




A Maurizio e a mia mamma





Riassunto

L’argomento di questa tesi sono i sistemi di particelle con interazione a campo medio e i
processi nonlineari ottenuti come limiti di essi. Il lavoro è suddiviso in tre parti, in cui
vengono analizzati modelli caratterizzati da tre diversi meccanismi di interazione. Nella
prima parte ci occupiamo di un’interazione tramite salti simultanei, che prende spunto da
alcuni modelli apparsi recentemente in neuroscienze, dove gli autori trattano sistemi di
neuroni in comunicazione l’uno con l’altro. Con l’obiettivo di generalizzare questo tipo di
modelli consideriamo un sistema di diffusioni con salti che interagiscono tra loro attraverso
la componente discontinua: ogni processo compie un salto principale con una certa fre-
quenza e, contemporaneamente, forza tutte le altre particelle a compiere anch’esse un salto
che però è detto salto collaterale, in quanto viene riscalato rispetto alla taglia del sistema.
Considerando diverse ipotesi sui coefficienti, ci concentriamo sulla propagazione del caos
traiettoriale e sulla dimostrazione di esistenza e unicità delle soluzioni per la corrispon-
dente SDE nonlineare. Nella seconda parte della tesi ci occupiamo di un’interazione di
tipo asimmetrico. Definiamo un sistema dove ogni particella si muove secondo una passeg-
giata aleatoria sui naturali, riflessa in zero e con un eventuale drift verso destra. In aggiunte
c’è un’interazione asimmetrica, nel senso che ogni particella viene spinta a compiere movi-
menti verso sinistra sotto l’influenza solo delle particelle che si trovano alla sua sinistra.
Ci chiediamo come questo sistema, che in assenza di interazione è transiente, possa di-
ventare ergodico a seconda della forza dell’interazione e studiamo i parametri critici sia
nel sistema ad N particelle che nel suo limite termodinamico. In particolare sfruttiamo
risultati esistenti su diffusioni che interagiscono attraverso la funzione cumulativa empirica
per evidenziare le differenze date dalla dinamica discreta. Nella terza parte ci concentri-
amo su una dinamica di Langevin per il modello di Curie-Weiss generalizzato alla quale
applichiamo un termine di dissipazione. Questo approccio è stato precedentemente usato
per rompere la reversibilità nel modello di Curie-Weiss classico ed è stato dimostrato che,
in quel caso, il sistema limite ammette una soluzione periodica. Il nostro lavoro conferma
l’emergenza di comportamenti periodici anche nel caso del Curie-Weiss generalizzato. In
particolare, possiamo dimostrare che un’accurata scelta della funzione di interazione nel
modello di partenza è tale da dare luogo ad un sistema limite in cui coesistono molteplici
soluzioni periodiche stabili.
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Abstract

In this thesis we study mean field interacting particle systems and their McKean-Vlasov
limiting processes, in particular we focus on three different interaction mechanisms, mainly
emerging from biological modelling. The first type of interaction is given by the so called
simultaneous jumps. We consider a system of interacting jump-diffusion processes that
interact by means of the discontinuous component: each particle performs a main jump and
it simultaneously induces in all the other particles a simultaneous jump whose amplitude
is rescaled with the size of the system. This peculiar interaction is motivated by recent
neuroscience models and here we depict a general framework for this type of processes. We
focus on the well-posedness of the McKean-Vlasov limits of these particle systems under
different assumptions on the coefficients and we prove a pathwise propagation of chaos
result. The second interaction we consider is an asymmetric one. We describe a system of
biased random walks on the positive integers, reflected at zero, where each particle may
perform a leftward jump with a rate proportional to the fraction of particles which are
strictly at its left. We study the critical interaction strength able to ensure ergodicity to
this system, that would be transient in absence of interaction. We compare this model
with existing models of diffusions interacting through their CDF and we highlight their
differences, mainly caused by the presence of clusters of particles in the discrete model.
The third interaction we account for is based on a dynamical version of the generalized
Curie-Weiss model. We modify a Langevin dynamics for this model with a dissipative
evolution of the interaction component, breaking the reversibility of the system. We prove
that, in the mean field limit, this gives rise to stable limit cycles, explaining self-sustained
periodic behaviors. In particular, we build a flexible model in which a suitable change in
the interaction function can result in a system which, in certain regimes of parameters,
displays coexistence of stable periodic orbits.
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Introduction

Mean-field interacting particles were firstly introduced by Kac with the aim of micro-
scopically justifying the spatially-homogeneous Boltzmann equation [56]. Since then, they
have been extensively studied due to their flexibility and their connections with nonlinear
PDE, starting from the seminal work of McKean [65] and in a great number of successive
works [48, 81, 82, 84]. It is known that the complete graph of interactions among particles
and the symmetry of the evolution are not innocent assumptions and these models give
an extremely simplified description of the physical phenomena they were introduced for.
However, they have recently received more attention because they can be used to describe
complex systems coming from biology, social science and finance, where the mean-field
assumption seems to be a reasonable one. This type of models consists in a microscopic
and a macroscopic description of a phenomenon, in a way that the nonlinearity observed
in the macroscopic behavior is explained by an interaction term at the microscopic level.
If we consider a fixed number N of particles in this microscopic description, we say that
this interaction is of mean field type because its intensity is of order O

(

1
N

)

. Under suitable
assumptions, it is possible to prove that systems of this type have the propagation of chaos
property, see [83], i.e. when the particles start from i.i.d. initial conditions they maintain
an asymptotic stochastic independence, despite the interaction. Indeed, when the size of
the system N goes to infinity, particles tend to behave independently and distributed as
the correspondent nonlinear process characterizing the macroscopic description, which is a
particular type of time-inhomogeneous stochastic process, whose dynamics depends on the
law of the process itself. Nonlinear processes arising as thermodynamic limits of mean-field
interacting particle systems, also called McKean-Vlasov processes, are non-trivial processes
and the study of their features involves different techniques, usually not needed for clas-
sical Markov processes. For instance, stopping times and compactness method are not
useful in the proof of well-posedness of the correspondent nonlinear SDE and different
approaches are needed, [48, 49, 64]. Moreover, nonlinear processes display a much richer
long-time behavior than their correspondent particle systems, they may show stable oscil-
latory laws [47, 79, 78] or multiple stationary measures, even a continuum of them [54].
This thesis is divided into three parts, in which we focus on models that are characterized
by a specific type of interaction, each of them is of mean field type. These interactions
arise mainly from biological questions, but their peculiarities make them interesting on
their own by a mathematical point of view.

ix



x Introduction

In the first part the key interaction is given by the so-called simultaneous jumps. We
consider a N-particle system of jump-diffusions in R

d, for d > 1, that can interact with
each other by means of classical mean field interactions. We endow this system with an
additional interacting mechanism, inspired by neuroscience problems [29, 43, 75]: each
particle performs a jump, that we call main jump with a certain rate and it simultaneously
induces in all the other particles a collateral jump, whose amplitude is of the order O

(

1
N

)

.
There is a dissimilarity in the treatment of the jump terms, since we expect that, in the
limit for N→ ∞, the main jump component is preserved while the collateral jump one, al-
though simultaneous, collapses into an additional nonlinear drift term. Moreover, pathwise
propagation of chaos for interacting diffusions with jumps is less widespread in literature
than the continuous case, probably because of the discontinuities in the paths and the
impossibility to use a compactness approach as in the proof of well-posedness for classical
SDE with jumps. Therefore in Chapter 1 and 2 we formally describe a general framework
for particle systems with simultaneous jumps, this is the model presented in [3, 4]. We
focus on the issues of well-posedness of the correspondent nonlinear limit process and on
the proof of pathwise propagation of chaos by means of a coupling method. Being built
as a useful tool for modelling purposes, our model is very flexible and it can be adapted
to a wide class of processes, enclosing in the same framework nonlinear processes with un-
bounded jump rates and with diffusive terms, that rarely appear in the mean field literature.

The second part of the thesis is focused on an interaction which is asymmetric. We
consider a system of N one-dimensional random walks reflected at zero and with a positive
bias. We add to this system an interaction that, for each particle, depends on the fraction
of particles strictly below the particle itself and it forces the particle to move downward.
The reason for this type of interaction comes from population dynamics. We interpret the
position of each particle on the line as the fitness level of an individual w.r.t. the environ-
ment. We suppose that each individual has an intrinsic tendency to improve, given by the
biased random walk, but the influence of the individuals worse tham him may decrease its
fitness. For this model, presented in [2], the focus is on long-time behavior, rather than
on well-posedness of the nonlinear limit. Indeed, after having defined the mean field limit
of this system, we aim to understand if this asymmetric interaction can ensure ergodicity
to a system that would otherwise be transient. With respect to the first part, we are
considering here a pure jump process and this plays a crucial role in the analysis of the
critical parameters. Indeed, in Chapter 3 we present a slight modification of the system
studied in [54, 55, 74], that can be viewed as a continuous analogue of the simplest among
the random walks with asymmetric interaction we aim to study in Chapter 4. However,
most of the results in Chapter 3 strictly depend on the continuity of the space and the
dynamics and they cannot be extended to the discrete model. We highlight in Chapter 4
the differences given by the discontinuous dynamics and how these reflect in the critical
parameters of the model.

The third part of the thesis concerns an interaction coming from a generalized Curie-



xi

Weiss model [35, 37]. We build a particle system on R
N that evolves in time according

to a Langevin dynamics, i.e. particles move continuously with the aim of minimizing the
energy coming from the Hamiltonian of the generalized Curie-Weiss model. We modify
this dynamics by providing the interaction term with a dissipative evolution. This is one
of the ways in which the reversibility of the model may be broken and it has been proven
in [24, 26] that this approach gives rise to self-sustained periodic behaviors in the nonlinear
limit. The interest in models of interacting components able to capture collective periodic
behaviors is central in several fields, for instance neuroscience, ecology or social science.
Indeed, macroscopic oscillatory behaviors are commonly observed in nature even if micro-
scopically there is no tendency to behave periodically. With this in mind, we restrict the
class of models with dissipation we defined and we obtain a Gaussian process, which we are
able to study completely. We prove that, by suitably modifying the interaction function
of the generalized Curie-Weiss model, we may recreate an interacting particle system that
shows as many stable limit cycles as we want. This confirms that the add of a dissipation
term in the time-evolution of the interaction favors the presence of self-sustained periodic
behavior for particle systems without any tendency to behave periodically. Moreover, with
a suitable choice of the interaction function we have a model which is extremely flexible
and it is able to adapt to multiple situations.

In the following, let us describe precisely the structure of the thesis and the different
models we deal with.

Part I: models with simultaneous jumps

In Chapter 1 we define a general mean field model that is characterized by the feature of
simultaneous jumps, explaining the motivation coming from neuroscience modelling. We
aim to understand if the peculiarity of the simultaneous jumps can create problems in
the proof of propagation of chaos in situations different from the ones presented in the
neuroscience literature [29, 43, 75], for example in presence of a Brownian component.
In this setting, every particle, besides its diffusive dynamics, can perform what we call a
main jump, that is a jump of a certain amplitude with a certain rate. Every time that
a particle performs this jump, it induces a jump in all the other particles’ trajectories,
but the amplitude of these collateral jumps is rescaled according to the size of the system.
We consider the McKean-Vlasov limit of this system and in Chapter 2 we prove pathwise
propagation of chaos via a coupling technique, under various sets of assumptions. This
give a rate of convergence for the W1 Wasserstein distance between the empirical measures
of the two systems on the space of trajectories D([0, T ],Rd).
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The microscopic and macroscopic dynamics

Fix N > 2 and let XN = (XN1 , . . . , X
N
N) ∈ R

d×N be the spatial positions of N different
particles moving in R

d. We introduce the corresponding empirical measure

µNX
.
=
1

N

N∑

i=1

δXNi .

We use the empirical measure to express classical mean field interactions, indeed we de-
scribe the evolution of the vector of particles positions XN(t) as a jump diffusion process
whose coefficients depend on it. Moreover, we depict separately a general framework for the
peculiar interaction of mean field type represented by the simultaneous jumps. Therefore,
the following coefficients characterize the i-th particle.

• The drift coefficient depends on the spatial position of the particle and on the
other particles through the empirical measure, i.e. it is of the form

F(XNi (t), µ
N
X (t))

for some function F : Rd ×M(Rd) → R
d common to all particles.

• The diffusion coefficient, equivalently, is written as

σ(XNi (t), µ
N
X (t))

for σ : Rd ×M(Rd) → R
d×d1 , again the same for all particles.

• The main jump rate: particle i performs a main jump with rate

λ(XNi (t), µ
N
X (t)),

for a positive function λ : Rd × M(Rd) → [0,∞). With this rate, the i-th particle
performs a main jump and simultaneously it induces in all the other particles a
collateral jump.

• The main jump amplitude: particle i perform a main jump that is a random
variable

ψ(XNi (t), µ
N
X (t), h

N
i ) ,

for a function ψ : Rd×M(Rd)× [0,1] → R
d. Here hN is a random variable with values

in [0,1]N and its distribution is given by a symmetric measure νN.

• The collateral jump amplitude: the i-th particle is induced to jump by main
jumps of every other particle. The amplitude of these collateral jumps is given by
the function Θ : Rd × R

d × M(Rd) × [0,1]2 → R
d. When the j-th particle jumps

(this occurs with rate λ(XNj (t), µ
N
X (t)), of course) the i-th particle performs a jump

of amplitude
Θ(XNj (t), X

N
i (t), µ

N
X (t), h

N
j , h

N
i )

N
,

where hNi and hNj are components of the random vector hN, with distribution νN.
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It is known that a process as XN is in correspondence with a McKean-Vlasov process, i.e.
the process X whose law is the law of the solution of the nonlinear SDE:

dX(t) =

(

F(X(t), µt) +

〈

µt, λ(·, µt)
∫

[0,1]2
Θ(·, X(t−), µt, h1, h2)ν2(dh1, dh2)

〉)

dt

+σ(X(t), µt)dBt +

∫

[0,∞)×[0,1]N
ψ(X(t−), µs, h1)1(0,λ(X(t−),µs)](u)N(dt, du, dh).

Here, B is a d1-dimensional Brownian motion and N an independent Poisson random mea-
sure with characteristic measure dtduν(dh) on [0,∞)2 × [0,1]N. ν is a symmetric measure
on [0,1]N such that each projection on N coordinates corresponds to νN. By 〈·, ·〉 we in-
dicate the integral of a function on its domain with respect to a certain measure; thus,
〈µ,φ〉 =

∫

Rd
φ(y)µ(dy). The equation above is not a standard SDE since the law µt of the

solution appears as an argument of the coefficients. Processes of this type may be indi-
cated as nonlinear processes and the nonlinearity stands in the fact that the coefficients of
the SDE depend on the law of the process itself. Informally, we say that these nonlinear
terms arise from the mean field interaction in the N particle system; in particular, notice
that the simultaneous jumps give rise to a nonlinear drift term. The collateral jumps,
due to the rescaling via the size of the system, appear in the limit as being absorbed
by an additional drift term, depending on the characteristic measure of the Poisson ran-
dom measure N, that however is still present in the limit, due to the main jump component.

Well-posedness and propagation of chaos

Because of their peculiarity, well-posedness of nonlinear processes is a delicate issue, in
particular in presence of diffusion term and jump component and in literature we find a
few examples of this type of processes [48, 49, 50, 67]. However, since classical diffusion
processes with jumps are extremely used in various applications, it is natural to look for
a flexible approach for the study of their nonlinear analogue in view of the use of particle
systems in different frameworks. For this reason, we dedicate Chapter 2 to the study of
the nonlinear process that we presented under several sets of assumptions, always allowing
for unbounded jump rates.

In Section 2.1 we choose the most classical globally Lipschitz assumptions on all the
coefficients, both in the spatial and in the measure variables, w.r.t. the Euclidean and
the W1 Wasserstein distance. These conditions appear in [48], where well-posedness of
the nonlinear process is proved. Therefore, we concentrate in the role of the simultaneous
jumps and we study their role in the propagation of chaos, that is the connection between
the microscopic description and the macroscopic one. Let PN be the law of the particle
system XN on D([0, T ],Rd)N and let µ the law of the nonlinear process X on D([0, T ],Rd).
Intuitively, we say that there is propagation of chaos if, whenever the initial conditions of
the particles XNi (0) are independent and distributed as µ0, then PN is µ-chaotic, i.e. for
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any k > 1 and any φ1, . . . , φk ∈ Cb(D([0, T ],Rd))

lim
N→∞

〈PN, φ1 ⊗ · · · ⊗ φk ⊗ 1⊗ . . . 〉 =
k∏

i=1

〈µ,φi〉.

This property states the asymptotic independence of the particles despite the interaction
and it is often associate to a sort of Law of Large numbers. Indeed, it is equivalent to

µNX
in law−→ µ

and when we say that we want to prove pathwise propagation of chaos we aim to give a
rate of convergence to zero of the distance between µNX and µ w.r.t. some distance between
measures, in this case a W1 Wasserstein distance. Identifying the rate of propagation of
chaos for a particular interaction is useful also in view of approximation techniques for
the nonlinear process. Indeed, because of their nonlinearity, it is usually hard to simulate
numerically the evolution of a McKean-Vlasov process, but the propagation of chaos let
us simulate its trajectories by means of the particle system [14, 15]. Of course the propaga-
tion of chaos with a rate is a starting point to measure the accuracy of this approximation.
In Section 1.2.4 we introduce an intermediate process that does not display the collateral
jumps, instead it has an additional drift term depending on the empirical measure. This
process helps in underlining the role of simultaneous jumps in the pathwise propagation
of chaos. Indeed, we couple the two particle systems and in Proposition 2.1.1 we show
that the simultaneous jumps give a rate of convergence in W1 Wasserstein distance of the
order O

(

1√
N

)

. After that, we couple the intermediate process with N independent copies
of the nonlinear process and in Proposition 2.1.2 we prove the property of propagation of
chaos along the lines of [48]. From these results it follows the Corollary 2.1.1, in which
propagation of chaos for the particle system XN is proved.

In Section 2.2 we aim to extend the previous results to a more general set of assumptions.
Therefore, it is natural to consider a class of systems with a superlinear drift term. In this
framework we can incorporate several existing mean field models with continuous paths
and extend them to a discontinuous setting [7, 28, 45]. The condition on the drift we are
going to consider is the following:

(U) the drift coefficient F : Rd ×M(Rd) → R
d is of the form

F(x, α) = −OU(x) + b(x, α),

for all x ∈ R
d and all α ∈ M(Rd), where U is convex and C1, while the function b is

assumed to be globally Lipschitz in both variables.

All the other coefficients satisfy globally Lipschitz conditions on all variables. Nonlinear
processes of this type with an unbounded jump rate seem to be new and we need to verify
the well-posedness of the correspondent SDE. We prove it in Theorem 2.2.1, by means
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of a contraction argument and of a Picard iteration. After that, with Proposition 2.2.1,
Proposition 2.2.2 and Corollary 2.2.1, we confirm the results of Section 2.1 on pathwise
propagation of chaos under the assumption (U) on the drift coefficient. Notice that we
need to perform all the proofs in a L1 framework, instead of the classical L2 approach
for stochastic calculus. Indeed, we want to have at least globally Lipschitz conditions on
the rate function λ and the total jump amplitude, call it ∆N, and, when dealing with
the well-posedness of the nonlinear process, we will need to bound expectations of the
supremum over a time interval of an integral w.r.t. the Poisson random measure N. In
an L2 framework, this involves the corresponding compensated martingale Ñ and it needs
bounds of the following type, for X, Y ∈ R

d,
∫∞

0

∫

[0,1]N
‖∆N(X, h)1(0,λ(X)](u) − ∆

N(Y, h)1(0,λ(Y)](u)‖pduν(dh) 6 C‖X− Y‖p,

for p = 2. However, sometimes this may hold for p = 1, but not for p = 2, which justifies
the choice of getting the L1 framework, where we do not need to compensate the process
N. For instance, if ∆N is constant and λ is globally Lipschitz, the above inequality holds
for p = 1 and not p = 2.

In Section 2.3 we focus on one of the neuroscience models that inspired the analysis
of simultaneous jumps [75] and we slightly generalized it to a d-dimensional framework.
Therefore we drop off the diffusive component and we consider the piecewise deterministic
nonlinear Markov process that solves the following:

dX(t) =E [λ(X(t))]E [V]dt− X(t)dt

−

∫

[0,∞)×[0,1]N
(X(t) −U(h1))1[0,λ(X(t)))(u)N(dt, du, dh),

with N Poisson random measure with characteristic measure l × ν × l. We see that the
contribution of the collateral jumps creates the additional drift term

E [λ(X(t))]E [V]dt.

While V and U are two bounded jump functions with values in R
d (they represents two

random variables with values in some bounded subsets of Rd, with abuse of notation we
will indicate as expectations their integrals w.r.t. the measure ν), we allow for a superlinear
jump rate, of the form prescribed in [75].

(JR) The jump rate of each particle is a non-negative C1 function of its position, λ : Rd →
R+, that is written as the sum of two functions:

λ(·) .= b(‖ · ‖) + h(·).
- b is a C1, positive, non-decreasing function such that

b ′(r) 6 γb(r) + c

for some c > 0 and γ <
1

5E[‖V‖] ;
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- h : Rd → R is a C1 bounded function, i.e. there exists H > 0 such that ∀ x ∈ R
d,

‖h(x)‖ 6 H;

To control the jumps of the system when the jump rate is superlinear is particularly
hard, especially in the nonlinear case, where we cannot use any compactness method.
Notice that, in [43], the authors succeed in proving well-posedness and propagation of
chaos with an explicit rate (the expected 1√

N
) for a similar model and for weak moments

conditions on the initial values, by defining an ad-hoc distance based on the rate function
λ itself. In our study, we choose not to extend this powerful approach to our d-dimensional
model and to maintain the same structure of proofs of the previous sections. However, we
believe that the computations of [43] would work here and they would give results without
the restrictive hypothesis on the bounded support of initial condition that we require in
Theorem 2.3.1, where we prove well-posedness of the nonlinear limit for bounded support
initial conditions. In the following, by means of a priori bounds on the involved quantities,
we end the study with Theorem 2.3.2, Theorem 2.3.3 and Corollary 2.3.1 in which we get
pathwise propagation of chaos with the expected 1√

N
rate.

Part II: models with asymmetric interactions

In this part of the thesis we consider a particle system where the interaction is asymmet-
ric and, if strong enough, it generates ergodicity in a system otherwise transient. Mainly
inspired by population models, in Chapter 4 we define and study a class of systems of
interacting random walks on the positive integers, reflected in zero to which we add inter-
actions that push each particle towards the origin. Previously, in Chapter 3, we describe
a continuous model which is a slight modification of the one in [54] and it represents the
continuous analogue of one of the models of Chapter 4. Because of the continuity of the
dynamics this model is completely solvable and we use it as a reference for the study of
the discrete one.

Interacting random walks with asymmetric interaction

In Chapter 4 we consider a system of N particles on the non-negative integers N, which
without interaction evolve as independent random walks, with a drift towards infinity.
The interaction induces jumps towards zero, whose size depends on the specific model we
consider, and whose rate is proportional to the fraction of particles that are in a lower
position than the jumping particle. Let us describe the simplest model we consider. There
is a fixed number N of particles on N, where each particle XNi , for i = 1, . . . ,N, makes
jumps of size 1. If XNi > 0, then it goes to

XNi + 1 with rate 1+ δ,
XNi − 1 with rate 1+ λ 1

N

∑N
k=1 1(X

N
k < X

N
i ).
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If XNi = 0, then the only allowed jump is rightward. Here δ > 0 indicates a bias rightward,
while λ 1

N

∑N
k=1 1(X

N
k < X

N
i ) is a bias leftward. We call this model the small jump model,

while in general we consider a larger class of models where the leftward jump induced
by the interaction term may have amplitude wider than 1. One interpretation of these
models is as follows. N individuals, each associated with an integer valued fitness, have
an intrinsic tendency to improve their fitness in time. However, each individual mimicking
only the worse than him may worsen his fitness. Since the interaction is of mean field type,
we associate to the particle system a nonlinear Markov process {X(t)}t>0 whose possible
transitions at time t > 0 are as follows:

X(t) + 1 with rate 1+ δ,
X(t) − 1 with rate 1+ λµt[0, X(t)),

where µt is the law of X(t) and, as above, when X(t)=0, only the rightward jump is allowed.
In Section 4.1 we define a larger class of models, roughly speaking such that the leftward
jump induced in the particle XNi may have amplitude between 1 and XNi itself. We prove
well-posedness of the nonlinear process and the property of propagation of chaos, notice
that in some special cases this is a particular case of the one described in Chapter 1 and 2.

