(PLV) has been estimated and reported in Figure 6.7,

where it is shown both with respect to the whole matrix and with respect to single sub-

and cross-network. As expected, although similar, Figures 6.7, 6.1(b) and 6.2 are not

congruent, thus remarking that FC(PLV) and R measure two different network properties.

(a) FC(PLV) (b) FC(ρ)

Figure 6.5: Functional connectivity maps defined through the phase locking value (a) and
the Pearson’s correlation coefficient among the filtered time series (b), averaged across all the

subjects. The nodes are in the same order as in Table 5.1.

Time-varying networks. We support the hypothesis that the spatio-temporal syn-

chronization patterns, which emerge from the results reported above, reflect the formation

and break up of different communities (or clusters) of synchronized brain regions. To test

this hypothesis, for each subject s = 1, . . . , Ns, we defined a binary tensor Tb
s ∈ RN×N×T ,

as described by equation (4.4), with threshold φ = π/6, and we approximated it with the

best rank-K tensor T̃b
s (K) ∈ RN×N×T , which can be in turn decomposed into K rank-
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P
L
V

Figure 6.6: Relationship among FC(PLV) and FC(ρ). Note that FC(PLV) assumes values
within [0, 1], while [FC(PLV)]ij ∈ [−1, 1]. The correlation among the two matrices and the
respective significance value are given by ρ and pval, respectively. r2 instead measures the

fraction of the explained variance of FC(ρ), expressed by FC(PLV).

(a) Whole network (b) DAN (c) VIS (d) DAN-VIS

Figure 6.7: Probability density function (p.d.f.) of the FC(PLV) values across all pairs of
brain regions and all subjects.

one positive tensor, by means of the NNTF algorithm (see Section 4.3.3.2, equations (4.6)

and (4.7)). The problem of choosing the best number of components (clusters) K in

order to approximate the given tensor is not easy to solve. Specifically, for each subject s

and for each values of K ∈ {1, . . . , 30}, we defined a fit function, as follows:

Fits(K) := 1−

wwwTb
s − T̃b

s (K)
www

F

‖Tb
s ‖F

∈ [0, 1], s = 1, . . . , 16, K = 1, . . . , 30. (6.5)
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Figure 6.8 shows the fit values Fits(K) as a function of K for all the subjects, as well as

the average across all of them. Although, as expected, the fit improves as the number

of components K increases, the shape of the curve becomes flatter, when K > 9. As a

trade-off between the number of the components and the goodness of the approximation,

we selected K = 9 as the optimal number of clusters for each subject, although we tested

several other choices of K, which are not reported in this work.

Figure 6.8: Values of the fit (6.5) as a function of the number of components K. Gray lines:
fit function evaluated for each of the 16 subjects. Black thick line: average of the fit function

across all the subjects.

Thus, for each subject, K = 9 components are extracted and the correspondent

community patterns are evaluated as ak · ak
T, k = 1, . . . ,K, whose relative strength

during time are estimated by equation (4.8). In Figure 6.9 the synchronization patterns

and the respective strength during time is reported for what concerns subject number 1.

What emerges from these pictures is that the strength of each community is definitively

not constant during time, but there is a clear alternation among clusters, in such a way

that at each interval of time a specific community dominates the other. Moreover, we

can observe that, even though some communities reflect the main networks (DAN and

VIS), it happens also that some nodes from DAN and VIS share the same community

(see for instance the community k = 6).

To test our hypothesis on the relationship among the dynamics of the synchronization

level during time and the formation of time varying clusters, we compared the evolution

of R(·) with the evolution of the global strength S(·) as defined in equation (4.9), for

each subject. From Figure 6.10, which shows this two quantities obtained from subject 1,

an high level of similarity emerges among them, thus confirming our assumption.

Then, the 144 synchronization patterns (9 patterns for each of the 16 subjects) have
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k = 1 k = 2 k = 3

k = 4 k = 5 k = 6

k = 7 k = 8 k = 9

(a) (b)

Figure 6.9: (a) Representation of the K = 9 community patterns (ak · ak
T, k = 1, . . . ,K)

obtained from subject number 1. (b) Top: evolution of the strength of each community k of
subject 1 during time. Bottom: enlargement of the figure above, restricted to 50 s, in order to

appreciate the turnover of the clusters’ activation during time.

Figure 6.10: Comparison among the evolution of the absolute value R(t) of the order
parameter (left y-axis, blue line) and the global strength S(t) (right y-axis, black line) for

subject 1.
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been clusterized by means of k-means in order to define K = 9 global patterns, which are

representative for the entirety of the subjects. Figure 6.11 reports the obtained community

patterns and the relative percentage of subjects that participate to the definition of each

specific pattern. In other words, a subject s is consider as a participant to the definition

of a pattern k if the k-means algorithm has assigned at least one of the patterns of s to

the cluster whose centroid is k. As noted for subject 1, from the global synchronization

communities it emerges again that in some cases, nodes from DAN and VIS share the

same community.

k = 1 (100%) k = 2 (93.75%) k = 3 (93.75%)

k = 4 (81.25%) k = 5 (81.25%) k = 6 (62.5%)

k = 7 (62.5%) k = 8 (56.25%) k = 9 (56.25%)

Figure 6.11: Representation of the K = 9 community patterns (ak · aT

k , k = 1, . . . ,K)
obtained from all the subjects. To each patter a percentage value is associated, representing

the percentage of subjects that participate to extract the same pattern.
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6.4 Resting-state modeling by means of Kuramoto model

Among different computational models that have been used in literature to describe the

RS dynamics of the brain, we have focused on a modified version (KM) of the classic

Kuramoto model (cKM) and we have used it to simulate the qualitative behavior observed

in the real data, when the structural connectivity map is available. The aim of this study

is to highlight the goodness of this relatively simple mathematical model on representing

the complex system of the brain. In Appendix A.3 we report a brief description of other

computational models that can be used to describe resting-state dynamics. However, from

our point of view, the KM stands out for its compactness and its interesting theoretical

analysis (see Chapter 7).

In the following, we will first introduce Kuramoto model and a useful extended

version of it, used to simulate the dynamics of the real network. Then we will apply the

same analysis pipeline presented in Section 6.3 to analyze the synchronization patterns

resulting from the simulated data, and we will present a qualitative comparison with the

empirical results.

As a remark, a systematic identification of the KM with respect to the available real

dataset is not the objective of this section. Indeed, our purpose is to emphasize the

powerful of this relatively simple model to reproduce the general behavior of a network

of brain areas, rather then fit exactly the specific data. These results are presented as a

motivational application on the synchronization framework to the brain network, that

introduce our theoretical analysis reported in Chapter 7.

6.4.1 The classic Kuramoto model (cKM) and its extension (KM)

We consider a weighted graph G = (V, E), where V = {1, . . . , N} is the set of nodes

representing the selected N brain areas, and E ⊆ V × V is the set of edges, each of them

connecting one node to another. The presence of the edge (i, j) indicates that nodes i and

j can share information in a manner proportional to the weight associated to each link.

Specifically, we consider the structural connectivity SC among brain areas in order to

quantify these weights. Therefore, we define the weighted adjacency matrix A ∈ RN×N

of the graph G equal to a normalized version of the SC w.r.t. the maximum value of

its entries, such that maxij [A]ij = 1. Hence, entry aij of A is zero if no anatomical

connection among areas i and j exists. Then, by considering that two nodes i and j are

neighbors if aij 6= 0, let Ni ⊂ V be the set containing all the neighbors of node i, for each

i = 1, . . . , N .

In order to take into account the spatial arrangement of the areas, we define a delay
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matrix ΥΥΥ ∈ RN×N , whose entries υij ’s define the delay that affects the communication

between each pair of nodes (i, j). As in Cabral et al. (2014), we define the delay between

node i and j depending on the Euclidean distance dij between the centres of the areas,

and on the conduction velocity ν, so that υij := dij/ν. By increasing or decreasing ν, the

delays become shorter or longer, respectively, shifting the mean of the delay distribution

ῡ.

Each node of the network is equipped with a constant natural frequency ωi ∈ R, and

a phase, which evolves during time. Let θi : R≥0 → R be the map describing the phase

of the i-th oscillator. The classic Kuramoto model (Kuramoto (1975)) assumes that the

phase θi evolves as

cKM: θ̇i(t) = ωi +
C

N

N∑

j=1

sin(θj(t)− θi(t)), i = 1, . . . , N, t ≥ 0,

where C ≥ 0 is the coupling strength among the oscillators.

In this work, we consider an extended version of the classical model, that enriches the

model with weighted coupling strengths derived from the topology of the network, and

with the delay effects on the communication among nodes, due to the spatial distance

between the brain areas. Specifically, KM describes the phase dynamics of node i as

KM: θ̇i(t) = ωi +
C

N

N∑

j=1

aij sin(θj(t− υij)− θi(t)), ∀i = 1, . . . , N, (6.6a)

where the constant coupling factor is modulated by the strength of the anatomical

connection among nodes i and j (aij), and υij measures how late the information sent by

oscillator θj reaches θi.

As mentioned in the introductive chapters, a debate is still open around the origin of

the slow resting-state fluctuations. In order to investigate whether the oscillations are

better described by a deterministic models, or by random activity of a low amplitude,

some works in literature (see Ponce-Alvarez et al. (2015)) have compared (6.6a) with the

following dynamics:

θ̇i(t) = ω +
C

N

N∑

j=1

aij sin(θj(t− υij)− θi(t)) + ηi(t), ∀i = 1, . . . , N, (6.6b)

where all the natural frequencies are equal to the same value ω and the terms ηi’s are

uncorrelated random Gaussian noise with zero mean and variance σ2
ηi

, ηi ∼ N (0, σ2
ηi

).

However, in line with the results presented in literature, we support the idea that the



138 Synchronization: a motivational evidence

fluctuations are not random, but well structured, and we will focus on dynamics (6.6a).

6.4.2 Distance matrix and structural connectivity map

The spatial location of each ROI in the MNI coordinates, as reported in Table 5.1 was

used to evaluate the distance matrix D ∈ RN×N , which describes the Euclidean distance

between each pair of ROIs. This matrix was then used to evaluate the delay which affects

the communication among nodes, as described above.

To simulate our dynamical model, we used a structural connectivity map, that has not

been estimated through the same subjects, whom the functional data belong to. Although

this implies the loss of some specificity of our analysis, we believe that it is acceptable for

our high-level analysis. The SC has been estimated by the Research Group of Professor

D.S.Bassett (Department of Bioengineering, University of Pennsylvania, PA), through

705 diffusion direction data (59 min acquisition) from ten subjects. The ROIs to be used

to define the SC has been selected as the closest match of the ROIs identified in our

experiment in the 463-node Lausanne parcellation (Hagmann et al. (2008)). The nominal

SC has been obtained by averaging the matrices of all the ten subjects. Finally, to define

the weighted adjacency matrix of our system, we have normalized the anatomical map,

by dividing each entry by the maximum value across all the elements of the SC. In this

manner, each the value of each entry is bounded within [0, 1].

Figure 6.12 shows the resulted structural connectivity (left) and the distance (right)

matrices, where the diagonal elements are masked.

6.4.3 Dynamics simulation

Natural frequencies estimation. Before simulating the dynamical system, we have

estimated the natural frequencies ωi for each agent from the empirical data, as follows:

ωsi =
θsi (T )− θsi (1)

T
, ∀ i = 1, . . . , N, ∀ s = 1, . . . , Ns

ω̂i =
1
Ns

Ns∑

s=1

ωsi , ∀ i = 1, . . . , N,

where ω̂i is the estimated natural frequency of the i-th node, T is the total number of

time steps of the empirical data, and θsi (t) is the unwrapped value (in radians) of the

phase of node i at time step t as estimated from the data of the s-th subject.

Initial condition. The initial states for the N nodes have been evaluated by assigning

a random value within [0, 2π] at each node and then running the simulation for 103 time
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DAN

VIS

Structural Connectivity Distance matrix

Figure 6.12: Representation of SC (left) and D (right) matrices obtained as described in
the main text. SC is normalized w.r.t. its maximum value. The distance between each pairs
of nodes is evaluated in MNI coordinates. The nodes are in the same order as in Table 5.1.

steps. The final values assumed by the phases have been set as the initial values of the

simulation of interest.

The evolution of the system dynamics (6.6a) has then been simulated with the software

MATLAB R© 2017b, by using a time step of 1/Fs seconds, for about 4000 s. The first 400 s

and the last 20 s were discarded, in order to avoid border effects and to be sure that the

transient evolution was exhausted.

Then, the analysis steps from s3. to s6. described in Section 6.3 have been performed

to compare the synthetic results with the empirical ones, previously presented. The

features that we attempted to reproduce in a qualitative manner are the probability

density function of the difference among pairs of phases, and the behavior of the absolute

value of the order parameter (both in the whole network and in the different sub-

networks) during time, which should vary as the dynamics evolves, representing periods

of synchrony followed by periods of lower level of cohesion among the agents. Then,

we have investigated whether the simulated FC(PLV) (defined as F̂C(PLV)) was somehow

correlated with the empirical one, reproducing the same functional networks. Finally, we

tested the power of the NNTF algorithm when applied to the simulated time series, to

recognized patterns of synchronized states during time.

In addition to the natural frequencies, system (6.6a) requires the definition of the two
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parameters C̃ := C/N and ῡ to be completely described. Different identification tools

could be implemented in order to estimate these parameters from the data. However,

this goes beyond the goal of this work, that is aimed to present only a motivational

example to the use of KM to describe the brain networks’ dynamics. Thus, we have

tested several different values of these parameters and we now report only an example to

achieve our purpose. Specifically, we considered two objective functions to be maximize

for different coupling values and for different conduction velocity ν: the Kullback-Lieber

(KL) divergence between the p.d.f. of the phase difference among nodes of the whole

network, and the correlation value among F̂C(PLV) and FC(PLV). From Figure 6.13, we

can suddenly note that the choice of the parameters was not easy, because of a trade-off

between the two objective functions: while a larger coupling strength is needed to decrease

the KL divergence (and hence increase its reciprocal), a very low C̃ gives a better FC fit.

co
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coupling strength coupling strength

Reciprocal of KL divergence ̂FC
(PLV)

- FC(PLV) correlation

Figure 6.13: Values of the objective functions used to select the model parameters C̃ (coupling
strength, x-axis) and ν (conduction velocity, y-axis). Left: reciprocal of the Kullback-Lieber
divergence among the p.d.f. of θij on the whole network. Right: correlation values between
the empirical and the simulated FC matrices. The orange rectangles highlight the areas with
the highest (optimal) values of the objective functions. Note that the two areas do not coincide,

thus introducing a trade-off on the selection of the model parameters.

However, in this place we only report the result about one specific combination of these

parameters, that is (C̃, ν) = (0.46, 1.6× 10−3 m s−1), as an example.

For instance, we can observe Figure 6.14 to compare the p.d.f. of the simulated θij(·)

(green line) with the p.d.f. obtained from the real data (red line). Although the curves



6.4 Resting-state modeling by means of Kuramoto model 141

are not very similar for what concerns DAN and DAN-VIS regions, the whole-network

simulated phase differences have a probability density function similar to the one of the

empirical data. This shape of the p.d.f. suggests that a large variability among the

synchronized level among nodes (and across all the time steps) describes the simulated

time series. Indeed, as reported in Figure 6.14, the absolute value of the order parameter

R(·) is not constant at all, but, as desired, periods of higher level of synchronization

(characterized by a θij ’s p.d.f. more concentrated around zero) alternate with period of

desynchronization (with a more uniform shape of the p.d.f.).

(a) Whole network (b) DAN (c) VIS (d) DAN-VIS

Figure 6.14: Comparison among the probability density function (p.d.f.) of phase differences
across all pairs of brain regions, all time steps (and all subjects, for real data) obtained
with the empirical data (red line) and the simulated ones (green lines). Model parameters:

(C̃, ν) = (0.46, 1.6 · 10−3 m s−1). Subfigure (a) is referred to the whole graph, whereas
subfigures (b), (c) and (d) refer to DAN, VIS and DAN-VIS networks, respectively.

Moreover, as for the empirical data, this variability of the synchrony level can be

attributed to the presence of several community patterns (we chose K = 9 as for the

real data) with a variable strength sk(·) during time. In Figure 6.16, the K = 9 patters

are reported (a), together with their strength (c) during a time period of less than 30 s.

The strong link between the patterns’ formation and the global level of synchronization

within the whole network is explicitly shown in Subfigure (b), where S(·) (black line)

and R(·) (blue line) are compared.

