
 

 

 

 

Administrative unit: University of Padova 

 

Department: Land, Environment, Agriculture and Forestry (LEAF) 

___________________________________________________________________ 

 

PhD Program: Land, Environment, Resources and Health (LERH) 

Batch: XXX 

 

Analysis and modelling of surface runoff triggering debris flows 

 

 

PhD Program Coordinator: Prof. Davide Matteo Pettenella  

Supervisor: Dr. Carlo Gregoretti 

 

      PhD candidate: Martino Bernard 

  



      

 

 

Sede Amministrativa: Università degli Studi di Padova 

 

Dipartimento: Territorio e Sistemi Agro-Forestali (TESAF) 

___________________________________________________________________ 

 

Corso di Dottorato di Ricerca: Territorio, Ambiente, Risorse e Salute (TARS) 

Ciclo: XXX 

 

Analysis and modelling of surface runoff triggering debris flows 

 

 

Coordinatore: Prof. Davide Matteo Pettenella 

Supervisore: Dr. Carlo Gregoretti  

 

       Dottorando: Martino Bernard 

 



Abstract

In the Dolomites, short-duration and high-intensity rainfalls produce abun-

dant surface runoff in headwater catchments. These discharges often trigger

debris flows on the scree slopes placed at the base of rock cliffs. With the aim

to quantify the discharges delivered by these headwater catchments and asso-

ciated rainfalls, we built a measuring facility at the outlet (elevation 1770 m

a.s.l.) of a rocky channel incised on the Dimai Peak, near Cortina d’Ampezzo

(Belluno province) in the Venetian Dolomites (North Eastern Italian Alps).

The channel delivers surface runoff gathered by a small impervious headwater

catchment (area ∼ 0.032 km2, average slope ∼ 320 %). The facility consists

of a monitoring station equipped with a rain gauge, and trapezoidal-shape wa-

terproof basin, closed by a sharp-crested weir. The recorded rainfalls allow us

to verify the features that lead to runoff discharges or mass transport events.

In the period 2011-2017, among the measured discharges, about fifteen runoff

events were considered as significant. These observations provide a unique op-

portunity for improving knowledge about the hydrological response of a rocky

headwater catchment. The recorded hydrographs show impulsive shapes, with

a sudden raise up to the discharge peak, generally followed by a likewise rapidly

decreasing tail. Furthermore, the discharges can be used to calibrate and vali-

date hydrological models. We show that the observations can be modelled by

means of a distributed hydrological model, assuming that the excess rainfall is

accurately evaluated. More specifically, we show that the combination of the

Soil Conservation Service Curve-Number (SCS-CN) procedure with constant
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routing velocities results in an underestimation of the flow peak and a delayed

time of peak. Better predictions of the peak of discharge, its timing, and the

impulsive shape of the hydrographs could be obtained by coupling the SCS-CN

method with a simplification of the Horton equation, and simulating the routing

of runoff along the channel network by means of a matched diffusivity kinematic-

wave model. The reliability of the method is tested by comparing simulated and

observed timings of hyper-concentrated runoff or debris flow triggering in two

neighbouring dolomitic watersheds.

Riassunto

In ambiente dolomitico, gli eventi di precipitazione di tipo convettivo, carat-

terizzati da brevi durate ed alte intensità, sono in grado di generare abbondanti

deflussi superficiali alla base delle pareti rocciose. Questi deflussi incidono i ghi-

aioni presenti al piede dei bacini di testata e sono spesso responsabili dell’innesco

di fenomeni di colata detritica. Con l’obiettivo di stimare le precipitazioni e

portate dei deflussi superficiali, abbiamo installato una stazione di monitorag-

gio alla base del Campanile Dimai (gruppo del Pomagagnon - Dolomiti), nei

pressi di Cortina d’Ampezzo (provincia di Belluno). La stazione è dotata di

pluviometro e registra i dati di un misuratore di portata costruito in prossimità

della sezione di chiusura (quota 1770 m s.l.m.) del canale roccioso inciso sul

Campanile Dimai stesso. La struttura consiste in una piccola vasca imperme-

abilizzata di forma trapezoidale delimitata da uno stramazzo in parete sottile che

raccoglie i deflussi generati dalle pareti rocciose del bacino di testata sovrastante

(area ∼ 0.032 km2, pendenza media ∼ 320 %). Le precipitazioni registrate nel

periodo 2011-2017 hanno permesso di capire quali caratteristiche portano alla
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formazione di deflusso e/o di trasporto solido nel bacino. Fra i vari idrogrammi

registrati, è stato possibile considerarne significativi, sia in termini di valore di

picco che di volume defluito, una dozzina. Queste misure sono un’occasione

più unica che rara per approfondire la conoscenza riguardo alla risposta idro-

logica di questo tipo di bacini. Gli idrogrammi mostrano una risposta di tipo

impulsivo, con un aumento improvviso del deflusso superficiale fino al valore di

picco, seguito generalmente da un’altrettanto rapida decrescita. Queste misure

di deflusso, inoltre, permettono di calibrare e validare i modelli idrologici. In

questo lavoro, infatti, mostriamo come queste caratteristiche di deflusso possano

essere riprodotte usando un modello idrologico distribuito, premesso che la pre-

cipitazione efficace venga valutata correttamente. L’utilizzo del metodo Curve

Number del Soil Conservation Service (SCS-CN), combinato con la propagazione

del deflusso a velocità costante, produce una sottostima del picco di deflusso ed

un ritardo nel tempo di picco rispetto a quanto registrato. Per ottenere una

riproduzione soddisfacente del valore di picco, del tempo di picco e della forma

dell’idrogramma, il metodo SCS-CN deve essere accoppiato con una versione

semplificata dell’equazione di Horton per la valutazione del deflusso generato.

Inoltre, bisogna utilizzare un modello di onda cinematica, in cui la diffusività

numerica è uguagliata a quella idraulica, per la propagazione della portata nel

canale. Ad ulteriore conferma dell’affidabilità della metodologia sviluppata, ven-

gono confrontate le tempistiche osservate e simulate per alcuni eventi di colata

detritica/flusso iperconcentrato avvenuti in due bacini dolomitici in prossimità

del bacino oggetto di studio.
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Chapter 1

Introduction

In the recent past, various authors observed the increase of extreme rain-

fall events by frequency and intensity (Easterling et al., 2000; Frei and Schär,

2001; Fowler and Kilsby, 2003; Sillmann and Roeckner, 2008). Therefore, phe-

nomena typically caused by short and torrential rainfalls such as debris flows,

floods and debris floods, become less unusual (Floris et al., 2010). In the Alpine

environment, a very dangerous phenomenon is debris flow because of its large

destruction power against each obstacle it comes across and for its impulsive na-

ture that makes it difficult to predict its occurrence and alert people of incoming

hazard (Jakob and Hungr, 2005). In the period between 2015 and 2017, many

debris flows occurred along the Upper Boite Valley (Belluno Dolomites, Eastern

Italian Alps), in the municipalities of Vodo di Cadore, Borca di Cadore, San

Vito di Cadore and Cortina d’Ampezzo. Debris flows in the alpine environment

are triggered when abundant runoff generated on rocky low permeability sur-

faces after extreme rainfalls can dislocate the sediments in the channel at their

base: the small size and high relief of the headwater basins gather exception-

ally intense rainfall and deliver enough discharge to mobilize loose debris along

these ephemeral channels (Coe and Godt, 2003; Berti and Simoni, 2005; Can-

non et al., 2008; Coe et al., 2008; Gregoretti and Dalla Fontana, 2008; Theule

et al., 2012; Hürlimann et al., 2014; Tiranti and Deangeli, 2015). The runoff

1



2 Introduction

discharge of headwater basins is therefore the principal factor controlling debris

flow initiation and magnitude. Debris availability represents the other requisite

for triggering and may also constitute a factor limiting the overall magnitude of

the event. The increasing frequency of this kind of phenomena in the Dolomites

(Armento et al., 2008) highlights the need for improved knowledge of debris

flow triggering processes (Bacchini and Zannoni, 2003); however, a lack of field

observations of debris flow initiation has made it difficult to isolate the trig-

gering processes (Kean et al., 2013). An approach to overcome the missing of

field observations is the establishment of empirical critical rainfall thresholds

to forecast the occurrence of an event (Godt et al., 2006; Gregoretti and Dalla

Fontana, 2007; Guzzetti et al., 2007, 2008; Godt and McKenna, 2008; Borga

et al., 2010; Brunetti et al., 2010; Staley et al., 2013; Marra et al., 2014; Staley

et al., 2017). On the other hand, on monitored sites, rainfall-runoff models can

be calibrated to provide estimates of critical discharge for debris flow initia-

tion (Orlandini and Lamberti, 2000; Berti and Simoni, 2005). The prediction of

runoff discharge assumes great interest also in risk assessment and mitigation. It

allows the calibration of the solid-liquid input hydrograph for numerical mod-

els that simulate the downstream routing of debris flows (Rickenmann et al.,

2006; Armanini et al., 2009; Pudasaini, 2012; Frank et al., 2015; Gregoretti

et al., 2016a; Han et al., 2017). Despite its importance, runoff simulation in

small rocky headwater basins is rarely supported by good quality experimental

data. Existing data are gauged in channels downstream of impervious surfaces

(Moody et al., 2008; Kean et al., 2012; Bouvier et al., 2015; Wei et al., 2017)

or on hillslope forested zones (Sheridan et al., 2007). Furthermore the variance

of hydrological behaviours is enhanced with decreasing drainage area (Uchida

et al., 2005), making generalizations more uncertain and not entirely reliable

(Wagener and Montanari, 2011). Therefore, as pointed out by Berti and Simoni

(2005), “debris flows initiated by channel bed mobilization are far less studied

and poorly understood compared to landslide-induced debris flows. In particular,

a framework to adequately characterize runoff generation, erosion processes, and
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debris flow generation is still missing”.

1.1 Debris flow: general features

Gregoretti et al. (2016a) defined debris flows as “rapid, gravity-induced mass

movements consisting of a mixture of water, sediment, wood and anthropogenic

debris that propagate along channels incised on mountain slopes and onto debris

fan”, that can occur all over the world. An event of debris flow is unsteady and

non-uniform, and usually consists of several pulses separated by lower depth

and less concentrated flows. Each pulse is characterized by a front, a body, and

a tail. The front is partially saturated, with a variable concentration by volume

between 30% and 60% (Rickenmann and Zimmermann, 1993). Furthermore, it

can reach velocities up to 30 m/s and it has significant erosion capacity and

power to transport huge boulders, with a volume often greater than ∼ 10 m3

(Costa, 1984; Rickenmann, 1999; Berger et al., 2011; Iverson et al., 2011). The

body is generally saturated, with a quasi-parallel free surface to the underlying

bed (Davies, 1988). Its erosion capability was initially valued in the Illgraben

basin in Switzerland by Berger et al. (2010), but its role in the overall erosion-

deposition processes remains poorly understood (Iverson et al., 2011). The size

of body transported sediments ranges from small particle to boulders. The tail

assumes hyper-concentrated streamflow behaviour, with low concentration by

volume and the presence of small size sediments (Iverson, 1997). Considering

the debris flow cross section, it is generally observed the presence of lateral

levees. Levees can be deposited on the side slopes of channels, when the debris

flow bursts its banks, or it begins to deposit on the alluvial fan or on low slope

areas (Iverson, 2003).

Looking at the rehologic features, debris flows have intermediate properties

between water floods and rock avalanches: the differences with these related

phenomena lie on influences on motion by solid and fluid forces (Iverson, 2005;

McCoy et al., 2010). The fluid phase velocity is similar to the velocity of the solid
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Figure 1.1: Representation of a typical debris flow, adapted from Bardou et al.
(2003).

part, in contrast to stream flow sediment transport (Iverson, 1997). Therefore,

on first approximation, the phenomenon can be described as a monophasic vis-

coplastic fluid (Johnson and Rodine, 1984; Remâıtre et al., 2005). Furthermore,

the solid phase does not conserve its original shape; the fluid phase handles and

mixes sediments. This behaviour is typical in a debris flow and distinguishes

it from landslides (Jakob, 2005). Nevertheless, the distinction between these

kinds of phenomenon is not clearly defined, and categorizations are numerous.

Generally, classifications are based on triggering processes and rate, morphol-

ogy, type of material, geometry, and duration (Varnes, 1978; Cruden and Varnes,

1996; Hungr et al., 2001, 2014), or on dimensionless numbers (Takahashi, 2007;

Lanzoni et al., 2017). Volumetric sediment concentration is the most significant

parameter to define a phenomena as debris flow (Costa, 1984; Takahashi, 2007;

Julien and Paris, 2010). The difficulty to evaluate sediment concentration dur-

ing an event typically requires empirical classification on the basis of parameter

estimates. Starting from Varnes’ and Hutchinson’s subdivisions (Hutchinson,

1968; Varnes, 1978; Hutchinson, 1989; Cruden and Varnes, 1996), Hungr et al.

(2001) created a classification for gravity-induced movements with few cate-

gories, introducing new terminologies to enrich older classes. Adopted criteria
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Table 1.1: Gravity-induced movement categorization made by Hungr et al.
(2001).

Material Water Content Special Condition Velocity Name

Silt, Sand,
Gravel, Debris

Dry, moist or sat-
urated

no excess pore-
pressure;limited vol-
ume

Various Non-liquified sand
(silt, gravel, de-
bris) flow

Silt, Sand, De-
bris, Weak rock

Saturated at rup-
ture surface con-
tent

liquefiable material;
constant water

Ex. Rapid Sand (silt, debris,
rock) flow slide

Sensitive clay At or above liquid
limit

liquefaction in situ;
constant water content

Ex. Rapid Clay flow slide

Peat saturated excess pore-pressure Slow to Very
Rapid

Peat flow

Clay or Earth Near plastic limit slow movements; plug
flow (sliding)

< Rapid Earth flow

Debris saturated established channel; in-
creased water content

Ex. Rapid Debris flow

Mud At or above liquid
limit

fine-grained debris flow > Very Rapid Mud flow

Debris free water present flood Ex. Rapid Debris flood
Debris partly or fully sat-

urated
no established channel;
relatively shallow;steep
source

Ex. Rapid Debris avalanche

Fragmented rock various, mainly
dry

intact rock at source;
large volume

Ex. Rapid Rock avalanche

to distinguish classes are movement mechanics and velocity, material properties,

water content and plasticity index (Table 1.1).

When a phenomenon is classified as a debris flow, other categorizations need

to be consulted to better understand its typology. Subdivisions can be based

on macroscopic behaviour of flow (triggering typology, moved debris volume,

inundated areas, flow discharge), or on microscopic internal parameter (as grain

size, volumetric concentration, viscosity, velocity gradient). The classification

of Jakob (2005) belongs to the first category. Jakob (2005) proposed a size

classing (reported on Table 1.2), based on peak discharge, total volume and area

inundated by the event. As reported by the author, “this system will be useful

for regional debris-flow studies such as those conducted to evaluate the effects of

a landslide-triggering storm or for hazard overview studies along infrastructure

corridors”.

The classification made by Takahashi (2007) is part of the second category,

and it is based on dimensionless parameters, as Reynolds and Bagnold numbers.

The Reynolds number NRe is the ratio of momentum stresses τt to viscous

stresses τv and it is used to classify flow as laminar or turbulent; the Bagnold

number NBa is the ratio of grain collision stresses τc to viscous stresses τv and
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Table 1.2: Size classification for debris flows, from Jakob (2005): V is the total
volume, Qb and Qv are the peak discharge for bouldery and volcanic debris flows
respectively,Bb and Bv are the area inundated by bouldery and volcanic debris
flows, N/A signifies that boulder debris flows of this magnitude have not been
observed.

it is helpful to subdivide flow regimes (macroviscous, collision-dominated):

NRe =
τt
τv

=
ρmUh

µ
; NBa =

τc
τv

=
ρsd

2λ1/2γ

µ
(1.1)

where ρm indicates the density of the entire debris flow mixture, U the cross-

sectional mean velocity, h the flow depth, µ the apparent viscosity, ρs indicates

the particle density, d the grain diameter, λ the linear concentration, γ the

shear rate and µ the apparent viscosity of the debris flow. λ is defined by

λ = [(CC∗)1/3−1]−1, where C is the grain concentration and C∗ the maximum

possible concentration. The last dimensionless parameter characterizing this

classification is the flow relative depth h/d, namely the ratio of the flow depth h

to the representative particle diameter of bed d. On the basis of values of these

parameters, Takahashi (2007) subdivided debris flows into three classes, as re-

ported in Figure 1.2. Viscous debris flows are those dominated by viscoplastic

stress τv, the stony debris flows are dominated by particle collisions (stress τc)

and those controlled by turbulent mixing stress τt are termed turbulent muddy

debris flow. This kind of classification is useful to highlight the differences be-

tween debris flows. Small variations of parameters, which can be volumetric
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Figure 1.2: Sketch from Takahashi (2009) of debris flow subdivision made by
Takahashi (2007): τ is the total shear stress, τv the viscous shear stress, τc the
shear stress due to particle collision, τt the turbulent mixing stress, h the flow
depth and d the representative particle diameter of bed.

concentration, grain size, or debris geology, heavily influence debris flow be-

haviour, particularly the travel distance and the deposition area. Starting from

the classification of Takahashi (2007) that followed the works of Iverson (1997)

and Iverson and Vallance (2001), Lanzoni et al. (2017) explained how to use

dimensionless numbers to categorize debris flows, and introduced other well-

known dimensionless groups for having a more complete classification (Figure

1.3).