Then, the question is whether a strong interaction can prevent some individuals from
improving forever, i.e. escape towards infinity. At the outset, we make two remarks which
we illustrate in the small jump model at the level of the N particle system.

(i) The asymmetry in the drift produces an inhomogeneous system: the rightmost par-
ticle, when alone on its site, has a net drift of about δ − λ, whereas the leftmost
particle has a positive drift δ.

(ii) Particles piled up at the same site do not interact, and this produces a tendency for
piles to spread rightward.

It is clear that, when λ = 0, for any N each particle system has no stationary measure.
Indeed, it consists of random walks with a nonnegative drift δ > 0 and reflection at zero.
Our aim is to estimate the critical interaction strength above which the system has a
stationary measure, we indicate it as

λ∗N(δ) and λ∗∞(δ)

for the N particle system and the nonlinear process, respectively. We focus on the simple
model described above since it dominates all others in the class defined in Section 4.1 in
stochastic ordering. In particular, ergodicity of the small jump model implies ergodicity
of all others. Moreover, in Chapter 3 we describe a model of interacting diffusions that
shares the same properties of the small jump model. This is an adaptation of the system
of particles interacting through their cumulative density function (CDF) defined in [54]. In
this continuous case the critical interaction strength can be explicitly obtained for the N
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particle system as well as for the nonlinear process. In Theorem 3.2.2 we prove the critical
value for the N particle system is

λ∗N,cont(δ) = 2δ
N

N− 1
,

while in Theorem 3.2.3 it is proved that the nonlinear process has a critical interaction
strength that is

λ∗∞,cont(δ) = 2δ.

Unfortunately, the proofs of these results strictly depend on the continuity of the trajec-
tories and we mainly use them to underline the differences with the discrete dynamics.
Indeed, despite the same interacting mechanism, the continuous and the discrete model
display a peculiar difference. In the discrete model the particles can form large clusters on
a single site. When particles are on the same site, according to our description, they cannot
interact and this interferes with ergodicity. On the other hand, the interaction prevents
the particles from escaping to infinity and it favors the creations of clusters.

We dedicate Section 4.2 to the study of the long-time behavior and of the critical
interaction strength for the N particle system. By means of a Lyapunov function, we prove
that, for all δ > 0, there exists a critical value

λ∗up(δ)
.
= 8δ2 + 12δ

such that for all N > 2, for all λ > λ∗up(δ) the process XN = (XN1 , . . . , X
N
N) described in

small jump model is exponentially ergodic and there exists a probability measure πN(SJ) on
N
N such that, for any initial condition XN(0),

‖PNx ((XN1 (t), . . . , XNN(t)) ∈ ·) − πN(SJ)‖TV 6 CN(x)(ρN)
t, ∀ x ∈ N

N, ∀ t > 0,

where CN(x) is bounded, ρN < 1 and ‖ · ‖TV is the total variation norm. πN(SJ) is the
unique stationary measure for the process (XN1 , . . . , X

N
N). These are the results stated in

Theorem 4.2.1, in which we prove exponential ergodicity of the particle system under some
assumptions and we give an upper bound on λ∗N(δ) which is uniform in N. On the other
hand, it is clear that for λ 6 δ the particle system is transient. By means of a linear
Lyapunov function, in Theorem 4.2.2 we establish a lower bound on λ∗N(δ). Indeed, there
exists

λ∗N,lower(δ)
.
=
(

1+ ρ(ε,N)
)

2δ, with ρ(ε,N)
.
=

N2(δ+ 2)

N(N− 1)(δ+ 2) − 2δ
− 1 −→ 0,

such that, for all λ < λ∗N,lower(δ), the process XN = (XN1 , . . . , X
N
N) is transient. This lower

bound in Theorem 4.2.2 is strictly greater than the critical value of the continuum model,
highlighting the different role played by the occurrence of piles in our case. We believe
that this difference is substantial and it gives rise to a non-trivial expression for λ∗∞(δ),
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unexpected by the analysis of the continuous model.

In Section 4.3 we study the stationary measures of the nonlinear process. In the contin-
uous analogue this is done by directly solving the stationary Fokker-Planck equation and
finding that it has a unique solution. This is clearly harder in the discrete case, we could
not find a way to prove uniqueness of the stationary measure and we define the critical
interaction strength λ∗∞(δ) as the value above which the nonlinear process has at least one
stationary measure. In Theorem 4.3.1 we prove the existence of at least one stationary
distribution by means of a transformation Γ in the space M(N), for which every stationary
distribution of the nonlinear process is a fixed point. This is an approach widely exploited
in the study of quasi-stationary distributions (QSD) in countable spaces, see [5, 40, 41].
This gives an upper bound on the critical value that is

λ∗up(δ)
.
= 4δ.

In Theorem 4.3.2 we give a simple lower bound on this value, saying that for λ 6 2δ there
is no stationary distribution at all.

In Section 4.4, we exploit a link with Jackson’s Networks [52] to give sharper estimates
on the critical values. With a change of variables we study the dynamics of the gaps between
successive particles and we compare it with a particular queueing system of Jackson’s type.
This let us derive the exact form of

λ∗2(δ) = 2δ
2 + 4δ

in Theorem 4.4.2. For N > 2 the applicability of this method is still an open problem;
however in Section 4.4.3 we define, for each N > 3 a Jackson’s Network associated to
our particle system. This suggests heuristic computation leading to conjecture the critical
interaction strength for all values of N as follows. Fix N > 3, the process XN is ergodic if
and only if

(1+ δ)N <

N−1∏

k=1

(1+ λ
k

N
).

Taking the limit asN goes to infinity, a natural conjecture is the critical interaction strength
for the nonlinear process. Fix δ > 0, then for all λ such that

(1+
1

λ
) ln (1+ λ) − 1 > ln (1+ δ) ,

the nonlinear process X has at least one stationary measure.

Part III: generalized Curie-Weiss model

In Chapter 5 we analyze a particular type of dissipated interaction in a dynamical version
of the generalized Curie-Weiss model [35, 37], with the aim of proving the existence of self-
sustained periodic behavior in its nonlinear limit. This interaction has already been proved
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to originate periodic behavior in a dynamical Curie-Weiss model [26] and in a diffusive
model of cooperative behavior [24].

A dissipative dynamics for the generalized Curie-Weiss model

In Section 5.2 we define the dynamical process we are interested in. We recall that the
Curie-Weiss model is defined as the sequence of probability measures on R

N, for N =

1,2, . . . , given by

PN,β(dx1, . . . , dxN) =
1

ZN(β)
exp

(

Nβg

(

N∑

i=1

xi

N

))

N∏

i=1

ρ(dxi),

where ρ is the symmetric probability measure on R representing the single-site distribution
of a spin, g is the interaction function, β is the inverse absolute temperature of the model
and ZN(β) is the normalizing constant. For each N fixed, a Langevin dynamics associated
to the generalized Curie-Weiss model is a diffusion process XN with values in R

N such that
PN,β is its unique invariant measure. XN is solution to the following systems of SDE:

dXNi (t) =
β

2
g ′

(∑N
j=1 X

N
j (t)

N

)

dt−
ρ ′(XNi (t))

2ρ(XNi (t))
dt+ dBit,

where {Bi}i=1,...,N is a family of independent 1-dimensional Brownian motions. This dy-
namics represents an interacting particle system where each particle follows its own dy-
namics (given by the last two terms on the right-hand side) and it experiences a mean

field interaction, which depends on the empirical mean of the system mN(t)
.
=

∑N
j=1X

N
j (t)

N
.

Following the approach in [24, 26], we suppose that the motion of each particle depends
on a “perceived magnetization” instead of the empirical mean mN(t). To this aim, we
introduce the variables λNi , for i = 1, . . . ,N, representing the interaction felt by the spin
XNi . This results in a stochastic process (XN, λN) with values in R

2N where, at every
time t > 0, XNt =

(

XN,1t , . . . , XN,Nt

)

is the vector of the spins of the N particles and
λNt =

(

λN,1t , . . . , λN,Nt

)

is the vector of their “perceived magnetizations”. (XNt , λ
N
t ) solves

the following system of SDE:





dXN,it = β
2
g ′(λN,it )dt−

ρ ′(XN,it )

2ρ(XN,it )
dt+ dB1,it

dλN,it = −αλN,it dt+ 1
N

∑N
j=1

(

β
2
g ′(λN,jt ) −

ρ ′(XN,jt )

2ρ(X
N,j
t )

)

dt+DdB2,it ,

i = 1, . . . ,N, for {(B1,i, B2,i}i=1,...,N a family of independent 2-dimensional Brownian mo-
tions. The constants α,D > 0 are the dissipative and diffusive constants characterizing
the evolution of the “perceived magnetization”. The interactions are of mean field type; as
usual, we define the correspondent nonlinear Markov process (X, λ) on R

2 as the solution
of the following nonlinear SDE:






dXt =
β
2
g ′(λt)dt−

ρ ′(Xt)
2ρ(Xt)

dt+ dB1t

dλt = −αλtdt+ 〈µt(x, l), β2g ′(l) − ρ ′(x)
2ρ(x)

〉dt+DdB2t
µt = Law(Xt, λt),
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where B = (B1, B2) is a two dimensional Brownian motion. In Theorem 5.2.3 we prove
well-posedness of this McKean-Vlasov process under some reasonable assumptions and in
Theorem 5.2.4 we prove the correspondent property of propagation of chaos.

The Gaussian dynamics

In Section 5.3 we focus on a completely solvable model belonging to the class of models
described in Section 5.2. This has no diffusive component in the evolution of λ, i.e. D = 0,
and the single-site distribution is normally distributed, i.e. ρ ∼ N(0, σ2). This simplification
leads to the nonlinear process (Xt, λt)t>0 solution of the following nonlinear SDE:






dXt =
β
2
g ′(λt)dt−

Xt
2σ2
dt+ dBt,

dλt
dt

= −αλt +
β
2
g ′(λt) −

mt

2σ2
,

µt = Law(Xt, λt) and mt = 〈µt(dx, dl), x〉,

for {Bt} Brownian motion. If λ0 is deterministic, the evolution of the “perceived magneti-
zation” follows a deterministic dynamics, i.e. for all t > 0 the law of the process is such
that

µt(dx, dλ) = νt(dx)× δλt(dλ).
Moreover, the resulting process is a Gaussian process, specifically it is completely described
by the initial condition µ0 and the quantities {(mt, Vt, λt)}t>0, where Vt = Var[Xt]. In Sec-
tion 5.3.1 we analyze the dynamics without dissipation, i.e. the nonlinear limit of the
Langevin dynamics. In Proposition 5.3.1 we study the ODE that rules the evolution of
the mean mt and we derive the set of the critical β, while in Theorem 5.3.1 we completely
characterize the sets of stationary measures and the long-time behavior of the limiting
Langevin dynamics.

In Section 5.3.2 we study the dynamics with dissipation, we reduce the problem to the
study of the following system of ODE:

{
ṁt =

β
2
g ′(λt) −

mt

2σ2
,

λ̇t = −αλt +
β
2
g ′(λt) −

mt

2σ2
,

because the independence of the evolution of Vt let us consider a two-dimensional instead
of a three-dimensional system. With the simple change of variable y = 1

2σ2
(λ−m), we get

the system {
ẏt = − α

2σ2
λt,

λ̇t = yt −
(

α+ 1
2σ2

)

λt +
β
2
g ′(λt),

which is a Liénard system. Among planar differential equations, the systems of Liénard
type have been extensively studied, in particular in relation to their limit cycles, [19, 22,
46, 61, 71, 76]. A detailed and complete study of all Liénard systems, with necessary and
sufficient conditions for the existence of exactly k > 0 limit cycles, is still an open problem.
However, in literature we can find sufficient conditions for the existence of at least(or
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exactly) k > 0 limit cycles, [22, 71]. In Theorem 5.3.2 we depict three possible phases of
the evolution of (yt, λt) and we give sufficient conditions on the interaction function g and
on the value of parameters for them to occur. In general, for an admissible interaction
function g we observe the following situations.

i) We can always find a regime of the parameters in which the origin is a global attractor
and no limit cycles are present.

ii) Under a simple condition on the derivative of the interaction function, we may find
a critical value in which the origin looses its local stability and a stable limit cycle
bifurcates from it.

iii) If the previous situation occurs and the interaction function is sufficiently regular at
infinity, we can find a regime in which there exists a unique limit cycles, which is
attractive.

Then, Theorem 5.3.3 describes the stationary measure of the process (Xt, λt) and the in-
variant sets of measures that characterize periodic solutions.

In Section 5.3.3 we highlight the flexibility of this model, since by a suitable choice of
the interaction function g we can observe several interesting phases in the Liénard system
and, consequently, in the evolution of the nonlinear process (Xt, λt). In particular, we
prove that it is possible to find an interaction function that allows, in certain regimes of
parameters, coexistence of periodic orbits. Indeed, the Liénard system may display the
following features.

a) More than one periodic orbit may coexist and they all revolve around the origin. In
this case the outer one should be stable, the second should be unstable and then they
should alternate.

b) Some periodic orbits may appear even when the origin is still locally stable. These
orbits appear through global bifurcations (the Hopf bifurcation is a local one) and
they usually appear in pairs, the outer periodic orbit is stable, while the inner one is
unstable.

In Proposition 5.3.2 we give sufficient conditions on the interaction function g such that
the model admits a regime of parameters in which N limit cycles coexist. In Section 5.3.4
we give an explicit example of two interaction functions that let us observe, in different
regimes of the parameters, the two particular situations above. For any α > 0, we could
find the explicit critical value of β at which the Hopf bifurcation occurs, while we could
only estimates the critical values at which the other phase transitions occur.
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Chapter 1

From Neuroscience to a general

framework for simultaneous jumps

In this chapter we study an interacting particle system that displays a particular feature,
that we indicate as the simultaneous jumps. This characteristic has recently appeared in
toy models for interacting neurons, [29, 43, 75]. These models represent the spike of a
neuron as a discontinuity in the evolution of its membrane potential. At the same time
each spike induces collateral discontinuities in the membrane potential of all the other
neurons. Those ones are rescaled by the factor 1

N
, where N is the size of the system,

as customary in mean field models. In the limit, these collateral jumps collapse into an
additional non-linear drift term while the spike component is preserved. This seems to be
a new framework in mean field modelling, therefore we aim to depict a general description
of this class of models, giving to specialists a general and flexible class of models with
simultaneous jumps. In this chapter, we summarize the neuroscience models that have
inspired the study and we present at an informal level our general model.

1.1 Interacting particle systems in Neuroscience

Neurons are supposed to spread information by means of electrical impulses, called ac-
tion potentials or spikes. A single neuron has its own membrane potential that varies due
to external stimuli, to interactions with other neurons and to its own dynamics. When
a neuron spikes its membrane potential is rapidly reset to a resting state and, at the
same time, other neurons in the network receive an excitatory or inhibitory influence.
Recently, models describing networks of spiking neurons by means of the mean field ap-
proach, typical of statistical mechanics, have become widespread in neuroscience. Due to
peculiarities of the brain modelling, sometimes these models are raising questions that have
their own interest outside the direct brain modelling. In particular, some recent works on
piecewise-deterministic Markov processes for the evolution of neurons membrane potential
have displayed the interesting feature of simultaneous jumps that we are going to study in
the following sections.
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1.1.1 Mean field models in Neuroscience

The mean field approach in neuroscience consists in describing large populations of neurons
of the same type by means of the behavior of a so-called “typical neuron”. The large
number of neurons and of connections between them make indeed reasonable to describe
the brain, a finite-size network, as the infinite-size limit of a system of particles in mean
field interactions, i.e. where the graph of interactions is complete. This approach origins
in statistical mechanics, from the seminal work of Kac [56], in which the author builds a
microscopic system of interacting Markov processes, representing the molecules of a rarefied
gas, to justify the macroscopic description through the spatially homogeneous Boltzmann
equation. The link between microscopic and macroscopic level is given by the propagation
of chaos, see the well-known reference from Sznitmann [83]. Propagation of chaos basically
says that, when the size of the system grows to infinity, the particles tends to de-correlate,
despite their interaction. As observed by Galves and Löcherbach in [44], it is hard to find
a systematical overview on the biological justification and experimental confirmation of
propagation of chaos in the brain behavior, although the goodness of this approach seems
to be validated in Baladron et al. [7]. There the authors cite experimental results in
[34], where de-correlation of neuronal firing in visual cortex is observed. Mean field models
account for spikes with different approaches and we do not aim to be complete in describing
the extensive literature in this field. However, in the following we summarize some of these
approaches.

• The conductance-based models describe in details the role of ions channels in the evo-
lution of membrane potential of each neuron in the network. For instance, Hodgkin-
Huxley and FitzHugh-Nagumo models associate to each neuron, respectively, a 4 and
a 2 dimensional process, that takes into account the membrane potential, but also
other variables, see [7] for analysis of networks of this type. These models consider the
evolution of their quantities as continuous path processes, where the spikes are rapid
changes in the value of the membrane potential and the randomness is expressed
by means of a Gaussian process. Usually this approach leads to extremely compli-
cated expressions, however the continuity of paths helps in tackling the problem of
propagation of chaos.

• Leaky integrate and fire models are widely studied in the neuroscience community and
they represent spikes as discontinuities in the evolution of the membrane potential.
A single neuron’s membrane potential evolves according to an Ornstein-Uhlenbeck
process starting from zero (chosen as the neuron’s resting state) and it spikes when
it reaches a certain fixed threshold. Then its potential is reset to zero (here is the
discontinuity) and the process starts again. In networks of leaky integrate and fire
models the interaction is given by the fact that, when a neuron spikes, all the others
receive an additional drift (as a positive “kick”) of the order 1

N
, if N is the size of

the network. The study of mean field limits for this type of networks requires non-
standard techniques, because of the discontinuities given by the threshold and the
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particular dependence of the nonlinear term on the law of the process itself, see [30]
for a probabilistic study and [18, 20] for a PDE approach.

• Models with Poisson spikes account for the intrinsic randomness of spikes describing
them by means of inhomogeneous Poisson processes with a rate depending on the
membrane potential. In this framework, the membrane potential is modelled by a
piecewise deterministic Markov process and the interaction occurs through simulta-
neous jumps. When a neuron spikes, randomly according to its rate, it is reset to
zero as in leaky integrate and fire models, but instead of interacting with other neu-
rons increasing their drifts, it makes their membrane potentials increase of a small
quantity, depending on the synaptic weight between them. In this way, the jumps
in the network are simultaneous and, even if some of them are of the order 1

N
, they

may cause problems when letting the size N of the network going to infinity. The
literature on mean field models with jumps is less rich then the one on continuous
models, nevertheless in some recent papers the authors prove propagation of chaos
for models in this class, see [29, 43, 44, 75].

1.1.2 Neuroscience models with simultaneous jumps

Let us focus in the recent Poisson mean field models, displaying simultaneous jumps,
[29, 43, 75]. These models describe the membrane potentials of neurons as quantities on
the positive real line. Let N > 1 be a fixed finite number of neurons in an homogeneous
network (i.e. where the neurons are all of the same type), we associate to each neuron
an index i = 1, . . . ,N and we describe the membrane potential of the network with the
stochastic process UN(t) =

(

UN1 (t), . . . , U
N
N(t)

)

∈ R
N
+ for every t > 0, where UNi (t) is the

membrane potential of the i-th neuron at time t. First of all, the membrane potential of a
neuron exponentially decays towards the resting state (here it is 0) due to the leak current,
a continuous flow of potential. Therefore neuron i has a drift proportional to

−UNi (t).

Then the neurons interact by means of electrical synapses and, through the gap-junction
channels, they constantly communicate. This pushes the system towards the average po-
tential value, that means that the i-th neuron has also a drift proportional to

N∑

j=1

UNj (t)

N
−UNi (t).

Finally, chemical synapses cause fast-events, the spikes. A neuron spikes randomly accord-
ing to a state dependent rate

λ(UNi (t)) > 0.

If λ(0) = 0, then it is supposed that there is no external stimuli, while a positive value in
0 means that the neuron can spike even when it is at resting state, due to some external
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input. When neuron i spikes, its membrane potential is reset at 0 by a jump of amplitude
−UNi (t

−). Simultaneously, the non-spiking neurons receive an additional discrete influence,
they increase their potential of a quantity depending on a stochastic synaptic efficacy. That
results in a jump of amplitude

Wi,j

N

of the membrane potential UNj (t
−) when the i-th neuron spikes and this happens simul-

taneously for all j 6= i. The above description corresponds to a piecewise-deterministic
Markov evolution for the process UN, that is solution of the following system of SDEs. For
all i = 1, . . . ,N

dUNi (t) = − αUNi (t)dt− β



UNi (t) −

N∑

j=1

UNj (t)

N



dt−UNi (t
−)

∫∞

0

1[0,λ(UNi (t−))](u)N
i(du, dt)

+
∑

j 6=i

Wi,j

N

∫∞

0

1[0,λ(UNj (t−))](u)N
j(du, dt), (1.1.1)

where {Ni}i=1,...,N is a family of independent Poisson random measures with characteristic
measure l × l, for l the Lebesgue measure. In the papers [29, 43], the authors study the
case with α = 0 and Wi,j ≡ 1 for all i, j = 1, . . . ,N; while in [75] the authors study the
case of β = 0 and synaptic weights Wi,j = V i.i.d. positive bounded random variables.
It is clear that the interactions here are all of mean field type, but while the one due
to electrical synapses is classical, the one given by chemical synapses is rather peculiar.
Indeed these simultaneous jumps, one of which will remain in the limit, while the others
collapse in a continuous term because of the rescaling of the order 1

N
, seem to be new in

the mean field models framework. In the aforementioned papers, the authors succeed to
prove propagation of chaos under super-linear hypothesis on the rate function λ.

1.2 Interacting particle systems with simultaneous jumps

In this section we describe a mean field model that can embed the feature of simultaneous
jumps in a more general framework. The idea comes from the desire to understand if the
peculiarity of the simultaneous jumps can create problems in the proof of propagation of
chaos in situations different from the one described above, for example in presence of a
Brownian component. In this setting, every particle, besides its diffusive dynamics, can
perform what we call a main jump, that is a jump of a certain amplitude with a certain
rate. Every time that a particle performs this jump, it induces a jump in all the other
particles’ trajectories, but the amplitude of these collateral jumps is rescaled according to
the size of the system. We consider the McKean-Vlasov limit of this system and we want to
prove pathwise propagation of chaos via a coupling technique that involves an intermediate
process. This would give a rate of convergence for the W1 Wasserstein distance between
the empirical measures of the two systems on the space of trajectories D([0, T ],Rd). We
start at an informal level, introducing both the microscopic and the macroscopic dynamics
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and illustrating the phenomenon of propagation of chaos. Well-posedness and convergence
will be shown under various assumptions in Chapter 2.

1.2.1 The microscopic dynamics

Fix N > 2 and let XN = (XN1 , . . . , X
N
N) ∈ R

d×N be the spatial positions of N different
particles moving in R

d. We introduce the corresponding empirical measure

µNX
.
=
1

N

N∑

i=1

δXNi .

When the time variable appears explicitly in XN(t), we write µNX (t) to indicate the time
dependence of the empirical measure. Note that µNX (t) is an element of M(Rd), the set of
probability measures on the Borel subsets of Rd.

The vector of particles positions XN(t) evolves as a jump diffusion process with the
following specifications for the i-th particle.

• The drift coefficient depends on the spatial position of the particle and on the
other particles through the empirical measure, i.e. it is of the form

F(XNi (t), µ
N
X (t))

for some function F : Rd ×M(Rd) → R
d common to all particles.

• The diffusion coefficient, equivalently, is written as

σ(XNi (t), µ
N
X (t))

for σ : Rd ×M(Rd) → R
d×d1 , again the same for all particles.

• The main jump rate: particle i performs a main jump with rate

λ(XNi (t), µ
N
X (t)),

for a positive function λ : Rd × M(Rd) → [0,∞). With this rate, the i-th particle
performs a main jump and simultaneously it induces in all the other particles a
collateral jump.