Although we have selected a non-optimal combination of parameters to obtain a large

correlation among the real and the simulated functional connectivities, this particular

example shows a significant (pval = 1.5×10−3) correlation of 0.3277 between F̂C(PLV) and

FC(PLV), which is a relatively high value, if we consider the conciseness that characterizes

the computational model. Figure 6.17 reports a comparison among the two FC’s (left),

and a scatter plot of their values (right).
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(a) Whole network (b) DAN

(c) VIS (d) DAN-VIS

Figure 6.15: Temporal evolution of the p.d.f. of the phase difference among each pair of nodes
obtained with the simulation of system (6.6a) (model parameters: (C̃, ν) = (0.46, 1.6 × 10−3

m s−1)). The color indicates the value of the p.d.f. at each time step (left y-axis). The white
lines represents the absolute value of the order parameter R(t) related to the same subject
(right y-axis). Subfigure (a) is referred to the whole graph, whereas subfigures (b), (c) and

(d) refer to DAN, VIS and DAN-VIS networks, respectively.
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k = 1 k = 2 k = 3

k = 4 k = 5 k = 6

k = 7 k = 8 k = 9

(a)

(c)

(b)

Figure 6.16: Synchronization patterns obtained from the simulated data (model parameters:

(C̃, v) = (0.46, 1.6 × 10−3 m s−1)). (a) Representation of the K = 9 community patterns
(ak · ak

T, i = 1, . . . ,K). (b) Comparison among the evolution of the absolute value R(·) of
the order parameter (left y-axis, blue line) and the global strength S(·) (right y-axis, black

line). (c) Evolution of the strength of each community k during time.

ρ = 0.3277

r
2
= 0.1074

pval = 0.0015

DAN

VIS

Figure 6.17: Comparison between F̂C(PLV) and FC(PLV) (model parameters: (C̃, v) =
(0.46, 1.6 × 10−3 m s−1)). Left: Representation of the two FC matrices (upper triangular
matrix: empirical FC, lower triangular matrix: simulated FC). Right: Illustration of the
linear correlation among the two FC matrices. The correlation among the two matrices and
the respective significance value are given by ρ and pval. r

2 instead measures the explained

variance (in percentage) of FC(PLV), expressed by F̂C(PLV).
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6.5 Conclusion

In this chapter we have focused on two topics: at first, we have showed explicitly the

oscillatory behavior of brain waves during resting-state, and we have reported a set of

mathematical tools useful to describe the brain activity from an oscillatory point of view.

Secondly, we have proposed a relatively simple computational model (an extended version

of the classic Kuramoto model), which is able to reproduce the same global behavior

as the real data, despite of its compact form. Specifically, it is able to highlight the

metastable nature of the brain oscillations, which are characterized by periods of high

level of synchrony, followed by periods of desynchronized behavior. Moreover, both in

the empirical and in the simulated cases, this dynamic can be explained by means of

different synchronization patters, which alternatively prevail over the others.

Therefore, this chapter highlights the power of Kuramoto model in describing the

dynamics of the human brain with a low numbers of differential equations. However,

throughout the sections above, it has also emerged the importance of the topology of the

adjacency matrix used to simulate the model, as well as the difficulty of selecting the

optimal model parameters. Driven by this challenge, our research has focused on the

analytical analysis of the properties of a network of Kuramoto oscillators which determine

the dynamics and the synchronization profile of the network. Indeed, a more accurate

knowledge of the characteristics of Kuramoto model is required to make a proper use

of this computational tool to simulate the very complex system of the brain. Despite

its compactness, this model contains in fact specific non-linearities, which enable this

complexity representation, but largely complicate its theoretical analysis, at the same

time.

Chapter 7 is completely devoted to analytical results regarding Kuramoto models

and its ability on representing fully or clustered synchronized behavior.



7
Kuramoto model and synchronization: a

theoretical analysis

“Life is a constant oscillation between the sharp horns of dilemmas.”

H. L. Mencken

Two main aspects emerge from the previous chapters: firstly, the human brain is a

generator of oscillatory signals, whose level of synchronization determines the activity

of brain regions and the co-activitation of different regions at the same time. Secondly,

we have observed that Kuramoto model, a phase-model used to describe the population

dynamics of a network of oscillators, is a powerful, yet relatively simple, mathematical

tool to reproduce oscillatory behaviors of the brain waves.

Thus, in this chapter we address the analysis of Kuramoto model from a theoretical

point of view. Our purpose consists in illustrating our analytical results on the structural

and topological conditions that characterize the synchronization level of a network of

Kuramoto oscillators. Specifically, we are interested in gaining new insights on the

conditions necessary to achieve full or clustered synchronization, where groups of nodes

evolve cohesively with the other nodes of the same group, but differently from the others.
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7.1 Open questions and related work

In Section 6.1 we described the background in which Kuramoto model has emerged

among other proposed oscillators’ models. In this context our choice of focusing on

Kuramoto model as a suitable tool to describe the complex behavior of brain networks

(see Section 6.4.1) may be located. Although large part of the previous literature

has been already devoted to the analysis of network of Kuramoto oscillators, several

interesting questions remain open. Indeed, despite of the compactness of the dynamics’

description, this mathematical model hides some obstacles, due to its non-linear nature.

These difficulties emerge for instance in two scenarios, namely when also a spatial

characterization of the oscillators has to be taken into account when describing their

dynamics, and when a clustered synchronized network (rather that a fully synchronized

phenomenon) is the object of interest.

In the former case indeed, the classical Kuramoto model’s formulation is not enough

complex to include the spatial location of the agents. However, from an application point

of view, it may be useful to understand how the spatial displacement of the oscillators

affects their mutual coupling since, intuitively, the influence between two nodes will

diminish with increasing their distance. For example, in Breakspear et al. (2010) the

authors state that a crucial step toward neurobiological plausibility of coupled oscillators

is the incorporation of time delay effects linked to a spatial metric. The dynamics

of such a model introduces connection strengths that vary with distance, and global

connectivity is achieved by combining time delay effects with a finite width spatial kernel.

Similarly, the importance of spatial displacement and time delay effects in biological

oscillators network appears also in Cabral et al. (2011), which deals with the brain’s

neural activity on a network of N nodes, to study the structural connectivity in the

brain in terms of connection strengths and conduction delays. Interestingly, analogous

considerations regard also the study of the electric power grid dynamics where, again,
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Kuramoto model proves to be an agile and useful model tool. In particular, Mangesius

et al. (2012) describes a spatially embedded Kuramoto dynamics that involves a constant

delay, proportional to the spatial distance between the oscillators, phase shifts caused by

transmission delays and a coupling function that decreases with the distance. More in

general, the basic idea that the distances among the agents affect the synchronization

dynamics can be find also in Gupta et al. (2014), where the behavior of a lattice of

oscillators, which interact with a power-law coupling strength, is considered.

The second obstacle, instead, refers to the fact that, while some systems require

synchronization of all units to function properly (Dörfler and Bullo (2014); Chopra

and Spong (2005); Gushchin et al. (2015)), recent studies have shown how neural

systems, among others, depend on cluster synchronization, where populations of neurons

evolve cohesively but independently from one another, and how incorrect patterns may

prevent cognitive functions and characterize degenerative states such as Parkinson’s and

Huntington’s Diseases (Hammond et al. (2007); Rubchinsky et al. (2012); Banaie et al.

(2009)), and epilepsy (Lehnertz et al. (2009)). Despite recent results (Pecora et al. (2014);

Sorrentino et al. (2016); Schaub et al. (2016)), methods to predict and control cluster

synchronization in dynamically-changing networks remain critically lacking. Cluster

synchronization has received attention only recently, and several fundamental questions

remain unanswered, including the characterization of the features of the network enabling

the formation of a desired pattern, and the development of control mechanisms to enforce

the emergence of clusters.

Complete synchronization in networks of Kuramoto oscillators has been extensively

studied, e.g., see Gómez-Gardeñes et al. (2007); Zhang et al. (2014). It has been shown

that synchronization of all nodes emerges when the coupling strength among the agents

is sufficiently larger than the heterogeneity of the oscillators’ natural frequencies. Partial

synchronization and patterns formation have received considerably less attention, with

the literature being composed of only few recent works. In Pecora et al. (2014) it is shown

how symmetry of the interconnections may lead to partial synchronization. Methods

based on graph symmetry have also been used to find all possible clusters in networks

of Laplacian-coupled oscillators (Sorrentino et al. (2016)). The relationship between

clusterization and network topology has been studied in Lu et al. (2010) for unweighed

interconnections. In Dahms et al. (2012), the emergence and the stability of groups of

synchronized agents within a network has been studied for different classes of dynamics,

like delay-coupled laser models and neuronal spiking models. Here, the approach of

master stability function has been used to characterize the results. An interesting analysis

for our research can be found in Schaub et al. (2016), where the authors relate cluster
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synchronization to the notion of an external equitable partition in a graph. The notion of

an external equitable partition can be interpreted in terms of invariant subspaces of the

network adjacency matrix, a notion that we exploit in our development. However, the

analysis in Schaub et al. (2016) is carried out with unweighed and undirected networks

and, as we will show in our results, the conditions in Schaub et al. (2016) may not be

necessary when dealing with directed and weighted networks.

Throughout the chapter, we address both the problem of the spatial characterization

of phase-oscillators and the analytical analysis of the formation of clusters on nodes within

the same population. Specifically, we characterize intrinsic and topological conditions that

ensure fully synchronization, or the formation of desired clusters of oscillators. Although

Kuramoto networks exhibit non-linear dynamics, we adopt tools from linear algebra

and graph theory to characterize network conditions enabling the formation of a given

synchronization pattern. Further, we design a control mechanism to perturb (a subset

of) the network weights so as to enforce or prevent desired synchronization patterns.

7.2 General framework and preliminary notions

In this chapter we consider a system of N coupled oscillators, represented by a graph.

A graph G = (V, E) is composed of a set of nodes, V = {1, . . . , N}, consisting of the

indices of the N agents of the network, and of a set of edges E ⊆ V × V, in which each

edge connects one node to another (see for example, Mesbahi and Egerstedt (2010)). The

edge (i, j) indicates that agent j can transmit information to agent i.

If there is a directed path from node j to i, then node i is said to be reachable

from node j. If each node is reachable from all the others, then G is said to be strongly

connected. Moreover, the graph is said to be fully connected if there exists an edge

connecting each pair of nodes. Let A = [aij ] be the weighted adjacency matrix associated

to G, where aij ∈ R if (i, j) ∈ E , and aij = 0, otherwise. Throughout the chapter, we

consider strongly connected graphs, if anything is mentioned.

Given this framework, each oscillator node i is endowed by a state that is its phase

angle θi (·) ∈ R, which obeys the dynamics

θ̇i (t) = ωi +
C

N

N∑

j=1

aij sin (θj (t)− θi (t)) , i = 1, . . . , N, (7.1)

which is a simplified version of Equation (6.6a), where all the delay terms νij ’s are equal

to zero. Recall that C ≥ 0 is the global coupling strength, and ωi ∈ R is the oscillator
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natural frequency (namely: the dynamics of each isolated node is θ̇i (t) = ωi).

7.2.1 Synchronization definitions

When analyzing the behavior of the oscillators network topologically described by a

generic graph G, there are different kinds of synchronization, which can be reached

through the dynamics (7.1) (see Dörfler and Bullo (2014)):

Definition 7.2.1 (Frequency synchronization). A subset of NC ≤ N oscillators

C ⊆ V, is frequency synchronized if, for some initial phases θ1(0), . . . , θN (0), it holds that

θ̇i(t) = θ̇j(t) = ωsync,

for all times t ∈ R≥0, and i, j ∈ C.

Definition 7.2.2 (Asymptotic frequency synchronization). The subset of NC ≤ N

oscillators C ⊆ V, is asymptotically frequency synchronized if, for some initial phases

θ1(0), . . . , θN (0), it holds that

lim
t→∞

θ̇i(t) = ωsync =
1
NC

∑

i∈C
ωi, ∀ i ∈ C

If the vector of the natural frequencies is in the orthogonal complement of the ones vector,

[ ω1 · · · ωNC
]T ∈ 1⊥

NC
, then ωsync = 01.

Definition 7.2.3 (Phase synchronization). The subset of oscillators C ⊆ V, is phase

synchronized if, for some initial phases θ1(0), . . . , θN (0), it holds that

θi(t) = θj(t),

for all times t ∈ R≥0, and i, j ∈ C.

Definition 7.2.4 (Asymptotic phase synchronization). The subset of oscillators

C ⊆ V, is asymptotically phase synchronized if, for some initial phases θ1(0), . . . , θN (0), it

holds that

lim
t→∞

θi(t) = lim
t→∞

θj(t),

for all i, j ∈ C.

1According to Dörfler and Bullo (2014), this assumption is not limiting the study since all frequencies
can be expressed w.r.t. ωsync as ωi − ωsync in a rotating frame.
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Definition 7.2.5 (Phase locking). The subset of oscillators C ⊆ V, is phase locked if,

for some initial phases θ1(0), . . . , θN (0), it holds that

if θi(0)− θj(0) = γij then θi(t)− θj(t) = γij ,

for all times t ∈ R≥0, and i, j ∈ C.

Definition 7.2.6 (Angle invariance). For γ ∈ [0, π], let ∆N (γ) be the set of angle

arrays θθθi of dimension N , such that |θi − θj | ≤ γ, for all θi, θj , which are elements of θθθi.

Definition 7.2.7 (Phase cohesiveness). The subset of oscillators C ⊆ V, is phase

cohesive if, for some initial phases θ1(0), . . . , θN (0), it exists an angle 0 ≤ γ ≤ π/2, such

that

if max
i,j∈C

(θi(0)− θj(0)) ≤ γ then max
i,j∈C

(θi(t)− θj(t)) ≤ γ,

for all times t ∈ R≥0, and i, j ∈ C. It is equivalent to condition:

θθθC(0) ∈ ∆NC
(γ) =⇒ θθθC(t) ∈ ∆NC

(γ), ∀t > 0,

where θθθC is the vector of the NC oscillators belonging to C.

7.3 Spatially coupled oscillators network

In this section, we address the problem of embedding the spatial component in the classic

Kuramoto model2, which considers the oscillators as located on a plane (as often occurs

in real world applications), and introduces a kernel function that (inversely) depends

on the Euclidean distance among the oscillators. Specifically, sufficient conditions on

the nominal C ≥ 0 coupling strength and on the largest distance are obtained, which

permit to achieve frequency synchronization and phase cohesiveness. More specifically, in

this place, we take into account also the case in which the oscillators are influenced by

different kernels, depending on their displacement in a specific area: in such a situation,

the synchronization frequency changes if compared to the case where a single kernel

characterizes the whole population.

Given this framework, in addition to its phase angle θi(·) and its natural frequency

ωi, each oscillator node i is also endowed by its (static) spatial coordinates (xi, yi) ∈ R2.

2equation (7.1) formulation, with aij = 1, for each i, j = 1, . . . , N
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parameter (6.2), which is reported here for simplicity:

R(t)ejΦ(t) =
1
N

N∑

i=1

ejθi(t).

Let R∞ be limit value of R(t) as t goes to the infinity, if the limits exists:

R∞ = lim
t→∞

R(t).

Recall that R(t) represents the centroid of all the phases of the oscillators at time t, when

these are seen as points on the unit circle in C1. The magnitude R(t) ∈ [0, 1] of the

order parameter is a synchronization measure: if, at time t, all the oscillators are phase

synchronized, then R(t) = 1, whereas if they are balanced (i.e. uniformly distributed over

the unit circle), then R(t) = 0. In particular, it is useful to recall the following Lemma

(Dörfler and Bullo, 2014, Lemma 3.1).

Lemma 7.3.1. (Minimum phase distance and order parameter)

Consider an array of N ≥ 2 angles θθθ = [ θ1 · · · θN ]T and compute the magnitude

R = 1
N

∣∣∣
∑N
i=1 e

jθi

∣∣∣. Let γ be the length of the smallest angle such that θθθ ∈ ∆N (γ). The

following statements holds:

1. if γ ∈ [0, π], then R ∈ [cos (γ/2) , 1];

2. if θθθ ∈ ∆N (π), then γ ∈ [2 arccos (R) , π].

7.3.1 Single population convergence bounds

Following the results summarized in Dörfler and Bullo (2014), the interest is now to

establish some explicit conditions for the modified Kuramoto model (7.2). In doing so,

the following propositions extend the results in Dörfler and Bullo (2011) involving the

coupling strength parameter C and the maximum dmax of the Euclidean distances {dij}

between the oscillators, to achieve a synchronized state for θθθ = [ θ1 · · · θN ]T, namely

a state where asymptotic frequency synchronization and phase cohesiveness coexist.