1.2 Debris flow triggering mechanism

A debris flow watershed is generally subdivided into three zones: an initi-

ation or triggering area, an intermediate area improperly called transportation

zone, and a deposition area (Figure 1.4).

Talking about runoff-generated debris flows, the triggering area is charac-

terized by significant slope gradients and loose sediments, easily removable by

a water flow. The sediment recharge is guaranteed by a slow but continuous
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Figure 1.3: Experimental and occurred debris flow data plotted in four dimen-
sionless number spaces. NSa is the Savage number, NBa is the Bagnold number,
NRe is the Reynolds number, Nf is the friction number, Nm is the mass num-
ber, NDa is the Darcy number, and C is the linear concentration. In panel
(a), dashed lines delimit area where solid friction and fluid viscosity dominate;
in panels (b-d), dashed lines separate the different rheological regimes. From
Lanzoni et al. (2017).

erosional process or by slope failures (Marchi and D’Agostino, 2004). The trans-

portation zone is the part of the basin subject to the debris flow routing. In

the transportation zone, the dynamic of debris flow is less studied due to dif-

ficulties on research: difficulties could be the installation and the maintenance

of monitoring stations near the unstable channels where debris flows occurs,

the possible damaging of sensors that need contact with debris flow, the inac-

curacy on measures or the indirect measurements of non-contact instruments.

Recent studies (Hürlimann et al., 2006; Brayshaw and Hassan, 2009; Iverson

et al., 2011) highlight its importance for the development of flood risk maps:

in this area, debris flows can vary their magnitude, concentration, or rheology

due to erosion/deposition of bed or banks, sediment supply from side source

areas, and lateral inflow. The deposition zone generally corresponds to an allu-

vial fan, characterized by lower slopes and non-confined area. The size, shape

and the stopping slopes of deposits mainly depend on debris flow rheology and

volumetric concentration, in addition to local topographic conditions (Bardou
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Figure 1.4: Zones within a debris flow watershed. The figure shows on the left
the Acquabona Punta Nera basin (Dolomites, North-eastern Italy), on the right
a schematic representation of a debris flow phenomenon given by Turner and
Schuster (1996)).

et al., 2003), as reported on Table 1.3.

Focusing on the initiation area, a debris flow could initiate when determined

conditions are satisfied. A sufficient sediment availability and a slope gradi-

ent adequate to debris properties could promote a debris flow in presence of a

critical water input. The most relevant sources of water are extreme rainfalls

and/or a rapid snowmelt (Rickenmann and Zimmermann, 1993; Iverson, 1997).

More common triggering processes are initiation from landslide, dam break, and

channel-bed failure. Recent studies (Brayshaw and Hassan, 2009; Berger et al.,

2010) highlighted significant parameters for initiation of debris flows from land-

slide entering low-order channels. They found that “steeper channels, low angles

of entry, lower volumes of in-channel sediment, and larger initial failures were

more likely to result in debris flows” (Brayshaw and Hassan, 2009). Natural

dams can be classified into moraine dams, glacier-ice dams and landslide dams.

While in some cases dam break occurrence could be dissociated from rainfalls

(Gregoretti et al., 2010; Sattler et al., 2011), debris flows are the gravity-induced

mass movements most influenced by precipitation. By comparing field surveys

and outcomes of numerical modelling, McGuire et al. (2017) affirmed that debris

flow initiation in post-wildfire sites seems occurring through the mass failure of
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Table 1.3: Deposition appearance considering rheophysical properties of debris
flows, from Bardou et al. (2003).

in-channel sediments rather than for the progressive grain-by-grain bulking. In

the Dolomites, instead, the most common triggering process is by channel-bed

failure through grain-by-grain bulking (Berti et al., 1999; Berti and Simoni, 2005;

Gregoretti and Dalla Fontana, 2008). It is due to hydrodynamic forces exerted

by the runoff discharge on the surface sediment layer (as highlighted in Figure

1.5). The water flow predisposition for entraining large quantities of sediments

depends on channel bed slope, on geometrical and geomorphological charac-

teristics of the site, and on availability and grain size of material (Gregoretti

and Dalla Fontana, 2008). To explain the fundamental role of the sediment

amount, Figure 1.6 illustrates debris supply processes into two different typolo-

gies of basin, weathering-limited (or supply-limited) and transport-limited (or

supply-unlimited). While there are always enough available sediments into a

transport-limited basin, into a supply-limited system, sediment deposits have

to exceed a triggering threshold before rainfall could initiate a debris flow (Bovis

and Jakob, 1999). The hypothesis made by Bovis and Jakob (1999), of critical
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Figure 1.5: Example of erosional process due to surface runoff in the Dolomites
(Rovina di Cancia catchment), before (panels (a) and (b)) and after (panels
(c) and (d)) a small debris flow occurred (July 29th, 2012). The panels show
upstream (on the left) and downstream (on the right) views of the initiation
area. The evident sediment deposit in panel (a) and (b) was scoured by water
discharge, which longitudinally eroded the bottom of channel (visible in the
inserts (c) and (d)).

sediment threshold constant in time, was partially revised by Brayshaw and

Hassan (2009), who observed that this triggering threshold increases over time,

i.e. the probability of occurrence of a new debris flow decreases with time. On

the other hand, into a supply-unlimited watershed, sufficient water supply for

the saturation of the sediment layer is required to trigger and propagate the

debris flow (Iverson, 1997; Marchi and D’Agostino, 2004). In fact, many stud-

ies highlighted as debris flows could initiate after the sediment layer saturation

due to the development of positive interstitial pressure (Reid et al., 1997; Berti

and Simoni, 2005; Iverson et al., 2011). This can result following a vertical

direct infiltration or a lateral groundwater inflow from adjacent soils. Factors

such as inclined water tables, or the convergence of topography can funnel flows

laterally (Anderson and Burt, 1978). The general description of pore-pressure

development is the generation of a saturated region at the base of the slope,

that progressively rises with prolonged rainfall. When complete saturation is
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Figure 1.6: Mechanism of channel recharge/discharge into weathering-limited or
transport-limited basins. Bars indicate rainfalls, rising lines indicate sediment
recharge. From Bovis and Jakob (1999).

reached, slopes begin to collapse. To determine interstitial pressure, antecedent

soil moisture conditions (AMC) need to be considered. Being an indicator about

the degree of saturation of the soil, AMC directly influences slope stability, but

its evaluation is problematic. AMC is generally derived by using indirect esti-

mation, as antecedent cumulative rainfalls, and water table heights. The first

attempt to standardize AMC was made by the Soil Conservation Service (1972).

Considering the previous 5-days cumulative rainfall, they divided AMC in three

classes, from dry (I) to wet (III) conditions (Table 1.4). However, it is essential

to remark that AMC could also be directly estimated: in instrumented catch-

ments, pore pressure and soil moisture can be assessed by means of pressure

transducers and soil moisture meter probes (Coe et al., 2008; Kean et al., 2011).

1.3 Analysis of triggering rainfalls

As highlighted before, rainfall is the most significant factor for debris flow

triggering. Critical triggering thresholds can be reached by short heavy rainfall
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Table 1.4: AMC classification from Soil Conservation Service (1972).

AMC class 5-days prior rainfall (mm)
Dormant season Growing season

I h< 12.7 h<35.6
II 12.7<h<27.9 35.6<h<53.3
III h>27.9 h>53.3

or extended low intensity precipitation. In the Dolomites context, triggering

precipitations are generally short, localized and high-intensity summer storms

(Berti et al., 2000; Underwood et al., 2016). This kind of precipitation quickly

saturates the terrain upper layer, so that water cannot further infiltrate. Runoff

flows rapidly downhill and fills up the drainage network. Flash floods are ex-

tremely dangerous, they combine destructive power of flood and difficult fore-

casting (Lin, 1999). The flood peak occurs immediately after the rainfall event:

differences in timing range from between a few minutes to a few hours, according

to the catchment scale (Creutin and Borga, 2003; Kean et al., 2012). For the

forecasting of debris flows, a common largely-used tool is the development of

empirical rainfall thresholds (Caine, 1980; Innes, 1983; Moser and Hohensinn,

1983; Bacchini and Zannoni, 2003; Crosta and Frattini, 2003; Gregoretti and

Dalla Fontana, 2007; Guzzetti et al., 2008; Salciarini et al., 2012; Staley et al.,

2013; Marra et al., 2014; Peruccacci et al., 2017; Staley et al., 2017), defined as

the conditions that, exceeded, result in the occurrence of a debris flow (Figure

1.7). Thresholds can be subdivided by means of process-based (physical) or

empirical approaches (Aleotti, 2004; Godt et al., 2006; Guzzetti et al., 2007),

and usually link rainfall duration with other precipitation features, as mean or

maximum intensity, or cumulative rainfall (Crosta and Frattini, 2000). In the

past, empirical thresholds were generally defined as minimum thresholds, i.e.

obtained enveloping the critical points with the lowest values. Nowadays, em-

pirical thresholds are usually defined by means of statistical methods (Brunetti

et al., 2010). The typical critical threshold (ID equation) links rainfall duration
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Figure 1.7: Example of empirical critical intensity-duration thresholds, ex-
tracted from different studies (for equations and references, see Gregoretti and
Dalla Fontana (2007)). The Figure highlights the variability between rainfall
thresholds mainly due to local factors. From Gregoretti and Dalla Fontana
(2007).

D to mean rainstorm intensity I and assumes the general form:

I = αD−β (1.2)

with α and β parameters of the equation. Comparing different thresholds, a

significant variability is evident: it is due to the selection of rainfall parameters,

the magnitude of the triggered events, and the variability in hydrological, geo-

logical and meteorological conditions (Gregoretti and Dalla Fontana, 2007) and

it emphasizes the empiricism of this triggering forecasting method (Figure 1.7).

Furthermore, uncertainties related to each threshold may not be defined.

The main source of uncertainty is the large spatio-temporal variability of

precipitations in mountainous areas (Marra et al., 2014). Generally, the rainfall

that triggers one or more debris flows is unknown. Estimations of triggering

rainfall are acquired by means of rain gauges, weather radars or satellites. Using

rain gauges, the principal cause of uncertainty is the distance of the reference

rain gauge from the initiation zone of the debris flow, both planimetrically and
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on elevation (rain gauges are usually placed in the valley bottoms). Weather

radar estimates are affected by various errors, like the attenuation of the signal

for long distances or intense rains, or the occlusion of the radar beam (typical

in mountain areas) (Germann et al., 2006), and need to be calibrated by using

ground truths. Satellites are useful for monitoring global-scale dynamics, but

the coarse spatio-temporal resolution does not permit to use them for watershed

analysis, whereas it seems to become less uncertain for a regional approach

(Nikolopoulos et al., 2017).

Another remarkable issue that arises using critical thresholds is the occur-

rence of false positives or negatives (Staley et al., 2013, 2017). False positives

arise when rainfall conditions forecast a debris flow that does not occur, whereas

in false negative, rainfall conditions, leading to a real debris flow, are not de-

tected. These errors are related to each factor, that could be hydrological or

geological, that has a role in the variability of the thresholds and in the speci-

ficity of each watershed. For this reason, to overcome the limitations of using

empirical formulas, a less empirical estimate triggering condition becomes fun-

damental. For example, Staley et al. (2017) developed a framework for regions

where no historical data exist. The model combines the assessment of the sta-

tistical likelihood of debris flow occurrence with the definition of spatial explicit

intensity-duration thresholds, defined as the rainfall intensity equal to the 50%

likelihood of debris flow. Another possible approach to solve the problem is the

development and the use of an hydrological model.

1.4 Hydrological modelling

Hydrological models are numerous and different (Rodŕıguez-Iturbe and Valdés,

1979; Rinaldo et al., 1991; Orlandini and Rosso, 1996; Orlandini and Lamberti,

2000; Saco and Kumar, 2002b; Botter and Rinaldo, 2003; Grimaldi et al., 2012).

Main distinctions are made on spatial input (lumped or distributed models),

temporal variability (continuous or single-event models), physical realism of
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simulated problems (physically based, conceptual or empirical models), kind of

involved variables (deterministic or stochastic models) and linearity of model.

With improvements of computing power and availability of hydrological data

recorded at fine temporal and spatial scales, models are becoming more com-

plete, but more complex (Montanari and Brath, 2004). Complexity increases the

number of parameters used to simulate real processes, so the parameter calibra-

tion is becoming the next contest (Liu and Gupta, 2007). In fact, Wagener et al.

(2001) proposed a framework for investigating the equilibrium balance between

model complexity and available data (Figure 1.8). The calibration process is

required because reliable reproduction of catchment behaviour is often unobtain-

able just taking into account the basin characteristics (Wagener and Montanari,

2011). During a calibration, the model relies on rainfall-runoff observations to

understand how a particular watershed works. Different combinations of pa-

rameters represent different real conditions, so modelling needs to be supported

by field surveys. Additionally, integration of hydrological model with spatial

descriptions given by digital terrain model (DTMs) and digital surface models

(DSMs) allows to describe distributed phenomena (erosion/deposition) at the

pixel scale, and then to integrate them to the entire watershed (Orlandini and

Rosso, 1996).

However, the hydrology of a catchment is complex to understand and the

uncertainty in the streamflow estimates remains (Montanari and Brath, 2004;

Ebel et al., 2007a,b; McDonnell and Beven, 2014). The lack of observations in

the most catchments of the world and the uncertainty in model predictions at

these sites are seen as main limitations for hydrology (Sivapalan, 1993). Uncer-

tainties have to be understood, quantified and, mainly, reduced (Masih et al.,

2011). Without an adequate comprehension of all different source of errors, it

is difficult to quantify and reduce them. Diverse sources could introduce signifi-

cantly different errors that require distinct resolution techniques. Furthermore,

neglecting some causes of errors could lead to wrong predictions in the hydrolog-

ical output (Liu and Gupta, 2007). For a good estimation of uncertainties, the
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Figure 1.8: Framework proposed by Wagener et al. (2001) for development
and application of hydrological models, considering required level of detail and
complexity supported by available data. From Wagener et al. (2001).

knowledge about their probability distribution and their error characteristics is

necessary. For this reason, the typical solution for quantifying the uncertainty

in hydrological outputs is to represent outcomes in terms of probability distribu-

tion, performing probabilistic models instead of deterministic ones (Montanari

and Brath, 2004). However reducing uncertainties is possible: realistic solutions

could be the acquisition of more quality hydrological data, the improvement of

model constitutive equations, and the enhancement of model ability to extract

information from input (Liu and Gupta, 2007; Wagener and Montanari, 2011).

Neglecting the great uncertainty on flood hydrograph due to the storm spa-

tial movement (Koren et al., 1999; Zoccatelli et al., 2011), the fundamental pro-

cesses of hydrological catchment response are the calculation of excess rainfall

distribution and the routing of generated runoff to the basin outlet. Infiltration

is a critical element in the rainfall-runoff models and it is influenced by rain-

fall intensity and top soil hydraulic properties. Infiltrated water can percolate

to deep groundwater, evaporates, or flows downhill as subsurface flows (Figure

1.9). At the beginning of precipitation, most of rainfall infiltrates into the soil,

rising the water table. Increasing of soil moisture, the infiltration capacity de-
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Figure 1.9: Separation process of fallen rainfall, from Lauterjung and Schmidt
(1989).

creases, rainfall begins to pond on surface and it generates runoff. Runoff is

routed to basin outlet through the slope-imposed pathways (Tarboton, 1997).

The catchment runoff time is given by three factors: the holding time for rainfall

excess, and the hillslope and the channel network travel time. The contribution

of hillslope and network geomorphology to the hydrological response has been

investigated by several authors (Rodŕıguez-Iturbe and Valdés, 1979; Rinaldo

et al., 1991; Robinson et al., 1995; Di Lazzaro, 2008; Li et al., 2011). With con-

cepts of geomorphological dispersion (Rinaldo et al., 1991), kinematic dispersion

(Saco and Kumar, 2002b,a), and dispersive hillslope mechanism (Saco and Ku-

mar, 2004), the relative role of hillslope and channel paths on the basin response

was better understood, as well as the relevance of overland flow with respect to

channel processes at different scales (Botter and Rinaldo, 2003; D’Odorico and

Rigon, 2003). However scales issues and regionalisation of model parameters are

still unresolved problems (Croke and Norton, 2004; Montanari and Toth, 2007;

Seibert and Beven, 2009).

To calculate infiltration and runoff, hydrological models adopted for mod-

elling runoff generating debris flow use simplified or empirical equations (Berti

and Simoni, 2005; Coe et al., 2008). Lower parameter number encourages the

model calibration and simulation time decreases. As stressed above, physically-
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based models need field surveys and laboratory tests to evaluate parameters and

this is not always simple in high mountainous environments. In fact, despite

the noteworthy importance, water discharge measures at the outlet of head-

water catchments are rarely performed, mainly for the difficulty related to the

measurement in steep torrents (Onda et al., 2006; Kean et al., 2012). As a

consequence, runoff is commonly gauged downstream the rocky outcrops (Onda

et al., 2006; Moody et al., 2008; Bouvier et al., 2015; Wei et al., 2017) or on

hillslopes (Sheridan et al., 2007), but a real systematic assessment of surface

runoff triggering debris flows is still lacking.

1.5 Aim of the study

The goal of this work is to perform an hydrological analysis in the Dolomites

(North Eastern Italian Alps) near Cortina d’Ampezzo, recording precipita-

tions and corresponding headwater basin discharges to better understanding

the runoff generation and modelling the triggering of runoff-generated debris

flows. To reach this objective, an experimental facility has been installed at

the outlet of a small rocky headwater catchment in the Dolomites. The facil-

ity is located just upstream the fan apex where debris flows could initiate and

propagate. In parallel, the hydrological model of Gregoretti and Dalla Fontana

(2008) has been upgraded both on rainfall separation and channel network rout-

ing. The measured water discharges are thus used to improve the understanding

of basin response and to test the different levels of the model upgrade.