• The main jump amplitude: particle i performs a main jump that is a random
variable

ψ(XNi (t), µ
N
X (t), h

N
i ) ,

for a function ψ : Rd×M(Rd)× [0,1] → R
d. Here hN is a random variable with values

in [0,1]N and its distribution is given by a symmetric measure νN.
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• The collateral jump amplitude: the i-th particle is induced to jump by main
jumps of every other particle. The amplitude of these collateral jumps is given by
the function Θ : Rd × R

d × M(Rd) × [0,1]2 → R
d. When the j-th particle jumps

(this occurs with rate λ(XNj (t), µ
N
X (t)), of course) the i-th particle performs a jump

of amplitude
Θ(XNj (t), X

N
i (t), µ

N
X (t), h

N
j , h

N
i )

N
,

where hNi and hNj are components of the random vector hN, with distribution νN.

In this description, the classical mean field interactions are already encoded in the depen-
dence of all the coefficients on the empirical measure. Moreover, we highlight the peculiar
interaction of mean field type represented by the simultaneous jumps.

In more analytic terms, we are considering a Markov process XN = {XN(t)}t∈[0,T ] with
values in R

d×N whose infinitesimal generator takes the following form on a suitable family
of test functions f:

LNf(x) =

N∑

i=1

[

F(xi, µ
N
x
) · ∂if(x) +

1

2

d∑

j,k=1

a(xi, µ
N
x
)jk · ∂2i f(x)jk

+λ(xi, µ
N
x
)

∫

[0,1]N

(

f
(

x+ ∆Ni (x, µ
N
x
, hN)

)

− f(x)
)

νN(dh
N)

]

,

where ∂if(x) indicates the vector of first order derivatives w.r.t. xi, ∂2i f(x) indicates the
Hessian matrix of the second order derivatives w.r.t. xi, a(xi, µNx )

.
= σ(xi, µ

N
x
)σ(xi, µ

N
x
)∗

and

∆Ni (x, µ
N
x
, hN)j

.
=






Θ(xi,xj,µ
N
x
,hNi ,h

N
j )

N
for j 6= i,

ψ(xi, µ
N
x
, hNi ) for j = i.

Towards a rigorous construction, allowing the limit as N → +∞, let us consider a
filtered probability space (Ω,F, (Ft)t>0,P) satisfying the usual hypotheses, rich enough to
carry an independent family (Bi,N

i)i∈N of d-dimensional Brownian motions Bi and Poisson
random measures Ni with characteristic measure l× l×ν. Here l is the Lebesgue measure
restricted to [0,∞) and ν is a symmetric probability measure on [0,1]N such that, for every
N > 1, νN coincides with the projection of ν on the first N coordinates. We will construct
XN as the solution of the following SDE

dXNi (t) = F(X
N
i (t), µ

N
X (t))dt+ σ(X

N
i (t), µ

N
X (t))dB

i
t (1.2.1)

+
1

N

∑

j 6=i

∫

[0,∞)×[0,1]N
Θ(XNj (t

−), XNi (t
−), µNX (t

−), hj, hi)1(0,λ(XN
j (t−),µN

X (t−))](u)N
j(dt, du, dh)

+

∫

[0,∞)×[0,1]N
ψ(XNi (t

−), µNX (t
−), hi)1(0,λ(XN

i (t−),µN
X (t−))](u)N

i(dt, du, dh),
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i = 1, . . . ,N. The existence and uniqueness of a solution starting from a vector of initial
conditions

(

XN1 (0), . . . , X
N
N(0)

)

depends obviously on the assumptions on the coefficients,
and we will specify sufficient conditions in the following chapter.

In the latter SDE description, we made the choice of considering separately the jump’s
rate and amplitude. This is motivated by the fact that the jumps are our main interest and
we want to state a clear framework, that we believe could be useful for possible applications.
The non-compensated jump component is often represented by a measure that does not
directly describe the behavior of the system. Here, we want to highlight the role of the
jumps, therefore we describe a diffusion process that at each position has a certain jump
rate and a set of possible jumps, represented by the functions λ and ∆N, respectively.
The aim of our study is to give results without uniform boundedness assumptions on the
jump rate. In the next sections, we will see that the first natural assumption is to have
globally Lipschitz conditions on the functions λ and ∆N. This is the reason why we need to
perform all our proofs in a L1 framework, instead of the classical L2 approach for stochastic
calculus. Indeed, when dealing with the well-posedness of the nonlinear Markov process,
we will need to bound expectations of the supremum over a time interval of an integral
w.r.t. the Poisson random measure N. In a L2 framework, this involves the corresponding
compensated martingale Ñ and it needs bounds of the type, for X, Y ∈ R

d,

∫∞

0

∫

[0,1]N
‖∆N(X, h)1(0,λ(X)](u) − ∆

N(Y, h)1(0,λ(Y)](u)‖pduν(dh) 6 C‖X− Y‖p, (1.2.2)

for p = 2. However, sometimes (1.2.2) may hold for p = 1, but not for p = 2, which justifies
the choice of getting the L1 framework, where we do not need to compensate the process
N. For instance, if ∆N is constant and λ is globally Lipschitz, (1.2.2) holds for p = 1 and
not p = 2.

1.2.2 The macroscopic process

We introduce in this section a process that describes macroscopically the above dynamics.
Heuristically, suppose the solution XN of (1.2.1) exists and that its initial condition has a
permutation invariant distribution. Fix an arbitrary component i and assume the process
XNi has a limit in distribution; by symmetry, the law of the limit does not depend on i, so
we denote by X = {X(t)} the limit process. We make the further assumption that a law of
large numbers holds, i.e. for all t > 0

µNX (t)
N→∞−→ µt

.
= Law(X(t)).
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Then, we define the process X as the one with the law of the solution of the McKean-Vlasov
SDE:

dX(t) =

(

F(X(t), µt) +

〈

µt, λ(·, µt)
∫

[0,1]2
Θ(·, X(t−), µt, h1, h2)ν2(dh1, dh2)

〉)

dt (1.2.3)

+σ(X(t), µt)dBt +

∫

[0,∞)×[0,1]N
ψ(X(t−), µs, h1)1(0,λ(X(t−),µs)](u)N(dt, du, dh).

Here, B is a d1-dimensional Brownian motion and N an independent Poisson random
measure with characteristic measure dtduν(dh) on [0,∞)2 × [0,1]N as above. By 〈·, ·〉 we
indicate the integral of a function on its domain with respect to a certain measure; thus,
〈µ,φ〉 =

∫

Rd
φ(y)µ(dy).

Existence and uniqueness of solutions to (1.2.3) starting from a given initial condition
X(0) will be discussed in the following sections. Note that (1.2.3) is not a standard SDE
since the law µt of the solution appears as an argument of its coefficients. Processes of
this type may be indicated as nonlinear processes and the nonlinearity stands in the fact
that the coefficients of the SDE depend on the law of the process itself. Informally, we
say that these nonlinear terms arise from the dependence, in the N particle system, on
the empirical measure; this is easy to see in most of the coefficients of (1.2.3). However,
also the simultaneous jumps give rise to a nonlinear term: indeed, the collateral jumps,
due to the rescaling via the size of the system, appear in the limit as being absorbed by
an additional drift term, depending on the characteristic measure of the Poisson random
measures {Ni}i∈N.

A SDE of the type of (1.2.3) is often referred to as McKean-Vlasov SDE, as it is
customary to call McKean-Vlasov equation the partial differential equation solved, in the
weak form, by its law µt, that is

〈µt, φ〉− 〈µ0, φ〉 =
∫ t

0

〈µs,L(µs)φ〉ds,

where

L(µt)φ(x)
.
=F(x, µt)∂φ(x) +

1

2

d∑

j,k=1

a(x, µt)jk∂
2φ(x)jk

+

〈

µt, λ(·, µt)
∫

[0,1]2
Θ(·, x, µt, h1, h2)ν2(dh1, dh2)

〉

∂φ(x)

+ λ(x, µt)

∫

[0,1]

(φ(x+ψ(x, µt, h1)) − φ(x))ν1(dh1).

Let us highlight that the Poisson random measures appearing in Equations (1.2.1) and
(1.2.3), respectively, have characteristic measure defined on [0,∞)2× [0,1]N. The equations
could equivalently be stated in terms of Poisson random measures with characteristic mea-
sures defined on [0,∞)2×[0,1]N (namely, l×l×νN) and on [0,∞)2×[0,1] (namely, l×l×ν1).
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The reason for our seemingly unnatural choice is that it prepares for the coupling argument
we will use below to establish propagation of chaos. We will need, for each N, a coupling
of the N-particle system with N independent copies of the limit system.

1.2.3 Propagation of chaos

The connection between the microscopic description (1.2.1) and the macroscopic one (1.2.3)
is given by propagation of chaos, which is an idea introduced by Kac in 1954 in the work
“Foundations of kinetic theory” [56]. The author introduced a Markovian model of gas dy-
namics, to explain, by a microscopic point of view, the spatially homogeneous Boltzmann
equation for a rarefied gas with binary collisions. Let us briefly give the idea of what this
means, with a particular focus on our model.

We call chaotic a configuration of independent particles, i.e. an initial condition XN(0)
such that

Law(XN(0)) = νN0 (dx1, . . . , dxN) = ν0(dx1) . . . ν0(dxN),

for a certain law ν0. Of course, the evolution of the microscopic system (1.2.1), since
it involves the interactions, destroys the independence of the components. Nevertheless,
we will prove that, if we consider only a finite number, say k, of components, when the
size of the system N grows to infinity, they tend to behave independently and distributed
as k copies of the macroscopic process (1.2.3) with initial condition ν0. In this sense we
say that the system propagates chaos, i.e. it preserves asymptotic independence of com-
ponents. Propagation of chaos depends on the type of interaction (that needs to be of
mean field type) and on the exchangeability of the particles in the system, indeed the
evolution in (1.2.1) is invariant under all the possible permutations of indexes. A clas-
sical reference for the description of propagation of chaos and some particular examples
are the lecture notes from A.S. Sznitman [83], from which we take the following definitions.

We rigorously define propagation of chaos by means of the following definition of ν-
chaotic sequence of measures, for a certain measure ν.

Definition 1.2.1. Let E be a separable metric space and, for all N > 1, let νN be a
sequence of symmetric probability measures on EN. We say that νN is ν-chaotic, for a
measure ν on E if for any k > 1 and any φ1, . . . , φk ∈ Cb(E)

lim
N→∞

〈νN, φ1 ⊗ · · · ⊗ φk ⊗ 1⊗ . . . 〉 =
k∏

i=1

〈ν,φi〉.

Chaoticity is often considered as a sort of law of large numbers, the reason is explained
in the following proposition, proved in Sznitman [83].
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Proposition 1.2.1. νN is ν-chaotic is equivalent to

µNX =
1

N

N∑

i=1

δXi
in law−→ δν,

where µNX is a random variable with values in M(E) (the space of probability measures on
E), Xi indicates the canonical coordinates on EN and δν indicates the constant random
variable ν in M(E).

In our case, we fix an arbitrary time horizon T > 0, and, for every N > 1, we denote by
XN[0, T ] = (XN(t))t∈[0,T ] the random path of the solution to (1.2.1), up to time T . XN[0, T ]
has law PNT on D([0, T ],Rd)N, i.e. the product of N times the Skorokhod space of càdlàg
functions. At the same time we denote X[0, T ] = (X(t))t∈[0,T ] the random path of the
solution to (1.2.3), then X[0, T ] has a law QT on D([0, T ],Rd).

Definition 1.2.2. For every N > 1, let PN be the law of the solution of a particle system
on D(R+,Rd)N. We say that propagation of chaos holds if, whenever the sequence of initial
conditions PN0 is Q0-chaotic, for a certain measure Q0 on R

d, then for all T > 0 the sequence
of laws PNT is QT -chaotic, where QT is a law on D([0, T ],Rd)N with initial condition Q0.

The approaches to prove propagation of chaos are essentially two, described in the
following.

i) There is a three-steps approach. First, the tightness of the sequence of empirical
measures µNX is proved. The second step consists in proving consistency of their limit
points, i.e. the limit point of every convergent subsequence belongs to the set of mea-
sures that solves the nonlinear limit. Lastly, the uniqueness of the measure solving
the nonlinear limit is proved, ensuring that the limit of the sequence µNX is determin-
istic. This method is extremely flexible, it can be used under weak hypothesis on the
coefficient but it does not provide any rate of convergence.

ii) An alternative approach consists in proving pathwise propagation of chaos, by means
of a coupling between the particle system and N independent copies of the limit
process. This approach gives a (usually optimal) rate of convergence, but it is less
flexible than the previous one. It is mainly used when coefficients satisfy Lipschitz
conditions, but it works also under some particular non-Lipschitz conditions.

In Chapter 2 we are interested in getting results on the model with simultaneous jumps
with the second approach. However, in the rest of the thesis, we will see the use of both
the approaches.

1.2.4 The intermediate process

As we mentioned, we are interested in proving pathwise propagation of chaos, with the aim
of getting the rate of convergence due to the simultaneous jumps. The general strategy of
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proof involves the introduction of an intermediate process YN = (YN(t))t∈[0,T ] with values
in R

d×N. This Markov process YN can be given as the solution of the SDE

dYNi (t) =F(Y
N
i (t), µ

N
Y (t))dt+ σ(Y

N
i (t), µ

N
i (t))dB

i
t (1.2.4)

+
1

N

N∑

j=1

λ(YNj (t−), µNY (t
−))

∫

[0,1]2
Θ(YNj (t−), YNi (t−), µNY (t

−), h1, h2)ν2(dh1, dh2)dt

+

∫

[0,∞)×[0,1]N
ψ(YNi (t

−), µNY (t
−), h)1(0,λ(YNi (t−),µNi (t−))](u)N

i(dt, du, dh),

i = 1, . . . ,N, where again Bi are independent d-dimensional Brownian motions and Ni are
independent Poisson random measures with characteristic measure l×l×ν. It is immediate
to see that the process YN differs from the original process XN in the jump terms; indeed,
it does not have the collateral jumps anymore. Every particle still performs the main jump
with rate given by the function λ, but this does not induce jumps in the other components.
As in the macroscopic dynamics (1.2.3), the process YN has an additional drift term, that
depends on the characteristic measure of {Ni}i∈N and on the empirical measure µNY , because,
of course, the term in the second line may be rewritten as

〈µNY (t), λ(·, µNY (t−))
∫

[0,1]2
Θ(·, YNi (t−), µNY (t

−), h1, h2)ν2(dh1, dh2)〉.

Therefore, the intermediate process YN displays only classical mean field interaction terms
and the proof of propagation of chaos is easier than for XN. Furthermore, proving that the
laws of the two processes XN and YN get closer as N goes to infinity will help to quantify
the role of the simultaneous jumps and the rate at which they tend to collapse into the
drift term.

Let us briefly explain the coupling procedure that we will use in the following. We
call it basic coupling and it is such that it maximizes the chance of two coupled particles
to jump together. We use the same Brownian motions and the same Poisson random
measures in (1.2.1) and in (1.2.4), such that the processes XN and YN are coupled, i.e. they
are realized on the same probability space: it will not be hard to give conditions for the
L1-convergence to zero of XN1 [0, T ]−Y

N
1 [0, T ]. Thus, the fact that the law of XN is Q-chaotic

will follow if one shows that the law of YN is Q-chaotic. Since YN has no simultaneous
jumps, this can be obtained along the lines of the classical approaches. As we said above,
the intermediate process has the nice feature of highlighting the role of simultaneous jumps
in the rate of convergence in W1 Wasserstein distance of the empirical measure. Indeed by
comparing the empirical measures of XN and YN, we obtain that, under our assumptions,
the rate of convergence due to the simultaneous jumps is of the order 1√

N
, while the final

rate obviously depends on the moments of initial conditions and of the process itself, see
[42].
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Chapter 2

Pathwise propagation of chaos for

simultaneous jumps

In Section 1.2 of the previous chapter, we present at a heuristic level a general framework for
mean-field interacting particle systems with simultaneous jumps. In particular we describe
what we mean when we say that a particle system has simultaneous jumps and we highlight
the role of the microscopic, the intermediate and the macroscopic process. In this chapter,
we formally prove pathwise propagation of chaos under various sets of assumptions.

2.1 Globally Lipschitz conditions on all coefficients

We start with the most natural among all the assumptions, i.e. classical Lipschitz condi-
tions on all the coefficients. To state these conditions and the corresponding theorems, let
us introduce a suitable metric on spaces of probability measures.

Definition 2.1.1 (Wp Wasserstein distance ). For p > 1, let (M,d) be a metric space, we
call Mp(M) be the space of probability on M with finite pth moment:

Mp(M) = {µ ∈ M(M) :

∫

d(x, x0)
pµ(dx) < +∞ for some x0 ∈M}.

We equip this space with theWp Wasserstein metric defined as follows: for all µ, ν ∈Mp(M)

Wp(µ, ν)
.
=

[

inf
{∫

M×M
d(x, y)pπ(dx, dy); π has marginals µ and ν

}]1/p

.

Therefore, in our case, let M1(Rd) be the space of probability on R
d with finite first

moment:

M1(Rd) = {µ ∈ M(Rd) :

∫

‖x‖1µ(dx) < +∞}.
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This space is equipped with the W1 Wasserstein metric, that by abuse of notation we
indicate as follows:

ρ(µ, ν)
.
= inf

{∫

Rd×Rd

‖x− y‖π(dx, dy); π has marginals µ and ν
}

= sup
{
〈g, µ〉− 〈g, ν〉 : g : Rd → R, ‖g(x) − g(y)‖ 6 ‖x− y‖

}
,

where the equality in the latter row is called Kantorovich-Rubinstein duality and it char-
acterized the Wp Wasserstein distance when p = 1, see [87]. We also consider a subset of
M
(

D
(

[0, T ],Rd
))

, the set of the probability measures on D
(

[0, T ],Rd
)

:

M1
(

D
(

[0, T ],Rd
)) .

=

{

α ∈ M
(

D
(

[0, T ],Rd
))

:

∫

D

sup
t∈[0,T ]

‖x(t)‖α(dx) < +∞

}

,

and provide it with the W1 Wasserstein metric

ρT (α,β)
.
= inf

{∫

D×D

sup
t∈[0,T ]

‖x(t) − y(t)‖P(dx, dy); where P has marginals α and β

}

.

In what follows, we shall adopt a notion of chaoticity which is stronger than the one of
Chapter 1.

Definition 2.1.2. Let XN = (XN1 , X
N
2 , . . . , X

N
N) be a sequence of random vectors with com-

ponents XNi ∈ R
d (resp. XNi ∈ D

(

[0, T ],Rd
)

). For µ ∈ M1(Rd) (resp. µ ∈ M1
(

D
(

[0, T ],Rd
))

),
we say that XN is µ-chaotic in W1 if its distribution is permutation invariant and, for each
k ∈ N, the law of the vector (XN1 , X

N
2 , . . . , X

N
k ) converges to µ⊗k with respect to the metric

ρ (resp. ρT ).

Notice that in Definition 1.2.2 we consider weak convergence of the joint law of k
components, while in Definition 2.1.2 we consider convergence w.r.t. the metric ρ (or,
respectively ρT ), that gives weak convergence together with the convergence of the first
moment.

2.1.1 Assumptions and well-posedness of the SDEs

In the following we list the assumptions on the functions that we informally introduced
in Section 1.2. In the L1-framework that we chose, these are very natural Lipschitz type
assumptions and they have the advantage that the proof of well-posedness of the involved
SDEs ((1.2.1),(1.2.3) and (1.2.4)) comes as a straightforward consequence of already well-
known results on nonlinear diffusion with jumps, [48].

Assumption 2.1.1. (Li1) The classical global Lipschitz assumption on F and σ: ∃ LF, Lσ >
0 such that, for all x, y ∈ R

d, all α, γ ∈ M1(Rd),

‖F(x, α) − F(y, γ)‖ 6 LF (‖x− y‖+ ρ(α, γ)) ,
‖σ(x, α) − σ(y, γ)‖ 6 Lσ (‖x− y‖+ ρ(α, γ)) .
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(Li2) The L1-Lipschitz assumption on the jump coefficients: ∃ Lψ, LΘ > 0 such that, for all
x, y ∈ R

d, all α, γ ∈ M1(Rd),

∫

[0,∞)×[0,1]

‖ψ(x, α, h)1(0,λ(x,α)](u) −ψ(y, γ, h)1(0,λ(y,γ)](u)‖duν1(dh) 6 Lψ (‖x− y‖+ ρ(α, γ))

and

‖〈α, λ(·, α)
∫

[0,1]2
Θ(·, x, α, h1, h2)ν2(dh1, dh2)〉− 〈γ, λ(·, γ)

∫

[0,1]2
Θ(·, y, γ, h1, h2)ν2(dh1, dh2)〉‖

6 LΘ (‖x− y‖+ ρ(α, γ)) .

(I1) The integrability condition: for all N ∈ N, for all x ∈ R
d×N and all α ∈ M1(Rd)

∫

[0,1]N

∥

∥∆Ni (x, α, h
N)
∥

∥νN(dh
N) <∞.

(I2) The square-integrability condition on the collateral jumps: for all x, y ∈ R
d and all

α ∈ M1(Rd)

∫

[0,∞)×[0,1]N
‖Θ(x, y, α, h1, h2)1(0,λ(x,α)](u)‖2duν2(dh) <∞.

In the following, we set L .= LF ∨ Lσ ∨ Lψ ∨ LΘ.

Existence and uniqueness of a square-integrable strong solution of (1.2.1) and (1.2.4)
starting from a vector of square-integrable initial conditions

(

XN1 (0), . . . , X
N
N(0)

)

, indepen-
dent of the family (Bi,N

i)i∈N, are ensured by Assumption 2.1.1; see [48, Theorem 1.2]. The
same assumptions also guarantee existence and uniqueness of a strong solution of (1.2.3)
starting from any square-integrable initial condition X(0); see [48, Theorem 2.1]. We want
to highlight that condition (I2) on the collateral jumps is necessary only for the proof of
propagation of chaos, while it is not needed for well-posedness purposes.

2.1.2 Propagation of chaos

The first step consists in proving the closeness between the original particle system XN and
the intermediate process YN. We couple them by means of the basic coupling described in
Section 1.2.4. Then the following proposition hold.

Proposition 2.1.1. Grant Assumptions 2.1.1. Let XN and YN be the solutions of (1.2.1)
and (1.2.4), respectively. We assume the two processes are driven by the same Brownian
motions and Poisson random measures, and start from the same square-integrable and
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permutation invariant initial condition. Then there exists a constant CT > 0 such that, for
each fixed i ∈ N, for all N > 1

E

[

sup
t∈[0,T ]

‖XNi (t) − YNi (t)‖
]

6
CT√
N
. (2.1.1)

Proof. To simplify notation, we adopt the following abbreviations:

Θi,j(X
N(s−), h)

.
= Θ(XNi (s

−), XNj (s
−), µNX (s

−), hi, hj),

λi(X
N(s−))

.
= λ(XNi (s

−), µNX (s
−)),

ψi(X
N(s−), h)

.
= ψ(XNi (s

−), µNX (s
−), hi),

U
.
= [0,∞)× [0,1]N.

By permutation invariance of both the initial condition and the dynamics, we have, for
every t ∈ [0, T ],

E

[

sup
s∈[0,t]

‖XNi (s) − YNi (s)‖
]

=
1

N

N∑

j=1

E

[

sup
s∈[0,t]

‖XNj (s) − YNj (s)‖
]

.

By the same reason we also have a coupling bound for the W1 distance of the empirical
measures of the two systems, i.e. for any t > 0

E
[

ρ
(

µNX (t), µ
N
Y (t)

)]

6
1

N

N∑

j=1

E
[

‖XNj (t) − YNj (t)‖
]

.