Proposition 7.3.2. (Phase cohesiveness)

Consider the Kuramoto model (7.2), with N ≥ 2 oscillators, natural frequencies ωωω ∈ 1⊥
N

3

in [ωmin, ωmax] and coupling strength C. If the coupling strength C is higher than a critical

value Ccr:

C > Ccr =
ωmax − ωmin

e−d̃2
with d̃ =

dmax

p
, (7.4)

3Recall that, according to Dörfler and Bullo (2014), this assumption is not limiting the study since all
frequencies can be expressed w.r.t. ωsync as ωi − ωsync in a rotating frame.
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then ∃ γmax ∈ ]π/2, π] and ∃ γmin ∈ [0, π/2[ such that

1. ∆N (γ) is positive invariant for every γ ∈ [γmin, γmax], that means that each trajec-

tory originated in ∆N (γ) remains in ∆N (γ) for every t ≥ 0 (phase cohesiveness);

2. sin (γmin) = sin (γmax) = Ccr/C.

Remark 7.3.3. Interestingly, in the modified Kuramoto framework introduced by (7.2), a

dependence between the coupling strength C and the maximum distance dmax between

agents can be stated. Indeed, relation (7.4) is equivalent to the following condition:

dmax < dcr := p ·

√
− ln

(
ωmax − ωmin

C

)
. (7.5)

In practice, if a model (7.2) is given with an imposed spatial distribution {dij < dmax},

to achieve phase cohesiveness there must be exerted a coupling strength larger than Ccr.

Conversely, if the network interactions are bounded by some coupling strength value C,

the displacement among the agent should also be bounded (by dcr) in order to achieve

synchronization.

In Fig. 7.1(b)-7.1(c) the relation among these parameters are shown also w.r.t. the

shape of the lower bound of R∞. The reported figures are referred to a network of

N = 100 nodes with (ωmax − ωmin) = 10. It is worth noticing that dmax shows a linear

dependence on p; moreover, the upper bound for dmax is really restrictive for a low value

of p and it remains low also if C is increased.

Proposition 7.3.4. (Asymptotic frequency synchronization)

With a coupling strength C > Ccr, model (7.2) achieves exponential frequency synchro-

nization for all possible distributions of the natural frequencies {ωi} on the compact

interval [ωmin, ωmax] and for all initial phase conditions θθθ(0) ∈ ∆N (γmax).

Moreover:

1. the asymptotic synchronization frequency ωsync is the average frequency ωavg =
1
N

∑N
i=1 ωi;

2. given phase cohesiveness w.r.t. γ for some fixed γ < π/2, the exponential synchro-

nization rate is no worse then λfs = Ce−d̃2
cos (γ);

The proofs of Propositions 7.3.2 and 7.3.4 develop along the same line as that of (Dörfler

and Bullo, 2011, Theorem 4.1) and are reported in Appendix A.9 and A.10, respectively,

for completeness.
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Corollary 7.3.5. Consider model (7.2) in the conditions stated by Proposition 7.3.2:

the asymptotic value R∞ of the magnitude of the order parameter (6.2) is bounded as

1 ≥ R∞ ≥ cos
(
γmin

2

)
=

√√√√√1 +
√

1−
(
ωmax−ωmin

Ce−d̃2

)2

2
. (7.6)

Proof of Corollary 7.3.5. As a consequence of statement 1. of Proposition 7.3.2 and

Lemma 7.3.1, the asymptotic magnitude of the order parameter obeys

1 ≥ R∞ ≥ cos
(
γmin

2

)
=

√
1 + cos (γmin)

2
. (7.7)

From statement 2) of Proposition 7.3.2, it follows

cos (γmin) =

√

1−
(
ωmax − ωmin

Ce−d̃2

)2

, (7.8)

and from (7.7) and (7.8), (7.6) is proved.

7.3.2 Two populations configuration

It is now interesting to study the case when two populations of agents with different

kernels interact.

For this purpose, a configuration is considered composed by two areas (Amin and Amax),

populated by sets Amin and Amax of oscillators, characterized respectively by two different

kernels wmin(·) and wmax(·), related to parameters pmin < pmax. In other words, it is

wmin(dij) = w(dij , pmin) and wmax(dij) = w(dij , pmax).

For the time being, the cardinality of the two populations is the same: N/2 oscillators

belong to Amin and the others N/2 to Amax.

The system dynamics becomes:

θ̇i (t) = ωi +
C

N





∑N
j=1wmin(dij) sin (θj (t)− θi (t)) , i ∈ Amin

∑N
j=1wmax(dij) sin (θj (t)− θi (t)) , i ∈ Amax

where

wmin(dij) = e
−
(

dij
pmin

)2

< e
−
(

dij
pmax

)2

= wmax(dij),
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which yields:

Ccr =
ωmax − ωmin

e
−
(

dmax
pmin

)2 .

Unlike the case with a single population, in which ωsync = 1
N

∑N
i=1 ωi = 0, in the two

populations case the following lemma holds.

Lemma 7.3.6. (Synchronization frequency with two kernels)

Consider a system of an even numbers N ≥ 2 of oscillators, characterized by their

spatial coordinates (xi, yi) and their phases θi (t). Let ωωω ∈ 1⊥
N be the vector of the natural

frequencies.

If C and dmax are such that there is frequency synchronization among the oscillators,

then, the synchronization frequency ω̃sync results for t� 0:

ω̃sync =
C

N2

∑

i∈Amin

j∈Amax

(wmax(dij)− wmin(dij)) sin (θi − θj) .

Proof of Lemma 7.3.6. Suppose t � 0 such that synchronization has been already

achieved. By summing over all nodes it follows:

N∑

i=1

θ̇i =
N∑

i=1

ωi −
C

N

∑

i∈Amin

N∑

j=1

wmin(dij) sin (θi − θj) +

−
C

N

∑

i∈Amax

N∑

j=1

wmax(dij) sin (θi − θj) .

(7.9)

By noticing that if i, j ∈ A∗ then w∗(dij) = w∗(dji) (∗ being equal to min or max) and

sin (θi − θj) = − sin (θj − θi), after some calculations, (7.9) simplifies to

N∑

i=1

θ̇i =
N∑

i=1

ωi −
C

N

∑

i∈Amin
j∈Amax

(wmin(dij)− wmax(dij) sin (θi − θj) .

Hence, normalizing by the network cardinality N , it follows:

ω̃sync =
1
N

N∑

i=1

θ̇i = ωsync +
C

N2

∑

i∈Amin
j∈Amax

(wmax(dij)− wmin(dij)) sin (θi − θj)︸ ︷︷ ︸
Bij

,

which proves the thesis by recalling that ωsync = 0.

Namely, if the oscillator network can be described by two populations characterized by
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different spatial coupling, the synchronization frequency ω̃sync deviates from the null

average of the natural frequencies: more specifically, this difference can be bound w.r.t.

the two coupling parameters as follows.

Proposition 7.3.7. In the hypotheses of Lemma 7.3.6, a bound ∆ωmax for the difference

between the synchronization frequency ω̃sync and ωsync = 0 is given by:

|ω̃sync − ωsync| ≤
C

4


e−

(
d∗

pmax

)2

− e
−
(

d∗

pmin

)2

 =: ∆ωmax, (7.10)

where

d∗ = pminpmax

√
2

p2
max − p

2
min

ln
(
pmax

pmin

)
.

Proof of Proposition 7.3.7. From (7.3.2), it results

ω̃sync − ωsync =
C

N2

∑

i∈Amin
j∈Amax

(wmax(dij)− wmin(dij)) sin (θi − θj)︸ ︷︷ ︸
Bij

,

and

wmax(dij)− wmin(dij) = e
−
(

dij
pmax

)2

− e
−
(

dij
pmin

)2

,

considering that dij = dji, ∀i, j.

To find its maximum value, the derivative is obtained:

∂

∂dij
(wmax(dij)− wmin(dij)) = 2dij


 1
p2

min

e
−
(

dij
pmin

)2

−
1

p2
max

e
−
(

dij
pmax

)2

 ,

which becomes zero at dij = 0 (trivial minimum solution) and when

dij = d∗ = pminpmax

√
2

p2
max − p

2
min

ln
(
pmax

pmin

)
.

As a consequence:

wmax(dij)− wmin(dij) ∈

[
0, exp

(
−

(
d∗

pmax

)2
)
− exp

(
−

(
d∗

pmin

)2
)]

,

and it follows that the absolute value of the quantity Bij highlighted in (7.3.2) is bounded

within


0, e−

(
d∗

pmax

)2

− e
−
(

d∗

pmin

)2

.
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As a consequence

|ω̃sync − ωsync| ≤
C

N2

∑

i∈A1
j∈A2


e−

(
d∗

pmax

)2

− e
−
(

d∗

pmin

)2



≤
C

4


e−

(
d∗

pmax

)2

− e
−
(

d∗

pmin

)2

 .

So far the case of two balanced populations of agents has been considered and indeed

the bound (7.10) does not depend on the cardinality of the sets.

Conversely, if the two populations refer to uneven groups of oscillators, the results of

Proposition 7.3.7 can be extended. Let the sets Amin and Amax be of different cardinalities,

namely:

Amin = {i | (xi, yi) ∈ Amin} , |Amin| = Nmin, (7.11a)

Amax = {i | (xi, yi) ∈ Amax} , |Amax| = Nmax = N −Nmin. (7.11b)

In such conditions, relation (7.10) modifies to:

|ω̃sync − ωsync| ≤ C
Nmin (N −Nmin)

N2


e−

(
d∗

pmax

)2

− e
−
(

d∗

pmin

)2

 = ∆ωmax. (7.12)

The derivative of ωmax w.r.t. Nmin is

∂

∂Nmin
∆ωmax = C

(
N − 2Nmin

N2

)
e−

(
d∗

pmax

)2

− e
−
(

d∗

pmin

)2

 ,

which equalizes to zero only at Nmin = N/2 (point of maximum); also, the minimum

value for the right hand size of (7.12) is achieved at the extreme points, i.e. when the

two populations are strongly unbalanced:




Nmin = 1

Nmax = N − 1
or




Nmin = N − 1

Nmax = 1
.

In Fig. 7.2, an example of the shape of ∆ωmax as a function of Nmin is given with C = 50,

pmin = 3 and N = 50, for different values of pmax.
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The bound gain is defined as Ccr = ∆ω

e
−( dmax

p )2 , and the coupling strength C to ensure

synchronization is obtained:

C =
Ccr

sin (γmax)
> Ccr.

In Fig. 7.3 two simulation examples are shown. The upper row refers to (a) the single

kernel case, where (b) phase cohesiveness is reached and (c) the Lyapunov function

V (θθθ(t)) behaves as proved in Proposition 7.3.2. The lower row, instead, is related to

(d) a two kernels configuration, where (e) phase cohesiveness is attained for the two

populations and (f) the frequency convergence is bounded by (7.11a).

More in general, the assessment of the correctness and the accuracy of Proposition 7.3.2

for arbitrary networks is carried out by solving (7.2) for each instance and testing the

assumptions:

Hfr :




γmax ∈ ]π/2, π[

C = Ccr
sin(γmax) > Ccr

=⇒ θ̇̇θ̇θ(t) −→
t→∞

ωsync1N ,

Hph :




γmax ∈ ]π/2, π[

C = Ccr
sin(γmax) > Ccr

=⇒ ∃ t∗, s.t. θθθ(t∗) ∈ ∆N (γmin).

In this context, frequency synchronization is achieved if the differences among the

mean values of the last 50 samples of the frequencies θ̇(avg)
i remain below a threshold

εfr = 1.75× 10−4 rad s−1, i.e.

∣∣∣θ̇(avg)
i − θ̇

(avg)
j

∣∣∣ < εfr, ∀ i, j ∈ [1, N ] .

Phase cohesiveness is reached at the simulation time T if

|θi (T )− θj (T )| ≤ γmin, ∀ i, j ∈ [1, N ] .

The empirical probability P̂ for hypotheses H∗ (H∗ being Hfr or Hph) is computed. To

obtain an accuracy level of ε = 0.01 and a confidence level of η = 0.01, that is

P

(∣∣∣P (H∗ is true)− P̂ (H∗ is true)
∣∣∣ < ε

)
> 1− η,

the Chernoff-Hoeffding (Chernoff (1952); Hoeffding (1963)) bound justifies the chosen

number of nominal models n

n ≥
1

2ε2
ln

2
η

= 26492.
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In particular, the Monte Carlo simulations in the theoretical cohesiveness and syn-

chronization conditions stated before show that

P̂fr = 85.44% and P̂ph = 100%. (7.13)

Indeed, while the value of P̂ph is really satisfactory, i.e. phase cohesiveness is obtained

in every simulation, the low value of P̂fr is probably due to the threshold-based method

adopted for assessing frequency synchronization and, as will be clearer later, to the high

values of C (sometimes much higher than necessary), that may lead to numerical issues.

In this respect, it is interesting to study the bound accuracy, i.e. to find the smallest

value Cmin that permits to achieve phase cohesiveness in ∆ (γmin).

For each sample network out of n Monte Carlo realizations, the smallest value of C leading

to cohesive phases satisfying |max |θi − θj | − γmin| < εph, where εph = 8.7× 10−3 rad, is

found iteratively by numerically integrating the dynamics (7.2): at the h-th iteration the

following scheme is applied

• if |max |θi − θj | − γmin| < εph, then C(h) = Cmin;

• if max |θi − θj | < γmin − εph, then C(h+1) = 0.9× C(h);

• if max |θi − θj | > γmin + εph, then C(h+1) = 1.1× C(h).

This iterative process stops when the Cmin is found or when the iterations exceed 1000.

By calling C(1) = Ccr/ sin (γmin), it is expected that the ratio Cmin/C
(1) is always lower

than or equal to unity. Indeed, if that happens, it means that the value of Ccr is sufficient

to achieve phase cohesiveness.

In Fig. 7.4, the statistical distribution of this ratio is shown: firstly, it can be observed

that the probability of reaching phase cohesiveness as the percent number of samples

with the ratio lower or equal to 1 is (of course) P̂ph = 100%.

Furthermore, by analyzing the statistical distribution, there is a significant set of

sample simulations (15.95%) that yields a ratio exactly equal to 1. This fact means

that the bound Ccr is a good bound and cannot be decreased without decreasing the

probability of reaching cohesiveness. Conversely, although the adopted implementation

of the iterative scheme for Cmin leads to a sort of quantization, this plot suggests a

trade-off on how much the value of C can be decreased to ensure a minimum probability

of cohesiveness. In particular, it can be stated that by decreasing C tenfold, phase

cohesiveness with respect to γmin can be obtained with a probability of about 50%.

Finally, it is possible to calculate the empirical probabilities of frequency synchroniza-





162 Kuramoto model and synchronization: a theoretical analysis

If compared with (7.13) it can be noticed that the value of P̂fr,C(1) is perfectly in line

with that of P̂fr (taking into account the different set of Monte Carlo realizations), while

P̂fr,Cmin is much higher: in all likelihood, this is due to the fact that a lower value of C,

which anyway permits to achieve phase cohesiveness, allows to reduce possible numerical

issues and thus has to be preferred when using a numerical solver.

7.4 Cluster synchronization: phase cohesiveness

So far, we have investigated topological and spatial conditions required to achieve complete

(asymptotic) frequency synchronization or phase cohesiveness in a network of Kuramoto

oscillators. However, as mentioned in the introduction to this chapter, many applications

refer to a condition where populations of elements evolve cohesively, but independently

from the others. This condition is referred as cluster synchronization, in a broad sense,

where, with synchronization one can mean different network behaviors (see Section 7.2.1).

In this section we address the problem of cluster synchronization in terms of phase

cohesiveness among nodes belonging to the same cluster. With respect to existing notions

of cluster synchronization, where the phases of the clustered oscillators are required to be

equal to each other, in this section, we refer to cluster synchronization when the phase

differences remain bounded over time. This definition is less stringent, and it allows

us to study cluster synchronization in asymmetric oscillatory networks with general

topology and parameters. We show how cluster synchronization depends on a graded

combination of strong intra-cluster and weak inter-cluster connections, similarity of the

natural frequencies of the oscillators within each cluster, and heterogeneity of the natural

frequencies of coupled oscillators belonging to different groups. Specifically, we provide

two different results for the cohesiveness of the phases of the oscillators in a cluster.