The work is structured as follows:

• Chapter 2 describes the study area, the hydrological model and the col-

lected data;

• Chapter 3 reports the main reached outcomes, both on rainfall analysis

and in hydrological modelling;

• Chapter 4 summarizes the conclusion of the research.
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Chapter 2

Materials and methods

2.1 The field site

The Fiames monitoring site is located in the river Boite valley, three kilo-

metres north of Cortina d’Ampezzo (BL), along the national road 51 (Figure

2.1). In this area, carbonatic Platform formations dominate. Limestones of the

“Calcari Grigi” formation overly the thick dolomitic succession of the “Dolomia

Principale” formation. The scree on the left side of the Boite valley is incised

by numerous debris flow channels. They originate at the base of the steep rock

cliffs (Marchi et al., 2008) and threaten the national road and the activities

around it. Debris flows frequently occur along these channels. These events

are triggered by the water discharge delivered by rocky channels descending

from the upstream cliffs (see lower insert of Figure 2.1). The loose sediment

material, essential for the triggering of solid-liquid wave, is provided by both

the weathering of upstream cliffs and the shallow failures affecting the channel

banks.

The Dimai watershed (delimited by a line in Figure 2.1) is very impervious.

The basin has an area of 0.032 km2, a mean elevation of 2043 m a.s.l., and

an average slope of 319%, corresponding to 72.3o. It is drained by a rocky

channel incised on the Dimai Peak. The channel is usually dry and the bed is

21
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Table 2.1: Dimai headwater basin, morphological characteristics extracted from
a 1-m resolution DEM obtained from a Lidar survey accomplished on 2011.

Area (km2) 0.032
Min elevation (m a.s.l.) 1716
Mean elevation (m a.s.l.) 2043
Max elevation (m a.s.l.) 2306
Mean slope (o) 72.3
Max slope (o) 88.3
Channel mean slope (o) 67.2
Land use 95% bare rock

5% moors and heathland

characterized by very high vertical steeps (about 5-10 m), with the presence of

several boulders. Its mean slope is 238% (i.e., 67.2o). Geomorphological features

are summarized in Table 2.1 and have been computed by using a DEM (1 m grid

size) derived from a Lidar survey carried out on October 2011 with a sampling

density of 3 points/m2. The use of LiDAR topographic dataset is fundamental

for improving the definition of a basin, compared to its description furnished

by the conventional contour-based maps. The contour-based DEMs are not

enough accurate to represent the very steep slopes typical of the headwater

catchments, that, conversely, can be better described by the high-density LiDAR

points. The improved description of valley and channel profiles, as well as

the parametrization of stream channel geometry, reflects on the simulation of

the hydrological responses. Degetto et al. (2015), focusing on the Dimai and

the Rovina di Cancia (Section 2.4) basins, highlighted how the contour-based

DEMs erroneously determined the watershed divides and smoothed the real

surfaces, creating artificial and uncorrected flow paths, with a simplification

of the channel networks, less branched and shorter. This poor accuracy in

the topographical description largely influenced the hydrological simulations,

leading to less peaked and delayed runoff responses.
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Figure 2.1: Aerial view of the area of Fiames, near to Cortina d’Ampezzo (BL),
with the considered catchment (red line) and the locations of measuring facili-
ties. The inserts show the frontal view of the monitoring site (upper insert) and
a view of the outlet of the watershed (lower insert). Adapted from Gregoretti
et al. (2016b).

2.1.1 The monitoring station

With the purpose to increase knowledge about both the runoff discharges

at the feet of the rock cliffs and the triggering of debris flows, a monitoring

station was installed at the base of the Dimai Peak, on July 2010. It has a rain

gauge, a thermometer, four pressure transducers, three of which buried into the

scree, 2 cameras that record the upstream rocky channel and the downstream

scree, a control and synchronization unit powered by a couple of 12 V batteries

recharged by a solar panel. The monitoring station normally records the data

supplied by rain gauges and pressure transducers every 5 minutes. The sampling

interval decreases to 5 seconds when the rainfall intensity exceeds the threshold
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value of 0.6 mm/2.5 min, triggering the alarm mode. At the outlet of the main

rocky channel incised on Dimai Peak, just upstream the monitoring station, a

sharp-crested weir was installed on August 2011. The weir is monitored by a

time-lapse camera, that records images every 20 seconds (60 seconds in 2013),

and a pressure transducer provides the water level upstream it (see Section

2.1.2).

2.1.2 The sharp-crested weir stilling basin

The sharp-crested facility (Figure 2.2) consists of a small trapezoidal-shape

basin (2.0 m long and, on average, 1.78 m wide), with a flat and concrete-covered

bottom. It is limited by a rock wall and a giant boulder on the left and right sides

respectively. On the downstream side, the basin is confined by a steel plate, 0.67

m high and 1.55 m wide, that operates as sharp-crested weir. On the upstream

side, two levels of gabions work as filters to prevent the filling of the facility

because of sediments transported during high intensity runoff events. Gabions

are filled with coarse material (gravel 0.2 m size on average) and drained with

pipes inside (0.08 m diameter). The volume of water that the stilling basin can

contain before the spilling over the weir is about 2.5 m3. A pressure transducer

is placed 0.90 m upstream the weir, to provide the water level measurement.

It is posed inside a PVC pipe perforated and covered by a filter to prevent

collisions and burying, and is connected to the monitoring station by a cable

fixed on the rocky wall. In Appendix A, the reader can find some pictures about

the construction of the sharp-crested weir facility. The pressure transducer is

carefully positioned inside the protection PVC pipe with the tap at the same

level of the bottom of the steel plate. It is of piezoresistive type (Keller, series

26W, output signal 400-2000 mV) with a range 0-0.5 bar (0-5.1 m of water

depth) and a measurement error of about ϵh = ±1 mm (0.3 mV). The zero of

the instrument was identified by exposing it to different known water levels and

verifying its output signal. The zero resulted close to the theoretical value of

400 mV.
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Figure 2.2: Upper view of the sharp-crested facility.

Using water level recorded it is possible to compute flow discharge through

the continuity equation applied to the stilling basin:

Q(t) =
dV

dt
+QL +QO, (2.1)

where Q(t) is the inflow discharge descending from Dimai Peak, QO is the

outflow discharge, QL is water loss caused by the non-perfect waterproofing of

bottom (evaluated QL ≈ 0.6× 10−4m3/s), V is the water volume in the facility

and t is time. QO is 0 when the water level h is lower than the weir level p,

otherwise it is given by the weir discharge equation:

QO(t) = CDb
√
2g [h(t)− p]3/2 (2.2)

where CD is the discharge coefficient and b = 1.55 − 0.1(h − p) the effective

width of the weir (considering the lateral contraction on the right side). Q(t)

was computed by means of backward differences for the discretization of dV
dt and
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Figure 2.3: Frontal view of sharp-crested weir taken by the time-lapse camera
on July 25th, 2015. The left panel shows the stilling basin partially filled, the
right displays the flow discharge over the weir. In both the cases, the water level
in the stilling basin is almost steady.

setting QO(t) equal to its mean during a computational step. The errors in the

estimation of discharge Q(t) was evaluated in ϵdV/dt = ±0.7 l/s and ϵQO
= ±0.1

l/s. These uncertainties are related to the error ϵh, i.e. the error caused by a

measure of h on the evaluation of dV
dt and QO(t). The global error, assessed as

sum in quadrature of ϵdV/dt and ϵQO
(Taylor, 1997), is less than 1 l/s. In Figure

2.4, we show an example of the evolution of water level and the related assessed

discharge. The runoff fluctuations are due to the intermittent behaviour of the

inflowing discharge. During the decreasing limb, the water level oscillates on

the order of few millimeters, corresponding to runoff fluctuations of a few l/s.

The sharp-weir facility was built on summer 2011. About ten days after its

inauguration, the stilling basin was completely obstructed by a rockfall initiated

after a severe storm, 16.2 mm/10 mins. After the removal of the huge boulder

above it (Figure 2.5), the measuring facility was ruined by snow avalanches on

2014 spring. As a consequence, the stilling basin was fully working only five

days in 2011 and a few months in the period 2013-2014. After 2014, the stilling

basin has been filled or obstructed several other times again (e.g. Figure 2.6

shows the basin after the refilling occurred the 14th of August 2016). When it

happens, the steel plate needs to be removed and the basin emptied with shovels,

picks and perseverance. Table 2.2 reports the significant events occurred during

the monitored period 2011-2017. In Appendix A, we also illustrate the various
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Figure 2.4: Example of the measured water level h(t) (dotted line) and of the
corresponding discharge entering into the stilling basin Q(t) (thick continuous
line), assessed through equation (2.1). The insert highlights the fluctuations of
the water level in the stilling basin. Modified after Gregoretti et al. (2016b).

fillings and restorations of the sharp-crested weir facility.

2.1.3 Rainfall measurement

For a better evaluation of the precipitation fallen during convective events,

another rain gauge is placed upstream the catchment, on the Pomagagnon Fork

(2180 m a.s.l). The rain gauges, namely that of the Dimai monitoring station

and that placed on the Pomagagnon Fork, are 188 m and 300 m respectively

far from the centroid of the investigated watershed and are 500 m from each

other. Their areas of influences have been obtained using the Thiessen polygons

(Figure 2.1). The rain gauge on Pomagagnon Fork covers about 25% of the

total catchment area, while the area of influence of the lower rain gauge is the

remaining 75%. For the analysis, we assumed that hyetographs measured by

rain gauges correspond to the centre of respective Thiessen polygons (squares of

Figure 2.1), shifted in time according to the convective cell travelling velocity.



28 Materials and methods

Table 2.2: Sharp-crested weir, significant events since 2011.

Date Description

Summer 2011
May, 13 Starting of the monitoring period (without sharp-

crested weir)
July, 4 Debris flow event
August, 14 Installation of the sharp-crested weir
August, 18 Debris flow event and filling of the stilling basin
September, 20 End of the monitoring season

Summer 2012 - No monitoring activity
Summer 2013

May, 28 Starting of the monitoring period (without sharp-
crested weir)

July Restoring of the stilling basin
July, 26 Installation of the sharp-crested weir
August, 4 Stilling basin partially filled by sediments
August,8 Emptying and restoring of sharp-crested weir facility
October, 25 End of the monitoring season

Summer 2014
June, 12 Starting of the monitoring period (without sharp-

crested weir)
June, 20 Missing in power supply - monitoring station turned off
July Restoring of the stilling basin
July, 10 Change of batteries and monitoring station restoring
July, 15 Failure of solar panel and missing battery recharge
July, 18 Installation of the sharp-crested weir
August, 2 Change of solar panel and monitoring station restoring
October, 27 End of the monitoring season

Summer 2015
June, 4 Starting of the monitoring period
June, 7 Stilling basin completely filled by sediments
June, 30 Crash of the central unit and data loss
July, 11 Emptying and restoring of the sharp-crested weir facility
July, 25 Stilling basin partially filled by sediments
July, 29 Stilling basin completely filled by sediments
August, 2 Emptying and restoring of the sharp-crested weir facility
September, 13 Stilling basin partially filled by sediments
October, 2 Emptying and restoring of the sharp-crested weir facility
November, 19 End of the monitoring season

Summer 2016
May, 25 Starting of the monitoring period
June, 18 Emptying of the stilling basin (Figure 2.6)
June, 23 Restoring of the sharp-crested weir facility
July, 8 Change of the sharp-crested steel plate
August, 14 Stilling basin completely filled by sediments
August, 29 Partially emptying of the stilling basin
September, 12 Partially emptying of the stilling basin
September, 21 Emptying and restoring of the sharp-crested weir facility
October, 21 End of the monitoring season

Summer 2017
May, 30 Starting of the monitoring period
July, 14 Stilling basin completely filled by sediments
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Figure 2.5: On the left, the situation found after the rockfall occurred on August
2011; on the right, the cracked boulder, before removal.

For example, on August 19th, 2013 (Figure 2.7) the convective cell moved from

North to South, affecting the Pomagagnon Fork 5 minutes earlier than the Dimai

monitoring station. Considering the distance between the two rain gauges, the

travelling rate of the rainfall cell was about 500 m in 5 minutes. In this case, the

precipitation at the upstream polygon centroid corresponds to that measured

by the Pomagagnon Fork rain gauge, postponed by 2 minutes, while rainfall

fallen in the downstream polygon matches to that measured by the monitoring

station, brought forward of 1.5 min.
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Figure 2.6: On the left, the situation found on the 27th of August 2016 at the
sharp-crested facility during an habitual reconnaissance; on the right, emptying
of the basin like Egyptians.
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Figure 2.7: The rainfall depths of the 19 August 2013, recorded each five minutes
by the rain gauges installed at the monitoring station Dimai (RG1) and in
Pomagagnon Fork (RG2), are compared to mean areal rainfall values obtained
through Thiessen polygons. Modified after Gregoretti et al. (2016b).
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2.2 Collected data

Automatic stations are useful to collect a huge amount of continuous data,

without the requirement of a physical presence. Data are usually recorded in

text files and videos. For the monitoring station placed in the Dimai watershed,

text files represent 2 tables:

1. The first chart contains data recorded in the normal mode, namely every 5

minutes as reported in Table 2.3. Columns in the chart represent: TIME

STAMP the end time of the 5 minutes monitored interval, RN the count

of recorded intervals, BATT the current battery voltage, PA01/02/03

the output voltage of pressure transducers buried in the scree, BARO

the voltage corresponding to atmospheric pressure, STRM the output

voltage related to the water level in the stilling basin, EN the count of

occurred alarms, and Rain the rainfall depth fallen in the previous 5-

minutes interval.

2. 5-second data are contained in the chart of alarm mode (Table 2.4). Sym-

bols have the same meaning of the normal mode table.

Table 2.3: Dimai monitoring station, header of normal mode table.

TIME RN BATT PA01 PA02 PA03 BARO STRM EN Rain
STAMP Volts mVolts mm

07/26 12:35 0 13.23 1069.44 1069.69 1094.73 543.87 404.95 0 0
07/26 12:40 1 13.23 1069.65 1069.86 1094.74 543.95 405.85 0 0.2

Table 2.4: Dimai monitoring station, header of alarm table.

TIMESTAMP RN PA01 PA02 PA03 BARO STRM

26/07/2016 18:34:40 0 1071 1071 1095 548.2 405
26/07/2016 18:34:45 0 1071 1072 1094 548.4 405.2

Videos are acquired by the monitoring station cameras when the alarm mode

is triggered (Section 2.1.1). The only continuous operative video camera is that
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placed in front of the sharp-crested weir facility. This time-lapse camera was set

to acquire 1 frame every 60 seconds in 2013; the acquisition time was reduced

to 20 seconds from 2014. The video camera is only operational during daylight

hours.

The sharp-crested facility was completed in 2011. Up to June 2017, about

twenty significant runoff events were observed, and in twelve cases (15 August

2011; 9 August 2013; 19 August 2013; 24 August 2013; 12 August 2014; 31

August 2014; 4 August 2015; 3 September 2015; 13 July 2016; 5 August 2016; 9

August 2016; 21 June 2017) discharge was successfully measured. In the other

events, the measurement failed because of rockfall, uncorrected positioning of

the pressure transducer, or missing power to the central unit (see Table 2.2).

Figures 2.8 and 2.9 show the measured hyetographs recorded by the Dimai

and Pomagagnon Fork rain gauges and the generated runoff hydrographs (the

hydrographs in 2.8 have been already displayed by Gregoretti et al. (2016b)). In

all but two cases, the runoff rises to a peak in a short time and then decreases

quite rapidly to reach a nearly horizontal plateau. Only the discharges observed

on 24 August 2013 and on 9 August 2016, exhibited a secondary, less steep

maximum. Finally, discharges fall abruptly to zero. In general, the measured

runoff can be sketched as a hydrograph composed of two rectangles: a high and

narrow initial rectangle, followed by a wider and shorter second rectangle. The

characteristics of the discharges and of the inducing rainfalls are reported in

Table 2.5. The observed runoff events did not trigger any debris flow. Since the

setup of the monitoring station (July 2010, one year before the installation of

the sharp-crested weir), only two debris flows occurred in the scree downstream

(July and August 2011). The triggering rainfall recorded by the rain gauge of

the Dimai station were 22.6 and 16.2 mm in thirty and ten minutes respectively,

i.e. characterized by intensities much higher than those reported in Table 2.5. In

Table 2.6, the events that filled the sharp-crested weir facility are reported. Due

to the absence of continuously recorded video, we cannot neither distinguish the
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15 August 2011 9 August 2013

19 August 2013 24 August 2013

12 August 2014 31 August 2014

Figure 2.8: Runoff discharge hydrographs measured for six rainfall events during
the period 2011-2014. These discharges have already been presented by Gre-
goretti et al. (2016b). Top panels refer to the events observed on 15 August 2011
(left) and 9 August 2013 (right). Middle panels refer to the events observed on
August 19 (left) and 24 (right), 2013. Bottom panels refer to the events observed
on 12 August (left) and 31 (right) 2014. Red bars correspond to the rainfall
recorded by Pomagagnon Fork rain gauge while blue bars correspond to the
rainfall recorded by Dimai monitoring station. Recorded 5-minute rainfalls are
represented shifted in time, being referred to the centre of the relevant Thiessen
polygon. For each event, time origin is reported in Table 2.5.
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4 August 2015 3 September 2015

13 July 2016 5 August 2016

9 August 2016 21 June 2017

Figure 2.9: Runoff discharge hydrographs measured for five rainfall events dur-
ing the period 2015-2017. Top panels refer to the events observed on 4 August
(left) and 3 September (right) 2015. Middle panels refer to the events observed
on 13 July (left) and 5 (right) August 2016. The bottom panelS refers to the
event occurred on 9 August 2016 (left) and 21 June 2017 (right). Red bars
correspond to the rainfall recorded by Pomagagnon Fork rain gauge while blue
bars correspond to the rainfall recorded by Dimai monitoring station. Recorded
5-minute rainfalls are represented shifted in time, being referred to the centre of
the relevant Thiessen polygon. For each event, time origin is reported in Table
2.5.
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Table 2.6: Relevant features of observed rainfall events that produced mass
transport up to 2016. AMC: antecedent moisture conditions; P5: previous five
days rainfall height; P : rainfall heights; T : rainfall duration; I: mean rainfall
intensity; IMAX : maximum rainfall intensity computed over a five minutes
duration.