Fix t ∈ [0, T ], and set

Fi
.
= E

[∫ t

0

‖F(XNi (s), µNX (s)) − F(YNi (s), µNY (s))‖ds
]

,

σi
.
= E

[

sup
r∈[0,t]

∥

∥

∥

∥

∫ r

0

(

σ(XNi (s), µ
N
X (s)) − σ(Y

N
i (s), µ̄

N
Y (s))

)

dBis

∥

∥

∥

∥

]

,

Θi
.
= E

[

sup
r∈[0,t]

∥

∥

∥

∥

∥

1

N

∑

j6=i

∫

[0,r]×U
Θj,i(X

N(s−), h)1(0,λj(XN(s−))](u)N
j(ds, du, dh)

−
1

N

N∑

j=0

∫

[0,t]×U
Θj,i(Y

N(s−), h)1(0,λj(YN(s−))](u)dsduν(dh)

∥

∥

∥

∥

∥

]

,

ψi
.
= E

[

sup
r∈[0,t]

∥

∥

∥

∥

∫

[0,r]×U
ψi(X

N(s−), h)1(0,λi(XN(s−))](u)N
i(ds, du, dh)

−

∫

[0,r]×U
ψi(Y

N(s−), h)1(0,λi(YN(s−))](u)N
i(ds, du, dh)

∥

∥

∥

∥

]

.
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Note that all these quantities do not depend on i, that is therefore omitted in what follows.
Then

E

[

sup
s∈[0,t]

‖XNi (s) − YNi (s)‖
]

6 F+ σ+Θ+ψ. (2.1.2)

The term F can be easily bounded thanks to the Lipschitz condition (L1) and the coupling
bound for the W1 Wasserstein metric, and we obtain

F 6 L

∫ t

0

E
[

‖XNi (s) − YNi (s)‖
]

ds+
L

N

N∑

j=1

∫ t

0

E
[

‖XNj (s) − YNj (s)‖
]

ds.

The bound on σ, besides (Li1), involves the Burkholder-Davis-Gundy inequality, and we
get, for some constant M not depending on N nor t,

σ 6ME











∫ t

0

(

‖XNi (s) − YNi (s)‖+
1

N

N∑

j=1

‖XNj (s) − YNj (s)‖
)2

ds





1/2






6M
√
tE

[

sup
s∈[0,t]

‖XNi (s) − YNi (s)‖+
1

N

N∑

j=1

sup
s∈[0,t]

‖XNj (s) − YNj (s)‖
]

.

The term Θ needs to be treated again with the Burkholder-Davis-Gundy inequality. In
what follows, we denote by Ñi the compensated Poisson measure associated to Ni and it is
crucial the fact that {Ñi}i=1,...,N is a family of orthogonal martingales. First we compensate
the Poisson measures and we get

Θ 6 E



 sup
r∈[0,t]

∥

∥

∥

∥

∥

∥

1

N

∑

j 6=i

∫

[0,r]×U
Θj,i(X

N(s−), h)1[0,λj(XN(s−)))Ñ
j(ds, du, dh)

∥

∥

∥

∥

∥

∥





+E



 sup
r∈[0,t]

∥

∥

∥

∥

∥

∥

1

N

N∑

j=1

∫

[0,r]×U
Θj,i(X

N(s−), h)1(0,λj(XN(s−))] −Θj,i(Y
N(s−), h)1(0,λj(YN(s−))]dsduν(dh)

∥

∥

∥

∥

∥

∥





+
1

N
E

[

sup
r∈[0,t]

∥

∥

∥

∥

∫

[0,r]×U
Θi,i(X

N(s−), h)1(0,λi(XN(s−))]dsduν(dh)

∥

∥

∥

∥

]

.

The first term involves a sum of integrals w.r.t. orthogonal martingales and it is treated
with Burkholder-Davis-Gundy inequality. Therefore, for a certain constant K > 0, the
constant L > 0 coming from condition (Li2) and a constant C > 0 not depending on N nor
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t, we have

Θ 6
K

N
E











∑

j 6=i

∫t

0

∫

U

∥

∥Θj,i(X
N(s−), h)1(0,λj(XN(s−))](u)

∥

∥

2
dsduν(dh)





1/2






+

∫t

0

E

[∥

∥

∥

∥

〈

µNs ,

∫

U

Θ·,i(X
N(s−), h)1[0,λ·(XN(s−)))(u)duν(dh)

〉

−

〈

µ̄Ns ,

∫

U

Θ·,i(Y
N(s−), h)1[0,λ·(YN(s−)))(u)duν(dh)

〉∥

∥

∥

∥

]

ds

+
1

N
E

[∫t

0

∫

U

∥

∥Θi,i(X
N(s−), h)1[0,λi(XN(s−)))(u)

∥

∥duν(dh)ds

]

6
C√
N

+ L

∫t

0

E
[

‖XNi (s) − YNi (s)‖
]

ds+
L

N

N∑

j=1

∫t

0

E
[

‖XNj (s) − YNj (s)‖
]

ds+
C

N
.

The term ψ concerns the main jumps of the particle system and it is bounded by the
positivity property of Poisson processes and the Lipschitz condition (Li2):

ψ 6 E

[∫

[0,t]×U

∥

∥

∥ψi(X
N(s−), h)1(0,λi(XN(s−))](u) −ψi(Y

N(s−), h)1(0,λi(YN(s−))](u)
∥

∥

∥Ni(ds, du, dh)

]

= E

[∫

[0,t]×U

∥

∥

∥ψi(X
N(s−), h)1(0,λi(XN(s−))](u) −ψi(Y

N(s−), h)1(0,λi(YN(s−))](u)
∥

∥

∥dsduν(dh)

]

6 L

∫t

0

E
[

‖XNi (s) − YNi (s)‖
]

ds+
L

N

N∑

j=1

∫t

0

E
[

‖XNj (s) − YNj (s)‖
]

ds.

Therefore, recalling (2.1.2), we find that, for every t ∈ [0, T ],

E

[

sup
s∈[0,t]

‖XNi (s) − YNi (s)‖
]

6M
√
tE

[

sup
s∈[0,t]

‖XNi (s) − YNi (s)‖
]

+M
√
tE

[

1

N

N∑

j=1

sup
s∈[0,t]

‖XNj (s) − YNj (s)‖
]

+ 3L

∫ t

0

E
[

‖XNi (s) − YNi (s)‖
]

ds+
3L

N

N∑

j=1

∫ t

0

E
[

‖XNj (s) − YNj (s)‖
]

ds+
C

N
+

C√
N
.

Choose T0 > 0 small enough that (1 − 2M
√
T0) > 0. By summing over the index i in the

above inequality and dividing both sides by N, we can move the first two terms on the
right-hand side to the left, obtaining, for every t ∈ [0, T0],

1

N

N∑

i=1

E

[

sup
s∈[0,t]

‖XNi (s) − YNi (s)‖
]

6
6L

1− 2M
√
t

∫ t

0

1

N

N∑

i=1

E

[

sup
s∈[0,r]

‖XNi (s) − YNi (s)‖
]

dr

+
C

N(1− 2M
√
t)

+
C√

N(1− 2M
√
t)
.
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An application of Gronwall’s lemma yields

1

N

N∑

i=1

E

[

sup
t∈[0,T0]

‖XNi (t) − YNi (t)‖
]

6
CT0√
N

(2.1.3)

for some finite constant CT0 not depending on N. Recall that (2.1.3) holds on a time
interval [0, T0] for T0 sufficiently small. If T0 is smaller than T , then we can repeat the
procedure of estimates on the interval [T0, (2T0) ∧ T ]. In this case, we find that, for every
t ∈ [T0, (2T0)∧ T ],

1

N

N∑

i=1

E

[

sup
s∈[T0,t]

‖XNi (s) − YNi (s)‖
]

6
1

1− 2M
√
t− T0

(

1

N

N∑

i=1

E

[

sup
s∈[0,T0]

‖XNi (s) − YNi (s)‖
])

+
6L

1− 2M
√
t− T0

∫ t

T0

1

N

N∑

i=1

E

[

sup
s∈[T0,r]

‖XNi (s) − YNi (s)‖
]

dr

+
C

N(1− 2M
√
t− T0)

+
C√

N(1− 2M
√
t− T0)

,

where the first term comes from a bound on the initial condition 1
N

∑N
i=1 E

[

‖XNi (T0) − YNi (T0)‖
]

.
Hence, again thanks to Gronwall’s lemma, for some constant C2,T0 ,

1

N

N∑

i=1

E

[

sup
s∈[0,(2T0)∧T ]

‖XNi (s) − YNi (s)‖
]

6
C2,T0√
N
.

We proceed by induction until we cover, after finitely many steps, the entire interval [0, T ].
By exchangeability of the laws of both the initial and the intermediate process, this yields,
for i = 1, . . . ,N

E

[

sup
s∈[0,T ]

∥

∥XNi (s) − Y
N
i (s)

∥

∥

]

6
CT√
N

and (2.1.1) holds.

In the next, we use a similar coupling technique and we show propagation of chaos for
YN. In this case, for all N, we couple the process YN with N independent copies of the
process X, solution of (1.2.3).

Proposition 2.1.2. Grant Assumptions 2.1.1. Let µ0 be a probability measure on R
d such

that
∫
‖x‖2µ0(dx) < +∞. For N ∈ N, let YN be a solution of Eq. (1.2.4) in [0, T ]. Assume

that YN(0) = (YN1 (0), . . . , Y
N
N(0)), N ∈ N, form a sequence of square integrable random

vectors that is µ0-chaotic in W1. Let µ be the law of the solution of Eq. (1.2.3) in [0, T ]

with initial law P ◦X(0)−1 = µ0. Then YN is µ-chaotic in W1.

Proof. In order to get the thesis, we set a coupling procedure. Let the processes YNi ,
N ∈ N, i ∈ {1, . . . ,N} be all defined on the filtered probability space (Ω,F, (Ft)t>0,P) with
respect to the family (Bi,N

i)i∈N of Brownian motions and Poisson random measures. Since
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(YN(0)) is µ0-chaotic in W1 by hypothesis, we assume, as we may, that our stochastic basis
carries a triangular array (X̄Ni (0))i∈{1,...,N},N∈N of identically distributed R

d-valued random
variables with common distribution µ0 such that (X̄Ni (0))i∈{1,...,N},N∈N and (Bi,N

i)i∈N are
independent, the sequence (X̄Ni (0))i∈{1,...,N} is independent for each N, and

φN
.
= E

[∥

∥X̄Ni (0) − Y
N
i (0)

∥

∥

]

tends to zero as N→ ∞. For N ∈ N, i ∈ {1, . . . ,N}, let X̄Ni be the unique strong solution of
Eq. (1.2.3) in [0, T ] with initial condition XNi (0), driving Brownian motion Bi and Poisson
random measure Ni. Notice that the processes XN1 , . . . , X

N
N are independent and identically

distributed for each N.

Because of the exchangeability of the system (1.2.4), the µ-chaoticity in W1 of the
sequence YN is equivalent to

lim
N→∞

E
[

ρT (µ
N
Y , µ)

]

= 0.

Moreover, by definition of the metric ρT , this follows from

lim
N→∞

E

[

sup
t∈[0,T ]

∥

∥X̄Ni (t) − Y
N
i (t)

∥

∥

]

= 0, (2.1.4)

for every fixed i ∈ N. However, the limit is the same by exchangeability of components.
The term in (2.1.4) is bounded by

E

[

sup
t∈[0,T ]

‖YNi (t) − X̄Ni (t)‖
]

6 φN + F̄+ σ̄+ Θ̄+ ψ̄, (2.1.5)

where

F̄
.
= E

[∫T

0

‖F(YNi (s), µNY (s)) − F(X̄Ni (s), µs)‖ds
]

,

σ̄
.
= E

[

sup
t∈[0,T ]

∥

∥

∥

∥

∫ t

0

σ(YNi (s), µ
N
Y (s)) − σ(X̄

N
i (s), µs)dB

i
s

∥

∥

∥

∥

]

,

Θ̄
.
= E

[

sup
t∈[0,T ]

∥

∥

∥

∥

∫ t

0

〈

µNY (s),

∫

U

Θ(·, YNi (s), µNY (s), h)1(0,λj(·,µNY (s))](u)duν2(dh)

〉

ds

−

∫ t

0

∫

U

〈

µs, Θ(·, X̄Ni (s), µs, h)1(0,λj(·,µs)](u)duν(dh)
〉

ds

∥

∥

∥

∥

]

,

ψ̄
.
= E

[

sup
t∈[0,T ]

∥

∥

∥

∥

∫

[0,t]×U
ψ(YNi (s

−), µNY (s), h)1(0,λ(YNi (s−),µNY (s−))](u)

−ψ(X̄Ni (s
−), µs− , h)1(0,λi(X̄

N
i (s−),µs−)](u)N

i(dt, du, dh)
∥

∥

∥

]

.

The terms F̄, σ̄, and ψ̄ are treated exactly as in Proposition 2.1.1, whereas the term Θ̄
only requires the application of the Lipschitz condition (Li2). By mimicking the steps in
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Proposition 2.1.1, there exists a T0 > 0 small enough and a constant CT0 > 0, independent
of N, such that we can apply Gronwall’s Lemma and obtain

E

[

sup
t∈[0,T0]

‖YNi (t) − X̄Ni (t)‖
]

6 CT0





∫T0

0

E
[

ρ(µNY (t), µt)
]

dt+

√

∫T0

0

E[ρ(µNY (t), µt)
2]dt+ φN



 .

By triangular inequality, for every fixed t ∈ [0, T0],

E
[

ρ(µNY (t), µt)
]

6 E
[

ρ(µNY (t), µ
N
X̄
(t))

]

+ E
[

ρ(µN
X̄
(t), µt)

]

6 E

[

sup
t∈[0,T0]

‖YNi (t) − X̄Ni (t)‖
]

+ E
[

ρ(µN
X̄
(t), µt)

]

.

Then, for a T0 sufficiently small, using again Gronwall Lemma, there exists a positive
constant, depending on T0, that by abuse of notation we will indicate it again with CT0 > 0,
such that

E

[

sup
t∈[0,T0]

‖YNi (t) − X̄Ni (t)‖
]

6 CT0





∫T0

0

E

[

ρ(µN
X̄
(t), µt)

]

dt+

√

∫T0

0

E

[

ρ(µN
X̄
(t), µt)2

]

dt+ φN



 .

We see that the bound on (2.1.5) depends on the initial conditions and on E
[

ρ(µN
X̄
(t), µt)

]

,
that is the distance, at every fixed time t ∈ [0, T ], between the empirical measure of N i.i.d.
copies of the solution of the process with law µ and the law µt itself. The rate of convergence
of empirical measures in Wasserstein distance depends on the moments of X̄(t) and on the
dimension d, see [42, Theorem 1]. Since

sup
t∈[0,T ]

E
[

X̄2i (t)
]

< +∞,

it follows from [42] that, setting

βN
.
= sup
t∈[0,T ]

E[ρ(µN
X̄
(t), µt)],

we have
lim
N→∞

βN = 0.

Therefore, we know that there exists a constant CT0 > 0 such that, for N going to infinity,
we have

E

[

sup
t∈[0,T0]

‖YNi (t) − X̄Ni (t)‖
]

6 CT0
(

βN + φN
)

.

Iterating this procedure as in Proposition 2.1.1, we extend the above result to [0, T ], i.e.

E

[

sup
t∈[0,T ]

‖YNi (t) − X̄Ni (t)‖
]

6 CT
(

βN + φN
)

.

for a suitable constant CT . This establishes µ-chaoticity of YN in W1.
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The property of propagation of chaos for the process XN comes as a corollary of the
two propositions above.

Corollary 2.1.1. Grant Assumptions 2.1.1. Let µ0 be a probability measure on R
d such

that
∫
‖x‖2µ0(dx) < +∞. For N ∈ N, let XN be a solution of Eq. (1.2.1) in [0, T ]. Assume

that XN(0) = (XN1 (0), . . . , X
N
N(0)), N ∈ N, form a sequence of square integrable random

vectors that is µ0-chaotic in W1. Let µ be the law of the solution of Eq. (1.2.3) in [0, T ]

with initial law P ◦X(0)−1 = µ0. Then XN is µ-chaotic in W1.

Proof. As we said, the propagation of chaos is equivalent to the proof of

lim
N→∞

E[ρT (µ
N
X , µ)] = 0.

By triangular inequality, it is clear that, with the notations of the previous proofs,

E[ρT (µ
N
X , µ)] 6 E[ρT (µ

N
X , µ

N
Y )] + E[ρT (µ

N
Y , µ)]

6 CT

(

1√
N

+ βN + φN
)

.

The claim follows by Proposition 2.1.1 and 2.1.2.

The proof of Proposition 2.1.1 by means of the coupling procedure let us identify the
rate at which

E
[

ρT (µ
N
Y , µ)

]

goes to zero, as N goes to infinity. Indeed, by the results in [13, 42], we know the rate
of convergence in Wasserstein distance of the empirical measure mainly depends on the
moments of the measure and on the dimension. In general, we can say that the best
possible rate we can get is

βN = O

(

1√
N

)

.

Depending on the dimension, in [42] we see that βN = O
(

1
N−1/d

)

except possibly for
dimensions d = 1,2, where some logarithmic corrections may appear. The same happens
for φN, but note that if the components of the initial condition are i.i.d., then φN = 0.
In Proposition 2.1.1 we highlight that, in any situation, the simultaneous jumps in the
form presented here, do not worsen the rate of convergence due to any other mean-field
interaction, since they add a term of order 1√

N
.

2.2 Non-globally Lipschitz drift

In Section 2.1, we develop the coupling procedure and the computations under the most
classical assumptions on coefficients. Now we aim to extend this approach to a wider class
of processes and to prove pathwise propagation of chaos as well. Unfortunately, results
on nonlinear diffusions with jumps are not so common in literature, in particular with
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unbounded jump rates. Therefore, in the two following sections, we need to prove, besides
the equivalent of Proposition 2.1.1, 2.1.2 and Corollary 2.1.1, also the well-posedness of
the nonlinear process (1.2.3).

Let us start by relaxing the Lipschitz assumption on the drift, allowing as drift terms the
gradients of general convex potentials. This includes relevant examples as those appeared
in [28] and [45], extending them to the case with jumps.

2.2.1 Assumptions and well-posedness of the particle systems

The structure of this section recalls the one of Section 2.1.1, in the sense that we list the
assumptions on the coefficients, that differ only in the condition of the drift function F.

Assumption 2.2.1. (U) The drift coefficient F : Rd ×M(Rd) → R
d is of the form

F(x, α) = −OU(x) + b(x, α),

for all x ∈ R
d and all α ∈ M(Rd), where U is convex and C1. The function b

is assumed to be globally Lipschitz in both variables: ∃ Lb > 0 such that, for all
x, y ∈ R

d, all α, γ ∈ M1(Rd),

‖b(x, α) − b(y, γ)‖ 6 Lb (‖x− y‖+ ρ(α, γ)) .

(Li1) The classical global Lipschitz assumption on σ: ∃ Lσ > 0 such that, for all x, y ∈ R
d,

all α, γ ∈ M1(Rd),

‖σ(x, α) − σ(y, γ)‖ 6 Lσ (‖x− y‖+ ρ(α, γ)) .

(Li2) The L1-Lipschitz assumption on the jump coefficients: ∃ Lψ, LΘ > 0 such that, for all
x, y ∈ R

d, all α, γ ∈ M1(Rd),

∫

[0,∞)×[0,1]

‖ψ(x, α, h)1(0,λ(x,α)](u) −ψ(y, γ, h)1(0,λ(y,γ)](u)‖duν1(dh) 6 Lψ (‖x− y‖+ ρ(α, γ))

and

‖〈α, λ(·, α)
∫

[0,1]2
Θ(·, x, α, h1, h2)ν2(dh1, dh2)〉− 〈γ, λ(·, γ)

∫

[0,1]2
Θ(·, y, γ, h1, h2)ν2(dh1, dh2)〉‖

6 LΘ (‖x− y‖+ ρ(α, γ)) .

(I1) The integrability condition: for all N ∈ N, for all x ∈ R
d×N and all α ∈ M1(Rd)

∫

[0,1]N

∥

∥∆Ni (x, α, h
N)
∥

∥νN(dh
N) <∞.
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(I2) The square-integrability condition on the collateral jumps: for all x, y ∈ R
d and all

α ∈ M1(Rd)

∫

[0,∞)×[0,1]N
‖Θ(x, y, α, h1, h2)1(0,λ(x,α)](u)‖2duν2(dh) <∞.

In the following, we set L .= Lb ∨ Lσ ∨ Lψ ∨ LΘ.

Condition (U) is a natural choice when one wants to relax globally Lipschitz conditions
on coefficients. It induces a process whose trajectories are strongly constrained by the con-
vex potential. This attracting drift, even when combined with an unbounded jump rate,
should prevent the process from exploding in finite time. We will see that this is what
happens provided the jump rate is in some way “controllable”, as it is under the Lipschitz
assumption (Li2).

We could not find a general result on SDE with unbounded jump’s rate and a non glob-
ally Lipschitz condition on the drift coefficient, that could ensure existence and uniqueness
of solutions to (1.2.1) and (1.2.4) under Assumption 2.2.1. Therefore, we prove some
techinical lemmas, that are gathered in Section 2.2.4.

2.2.2 Well-posedness of the McKean-Vlasov SDE

We mentioned that it is not easy to find results on SDE where the rate of jump is un-
bounded and it is certainly much harder to find such results in the framework of nonlinear
SDE. Indeed, the stopping time procedure that we use in the proof of Lemma 2.2.1 is
not suitable, since the coefficients depend on the law of the process itself. Thus, in this
section, we give a specific proof of well-posedness for nonlinear SDE belonging to this class.

Consider the stochastic differential equation

dX(t) =F(X(t), µt)dt+ σ(X(t), µt)dBt (2.2.1)

+

∫

[0,∞)×[0,1]N
ψ(X(t−), µt− , h1)1(0,λ(X(t−),µt−)](u)N(dt, du, dh),

where µt = Law(X(t)), B is a d1-dimensional Brownian motion and N is a stationary
Poisson random measure with characteristic measure l× l× ν.

Theorem 2.2.1. Let the coefficients of the nonlinear SDE (2.2.1) satisfy Assumption 2.2.1.
Then for all square integrable initial conditions X(0) ∈ R

d, Eq. (2.2.1) admits a unique
strong solution.
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Proof. Let P1 and P2 two laws on D([0, T ],Rd) and suppose that X1 and X2 are two solutions
of the following SDE, for k = 1,2:

dXk(t) =F(Xk(t), Pkt )dt+ σ(X
k(t), Pkt )dBt (2.2.2)

+

∫

[0,∞)×[0,1]N
ψ(Xk(t−), Pkt− , h1)1(0,λ(Xk(t−),Pk

t−
)](u)N(dt, du, dh),

defined on the same probability space (Ω,F, (Ft),P) with the same Ft-Brownian motion B,
the same Poisson random measure N and with initial condition X1(0) = X2(0) = ξ P-almost
surely. The well-posedness of Eq. (2.2.2) is ensured by Lemma 2.2.3. Let Q1 and Q2 be
the laws of the solutions on D([0, T),Rd) and let Γ be the map that associates Qk to Pk.
We are interested in proving that the map Γ is a contraction for the W1 Wasserstein norm.
Hence, we want to bound the distance

ρT (Q
1, Q2) 6 E

[

sup
t∈[0,T ]

‖X1(t) − X2(t)‖
]

. (2.2.3)

The idea here, in order to exploit the convexity of U, is to apply Ito’s rule. A classical
approach consists in applying Ito’s rule to a quantity of type (X1t − X

2
t)
2; this L2 approach

is not convenient when we have jump terms. For this reason we rather use a L1 approach.
To this aim, for all ε > 0 we define the following smooth approximation of the norm

fε(x)
.
= ‖x‖1(‖x‖ > ε) +

(‖x‖2
2ε

+
ε

2

)

1(‖x‖ 6 ε). (2.2.4)

Then, by Ito’s rule and Fatou’s Lemma, we have

E

[

sup
t∈[t0,t1]

‖X1(t) − X2(t)‖
]

6 lim inf
ε↓0

E

[

sup
t∈[t0,t1]

fε
(

X1(t) − X2(t)
)

]

6 lim inf
ε↓0

(iε[t0, t1] + uε[t0, t1] + bε[t0, t1] + σε[t0, t1] + Σε[t0, t1] +Λε[t0, t1]) ,

where, for t1 ∈ [t0, T ], we set

iε[t0, t1]
.
= E

[

fε
(

X1(t0) − X
2(t0)

)]

,

uε[t0, t1]
.
= E

[

sup
t∈[t0,t1]

−

∫ t

t0

Ofε
(

X1(s) − X2(s)
)

· O
(

U(X1(s)) −U(X2(s))
)

ds

]

,

bε[t0, t1]
.
= E

[

sup
t∈[t0,t1]

∫ t

t0

Ofε
(

X1(s) − X2(s)
)

·
(

b(X1(s), P1s) − b(X
2(s), P2s)

)

ds

]

,

σε[t0, t1]
.
=
1

2
E

[

sup
t∈[t0,t1]

∫t

t0

Tr
(

σ(X1(s), P1s) − σ(X
2(s), P2s)

)T
Hfε(X1(s)−X2(s))

(

σ(X1(s), P1s) − σ(X
2(s), P2s)

)

ds

]

,

Σε[t0, t1]
.
= E

[

sup
t∈[t0,t1]

∫t

t0

Ofε
(

X1(s) − X2(s)
)

·
(

σ(X1(s), P1s) − σ(X
2(s), P2s)

)

dBs

]

,

Λε[t0, t1]
.
= E

[

sup
t∈[t0,t1]

∫t

t0

∫

[0,1]

∫∞

0

fε
(

X1(s) +ψ(X1(s), P1s , h)1u6λ(X1(s),P1
s )

− X2(s)

−ψ(X2(s), P2s , h)1u6λ(X2(s),P2
s )

)

− fε
(

X1(s) − X1(s)
)

dsduν1(dh)
]

.
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Notice that, by the assumption of convexity of U, for all x and y ∈ R
d, it holds

Ofε(x − y) · O (U(x) −U(y)) =
1(‖x − y‖ > ε)

‖x − y‖ (x − y) · O (U(x) −U(y))

+
1(‖x − y‖ 6 ε)

ε
(x − y) · O (U(x) −U(y)) > 0.