The first result is based on the non-linear dynamics of the network, and it bounds from

above the phase differences of the clustered oscillators. The second result uses a linear

system to bound the non-linear dynamics, and it approximates the phase differences of

the clustered oscillators as a function of the network parameters and natural frequencies

of the oscillators. Although our second result is an approximated bound, it provides novel

insights into the mechanisms enabling cluster synchronization in oscillatory networks, and

it serves as a tight indication of the non-linear network evolution, as we show through a

set of numerical studies.
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7.4.1 Cluster synchronization in networks of Kuramoto oscillators

Throughout this section, we consider a network of N Kuramoto oscillators, represented

by a weighed, undirected, and connected graph G, as described before, whose phases’

dynamics evolves as Equation (7.1), where C = N , that is:

θ̇i(t) = ωi +
N∑

j=1

aij sin(θj(t)− θi(t)), i = 1, . . . , N. (7.14)

Coherently with Definition 7.2.7, a cluster of Kuramoto oscillators is defined as follows.

Definition 7.4.1 (Cluster of oscillators). The set of oscillators C ⊆ V is a cluster if

there exists an angle 0 ≤ γ ≤ π such that, whenever |θi(0)− θj(0)| ≤ γ for all i, j ∈ C,

|θi(t)− θj(t)| ≤ γ,

for all i, j ∈ C and at all times t ∈ R≥0. �

Although Definition 7.4.1 allows a node to belong to different clusters, we will not discuss

this case in this place, since our purpose is aimed at the characterization of a single

cluster with respect to all the other nodes. Moreover, notice that frequencies need not be

equal for nodes to belong to the same cluster. In Figure 7.5, an example of a network of

clustered oscillators is depicted.

Figure 7.5: The left figure shows a network of 12 oscillators with 4 colour-coded clusters.
The phases of the oscillators within each cluster evolve cohesively, as defined in Definition 7.4.1

and illustrated in the right figure.
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7.4.1.1 Analysis based on non-linear cluster dynamics

Let C ⊆ V denote a group of oscillators. From (7.1), the dynamics of each oscillator in C

can be decomposed as

θ̇i = ωi +
∑

j∈C
aij sin (θj − θi) +

∑

j∈V\C
aij sin (θj − θi) .

Depending on the network parameters and oscillators’ frequencies, the group C may

behave as a cluster. In the next theorem we further characterize this relation.

Theorem 7.4.2. (Cluster condition based on network weights and oscillators’

frequencies)

Let C ⊆ V and

αmax = max
i,j∈C

(
ωij +

∑
k∈V\C (ajk + aik)

2aij +
∑
k∈C min{aik, ajk}

)
,

where ωij = ωj − ωi and aij are as in (7.1). If αmax ≤ 1, then C is a cluster with respect

to the angle

γ = arcsin(αmax).

That is, if |θj(0)− θi(0)| ≤ γ for all i, j ∈ C, then |θj(t)− θi(t)| ≤ γ for all i, j ∈ C and

all times t ≥ 0.

Proof of Theorem 7.4.2. Consider θij = θj − θi, and assume that |θij(0)| ≤ γ for all

i, j ∈ C. Notice that

θ̇ij = θ̇j − θ̇i = ωij +
∑

k∈V
ajk sin(θjk)− aik sin(θik).

We show that, whenever |θij | = γ for some i, j ∈ C, then d|θij |
dt ≤ 0, thus proving the

forward invariance of the angle γ. Assume that θij = γ (the case θij = −γ follows from

analogous reasoning). We have

θ̇ij = ωij − 2aij sin(γ) +
∑

k∈V\C
ajk sin(θjk)− aik sin(θik)+

+
∑

k∈C\{i,j}
ajk sin (θjk)− aik sin (θik)︸ ︷︷ ︸

fk

.
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θi θjθk

γ

≤ γ ≤ γ

Figure 7.6: Schematic representation of the relationship among the phases related to
oscillators within cluster C. Note that 0 ≤ θik ≤ γ, and 0 ≤ θkj ≤ γ.

Notice that for all j, k = 1, . . . , N , it is

θjk = θk − θj = θi − θj + θk − θi = θji + θik = −γ + θik,

where θij = γ by assumption (see Figure 7.6), and

∂fk
∂θik

= ajk cos(θik − γ)− aik cos(θik)

= ajk cos(θik) cos(γ) + sin(θik) sin(γ)− aik cos(θik)

= (ajk cos(γ)− aik) cos(θik) + sin(γ) sin(θik).

Moreover,





∂fk

∂θik
< 0, if 0 ≤ θik < arctan

(
aik−ajk cos(γ)

sin(γ)

)
,

∂fk

∂θik
> 0, if arctan

(
aik−ajk cos(γ)

sin(γ)

)
< θik ≤

π
2 .

Thus, because fk decreases/increases monotonically in the interval [0, γ], we have

fmax
k = max

0≤θik≤γ
fk = max{fk(0), fk(γ)}

= max {−ajk sin(γ),−aik sin(γ)}

= − sin(γ) min{ajk, aik}.

The derivative θ̇ij can be bounded as

θ̇ij ≤ ωij − 2aij sin(γ) +
∑

k∈V\C
ajk + aik +

∑

k∈C\{i,j}
fmax
k .

Finally, notice that θ̇ij ≤ 0 when the angle γ satisfies

γ ≥ arcsin

(
max
i,j∈C

(
ωij +

∑
k∈V\C ajk + aik

2aij +
∑
k∈C min{ajk, aik}

))
,

which concludes the proof.
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Theorem 7.4.2 implies that the cluster C is more cohesive, that is, it has a smaller

angle γ, when the weight of the edges within the cluster increases. Similarly, the angle

γ increases when (i) the weight of the edges connecting oscillators within and outside

the cluster increases, and (ii) the natural frequencies of the oscillators in the cluster

become more heterogeneous (ωij increases). It should be noticed that, even in the case

C = V, the angle γ may remain positive, that is, the oscillators may not achieve phase

synchronization, which is consistent with existing results on networks of heterogeneous

oscillators (Dörfler and Bullo (2014)).

(a) M = N and ωi ≤ ω, i ∈ C (b) ωi = 0, i ∈ C and ωk ≤ ω,
k ∈ V \ C

(c) ωi ≤ 1, i ∈ C and ωk ≤ ω,
k ∈ V \ C

Figure 7.7: This figure shows the largest phase difference among the oscillators in the
cluster, as described in Section 7.4.2, and the bounds γ and β derived in Theorem 7.4.2 and
Theorem 7.4.6, respectively. In Figure (a), the cluster comprises all nodes (C = V) and,
for each value of ω, the oscillators natural frequencies are selected randomly and uniformly
distributed in the interval [0, ω]. In Figure (b), the cluster comprises a proper subset of nodes,
the oscillators in the cluster have equal frequency, while the frequencies of the oscillators outside
the cluster are selected randomly and uniformly distributed in the interval [0, ω]. In Figure (c),
the cluster comprises a proper subset of nodes, the frequencies of the oscillators in the cluster
are selected randomly and uniformly distributed in the interval [0, 1], while the frequencies
of the oscillators outside the cluster are selected randomly and uniformly distributed in the
interval [0, ω]. Notice that (i) β is a tighter bound than γ, (ii) the cohesiveness of the cluster
increases when the frequencies of the oscillators outside the cluster increase, and (iii) exact
phase synchronization is possible only when the oscillators in the cluster have equal frequency,

and the frequencies of the oscillators outside the cluster increase to infinity.

As it can be seen in Figure 7.7, the bound γ in Theorem 7.4.2 may be conservative.

A more refined approximation can be obtained by accounting for the natural frequencies

of the oscillators outside the cluster (V \ C), as we show next.
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Lemma 7.4.3. (Linear comparison)

Let C be a cluster with respect to the angle γ. Then at all times,

max
i,j∈C

(θj − θi) ≤ max
i,j∈C

(θ̃j − θ̃i),

where θ̃i satisfies θ̃i(0) = θi(0) for all i ∈ C and

˙̃θi = ωi +
sin(γ)
γ

∑

j∈C
aij(θ̃j − θ̃i) +

∑

j∈V\C
aijvij , (7.15)

with vij = sin(θj − θ̃i).

Proof of Lemma 7.4.3. The proof is divided into two parts. First, following the same

procedure as in the proof of Theorem 7.4.2, it follows that |θ̃ij | = |θ̃j(t)− θ̃i(t)| ≤ γ at all

times. Second, we employ the comparison lemma in Khalil (2002) to prove the claimed

statement. Consider the non-negative function

g(t,x) := max(xj(t)− xi(t)),

where xi denotes the i-th component of the vector x. Proving Lemma 7.4.3 is equivalent

to prove that

g(t, θ) ≤ g(t, θ̃). (7.16)

Consider

U(t) = {i : θi(t) = max
j
θj(t)}, Ũ(t) = {i : θ̃i(t) = max

j
θ̃j(t)},

M(t) = {i : θi(t) = min
j
θj(t)}, M̃(t) = {i : θ̃i(t) = min

j
θ̃j(t)}.

Notice that

g(t, θθθ) = θi − θj with i ∈ U(t) and j ∈ L(t),

g(t, θ̃θθ) = θ̃i − θ̃j with i ∈ Ũ(t) and j ∈ M̃(t).

From (Lin et al., 2007, Lemma 2.2), we know that

D+g(t, θθθ) = lim
h→0

sup
g(θθθ(t+ h))− g(θθθ(h))

h
= vmax(t)− vmin(t),
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where D+g is the right-hand derivative of g(t, θθθ), and

vmax(t) = max{θ̇i : i ∈ U(t)}, vmin(t) = min{θ̇i : i ∈M(t)}.

Analogously, D+g(t, θ̃θθ) = ṽmax(t) − ṽmin(t). From (Cao and Ren, 2011, Lemma 3.3),

equation (7.16) holds if D+g(t, θθθ)|θθθ=θ̃θθ ≤ D
+g(t, θ̃θθ). Note that, for some i∗ and j∗,

vmax − vmin = ωj∗ − ωi∗ +
∑

k∈C
aj∗k sin(θ̃j∗k)− ai∗k sin(θ̃i∗k)

+
∑

k∈V\C
aj∗k sin(θk − θ̃j∗)− ai∗k sin(θk − θ̃i∗),

and

ṽmax − ṽmin ≥ ωj∗ − ωi∗ +
sin(γ)
γ

∑

k∈C
aj∗kθ̃j∗k − ai∗kθ̃i∗k+

+
∑

k∈V\C
aj∗k sin(θk − θ̃j∗)− ai∗k sin(θk − θ̃i∗).

Thus,

D+g(t, θ̃θθ)−D+g(t, θθθ)|θ̃̃θ̃θ ≥

∑

k∈C
aj∗k

(
sin(γ)θ̃j∗k

γ
− sin θ̃j∗k

)
− ai∗k

(
sin(γ)θ̃i∗k

γ
− sin θ̃i∗k

)
.

Because
∣∣∣θ̃ij
∣∣∣ ≤ γ, we have





sin(γ)θ̃ij

γ ≤ sin(θ̃ij), if θ̃ij ≥ 0,
sin(γ)θ̃ij

γ ≥ sin(θ̃ij), if θ̃ij ≤ 0.

Notice that, for every k ∈ C, θ̃i∗ ≤ θ̃k ≤ θ̃j∗ and, consequently, θ̃i∗k ≥ 0 and θ̃j∗k ≤ 0.

Thus, D+g(t, θ̃θθ)−D+g (t, θθθ) |θ̃θθ ≥ 0, which concludes the proof.

7.4.1.2 Analysis based on approximated linear dynamics

Lemma 7.4.3 shows that the evolution of the non-linear network dynamics can be

bounded by the evolution of the linear system (7.15) with bounded inputs vij . We use

this observation to find a tighter approximation of the clustering angle γ. Consider a

spanning tree T = (C, ET ) of the subgraph (C, EC), with EC = E ∩C ×C (Godsil and Royle
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(2013)). For i, j ∈ C, let pij be the unique path on T from i to j4. Let θ̃ij = θ̃j − θ̃i, and

notice that

θ̃ij =
∑

h∈pij

θ̃h+1 − θ̃h. (7.17)

Let xtree and xcluster be the vectors of all θ̃ij with (i, j) ∈ ET and (i, j) ∈ C × C,

respectively, with j > i. See Figure 7.8 for an illustration of these definitions. Some

algebraic manipulation from (7.15) and (7.17) leads to

ẋtree =
sin(γ)
γ

F xtree + G u + ∆ω∆ω∆ω, (7.18a)

xcluster = H xtree, (7.18b)

where F, G, and H are appropriately defined matrices, and ∆ω∆ω∆ω contains all the differences

ωij with j > i and (i, j) ∈ ET . Notice that each component of u can be written as

ui = sin(θp − θ̃q), for some q ∈ C and p ∈ V \ C. The following definition will be used: for

the i-th component of u, let

ω∗
i = |ωp − ωq|. (7.19)

2 3
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θ̃1,4

θ̃1,3
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Figure 7.8: For the cluster with nodes C = {1, 2, 3, 4} in Fig. 7.5, this figure shows a spanning
tree T = (C, ET ), where EC = {(1, 2), (2, 3), (3, 4), (1, 4)} and ET = {(1, 2), (2, 3), (3, 4)}. The

system (7.18) associated with the cluster C is in Example 7.4.4.

Example 7.4.4. (An example of system (7.18))

Consider the cluster C = {1, 2, 3, 4} of Figure 7.8 with subgraph (C, EC), EC = {(1, 2), (2, 3), (3, 4), (1, 4)}.

The subgraph T = (C, ET ) is a spanning tree, where ET = {(1, 2), (2, 3), (3, 4)}. The state

4A path pij on ET , i, j ∈ C, is a sequence of vertices of C such that i and j are the first and last
elements of the sequence, respectively, and for any two consecutive nodes k, h it holds (k, h) ∈ ET .
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of the system (7.18) associated with T is

xtree =
[
θ̃12 θ̃23 θ̃34

]T
,

xcluster =
[
θ̃12 θ̃23 θ̃34 θ̃14 θ̃13 θ̃24

]T
.

The input u has six components:

u1 = sin(θ7 − θ̃1), u2 = sin(θ8 − θ̃1), u3 = sin(θ6 − θ̃2),

u4 = sin(θ11 − θ̃3), u5 = sin(θ9 − θ̃4), u6 = sin(θ10 − θ̃4).

The matrices F, G, H and the vector ∆ω∆ω∆ω are as follows:

F =




−(2a12 + a14) (a23 − a1,4) −a14

a12 −a23 a34

−a14 −(a23 + a14) −(2a34 + a14)


 ,

G =




−a17 −a18 a26 0 0 0

0 0 −a26 a3,11 0 0

0 0 0 −a3,11 a49 a4,10




H =




1 0 0 1 1 0

0 1 0 1 1 1

0 0 1 1 0 1




T

and ∆ω∆ω∆ω =




ω2 − ω1

ω3 − ω2

ω4 − ω3


 .

Finally, ω∗
1 = |ω7−ω1|, ω∗

2 = |ω8−ω1|, ω∗
3 = |ω6−ω2|, ω∗

4 = |ω3−ω11|, ω∗
5 = |ω4−ω9|,

and ω∗
6 = |ω4 − ω10|. �

Lemma 7.4.5. (Stability of (7.18))

The system (7.18) is stable.

Proof of Lemma 7.4.5. Let θ̃θθ be the vector of θ̃i with i ∈ C, and let ˙̃θθθ = −Lθ̃θθ + v,

where L and v are defined from (7.15). Notice that L is a Laplacian matrix (Godsil

and Royle (2013)), in fact it equals the Laplacian of the subgraph of G with nodes C.

Thus, because the graph G is connected, L has a simple eigenvalue in the origin, with

eigenvector with all equal components (Olfati-Saber et al. (2007)). Thus, the autonomous

dynamics ˙̃θθθ = −Lθ̃θθ satisfy

lim
t→∞

θ̃j(t)− θ̃i(t) = 0,

for all i, j ∈ C. As a consequence, the matrix F is stable because, when ∆ω∆ω∆ω = 0 and
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u = 0, the differences θ̃ij converge to zero5.

Next, we exploit the frequency behavior of the system (7.18) to derive a tighter bound

for the cohesiveness of the phases of the oscillators within a cluster.