Event AMC P5 P T I IMAX

(mm) (mm) (min) (mm/h) (mm/h)

04-07-11 1 7.4 22.6 40 33.9 64.8
18-08-11 2 17.8 16.2 10 97.2 98.4
04-08-13 1 3.6 21.4 75 17.1 57.6
07-06-15 1 9.8 13.8 20 41.4 69.6
25-07-15 1 12.2 18.2 30 36.4 69.6
29-07-15 3 30.2 16 30 32.0 52.8
14-08-16 3 58.2 18 35 30.9 86.4
13-07-17 2 17.2 28.2 180 9.2 2.6

type of movement, nor estimate a discharge value.

2.3 Hydrological modelling

An accurate simulation of runoff is required to predict debris-flow initia-

tion downstream. Starting from the model proposed by Gregoretti and Dalla

Fontana (2008), we introduced substantial and physically based modifications

useful to improve the performance of the model.

Estimation of excess rainfall

In the model of Gregoretti and Dalla Fontana (2008), the excess rainfall

Pe contributing to runoff discharge is determined by the SCS-CN method (Soil

Conservation Service, 1972):

Pe(t) =

⎧⎪⎨⎪⎩ 0 t ≤ tIa

(P (t)−Ia)
2

P (t)−Ia+S t > tIa

(2.3)

where P (t) is the rainfall height at time t, Ia considers the initial losses, tIa

is the time within Ia occurs, and S is the potential maximum retention. The



2.3. HYDROLOGICAL MODELLING 37

latter two quantities (expressed in millimetres) are linked to the runoff curve

parameter CN through the relations:

S = 25.4

(
1000

CN
− 10

)
, Ia = 0.1S (2.4)

The original equation Ia = 0.2S was changed to Ia = 0.1S by Gregoretti and

Dalla Fontana (2008), because Ia = 0.2S is considered excessively high for

mountain environment (Hawkins et al., 2008; D’Asaro and Grillone, 2012). The

SCS-CN method is used to compute the excess rainfall at each time step for

every cell by which the basin is subdivided. The parameter CN is empirical

and depends on soil type, land use, and moisture conditions antecedent to rain-

fall (AMC), commonly classified as dry (AMCI), normal (AMCII) and wet

(AMCIII) (see Section 1.2). Considering the curve numbers for normal AMC

(CN(II)), equivalent curve numbers can be assessed by:

CN(AMC) =
aCN(II)

10− bCN(II)
(2.5)

where a = 2.08454e0.80709AMC − 0.47225, b =
a− 4.2

100
− 0.058, and AMC cor-

responds to dry (I) or wet (III) conditions (Chow et al., 1988). Originally, the

SCS-CN method was developed for flat/hilly watershed; to adapt it to steep

headwater catchments, some adjustments are needed. In the presence of high

slopes and nearly impervious soils, rainfall tends to flow superficially rather than

to infiltrate, and the infiltration occurs in the large fissures rather than through

the soil pores; at the same time, rainfall interception by vegetation is scarce or

even absent. As shown by Eli and Lamont (2010), the SCS-CN relationship is

not an infiltration equation, and its use is not appropriate for evaluating the

incremental rainfall excess during a storm event. Consequently, a modification

to the computation of the effective rainfall is necessary to better estimate the

discharge. Following the approach of Grimaldi et al. (2013), we developed a pro-

cedure in which we coupled the SCS-CN method with a more proper infiltration
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equation. Grimaldi et al. (2013) simulated about one hundred runoff events in

four US basins after joining the excess rainfall computed through the SCS-CN

method with the Green-Ampt infiltration equation. Anyway, the Green-Ampt

equation is not suitable for catchment as that monitored in this work. As re-

marked before, high slopes facilitate overland runoff rather than saturation,

whereas the high fracturing degree of rocky outcrops promotes the infiltration

(Marchi et al., 2008). To validate these observations, field experiments of runoff

generation in steep carbonatic rocky outcrops (dolomite/limestone) show that

the the dominant mechanism of runoff generation is infiltration excess or Hor-

tonian flow process (Lange et al., 2003; Li et al., 2011) as in the semi-arid areas

(Beven, 2002). The original Horton equation consider the use of three parame-

ters to estimate the excess rainfall. This approach could be problematic because

data on both the initial value of the infiltration rate and the decay constant for

rocky terrains are almost unknown, as well as their dependence on the initial

moisture conditions. For this reason a basic behaviour of infiltration is consid-

ered, coupling a simplified version of the Horton equation (constant infiltration

rate fc) with the SCS-CN method (hereafter called SCS-CNH):

Pe(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 t ≤ tIa

(P (t)−Ia)
2

P (t)−Ia+S t > tIa , I < fc

Pe(t−∆t) + P (t)− P (t−∆t)− fc∆t t > tIa , I > fc, Pe < PeSCS

(2.6)

Here, I refers to the mean rainfall intensity during a time step ∆t and PeSCS
is

the excess rainfall of the precipitation computed through the SCS-CN method.

As explained before, the lack of knowledge about initial infiltration rates and

decay constants for rocky surfaces pushed us to simply use a constant infiltration

rate, replacing the rapid decreasing limb of the Horton equation with the initial

abstraction of the SCS-CN method. The parameter fc considers the effects on

infiltration of both slope and terrain composition (Wilson, 1990). The higher

the slope, the more rainfall tends to flow over the surface than percolate into the
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rock fissures. Hence, excess rainfall could be generate also for rainfalls which

intensities do not exceed the infiltration rate fc. In this way, when rainfall is

lower than fc, this procedure provides the excess rainfall using the SCS-CN

method, while the Horton approach works when the rainfall intensity exceeds

the infiltration rate.

Routing model

The former model, of Gregoretti and Dalla Fontana (2008) computes the

flow paths from each cell to the outlet along the steepest direction and the

corresponding travel times as the ratio between flow path length and assigned

time invariant runoff velocity. Travel times tT allow the computation of flow

discharge Q(t), given by the sum of all the excess rainfall pulses Pe(x⃗, τ) pre-

cipitated on basin cells dA at location x⃗ and time τ = t− tT (x⃗), that reach the

outlet at the same time step:

Q(t) =

∫
A

Pe(x⃗, τ) dA (2.7)

The overall travel time tT is assessed by:

tT (x⃗) =
LC(x⃗)

UC
+

N∑
i=1

LSi(x⃗)

USi
(2.8)

where LC is the channel path length, UC is the runoff channel velocity, LSi is the

path length along the i-th sloping surface, and USi is the corresponding runoff

velocity, depending on the N types of terrain. Each flow path is extracted along

the steepest topographic direction by means of the D8 method (Tarboton, 1997),

after removing pits or flat regions. Moreover, it is divided into hillslope and

channel paths for accounting the different velocities, typical of distinct regions

of the watershed (Botter and Rinaldo, 2003; Grimaldi et al., 2012). Hillslopes

are divided according to the land use (rock, scree and wooded) because runoff

slope velocity is assigned considering surface characteristics (Saco and Kumar,

2004). On the other side, channel paths are extracted considering the DTM
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maps (Montgomery and Foufoula-Georgiou, 1993). Channel velocity is assumed

constant during the entire duration of the event and equal to that characterizing

the discharge peak (Qp). It is obtained solving iteratively the Gauckler-Strickler

uniform flow equation UC = ksR
2/3
h i

1/2
f at the closure section of the basin, until

UC Ω = Qmax. Here, ks is the Gauckler-Strickler friction coefficient, Rh and Ω

are respectively the hydraulic radius and the cross-sectional area of the channel

at the outlet, and if = sinα, with α the bed slope angle.

The developed improvement for the model accounts for along channel varia-

tions of UC by means of a matched diffusivity kinematic-wave model (Orlandini

and Rosso, 1996) to route the runoff along the channel. According to Wool-

hiser and Liggett (1967), the kinematic wave approximation is accurate for

simulating flow routing in the examined rocky channel whose average slope is

238%. Rengers et al. (2016) stated that, for these high-slope catchments, the

differences between results obtained with kinematic wave assumptions and full

shallow water equations are negligible. The finite differences numerical solution

of the standard kinematic model is affected by numerical diffusion that coun-

teracts the tendency of wave to steepen with results depending on the grid size

(Ponce, 1991). This numerical diffusion is because of truncation errors and, in

general, there is no way to determine if this dispersion matches with the hy-

draulic diffusivity of the wave. Furthermore, the accurate modelling of a small

hydraulic diffusivity linked to an impulsive hydrograph cannot be obtained by

using a standard numerical solution of the kinematic wave model (Orlandini

and Rosso, 1996). This inconvenience is overcome by integrating the diffusion

wave model by using the Muskingum-Cunge method where numerical diffu-

sion matches the hydraulic diffusivity; with this approach, the solution becomes

grid-size independent, unconditionally stable, and physically realistic. Thereby,

the Muskingum-Cunge method can be used for modelling waves with a small

hydraulic diffusion, as those represented by the kinematic wave approximation
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(Ponce, 1991). The governing flow equation is:

∂Q

∂t
+ ck

∂Q

∂s
= Dh

∂2Q

∂s2
+ ckqL (2.9)

where ck is the celerity of the kinematic flood wave, Dh is the hydraulic

diffusivity, and qL is the lateral inflow per unit length, computed according:

qL(t) =
1

∆x

∫
AS

Pe(x⃗, τ) dAS (2.10)

where AS is the area of the watershed drained by the cell adjacent to the channel

that supplies it runoff, ∆x is the cell size, Pe(x⃗, τ) is the excess rainfall at

location x⃗ and time τ = t− tTS(x⃗). The slope travel time tTS is defined as the

ratio of path length along slope to hillslope velocity:

tTS(x⃗) =

N∑
i=1

LSi(x⃗)

USi
(2.11)

The partial differential equation (2.9), is solved through the Muskingam-

Cunge method, and leads to the following linear algebraic equation (Orlandini

and Rosso, 1996):

Qj+1
i+1 = C1 Q

j+1
i + C2 Q

j
i + C3 Q

j
i+1 + C4 q

j+1
L,i+1 (2.12)

where Qj+1
i+1 is the runoff at the cell (i + 1)∆s and time (j + 1)∆t, while

qj+1
L,i+1 is the lateral inflow rate at the (i+ 1)−th space interval and (j + 1)−th

time interval that is provided by the equation 2.10. The routing coefficients Ci

(i = 1, 4) are:
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C1 =
ck(∆t/∆s)− 2X

2(1−X) + ck(∆t/∆s)
(2.13)

C2 =
ck(∆t/∆s) + 2X

2(1−X) + ck(∆t/∆s)
(2.14)

C3 =
2(1−X)− ck(∆t/∆s)

2(1−X) + ck(∆t/∆s)
(2.15)

C4 =
2ck∆t

2(1−X) + ck(∆t/∆s)
(2.16)

(2.17)

where X is a weighting factor matching the numerical and hydraulic diffu-

sivity defined as:

X =
1

2

(
1− 2Dh

ck∆s

)
(2.18)

By relating channel width and flow discharge through a power law (Leopold

and Maddock, 1953), and expressing the flow resistance through the Gauckler-

Strickler relation, it results that (Orlandini and Rosso, 1996):

Dh =
3Q1−b1

2 (3 + 2b1)B tanβ
(2.19)

where B (= B0(A/A0)
b2) is a width parameter associated with the upstream

drainage area A, the outlet width B0, and the catchment area A0, and Q is

provided by the following expression:

Q = B−2/(3+2b1) k3/(3+2b1)
s S

3/[2(3+2b1)]
f Ω5/(3+2b1) (2.20)

with Sf the energy slope, Ω the flow area, and b1 a suitable morphological

exponent (Leopold and Maddock, 1953). The final expression for the kinematic

wave celerity, ck = dQ/dΩ = [5/(3 + 2b1)]Q/Ω, reads:

ck =
5

3 + 2b1
B−2/5 k3/5s S

3/10
0 Q2/5(1−b1) (2.21)
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The values ofX and ck are computed by means of equations (2.18) and (2.21)

for each pixel, after extracting local bed slope values from the DEM model and

taking Q = (Qj
i + Qj

i+1 + Qj+1
i )/3. The lateral inflow qj+1

L,i+1 is provided by

the hydrographs of the cells adjacent to the channel. Setting B0 from field

observations and assuming b1 = 0.26 (Leopold and Maddock, 1953; Orlandini

and Rosso, 1996), the only calibration parameter of the model is the roughness

coefficient ks.

The hydrological model, above presented, has already been discussed and

published in Gregoretti et al. (2016b).

2.4 Testing sites

Jointly with the data collected from the Fiames site, data of two other

monitoring stations were used. The monitored sites, called Acquabona Punta

Nera and Rovina di Cancia, are located in the same area, 8 and 15 km far

from the Dimai watershed respectively (see Figure 2.10). The rocky formations,

characterizing the two basins, are the same of Dimai.

Acquabona Punta Nera basin

The basin of Acquabona Punta Nera is located in the municipality of Cortina

d’Ampezzo, on the left side of the Boite valley, delimited by the western slope of

the Sorapis Group. It origins at the feet of Punta Nera (2738 m a.s.l.), develops

downstream encountering the national road 51 at 1115 m a.s.l., and is confined

by the Boite river (Figure 2.11). Acquabona has a history of debris flows, which

have been monitored in the past (Berti et al., 1999, 2000; Tecca et al., 2003;

Tecca and Genevois, 2009). However, this basin is not the subject of the cited

works, but is adjacent. Two collapses of Punta Nera vertical cliffs occurred on

spring 2015 and 2016, generating a huge amount of loose available sediments.

The debris materials mainly deposited on the rocky channel incising the Punta

Nera cliffs. Subsequent rainfalls mobilized these sediments, triggering debris
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Figure 2.10: Aerial view of Acquabona Punta Nera (left), and Rovina di Cancia
(right), with the positions of the reference rain gauges: Acquabona Punta Nera
(RG3), Faloria (RG4), and Rovina di Cancia (RG5, RG6).

flows that incised a new channel in the scree slopes. The triggering area (1545

m a.s.l.) lies just downstream of a rock drop, where superficial discharges form

a waterfall that hits the underlying debris deposit. In Table 2.7, we summarize

the main features of the watershed extracted from a 1-m DEM obtained by

using a Lidar survey carried out on October 2015. The sampling density of the

Lidar survey has been 4 points/m2.

A monitoring station was set up on July 2016, 100 m downstream the drop.

It is equipped with a rain gauge, a thermometer, an anemometer, two pressure

transducers buried in the middle of the channel about 0.3 m below the surface,

and two time-lapse cameras; all instruments are managed by a remotable control

unit (Campbell CR1000). The pressure transducers are of piezoresistive type

(Keller, series 26W), operating in the range 0-0.5 bar (output signal 400-2000

mV). The time-lapse cameras are Brinno TLC 200 and record the images on a

SD card, capturing a frame each two seconds. Data are ordinarily sampled at 5
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Figure 2.11: Front view of the Acquabona Punta Nera watershed incised by the
debris flow channel. The inserts show some typical locations along the debris
flow channel: (a) rock chute at the end of the rocky channel, (b) monitoring
station placed by the University of Padova at the initiation area, (c) typical
v-shape of the channel in the transportation zone. The central panel shows the
location of the monitoring station, corresponding to RG3 (Figure 2.10), and the
location of the Acquabona historical debris flow channel (Berti et al., 1999).

minutes intervals. When rainfall depth exceeds the value of 0.6 mm in 150 sec-

onds, the station switches in alarm mode, cameras turn on and acquisition time

decreases to five seconds. The five seconds sampling period and the shooting

time last two hours. After this time, the alarm mode is prolonged of other two

hours if the rainfall intensity exceeds again the threshold value.

Rovina di Cancia basin

The basin of Rovina di Cancia is located in the municipality of Borca di

Cadore, on the left side of the Boite river valley, delimited by the western slope

of the Mount Antelao. It origins at Salvella Fork (2451 m a.s.l.) and develops
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Table 2.7: Acquabona Punta Nera headwater basin, morphological characteris-
tics extracted from a 1-m resolution DEM obtained from a Lidar survey accom-
plished on 2015.