Therefore, the term uε[t0, t1] is easily bounded, since it is always non-positive, i.e.

lim inf
ε↓0

uε[t0, t1] 6 0.

For the term bε[t0, t1], we use the global Lipschitz condition on the function b, together
with the properties of W1 Wasserstein distance and inequality (2.2.3):

bε[t0, t1] 6 E

[∫ t1

t0

∥

∥b(X1(s), P1s) − b(X
2(s), P2s)

∥

∥ds

]

6 L

(∫ t1

t0

E

[

sup
s∈[0,t]

‖X1(s) − X2(s)‖
]

dt+ (t1 − t0)ρ[t0,t1](P
1, P2)

)

.

To estimate the term σε[t0, t1], we observe that the Hessian matrix of fε has the following
form:

Hfε(x) = 1(‖x‖ > ε)
(

−
1

‖x‖3A+
1

‖x‖I
)

+ 1(‖x‖ 6 ε)
1

ε
I,

where A is d×d matrix such that, for all i, j, Ai,j = xixj and I is the identity d×d matrix.
Therefore,

σε[t0, t1] 6
1

2

∫t0

t0

E

[

1(‖X1(s) − X2(s)‖ > ε)
‖X1(s) − X2(s)‖ Tr

(

σ(X1(s), P1s) − σ(X
2(s), P2s)

)T (
σ(X1(s), P1s) − σ(X

2(s), P2s)
)

]

ds

+
1

2

∫t0

t0

E

[

1(‖X1(s) − X2(s)‖ 6 ε)

ε
Tr
(

σ(X1(s), P1s) − σ(X
2(s), P2s)

)T (
σ(X1(s), P1s) − σ(X

2(s), P2s)
)

]

ds

+
1

2

∫t0

t0

E

[

1(‖X1(s) − X2(s)‖ > ε)
‖X1(s) − X2(s)‖3 Tr

(

σ(X1(s), P1s) − σ(X
2(s), P2s)

)T

(

(X1(s) − X2(s))i(X
1(s) − X2(s))j

) (

σ(X1(s), P1s) − σ(X
2(s), P2s)

)]

ds.

This term, due to the Lipschitz property of the diffusion coefficient σ gives rise to a new
term linear in E[supt∈[t0,t1]

‖X1(t) − X2(t)‖]. Indeed, we have, for a certain K > 0,

σε[t0, t1] 6 KL

∫ t1

t0

E[ sup
s∈[t01,t]

‖X1(s) − X2(s)‖]dt.

The treatment of the term Σε[t0, t1] involves, in addition to the previous arguments, the
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Burkholder-Davis-Gundy inequalities and the global Lipschitz condition (Li1):

Σε[t0, t1] 6 C1 E

[(∫ t1

t0

∥

∥

∥

(

σ(X1(s), P1s) − σ(X
2(s), P2s)

)T

(

σ(X1(s), P1s) − σ(X
2(s), P2s)

)∥

∥ds
)1/2

]

6 C1LE





(∫ t1

t0

sup
s∈[t0,t1]

‖X1(s) − X2(s)‖2dt+ (t1 − t0)ρ[t0,t1](P
1, P2)2

)1/2




6 C1L
√

(t1 − t0)

(

E

[

sup
t∈[t0,t1]

‖X1(t) − X2(t)‖
]

+ ρ[t0,t1](P
1, P2)

)

,

for some constant C1 not depending on t0, t1. To bound the term Λ[t0,t1], we make use
of the properties of the process {Λ(t)}t∈[0,T ], of the W1 Wasserstein distance, as well as
condition (Li2) and monotone convergence theorem.

lim inf
ε↓0

Λε[t0, t1] = E

[

sup
t∈[t0,t1]

∫t

t0

∫

[0,1]

∫∞

0

∥

∥

∥X1(s) +ψ(X1(s), P1s , h)1u6λ(X1(s),P1s) − X
2(s)

−ψ(X2(s), P2s , h)1u6λ(X2(s),P2s)

∥

∥

∥− ‖X1(s) − X1(s)‖dsduν1(dh)
]

6 E

[∫t1

t0

∫

[0,∞)×[0,1]

‖ψ(X1(s−), P1s− , h)1(0,λ(X1(s−),P1
s−

)]

−ψ(X2(s−), P2s− , h)1(0,λ(X2(s−),P2
s−

)]‖dsduν(dh)
]

6 L

(∫t1

t0

E

[

sup
s∈[0,t]

‖X1(s) − X2(s)‖
]

dt+ (t1 − t0)ρ[t0,t1](P
1, P2)

)

.

Therefore,

E

[

sup
t∈[t0,t1]

‖X1(t) − X2(t)‖
]

6E
[

‖X1(t0) − X2(t0)‖
]

+ L
(

(K+ 1)(t1 − t0) + C1
√
t1 − t0

)

ρ[t0,t1](P
1, P2)

+C1L
√

(t1 − t0)E

[

sup
t∈[t0,t1]

‖X1(t) − X2(t)‖
]

+L(1+ K)(t1 − t0)

∫ t1

t0

E

[

sup
s∈[0,t]

‖X1(s) − X2(s)‖
]

dt.

By hypothesis, E [‖X(0) − Y(0)‖] = 0, then choose T0 > 0 such that 1 − C1L
√
T0 > 0.

Therefore we have

E

[

sup
t∈[0,T0∧T ]

‖X1(t) − X2(t)‖
]

6
L(1+ K)T0

1− C1L
√
T0

∫T0∧T

0

E

[

sup
s∈[0,t]

‖X1(s) − X2(s)‖
]

dt

+
L
(

(1+ K)T0 + C1
√
T0
)

1− C1L
√
T0

ρT0(P
1, P2). (2.2.5)
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Applying Gronwall’s Lemma to (2.2.5), there exists a T0 > 0 sufficiently small such that

ρT0(Q
1, Q2) 6 E

[

sup
t∈[0,T0∧T ]

‖X1(t) − X2(t)‖
]

< CT0ρT0(P
1, P2),

for a constant CT0 < 1. Therefore, when Pk .= Qk, this shows uniqueness of the McKean-
Vlasov measure in M1

(

D([0, T0],R
d)
)

. However, since CT0 depends only on the amplitude
of the interval, the same procedure iterated over a finite number of intervals of the type
[T0∧T, 2T0∧T ], [2T0∧T,3T0∧T ], etc., yields uniqueness of the measure in M1

(

D([0, T ],Rd)
)

.

The proof of existence is obtained via a Picard iteration argument, starting from (2.2.2).
Let Pk .= Qk−1, then (2.2.2) gives a sequence of laws {Qk}k∈N, that is a Cauchy sequence
for the metric ρT0 on M1

(

D([0, T0],R
d)
)

. Consequently, it is a Cauchy sequence also for a
weaker Wasserstein metric based on a complete Skorohod metric, that yields existence of
a solution of (2.2.2) on [0, T0 ∧ T ]. Again, iterating the procedure over a finite number of
intervals gives the existence of a weak solution on the time interval [0, T ].

According to Yamada-Watanabe theorem, the two previous steps ensure existence and
uniqueness of strong solutions.

2.2.3 Propagation of chaos

This section is an adaptation of Section 2.1.2 to the framework of Assumption 2.2.1, this
is the reason why the proofs here are rather short and mostly remind to Section 2.1.2. We
recall that we use the same approach, i.e. we make use again of the sequence of intermediate
processes {YN}N∈N, where each process YN = {YN(t)}t∈[0,T ] is defined as the solution of the
system (1.2.4).

Proposition 2.2.1. Grant Assumption 2.2.1. Let XN and YN be the solution of (1.2.1)
and (1.2.4), respectively. We assume the two processes are driven by the same Brownian
motions and Poisson random measures, and start from the same square-integrable and
permutation invariant initial condition. Then, for each fixed i ∈ N,

lim
N→+∞

E

[

sup
t∈[0,T ]

‖XNi (t) − YNi (t)‖
]

= 0.

Proof. By the permutation invariance of the systems we write

E

[

sup
t∈[0,T ]

‖XNi (t) − YNi (t)‖
]

=
1

N

N∑

i=1

E

[

sup
t∈[0,T ]

‖XNi (t) − YNi (t)‖
]

= lim inf
ε↓0

1

N

N∑

i=1

E

[

sup
t∈[0,T ]

fε(XNi (t) − Y
N
i (t))

]

,
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where fε is the smooth approximation of the norm, defined in Theorem 2.2.1. Then, we
use the techniques of Theorem 2.2.1, as the use of Ito’s rule with the function fε. This,
together with the computations in Proposition 2.1.1 and the usual application of Gronwall
Lemma iteratively over a finite number of intervals of the type [0, T0∧ T ], [T0,2T0∧ T ], etc.
yields, for some constant CT > 0,

1

N

N∑

i=1

E

[

sup
t∈[0,T ]

‖XNi (t) − YNi (t)‖
]

6
CT√
N
,

that gives the thesis.

Proposition 2.2.2. Grant Assumption 2.2.1. Let µ0 be a probability measure on R
d such

that
∫
‖x‖2µ0(dx) < +∞. For N ∈ N, let YN be a solution of Eq. (1.2.4) in [0, T ]. Assume

that YN(0) = (YN1 (0), . . . , Y
N
N(0)), N ∈ N, form a sequence of square-integrable random

vectors that is µ0-chaotic in W1. Let Q be the law of the solution of Eq. (1.2.3) in [0, T ]

with initial law P ◦X(0)−1 = µ0. Then YN is Q chaotic in W1.

Proof. We follow the steps of Proposition 2.1.2 to define the coupling procedure. We
fix a filtered probability space (Ω,F, (Ft)t>0,P) with respect to the family (Bi,N

i)i∈N

of independent Brownian motions and Poisson random measures. For each N ∈ N, we
couple the process YN with the process X̄N =

{
X̄Ni (t), i = 1, . . . ,N

}

t∈[0,T ]
defined thanks to

Theorem 2.2.1, where the initial condition is Law(X̄N(0)) = ⊗Nµ0 and each component X̄Ni
is a solution of SDE (2.2.1). Successively, we use the techniques of the previous theorems,
we iterate the computations over a finite number of time intervals to cover all [0, T ] and we
obtain

1

N

N∑

i=1

E

[

sup
t∈[0,T ]

‖YNi (t) − X̄Ni (t)‖
]

N→∞→ 0,

that implies Q chaoticity of the law of YN.

Corollary 2.2.1. Grant Assumption 2.2.1. Let µ0 be a probability measure on R
d such

that
∫
‖x‖2µ0(dx) < +∞. For N ∈ N, let XN be a solution of Eq. (1.2.1) in [0, T ]. Assume

that XN(0) = (XN1 (0), . . . , X
N
N(0)), N ∈ N, form a sequence of square-integrable random

vectors that is µ0-chaotic in W1. Let Q be the law of the solution of Eq. (1.2.3) in [0, T ]

with initial law P ◦X(0)−1 = µ0. Then XN is Q chaotic in W1.

Proof. This follows, of course, from the same procedure of the proof of Corollary 2.1.1 and
it is based on the results of Proposition 2.2.1 and 2.2.2.

2.2.4 Some technical lemmas

We gather in this section the lemmas necessary to prove well-posedness of the particle
systems (1.2.1) and (1.2.4) and the nonlinear stochastic differential equation (1.2.3), under
Assumption 2.2.1. These lemmas are simply an application of classical approach, see for
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example Ikeda Watanabe [51], together with the trick used in the proof of Theorem 2.2.1.
Well-posedness of equations (1.2.1) and (1.2.4) is clearly a consequence of Lemma 2.2.3,
where there is no parametrizing measure, the state space of the process is R

N×d and we
have a finite number (precisely N) of Poisson integrals, instead of the one described in the
statement of the lemma.

Lemma 2.2.1. Consider the SDE parametrized by two measures α and β ∈ M(D([0, T ],Rd))

dX(t) =F(X(t), αt)dt+ σ(X(t
−), αt)dBt (2.2.6)

+

∫

[0,∞)×[0,1]N
ψ(Y(t−), αt− , h1)1(0,λ(Y(t−),αt−)](u)N(dt, du, dh),

with Law(Y) = β. If the coefficients satisfy Assumption 2.2.1, then for every α and β ∈
M1(D([0, T ],Rd)), every square-integrable initial condition, there exists a unique strong so-
lution to Eq. (2.2.6).

Moreover, let µ
.
= Law((X(t))t∈[0,T ]) be the law of the solution of (2.2.6) starting from

the square-integrable initial condition X(0) µ0-distributed, then µ ∈ M1(D([0, T ],Rd)).

Proof. Let B be an (Ft)-brownian motion, p be a (Ft)-stationary Poisson point process
with characteristic measure l × ν and ξ be a F0-measurable square-integrable r.v.. Let
D
.
= {s ∈ Dp s.t. p(s) ∈ Ūs = (0, λ(Y(s−), αs−)]×[0,1]×[0,1]×. . . }. Let us call σ1 < σ2 < . . .

the elements of D. Each σn is an Ft -stopping time and limn→∞ σn = ∞ a.s.. Indeed, for
every T > 0 and for a fixed n ∈ N

∗,

P(σn 6 T) = P

(∫T

0

∫

[0,∞)×[0,1]N
1(0,λ(Y(t−),αt−)](u)N(du, dh, dt) > n

)

6
E [λ(Y(T), αT )]

n
6
CT

n
,

for a certain constant CT . By Lemma 2.2.2, we get the claim. Then we start by showing
∃! of a solution for (2.2.6) on [0, σ1]. Consider the equation

Z(t) = X(0) +

∫ t

0

F(Z(s), αs)ds+

∫ t

0

σ(Z(s−), αs)dBs. (2.2.7)

Existence and uniqueness of a strong solution for (2.2.7) are ensured by the classical Has-
minskii’s test for non-explosion (see e.g. [66] with the Lyapunov function V(z) = ‖z‖2).
The test’s conditions are guaranteed by the inequality

sup
α∈M1(Rd)

z · F(z, α) + tr(σ(z, α)σT (z, α)) 6 C(1+ ‖z‖2), (2.2.8)

for some C > 0, for all z ∈ R
d. Indeed, fix an α ∈ M1(Rd). Then, under (U) from

Assumption 2.2.1, we have

z · F(z, α) = −(z− 0) · (OU(z) − OU(0)) + z · OU(0) + z · b(z, α) 6 C
(

‖z‖2 + 1
)

,

due to the convexity of U and the linear growth of b. A similar bound is obtained for
the second summand in the l.h.s of (2.2.8), which has uniform quadratic growth in the z
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variable. Then, for every integrable initial condition, there exists a unique strong solution
to (2.2.7). Let π1 be the projection defined as

π1 : [0,1]N × [0,∞) 7→ [0,1]

(h, u) → h1,

we define

X1(t) =

{
Z1(t) t ∈ [0, σ1),

Z1(σ−1 ) +ψ(Z
1(σ−1 ), α(σ

−
1 ), π1 ◦ p(σ1)) t = σ1,

(2.2.9)

where {Z1(t)}t>0 is solution of (2.2.7) with initial condition Z1(0) = ξ a.s.. We see that
X1(t) is solution of (2.2.6) for t ∈ [0, σ1]. We iterate the procedure by setting ξ̄ .= X1(σ1),
B̄
.
= (B(t + σ1) − B(σ1))t>0 and p̄ .

= (p(t + σ1))t>0. We define X̄1(t) for t ∈ [0, σ̄1] as we
did for X1(t) in (2.2.9), where σ̄1 is the smallest time such that p̄s belongs to Ūσ1+s and
coincides with σ2 − σ1. We define

X2(t) =

{
X1(t) t ∈ [0, σ1],

X̄1(t− σ1) t ∈ [σ1, σ2].

Clearly X2 is solution of (2.2.6) for t ∈ [0, σ2]. Since limn→∞ σn = ∞ a.s., we can iterate
this procedure to cover the entire time interval [0, T ].

To prove that the law µ of a solution of (2.2.6) belongs to M1(D([0, T ],Rd)), we will show
that there exists a filtered probability space (Ω,P, (Ft),F), with a Ft-Brownian motion B,
an adapted Ft Poisson random measure N with characteristic measure l × l × ν and a
F0-measurable initial condition X(0) µ0-distributed such that E

[

supt∈[0,T ] ‖X(t)‖
]

< ∞.
We consider the process X(t), for all t > 0, solution of (2.2.6). Now, we use the trick of
applying Ito’s rule to the smooth approximation fε of ‖ · ‖ and taking the limit for ε ↓ 0, to
exploit the properties of the potential function U. For the details of the approach, see the
proof of Theorem 2.2.1. Then, for the properties of coefficients and quantities involved,
there exist three positive constants D1, D2 and D3 s.t.

E

[

sup
t∈[0,T ]

‖X(t)‖
]

6 E [‖X(0)‖] +D1T +D2T E

[

sup
t∈[0,T ]

‖Y(t)‖
]

+D1

∫T

0

E

[

sup
s∈[0,t]

‖X(s)‖
]

dt.

We apply Gronwall Lemma and we get the desired bound.

Lemma 2.2.2. Let {σn}n∈N∗ be a sequence of strictly increasing stopping times. If, for all
T > 0, there exists a constant CT > 0 such that

P(σn 6 n) 6
CT

n
,

then limn→∞ σn = ∞ a.s..



32 Pathwise propagation of chaos for simultaneous jumps

Proof. We start by proving that, for all T > 0, there exists a measurable set ΛT with
probability one, such that for all ω ∈ ΛT , there exists n0(ω, T) and for all n > n0(ω, T) it
holds σn(w) > T .

Let An
.
= {σn2 6 T } and A .

=

∞
⋂

n=1

∞
⋃

i=n

Ai, therefore we have

∞∑

n=1

P(An) 6

∞∑

n=1

CT

n2
<∞

and for Borel Cantelli P(A) = 0. Let ΛT
.
= AC, then it has probability one and for all

ω ∈ ΛT there exists n̄0(ω, T) such that for all n > n̄0(ω, T) we have σn2 > T . Since the σn
are increasing, we have the claim that there exists n0(ω, T) such that for all n > n0(ω, T),
σn > T .
Now, let Λ̃ .

=
⋂

T∈N

ΛT , then P(Λ̃) = 1 and for all ω ∈ Λ̃ for all T > 0 there exists n0(ω, T)

s.t. for all n > n0(ω, T) then σn(ω) > T . This implies σn ↗ ∞ a.s..

We are now ready to prove the most important lemma of this section, the one that
allows us to prove well-posedness of SDE with jumps if the drift satisfies condition (U) and
that it is crucial in the proof of Theorem 2.2.1.

Lemma 2.2.3. Consider the SDE parametrized by a measure α ∈ M1(D([0, T ],Rd))

dX(t) =F(X(t), αt)dt+ σ(X(t), αt)dBt (2.2.10)

+

∫

[0,∞)×[0,1]N
ψ(X(t−), αt− , h1)1(0,λ(X(t−),αt−)](u)N(dt, du, dh).

If the coefficients satisfy Assumption 2.2.1, then for every α ∈ M1(D([0, T ],Rd)) and every
square-integrable initial condition, there exists a unique strong solution to Eq. (2.2.10).

Proof. First let X1 and X2 be two integrable stochastic processes on [0, T ] with values in
R
d. We define the map that associates the law of Xk to the law of the solution of

dYk(t) =F(Yk(t), αt)dt+ σ(Y
k(t), αt)dBt (2.2.11)

+

∫

[0,∞)×[0,1]N
ψ(Xk(t−), αt− , h1)1(0,λ(Xk(t−),αt−)](u)N(dt, du, dh),

that is well-defined for Lemma 2.2.1. With the same computation of the proof of Theo-
rem 2.2.1, we get that, for a small enough T0 > 0, there exists a constant CT0 < 1 such
that

E

[

sup
t∈[0,T0]

‖Y1(t) − Y2(t)‖
]

6 CT0 E

[

sup
t∈[0,T0]

‖X1(t) − X2(t)‖
]

.

This shows pathwise uniqueness for solution of (2.2.10). By means of (2.2.11), we define a
Picard iteration argument that gives a sequence of laws {Qn}n∈N

on D([0, T ],Rd). Again,
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there exists a T0 > 0 small enough such that {Qn}n∈N
is a Cauchy sequence for ρT0 and

hence for a weaker but complete Wasserstein metric on M1(D([0, T0],R
d)). Iterating the

procedure over a finite number of time intervals, to cover [0, T ], yields tweak existence of
a solution. The integrability property is proved as in the proof of Lemma 2.2.1. Then
Yamada-Watanabe theorem concludes the proof.

Let us highlight that, in the proof of Lemma 2.2.3, we need to define the map by
means of (2.2.11) and we could not straightly substitute Xk in the whole right-hand side
of (2.2.10). In fact, we need to control the jumps by means of a known process, but at
the same time, we need to have the same variable as argument of the drift coefficient to
exploit the convexity of the potential function U.

2.3 Non-globally Lipschitz jump rate

In this section we want to extend our study to a class of systems in which the jump rate
is super-linear. This is mainly motivated by the neuroscience models we introduced in
Section 1.1.2, from which comes the inspiration of this study. In [29, 43, 75] the authors
present two piece-wise deterministic Markov processes (PDMPs) of interacting neurons
with the feature of simultaneous jumps, that we summarized (at the microscopic level) in
(1.1.1). In this section we extend the model to a d-dimensional framework and we slightly
generalize the jumps’ amplitude and rate functions, but we neglect the term modelling
electrical synapses, by choosing β = 0. This results in a d-dimensional extension of the
model in [75].

2.3.1 Assumptions and well-posedness of the particle system

We consider, as the initial particle system, the PDMP XN solution of the following SDE:

dXNi (t) =−XNi (t)dt+
1

N

∑

j6=i

∫

[0,∞]×[0,1]N
V(hj, hi)1[0,λ(XNj (t)))(u)N

j(dt, du, dh)

−

∫

[0,∞)×[0,1]N

(

XNi (t) −U(hi)
)

1[0,λ(XNi (t)))(u)N
i(dt, du, dh) (2.3.1)

for all i = 1, . . . ,N. As before, (Ni)i∈N is an independent family of Poisson random
measures Ni, each of them with characteristic measure l × l × ν. Remember that ν is a
symmetric probability measure on [0,1]N such that it exists a consistent family of symmetric
probability measures (νN)N∈N

, each of them defined respectively on [0,1]N and coinciding
with the projections of ν on N coordinates.

Assumption 2.3.1. The coefficients of the system (2.3.1) obey the following properties:

(JR) the jump rate of each particle is a non-negative C1 function of its position, λ : Rd →
R+, that is written as the sum of two functions:

λ(·) .= b(‖ · ‖) + h(·).
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- b is a C1, positive, non-decreasing function such that

b ′(r) 6 γb(r) + c (2.3.2)

for some c > 0 and γ <
1

5E[‖V‖] ;

- h : Rd → R is a C1 bounded function, i.e. there exists H > 0 such that ∀ x ∈ R
d,

‖h(x)‖ 6 H;

(JA) the jump amplitudes, V and U, are two bounded functions from respectively [0,1]2 and
[0,1] to R

d (since they represents two random variables with values in some bounded
subsets of Rd, with abuse of notation we will indicate as expectations their integrals
w.r.t. the measure ν ).