Theorem 7.4.6. (Approximation based on linearized dynamics)

Let Gi be the i-th column of the matrix G in (7.18), and let ω∗
i be as in (7.19). Then,

with the same notation as in Lemma 7.4.3, maxij θij ≤ maxij θ̃ij = ‖xcluster‖∞, and 6

∣∣∣∣∣‖xcluster‖∞ −

∥∥∥∥∥HF−1∆ω∆ω∆ω +
∑

i

H(jω∗
i I− F)−1Gi

∥∥∥∥∥
∞

∣∣∣∣∣ ≈ 0. (7.20)

Proof of Theorem 7.4.6. To obtain the approximate bound in Theorem 7.4.6, we

assume that, using the notation in (7.19),

ui = sin(θp − θ̃q) ≈ sin((ωp − ωq)t) = sin(ω∗
i t).

We then exploit standard arguments from linear system theory, and in particular the

harmonic response of a linear system, and the stability of (7.18) to conclude the proof.

It should be observed that our approximation is tighter as the frequencies ω∗
i grow to

infinity while the natural frequencies of the oscillators in the cluster remain bounded.

In fact, in this case, and with appropriate initial conditions, we have that ωi grows to

infinity, with i ∈ V \ C, and the phase θi evolves as ωit:

θ̇i
ωi

= 1 +
∑

j∈C

aij
ωi

sin(θ̃j − θi)

︸ ︷︷ ︸
→0

+
∑

j∈V\C

aij
ωi

sin(θj − θi)

︸ ︷︷ ︸
→0

= 1.

Then, we have that sin(θp − θ̃q) converges to sin(ωpt), and the symbol ≈ in (7.20) can

instead be replaced with =.

Theorem 7.4.6 shows how the frequency of the oscillators connected to a cluster

affects the cohesiveness of the phases of its oscillators. In particular the larger ω∗
i , the

less the effect of the neighboring oscillators on the cohesiveness of the cluster. In fact, in

the limit when all ω∗
i ’s grow to infinity, the cluster is effectively disconnected from the

neighboring agents because the cluster dynamics acts as a low pass filter with respect to

the frequencies ω∗
i ’s. Additionally, it can be shown that, as all ω∗

i ’s grow to infinity and

5The dimension vectors 0 are omitted, but coherent with the associated vectors.
6In (7.20) we have = instead of ≈ when the cluster comprises all nodes, that is C = V, when G = 0,

or ω∗
i grow to infinity.
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∆ω∆ω∆ω decreases to zero, the cluster achieves phase synchronization, that is,

lim
t→∞

max
i,j∈C

(θj(t)− θi(t)) = 0.

Finally, it should be noticed that the vector ∆ω∆ω∆ω is due to heterogeneity of the natural

frequencies of the clustered oscillators, and it acts as a constant input to the system (7.18).

Corollary 7.4.7. (Equivalence of bounds when |C| = 2 and the natural frequen-

cies coincide)

Let |C| = 2 and ωi = 0 for all i = {1, . . . , N}. Then the bounds in Theorem 7.4.2 and

7.4.6 coincide.

Proof of Corollary 7.4.7. Without loss in generality, assume C = {1, 2}. In case of

ω1 = ω2 = ωj = 0 for all j = 3, . . . , N , from Theorem 7.4.2 it is

αmax = sin(γ) =
n∑

k=3

(a1k + a2k)
2a12

Moreover, in equation (7.20), ∆ω∆ω∆ω = [0], H = [1], F = [−2a12], and G is a row vector of

elements equal to −a1k or a2k, with k = 3, . . . , N . Hence equation Theorem 7.4.6 says

that

‖xcluster‖∞ ≈
γ

sin(γ)

N∑

k=3

(a1k + a2k)
2a12

︸ ︷︷ ︸
sin(γ)

= γ.

Therefore, the two bounds coincide.

7.4.2 Numerical examples

To validate the results in Section 7.4.1, we perform two sets of numerical studies. In

Figure 7.7 we compare the largest phase difference within a cluster of oscillators with the

bounds in Theorems 7.4.2 and 7.4.6 as a function of the oscillators’ natural frequencies.

We consider fully connected networks of Kuramoto oscillators, where V = {1, . . . , N}

and C = {1, . . . , NC}; N and NC are randomly selected in the intervals {2, . . . , 10} and

{2, . . . , N}, respectively. The network weights aij are independent random variables

uniformly distributed in the intervals [0, 1], if i, j ∈ C, and [0, 0.01] otherwise. For each

value of the largest natural frequency ω, we generate 100 different networks, compute the

largest phase difference within the cluster, evaluate our bounds, and report the average

results. The results show that the bound in Theorem 7.4.6 is tighter than the bound
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(a) N = 4, NC = 2, ωi = 0, ωk ≤ 10 (b) N = 4, NC = 2, ωi ≤ 1, ωk ≤ 10

(c) N = 20, NC = 10, ωi = 0, ωk ≤ 100 (d) N = 20, NC = 10, ωi ≤ 1, ωk ≤ 100

Figure 7.9: This figure shows the largest phase difference among the oscillators in the cluster
over time (blue, continuous), as described in Section 7.4.2. We consider fully connected
Kuramoto networks, where V = {1, . . . , N}, C = {1, . . . , NC}, {ω1, . . . , ωNC

} are selected
randomly in the interval [0, ωmax

in ], and {ωNC+1, . . . , ωN } are selected randomly in [0, ωmax
out ],

with N = 4 in Fig. (a) and (b), N = 20 in Fig. (c) and (d), NC = 2 in Fig. (a) and
(b), NC = 10 in Fig. (c) and (d), ωmax

in = 0 in Fig. (a) and (c), ωmax
in = 1 in Fig. (b)

and (d), ωmax
out = 10 in Fig. (b), ωmax

out = 100 in Fig. (c) and (d). The figures highlight
how heterogeneity of the natural frequencies of the oscillators in the clusters affect cluster
cohesiveness. The bound from Theorem 7.4.2 is in red (dashed); the bound from Theorem 7.4.6

is in yellow (dashed-dot).

in Theorem 7.4.2, and that it captures the asymptotic behavior of the phase difference

as the natural frequencies of the oscillators outside the cluster increase. Moreover, the

cohesiveness of the cluster increases when the frequencies of the oscillators outside the

cluster increase, and exact phase synchronization is possible only when the oscillators in

the cluster have equal frequency, and the frequencies of the oscillators outside the cluster

increase to infinity.

In Figure 7.9 we report the time trajectory of the largest phase difference within a

cluster. We consider fully connected networks of Kuramoto oscillators, where the network

weights aij are independent random variables uniformly distributed in the intervals [0, 1],
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if i, j ∈ C, and [0, 0.01] otherwise. We consider different choices of V, C, and of the

oscillators’ natural frequencies, as described in the figure caption. The results show how

the phase differences inside the cluster decrease when the natural frequencies inside the

cluster are homogeneous, and when the frequencies of the neighboring oscillators are

sufficiently larger.

7.5 Cluster synchronization: phase Synchronization

We address now the problem of phase synchronization (see Definition 7.2.3) among

clusters of nodes. In other words, in this section we are particularly interested in the

case where the phases of groups of oscillators evolve perfectly cohesive within each group,

yet independently from the phases of oscillators in different groups.

First, we consider a notion of exact cluster synchronization, where the phases of

the oscillators within each cluster remain equal to each other over time, and different

from the phases of the oscillators in different clusters. We derive necessary and sufficient

conditions for the formation of a given synchronization pattern in directed and weighted

networks of Kuramoto oscillators. In particular we show that cluster synchronization

is possible if and only if (i) the natural frequencies are equal within each cluster, and

(ii) for each cluster, the sum of the weights of the edges from every separate group is

the same for all nodes in the cluster. Second, we leverage our characterization of cluster

synchronization to develop a control mechanism that modifies the network weights so

as to ensure the formation of a desired synchronization pattern. Our control method

is optimal, in the sense that it determines the smallest (measured by the Frobenius

norm) network perturbation for a given synchronization pattern, and it guarantees the

modification of only a desired subset of the edge weights.

7.5.1 Problem setup and definitions

Consider a network of N Kuramoto oscillators described by the digraph G = (V, E),

as characterized in Section 7.2. The dynamics of the oscillators’ phases read as (7.14).

Depending on the interconnection graph G, the adjacency matrix A, and the oscillators

natural frequencies, different oscillatory patterns are possible corresponding to (partially)

synchronized or chaotic states (Mirchev et al. (2014)).

To formalize this discussion, let P = {P1, . . . ,PM} be a partition of V, that is,

V = ∪Mi=1Pi and Pi ∩ Pj = ∅ for all i, j ∈ {1, . . . ,M} with i 6= j. We restrict our

attention to the case M > 1, and we will assume without loss of generality that, given

P = {P1, . . . ,PM}, the oscillators are labelled so that Pi = {
∑i−1
j=1 |Pj |+1, . . . ,

∑i
j=1 |Pj |},
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where |Pj | denotes the cardinality of the set Pj .

Thus, we now adjust the definition of phase and frequency synchronization in Sec-

tion 7.2.1, to match the specific case we are considering. Specifically, we focus our

attention to the definition of phase and frequency synchronizability.

Definition 7.5.1 (Phase synchronizability). For the network of oscillators G = (V, E),

the partition P = {P1, . . . ,PM} is phase synchronizable if, for some initial phases

θ1(0), . . . , θN (0), it holds

θi(t) = θj(t),

for all times t ∈ R≥0 and i, j ∈ Pk, with k ∈ {1, . . . ,M}. �

Definition 7.5.2 (Frequency synchronizability). For the network of oscillators G =

(V, E), the partition P = {P1, . . . ,PM} is frequency synchronizable if, for some initial

phases θ1(0), . . . , θN (0), it holds

θ̇i(t) = θ̇j(t),

for all times t ∈ R≥0 and i, j ∈ Pk, with k ∈ {1, . . . ,M}. �

Clearly, phase synchronization implies frequency synchronization, while the converse

statement typically fails to hold. Notice that

θ̈i =
N∑

j=1

aij cos(θj − θi)(θ̇j − θ̇i),

and that the network dynamics can be written in vector form as the linear time-varying

system

θ̈θθ(t) = L(t)θ̇θθ(t),

where L is a time-varying matrix satisfying

[L(t)]ij =




aij cos(θj(t)− θi(t)), if i 6= j,

−
∑N
k=1,k 6=i aik cos(θk(t)− θi(t)), if i = j.

Finally, we define the characteristic matrix associated with a partition P of the network

nodes, which will be used to derive our synchronization conditions in Section 7.5.2.
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Definition 7.5.3 (Characteristic matrix). For the network of oscillators G = (V, E)

and the partition P = {P1, . . . ,Pm}, the characteristic matrix of P is VP ∈ RN×M ,

where

VP =
[
v1 v2 · · · vM

]
,

and

vT

i =
[

0 0 · · · 0
︸ ︷︷ ︸∑i−1

j=1
|Pj |

1 1 · · · 1
︸ ︷︷ ︸

|Pi|

0 0 · · · 0
︸ ︷︷ ︸∑N

j=i+1
|Pj |

]
.

�

To conclude this section, we illustrate our setup and the definitions given in this

section with an example.
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Figure 7.10: Directed network of oscillators. Nodes are partitioned as P = {P1,P2}, with
P1 = {1, 2, 3} and P2 = {4, 5, 6}. Notice that, for each node i of P1 (resp. P2), the sum of the
weights of all edges (i, j), with j ∈ P2 (resp. j ∈ P1), is equal. We show in Section 7.5.2 that

this is a necessary condition for phase synchronization of the partition P.

Example 7.5.4. (Setup and definitions)

Consider the network of Kuramoto oscillators in Fig. 7.10, with graph G = (V, E),

V = {1, 2, 3, 4, 5, 6} and partition P = {P1,P2}. The graph G and the partition P are

described by A and VP as follows:

A =




0 0 0 0 0 10

0 0 0 5 0 5

0 0 0 0 10 0

9 0 0 0 0 0

0 9 0 0 0 0

0 7 2 2 0 0




, VP =




1 0

1 0

1 0

0 1

0 1

0 1




.

�
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Theorem 7.5.5. (Cluster synchronizability)

For the network of oscillators G = (V, E), the partition P = {P1, . . . ,PM} is phase

synchronizable if and only if the following conditions are simultaneously satisfied:

(i) the network weights satisfy
∑
k∈P`

aik − ajk = 0 for every i, j ∈ Pz and z, ` ∈

{1, . . . ,M}, with z 6= `;

(ii) the natural frequencies satisfy ωi = ωj for every k ∈ {1, . . . ,M} and i, j ∈ Pk.

Proof of Theorem 7.5.5. (If) Let θi = θj for all i, j ∈ Pk, k = 1, . . . ,M . Let i, j ∈ P`,

and notice that

θ̇i − θ̇j =
∑

z 6=`

∑

k∈Pz

aik sin(θk − θi)− ajk sin(θk − θj) =
∑

z 6=`
sz`

∑

k∈Pz

aik − ajk = 0,

where we have used conditions (i) and (ii), and where szl is a parameter that depends on

the clusters z and `, but not on the indices i, j, k. We conclude that, when conditions (i)

and (ii) are satisfied, θθθ ∈ Im(VP) implies θ̇θθ ∈ Im(VP), so that the subspace Im(VP) is

invariant and the network is phase synchronizable (simply select θθθ(0) ∈ Im(VP)).

(Only if) We first show that condition (i) is necessary for phase synchronization.

Assume that the network is phase synchronized, and notice that it is also frequency

synchronized. Let i, j ∈ P`. Because the network is phase synchronized, we must have at

all times that

0 = θ̈i − θ̈j =
∑

z 6=`

∑

k∈Pz

aik cos(θk − θi)(θ̇k − θ̇i)+

−
∑

z 6=`

∑

k∈Pz

ajk cos(θk − θj)(θ̇k − θ̇j)
(7.21a)

=
∑

z 6=`
cz`vz`

∑

k∈Pz

aik − ajk

︸ ︷︷ ︸
dz

, (7.21b)

where cz` and vz` depends on the clusters z and `, but not on the indices i, j, k. From

Assumption (A1), possibly after reordering the clusters, in some non-trivial interval we

have

max
i∈P1

θ̇i > max
i∈P2

θ̇i > · · · > max
i∈Pm

θ̇i.

Thus, (7.21) implies that, either dz = 0 for all z (thus implying condition (i)), or the

functions czlvzl must be linearly dependent at all times in the interval. Assume by

contradiction that the functions czlvzl are linearly dependent at all times in the above
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interval. Then it must hold that

∑

z 6=`
dz
dn

dtn
cz`vz` = 0,

for every non-negative integer n, where dn

dtn denotes n-times differentiation. In other words,

not only the functions czlvzl must be linearly dependent, but also all their derivatives, at

some times in the above interval. Let d1 6= 0 (if d1 = 0, simply select the first non-zero

coefficient), and i, j 6∈ P1. Notice that, because of assumption (A1), there exists an

integer n such that d1
dN

dtN
c1`v1` � dz

dn

dtn cz`vz`, for all z 6= 1. Thus, the functions czlvzl
cannot be linearly dependent. We conclude that statement (i) is necessary for phase

synchronization.

We now prove that, when the network is phase synchronized, statement (i) implies

statement (ii). This shows that statement (ii) is necessary for phase synchronization. Let

the network be phase synchronized, and let i, j ∈ P`. We have

0 = θ̇i − θ̇j = ωi − ωj +
∑

z 6=`
sz`

∑

k∈Pz

aik − ajk

︸ ︷︷ ︸
=0

,

where sz` is a parameter that depends on the clusters z and `, but not on the indices i, j, k,

and where we have used the fact that statement (i) is necessary for phase synchronization.

Thus, ωi = ωj , and statement (ii) is also necessary for phase synchronization. This

concludes the proof.

Remark 7.5.6. (Necessity of assumption (A1))

Consider a network of oscillators with adjacency matrix

A =




0 a12 0 0

a21 0 a23 0

0 a32 0 a34

0 0 a43 0



,

and natural frequencies ωi = ω̄ for all i ∈ {1, . . . , 4}. Notice that condition (i) in

Theorem 7.5.5 is not satisfied. Let θ1(0) = θ2(0) and θ3(0) = θ4(0) = θ1(0) + π, and

notice that θ̇i = ω̄ at all times and for all i ∈ {1, . . . , 4} (Assumption (A1) is not

satisfied). In other words, the partition P = {P1,P2}, with P1 = {1, 2} and P2 = {3, 4}

is phase synchronized, independently of the interconnection weights among the oscillators.

Thus, condition (i) in Theorem may not be necessary when Assumption (A1) is not
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satisfied.