Area (km2) 0.490
Min elevation (m a.s.l.) 1546
Mean elevation (m a.s.l.) 2285
Max elevation (m a.s.l.) 2847
Mean slope (o) 62.5
Max slope (o) 89.1
Channel mean slope (o) 47.5
Land use 70% bare rock

20% Scree and active erosion
10% moors and heathland

downstream encountering the confluence with the Bus del Diau affluent on the

left side at 1340 m a.s.l., and the village of Borca di Cadore (880 m a.s.l). The

Boite river delimits the downstream side of the basin (Figure 2.12). Considering

the downstream limit of the Boite river, the drainage area is 2.4 km2 while 1.8

km2 at the confluence with Bus del Diau. The basin presents a slope varying

from 70-80% in the upper part to 20-25% in the lower part (fan area). This basin

has a history of debris flows, as reported in literature (Bacchini and Zannoni,

2003; Gregoretti and Dalla Fontana, 2008). For this reason, geological settings

have been widely discussed also by Mantovani et al. (2002) and Deganutti and

Tecca (2013). The basin could be divided in three characteristic areas: in the

upper part massive rock cliffs prevail. The medium part of basin is characterized

by screes of poorly sorted and highly permeable rock debris, with boulders of

diameters up to 4 meters. The downstream part is covered by old debris flow

deposits including postglacial sediment material. The triggering area of the

debris flows is located at 1666 m a.s.l., where a giant rock retains a large quantity

of sediments. At the initiation area, the channel descending from Mount Antelao

drains a basin of area 0.65 km2. In Table 2.8, we summarize the main features

of the watershed extracted from the 1-m DEM obtained by using a Lidar survey

carried out on October 2011.

On July 2014, a low-cost automated monitoring station was installed just
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Figure 2.12: Front view of the Rovina di Cancia watershed incised by the debris
flow channel. The inserts show some typical locations along the debris flow
channel: (a) portion of the upper reach, (b) monitoring station placed at the
initiation area, (c) rock drop at elevation 1500 m a.s.l., (d) the flat area dissecting
the downstream reach of the channel, and (e) the gabion wall and retaining
basin at the end of the channel. The central panel also shows the rain gauges
present in the area: Belluno Province 1 and Rovina di Cancia monitoring station
correspond to RG5 and RG6 (Figure 2.10).

in front of the giant rock. It is equipped with a rain gauge, a thermometer,

two pressure transducers buried into scree, and two time-lapse cameras; all

instruments are managed by a remotable control unit (Campbell CR800). The

pressure transducers are placed in the middle of the channel, about 0.3 m below

the surface. The instrumentation, namely pressure transducers and time-lapse

cameras, the acquisition mode, and the sampling rates are the same described in

the Acquabona Nera catchment section. In this basin a debris flow monitoring

and warning system was installed by CAE S.p.A. on 2013. This monitoring

system is managed by the Department Land Defence and Civil Protection of

the Province of Belluno.
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Table 2.8: Rovina di Cancia headwater basin, morphological characteristics ex-
tracted from a 1-m resolution DEM obtained from a Lidar survey accomplished
on 2011.

Area (km2) 0.654
Min elevation (m a.s.l.) 1662
Mean elevation (m a.s.l.) 2213
Max elevation (m a.s.l.) 3067
Mean slope (o) 54.2
Max slope (o) 87.8
Channel mean slope (o) 36.5
Land use 50% bare rock

28% Scree and active erosion
22% moors and heathland



Chapter 3

Results and discussion

3.1 Rainfall analysis

Before the hydrological modelling, a meticulous analysis of recorded rain-

fall events is necessary. Since the establishing of the Dimai monitoring station,

about 220 rainfall events triggered the alarm mode. Observed rainfalls gener-

ally show two different patterns, a behaviour already observed by Gregoretti and

Dalla Fontana (2007) in the same area: precipitations with low value intensities

and no significant variations during the event, or highly variable rainfalls with

the presence of short high-intensity episode, or burst. The definition of burst

is not unique in literature: Berti and Simoni (2005) consider it as a period of

intense rainstorm that exceeds an average value of 0.5 mm/5 min; Gregoretti

and Dalla Fontana (2007) proposed a burst as a rainfall that begins when in-

tensity exceeds 0.8 mm/5 min and ends when intensity drops below this value;

Coe et al. (2008) defined it considering gaps between rain gauge bucket tips,

setting in 10 min the minimum separation time of two consecutive storms. For

extracting the rainfalls, we choose the approach followed by Coe et al. (2008).

The recorded precipitations (taking into account only those that triggered the

alarm mode) have been classified considering their capability to generate sur-

face runoff, in order to understand how the catchment works in term of response

49
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to the rain forcing. As explained in Section 1.3, the common variables for as-

sessing watershed response are rainfall duration and mean intensity (equation

1.2). In Figure 3.1 the recorded events are plotted. Two different behaviours

emerge: the former is the unclear separation between the events generating and

non-generating surface runoff, the latter is the quite defined distinction between

runoff events with and without mass transportation. The thresholds sketched

in Figure 3.1 (a) are defined by the envelope of limit mean intensity values

corresponding to different response in the Dimai watershed. In this way, ID

thresholds delimit the maximum rainfall intensity values that did not generate

surface runoff (dashed red line, equation 3.1), and the minimum mean rainfall

intensity values that generated surface runoff (dashed black line, equation 3.2)

or surface runoff with mass transportation (dashed blue line, equation 3.3).

I = 8.84D−0.83 (3.1)

I = 3.60D−0.83 (3.2)

I = 17.69D−0.50 (3.3)

Due to the unclear division between runoff and no runoff events, we focus

attention on precipitations lying between the thresholds given by equations 3.1

and 3.2. For each recorded precipitation, we extract its general features (du-

ration, cumulative rainfall, mean and maximum intensities). Furthermore, we

evaluate the moisture conditions of the soils in the watershed by calculating the

pre-event cumulative rainfall for different time periods, i.e. from 1 to 5 days

before each precipitation. For understanding which parameters are more useful

to characterize the events, we perform two different kinds of regression on the

binary variable Yes/No runoff : a linear model and a logistic one. We start

from the more complex models, in which we consider every variable inherent to
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Figure 3.1: In the panel (a), analysis of rainfall mean intensity I (mm/hr) versus
duration t (hr) of events recorded by the Dimai monitoring station. Highlighted
thresholds indicates the envelope of maximum intensities without generated
runoff (dashed red line), minimum intensities generating runoff (dashed black
line), and mass transport (dashed blue line). In the panel (b), comparison with
different ID thresholds developed for evaluating the debris flow triggering in
the dolomitic environment. In both the panels, the thickness of indicators state
the AMC of the event, from thinner (AMC I) to thicker (AMC III). AMC is
computed considering for each event the cumulative rainfall of the previous two
days (see Section 3.3).
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precipitation features and every different-duration pre-event cumulative rainfall.

We simplify the models applying a trial and error method, until remaining vari-

ables are significant for the regressions (p-value of Wald test lower than 0.05).

The choice to follow a stepwise statistical approach for the selection of significant

variables is in agreement with Cannon et al. (2010). The features that mainly

influence the response of both the models are the event rainfall accumulation

P (expressed in mm), and the antecedent moisture conditions. In more detail,

the linear regression depends on the pre-event cumulative precipitations fallen

during 1 day (CR1 ) and 2 days (CR2 ) before each event (expressed in mm),

and on their interaction, whereas the logistic regression depends only on CR2.

The equations describing the models are respectively:

Y = resc(−0.29 + 0.05CR1 + 0.02CR2 + 0.07P − 0.01CR1× CR2) (3.4)

Y =
1

1 + e−5.17+0.29CR2+0.48P
(3.5)

where Y is a number varying from 0 to 1 that represents the statistical likeli-

hood of runoff occurrence. The operator resc rescales the range of the linear

regression to the range [0, 1]. Following Staley et al. (2017), we set a likeli-

hood threshold of 0.5. We evaluate the ability of the models in discriminating

the events with/without runoff. The occurrence could be positive or negative

(success or failing in model prediction). Each event is assigned to a class. A

true positive (TP) is an event with modelled and recorded runoff, while, vice

versa, a true negative (TN ) represents a neither modelled nor recorded runoff.

False positives (FP) occur when an over-threshold rainfall event do not gen-

erate runoff, while false negatives (FN ) indicate under-threshold rainfalls that

generate discharge. The prediction rate improves but some errors remain. The

linear regression mispredicts events in 27 cases on 100 (4 FP and 23 FN), and

the logistic model gives 22 wrong predictions (8 FP and 16 FN). The linear re-

gression predicts the TN events better than the logistic model but, on the other
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hand, results the worst in predicting TP rainfalls. Two important statements

can be however extracted from this analysis:

1. The separation between rainfall generating runoff and those generating no

response remains unclear. Adding further features to the ID relationship

drastically reduces but does not completely eliminate all the uncertain

points;

2. The variables considered in the models seem to highlight how AMC might

be assessed differently with respect to the SCS-CN standard practice, re-

ported in Table 1.4.

The other investigated behaviour represents the almost clear separation be-

tween runoff events without and with mass transportation. Only two rainstorms

that did not transport sediments overcome the threshold given by equation 3.3.

The former is the event on June 22nd, 2013 that had a duration of 3 hours with

a mean intensity of 17.5 mm/hr. The latter is the rainfall occurred on August

15th, 2016. This 15-minute event had a high maximum intensity (96 mm/hr)

and a mean rate of 36 mm/hr. During the first rainstorm, the lack of solid

transport can be explained by the presence of snow and ice that consolidated

available sediments, whereas the second event occurred the day after a mass

transportation event that washed out the channel and, probably, there was no

sediments to entrain. We also compare the assessed sediment transport critical

threshold with other four ID thresholds for debris flow triggering in dolomitic

environment (Figure 3.1, lower panel). The considered threshold are those as-

sessed by Genevois et al. (2000), Bacchini and Zannoni (2003), Berti and Simoni

(2005), and Gregoretti and Dalla Fontana (2007). The lower panel of Figure

3.1 shows how the threshold estimated in this work is far apart from that of

Bacchini and Zannoni (2003), while it is close to those of Genevois et al. (2000),

Berti and Simoni (2005), and Gregoretti and Dalla Fontana (2007). In par-

ticular, it lies between those evaluated by Genevois et al. (2000) and by Berti

and Simoni (2005). This occurs despite the different features considered for the
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assessment of the thresholds. Genevois et al. (2000) focused their work on the

Acquabona catchment and compared mean intensities of rainfalls corresponding

to the triggering of debris flows with mean intensities of rainfalls that did not

initiate any phenomena. The threshold was defined as the envelope of higher

mean intensities with no occurrence of debris flow. Berti and Simoni (2005)

carried out their analysis in the same catchment of Genevois et al. (2000), con-

sidering bursts exceeding an average of 0.5 mm in 5 minutes. Gregoretti and

Dalla Fontana (2007) neglected the initial and ending samples of precipitation

lower than 1 mm in 5 minutes because hydrological response did not change

significantly. Their study concerned 6 different sites. Depending on the case,

the reference rain gauge was located between 50 and 4000 m from the debris

flow triggering area. On the other side, the threshold evaluated by Bacchini and

Zannoni (2003) is the most dissimilar. This is mainly due to the adopted meth-

ods for selecting rainfall data used in their study. Bacchini and Zannoni (2003)

analysed 21 rainstorms leading to channel-bed failures on 5 different basins. The

rainfall dataset was recorded by rain gauges as far as 5000 m from sources areas.

The durations of the events ranged between 30 minutes to 40 hours. In some

cases precipitations were evaluated up to debris flow initiation, sometimes were

the cumulative rainfall in the day of event occurrence. Furthermore, rain inten-

sities were normalized by using the mean annual precipitation before obtaining

the threshold.

A further analysis on rainfall is performed for investigating how the choice

in the definition of burst affects the assessment of the threshold. Gregoretti

and Dalla Fontana (2007) observed that the removal of the initial and ending

segments from the hyetographs equal or smaller than 0.8 mm/5 min, i.e. with an

intensity lower than 12 mm/hr, does not influence the results of the hydrological

simulations of critical rainfalls. In this investigation, we analyse all the events

recorded during the period 2011-2017 by the monitoring station, and those that

did not trigger the alarm mode. Varying the minimum significant intensity for

considering the inception of hyetographs, the mean intensity and the duration
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of most the rainfalls obviously change. The higher the cutting threshold, the

shorter the rainfall durations and larger the mean intensities. At the same

time, the considered events decrease from about 1950 to 200. The decrease is

mainly due to neglecting those did not cause runoff. In Figure 3.2, we illustrate

the influence of trimming the initial and ending parts of the hyetographs on

the evaluation of the events and the critical thresholds (we only consider the

solid transport threshold for simplicity). As expected, ID thresholds tend to

increase as we gradually raise the minimum intensity for cutting the rainfalls

(blue dotted lines in Figure 3.2). A strange behaviour occurs when we increase

the limit to 12 mm/hr (1 mm/5 min). The ID limit becomes lower than that

evaluated excluding smaller intensities. The explanation lies on the event that

occurred on July 13th, 2017. It switches its duration from 4 hours to 2, while its

mean intensity varies from 9.0 mm/hr to 12.5 mm/hr. The differences between

the two mean intensities is lower than that evaluated by using the equation I =

20.91D−0.59 (reported in Figure 3.2 (c)) for the two durations. For this reason,

the small variation in mean intensity for the event of July 13th, 2017, added to

the drastic reduction in time, produces the decreasing of the critical threshold

despite the raising of the hyetograph lower intensity. Indeed, neglecting that

point, ID limit raises also for the limit of 12 mm/hr (red dotted line in Figure

3.2 (d)).

The same analysis is carried out on the testing sites of Acquabona Punta

Nera and Rovina di Cancia. Figures 3.3 and 3.4 illustrate the recorded events

on Summer 2016 in Acquabona Punta Nera, and on the Summers 2014-2016

in Rovina di Cancia. Mean intensities of rainfalls that triggered debris flows

in the basin of Acquabona Punta Nera result sensibly lower than the Dimai

ID thresholds in almost every case for each selected trimming intensity. This

behaviour is due to a combination of several factors. The main factor is the

huge availability of loose sediments in the catchment. During the spring of

2015 and 2016, two large rock collapses occurred on Punta Nera Peak cliffs,

mainly due to frost weathering. These debris materials, mostly stopped on
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Figure 3.2: Analysis of the influence of initial and ending parts of the
hyetographs on the evaluation of the critical thresholds. The minimum ini-
tial and conclusive intensities are: (a) 0.4 mm/5 min, (b) 0.6 mm/5 min, (c)
0.8 mm/5 min, (d) 1.0 mm/5 min. The thickness of indicators state the AMC
of the event, from thinner (AMC I) to thicker (AMC III). AMC is computed
considering for each event the cumulative rainfall of the previous two days (see
also Section 3.3).
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the channel incised on the rocky walls characterized by very high slopes, are

easily entrainable by the surface runoff delivered by the cliffs. Lower discharges,

i.e. lower rainfalls, need to move sediments lying on the channel. Moreover, the

triggering mechanism could be debris mass deposit failure rather than for grain-

by-grain bulking. It could require rainfalls of longer duration and lower intensity.

Another aspect to not omit is the location of the reference rain gauge. Similarly

to the Dimai watershed, it is close to the rocky channel outlet, but it is about

850 m far from the basin centroid. The high variability of convective events

could make not completely truthful the rainfalls recorded by the monitoring

station. The Rovina di Cancia example strengthens this last point of view. The

monitoring station rain gauge RG6 is distant about 700 m from the watershed

centre and does not overcome the threshold for one debris flow occurrence, while

the rainfalls recorded by RG5, 100 m far from the centroid, exceed the ID limit

in all the instances.

3.2 Observations about recorded discharges

The characteristics of the recorded discharges shown in Table 2.5 and the

hydrographs of Figures 2.8 and 2.9 provide an overall response of the watershed

to intense convective rainfalls. The delay in the response (evaluate as lag time

tL) is obtained using two methods. The first evaluates tL as difference between

the centroid of rainfall and the peak discharge (Sherman, 1932). The second

calculates it as the time tLC that returns the maximum value for the cross

correlation coefficient of runoff and rainfall intensity time series (Kean et al.,

2011, 2012). Values of lag time fall in the range 4-17 min, for the short high

intensity precipitations; differently, for the events occurred on August 15th,

2011, on August 9th-24th, 2013, and on August 9th, 2016, characterized by the

presence of very low intensity and/or extended rainfalls, lag times vary in the

range 20-70 min. In general, lag times seem decreasing as rainfalls become more

intense (e.g., August 19th 2013), attaining values close to those calculated by
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Figure 3.3: Analysis of the influence of initial and ending parts of the
hyetographs on the evaluation of the burst features in Acquabona Punta Nera.
The minimum initial and ending intensities are: (a) 0.2 mm/5 min, (b) 0.4 mm/5
min, (c) 0.8 mm/5 min, (d) 1.0 mm/5 min (we omit the graph concerning the
threshold 0.6 mm/5 min because its results are very close to that obtained with
the threshold 0.8 mm/5 min). The sketched thresholds correspond to those as-
sessed for the Dimai watershed with the same hyetograph cutting intensity. The
thickness of indicators state the AMC of the event, from thinner (AMC I) to
thicker (AMC III). AMC is computed considering for each event the cumulative
rainfall of the previous two days (see also Section 3.3).
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Figure 3.4: Analysis of the influence of initial and ending parts of the
hyetographs on the evaluation of the burst features in Rovina di Cancia. The
minimum initial and ending intensities are: (a) 0.2 mm/5 min, (b) 0.4 mm/5
min, (c) 0.8 mm/5 min, (d) 1.0 mm/5 min (we omit the graph concerning the
threshold 0.6 mm/5 min because its results are very close to that obtained with
the threshold 0.8 mm/5 min). The sketched thresholds correspond to those as-
sessed for the Dimai watershed with the same hyetograph cutting intensity. The
thickness of indicators state the AMC of the event, from thinner (AMC I) to
thicker (AMC III). AMC is computed considering for each event the cumulative
rainfall of the previous two days (see also Section 3.3).
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Kean et al. (2012) for similar size basins. The time tP in which runoff passes

from zero to its peak value normally varies in the range 20-90 s. The higher

the rainfall intensity peak, the fastest the basin response. For the events on

August 24, 2013 and August 9, 2016 two peaks appear: the former is similar

to those observed in the other events (tP ≃ 20 s), the latter is less sharp and

reaches an almost similar value. Summarizing, for convective rainfalls of short

duration (about one hour or less), and estimated 5-minutes intensity larger than

15 mm/h, the time of response of the catchment is a few minutes. The flow

discharge has an impulsive behaviour, with a rising limb (from zero to the peak

value) lasting on average around one minute, and a subsequent decreasing to a

smaller value. The lasting time of the smaller discharge value seems depending

on the amount of rainfall that precipitates after the occurrence of the discharge

peak.