Notice that the form of the function b is exactly the one suggested by [75]. The
assumption

γ <
1

5E[‖V‖]
allows to obtain apriori bounds on the moments of λ(X(t)), where X(t) is the solution of
the corresponding McKean-Vlasov equation, see (2.3.3), and it is used in the proofs of next
Lemmas 2.3.4 and 2.3.5. It is interesting to notice that Assumption 2.3.1 allows to consider
non-globally Lipschitz functions; in particular, this covers all the cases where b(r) is of the
form rα, for α > 1. We also remark that the condition on b here is a little stronger than
in [75], due to the coupling method (vs. the martingale approach) in the proof, which in
particular allows to identify the rate of convergence, which is of the order O

(

1√
N

)

. This

requires γ <
1

KE[‖V‖] with K = 5 rather than K = 3, as in [75].

We will deal with initial conditions with bounded support and, if the function b is
convex, we could adapt our computations to include a drift towards the barycenter of the
system, that would be an extention to the model in [43]. However, in [43], the authors
succeed in proving propagation of chaos with an explicit rate (namely, the expected 1√

N
)

even for weaker conditions on the initial values, by defining an ad-hoc distance based on
the rate function λ itself. In our study, we choose not to extend this powerful approach to
our d-dimensional model and to maintain the same structure of proofs of the previous sec-
tions. However, we believe that the computations of [43] would work here and they would
give results without the restrictive hypothesis on the bounded support of initial condition
that we require from Section 2.3.2 to the end of the chapter.

Let us start by proving well-posedness of (2.3.1), this relies on a truncation argument
on the function λ.

Lemma 2.3.1. Under Assumption 2.3.1, for every integrable initial condition XN(0) ∈
R
d×N, the SDE (2.3.1) admits a unique solution.
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Proof. The main issue is represented by the fact that the function λ is not bounded, neither
globally Lipschitz continuous. For λ bounded or globally Lipschitz continuous, existence
and uniqueness of solutions for (2.3.1) are consequences of standard results, see [51].

Let us consider the truncate function λK .
= λ∧ K, for K ∈ N, and the solution XN,K(t)

of (2.3.1) with the function λK instead of λ. This solution exists and it is unique for all
t ∈ [0, T ]. By pathwise uniqueness, it holds XN,K(t) = XN,K+1(t) for all t ∈ τK, where

τK
.
= inf

{
t /‖XN,K(t)‖ > K

}
.

Therefore τK 6 τK+1 a.s. and there exists a pathwise unique solution X(t) to (2.3.1), de-
fined for all t ∈ [0, τ), where τ .= supK∈N

τK. We are left to prove that P(τ > T) = 1.

Let us fix i ∈ {1, . . . ,N} and ε > 0. We compute, by means of Ito’s formula, fε(XNi (t)),
where fε is the function defined in (2.2.4). We get

fε(XNi (t)) 6 f
ε(XNi (0))

+
∑

j6=i

∫t

0

∫

[0,1]N

∫∞

0

(

fε
(

XNi (s) +
V(hj, hi)

N

)

− fε
(

XNi (s)
)

)

1(0,λ(XNj (s))](u)N
j(ds, du, dh)

+

∫t

0

∫

[0,1]N

∫∞

0

(

fε (U(hi)) − f
ε
(

XNi (s)
))

1(0,λ(XNi (s))](u)N
i(ds, du, dh),

that, of course, is bounded by the following expression

fε(XNi (t)) 6 f
ε(XNi (0)) +

1

N

N∑

j=1

∫t

0

∫

[0,1]N

∫∞

0

fε
(

V(hj, hi)
)

1(0,λ(XNj (s))](u)N
j(ds, du, dh)

+

∫t

0

∫

[0,1]N

∫∞

0

(

fε (U(hi)) − f
ε
(

XNi (s)
))

1(0,λ(XNi (s))](u)N
i(ds, du, dh).

Summing on all i = 1, . . . ,N and taking expectation, by the application of Fatou’s Lemma,
we get:

E

[

1

N

N∑

i=1

‖XNi (t)‖
]

6 lim inf
ε↓0

(

E

[

1

N

N∑

i=1

fε(XNi (0))

]

−

∫ t

0

E

[

1

N

N∑

i=1

fε(XNi (s))λ(X
N
i (s))

]

ds

+

∫ t

0

(E[fε(V)] + E[fε(U)])E

[

1

N

N∑

i=1

λ(XNi (s))

]

ds

)

Then, by monotone convergence, we have

E

[

1

N

N∑

i=1

‖XNi (t)‖
]

6E

[

1

N

N∑

i=1

‖XNi (0)‖
]

−

∫ t

0

E

[

1

N

N∑

i=1

‖XNi (s)‖λ(XNi (s))
]

ds

+

∫ t

0

(E[‖V‖] + E[‖U‖])E

[

1

N

N∑

i=1

λ(XNi (s))

]

ds
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Since b is increasing and h is bounded, there exists a positive constant C, depending on
E

[

1
N

∑N
i=1 ‖XNi (0)‖

]

, such that

sup
t>0

E

[

1

N

N∑

i=1

‖XNi (t)‖
]

6 C,

implying P(τ > T) = 1.

2.3.2 Well-posedness of the McKean-Vlasov SDE

This section is devoted to analyze the McKean-Vlasov equation whose law is the limit of
the sequence of empirical measures corresponding to system (2.3.1), that is

dX(t) =E [λ(X(t))]E [V]dt− X(t)dt (2.3.3)

−

∫

[0,∞)×[0,1]N
(X(t) −U(h1))1[0,λ(X(t)))(u)N(dt, du, dh),

with N Poisson random measure with characteristic measure l × ν × l. We see that the
contribution of the collateral jumps creates the additional drift term

E [λ(X(t))]E [V]dt.

As we said, the model that we treat is basically an extension in d-dimension of the model
presented in [75]. Therefore, techniques for proving existence and uniqueness of solutions
for the nonlinear Markov process (2.3.3) are adaptations of the techniques presented in
that paper. The procedure relies on a priori bounds on moments of the solution and of the
expectation of λ(X(t)), we will present the main steps here, while we gather the technical
details in Section 2.3.4.

We start by proving well-posedness of a time-inhomogeneous PDMP, associated to
(2.3.3).

Lemma 2.3.2. Let f : R+ → R
d be a locally bounded Borel function, then there exists a

unique solution (Zf(t)) to the SDE

dZf(t) = −Zf(t)dt+ f(t)dt−

∫

[0,∞)×[0,1]N
(Zf(t) −U(h1))1[0,λ(Zf(t)))(u)N(dt, du, dh)

(2.3.4)
with initial condition x and coefficients satisfying Assumption 2.3.1. Moreover, for every
pair of locally bounded Borel functions f and g, for every T > 0 there exists a constant
CT > 0 such that

E

[

sup
t∈[0,T ]

‖Zf(t) − Zg(t)‖
]

6 CT

∫T

0

sup
s∈[0,t]

‖f(s) − g(s)‖dt. (2.3.5)
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It is clear that, if we choose the function f in a suitable way, i.e.

f(t)
.
= E [λ(X(t))]E [V] ,

the solution Zf to (2.3.4) coincides with the solution X to (2.3.3). Then we derive a priori
bounds for any solution of (2.3.3), that are necessary to perform the iteration that yields to
the existence and uniqueness of the nonlinear process itself. The following lemma provides
the required bounds.

Lemma 2.3.3. Suppose Assumption 2.3.1 is satisfied. Let X be a solution of (2.3.3) with
integrable initial condition X(0); then we have that supt>0 E [‖X(t)‖] < ∞. Moreover, for
p = 1,2, 3, 4, if E [λp(X(0))] < ∞ then supt>0 E [λp(X(t))] 6 C < ∞, where C only depends
on E [λp(X(0))] and on the parameters of equations (2.3.3).

Last, we prove well-posedness of the nonlinear PDMP (2.3.3).

Theorem 2.3.1 (Solution of the McKean-Vlasov equation). Under Assumption 2.3.1, for
any initial condition X(0) with bounded support and independent of N, there exists a unique
strong solution {X(t)}t∈[0,T ] for (2.3.3).

Let us sketch the idea of the proof. We prove well-posedness of a nonlinear process, in
which we truncate the nonlinear drift term above a certain threshold. Since Lemma 2.3.3
gives a priori bounds on the drift term itself, we can identify (2.3.3) with processes belonging
to this class and we get the thesis.

Proof of Theorem 2.3.1. Fix a constant C > 0, and consider the following Picard iteration:
ZC0 (t) ≡ X(0) and






dZCn(t) = −ZCn(t)dt+
(

E
[

λ(ZCn−1(t))
]

∧ C
)

E [V]dt

−
∫

[0,∞)×[0,1]N

(

ZCn(t) −U(h1)
)

1[0,λ(ZCn(t)))
(u)N(dt, du, dh),

ZCn(0) = X(0)

The following almost sure apriori bound is essentially obvious: for any n > 1

‖ZCn(t)‖ 6 K+ tCE[‖V‖],
for a suitable K > 0 depending on the support of X(0) and the range of U(h). Indeed,
when ‖ZC(t)‖ is large, the linear term −ZCn(t)dt as well as the jumps can only decrease
the norm. From Lemma 2.3.2 we now that there exists a constant CT such that

E

[

sup
t∈[0,T ]

‖ZCn+1(t) − ZCn(t)‖
]

6 CT E [‖V‖]
∫T

0

∥

∥E
[

λ(ZCn(s))
]

− E
[

λ(ZCn−1(s))
]∥

∥ds.

Thanks to the a.s. bounds on ‖ZCn(t)‖, we can exploit the local Lipschitzianity of λ and
get, for a certain constant KT > 0,

E

[

sup
t∈[0,T ]

‖ZCn+1(t) − ZCn(t)‖
]

6CT E [‖V‖]KT
∫T

0

E

[

sup
s∈[0,t]

‖ZCn(s) − ZCn−1(s)‖
]

dt

6 · · · 6 (KTCT E [‖V‖] T)n
n!

E

[

sup
s∈[0,t]

‖ZC1 (s) − ZC0 (s)‖
]

.
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Therefore the sequence {ZCn}n∈N is a Cauchy sequence and its limit ZC is a solution of the
SDE

dZC(t) = − ZC(t)dt+
(

E
[

λ(ZC(t))
]

∧ C
)

E [V]dt

−

∫

[0,∞)×[0,1]N

(

ZC(t−) −U(h1)
)

1[0,λ(ZC(t−)))(u)N(dt, du, dh).

By Lemma 2.3.3, we can choose C so that E
[

λ(ZC(t))
]

6 C for all t, so that ZC is indeed a
solution of (2.3.3). Uniqueness is given by considering two solutions Z1 and Z2. Using the
above apriori bound, (2.3.5) and the Gronwall Lemma their equality follows from standard
arguments.

2.3.3 Propagation of Chaos

As in the previous sections, we use the intermediate process {YN(t)}t∈[0,T ] that, in this case,
is the solution of the system: for all i = 1, . . . ,N

dYNi (t) =−YNi (t)dt+
1

N

N∑

j=1

E [V] λ(YNj (t))dt (2.3.6)

−

∫

[0,∞)×[0,1]N

(

YNi (t) −U(hi)
)

1[0,λ(YNi (t)))(u)N
i(dt, du, dh).

Well-posedness of (2.3.6) follows from Lemma 2.3.1. In order to use a coupling procedure to
prove propagation of chaos, we need to set some a priori bounds on the involved quantities.

Lemma 2.3.4. For N > 0, under Assumption 2.3.1, let XN and YN be solutions, respec-
tively, of (2.3.1) and (2.3.6), starting from initial conditions s.t. E

[

〈µNX (0), λ4(·)〉
]

< ∞

and E
[

〈µNY (0), λ4(·)〉
]

<∞ . Then there exists a certain N0 > 0 such that it holds

sup
N>N0

sup
t>0

E
[

〈µNX (t), λ4(·)〉
]

<∞,

sup
N>N0

sup
t>0

E
[

〈µNY (t), λ4(·)〉
]

<∞.

Lemma 2.3.4 is crucial for proving that the number of jumps of the system in a compact
time interval is proportional to N with probability increasing with N. This bound is stated
in the following lemma.

Lemma 2.3.5 (Bound on the number of jumps). Assume that Assumption 2.3.1 is satisfied
and that, for any N > 0, XN and YN are solutions, respectively, of (2.3.1) and (2.3.6),
starting from initial conditions that are µ0-chaotic. Here µ0 is a probability measure on
R
d s.t. Eµ0

[

λ3(X)
]

< ∞. Then, for any T > 0, there exists a positive constant HT and a
natural number N0 > 0 such that, for certain positive constants KT and K̃T

P

(

CN(T)

N
> HT

)

6
KT

N

P

(∫T

0

〈µNY (s), λ〉ds > HT
)

6
K̃T

N
,
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for all N > N0. Here CN(T) is the number of jumps performed by system (2.3.1) up to
time T .

The bounds on the number of collateral jumps and of the corresponding drift in a
compact time interval plays a role in the proof of propagation of chaos, since they let us
exploit the local Lipschitzianity of the function λ when we start from initial conditions
with bounded support. The proofs of these lemmas involve the form of the function λ and
they are in Section 2.3.4. In the following we state and prove the result on propagation of
chaos and also in this case, the simultaneous jumps result in a rate of the order 1√

N
. As in

the previous sections, we start with the comparison between the particle system XN and
the intermediate system YN.

Theorem 2.3.2. Let Assumptions 2.3.1 be satisfied and let XN and YN be the solution, re-
spectively, of (2.3.1) and (2.3.6) with permutation invariant initial condition with compact
support XN(0) = YN(0) a.s. that are µ0-chaotic, with µ0 probability measure on R

d with
compact support. We assume the two processes are driven by the same Poisson random
measures. Then, for each fixed i ∈ N,

lim
N→+∞

E

[

sup
t∈[0,T ]

‖XNi (t) − YNi (t)‖
]

= 0.

Proof. As in previous sections, by permutation invariance of the initial conditions and of
the dynamics, we have

E

[

sup
t∈[0,T ]

‖XNi (t) − YNi (t)‖
]

=
1

N

N∑

i=1

E

[

sup
t∈[0,T ]

‖XNi (t) − YNi (t)‖
]

.

Let us start with

E

[

sup
t∈[0,T ]

‖XNi (t) − YNi (t)‖
]

6 E

[∫T

0

∥

∥XNi (t) − Y
N
i (t)

∥

∥dt

]

+ VXNi ,Y
N
i
(T) +UXNi ,Y

N
i
(T),

where, for simplicity, we have set:

VXNi ,Y
N
i
(T)

.
= E



 sup
t∈[0,T ]

∥

∥

∥

∥

∥

∥

E[V]

N

N∑

j=1

∫t

0

λ(XNj (s)) − λ(Y
N
j (s))ds−

E[V]

N

∫t

0

λ(XNi (s))ds

+
1

N

∑

j6=i

∫t

0

∫

[0,1]N

∫∞

0

V(hi, hj)1[0,λ(XNj (s))(u)Ñ
j(ds, du, dh)

∥

∥

∥

∥

∥

∥



 ;

UXNi ,Y
N
i
(T)

.
= E

[

sup
t∈[0,T ]

∥

∥

∥

∥

−

∫t

0

∫

[0,1]N

∫∞

0

(XNi (s) −U(hi))1[0,λ(XNi (s)))(u)

−(YNi (s) −U(hi))1[0,λ(YNi (s)))(u)N
i(ds, du, dh)

∥

∥

∥

]

.
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With the notation of Lemma 2.3.5, we consider the positive constant HT and the event

EN
.
=

{
CN(T)

N
6 HT

}

∩
{∫T

0

〈µNY (s), λ〉ds 6 HT
}

,

such that P (EcN) → 0 for N→ ∞. Obviously, under the event EN, for all i = 1, . . . ,N, the
quantities supt∈[0,T ] λ(X

N
i (t)) and supt∈[0,T ] λ(Y

N
i (t)) are uniformly bounded and we can

exploit local Lipschitzianity of λ (we will indicate its Lipschitz constant as LHT ). Thus, we
bound the first terms in VXNi ,YNi (T) in the following way:

E



 sup
t∈[0,T ]

∥

∥

∥

∥

∥

∥

E[V]

N

N∑

j=1

∫t

0

λ(XNj (s)) − λ(Y
N
j (s))ds

∥

∥

∥

∥

∥

∥





6
E[‖V‖]
N

N∑

j=1

E

[(∫T

0

LHT
‖XNj (s) − YNj (s)‖ds

)

1EN

]

+E[‖V‖]E









∫T

0

1

N

N∑

j=1

|λ(XNj (s))|+ |λ(YNj (s))|ds



1EC
N





6 LHT
E[‖V‖]

∫T

0

1

N

N∑

j=1

E

[

sup
s∈[0,t]

‖XNj (s) − YNj (s)‖
]

dt+

∫T

0

E[‖V‖]
N

N∑

j=1

√

P(ECN)

√

E

[

|λ(XNj (s))|
2
]

ds

+

∫T

0

E[‖V‖]
N

N∑

j=1

√

P(ECN)

√

E

[

|λ(YNj (s))|2
]

ds

6 LHT
E[‖V‖]

∫T

0

1

N

N∑

j=1

E

[

sup
s∈[0,t]

‖XNj (s) − YNj (s)‖
]

dt+

∫T

0

E[‖V‖]
√

P(ECN)

√

E
[

〈µNX (s), |λ(·)|2〉
]

ds

+

∫T

0

E[‖V‖]
√

P(ECN)

√

E
[

〈µNY (s), |λ(·)|2〉
]

ds.

By Lemma 2.3.4 there exists N0 > 0 such that for all N > N0 supt>0 E
[

〈µNX (s), |λ(·)|2〉
]

and
supt>0 E

[

〈µNY (s), |λ(·)|2〉
]

are bounded. By Lemma 2.3.5, there exists a constant KT > 0

such that P(ECN) 6
KT
N

. The second term in VN
XNi ,Y

N
i
(T) is bounded by exchangeability of

the XNi and by Lemma 2.3.4. Indeed, we have

E

[

sup
t∈[0,T ]

∥

∥

∥

∥

E[V]

N

∫ t

0

λ(XNi (s))ds

∥

∥

∥

∥

]

6
E[V]

N

∫T

0

sup
t∈[0,T ]

E
[

〈µNX (t), |λ(·)|〉
]

dt.

To bound the third term we use Burkholder-Davis-Gundy inequality, the orthogonality of
the martingales {Ñj}j∈N and Lemma 2.3.4.

E

[

sup
t∈[0,T ]

∥

∥

∥

∥

∥

1

N

N∑

j6=1

∫ t

0

∫ t

0

∫

[0,1]N

∫∞

0

V(hi, hj)1(0,λ(XNj (s))](u)Ñ
j(ds, du, dh)

∥

∥

∥

∥

∥

]

6
M

N
E





(

N∑

j6=i

∫T

0

E[‖V‖2]λ(XNj (s))ds
)1/2



 6

√

E[‖V‖2]
N

E

[

(∫T

0

〈µNX (t), λ(·)〉dt
)1/2

]

.



41

Therefore we get that there exists three constants CT ,KT and MT such that, for all N > N0,

VN
XNi ,Y

N
i
(T) 6 CT

∫T

0

E

[

sup
s∈[0,t]

‖XN(s) − YN(s)‖2
]

dt+
KT√
N

+
MT

N
.

With a similar argument, we get a bound of the same type for UXNi ,YNi (T).

1

N

N∑

i=1

UXNi ,Y
N
i
(T) 6 CT

∫T

0

1

N

N∑

i=1

‖XNi (t) − YNi (t)‖dt+ E

[

1ECN

∫T

0

1

N

N∑

i=1

‖XNi (t)‖λ(XNi (t))dt
]

+ E

[

1ECN

∫T

0

1

N

N∑

i=1

‖YNi (t)‖λ(YNi (t))dt

]

+ E[‖U‖]E
[

1ECN

∫T

0

1

N

N∑

i=1

λ(XNi (t))dt

]

+ E[‖U‖]E
[

1ECN

∫T

0

1

N

N∑

i=1

λ(YNi (t))dt

]

.

As before, we wish to get a bound of the order O
(

1√
N

)

for the last terms. We do that

by means of Cauchy-Schwartz inequality, Lemma 2.3.4 and Lemma 2.3.5. We also exploit
that, by definition of λ , it holds ‖x‖ 6 Bλ(x) + c for a positive constant B and a constant
c. Take, for instance, the second term of the right-hand side, it holds

E

[

1ECN

∫T

0

1

N

N∑

i=1

‖XNi (t)‖λ(XNi (t))dt
]

6

∫T

0

√

P(ECN)

√

√

√

√

√E





(

1

N

N∑

i=1

‖XNi (s)‖λ(XNi (s))
)2


ds

6 T

√

P(ECN)

√

√

√

√E

[

sup
t∈[0,T ]

〈µNX (t), ‖ · ‖2〉〈µNX (t), λ(·)2〉
]

6 T

√

P(ECN)

√

√

√

√E

[

sup
t∈[0,T ]

〈µNX (t), λ(·)4〉
]

.

The same holds for the remaining right-hand side terms. Thus, there exists two constants
C̃T and K̃T and a N0 > 0, such that for all N > N0 it holds

1

N

N∑

i=1

UXNi ,YNi (T) 6 C̃T

∫T

0

E

[

sup
s∈[0,t]

‖XN(s) − YN(s)‖
]

dt+
K̃T√
N
.

Thus, there exist three constants, that with abuse of notation we will indicate as CT ,KT
and MT , depending only on T , and N0 > such that, for all N > N0 it holds

E

[

sup
t∈[0,T ]

‖XN(t) − YN(t)‖
]

6 CT

∫T

0

E

[

sup
s∈[0,t]

‖XN(s) − YN(s)‖
]

dt+
KT√
N

+
MT

N
.

By applying Gronwall lemma we get the thesis.
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Theorem 2.3.3 (Propagation of Chaos for YN). Grant Assumptions 2.3.1. Let µ0 be
a probability measure on R

d with compact support. For N ∈ N, let YN be a solution of
Eq. (2.3.6) in [0, T ]. Assume that YN(0) = (YN1 (0), . . . , Y

N
N(0)), N ∈ N, form a sequence of

compact support random vectors that is µ0-chaotic in W1. Let Q be the law of the solution
of Eq. (2.3.3) in [0, T ] with initial law P ◦X(0)−1 = µ0. Then YN is Q chaotic in W1.

The proof of this theorem is a combination of the computations done for proving The-
orem 2.3.2 and the coupling techniques for propagation of chaos used in the previous
sections.

Proof of Theorem 2.3.3. We follow the steps of Proposition 2.1.2 and 2.2.2 to define the
coupling procedure. We fix a filtered probability space (Ω,F, (Ft)t>0,P) with respect to the
family (Bi,N

i)i∈N of independent Brownian motions and Poisson random measures. For
each N ∈ N, we couple the process YN with the process X̄N =

{
X̄Ni (t), i = 1, . . . ,N

}

t∈[0,T ]

defined thanks to Theorem 2.2.1, where the initial condition is Law(X̄N(0)) = ⊗Nµ0 and
each component X̄Ni is a solution of SDE (2.2.1). We start with

E

[

sup
t∈[0,T ]

‖YNi (t) − X̄Ni (t)‖
]

6 E

[∫T

0

∥

∥YNi (t) − X̄
N
i (t)

∥

∥dt

]

+UYNi ,X̄Ni
(T)

+ E

[

sup
t∈[0,T ]

∥

∥

∥

∥

∥

E[V]

N

N∑

j=1

∫ t

0

λ(YNj (s)) − E[λ(X̄Ni (s))]ds

∥

∥

∥

∥

∥

]

,

where UYNi ,X̄Ni (T) is defined as in the proof of Theorem 2.3.2. We use Lemma 2.3.3, 2.3.4
and 2.3.5, together with local Lipschitzianity of λ and µ0-choaticity of the initial conditions
to get

1

N

N∑

i=1

E

[

sup
t∈[0,T ]

‖YNi (t) − X̄Ni (t)‖
]

N→∞→ 0,

that implies Q chaoticity of the law of YN.