�

Let A � B denote the Hadamard product between A and B (Horn and Johnson

(1990)), and Im(VP)⊥ the orthogonal subspace to Im(VP).

Corollary 7.5.7. (Matrix condition for synchronization)

Condition (i) in Theorem 7.5.5 is equivalent to V̄T

PĀVP = 0N−M,N−M , where V̄P ∈

RN×(N−M) satisfies Im(V̄P) = Im(VP)⊥, and

Ā = A−A�VPVT

P . (7.22)

Proof of Corollary 7.5.7. Let Ā = [āij ] and A = [aij ]. Notice that āij = aij when i

and j belong to different clusters, and āij = 0 when i and j belong to the same cluster.

Thus,

[ĀVP ]ij =





∑
k∈Pj

aik, if i /∈ Pj ,

0, if i ∈ Pj .

Select V̄P so that V̄P = [v̄1 · · · v̄N−M ] and v̄T
i x = xr − xs, with r, s ∈ P`, for a vector x

of compatible dimension. Then,

[V̄T

PĀVP ]ij =





∑
k∈Pj

ark − ask, r, s /∈ Pj ,

0, r, s ∈ Pj ,

where r, s are the non-zero indices of v̄i.

7.5.3 Control of cluster synchronization

In the previous section we derive conditions on the network of oscillators to guarantee

phase and frequency synchronization. These conditions are rather stringent, and are

typically not satisfied for arbitrary partitions and interconnection weights. To com-

plement our analysis, in this section we develop a control mechanism to modify the

oscillators’ interconnection weights so as to guarantee synchronization of a given partition.

Specifically, we study the following minimization problem:

min
∆
‖∆‖2F (7.23a)

s.t. V̄T

P
[
Ā + ∆

]
VP = 0N−M,M (7.23b)

∆ ∈ H (7.23c)
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where ‖∆‖F denotes the Frobenius norm of the matrix ∆, Ā is as in (7.22), and

H encodes a desired sparsity pattern of the perturbation matrix ∆. For example,

H may represent the set of matrices compatible with the graph G = (V, E), that is,

H = {M : M ∈ R|V|×|V| and mij = 0 if (i, j) 6∈ E}. The constraint (7.23b) reflects

the invariance condition in Corollary 7.5.7 and, together with condition (ii) in Theorem

7.5.5, ensures synchronization of the partition P. Thus, the minimization problem (7.23)

determines the smallest perturbation of the interconnection weights that guarantees

synchronization of a partition P and satisfies desired sparsity constraints. It should be

observed that, given the solution ∆∗ to (7.23), the modified adjacency matrix is A + ∆∗

even if the constraint (7.23b) is expressed in terms of Ā. This follows from the fact that

connections among nodes of the same cluster do not affect the synchronization properties

of the partition P = {P1, . . . ,PM} (see Corollary 7.5.7).

To solve the minimization problem (7.23), we define the following minimization

problem by including the sparsity constraints (7.23c) into the cost function:

min
∆
‖∆�H‖2F (7.24a)

s.t. V̄T

P
[
Ā + ∆

]
VP = 0N−M,N−M (7.24b)

where � denotes elementwise division, and H satisfies hij = 1 if there exists a matrix

M ∈ H such that mij 6= 0, and hij = 0 otherwise. Clearly, the minimization problems

(7.23) and (7.24) are equivalent, in the sense that ∆∗ is a (feasible) solution to (7.23) if

and only if it has finite cost in (7.24).

Theorem 7.5.8. (Synchronization via structured perturbation)

Let T = [VP V̄P ], and let [
Ã11 Ã12

Ã21 Ã22

]
= T−1ĀT.

The minimization problem (7.23) has a unique solution if and only if there exists a matrix

Λ satisfying

X = (V̄PΛVT

P)�H, and Ã21 = V̄T

PXVP .

Moreover, if it exists, the solution ∆∗ to (7.23) is

∆∗ = T

[
∆̃∗

11 ∆̃∗
12

∆̃∗
21 ∆̃∗

22

]
T−1,

where ∆̃∗
11 = −VT

PXVP , ∆̃∗
12 = −VT

PXV̄P , ∆̃∗
21 = −Ã21, and ∆̃∗

22 = −V̄T

PXV̄P .
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Proof of Theorem 7.5.8. Notice that the problem (7.23) is convex, therefore if the

solution exists, ∆∗ is unique. We adopt the method of Lagrange multipliers to derive

optimality conditions for the problem (7.24). The Lagrangian is

L(∆,Λ) =
N∑

i=1

N∑

j=1

δ2
ijh

−1
ij +

M∑

i=1

λλλT

i V̄T

P(Ā + ∆)vi,

where Λ = [λλλ1, . . . ,λλλM ] ∈ R(N−M)×M is a matrix collecting vectors of Lagrange multipli-

ers, and vi ∈ RN is the i-th column of VP . By equating the partial derivatives of L to

zero we obtain the following optimality conditions:

∂L

∂λλλi
= 0 =⇒ V̄P(Ā + ∆)vi = 0N , (7.25a)

∂L

∂δij
= 0 =⇒ 2δijh−1

ij +
M∑

k=1

λλλT

k v̄T

i vjk = 0, (7.25b)

where v̄i is the i-th row of V̄P and vjk is the entry (j, k) of the matrix VP . Finally,

(7.25a) and (7.25b) can be rewritten in matrix form as

V̄T

P(Ā + ∆)VP = 0N−M,M , (7.26a)

∆�H + V̄PΛVT

P = 0N , (7.26b)

where a factor 2 of (7.25b) has been included into the Lagrange multipliers. Applying

the change of coordinates T = [VP V̄P ], Ā = TÃT−1 and ∆ = T∆̃T−1, denoting with

Id the identity matrix of dimension d, equation (7.26a) becomes

V̄T

PT(Ã + ∆̃)T−1VP =
[
0N−M,M IN−M

] [Ã11 + ∆̃11 Ã12 + ∆̃12

Ã21 + ∆̃21 Ã22 + ∆̃22

] [
IM

0N−M,M

]

= 0N−M,M ,

which leads to

∆̃∗
21 = −Ã21. (7.27)

Equation (7.26b) is equivalent to

∆ + (V̄PΛVT

P)�H = 0N ,
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which can be decomposed as follows:

[
VP V̄P

]

︸ ︷︷ ︸
T

[
∆̃11 ∆̃12

∆̃21 ∆̃22

] [
VT

P
V̄T

P

]

︸ ︷︷ ︸
T−1

+(V̄PΛVT

P)�H = 0N ,

from which we obtain

(
VP∆̃11VT

P − V̄PÃ12VT

P + VP∆̃12V̄T

P + V̄P∆̃22V̄T

P
)

+
(
V̄PΛVT

P
)
�H = 0N , (7.28)

where the constraint (7.27) has already been incorporated.

Let X = (V̄PΛVT

P)�H. Recall that V̄T

PV̄P = IN−M , VT

PVP = IM , and V̄T

PVP =

0N−M,M . By pre-multiplying equation (7.28) by V̄T

P and post-multiplying it by VP , we

obtain

−Ã21 + V̄T

PXVP = 0N−M,M ,

which is a system of linear equations, that can be solved with respect to the unknown Λ.

Following the same reasoning of above, we can obtain the following other three equations

that entirely determine the solution ∆̃11, ∆̃12, and ∆̃22:

∆̃11 + VT

PXVP = 0M,M ,

∆̃12 + VT

PXV̄P = 0M,N−M ,

∆̃22 + V̄T

PXV̄P = 0N−M,N−M .

Finally, the optimal matrix ∆∗, solution to the problem (7.24), is given in original

coordinates as

∆∗ = T

[
∆̃∗

11 ∆̃∗
12

−Ã21 ∆̃∗
22

]
T−1.

Theorem 7.5.8 characterizes the smallest (measured by the Frobenius norm) structured

network perturbation that ensures synchronization of a given partition. When the

perturbation is not constrained, that is, H = {M : mij 6= 0 for all i and j} in (7.23),

the optimal perturbation has a straightforward expression.



184 Kuramoto model and synchronization: a theoretical analysis

Corollary 7.5.9. (Unconstrained minimization problem)

Let H = {M : mij 6= 0 for all i and j}. The minimization problem (7.23) is always

feasible, and its solution is

∆∗ = −V̄PV̄T

PĀVPVT

P .

Proof of Corollary 7.5.9. First, notice that hij = 1 for all i and j. As a consequence,

the optimality equations (7.26) can be rewritten in a way that (7.26a) is unchanged, and

(7.26b) becomes:

∆ + V̄PΛVT

P = 0N .

We now pre- and post-multiply both sides by V̄T

P and VP , respectively, and obtain

Λ = V̄T

PĀVP ,

∆∗ = −V̄PV̄T

PĀVPVT

P ,

where we use (7.26a), VT

PVP = IM , and V̄T

PV̄P = IN−M .

We now present an example where we adjust the network weights to ensure synchro-

nization of a desired partition.

Example 7.5.10. (Enforcing synchronization of a partition)

Consider the network in Figure 7.12 (a). The dashed edges and the solid edges represent

constrained and unconstrained edges, respectively. The corresponding matrices Ā and H

read as

Ā =




0 0 0 0 0 12

0 0 0 5 0 5

0 0 0 0 10 0

9 0 0 0 0 0

0 9 0 0 0 0

0 7 2 0 0 0




, H =




0 1 1 0 0 0

1 0 1 0 1 0

1 1 0 0 1 1

0 1 1 0 1 1

1 1 1 1 0 1

1 0 0 1 1 0




.

Notice that H allows only a subset of interconnections to be modified, specifically, those

corresponding to its unit entries.

It can be shown that, because condition (i) in Theorem 7.5.5 is not satisfied (equiva-

lently V̄T

PĀVP 6= 0N−M,M ), the network is not phase synchronizable (see Figures 7.12 (b)

and (c) for the evolution of the oscillators’ phases and frequencies). From Theorem 7.5.8
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Figure 7.12: Figure (a) shows the network in Example 7.5.10, where the dashed (resp. solid)
edges correspond to the zero (resp. unit) entries of H. The partition P = {P1,P2}, with
P1 = {1, 2, 3} and P2 = {4, 5, 6}, is not synchronizable (see Theorem 7.5.5). This can be seen,
for instance, by verifying that the weight of the incoming edge to nodes 1 and 2 is different.
Figures (b) and (c) show a particular evolution of the phases and frequencies of the oscillators.
Figure (d) shows the modified network as obtained from Theorem 7.5.8. It can be verified
that condition (i) in Theorem 7.5.5 is now verified, and the partition P is synchronizable
when the natural frequencies are selected as in condition (ii) in Theorem 7.5.5. Particular
evolutions of the phases and frequencies of the oscillators are in Figure (e) and (f), where the

synchronization pattern is clearly visible.

we obtain the optimal perturbation that ensures synchronization, which leads to the

network in Figure 7.12 (d). Notice that the network in Figure 7.12 (d) satisfies condition

(i) in Theorem 7.5.5. In fact, when the natural frequencies are equal within each cluster

(condition (ii) in Theorem 7.5.5), the clusters evolve cohesively; see Figures 7.12 (e) and

(f). �

7.6 Conclusion

In this chapter we addressed the problem of characterizing different conditions of syn-

chronization within a network of Kuramoto oscillators. First, motivated by applications

in biological field and by the study of power network dynamics, we have investigated

complete synchronization within oscillators, coupled through a distance-dependent kernel

function. In this framework, a critical bound was derived for strength global coupling

among nodes, in order to achieve asymptotic frequency synchronization and phase cohe-

siveness. This bound has been validated in terms of correctness and accuracy by means
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of numerical simulations on a general spatial configuration, where the interacting agents

are distributed on a spherical domain. Statistical figures have been obtained that confirm

the validity of the approach. A trade-off between the value of the coupling strength and

the probability of convergence was suggested to relax the strength bound. Then, the

complete synchronization in a configuration where two populations of oscillators (with

different kernel parameters) interact has been considered. In such scenario, we have

characterized the new synchronization frequency, when compared with the one obtained

when only one population is considered.

Secondly, we focused on cluster synchronization in networks of Kuramoto oscillators,

by means of phase cohesiveness among nodes in the same group. Specifically, we

characterized the formation of such clusters as a function of the network weights and

oscillators intrinsic parameters. We showed how cluster synchronization depends on a

graded combination of strong intra-cluster and weak inter-cluster connections, similarity

of the natural frequencies of the oscillators within each cluster, and heterogeneity of the

natural frequencies of coupled oscillators belonging to different groups.

Finally, we considered clusters of Kuramoto oscillators, which are perfectly phase-

synchronized. We adopted tools from linear algebra and graph theory to characterize

network conditions enabling the formation of a given synchronization pattern. Addition-

ally, we developed a control mechanism to modify the edges of a network to ensure the

formation of desired clusters. Our control method is optimal, as it determines the smallest

perturbation (measured in terms of Frobenius norm) for a desired synchronization pattern

that is compatible with a pre-specified set of structural constraints.



8
Conclusions

Throughout this work, we made an excursus on the intricate tie existing among the

activity of the human brain, the functioning of mitochondria in our cells, and the

continuous requirement of energy that governs this complex relationship. We exploit

several theoretical and empirical tools in order to explore this topic from various points

of view and to highlight the power of computational models as an helpful instrument to

reproduce the basic principles that lie under observed behaviors.

In this chapter we hence take stock of the results presented in the previous chapters,

and we propose some research lines, for future developments.

First, we have introduced the main evidences suggesting the existence of a strong

relation between the brain activity and a proper working effective activity of the house of

power of our body, namely the mitochondria. Researches on neurodegenerative diseases

have played a main role in the unearthing this reciprocal dependence. The coexistence

of both mitochondrial and neuronal dysfunction have been in fact found in various

neurological disorders, such as Parkinson’s, or Huntinghton’s Diseases (Chapter 1).

After a description of the biological background involving mitochondria and mi-

tochondrial dynamics (that refers to the continuous change of organelles’ shape), we

have proposed a mathematical model useful to reproduce the main processes involved in

mitochondrial dynamics (fusion and fission), together with other fundamental phenomena,
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such as mitophagy, biogenesis, and damage. Most importantly, we have introduced a

bioenergetic regulation of this dynamical systems by means of a feedback control effected

by the available quantity of ATP level within the cell (Chapters 2 and 3).

From Chapter 4, the objective of our analysis shifted and focused on the description

of brain activity during both conditions of rest or task-doing. We introduced the

characterization of the brain as a graph of nodes at various scales, whose dynamics

depend on the communication among agents. Thus, we reported some mathematical tools

used to characterize the brain networks’ topology, both anatomically and functionally,

and we discussed the existence of different non-invasive techniques implemented to record

experimental signals from the brain (see Chapter 5). Specifically, part of the experimental

contribution of this manuscript can be found in Chapter 5, where we investigated different

hypotheses on the role of ongoing activity of the brain during rest, and on the questionable

relationship between different measurement techniques, such as fMRI and MEG.

In Chapter 6 instead, we proposed a different approach to characterize the activity of

the brain, as the behavior emerged from a population of oscillatory elements. To this aim,

we explored the oscillatory properties of an experimental dataset of fMRI signals, in order

to define the main features characterising the observed resting-state fluctuations and to

quantify the synchronization level among brain areas during time. These main features

have been used later to guide the simulation of a synthetic brain network, described by

an extended version of the classical Kuramoto model, whose design and analysis are one

contribution of this work.

Attracted by the large amount of various behaviors (from complete synchronization,

to chaos, passing through a metastability condition), describable by different parametriza-

tions of Kuramoto model, we devoted Chapter 7 to report our analytical results on the

analysis and control of networks of Kuramoto oscillators. Specifically, we focused on

the network and intrinsic conditions required to achieve a clustered configuration, where

groups of nodes evolve cohesively with the members of the same group, but differently

from the others.

In light of the fact that the human brain may be described as a network of brain areas,

characterized by high level of clustering and modularity, this theoretical analysis can be

very helpful to investigate the open questions on the activity of brain networks.

Despite the large amount of effort used by scientists from all-over the world to explore

the human brain and its complex activity in the last decades, a lot of observed behaviors

remain mysteries for our minds. The actual role of the resting-state fluctuations, as

well as the (possible) relationship between RSNs and behavioral networks is not fully

understood, so far. Different hypotheses have been tested through computational models
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at different time and spatial scales, but a clear answer has not been formulated. Even

more open problems regard the bidirectional relationship between brain and mitochondria,

because of the serious difficulties existing to obtain empirical data required to analyze

and investigate controversial theories.