The impulsive shape of discharges looks like the shape of debris flow hydro-

graphs (Berti et al., 2000; Hürlimann et al., 2003; Kean et al., 2012), with a ris-

ing limb much faster than those observed in flow stage curves during flash flood

in semiarid regions (Shannon et al., 2002) and in small mountain catchments

(Kean et al., 2012). This kind of response emerges because of the interaction

among high intensity bursts, steep slopes and in-channel routing. After consid-

erable initial losses, due to the high degree of fissuring of rocky surfaces, high

intensity rainfalls produce an excess rainfall through an Hortonian mechanism.

The generated surface runoff reaches the rocky channel, causing a flood wave

that progressively grows as it propagates downstream. Due to its high celerity,

this wave incorporates smaller slower waves previously provided to the rocky

channel by downstream slopes, leading to the highlighted rapid rising hydro-

graph shapes. The brief routing times is favoured by the steep slopes of the

catchment, whereas the rapid decreasing of the hydrographs after the peak is

caused by the limited duration of bursts that trigger the discharges.

Time-lapse videos show that slight discharges generally last for many hours

after the conclusion of rainfall events. It means that the surface-subsurface flow
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interaction plays a significant role in the investigated catchment. On the other

hand, we are interested in modelling the sudden discharges that rapidly develop

in response to high intensity bursts, i.e. surface runoff that could trigger debris

flows. For this reason, the low conductivity of the rocky soils suggests that the

saturation-excess runoff generation mechanism may not affect the hydrographs

recorded by the monitoring station (Figures 2.8 and 2.9), and the assumption

of neglecting the subsurface runoff should be reasonable.

3.3 Calibration of SCS-CN parameters

Before discussing the comparison between recorded and modelled hydro-

graphs, it is essential to understand which values should be used in the Curve

Number method for the involved parameters, i.e. CN, Ia, and AMC. The orig-

inal value for the initial losses, Ia = 0.2S, was found too large by numerous

authors (Hawkins et al., 2010; D’Asaro and Grillone, 2012). At the same time,

as found out in the Section 3.1, a different way for evaluating AMC (respect to

that reported in Table 1.4) could be taken into account. Due to the interaction

between Ia and AMC through CN (see Section 2.3), we perform a sensitivity

analysis on the recorded rainfall events for choosing the better combination to

assign to the two parameters. We fix a constant value for the Curve Num-

ber CN=90, generally representative of rocky formations. We vary Ia between

0.05S and 0.2S, with a step of 0.025S, while cumulative rainfall, needed for the

assessing of AMC, is computed considering 1 to 5 days before the events. Once

evaluated both the parameters for any event, we consider the runoff prediction:

could the fallen rainfall overcome the initial abstraction threshold and generate

discharge?

Following Staley et al. (2013), we assess the performance for each Ia-AMC

combination, considering the threat score (TS ) (Schaefer, 1990) as:

TS =
TP

TP + FP + FN
(3.6)
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Figure 3.5: Runoff prediction analysis, varying the combination of Ia and AMC
parameters. TP indicates the true positive events, TN the true negative ones,
FN represents the false negative rainfalls, and FP the false positives. Ia thresh-
old varies following AMC values (see equations 2.4 and 2.5). The limit values
among the different AMC are reported in the first column of Table 1.4. The
reported case refers to the combination Ia = 0.1S and AMC assessed by using
the cumulative rainfall of the previous two days.

TP, FP, and FN have been defined in Section 3.1. As reported in Staley et al.

(2017), we choose TS as an indicator ”because it equally weights the reduction

in score for both FN and FP events, while not biasing the results based on the

large number of TN records in the database”. As deductible from Table 3.1, the

combination with the best score (TS = 72%) occurs with the values Ia = 0.1S

and AMC computed by using the cumulative rainfall fallen during the 2 days

before each event (Figure 3.5). It confirms both the goodness of the assumption

about Ia = 0.1S made by Gregoretti and Dalla Fontana (2008) and the findings

of Section 3.1, in considering 2 days of previous rainfall for selecting the AMC

parameter. An interesting observation regards the number of rainfall events

in the various moisture conditions. Changing the way to compute AMC (i.e.

considering only the previous two days), the number of rainfalls in dry conditions

increases of about 70% (from 96 to 165), while the variations of events in normal
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or wet conditions are negative and in the amount of 35% (from 63 to 41) and

79% (from 60 to 13) respectively.

Table 3.1: Threat score, TS, computed by using equation 3.6 for each combina-
tion of the parameter Ia and AMC.

Considered days Ia
for AMC assessment 0.050S 0.075S 0.100S 0.125S 0.150S 0.175S 0.200S

1 day 59% 66% 65% 60% 48% 39% 35%
2 days 55% 67% 72% 67% 59% 48% 43%
3 days 54% 62% 66% 65% 61% 51% 49%
4 days 53% 58% 61% 63% 62% 56% 54%
5 days 51% 54% 57% 58% 60% 55% 55%

Starting from the estimated parameters, the calibration of the values of CN

(Table 3.2) is obtained by matching measured and simulated runoff volumes for

the significant events reported in Table 2.5. The resulting range of CN is wide

(74.0-95.6) and appears to be dependent on the antecedent moisture conditions:

higher the degree of saturation of soil, lower the value of CN. Absolute values

of the curve number, CNA, i.e. referred to the AMC conditions of each event,

are obtained by means of equation 2.5. The interval of CNA ranges between

67.7 and 90.1 and is representative of highly fissured rocky terrains, dominant

presence in this basin (95% of the basin area). Excluding the values 67.7 and

71.5, corresponding to two very-prolonged rainfalls (longer than 3 hours and

half) occurred on August 2013 and on 2016, the maximum relative difference is

about 10 %, with a mean of 81.5. Considering also these lowest values, the mean

of CNA slightly decreases to 79.2, with a maximum relative difference less than

15%. Nevertheless, these values are comparable to those found by Hawkins et al.

(2010) and D’Asaro and Grillone (2012), corresponding to a “violent behaviour”

of the catchment. This response pattern is characterized by a sudden growth

of CN when rainfall overcomes a determined threshold, up to reach an higher

quite-stable value CN∞.



64 Results and discussion

E
v
en

t
A
M

C
C
N

A
M

C
N

E
W

C
N

N
E
W

C
N

A
Q

P
Q

P
1

Q
P
2

Q
P
3

Q
C
N

H
Q

C
N

H
−
M

C
f
C

C
Π

s
C
u

(l/
s)

(l/
s)

(l/
s)

(l/
s)

(l/
s)

(l/
s)

(cm
/
h
)

8
/
1
5
/
2
0
1
1

I
8
1
.3

I
8
1
.3

6
4
.6

0
.2

0
.1

0
.1

0
.1

0
.1

0
.1

0
.5
4

0
.0
0
0
1

0
8
-0
9
-1
3

II
9
0
.6

I
9
5
.6

9
0
.6

1
0
.2

6
.6

8
.2

9
.9

9
.7

9
.6

1
.2
8

0
.0
4
3
5

8
.7
/
4
.3

1
.4
4

8
/
1
9
/
2
0
1
3

I
9
0
.4

I
9
0
.4

7
9
.8

2
2
.4

5
.7

8
.0

8
.2

2
2
.3

2
2
.8

2
.5
9

0
.0
1
2
3

8
.3
/
3
.7

1
.9
7

8
/
2
4
/
2
0
1
3

I
8
3
.3

I
8
3
.3

6
7
.7

1
5
.8

1
3
.1

1
3
.5

1
3
.8

1
6
.2

1
5
.9

1
.7
6

0
.0
5
3
5

1
3
.7
/
1
3
.2

1
.7
0

0
8
-1
2
-1
4

I
8
8
.4

I
8
8
.4

7
6
.2

1
5
.7

4
.3

5
.2

8
.4

1
5
.9

1
5
.7

3
.4
6

0
.0
1
1
6

4
.6
/
4
.6

1
.7
2

8
/
3
1
/
2
0
1
4

I
9
0
.1

I
9
0
.1

7
9
.3

1
2
.9

5
.8

6
.0

6
.3

1
3
.1

1
3
.4

1
.1
5

0
.0
2
7
4

1
1
.7
/
9
.8

0
.9
6

0
8
-0
4
-1
5

III
6
2
.5

I
9
0
.4

7
9
.8

2
8
.6

3
1
.3

3
2
.9

3
6
.1

3
2
.1

3
1
.9

4
.4
6

0
.0
6
6
0

1
0
.9
/
5
.1

2
.0
0

0
9
-0
3
-1
5

I
9
2
.8

I
9
2
.8

8
4
.4

3
4
.4

4
1
.8

4
2
.6

4
6
.5

4
2
.0

4
1
.1

2
.6
3

0
.1
0
3
4

8
.3
/
6
.6

1
.5
1

7
/
1
3
/
2
0
1
6

III
7
4
.0

III
7
4
.0

8
6
.7

2
8
.5

3
0
.0

4
1
.9

5
3
.6

3
3
.0

2
8
.1

5
.0
0

0
.0
8
1
9

7
.3
/
5
.4

1
.3
6

0
8
-0
5
-1
6

II
7
6
.0

I
8
8
.5

7
6
.0

2
0
.6

2
1
.9

2
3
.0

2
4
.7

2
2
.7

2
2
.5

3
.3
8

0
.0
8
5
3

7
.1
/
6
.7

1
.9
3

0
8
-0
9
-1
6

III
5
0
.3

I
8
5
.7

7
1
.6

3
8
.8

4
6
.3

(3
9
.5
)

4
9
.7

(3
9
.9
)

5
1
.5

(4
0
.6
)

4
9
.0

(3
9
.8
)

4
8
.5

(3
9
.7
)

2
.3
4

0
.1
7
6
2

9
.6
/
8
.6

1
.5
6

6
/
2
1
/
2
0
1
7

II
8
3
.9

II
8
3
.9

8
3
.9

1
3
.3

1
3
.6

1
9
.7

2
6
.9

2
1
.1

1
4
.1

4
.6
8

0
.0
2
4
5

1
1
.7
/
4
.7

1
.1
3

T
ab

le
3
.2
:
R
elevan

t
featu

res
o
f
sim

u
la
ted

ru
n
o
ff
d
isch

a
rg
es.

A
M

C
:
a
n
teced

en
t
m
o
istu

re
co
n
d
ition

s,
accord

in
g
to

S
oil

C
on

servation
S
erv

ice
(19

7
2);

C
N
:
valu

es
of

cu
rv
e
n
u
m
b
er

for
th
e
ro
ck
y
p
o
rtio

n
o
f
th
e
b
a
sin

,
rela

ted
to

A
M

C
;
A
M

C
N

E
W
:
an

teced
en
t
m
oistu

re
con

d
ition

s,
a
cco

rd
in
g
to

th
e
n
ew

assessm
en
t
m
eth

o
d
;
C
N

N
E
W
:
a
b
so
lu
te

va
lu
es

o
f
cu
rv
e
n
u
m
b
er

for
th
e
ro
ck
y
p
ortion

of
th
e
b
asin

,
related

to
A
M

C
N

E
W
;
C
N

A
:
C
N

N
E
W

n
o
rm

alized
b
y
u
sin

g
eq
u
a
tio

n
2
.5
;
Q

P
:
m
ea
su
red

p
ea
k
d
isch

arge;
Q

P
i :

p
eak

d
isch

arge
com

p
u
ted

b
y
settin

g
th
e
slo

p
e
velo

city
U
S
a
n
d
th
e
ch
a
n
n
el

velo
city

U
C

eq
u
a
l
to

1
)
0
.3
,
2
m
/
s;

2
)
1
,
1
m
/
s;

3
)
3,

2
m
/s);

Q
C
N

H
:
p
eak

d
isch

arge
com

p
u
ted

a
cco

rd
in
g
to

th
e
S
C
S
-C

N
H

p
ro
ced

u
re;

Q
C
N

H
−
M

C
:
p
ea
k
d
isch

a
rg
e
co
m
p
u
ted

a
cco

rd
in
g
to

th
e
S
C
S
-C

N
H

p
ro
ced

u
re

an
d
k
in
em

atic
w
ave

rou
tin

g
w
ith

m
atch

ed
d
iff
u
siv

ity
;
f
C
:
in
fi
ltra

tio
n
ra
te;

C
:
ru
n
o
ff
co
effi

cien
t;
Π

s :
p
erfo

rm
a
n
ce

p
aram

eter
accord

in
g
to

th
e
S
ch
u
lz

criterion
(S
ch
u
lz

et
al.,

19
9
9)

(th
e
fi
rst

valu
e
refers

to
h
y
d
ro
g
ra
p
h
sim

u
la
ted

b
y
th
e
n
ew

p
ro
ced

u
re

S
C
S
-C

N
H

w
ith

con
stan

t
U
C
,
th
e
secon

d
on

e
to

th
e
n
ew

p
ro
ced

u
re

S
C
S
-C

N
H

w
ith

k
in
em

atic-w
ave

ro
u
tin

g
);

C
u
:
m
a
x
im

u
m

va
lu
e
o
f
th
e
C
ou

ran
t
n
u
m
b
er

reach
ed

d
u
rin

g
th
e
C
N
H
-M

C
sim

u
la
tion

.



3.4. RESULTS OF HYDROLOGICAL SIMULATIONS 65

3.4 Results of hydrological simulations

The model performance analysis begins with the simpler model (Gregoretti

and Dalla Fontana, 2008), that computes the excess rainfall by the SCS-CN

method and routes it to the basin outlet according to constant flow velocities

(different values along slopes US and channel UC). We use as example the

event recorded on 19 August 2013 (Figure 3.6). We consider it a well-suited

rainfall for the test of event-based hydrological models. It was produced by a

convective rainstorm (8.7 mm in 30 minutes) with completely dry conditions of

the basin (0.4 mm of cumulative rainfall in the previous two and five days, AMC

I). For matching the measured and simulated volumes, we set CN=90.4 for the

rocky surfaces of the catchment (Table 3.2), corresponding to an absolute value

CNA=79.8, and CN=61.0-75.0 (CNA=39.6-55.8) for the remaining portions.

Furthermore we assume US = 0.7 m/s for rocky cliffs, 0.1 m/s for scree slopes

and UC = 1 m/s, supposed constant along the entire rocky channel. This

last statement was assumed congruent with the topographic features of the

channel network, constituted by abrupt steps linked by highly sloped reaches,

that prevented any fine calibration of the channel velocity at the outlet. The

original version of the hydrological model is unable to reproduce the discharge,

both on peak (about one third of measured) and timing tP (delayed of about

4 minutes). Varying the couples of values adopted for UC and US between 2

and 10 m/s, only the peak time prediction can be improved (Figure 3.6 shows

the results achieved with UC = US = 3 m/s, dashed line), while no significant

progresses are obtained on the peak discharge. The only way to reproduce the

maximum runoff is the modification of the total runoff volume, up to three

times larger than that observed (dash-dotted line in Figure 3.6), after assuming

Ia = 0.1S.

In general, the shapes of the simulated discharges are particularly different

with respect to those recorded in the field. Even by coupling the SCS-CN

method with the matched diffusivity kinematic model, the description of the
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Figure 3.6: Simulations of the runoff hydrograph measured on 19 August 2013,
carried out estimating the excess rainfall through the SCS-CN model and SCS-
CNH procedure with both constant routing velocity approach and Muskingum-
Cunge routing method (MC). Parameters are setted ks = 9 m1/3/s, b1 = 0.26
and B0 = 2 m. Rainfall RG1 refer to the Dimai monitoring station, RG2 to the
Pomagagnon Fork rain gauge. Rainfalls have been shifted in time to account for
the areas of influence of the two rain gauges used to sample the rainfall. From
Gregoretti et al. (2016b).

runoff hydrograph is not improved (Figure 3.6, dotted line). Discrepancies are

due to an overestimation of initial infiltration of the rainfall. As a consequence,

the model predicts a smaller peak discharge and a delayed peak time. Using

either the initial model or the improved channel routing method, tP is always

too large and, consequently, the value of the peak flow is too small. Figure

3.7 helps to explain this behaviour. It shows the along-channel distribution of

the extent of the hillslope areas that provide inflow to the channel network,

highlighting in the inserts the discharges entering in the rocky channel about

250 m far from the basin closure section. The hydrographs evaluated by using

the SCS-CN method and constant routing velocities US display a too slow rising

limb of the curve, a low peak value and a duration greater than that observed.

The use of a more accurate approach for the channel routing does not improve
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Figure 3.7: Along channel distribution the contributing areas AS that supply
runoff to the rocky channel. The inserts show two representative hydrographs
corresponding to a channel section located 250 m far from the closure section,
and achieved by means of: i) the SCS-CN method and various constant routing
velocities US (left insert), ii) the SCS-CNH procedure and an hillslope routing
velocity US=0.7 m/s (right insert), and iii) the SCS-CNH procedure coupled
with the Muskingum-Cunge method (kS = 9m1/3/s) for simulating runoff prop-
agation along hillslope surfaces (right insert). From Gregoretti et al. (2016b).

the shape of the modelled hydrograph, even resulting in a worse outcome.