As in the previous sections, these results imply propagation of chaos for XN, as the
following corollary states.

Corollary 2.3.1 (Propagation of Chaos for XN). Grant Assumptions 2.3.1. Let µ0 be
a probability measure on R

d with compact support. For N ∈ N, let XN be a solution of
Eq. (2.3.1) in [0, T ]. Assume that XN(0) = (XN1 (0), . . . , X

N
N(0)), N ∈ N, form a sequence of

compact support random vectors that is µ0-chaotic in W1. Let Q be the law of the solution
of Eq. (2.3.3) in [0, T ] with initial law P ◦X(0)−1 = µ0. Then XN is Q chaotic in W1.

2.3.4 Additional lemmas and proofs

We collect here the proofs of the various lemmas stated in Section 2.3 and some other
technical result necessary for these proofs. First, we prove Lemma 2.3.2 and, thanks
to two technical lemmas, we give the proof of Lemma 2.3.3, crucial for the existence
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and uniqueness of solution of the nonlinear process (2.3.3). Then, we give the proofs of
Lemma 2.3.4 and Lemma 2.3.5, that we use in the propagation of chaos section. Notice
that, the key ingredient here is represented by the fact that all the main jumps of the
processes are such that they make the process go back inside a compact set (the support
of U). To exploit that, we need to apply Ito’s rule for a process with jumps (notice that
here we do not have a diffusion term). Since all the functions of interest (‖ · ‖ and λ(·))
have singularities in the origin, we use the smooth approximation of the norm ‖ · ‖ defined
in the proof of Theorem 2.2.1, for all ε > 0, we define

fε(x)
.
= ‖x‖1(‖x‖ > ε) +

(‖x‖2
2ε

+
ε

2

)

1(‖x‖ 6 ε).

We start with the proof of existence and uniqueness of solutions of (2.3.3) for compact sup-
port initial condition. This proof relies on a straightforward adaptation of the arguments of
[75] to our framework, therefore we write the proof of Lemma 2.3.2 only for completeness.

Proof of Lemma 2.3.2. We want to get an almost sure bound for ‖Zf(t)‖, in order to use
locally Lipschitzianity of λ in the following computations. Intuitively, the jumps have an
increasing role only if we are inside the support of the random variable U, otherwise they
force the norm to decrease. Therefore, a.s., we can bound the process ‖Zf(t)‖ with the
deterministic expression

K0 +

∫ t

0

‖f(s)‖ds,

where K0
.
= max{‖x‖, suph∈[0,1] ‖U(h)‖}. This almost sure bound for ‖Zf(t)‖ and the con-

tinuity of the coefficients ensure the existence and uniqueness of a non-explosive solution
Zf on [0, T ]. Let Zf and Zg two solutions of (2.3.4) corresponding to two different locally
bounded Borellian functions f and g, we have

E

[

sup
t∈[0,T ]

‖Zf(t) − Zg(t)‖
]

6

∫T

0

E

[

sup
s∈[0,t]

‖Zf(s) − Zg(s)‖
]

ds+

∫T

0

sup
s∈[0,t]

‖f(s) − g(s)‖dt

+E

[∫T

0

∫

[0,1]×[0,∞)

∥

∥(Zf(s
−) −U(h))1[0,λ(Zf(s−)))(u) − (Zg(s

−) −U(h))1[0,λ(Zg(s−)))(u)
∥

∥dsduν1(dh)

]

.

The almost sure bounds on ‖Zf(t)‖ and ‖Zg(t)‖ let us define two positive constant bf,g(T)
and Lf,g(T), such that we get

E

[

sup
t∈[0,T ]

‖Zf(t) − Zg(t)‖
]

6

∫T

0

E

[

sup
s∈[0,t]

‖Zf(s) − Zg(s)‖
]

ds+

∫T

0

sup
s∈[0,t]

‖f(s) − g(s)‖dt

+(bf,g(T) +H)

∫T

0

E

[

sup
s∈[0,t]

‖Zf(s) − Zg(s)‖
]

ds

+Lf,g(T)

(

sup
t∈[0,T ]

‖Zf(t)‖
) ∫T

0

E

[

sup
s∈[0,t]

‖Zf(s) − Zg(s)‖
]

ds.

We apply now Gronwall lemma and we obtain (2.3.5).
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The proof of Lemma 2.3.3 requires two technical lemmas adapted to our case from [75].

Lemma 2.3.6. Let x(t) be a non-negative C1 function on R+. If the following inequality
holds for any 0 6 s 6 t:

x(t) 6 x(s) − K̄

∫ t

s

xk(u)du+

∫ t

s

Pδ (x(u))du

where k, K̄ > 0 and Pδ(·) is a polynomial of degree δ < k, then

sup
t>0

x(t) 6 C0 <∞.

Proof. Consider that for x→ ∞, then

−K̄xk + Pδ(x) → −∞.

Therefore it exists a value C̄0 such that, as soon as the trajectory exceeds C̄0 > 0 its
derivative becomes strictly negative and the trajectory is forced toward zero. Thus, defining

C0 := max{C̄0, x(0)},

we get the desired bound.

Lemma 2.3.7. If the function b satisfies the assumption (2.3.2), then for any ε > 0 and
p ∈ [1,4+ 2ε], there exists a constant γ1 < (4+ 2ε)γ, c1 > 0 and a value η > 0, such that,
for all a ∈ R

d with ‖a‖ 6 η and for all x ∈ R
d, it holds

|bp(‖x+ a‖) − bp(‖a‖)| 6 ‖a‖ (γ1bp(‖x‖) + c1) .

Proof. The proof of this lemma comes directly from Lemma 8 in the appendix of [75].

Notice that the constant γ1 < (4 + 2ε)γ, together with the condition of Lemma 2.3.6
on the negativity of the coefficient K̄, cause the condition on γ w.r.t. E[‖V‖] in Assump-
tion 2.3.1. This condition plays a crucial role in all the proofs of the boundedness for the
moments of λ(X(t)) and of λ(XNi (t)) for all i. Now that we have stated these two results,
we are ready to prove Lemma 2.3.3, that provides a priori uniform bounds on the first
moment of the solution to (2.3.3) and on the moments of λ(X(t)).

Proof of Lemma 2.3.3. Fix ε > 0, by means of Ito’s rule, we have

E [fε(X(t))] 6 E [fε(X(0))] −

∫ t

0

E [‖X(s)‖1(‖X(s)‖ > ε)]ds

−

∫ t

0

E [ε1(‖X(s)‖ 6 ε)]ds+

∫ t

0

E [(E [‖V‖] + E [‖U‖] − fε(X(s)))h(X(s))]ds

+

∫ t

0

E [b(‖X(s)‖) (E [‖V‖] + E [‖U‖] − fε(X(s)))]ds.
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For the monoticity assumption on b, we know that there exist Λ > 0 and β > 0 such
that b(r) (E [‖V‖] + E [‖U‖] − r) 6 −Λr + β. Therefore, by Fatou’s lemma and monotone
convergence theorem,

E [‖X(t)‖] 6 E [‖X(0)‖] +
∫ t

0

[H (E [‖V‖] + E [‖U‖]) + β]ds−Λ
∫ t

0

E [‖X(s)‖)]ds,

that gives the boundedness of supt>0 E[‖X(t)‖].

Let p = 1, clearly, to get a bound for E[λ(X(t))], it is sufficient to bound E [b(‖X(t)‖)].
Thus, again, we use Ito’s rule to compute b(fε(X(t))) for ε > 0.

E [b(fε(X(t)))] 6 E [b(fε(X(0)))] −

∫t

0

E
[

b ′(fε(X(s)))‖X(s)‖1(‖X(s)‖ > ε)
]

ds

−

∫t

0

E

[

b ′(fε(X(s)))
‖X(s)‖2
ε

1(‖X(s)‖ 6 ε)

]

ds

+

∫t

0

E

[

b ′(fε(X(s)))E [b(‖X(s)‖)] X(s) · E[V]‖X(s)‖ 1(‖X(s)‖ > ε)
]

ds

+H

∫t

0

E

[

b ′(fε(X(s)))
X(s) · E[V]
‖X(s)‖ 1(‖X(s)‖ > ε)

]

ds

+

∫t

0

E

[

b ′(fε(X(s)))E [b(‖X(s)‖)] X(s) · E[V]
ε

1(‖X(s)‖ 6 ε)

]

ds

+H

∫t

0

E

[

b ′(fε(X(s)))
X(s) · E[V]

ε
1(‖X(s)‖ 6 ε)

]

ds

+

∫t

0

E [b(‖X(s)‖)]E [b(fε(U))]ds+

∫t

0

E [h(X(s))]E [b(fε(U))]ds

−

∫t

0

E [b(fε(X(s)))b(‖X(s)‖)]ds−
∫t

0

E [b(fε(X(s)))]E [h(X(s))]ds.

Again we use Fatou’s lemma and monotone convergence theorem (indeed b(fε(·)) converges
monotonically to b(‖ · ‖), thanks to the increasing property of b). Since b ′ is positive, we
disregard the two terms with minus sign in the first two rows, we use properties of b ′ to
bound the remaining terms and we get

E [b(‖X(t)‖)] 6E [b(‖X(0)‖)] + (HcE [‖V‖] +HE [b(‖U‖)]) t+ (γE [‖V‖] − 1)
∫t

0

E [b(‖X(s)‖)]2 ds

(cE [‖V‖] +HγE [‖V‖] + E [b(‖U‖)] +H)
∫t

0

E [b(‖X(s)‖)]ds.

With Lemma 2.3.6 we conclude the boundedness for E [b(‖X(t)‖)]. The same argument is
used to get a uniform bound for E [bp(‖X(t)‖)] when p = 2,3,4.

While the uniform bounds for E [‖X(t)‖] and E [b(‖X(t)‖)] are needed for the well-
posedness of the nonlinear process itself, higher moments of λ are needed only for the
proof of propagation of chaos. The same a priori bounds for the moments of λ appear
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also in the case of the particle system. Their proof is similar to the nonlinear case, re-
lies on Lemma 2.3.6 and Lemma 2.3.7, together with an argument based on orthogonal
martingales.

Proof of Lemma 2.3.4. We only prove it for µNX , then for µNY the steps are basically the
same. Fix δ > 0, of course it is sufficient to prove the boundedness of

sup
N>N0

sup
t>0

E[〈µNX (t), b4(fδ(·))〉].

Let us define for K > 0 the stopping time

τK := inf
{
t > 0 : 〈µNX (t), b5(fδ(·))〉 > K

}
.

Obviously the random variables 〈µNX (t∧τK), bp(fδ(·))〉 for 1 6 p 6 5 and 〈µNX (t∧τK), fδ(·)〉
are integrable. Recall that, for all ε > 0, the process {MN

ε (t)}t>[0,T ] is a martingale; where,
for t ∈ [0, T ] we have

MN
ε (t)

.
= 〈µNX (t), fε(·)〉− 〈µNX (0), fε(·)〉

+
1

N

N∑

i=1

(∫t

0

XNi (s) · XNi (s)
‖XNi (s)‖

1(‖XNi (s)‖ > ε)ds+
∫t

0

XNi (s) · XNi (s)
ε

1(‖XNi (s)‖ 6 ε)ds

)

−
1

N

N∑

i=1

∑

j 6=i

∫t

0

∫

[0,1]N
λ(XNj (s))

(

fε
(

XNi (s) +
V(hi, hj)

N

)

− fε
(

XNi (s)
)

)

ν(dh)ds

−
1

N

N∑

i=1

∫t

0

∫
N

[0,1]

λ(XNi (s))
(

fε (U(hi)) − f
ε
(

XNi (s)
))

ν(dh)ds.

Then, for the optional stopping theorem, it holds

E
[

〈µNX (t∧ τK), fε(·)〉
]

6 E
[

µNX (0), f
ε(·)〉

]

− E

[∫t∧τK

0

〈µNX (s), ‖ · ‖1(‖ · ‖ > ε)〉ds
]

−E

[∫t∧τK

0

〈µNX (s),
‖ · ‖2
ε

1(‖ · ‖ 6 ε)〉ds
]

+NE

[∫t∧τK

0

〈µNX (s), λ(·)〉〈µNX (s),
∫

[0,1]2
fε
(

·+ V(h1, h2)

N

)

− fε(·)ν2(dh)〉ds
]

−E

[∫t∧τK

0

〈µNX (s), λ(·)
∫

[0,1]

fε
(

·+ V(h1, h1)

N

)

− fε(·)ν1(dh)〉ds
]

+E

[∫t∧τK

0

E[fε(U)]〈µNX (s), λ(·)〉− 〈µNX (s), λ(·)fε(·)〉ds
]

.

Again, we use the monotone convergence of fε(x) to ‖x‖, to get

E
[

1(t 6 τK)〈µNX (t), ‖ · ‖〉
]

6 lim inf
ε↓0

E
[

1(t 6 τK)〈µNX (t), fε(·)〉
]

6 lim inf
ε↓0

E
[

〈µNX (t∧ τK), fε(·)〉
]

.
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By arguments close to the one in the proof of Lemma 2.3.3, there exists Λ > 0 and β > 0,
such that we get the following inequality

E
[

1(t 6 τK)〈µNX (t), ‖ · ‖〉
]

6 E
[

µNX (0), ‖ · ‖〉
]

+

∫t

0

E

[

1(s 6 τK)〈µNX (s),
(

E[‖V‖] + E[‖V‖]
N

+ E[‖U‖] − ‖ · ‖
)

λ(·)〉
]

ds

6 E
[

µNX (0), ‖ · ‖〉
]

+

[

H

(

E[‖V‖] + E[‖V‖]
N

+ E[‖U‖]
)

+ β

]

t−Λ

∫t

0

E
[

1(s 6 τK)〈µNX (s), ‖ · ‖〉
]

ds.

This, together with Lemma 2.3.6, gives the boundedness of

sup
t>0

E
[

1(t 6 τK)〈µNX (t), ‖ · ‖〉
]

.

Since this bound does not depend on K, letting K go to infinity gives the bound on

sup
t>0

E
[

〈µNX (t), ‖ · ‖〉
]

.

Now we apply the same argument to the martingale {MN
b4
(t)}t>[0,T ]. By deleting some of

the negative terms, applying Lemma 2.3.7 and repeating the previous steps, we obtain the
following bound

E
[

1(τK 6 t)〈µNX (t), b4(‖ · ‖)〉
]

6 E
[

〈µNX (0), b4(‖ · ‖)〉
]

+ γ1 E [‖V‖]
∫t

0

E
[

1(s 6 τK)〈µNX (s), b4(‖ · ‖)〉〈µNX (s), b(‖ · ‖)〉
]

ds

+Hγ1 E [‖V‖]
∫t

0

E
[

1(s 6 τK)〈µNX (s), b4 (‖ · ‖)〉
]

ds

+ c1 E [‖V‖]
∫t

0

E
[

1(s 6 τK)〈µNX (s), b(‖ · ‖)〉
]

ds+ c1HE [‖V‖]
∫t

0

E [1(s 6 τK)]ds

+ γ1
E [‖V‖]
N

∫t

0

E
[

1(s 6 τK)〈µNX (s), b5(‖ · ‖)〉
]

ds+ c1
E [‖V‖]
N

∫t

0

E
[

1(s 6 τK)〈µNX (s), b(‖ · ‖)〉
]

ds

+Hγ1
E [‖V‖]
N

∫t

0

E
[

1(s 6 τK)〈µNX (s), b4(‖ · ‖)〉
]

ds+ c1H
E [‖V‖]
N

∫t

0

E [1(s 6 τK)]ds

+ E
[

b4(‖U‖)
]

∫t

0

E
[

1(s 6 τK)〈µNX (s), b(‖ · ‖)〉
]

ds+ E
[

b4(‖U‖)
]

Ht

−

∫t

0

E
[

1(s 6 τK)〈µNX (s), b5(‖ · ‖)〉
]

ds+H

∫t

0

E
[

1(s 6 τK)〈µNX (s), b4(‖ · ‖)〉
]

ds.
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By Hölder and Jensen inequalities, we get the following expression

E
[

〈1(τK 6 t)µNX (t), b
4(‖ · ‖)〉

]

6E
[

〈µNX (0), b4(‖ · ‖)〉
]

+ γ1 E [‖V‖]
∫t

0

E
[

1(s 6 τK)〈µNX (s), b4(‖ · ‖)〉
]5/4

ds+Hγ1 E [‖V‖]
∫t

0

E
[

1(s 6 τK)〈µNX (s), b4 (‖ · ‖)〉
]

ds

+ c1 E [‖V‖]
∫t

0

E
[

1(s 6 τK)〈µNX (s), b4(‖ · ‖)〉
]1/4

ds+ c1HE [‖V‖] t

+ c1
E [‖V‖]
N

∫t

0

E
[

1(s 6 τK)〈µNX (s), b4(‖ · ‖)〉
]1/4

ds+Hγ1
E [‖V‖]
N

∫t

0

E
[

1(s 6 τK)〈µNX (s), b4(‖ · ‖)〉
]

ds

+

(

c1H
E [‖V‖]
N

+ E
[

b4(‖U‖)
]

)

t+ E
[

b4(‖U‖)
]

∫t

0

E

[

1(s 6 τK)〈µNX (s), b4(‖ · ‖)〉1/4
]

ds

+H

∫t

0

E
[

1(s 6 τK)〈µNX (s), b4(‖ · ‖)〉
]

ds+

(

γ1
E [‖V‖]
N

− 1

) ∫t

0

E
[

1(s 6 τK)〈µNX (s), b4(‖ · ‖)〉
]5/4

ds,

where we have exploited the fact that
(

γ1
E[‖V‖]
N

− 1
)

< 0, for N large enough, and that

〈µNX (s), b5〉 > 〈µNX (s), b4〉5/4. Reordering, we get

E
[

1(τK 6 t)〈µNX (t), b4(‖ · ‖)〉
]

6〈E
[

µNX (0), b
4(‖ · ‖)〉

]

+

(

c1 E[‖V‖] + c1
E[‖V‖]
N

+ E
[

b4(‖U‖)
]

) ∫t

0

E
[

1(s 6 τK)〈µNX (s), b4(‖ · ‖)〉
]1/4

ds

+

(

Hγ1 E[‖V‖] +Hγ1
E[‖V‖]
N

+H

) ∫t

0

E
[

1(s 6 τK)〈µNX (s), b4(‖ · ‖)〉
]

ds

+

(

γ1 E [‖V‖] + γ1
E [‖V‖]
N

− 1

) ∫t

0

E
[

1(s 6 τK)〈µNX (s), b4(‖ · ‖)〉
]5/4

ds.

Since, by hypothesis, there exists N0 such that, for all N > N0 it holds

(

γ1 E [‖V‖] + γ1
E [‖V‖]
N

− 1

)

< 0,

we use Proposition 2.3.6 and this gives a bound on E
[

1(t 6 τK)〈µNX (t), b4(‖ · ‖)〉
]

indepen-
dent of N and K; therefore letting K go to infinity proves the thesis.

As mentioned before, Lemma 2.3.4 plays a crucial role in the proof of Lemma 2.3.5,
where we bound the number of jumps of a single particle for the particle system (2.3.1)
and the contribution of the collateral drift term for the particle system (2.3.6).

Proof. of Lemma 2.3.5. We develop the computations for the proof just in the case of
(2.3.1), since for the system (2.3.6) they are almost the same. Let us start by describing
the quantity CN(T), that is

CN(T) =

N∑

i=1

∫T

0

∫

[0,1]N

∫∞

0

1[0,λ(XNi (s))(u)N
i(ds, du, dh).



49

We can rewrite this quantity as the sum of orthogonal martingales, that we will indicate
as MN(t), plus a term depending on the empirical measure, as follows:

CN(T)

N
=
1

N

N∑

i=1

∫T

0

∫

[0,1]N

∫∞

0

1[0,λ(XNi )(s)(u)Ñ
i(ds, du, dh) +

∫T

0

〈µNX (s), λ(·)〉ds

.
=MN(T) +

∫T

0

〈µNX (s), λ(·)〉ds.

Let us consider a positive constant HT > 0, then

P

(

CN(T)

N
> HT

)

6 P
(

MN(T) > HT
)

+ P

(∫T

0

〈µNX (s), λ〉ds > HT
)

.

Of course, since {MN(t)}t∈[0,T ] is a martingale, we have

P
(

MN(T) > HT
)

6
E[MN(T)]

HT
= 0.

Therefore, we want to get a bound for the probability P
(∫T
0
〈µNX (s), λ〉ds > HT

)

. Let δ > 0
be fixed, the first step consists in proving that there exists CT > 0 such that

E

[

sup
t∈[0,T ]

MN
b,δ(t)

2

]

6 E
[

〈MN
b,δ(T)〉

]

6
CT

N
,

where {MN
b,δ(t)}t∈[0,T ] is the martingale arising from the compensated Poisson measure in

the computation of 〈µNX (t), b(fδ(·))〉 with Ito rule, that is

MN
b,δ(t)

.
=
1

N

N∑

i=1

∫ t

0

∫

[0,1]N

∫∞

0

1(0,λ(XNi (s))]

[

b(fδ(U(hi))) − b(f
δ(XNi (s)))

+
∑

j 6=i
b

(

fδ
(

XNj (s) +
V(hi, hj)

N

))

− b
(

fδ
(

XNj (s)
))

]

Ñi(ds, du, dh)

and 〈MN
b,δ(t)〉 is its quadratic variation. We use the fact that {Ñi}i=1,2... is a family of

orthogonal martingales, therefore

〈MN
b,δ(t)〉 =

1

N2

N∑

i=1

∫ t

0

∫

[0,1]N
λ(XNi (s))

[

b(fδ(U(hi))) − b(f
δ(XNi (s)))

+
∑

j 6=i
b

(

fδ
(

XNj (s) +
V(hi, hj)

N

))

− b
(

fδ
(

XNj (s)
))

]2

ν(dh)ds.

Let us write

〈MN
b,δ(t)〉

.
=

1

N2

N∑

i=1

MN
b,δ,i(t).
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We fix i and we compute Mb,δ,i(t) as follows.

Mb,δ,i(t)6 2

∫t

0

∫

[0,1]N
b(fδ(XNi (s)))b

2(fδ(U)) +Hb2(fδ(U)) + b3(fδ(XNi (s))) +Hb
2(fδ(XNi (s)))ν(dh)ds

+

∫t

0

∫

[0,1]N
b(fδ(XNi (s)))(N− 1)

∑

j6=i

(

fδ(V)

N
(γ1b(f

δ(XNj (s))) + c1)

)2

ν(dh)ds

+

∫t

0

∫

[0,1]N
H(N− 1)

∑

j6=i

(

fδ(V)

N
(γ1b(f

δ(XNj (s))) + c1)

)2

ν(dh)ds

+2

∫t

0

∫

[0,1]N
b(fδ(XNi (s)))(b(f

δ(U)) − b(fδ(XNi (s))))
∑

j 6=i

(

fδ(V)

N
(γ1b(f

δ(XNj (s))) + c1)

)

ν(dh)ds

+2H

∫t

0

∫

[0,1]N
(b(fδ(U)) − b(fδ(XNi (s))))

∑

j 6=i

(

fδ(V)

N
(γ1b(f

δ(XNj (s))) + c1)

)

ν(dh)ds

Mb,δ,i(t)6

(

2HE[b2(fδ(U))] +Hc21 E[fδ(V)2]
N− 1

N
+ 2c1 E[b(fδ(U))]E[fδ(U)]H

)

t

+

(

2E[b2(fδ(U))] + c21 E[fδ(V)2]
N− 1

N
+ 2c1 E[b(fδ(U))]E[fδ(V)] + 2c1 E[fδ(V)]H

) ∫t

0

b(fδ(XNi (s)))ds

+
(

2H+ 2c1 E[fδ(V)]
)

∫t

0

b2(fδ(XNi (s)))ds+

∫t

0

b3(fδ(XNi (s)))ds

+
(

2γ1 E[b(fδ(U))]E[fδ(V)] + 2γ1 E[fδ(V)]H
)

∫t

0

b(fδ(XNi (s)))〈µNX (s), b(fδ(·))〉ds

+γ21 E[fδ(V)2]
N− 1

N

∫t

0

b(fδ(XNi (s)))〈µNX (s), b2(fδ(·))〉ds

+Hγ1 E[fδ(V)2]
N− 1

N

∫t

0

〈µNX (s), b2(fδ(·))〉ds+ 2γ1 E[b(fδ(U))]E[fδ(V)]

∫t

0

〈µNX (s), b(fδ(·))〉ds

+2γ1 E[fδ(V)]

∫t

0

b2(fδ(XNi (s)))〈µNX (s), b(fδ(·))〉ds

Summing over all i = 1, . . . ,N and dividing by N2, we can find four positive constants K1,
K2, K3 and K4 such that 〈MN

b (t)〉 is bounded by the expression

K1

N
t+

K2

N

∫t

0

〈µNX (s), b3(fδ(·))〉1/3ds+
K3

N

∫t

0

〈µNX (s), b3(fδ(·))〉2/3ds+
K4

N

∫t

0

〈µNX (s), b3(fδ(·))〉ds

Using the result of Lemma 2.3.4, we know that there exists a certain N0, such that the
expectation of all the terms involved is bounded uniformly in N > N0. Therefore, for such
N we have

E

[

sup
t∈[0,T ]

MN
b,δ(t)

]

6
CT

N
.