We believe that our population modeling approach may be a suitable tool not only

to analyze complex systems, as population of mitochondria, or ensembles of neurons, but

also to predict and control such systems. So far, Deep Brain Stimulation (DBS) methods

are sometimes applied during the course of PD; although it may ease symptoms, it has

not been proven to change the underlying course of disease, and many mechanisms are

still unknown.

The formulation of network-based hypotheses, coupled with the growing potential to

modulate neural function across many spatial (and population) scales, brings with it

important engineering challenges. Network control indeed combines estimates of network

connectivity with models of system dynamics to predict the optimal location to inject

energy in order to push the system toward a desired target state or target dynamics.

Through this theory, we may have the opportunity to better understand cognitive control,

optimize stimulation for neurological disorders, and inform surgical or stimulation-based

interventions. Hence, future efforts should be spent in using network population models

for furnishing even more concrete instruments to predict and treat neurological diseases.

From our point of view, the collaboration among different research fields is the most

promising way in order to achieve new insights about one of the most broaden mystery

of our human being. Thus, our interest on integrating the discipline of automation

engineering with system biology, neurology, and medicine is becoming even more relevant

for our research.
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A.1 Nullclines (3.10) analysis

In this section we provide some computational details, helpful to derive interesting

observations on the dynamic evolution of systems (3.1). In particular, in this place we

report the analysis of the sign of the nullclines.
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ū
≥ 0,

∂x̄ATP

∂ū
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A.2 Measures to define dynamic functional networks in

the brain

Cross-Coherence While correlation is defined in time domain, cross-coeherence

(Coh) measures relationships in frequency domain. Specifically, the squared coefficient of

coherence can be interpreted as the proportion of the power in one of the two time series

(at a selected frequency), which can be explained by its linear regression to the other

time course. At frequency f , the coherence between any two time series xi(·) and xj(·) is

given by

Cohxixj
(f) =

∣∣∣∣∣∣
Sxixj

(f)√
Sxixi

(f)Sxjxj
(f)

∣∣∣∣∣∣
,

where Sxixi
(·) and Sxjxj

(·) are power spectral densities of signals xi and xj , respectively,

and Sxixj
(·) is the cross-spectral density among the signals. Coherence is an even positive

function (Cohxixj
(−f) = Cohxixj

(f)), bounded within 0 and 1.

Independent component analysis (ICA) An other measure used to estimate func-

tional networks during resting-state consists in the independent component analysis

(ICA), which is a computational technique for identifying hidden statistically independent

sources from multivariate data. The assumption under this approach is that each signal

is the result of the linear combination of independent spatial signals ICk(t), k = 1, . . . ,K:

xi(t) =
K∑

k=1

ci,kICk(t), ∀ i = 1, . . . , N,

where K is the number of sources that generate independent signals. As ICA does not

reduce the dimension of the data (K = N), before ICA it is usually applied a principal

components analysis (PCA), in order to reduce the complexity of the data, by selecting

the K ≤ N components, which explain most of the variance of the data. Specifically,

ICA can be applied both temporal or spatially, meaning that it is evaluated optimizing

temporal or spatial independence between components, respectively. While spatial ICA

maps areas that are consistently active at the same time, temporal ICA finds the regions

in the brain that mostly contribute to a given temporal signal.

Mutual information (MI) An other functional connectivity measure, which, unlike

the previous ones, is non-linear, is the mutual information (MI), which is a simple

but robust method of detecting shared information between two signals. It is computed
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based on the distributions of values within variables and the joint distribution of two (or

more) variables

MIxixj
= h(xi) + h(xj)− h(xi, xj),

where h(x(·)) is the entrophy od x(·), and h(x, y) is the joined entropy between x(·) and

y(·). The main advantages of MI are that, as mentioned before, it can detect different

kinds of relation, both linear and non-linear, and that it has a long tradition of use

and development in engineering and information technology. However some drawbacks

have to be mentioned. First of all, it does not provide information as to whether a

relationship linear or non-linear, or positive or negative. Furthermore, MI can be very

computationally intensive, particularly if used for exploratory analyses, and it can be

sensitive to the discretization method used to estimate it. Finally, more importantly, it

is not linked to a clear neurophysiological interpretation (Cohen (2014)).

Granger causality (GC) When a directed connectivity is needed, Granger causal-

ity (GC) technique can be implemented to infer FC. Specifically, GC tests whether

variance in one signal can be predicted from variance in another signal earlier in time.

The general concept of Granger causality is based on the core idea that the cause pre-

cedes its effect. One possible approach to quantify this notion refers to the principle

of predictability, that is: a variable xi Granger-causes another variable xj of the same

multivariate process, if the knowledge of xi’s past improves the forecast of xj (Granger

(1969)). The main advantages of Granger prediction are that it tests for and can dissociate

directional connectivity; however it is sensitive to violations of stationarity, and it can be

computationally time-consuming to perform.
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A.3 Other computational models to simulate RS

dynamics in the brain

Far from being an exhaustive collection of computational models used to describe the

dynamics of brain networks, we report here a set of models that we consider as a

good sample of heterogeneous systems, used to describe empirical functional data in

resting-state.

A.3.1 Rulkov neuron model (RN)

Rulkov neuron model (Rulkov (2001)) is a discrete-time bursting model, where each

node’s dynamics is described by a two dimensional state xi = [ xi,1 xi,2 ]T, whose

dynamics obeys the following equation:

xi,1(t+ 1) =
αi

1 + (xi,1(t))2
+ xi,2(t) + C

N∑

j=1

aij(t− υij)

xi,2(t+ 1) = xi,2(t)− γxi,1(t)− β.

This computational model is usually adopted to describe the dynamics of a single neuron.

Specifically, xi,1 represents the membrane potential (fast variable), while xi,2 is the slow

dynamics, modulated by the slower ions currents. However, in this place, we consider each

node representative for an entire ROI, whose elements are characterized by a very similar

bursting pattern. The spiking time of the fast variable is parametrized by the parameter

αi, that causes irregular sequences of spikes if bounded within [4.1, 4.3]. Parameters

β and γ, used to describe the slow dynamics, are usually set at a very slow value (e.g.

0.001). C, aij and υij as the same meaning as in Equation (6.6a).

A.3.2 FitzHugh-Nagumo model (FHN)

FitzHugh-Nagumo model (FitzHugh (1961); Nagumo et al. (1962)) is a continuous-time

bursting model that simplifies the previous Hodgkin-Huxley model (Hodgkin and Huxley

(1952)). As the Rulkov neuron model, it is usually used to describe the dynamics of each

single neuron through a two dimensional state variable vi = [ vi,1 vi,2 ]T, which models

the fast membrane potential’s dynamics (vi,1), and the slow recovery potential (vi,2). In
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particular, for each i = 1, . . . , N , the system dynamics obeys the following law:

v̇i,1(t) = c

[
vi,2(t) + vi,1(t)−

vi,1(t)3

3

]
+ C

N∑

j=1

(vi,1(t)− vj,1(t− υij))

v̇i,2(t) = −
vi,1(t)− a+ bvi,2(t)

c
,

where C, aij , and υij have the same meaning as before, and a, b, and c are other tunable

parameters.

For what concerns RN and FHN models, the phase is used to be defined through the

local maxima of the slow variables (which correspond to the onset of bursting behavior,

or peak in the fast variable) as follows:

θ(t) := 2π`+ 2π
t− t`

t`+1 − t`
, t` ≤ t ≤ t`+1, (A.6)

where t` is the instant of time at which the `-th burst begins. A definition of the bursting

frequency comes directly from (A.6) and is given by

ω := lim
t→+∞

θ(t)− θ(0)
t

.

A.3.3 Greenberg-Hastings model (GH)

Greenberg-Hastings model (Greenberg and Hastings (1978)) differs from all the previously

introduced ones, since it is a simple discrete state dynamical model, where at each node

i = 1, . . . , N it is assigned one of three states: quiescent Q, excited E, or refractory R,

such that each state variable xi has a discrete domain: xi(t) ∈ {Q, E, R}. The transition

rules, which determines the dynamics can be summarized as follows:

t1. Q→ E with probability r1 ∼ 1/N or if
∑N
j=1 ãij1xj

(S) > Ta, otherwise Q→ Q,

t2. E → R always,

t3. R→ Q with probability r2 ∼ 100 r1,

where ãij is equal to aij (anatomical coupling) if the Euclidean distance dij among nodes

i and j is less than a threshold Td ≥ 0, and zero otherwise, Ta ≥ 0 is a constant threshold,

which regulates the activation rate, and 1v(·) is the indicator function of variable v,
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defined as:

1v(x) =





1, if v = x,

0, if v 6= x.

Following the same workflow of Haimovici et al. (2013), for the numerical simulation,

the time series of each node is binarized into x̃i(t), assigning x̃i(t) = 1, if xi(t) = E,

and x̃i(t) = 0, otherwise. Then, it is convolved with a standard hemodynamic response

function (Friston et al. (1995)), to mime the fMRI signal.

Although being very simple, this model has been proved to be very powerful to

describe brain networks dynamics, when it works near a critical point (Haimovici et al.

(2013)). It is worth noting that, even though the delay term υij is not directly included

into the dynamics, the threshold Td can be tuned in order to avoid the communication

among distant areas. In summary, the tunable parameters of this model are the transition

probability r1 and r2, and the two threshold Td and Ta.
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A.4 Measures and algorithm in brain networks analysis

A.4.1 Hierarchical algorithms

Agglomerative hierarchical clustering Agglomerative hierarchical clustering starts

setting each data point in a separate cluster and it aggregates points into larger sets of

similar observations. As a similarity measure, it is often used the FC map derived from

the time series. Given a similarity matrix, this algorithm groups nodes such that the

similarity within clusters is high and the similarity between clusters is low, usually by

implementing a greedy approach. The result of this method is a tree-like structure (called

dendrogram), which describes the hierarchical relations between clusters. Different levels

of this tree hence define different number of clusters. Despite being very popular and

flexible, this algorithm has the disadvantage of being biased toward grouping together

the core nodes of a community at the expense of peripheral nodes (Newman and Girvan

(2004)).

Divisive hierarchical clustering Divisive hierarchical clustering is a method pro-

posed in Girvan and Newman (2002), which starts with a connectivity matrix, and

defines communities based on the ordered removal of edges according to their betweenness

centrality, evaluated as the number of the shortest paths that go through the considered

edge. Removing the edge with the highest betweenness centrality at each step of the

algorithm causes the graph to fragment, and the connected components that remain

represent putative modules of the network. As with hierarchical clustering, the result is

a dendrogram that reveals the nested community structure of the graph. Each level of

the dendrogram corresponds to a point at which the removal of an edge fragments one of

the graph’s components.

Hierarchical clustering algorithms however do not give any information to determine

whether the clustering solution obtained at one level is more valid or reliable than another.

To overcome this problem, in Newman and Girvan (2004) a modularity-based approach

has been proposed.

Modularity clustering The modularity index Q can be evaluated through the follow-

ing equation, once a nodes partition P has been defined:

Q(P) =
1
`

N∑

i=1

N∑

j=1

[
aij −

didj
`

]
δ(ci, cj),
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where aij is the entry (i, j) of the (weighted) adjacency matrix of the network, ci and cj
are the clusters containing nodes i and j, respectively, δ(ci, cj) is the Kronecker delta

function and equals one if ci = cj , and zero otherwise, and finally ` and di are the number

of links and the node degree indices, defined as

` =
N∑

i,j=1

aij , di =
N∑

j=1

aij , ∀i = 1, . . . , N.

In case of weighted graph, ` is the sum of the weights of all links, and di is the weighted

degree (or strength) of node i. Similarly, a directed modularity is defined as (Leicht and

Newman (2008))

Q→(P) =
1
`

N∑

i,j=1

[
aij −

dout
i din

j

`

]
δ(ci, cj),

where dout
i is the sum over the weights of all the edges that exit from node i, and din

j is

the sum over the weights of all the edges that enter into node j.

Among several computational algorithms that have been proposed to implement a

method to identify directly the best partition of a graph, the Louvain algorithm (Blondel

et al. (2008)) is one of the most widely used methods, thanks to its computational low

cost and accuracy.

A.4.2 Centroid-based clustering

The most common centroid-based clustering method is k-means (Lloyd (1982)), an

iterative algorithm aimed to define 1 ≤ K ≤ N centroids (one for each cluster) and

to assign each node to the cluster which has the nearest (with respect to a predefined

distance measure) centroid. Specifically, it is initialized by guessing K centroids positions,

and assigning each node to the group that has the closest centroid. When all nodes have

been assigned, it updates the positions of the K centroids, and repeat the assignment.

These steps are repeated until the centroid position (or the nodes’ assignment) does

not move any more. The need of a priori information about the number of cluster K is

one of the main drawbacks of this algorithm. However some quality measures, like the

silhouette measure (Rousseeuw (1987)), can be used to evaluate the optimal number of

community within a graph, given a measure of similarity (or dissimilarity) used during

the clusterization steps. The second limitation of k-means is the sensitivity of the result

with respect to the initial guess of the centroids’ position. Thus, a typical approach to

overcome this limitation is to re-run the algorithm multiple times, starting with different
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initial clusters to reduce the possibilities of local solution, and then choose the best

configuration, with respect to a selected performance function.



A.5 Additional results of Chapter 5 201

A.5 Additional results of Chapter 5

A.6 Inter-subject FC analysis

(a) DAN network (b) VIS network

(c) DAN-VIS network

Figure A.1: Intra-modality coherence among subjects: average and confidence interval of
the Pearson’s correlation coefficients evaluated between the vectorized FC of each pair of
subjects in the DAN network (a), VIS network (b), and DAN-VIS cross-network (c). Colored
markers represents significantly positive (or negative) values, while black markers stand for

non significant results.



202 Appendix

Whole

REST TASK

DAN

REST TASK

VIS

REST TASK

DAN - VIS

REST TASK

Whole

REST TASK

DAN

REST TASK

VIS

REST TASK

DAN - VIS

REST TASK

Whole

REST TASK

DAN

REST TASK

VIS

REST TASK

DAN - VIS

REST TASK

Whole

REST TASK

DAN

REST TASK

VIS

REST TASK

DAN - VIS

REST TASK

Whole

REST TASK

DAN

REST TASK

VIS

REST TASK

DAN - VIS

REST TASK

Whole

REST TASK

DAN

REST TASK

VIS

REST TASK

DAN - VIS

REST TASK

Whole

REST TASK

DAN

REST TASK

VIS

REST TASK

DAN - VIS

REST TASK

(a) delta (b) theta

(c) alpha (d) beta

(e) gamma1 (f) gamma2

(g) fMRI

Figure A.2: Boxplots of the Frobenius norm of the difference among each pair of FC matrices
(normalized w.r.t. to the maximum value of the entries among all the population) derived

from different subjects, normalized by the number of the entries of the matrix.
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A.6.1 Network matrices density
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Figure A.3: Density of the FC sub-matrices related to the DAN sub-network, estimated
as described in Section 5.2.1, as a function of the threshold vector tr. Each plot represents
the density of FCD

MEG of a specific frequency band evaluated during rest (colored continuous
line) and during task (colored dotted line), compared with the density of FCD

fMRI(R) (black
continuous line) and FCD

fMRI(T) (black dotted line).
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Figure A.4: Density of the FC sub-matrices related to the VIS sub-network, estimated as
described in Section 5.2.1, as a function of the threshold vector tr. Each plot represents the
density of FCV

MEG of a specific frequency band evaluated during rest (colored continuous
line) and during task (colored dotted line), compared with the density of FCV

fMRI(R) (black
continuous line) and FCV

fMRI(T) (black dotted line).
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Figure A.5: Density of the FC sub-matrices related to the DAN-VIS cross-network, estimated
as described in Section 5.2.1, as a function of the threshold vector tr. Each plot represents
the density of FCDV

MEG of a specific frequency band evaluated during rest (colored continuous
line) and during task (colored dotted line), compared with the density of FCDV

fMRI(R) (black
continuous line) and FCDV

fMRI(T) (black dotted line).
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A.6.2 Hamming distance between FC matrices
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Figure A.6: Hamming distance between FCD

fMRI and FCD

MEG in resting-state (continuous
line) and during task (dashed line), evaluated as described in Section 5.2.1, as a function of
the threshold vector tr. The different boxes and colors represent different frequency bands. In

this figure, the case of the DAN sub-network is represented.
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Figure A.7: Hamming distance between FCV

fMRI and FCV

MEG in resting-state (continuous
line) and during task (dashed line), evaluated as described in Section 5.2.1, as a function of
the threshold vector tr. The different boxes and colors represent different frequency bands. In

this figure, the case of the VIS sub-network is represented.
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Figure A.8: Hamming distance between FCDV

fMRI and FCDV

MEG in resting-state (continuous
line) and during task (dashed line), evaluated as described in Section 5.2.1, as a function of
the threshold vector tr. The different boxes and colors represent different frequency bands. In

this figure, the case of the DAN-VIS cross-network is represented.
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A.7 Phase randomized surrogates

The significance of synchronization in Section 6.3 is obtained by estimated a distribution

of the synchronization level under the null hypothesis of zero synchronization. To this

aim, a set of phase-randomized surrogates has been generated with Algorithm 1. Shortly,

we extracted the coefficients of the discrete Fourier transform from the original data, and

we defined the Fourier coefficients for the surrogates, by preserving the same modulus

and substituting the phases with uniformly distributed random numbers. Then the

surrogates were exposed to the same filtering used for real data. From filtered surrogates,

we extracted the phase evolution by means of Hilbert transform, and we evaluated the

order parameter for the obtained phases. Finally, the level of synchrony is estimated

as the absolute value of the order parameter for each time instant (t = 1, . . . , T ). We

used this algorithm ten times for each subjects, to obtain a pull of values for the

synchronization level used to estimate the probability density function of the global level

of phase synchrony on the null hypothesis of zero synchronization.