A first step to improve the reproduction of the discharges is obtained through

estimating the excess rainfall by means of the Horton simplified equation. Figure

3.8 exhibits the results of simulations carried out for the runoff events observed

on 9, 19 and 24 August 2013, and 12-31 August 2014 and already presented

by Gregoretti et al. (2016b). Peak runoff discharges are satisfactory approxi-

mated (the maximum difference is about ∼ 5% for the event on 9 August 2013).

Peaking times are almost well reproduced for all one but the events: differences

varies in the range 0.5-2.5 minutes, excluding the 24 August 2013 event, for

which only the second runoff peak is simulated, besides 4 minutes in advance.

Figure 3.9 highlights the modelling for the events occurred between 2015 and

2017. Also in these circumstances, both peak discharges and peaking times are

satisfactory reproduced. Differences in peak runoff vary between 2% and 18%.
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Figure 3.8: Comparison between observed runoff discharges (continuous line)
and those simulated by using the SCS-CNH procedure with i) constant routing
velocities (red lines) and ii) Muskingum-Cunge runoff routing along the channel
(blue lines). Parameters US = 0.7 m/s, b1 = 0.26, B′ = 2 m, and kS = 9 m1/3/s
are set. The observed events occurred on: 9 August 2013 (a), 19 August 2013
(b), 24 August 2013 (c), 12 August 2014 (d) and 31 August 2014 (e). Red and
yellow corresponds to rainfall and excess rainfall concerning the Pomagagnon
Fork rain gauge, while blue and cyan refers to the Dimai monitoring station.
Rainfalls are shifted in time to the centre of the relevant influence areas (see
Section 2.1.3) These results have already been presented by Gregoretti et al.
(2016b).
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The maximum error takes place on the second runoff peak of the event occurred

on August 9th, 2016. Peaking times range in the interval 0.5-3 minutes, as

occurred in the first 2 years of observations.

In all the computations, the only variable parameter is the infiltration rate

fC , while UC (= 1.0 m/s) and US (= 0.7 m/s) are kept fixed. The infiltration

rate, fC , is varied considering the terrain moisture, i.e. on the basis of previous

rainfalls (Beven, 2002). A sensitivity analysis on these three parameters is

carried out to explain how the variation of each of them influences the output

discharge and is shown in Figure 3.10. When US is increased, the peak discharge

QP proportionally grows, while the peak time tP reduces (left panel). Just the

opposite is observable when fC is increased (right panel). UC only influences the

timing of the hydrograph. A small variation of UC , in the interval 1-1.2 m/s,

entails a slight reduction of QP (5%) and an anticipation of about 1 minute

in tP . A further increase of UC (up to 2 m/s) causes a time shift of some

minutes in advance to the discharge. In summary, for the considered rainfall

events, the SCS-CNH approach in combination with constant routing velocities

appears to produce a robust estimate of the runoff discharge for 2 ≤ fC ≤ 3

cm/h, 0.5 ≤ US ≤ 0.9 m/s and 1.0 ≤ UC ≤ 1.2 m/s. These runoff velocities are

comparable with those estimated from the videos recorded by the monitoring

station on 10 July 2010, 18 August 2011, and 19 August 2013. Also the variation

range for fC seems admissible, compatible with those measured by Li et al.

(2011) in dolomite rocky outcrops. These values could be explained by the high

fracturing degree of the Dolomite rock masses (Marchi et al., 2008). At the

same time, the influence of the modelling approach cannot be excluded neither.

However, an additional support to the goodness Hortonian approach is obtained

plotting fC values against the cumulative rainfall of the previous 2 days (Figure

3.11, left panel). All but two points tend to be arranged along a straight line.

The events that do not follow the alignment are those occurred on August 13th

2016 and June 21st 2017. Differently to the other events, they occurred in

AMC II and III (both for the old and the new approach, 2- or 5-days previous
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Figure 3.9: Comparison between observed runoff discharges (continuous line)
and those simulated by using the SCS-CNH procedure with i) constant routing
velocities (red lines) and ii) Muskingum-Cunge runoff routing along the channel
(blue lines). Parameters US = 0.7 m/s, b1 = 0.26, B′ = 2 m, and kS = 9 m1/3/s
are set. The observed events occurred on: 04 August 2015 (a), 03 September
2015 (b), 13 July 2016 (c), 05 August 2016 (d), 09 August 2016 (e), and 21 June
2017 (f). Red and yellow corresponds to rainfall and excess rainfall concerning
the Pomagagnon Fork rain gauge, while blue and cyan refers to the Dimai
monitoring station. Rainfalls are shifted in time to the centre of the relevant
influence areas (see Section 2.1.3).
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rainfall). A singular behaviour appears by observing that the linear trend for

AMC I events is also complied by the maximum intensity of some events that

did not generate any runoff (Figure 3.11, right panel). These events have been

selected considering that their maximum rainfall intensity resulted higher than

the infiltration rate fC , evaluated by means of the linear interpolation equation

traced in the left panel of the Figure 3.11.

The outcomes given by the SCS-CNH method with constant routing veloc-

ities show a certain degree of approximation. The time tP is generally twice

the real value, and the tails of simulations are shorter than those observed.

A marked improvement is obtained when the runoff routing through the rocky

channel is simulated by means of the matched diffusivity kinematic-wave model.

Figure 3.6, referring to the event of 19 August 2013, shows the results of simula-

tions carried out by setting ks = 9 m1/3/s (Gregoretti and Dalla Fontana, 2008),

b1 = 0.26 (Leopold and Maddock, 1953; Orlandini and Rosso, 1996), and B0 =

2 m (field measurements). The peak discharge, the vertical rising limb up to

the peak, the subsequent rapid decrease, and the tail of the runoff hydrograph

are all well reproduced. These findings apply in the same way to the various

simulations of the events observed during the 5 years of monitoring (Figures 3.8

and 3.9).

In addition to the graphical comparison, the performance of the different

methodologies are evaluated by means of the performance parameter Πs (Schulz

et al., 1999):

ΠS = 200

∑n
i=1 |qc,i − qo,i |qo,i

n q2oMax

(3.7)

where n is the number of observed discharges, qc,i and qo,i the corresponding

values of computed and observed discharges, and qoMax the maximum value of

observed discharge. This parameter is widely used for evaluating the goodness

of hydrological models, and a good performance is ensured by values of ΠS

in the range 3-10 (Foglia et al., 2009). For the SCS-CNH method, ΠS takes

values between 4.6 and 13.7, with a mean of 9.3 and the performances of 4
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Figure 3.10: Sensitivity analysis about the parameters of the SCS-CNH model
coupled with hillslope constant velocities: US (upper panel), UC (central panel),
and fC (lower panel). The best simulation of the event occurred on August 19th,
2013 is denoted by a thick continuous line (carried out with US = 0.7 m/s, UC =
1 m/s, fc = 2.59 cm/hr). It correctly reproduces the peak value and the peak
time of the observed runoff. Adapted from Gregoretti et al. (2016b).
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Figure 3.11: Hortonian infiltration rate fC plotted against the previous 2 days
cumulative rainfall. In the left panel, all the events are plotted. The intercept
and angular coefficient, evaluated only considering the AMC I events, are 3.53
cm/hr and -0.19 cm/(mm hr). In the right panel, we plot the infiltration rates
fC of the AMC I events. The red squares represent the maximum rainfall
intensity of some events with no runoff and maximum rainfall intensity higher
than the infiltration rate fC assessed with the previous equation.

events classified as sufficient, i.e. ΠS larger than 10 (Table 3.2). The better

performance obtained by using the matched diffusivity kinematic-wave model

are confirmed by the parameter Πs; calculated values are smaller than those

resulting from the SCS-CNH method with the constant velocity approach, with

a mean of 6.6, and, all but one, lower than 10. Furthermore, it is noteworthy

that the values attained by the weighting factor X (equation 2.18) are close to

0.5 except at the initial time steps. This implies that the diffusive term in the

governing flow equation 2.9 is almost negligible.

In order to accomplish the sensitivity analysis in its entirety, we evaluate

how would change computing excess rainfall by using the runoff coefficients,

reported in Table 3.2, and the Hortonian components alone. For this second

instance, we consider two sub-cases: the values fC , already used for the simula-

tions and reported in Table 3.2, and the values fCV , that ensures the matching

between measured and simulated runoff volumes. The comparison are displayed

in Figures 3.12 and 3.13. In the runoff coefficient case, the modelled hydrographs

generally replicate the evolution of the precipitation. When rainfalls are charac-
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Figure 3.12: Comparison between observed discharges (continuous line) and
those simulated by computing the excess rainfall with i) runoff coefficient
(dashed blue lines), ii) the Hortonian component fC alone (dash-dotted black
lines), and iii) the Hortonian component fCV that guarantees the matching be-
tween observed and simulated runoff (dash-dotted red lines). Parameters US =
0.7 m/s, b1 = 0.26, B′ = 2 m, and kS = 9 m1/3/s are set. The observed events
occurred on: 9 August 2013 (a), 19 August 2013 (b), 24 August 2013 (c), 12
August 2014 (d) and 31 August 2014 (e). Red bars correspond to the rainfall
recorded by Pomagagnon Fork rain gauge while blue bars correspond to the
rainfall recorded by Dimai monitoring station.



3.4. RESULTS OF HYDROLOGICAL SIMULATIONS 75

terized by large pulses, the resulting hydrographs overestimate those recorded;

otherwise the model output results in smaller peaks and longer durations than

those measured by the monitoring station. In the second case, using the values

fC , a good replication of the observed hydrographs is obtained when rainfalls

are characterized by large pulses including most of cumulative precipitation,

for example 19th August 2013, 12th August 2014, 13th July 2016, or 21st June

2017. For the other events, both peak discharges and runoff volumes are un-

derestimated. For reaching the equality between discharge volumes, we need to

reduce the values fC to the lower values fCV . The consequence are the highly

overestimated peaks that simulated discharges exhibit.

The latter tested approach considers the routing of runoff along the hillslope

paths by means of the matched diffusivity kinematic-wave equation. Results

are similar to those obtained with the constant velocity method (right insert

of Figure 3.7), but the computational time required for the model execution is

larger of about one order of magnitude. The outcomes of either a constant ve-

locity or the matched diffusivity kinematic-wave equation model are essentially

dominated by the extent of contributing areas. The along-channel summing of

the various lateral inflows largely increments the in-channel discharge and, con-

sequently, the wave celerity (see equation 2.21). As explained before, the flood

wave of this runoff contribution can thus reach and include previous smaller

waves, already routing along the channel. On the other side, surface runoff

routing along hillslopes cannot increase as fast as in the channel. The dis-

charge values are lower, whereas the gradients of the hillslope paths are higher

than those along the channel (Figure 3.14). Therefore, the wave celerity (equa-

tion 2.21) varies in a small range and so the possibility of subsequent waves to

merge together is limited. For this reason, runoff routing in sloping areas can

be approximated through a constant velocity approach. This behaviour is in a

partial contradiction with the viewpoint of Wooding (1965) and Robinson et al.

(1995). They suggested that, for small size mountain watersheds, the hydrolog-

ical dominating behaviour is the hillslope response rather than the channel one,
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Figure 3.13: Comparison between observed discharges (continuous line) and
those simulated by computing the excess rainfall with i) runoff coefficient
(dashed blue lines), ii) the Hortonian component fC alone (dash-dotted black
lines), and iii) the Hortonian component fCV that guarantees the matching be-
tween observed and simulated runoff (dash-dotted red lines). Parameters US =
0.7 m/s, b1 = 0.26, B′ = 2 m, and kS = 9 m1/3/s are set. The observed events
occurred on: 04 August 2015 (a), 03 September 2015 (b), 13 July 2016 (c), 05
August 2016 (d), 09 August 2016 (e), and 21 June 2017 (f). Red bars corre-
spond to the rainfall recorded by Pomagagnon Fork rain gauge while blue bars
correspond to the rainfall recorded by Dimai monitoring station.
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Figure 3.14: Comparison between percentage slopes in channel network and in
slope paths. The larger values of mean slope in sloping areas permits to approx-
imate the routing along hillslope paths through a constant velocity approach.

suggesting to place focus on the hydrodynamic routing of discharges through

hillslopes, differently to our findings. As a consequence, the non-linear storage

model developed by Horton (1938) cannot reproduce the distribution of mea-

sured discharges, neither by means of the modified form proposed by Agnese

et al. (2001).

The work of D’Asaro and Grillone (2012) suggested us to test also the pos-

sibility that the sudden rising of observed runoff events could be due to a basin

partial contributing to the delivering of discharges. To support or reject this

assumption, we carried out some additional modelling, excluding the upper part

of the basin from the contributing area. This portion of catchment (25% of the

basin area) is characterized by restricted slopes and corresponds to the influ-

ence area of the Pomagagnon rain gauge. The simulated hydrographs does not

describe discharges better than what already achieved (shown in Figures 3.6,

3.8 and 3.9), but are obtained with values of parameters (US = 2 m/s and B0

= 0.25 m) that seem physically less significant. As a consequence, it is possible

to affirm that all the basin is likely contributing to runoff.

The outcomes illustrated in this Section suggest some general statements:
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• Routing the excess rainfall, assessed by using the SCS-CN method, with a

constant velocity approach does not lead to reliable results in rocky head-

water catchments. For each hillslope contributing area yielding surface

runoff to the channel, this procedure produces too-slow growing discharge

hydrographs, less peaked and too much elongated in time (left insert of

Figure 3.7). For this reason, their total contribution is unable to repli-

cate the observed impulsive shape of the recorded hydrographs. Neither

the improving of channel routing by means of the matched diffusivity

kinematic-wave equation leads to better results, as illustrated in Figure

3.6.

• When the direct runoff is estimated through the SCS-CNH method, and

the along channel routing is carried out taking a constant velocity, the

hydrograph peak can be detected but without its typical impulsive shape.

• To reproduce both the peak and shape of the observed hydrographs, a

kinematic model with matched diffusivity is needed.

• The constant velocity approach and the matched diffusivity kinematic-

wave model applied to the routing along slope paths seem giving compa-

rable results, because slope paths are characterized by very high gradients

(see right insert of Figure 3.7).

3.5 Considerations on the adopted modelling pa-

rameters

In the previous Sections, we report no details about the structural param-

eters used in the surface runoff propagation modelling. The propagation has

been performed by using the finest available LiDAR DEM, with a spatial res-

olution ∆x of 1 meter. As reported in the Section 2.1, the use of an accurate

topographic dataset is fundamental for a reliable hydrological modelling (Quinn

et al., 1991; Garbrecht et al., 2001; Degetto et al., 2015). For this reason, we
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chose to set the simulation time step ∆t in order that the computational con-

strains due to the numerical method would have been met. As reported in

Orlandini and Rosso (1996), no general conditions for accuracy are a priori es-

tablished for the Muskingum-Cunge method. In general, it is recommended to

satisfy the empirical criterion C1 ≥ 0. Cunge (1969) found that, in the linear

analysis, the numerical dispersion could result minimised if the Courant number

Cu is maintained close to 1. In the nonlinear case, instead, Cu can vary cell-by-

cell, and it is not possible verify if accuracy is kept. Orlandini and Rosso (1996)

suggested a threshold value Cu∗ = 3 to avoid fluctuations in the modelling.

The definition of the Courant number is Cu = ck
∆t
∆x , with ck resulting from

equation 2.21.

As a first test, we maintained the time step ∆t set by KRERM (Gregoretti

and Dalla Fontana, 2008):

∆t =
∆x

max(US)
(3.8)

with the maximum slope velocity max(US) = 0.7 m/s, and ∆t = 1.43 s. In

Table 3.2, we report the maximum values of Cu reached along the entire channel

during the modelling of the events. The maximum value results Cu = 2.00,

reached during the simulation of the event occurred on August 4th, 2015. On

account of this result, we kept the assumed ∆t. In Section 3.6, we will present

further simulations performed on the two catchments described in Section 2.4

that are wider than the Dimai watershed. For these basins, we found that the

resulting Cu were too big (maximum Cu = 5.8) if we maintained ∆t = 1.43 s.

Considering to be truthful the threshold Cu∗ = 3.0, we set ∆tnew = 0.5dt. In

this way, the maximum Cu resulted 2.8.

3.6 Robustness of the model

In order to verify the predictability of the improved hydrological model,

coupling the SCS-CNH method with a constant velocity routing along slopes
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Basin Date Recorded Rain gauge Rainfall Rainfall AMC Time tP
phenomenon depth duration (GMT) (GMT)

(mm) (min)

Acquabona 7/21/2016 solid-liquid RG3 13.6 30 AMCI 18:33 18:36
Punta Nera front transit
Acquabona 8/14/2016 solid-liquid RG4 18.6 40 AMCI 20:01 20:06
Punta Nera front transit
Rovina di 7/23/2015 solid-liquid RG5, RG6 36.4 40 AMCI 15:06 15:07
Cancia front transit
Rovina di 8/4/2015 runoff arrival RG5, RG6 34.8 40 AMCI 19:37 19:38
Cancia

Table 3.3: Type of recorded event, the rain gauge used for simulation, rainfall
depth and duration, AMC condition, occurrence time of the event, and sim-
ulated runoff peak time tP . For the location of the rain gauges, see Figure
2.10.

and a matched diffusivity kinematic-wave routing along the channel network,

we apply it to two other dolomitic sites prone to runoff-generated debris flows,

Acquabona Punta Nera and Rovina di Cancia. For the features of the two

basins, the reader can refer to Section 2.4. According to Rengers et al. (2016),

the comparison is carried out evaluating the difference in time between the peak

of simulated discharges and runoff arrival/debris flow transit in the triggering

area.

Table 3.3 reports the characteristics of the precipitation (rainfall depths,

durations, and corresponding AMC) recorded by four rain gauges (Acquabona

Punta Nera monitoring station, RG3; Faloria, RG4; Rovina di Cancia, RG5 and

RG6, see Figure 2.10), as well as the timing of runoff arrival and/or debris flow

occurrence. The considered rainfall events triggered debris flows on July 21st,

and August 14th, 2016 in the basin of Acquabona Punta Nera, and on July 23rd,

and August 4th, 2015 at Rovina di Cancia.

Following the findings reported in Section 3.3, the CNA coefficient has been

set equal to 81.5 for rocky surfaces, whereas the CN values for mountain pine

slopes (CN=61), and for scree slopes (CN=65-70, depending on thickness and

texture of deposits) have been taken from the literature. The slope velocity,

US is assumed equal to 0.7 m/s for rocky path and 0.1 m/s for the remaining

terrains. The coefficient fc for rocky surfaces is obtained through the linear rela-

tionship shown in the left panel of Figure 3.11, whereas direct field observations
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Figure 3.15: Simulated runoff hydrographs, with the timing of de-
bris/hyperconcentrated flow pointed by an arrow, for the rainfall events recorded
at: a) Acquabona Punta Nera, 21 July 2016; b) Acquabona Punta Nera, 14 Au-
gust 2016; c) Rovina di Cancia, 23 July 2015; d) Rovina di Cancia, 4 August
2015. The values of the parameters adopted in the hydrological model are: US =
0.7 m/s and kS = 9 m1/3/s, B′ = = 6 m for Acquabona Punta Nera and 6.7 m
for Cancia. Rainfalls are shifted in time to the centre of the relevant influence
areas.

have been carried out to estimate fc on the scree. In particular, we performed

some measures of infiltration rate by means of a double ring infiltrometer the

day before the event of July 23rd, 2015, that resulted in fc = 10.8 cm/hr. This

high value corresponds to AMC I conditions and is set for every event in both

the watersheds. Furthermore, for the terrain with mountain pine we assumed fc

= 5.5 cm/hr, following Li et al. (2011). Finally, the outlet widths for Acquabona

Punta Nera and Cancia basins are about B0 = 6.0 and 6.7 m, respectively.

Figure 3.15 shows the simulated discharges and the timing of debris flow

initiation. Rainfalls recorded by the rain gauges were shifted to the centres of

the basins, as already done for the Dimai catchment. In Acquabona Punta Nera,
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we observe that debris flows initiate just before the peak of simulated runoffs,

while in Rovina di Cancia, debris flow (23 July 2015) and hyperconcentrated

flow (4 August 2015) initiations are almost coincident with the simulated runoff

peak (Table 3.3). The calculated hydrographs for the events that occurred in

Rovina di Cancia are different from those already discussed and published by

Gregoretti et al. (2016b). For the event of July 23rd the differences are slight, but

for the hydrograph of August 4th differences are more evident. The discrepancies

between these results and Gregoretti et al. (2016b) are due to three factors:

1. The previous days of cumulative rainfall to consider for evaluating AMC

has been switched from five to two;

2. We have modified the linear relationship for assessing the infiltration rate

fC ;

3. The CNA has been set equal to 81.5, instead of 79.8.

With these changes, the simulated hydrographs seem to agree with the recorded

time-lapse videos of the two events better than those of Gregoretti et al. (2016b).

Recorded videos show that flow levels were very similar for the two events, with

the second event lasting only few minutes longer than the first.

A possible explanation for the delay between debris flow timings and simu-

lated runoff peak times in Acquabona Punta Nera could be due to the difference

in the triggering mechanism in the two basins. In Rovina di Cancia, as a result

of field exploration of the channel upstream the triggering area, we can assume

that the discharge is continuous, because there is no evidence for a dam break

phenomenon caused by blockage of the channel. Instead, in Acquabona Punta

Nera, due to the huge availability of loose sediments in the catchment, we cannot

exclude debris flow initiation from mass failure of in-channel sediment deposits,

similar to that pointed out by McGuire et al. (2017). Consequently, debris flow

initiation could be plausibly earlier than the peak of the runoff discharge. Fur-

thermore, the largest time lag between debris flow occurrence and runoff peak

(5 minutes) corresponds to a rainfall recorded by RG4, about 1.8 km far from

the centre of Acquabona Punta Nera basin. For this reason, the precipitation
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could not correctly represent the effective rainfall fallen over the basin.

The obtained outcomes are consistent with the inception mechanisms of de-

bris flows. Indeed, in both the cases, debris flow triggering is strictly related to

the destabilizing action exerted by runoff on in-channel sediment layers. Hence,

a small time lag between the hydrograph peak simulation and the triggering

instant of debris flow implies a rather robust performance of the rainfall-runoff

model. These findings are completely in agreement with those of Rengers et al.

(2016), who compared the peak times of modelled discharges with those of cor-

responding stage hydrographs of occurred debris flows, concluding that hydro-

logical models can emulate the initiation time of runoff-generated debris flows.

This similar behaviour took place although the difference in the implemented

excess rainfall generating process, due to the distinct features of the analysed

catchments. Rengers et al. (2016) evaluated excess rainfall by means of the

Green-Ampt approach, i.e. a saturation-excess runoff production mechanism,

whereas we used an infiltration-excess method, as the Horton equation.

The capability of the developed model to catch the runoff peak time with

good accuracy suggests a potential use in early warning systems for evaluating

the debris flow occurrence time. A further application could also be to estimate

the building-up of the solid-liquid hydrograph required to execute debris flow

propagation models. For example, the water discharge runoff contributing to

the debris flow formation and the corresponding solid-liquid hydrograph could

be determined and propagated by using the procedure developed by Gregoretti

et al. (2012) and resumed by Gregoretti et al. (2016a) and De Paola et al.

(2017). A reliable estimate of entrainable sediment volume and, consequently,

of the potentially inundated areas is fundamental to hazard assessment and

risk evaluation, the design of appropriate structural countermeasures, and the

development of efficient emergency management regulation.
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3.7 Weaknesses of the model

As highlighted in Section 3.4, the proposed hydrological model reproduces

with good accuracy all the features of the recorded hydrographs, such as the

peak value and timing of discharges and the overall volume. Furthermore, in

Section 3.6, we showed the accuracy in predicting the occurrence times of runoff-

generated debris flows. Nevertheless, some general remarks on the weak spots

of the model need to be pointed out:

1. Despite the truth of setting Ia = 0.1S, a better characterization of the

initial losses would be useful. In some cases, such as events occurred on

August 24th, 2013 or August 9th, 2016, the model is unable to catch the

first peak of the runoff discharge;

2. The implemented Hortonian approach is congruent with the infiltration-

excess mechanism typical of the high-slopes dolomitic catchments in re-

sponse to high intensity rainstorm. On the other hand, when rainfall

intensity drops under the prescribed infiltration rate, the computation of

excess rainfall by means of the SCS-CN method is rough and, probably, not

representative of the different runoff generation process. Furthermore, the

mechanisms of storing and restitution of infiltrated rainfall is still poorly

understood. For example, longer duration events, such as those occurred

on August 24th, 2013 or August 9th, 2016, exhibit a worse behaviour when

simulated;

3. In Figure 3.11 we displayed a robust linear relationship between infiltration

rates and 2-days of cumulative previous rainfalls for AMC I events. This

relation is still missing for the events that occurred in normal (AMC II)

or wet (AMC III) moisture conditions, which, on the other hand, are very

few.
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3.8 Future developments

In Section 1.3, we mentioned the rainfall forcing to the catchments among

the major sources of uncertainty. We highlighted that the use of both the rain

gauge and the weather radar measurements has strengths and weaknesses. In

our analysis, we focused our attention on the measures recorded by rain gauges.

Their placement close to the rocky walls of the Dimai and Rovina di Cancia

headwater basins permitted to estimate with good accuracy the precipitations

hitting the catchments. At the same time, in Section 3.1, we showed that the

debris flow triggering rainfalls gauged in the initiation zone of Acquabona Punta

Nera debris flow channel resulted lower of the triggering critical thresholds esti-

mated by using the Dimai monitoring station records. Among the various causes

of this behaviour, the distance between the rain gauge position and the basin

centroid is the most influential when we consider the tremendous variability of

convective storms in Alpine areas. Orlandini and Morlini (2000) also recognized

and investigated this problem in the same geographical area, proposing the use

of the weather radar to improve the description of convective precipitations.

The use of weather radars could be very useful to take into account the spatio-

temporal variability of debris flow triggering rainfalls, increasing their benefit

as the basin size increases and the rain gauge placement is not optimal. Some

introductory analysis on radar rainfall fields have been already performed. In-

vestigated rainfall fields were surveyed by means of the weather radar placed on

the Mount Macaion (Bolzano province), about 70 km far from the study areas,

and were obtained by using the Marshall-Palmer (MP) equation for transform-

ing the recorded reflectivity into rainfall intensity. Preliminary results lead to a

general underestimation of the precipitations in the area, due to the issues that

appear by using weather radars in mountainous regions (Germann et al., 2006).

Moreover, these findings confirm the results of Orlandini and Morlini (2000),

that needed to employ some artificial neural networks for improving the rainfall

fields obtained by using the MP relationship. In the next future, we will test
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Figure 3.16: Simulated runoff hydrographs for the rainfall events recorded at Ac-
quabona Punta Nera, 21 July 2016, with the timing of debris flow pointed by an
arrow. The blue rainfall and the continuous-line hydrograph have been already
displayed in Figure 3.15 (a). The dotted-line discharge represents the surface
runoff modelled by using the rainfall corrected through the model described by
Orlandini and Lamberti (2000) (red bars) for considering the influence of wind.
Wind data were recorded by the monitoring station located in the Acquabona
Punta Nera basin.

some correction methods to make available radar data suitable for our purposes.

Another aspect that could be examined in more depth is the influence of

wind on the precipitation fallen on the steep slopes characterizing the Alpine

environment. This problem was initially addressed by Orlandini and Lamberti

(2000). They developed a simple model to describe the 3D rainfall field due

to the effects of wind speed and direction on the precipitation. The model was

later applied to the Fiames and Acquabona study cases, two catchments close

to those analysed in this work. According to the observations recorded in the

field by the monitoring stations, the presence of wind during convective events

is significant and, consequently, its effects should not be neglected. Unfortu-

nately, the monitoring station placed in the Dimai catchment is not equipped

with an anemometer and, for this reason, the influence of wind on the precipi-

tation interesting the basin is not easily probed. Furthermore, the monitoring

stations placed in the contiguous watershed Fiames and on Pomagagnon Fork

frequently recorded contrasting wind directions during the same event, produc-

ing discrepancy when we apply the correction to the Dimai events. Conversely,

the introductory analysis about wind effects on the Acquabona Punta Nera
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watershed seems corroborate the 3D model of Orlandini and Lamberti (2000).

Considering about ten events, we find an increasing in precipitation intercepted

by steep slopes of about 50% on average, ranging from 20% to 150%. As a con-

sequence, the increment in precipitations leads to the increase in the discharge

peak values and to the reduction in the delay between debris flow timings and

simulated runoff peak times (e.g. Figure 3.16 shows the event occurred on July

21st, 2016, already displayed on Figure 3.15 (a)). Moreover, these findings could

be added to the why of the debris flow triggering rainfalls do not overtake critical

thresholds.
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Chapter 4

Conclusions

The abrupt morphology and the impervious nature of the headwater catch-

ments in the Dolomites make monitoring activities challenging. A thorough

knowledge of discharge behaviour is fundamental to improve knowledge about

debris flow initiation and to model the dynamics during their triggering on scree

slopes extending at the base of rocky cliffs. The measurement facility installed

at the outlet of the Dimai headwater basin provided valuable data about the

hydrological response of this type of mountain watersheds.

We documented the hydrological response of the catchment to twelve convec-

tive rainfall events. Observed hydrographs exhibit an impulsive character, with

a well-defined initial peak, similar to that observed in the stage hydrographs

of debris flows (Berti et al., 2000; Kean et al., 2012). The surface runoff then

decreases quite rapidly, generally down to a nearly constant plateau. In this

way, the runoff hydrograph can be schematized by two rectangles: the former

high and narrow, the latter shorter and longer.

The analysis of rainfalls recorded during Summers 2011-2016 highlighted

that the ID critical thresholds evaluated by Berti and Simoni (2005) and Gre-

goretti and Dalla Fontana (2007) are good indicators of debris flow initiation

conditions. Furthermore it showed that the losses in the basin before generating

runoff can be replicated by using the SCS-CN method, modified by adopting Ia

89
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= 0.1 S, as already assumed by Gregoretti and Dalla Fontana (2008), Hawkins

et al. (2010) and D’Asaro and Grillone (2012), providing that AMC is assessed

by using the cumulative rainfall of the previous two days. In this way, the SCS-

CN method has been found to carefully compute the discharge volume, but not

the magnitude of the peak discharge and the overall shape of the hydrograph.

This inadequacy is mainly due to an incorrect estimation of the excess rain-

fall generation pattern: it is clear the overestimation of the initial infiltration

and, hence, an underestimation of the excess rainfall contributing to the flow

discharge.

For surpassing this drawback, the SCS-CN method has been coupled with

a simplified Horton equation that simulates the runoff generation process for

infiltration-excess, i.e. when the rainfall intensity is larger than a prescribed

infiltration rate, and the cumulative excess rainfall lower than that computed

accordingly to the SCS-CN procedure. The suggested methodology, denoted

as SCS-CNH, produces encouraging results. The coefficients CN , calibrated

to ensure the matching between observed and simulated runoff volumes, vary

inside a small interval of values, around an absolute value of 81.5. The value

and the timing of the peak discharge, and the total runoff volume are replicated

with a satisfactory precision.

A further improvement in replicating the overall shape of the recorded runoff

hydrographs can be obtained by means of a matched diffusivity kinematic model,

suggested for the runoff routing along the channel. The almost vertical raise of

the runoff discharge, and the decreasing limb are modelled with good accuracy,

while the maximum discharge remains essentially unchanged.

The robustness of the model is tested by comparing the simulated runoff

peak times and the timing of debris/hyperconcentrated flow occurred in two

neighbouring monitored catchments. Differences in timing result in few minutes,

ensuring a reasonably good predictability of the model.

There is still some rooms of improvement in the model. The assessment of

direct runoff, not subject to the Hortonian law, by using the SCS-CN method



91

is not completely representative of the real processes. Furthermore, the rate of

change of the infiltration rate with antecedent moisture condition is adequately

understood only for AMC I events, remaining not completely clear for AMC II

and III events, that, on the other hand, were very few.

In any case, the present dataset is a unique opportunity to test any other

hydrological model for providing a plausible input to debris flow models. More-

over, results achieved by the present work can be extended to similar mountain

watersheds that, due to their morphology, are ungauged.
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ison of 2D debris-flow simulation models with field events. Computational
Geosciences, 10(2):241–264.

Rickenmann, D. and Zimmermann, M. (1993). The 1987 debris flows in Switzer-
land: documentation and analysis. Geomorphology, 8(2-3):175–189.

Rinaldo, A., Marani, A., and Rigon, R. (1991). Geomorphological dispersion.
Water Resources Research, 27(4):513–525.

Robinson, J. S., Sivapalan, M., and Snell, J. D. (1995). On the relative roles of
hillslope processes, channel routing, and network geomorphology in the hydro-
logic response of natural catchments. Water Resources Research, 31(12):3089–
3101.
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Appendix A

Building-up and
maintenance of the
sharp-crested weir facility

A.1 Summer 2011

Figure A.1: Selection of the rocky channel for the setting up of sharp-crested
weir (25th of June 2011) and emptying.
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106 Building-up and maintenance of the sharp-crested weir facility

Figure A.2: Sharp-crested weir construction: initial operations (August 2011).

Figure A.3: Setting down of the cable of the pressure transducers to be placed
upstream the sharp-crested weir.
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Figure A.4: Building of the facility (August 2011): rock cutting for positioning
the steel plate.

Figure A.5: Building of the facility (August 2011): preparation of the upstream
basin.
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A.2 Summer 2013

Figure A.6: Removal of the huge boulder obstructing the facility. On the left,
the situation found after the rockfall occurred on August 2011; the central
panel shows the drilling of the huge boulder above the stilling basin for using
the expansive mortar; on the right, the cracked boulder, before removal.

Figure A.7: Consolidation of the torrent bed. On the left, the channel after the
removal of the huge boulder; on the right, the dug channel before building the
gabions upstream the stilling basin.



A.2. SUMMER 2013 109

Figure A.8: Re-positioning of the sharp crested weir. The upper panel exhibits
the building-up of the gabions upstream the stilling basin. The lower panels
show the finished stilling basin, without/with the sharp-crested weir (respec-
tively on the left and the right).
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A.3 Summer 2014

Figure A.9: Monitoring station after the repeated snow avalanches occurred
during Winter 2014.



A.4. SUMMER 2015 111

A.4 Summer 2015

Figure A.10: Stilling basin after the sediment transport events occurred on June
7th (upper panel), and on July 29th, 2015 (lower panel).
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A.5 Summer 2016

Figure A.11: Stilling basin before starting the monitoring season on 2016 (upper
and central panel). In the lower panel, the restoration of the facility, with the
replacement of the damaged sharp-crested weir.
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