Algorithm 1 Surrogates generation and synchronization level evaluation

1: Rsurr = 010×Ns×T . initialization
2: for iter = {1, . . . , 10} do

3: for is = {1, . . . , Ns} do . iterate across subjects
4: for i = {1, . . . , N} do
5: x̃i(f) ← estimated Fourier transform of fMRI data x(t)
6: ϕϕϕ = [ ϕ1 · · · ϕ(T/2−1) ]T, with ϕk ∼ U([−π, π])

7: ϕϕϕ← [ −ϕϕϕ 0 ϕϕϕ ]T

8: xsurr
i (t) = 1

T

∑T
k=1 |x̃i(k)| e−j( 2πkt

T
+ϕk) . generate surrogate time series

9: xsurr
fil,i (t) ← filtered surrogate data

10: asurr
i (t) = xsurr

fil,i (t) + jH [xsurr
fil,i (t)] . analytic surrogate signal

11: θsurr
i (t) = ∠(asurr

i (t)) . phase of surrogate signal
12: end for
13: Rsurr(t)ejΦsurr(t) = 1

N

∑N
i=1 e

jθsurr
i (t) . surrogates’ order parameter

14: [Rsurr]iter,is,t ← Rsurr(t) . save data
15: end for
16: end for



208 Appendix

A.8 Full brain synchronization analysis

To complete the analysis presented in Section 6.3, we report here the results obtained

through a synchronization analysis of a full-brain network, as described in Ponce-Alvarez

et al. (2015).

Specific, we use a fully available database (Ponce-Alvarez et al., 2015, Supporting

Information), which consists on the time series of resting BOLD activity measured in 24

right-handed healthy young volunteers (age range 20-31 years). Each subject underwent

two scanning runs of 10 min (with a sampling time dt = 2 s), in a resting-state condition.

The brain parcellation consists on N = 66 areas (33 cortical regions per hemisphere),

described in Hagmann et al. (2008).

Using the same pipeline as described in Section 6.3, we filter the original data and

extract the phases’ time series for each of the N regions. Since the analysis is the same

as described in the main text, in this site we report only some figures of the results of

this full-brain analysis, neglecting the details. These results may be compared with the

ones reported in Ponce-Alvarez et al. (2015). This can be interpreted as a control test in

order to verify the goodness of the implemented pipeline.

θij

(a)

θij

(b)

Figure A.9: Analysis of the distribution of the phase difference θij . (a) Probability density
function (p.d.f.) of phase differences across all pairs of brain regions, all time steps and all
subjects. (b) Temporal evolution of the p.d.f. of the phase difference among each pair of
nodes (from one subject). The colour indicates the value of the p.d.f. at each time step (left
y-axis). The white line represents the absolute value of the order parameter R(t) related to

the same subject (right y-axis).
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Label Brain region Label Brain region

1. rBSTS Bank of the superior temporal sulcus (right) 34. lCMF Caudal middle frontal cortex (left)

2. rST Superior temporal cortex (right) 35. lFP Frontal pole (left)

3. rTT Transverse temporal cortex (right) 36. lIP Inferior parietal cortex (left)

4. lBSTS Bank of the superior temporal sulcus (left) 37. lMOF Medial orbitofrontal cortex (left)

5. lST Superior temporal cortex (left) 38. lPTRI Pars triangularis (left)

6. lTT Transverse temporal cortex (left) 39. rMT Middle temporal cortex (right)

7. rCAC Caudal anterior cingulate cortex (right) 40. rPARH Parahippocampal cortex (right)

8. rPOPE Pars opercularis (right) 41. rTP Temporal pole (right)

9. rPORB Pars orbitalis (right) 42. lMT Middle temporal cortex (left)

10. lCAC Caudal anterior cingulate cortex (left) 43. lPARH Parahippocampal cortex (left)

11. lPOPE Pars opercularis (left) 44. lTP Temporal pole (left)

12. lPORB Pars orbitalis (left) 45. rPARC Paracentral lobule (right)

13. rRAC Rostral anterior cingulate cortex (right) 46. rPREC Precentralgyrus (right)

14. rRMF Rostral middle frontal cortex (right) 47. rPSTC Postcentralgyrus (right)

15. rSMAR Supramarginalgyrus (right) 48. lPARC Paracentral lobule (left)

16. lRAC Rostral anterior cingulate cortex (left) 49. lPREC Precentralgyrus (left)

17. lRMF Rostral middle frontal cortex (left) 50. lPSTC Postcentralgyrus (left)

18. lSMAR Supramarginalgyrus (left) 51. rLOF Lateral orbitofrontal cortex (right)

19. rISTC Isthmus of the cingulate cortex (right) 52. lLOF Lateral orbitofrontal cortex (left)

20. rPC Posterior cingulate cortex (right) 53. rCUN Cuneus (right)

21. rPCUN Precuneus (right) 54. rENT Entorhinal cortex (right)

22. rSF Superior frontal cortex (right) 55. rFUS Fusiform gyrus (right)

23. lISTC Isthmus of the cingulate cortex (left) 56. rIT Inferior temporal cortex (right)

24. lPC Posterior cingulate cortex (left) 57. rLING Lingual gyrus (right)

25. lPCUN Precuneus (left) 58. rLOCC Lateral occipital cortex (right)

26. lSF Superior frontal cortex (left) 59. rPCAL Pericalcarine cortex (right)

27. rSP Superior parietal cortex (right) 60. lCUN Cuneus (left)

28. lSP Superior parietal cortex (left) 61. lENT Entorhinal cortex (left)

29. rCMF Caudal middle frontal cortex (right) 62. lFUS Fusiform gyrus (left)

30. rFP Frontal pole (right) 63. lIT Inferior temporal cortex (left)

31. rIP Inferior parietal cortex (right) 64. lLING Lingual gyrus (left)

32. rMOF Medial orbitofrontal cortex (right) 65. lLOCC Lateral occipital cortex (left)

33. rPTRI Pars triangularis (right) 66. lPCAL Pericalcarine cortex (left)

Table A.1: Names and abbreviations of the brain regions used in this analysis (Hagmann
et al. (2008)), in the same order used to produce Figures A.10 and A.11.
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P
L
V

(a)

(b)

Figure A.10: Functional connectivity map analysis. (a) FC map defined through the phase
locking value FC(PLV). The labels of ROIs are in the same order as in Table A.1. The black
lines highlight cognitive modules. (b) Relationship among FC(PLV) and FC(ρ). Note that

FC(ρ) assumes values within [0, 1], while [FC(PLV)]ij ∈ [−1, 1].
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k = 1 k = 2 k = 3

k = 4 k = 5 k = 6

k = 7 k = 8 k = 9

(a)

(c)

(b)

Figure A.11: Synchronization patterns obtained from the phase evolutions during time. (a)
Representation of the K = 9 community patterns (ak · aT

k , k = 1, . . . ,K) obtained from all
the 24 subjects. The ROIs are in the same order as in Table A.1. (b) Comparison among
the evolution of the absolute value R(·) of the order parameter (left y-axis, blue line) and the
global strength S(·) (right y-axis, black line) of one subject. (c) Evolution of the strength of

each community k during time for the same subject.
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A.9 Proof of Proposition 7.3.2

Proposition. (Phase cohesiveness)

Consider the Kuramoto model (7.2), with N ≥ 2 oscillators, natural frequencies ωωω ∈ 1⊥
N ,

in [ωmin, ωmax] and coupling strength C. If the coupling strength C is higher than a critical

value Ccr:

C > Ccr =
ωmax − ωmin

e−d̃2
with d̃ =

dmax

p

then ∃ γmax ∈ ]π/2, π] and ∃ γmin ∈ [0, π/2[ such that

1. ∆N (γ) is positive invariant for every γ ∈ [γmin, γmax], that means that each trajec-

tory originated in ∆N (γ) remains in ∆N (γ) for every t ≥ 0 (phase cohesiveness);

2. sin (γmin) = sin (γmax) = Ccr/C.

Proof. To prove the positive invariance of ∆N (γ), i.e. the phase cohesiveness in ∆N (γ)

for some γ ∈ [0, π], the function V : TN → [0, π] is introduced as

V (θθθ) = max {|θi − θj | s.t. i, j ∈ {1, . . . , N}} .

The angle containing all the initial phases θi (0) has a maximum and a minimum: be

Imax (θθθ) and Imin (θθθ) the sets of indices of angles {θ1, . . . , θN} equal to the maximum

and the minimum, respectively. It follows:

V (θθθ) = |θm′ − θl′ | , ∀m′ ∈ Imax (θθθ) , ∀ l′ ∈ Imin (θθθ) .

Assuming θi (0) ∈ ∆N (γ), it is now to show that this condition remains ∀t > 0, which

can happen if and only if V (θθθ) ≤ γ ≤ π. It follows that ∆N (γ) is positively invariant if

and only if V (θθθ) does not increase at any time t such that V (θθθ (t)) = γ. The upper Dini

derivative of V (θθθ) is given by Dörfler and Bullo (2011):

V ′
+ (θθθ) = lim

h→0
sup

V (θθθ (t+ h))− V (θθθ (t))
h

= θ̇m (t)− θ̇l (t) , (A.7)

wherem ∈ Imax (θθθ (t)) and l ∈ Imin (θθθ (t)) are such that θ̇m (t) = max
{
θ̇m′ (t) |m′ ∈ Imax (θθθ (t))

}

and θ̇l (t) = max
{
θ̇l′ (t) | l′ ∈ Imin (θθθ (t))

}
. Along the system dynamics (7.2), (A.7) can

be written as follows:

V ′
+ (θθθ) = ωm − ωl −

C

N

N∑

i=1

wmi sin (θm − θi) +−
C

N

N∑

i=1

wli sin (θi − θl) ,
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where all phases θθθ’s are time-dependent, and this explicit dependence is henceforth

omitted for simplicity of notation.

From V (θθθ) = γ, it follows that θm − θl = γ and




θm − θi ∈ [0, γ] ⊆ [0, π] =⇒ sin (θm − θi) ≥ 0

θi − θl ∈ [0, γ] ⊆ [0, π] =⇒ sin (θi − θl) ≥ 0
. (A.8)

Moreover the kernel property stands

wij ∈
[
e−d̃2

, 1
]
⊆ ]0, 1] , ∀ i, j = 1, . . . , N,

where d̃ = dmax
p , which yields

V ′
+ (θθθ) ≤ ωm − ωl −

Ce−d̃2

N

N∑

i=1

(sin (θm − θi) + sin (θi − θl)) . (A.9)

By means of prosthaphaeresis formulas applied to θm − θi and θi − θl, the summation in

(A.9) results
N∑

i=1

2 sin
(
θm − θl

2

)
cos

(
θm − θi

2
−
θi − θl

2

)

and through the relations (A.8) it is:

sin
(
θm − θl

2

)
= sin

(
γ

2

)
,

cos
(
θm − θi

2
−
θi − θl

2

)
≥ cos

(
θm − θl

2

)
= cos

(
γ

2

)
.

Going back to the derivative (A.9), it follows:

V ′
+ (θθθ) ≤ ωm − ωl −

C

N
e−d̃2

N∑

i=1

2 sin
(
γ

2

)
cos

(
γ

2

)

≤ ωm − ωl − Ce
−d̃2

sin (γ).

The length of the arc formed by the phases is non-increasing in ∆N (γ) if for any pair

{m, l} it holds that

Ce−d̃2
sin (γ) ≥ max(ωωω)−min(ωωω) =⇒ V ′

+ (θθθ) ≤ 0. (A.10)

For γ ∈ [0, π], the left member of (A.10) is a concave function, whose maximum is at
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γ∗ = π/2. Thus, there exists an open set of arc lengths γ ∈ [0, π] satisfying (A.10) if and

only if

Ce−d̃2
> max(ωωω)−min(ωωω),

which corresponds to the equivalent relations (7.4) and (7.5).

It follows that ∀γ ∈ [γmin, γmax], V (θθθ) is non-increasing and it is strictly decreasing

for γ ∈ ]γmin, γmax[. As a consequence of that, the set ∆N (γ) is positive invariant

∀γ ∈ [γmin, γmax], and each trajectory starting in ∆N (γmax) approaches asymptotically

∆N (γmin) (phase cohesiveness).

Furthermore, if (7.4) holds and hence (A.10) is true, there exists a unique γmin ∈ [0, π/2[

and a unique γmax ∈ ]π/2, π], which obey (A.10) with the equality sign:

sin (γmin) = sin (γmax) =
1
C

∆ω

e−d̃2
=
Ccr

C
.
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A.10 Proof of Proposition 7.3.4

Proposition. (Frequency synchronization)

With a coupling strength C > Ccr, model (7.2) achieves exponential frequency synchro-

nization for all possible distributions of the natural frequencies {ωi} on the compact

interval [ωmin, ωmax] and for all initial phase conditions θθθ(0) ∈ ∆N (γmax).

Moreover:

1. the asymptotic synchronization frequency ωsync is the average frequency ωavg =
1
N

∑N
i=1 ωi;

2. given phase cohesiveness w.r.t. γ for some fixed γ < π/2, the exponential synchro-

nization rate is no worse then λfs = Ce−d̃2
cos (γ);

Proof. From Kuramoto model (7.2) written as

fi (θ) = ωi +
N∑

j=1

aij sin (θi − θj) ,

with aij = C
Nwij , it follows that

∂fi
∂θi

=
N∑

j=1

aij cos (θi − θj) ,
∂fi
∂θj

= −aij cos (θi − θj) .

This implies that the Jacobian J (θθθ) satisfies

J (θθθ) = −Bdiag
(
{ãij}{i,j}∈E

)
BT,

where B is the incidence matrix of the graph G with ãij = aij cos (θi − θj) > 0, since

|θi − θj | < γmin < π/2 for the phase cohesiveness. Moreover, J (θθθ) is negative semidefinite

and equal to the graph Laplacian LG . Hence, by differentiating the phase dynamics (7.2),

the frequency dynamics is obtained as

dθ̇i
dt

= −
N∑

j=1

ãij (t)
(
θ̇i − θ̇j

)
i = 1, . . . , N, (A.11)

or, equivalently,
dθ̇θθ

dt
= −LG (t) θ̇θθ.



216 Appendix

Since ker (LG) = Im (1N ), it follows

1
T

N

d

dt
θ̇θθ = 0 =⇒

N∑

i=1

θ̇i (t) =
N∑

i=1

ωi = N ωavg.

The dynamics (A.11) can be regarded as a linear consensus protocol with time-varying

strictly-positive weights and, according to Dörfler and Bullo (2011)[Theorem 4.1], all

frequencies θ̇i (t) synchronize exponentially:

∥∥∥θ̇θθ (t)− ωsync1N

∥∥∥
2
≤
∥∥∥θ̇θθ (0)− ωsync1N

∥∥∥
2
e−λfst,

with λfs = λ2 (LG) cos (γ) ≥ Ce−d̃2
cos (γ), where λ2 (LG) is the Fiedler value of LG

(Gershgorin disc Theorem)1. Therefore, if C > Ccr, exponential convergence of the

frequencies θ̇i (t) to ωsync is attained.

1The Fiedler value, or Fiedler eigenvalue, of a graph G is the second-smallest eigenvalue of the Laplacian
matrix of G.
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