By Chebychev and Doob inequalities this leads to

P

(

sup
t∈[0,T ]

MN
b,δ(t) > 1

)

6 E

[

sup
t∈[0,T ]

(

MN
b,δ(t)

)2

]

6 E
[

〈MN
b,δ(T)〉

]

6
CT

N
.
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Now, we compute 〈µNX (t), b(fδ(·))〉 with Ito’s rule, that gives the following bound:

〈µNX (t), b(fδ(·))〉 6 〈µNX (0), b(fδ(·))〉+MN
b,δ(t) +

(

E[fδ(V)]γ1

(

1+
1

N

)

− 1

) ∫t

0

〈µNX (t), b2(fδ(·))〉ds

+

(

HE[fδ(V)]γ1

(

1+
1

N

)

+H+ E[fδ(V)]c1

(

1+
1

N

)

+ E[b2(fδ(U))]

) ∫t

0

〈µNX (t), b2(fδ(·))〉1/2ds

+H
(

E[fδ(V)]c1 + E[b2(fδ(U))]
)

t.

Since, for hypothesis, b(fδ(·)) is integrable with respect to the law of X(0), for the law of
large number, we know that

P
(

〈µNX (0), b(fδ(·))〉 > 1+ E[b(fδ(X(0)))]
)

6
Var

(

b(fδ(X(0)))
)

N
.

Let us consider the event

{
〈µNX (0), b(fδ(·))〉 < 1+ E[b(fδ(X(0)))]

}
∪
{

sup
t∈[0,T ]

MN
b,δ(t) < 1

}

,

that has a probability greater than 1−2C
N

. Under this event, we apply Lemma 2.3.6 to get
a bound for 〈µNX (T), b(fδ(·))〉. Since, for all δ > 0, λ(·) 6 b(fδ(·))+H a.s., this is equivalent
to a bound for supt∈[0,T ]〈µNX (t), λ(·)〉, that leads to the existence of a positive constant KT
such that

P

(∫T

0

〈µNX (s), λ〉ds > HT
)

6
KT

N
,

and therefore to the desired bound for P
(

CN(T)

N
> HT

)

.
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Part II

Models with asymmetric interactions
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Chapter 3

A system of rank-based interacting

diffusions

In this chapter we study a slight modification of the particle system and the nonlinear
process presented in [54], that we will use as a comparison for the system of interacting
random walks that we study in Chapter 4. The proofs of this Chapter basically comes
from the adaptations of known results to the case of a reflecting barrier in zero. We
mainly exploit the theory of competing Brownian particles, see for instance [8, 21, 80]
and references therein, and the works on particles interacting through their cumulative
distribution function (CDF) [53, 54, 55, 74].

3.1 The model and propagation of chaos

We start from the model presented in [54, 53], in order to study the viscous scalar conser-
vation law with flux function −A:

{
∂tFt(x) =

1
2
∂xxFt(x) + ∂x(A(Ft(x))),

F0(x) = H ∗m(x),
(3.1.1)

where m is a probability function on R, H(x) = 1(x > 0) is the Heaviside function and ∗
indicates the spatial convolution. The authors study the correspondent nonlinear process:






dXt = −A ′(H ∗ Pt(Xt))dt+ dBt,
Pt = Law(Xt),

m = Law(X0)

(3.1.2)

with B real Brownian motion independent from the initial condition X0. The two equations
are linked in the sense that H∗Pt(x) is the unique bounded weak solution of (3.1.1). In this
chapter we choose a particular form of the function A and we add to (3.1.2) a reflecting
barrier in zero, in order to get useful results that will serve as basis of comparison for the
model presented in Chapter 4.
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3.1.1 The particle system

We consider a system of N particles, each of them moving on the positive half-line R
+ with

a reflecting barrier in 0. Each particle evolves according to:

- an intrinsic dynamics given by a Brownian motion with a positive drift δ > 0;

- a rank-dependent interaction, that is an additional drift term depending on the pa-
rameter λ > 0 and on the cumulative distribution function of the empirical measure
µN.

The infinitesimal generator LN of the system acts on suitable C2 functions f : DN → R in
the following way:

LNf(x) =

N∑

i=1

1

2

∂2

∂x2i
f(x) +

(

δ−
λ

N

N∑

k=1

1(xk 6 xi)

)

∂

∂xi
f(x),

where
DN

.
= {x ∈ R

N/ xi > 0 ∀ i = 1, . . . ,N}

and the domain of the generator LN contains the following set of functions:

D
(

LN
)

⊇
{
f ∈ C∞ : |ni(x)

T∇f(x)| = 0 for x ∈ ∂iDN, for i = 1, . . . ,N
}
.

We indicate with ∂iDN a “face” of the boundary of DN, i.e.

∂iDN
.
= {x ∈ DN : xi = 0} ,

and ni(x) is the inward normal vector to ∂iDN.

Let us indicate as XN(t) = (XN1 (t), . . . , X
N
N(t)) ∈ N

N the vector of the particles’ positions
at a fixed time t > 0 and the empirical measures as

µNt =
1

N

N∑

i=1

δXNi (t).

Given an initial condition XN(0) ∈ DN, we say that the process XN is the solution to a
system on SDEs with reflection of ∂DN if the following holds:

- XN(t) ∈ DN for all t > 0;

- KN is a continuous adapted process with values in R
N and finite variation on bounded

intervals, such that KN0 = 0 and for i = 1, . . . ,N,





XNi (t) = XNi (0) + B
i
t +

∫t

0

(

δ−
λ

N

N∑

k=1

1(XNk (s) 6 X
N
i (s))

)

ds+ KNi (t),

KNi (t) =
∫t
0 1(X

N
i (s) = 0)dK

N
i (s),

(3.1.3)

where B is a N-dimensional Brownian motion.
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Proposition 3.1.1. The system (3.1.3) of SDEs with reflection on ∂DN has a unique
strong solution, for all measurable initial condition XN(0).

Proof. Fix a filtered probability space (Ω,F, {Ft})t > 0,P), we know by [54, Proposition 1.3]
that the non-reflected system (3.1.3) has a unique solution. Therefore, we may build a weak
solution to (3.1.3) pathwise with the local times in zero of the particles {XNi (t)}t>0 for every
i = 1, . . . ,N.

According to Yamada-Watanabe theorem, if we prove pathwise uniqueness, we obtain
existence and uniqueness of strong solutions. Let (XN1 (0), . . . , X

N
N(0)) and (YN1 (0), . . . , Y

N
N(0))

be two initial conditions and let {(XN1 (t), . . . , X
N
N(t))}t>0 and {(YN1 (t), . . . , Y

N
N(t))}t>0 two so-

lutions of (3.1.3) coupled by means of the same Brownian motion. By Ito-Tanaka formula,
we write:

N∑

i=1

(

XNi (t) − Y
N
i (t)

)2
=

N∑

i=1

(

XNi (0) − Y
N
i (0)

)2

+2λ

∫t

0

N∑

i=1

(

XNi (s) − Y
N
i (s)

)





1

N

N∑

j=1

1(YNj (s) 6 YNi (s)) −
1

N

N∑

j=1

1(XNj (s) 6 X
N
i (s))



ds

+2

∫t

0

N∑

i=1

(

XNi (s) − Y
N
i (s)

) (

1(XNi (s) = 0)dK
N
i,X(s) − 1(YNi (s) = 0)dKNi,Y(s)

)

.

While the last term is obviously less or equal than zero, by construction, the term in the
second row is treated as in [54, Proposition 1.3]. We know that dP⊗ ds a.e. the positions
of the particles are distinct, therefore we find a unique permutation of indexes τXs (resp.
τYs ) such that

XNτXs (1)(s) < X
N
τXs (2)

(s) < · · · < XNτXs (N)(s) ( resp. YNτYs (1)(s) < Y
N
τYs (2)

(s) < · · · < YNτYs (N)(s) ).

Then we rewrite the argument of the second row integral as

N∑

i=1

i

N

((

XNτYs (i)(s) − Y
N
τYs (i)

(s)
)

−
(

XNτXs (i)(s) − Y
N
τXs (i)

(s)
))

. (3.1.4)

We exploit now a result on non decreasing sequences of real numbers [54, Lemma 1.4].

Lemma 3.1.1. For any pair of non decreasing sequences of real numbers (a(i))i=1,...,N and
(b(i))i=1,...,N and any permutation of indexes τ ∈ SN

N∑

i=1

a(i)b(τ(i)) 6

N∑

i=1

a(i)b(i).

First, we consider the sequences (a(i))i=1,...,N =
(

i
N

)

i=1,...,N
, (b(i))i=1,...,N

(

XN
τXs (i)

(s)
)

i=1,...,N

and the permutation τ = (τXs )
−1 ◦ τYs . Then, we apply the same result to the sequences
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(a(i))i=1,...,N =
(

i
N

)

i=1,...,N
, (b(i))i=1,...,N =

(

YN
τYs (i)

(s)
)

i=1,...,N
and the permutation τ =

(τYs )
−1 ◦ τXs . This implies that (3.1.4) is less or equal than zero dP ⊗ ds a.e.. This implies

that
N∑

i=1

(

XNi (t) − Y
N
i (t)

)2
=

N∑

i=1

(

XNi (0) − Y
N
i (0)

)2
a.s.,

that implies pathwise uniqueness.

Let us highlight the following property of our system (3.1.3), that concerns collisions
of particles and it is simply implied by the results in [16].

Proposition 3.1.2. Fix a filtered probability space (Ω,F, {Ft}t>0,P) and an initial con-
dition XN(0) = (XN1 (0), . . . , X

N
N(0)), let {(XN1 (t), . . . , X

N
N(t))}t>0 be the solution of (3.1.3).

Then the following hold:

i) a.s. there does not exists a t > 0 such that there is a triple collision at t, i.e.

XNi (t) = X
N
j (t) = X

N
h (t) for some i 6= j 6= h;

ii) a.s. there does not exists a t > 0 such that there are two or more simultaneous
collisions, i.e.

XNi (t) = X
N
j (t) and XNh (t) = X

N
k (t) for some i 6= j 6= h 6= k.

This proposition is a simple consequence of [16, Theorem 1.1] and it is crucial in the
comparison with the model on Chapter 4. Notice that the absence of triple collisions is
also a necessary condition for the strong existence of solutions to (3.1.3), that otherwise
would have only weak ones.

3.1.2 Propagation of chaos and the nonlinear process

The nonlinear process associated to the particle system (3.1.3) is the pair (Xt, Kt)t>0,
solution to the following nonlinear SDE:






dXt = dBt + (δ− λH ∗ Pt(Xt))dt+ dKt
Kt =

∫t
0 1(Xs = 0)dKs

Qt = Law(Xt, Kt) and Pt = Q ◦ X−1
t

(3.1.5)

where B is a Brownian motion, independent from the initial condition (X0,0).

Theorem 3.1.1. The nonlinear SDE with reflection (3.1.5) admits a unique strong solution
for all measurable initial conditions X0.
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We prove existence and uniqueness of solutions to (3.1.5) by means of a propagation of
chaos result. Indeed, we build one weak solution to (3.1.5) taking the limit of a converging
subsequence of empirical measures {µNkt }t>0. Therefore, we first want to show that this
limit exists (tightness of the sequence of empirical measures) and that it actually has the
law of a solution of (3.1.5) (consistency of the limit). This, together with uniqueness of
solutions to (3.1.5) proves propagation of chaos according to the first approach described in
Section 1.2.3. Notice that the coefficients of (3.1.5) satisfies the globally Lipschitz condition
of Assumption 2.1.1, indeed the drift term is such that, for all x, y ∈ R

+ and α,β ∈ M(R+)

it holds

λ

∣

∣

∣

∣

∫x

0

dα−

∫y

0

dβ

∣

∣

∣

∣

6λ

∣

∣

∣

∣

∫x

0

dα−

∫y

0

dα

∣

∣

∣

∣

+ λ

∣

∣

∣

∣

∫y

0

dα−

∫y

0

dβ

∣

∣

∣

∣

6λ|x− y|+ λ sup
‖f‖∈1−Lip

∣

∣

∣

∣

∫+∞

0

fdα−

∫+∞

0

fdβ

∣

∣

∣

∣

6λ(|x− y|+ ρ(α,β)).

We could simply adapt the results of Chapter 2 for well-posedness and propagation of chaos
to the case of a reflecting barrier in zero, which is quite straightforward since we are in
dimension one (in higher dimension the problem would of course be harder). However, we
choose to highlight the other approach described in Section 1.2.3 and to use the martingale
problem, which is defined as follows.

Definition 3.1.1. We say that the law Q on C(R+,R+)2 of any (Xt, Kt)t>0 satisfying
(3.1.5) is the solution of the martingale problem correspondent to (3.1.5) if the following
hold:

i) Q ◦ (X0, K0)−1 = µ0 ⊗ δ0, for µ0 measure on [0,∞);

ii) ∀ φ ∈ C(R+,R)

φ (Xt − Kt) − φ (X0 − K0) −

∫ t

0

1

2
φ ′′ (Xs − Ks) − (δ− λH ∗ Ps(Xs))φ ′ (Xs − Ks)ds

is a Q-martingale;

iii) ∀ t > 0
∫t
0
dKs <∞ and Kt =

∫t
0
1(Xs = 0)dKs Q-a.s..

Proposition 3.1.3. Fix a filtered probability space (Ω,F, {Ft}t>0,P) and an initial condi-
tion XN(0) whose law is µ0-chaotic, for a law µ0 on R

+. Let (XN, KN)t>0 be the solution
to (3.1.3). Then:

a) the sequence of empirical measures
{

µN(X,K) =
1

N

N∑

i=1

δ(XNi ,KNi )

}

is tight in M
(

C(R+,R+)2
)

;
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b) any limit point µ of µN(X,K) solves the martingale problem correspondent to (3.1.5).

Proof. a) The system is exchangeable, therefore, by a well-known result by Sznitman [83,
Proposition 2.2], proving point i) is equivalent to proving the following:

the sequence (XN1 (t), K
N(t))t>0 is tight in C(R+,R+)2.

By writing as {YN(t)}t>0 the evolution on R of the particle system without reflection, the
sequence {YN1 (t)}t>0 is clearly tight. Then, the map associating to {YN1 (t)}t>0 the solution
(XN1 (t), K

N
1 (t))t>0 is continuous, see [60], and this gives the desired tightness.

b) Let Q∞ be a limit point of a converging subsequence {µNk
(X,K)}. We need to prove that

it satisfies Definition 3.1.1.
Point i) is clearly satified, because the sequence of initial condition is µ0-chaotic.

For point ii) we follow the approach of Sznitman [81] and we define a functional

F : M
(

C(R+,R+)2
)

−→ R

that is zero on the solutions of the martingale problem defined in Definition 3.1.1. Let f
∈ C∞(R,R), let g1, . . . , gh be continuous and bounded functions on R

2 and let 0 6 s1 6

· · · 6 sh 6 s 6 t be positive real numbers:

F(Q) = 〈Q,g1(xs1 , ks1) . . . gh(xsh , ksh)×
[

f(xt − kt) − f(xs − ks) −

∫t

s

1

2
f ′′(xr − kr) − (δ− λH ∗Qr(xr)) f ′(xr − kr)dr

]

〉.

Let us write

E
[

F(µN(X,K))
2
]

= E





(

1

N

N∑

i=1

g1(X
N
i (s1), K

N
i (s1)) . . . gh(X

N
i (sh), K

N
i (sh))(M

i
f(t) −M

i
f(s))

)2


 ,

where, for all i = 1, . . . ,N

Mi
f(t)= f(X

N
i (t) − K

N
i (t)) − f(X

N
i (0) − K

N
i (0))

−

∫t

0

1

2
f ′′(XNi (r) − K

N
i (r)) −



δ− λ
1

N

N∑

j=1

1(XNj (r) 6 X
N
i (r))



 f ′(XNi (r) − K
N
i (r))dr

are orthogonal martingales, i.e. 〈Mi
f,M

j
f〉 = 0 for any i 6= j. Then, because of the orthogo-

nality of the martingales, we get, for a certain constant C > 0

lim
k→∞

E
[

F(µNk
(X,K))

2
]

6 lim
k→∞

C

Nk
2

Nk∑

i=1

E[〈Mi
f〉t − 〈Mi

f〉s] 6 lim
k→∞

C

Nk
= 0.
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We are left to prove that

EQ∞
[F(Q)2] = lim

k→∞
E
[

F(µNk
(X,K))

2
]

.

This is a consequence of the fact that the functional F is continuous. Indeed let P∞ =

Q∞ ◦X−1, then one can prove that P∞ does not weight points dt-a.e.. This implies that, if
we call PN = µN(X,K) ◦ X−1, then H ∗ PN → H ∗ P∞ uniformly and therefore F is continuous
in Q∞. This implies that F = 0 Q∞-a.s..

For point iii) we find that

EQ∞
[KT ] 6 lim sup

k→∞

E[
1

N

N∑

i=1

KNi (T)] = lim sup
k→∞

E[KN1 (T)] <∞,

this means that Q∞-a.s. for all T > 0 KT < ∞. Moreover, for any g positive continuous
function with compact support in (0,∞)

EQ∞
[

∫T

0

g(Xs)dKs] 6 lim sup
k→∞

E[
1

N

N∑

i=1

∫T

0

g(XNi (s))dK
N
i (s)] = lim sup

k→∞

E[

∫T

0

g(XN1 (s))dK
N
1 (s)] = 0

and this means that Q∞-a.s. for all T > 0 KT =
∫T
0
1(Xs = 0)dKs.

Proof of Theorem 3.1.1. By Proposition 3.1.3, for any initial measure µ0 we get weak exis-
tence of a solution, that is obtained as limit of the sequence of empirical measures {µN(X,K)}.
Uniqueness in law is given by uniqueness of solutions of the associated PDE, obtained in
[54, 53]. By Yamada-Watanabe theorem, pathwise uniqueness ensures the thesis.

Fix a probability measure Q on C(R+,R+)2 and let Pt = Q ◦X−1
t be the flow of its first

coordinate time marginals. Let Γ be the map that associates to Q the solution (Xt, Kt)t>0
to the SDE {

dXt = dBt + (δ− λH ∗ Pt(Xt))dt+ dKt
Kt =

∫t
0 1(Xs = 0)dKs.

Suppose that (X1t , K
1
t)t>0 and (X2t , K

2
t)t>0 be two solutions, then by Ito-Tanaka formula we

have
(

X1t − X
2
t

)2
=
(

X10 − X
2
0

)2
+2

∫t

0

λ
(

X1s − X
2
s

) (

H ∗ Ps(X2s) −H ∗ Ps(X1s)
)

ds

+2

∫t

0

(

X1s − X
2
s

) (

1(X1s = 0)dK
1
s − 1(X2s = 0)dK

2
s

)

.

Since H∗Pt(·) is non-decreasing, the second term in the right-hand side is a.s. less or equal
than zero and the same is true for the third term. This implies that, for all t > 0, a.s.

(

X1t − X
2
t

)2
6
(

X10 − X
2
0

)2
.

Let Q be the unique law of a solution to (3.1.5), this implies pathwise uniqueness.
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3.1.3 Pathwise propagation of chaos

We know by Section 2.1, that for the system without reflection, it is possible to prove a
pathwise propagation of chaos. The problem of adding a reflecting barrier in zero, in di-
mension one, can be handled easily and, following also the approach of [54, Theorem 1.5],
we do the same in this case. To this aim we set the basic coupling procedure of Chapter 2
between the particle system (XNt , K

N
t )t>0 solving (3.1.3) and N i.i.d. copies of the nonlinear

process solving (3.1.5). Notice that, since we do not have jump terms here, we adopt the
classical L2 approach of stochastic calculus, estimating the rate of convergence to zero of
the W2 distance between the empirical measure and its mean field limit.

We fix a filtered probability space (Ω,F, {Ft}t>0,P) and let µ0 be a probability measure
on R

+. For any N ∈ N let

{(XN(t), KN(t))}t>0 = {(XN1 (t), K
N
1 (t), . . . , X

N
N(t), K

N
N(t))}t>0

be solutions to (3.1.3), all defined on the same filtered probability space, with respect to
the family {Bi}i∈N of one-dimensional independent Brownian motions with initial condition
such that, for all i = 1, . . . ,N, (XNi (0), K

N
i (0)) are independent and distributed as µ0 ⊗ δ0.

Let us define the vector

(X̄t, K̄t)t>0 = (X̄1t , K̄
1
t , . . . , X̄

N
t , K̄

N
t )t>0

such that, for any i = 1, . . . ,N the pair (X̄it, K̄
i
t)t>0 is a solution to (3.1.5) with Brownian

motion Bi and initial condition (X̄i0, K̄
i
0) = (XNi (0), K

N
i (0)) a.s.. Now, for any N ∈ N, we

have coupled the solution to (3.1.3) with N independent copies of the solution to (3.1.5).
The following result states the trajectorial propagation of chaos.

Theorem 3.1.2. For all t > 0, there exists a positive constant Ct <∞ such that

E[sup
s6t

(XN1 (s) − X̄
1
s)
2] 6

Ct

N
. (3.1.6)

Proof. We recall that, by exchangeability of the particle system, we write:

E[sup
s6t

(XN1 (s) − X̄
1
s)
2] = E

[

sup
s6t

1

N

N∑

i=1

(XNi (s) − X̄
i
s)
2

]

. (3.1.7)
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We make use of the Ito-Tanaka formula to write:

N∑

i=1

(

XNi (t) − X̄
i
t

)2
=

N∑

i=1

(

XNi (0) − X̄
i
0

)2

+2λ

∫t

0

N∑

i=1

(

XNi (s) − X̄
i
s

)





1

N

N∑

j=1

1(X̄js 6 X̄
i
s) −

1

N

N∑

j=1

1(XNj (s) 6 X
N
i (s))



ds

+2λ

∫t

0

N∑

i=1

(

XNi (s) − X̄
i
s

)



H ∗ Ps(X̄is) −
1

N

N∑

j=1

1(X̄js 6 X̄
i
s)



ds

+2

∫t

0

N∑

i=1

(

XNi (s) − X̄
i
s

)(

1(XNi (s) = 0)dK
N
i (s) − 1(X̄is = 0)dK̄

i
s

)

.

By the computations in the proof of Proposition 3.1.1, we get that the terms in the second
and fourth rows are a.s. less or equal than zero. We consider, for a fixed t > 0

E





(

H ∗ Ps(X̄is) −
1

N

N∑

j=1

1(X̄js 6 X̄
i
s)

)2


 ,

where the {X̄is}i=1,...,N are i.i.d. random variables with common law Ps, H ∗ Ps(X̄is) is
uniformly distributed in [0,1] and E[1(X̄js 6 X̄

i
s)|X̄

i
s] = H ∗ Ps(X̄is). This means that

E





(

H ∗ Ps(X̄is) −
1

N

N∑

j=1

1(X̄js 6 X̄
i
s)

)2


 =
1

N
E[H ∗ Ps(X̄is)(1−H ∗ Ps(X̄is))] =

1

6N
.

Then we have, by Cauchy-Schwarz inequality and previous computations,

E[sup
s6t

N∑

i=1

(

XNi (s) − X̄
i
s

)2
] 6 E[

N∑

i=1

(

XNi (0) − X̄
i
0

)2
]

+2λ

∫t

0

√

√

√

√

√

√

E



sup
r6s

(

N∑

i=1

(XNi (r) − X̄
i
r)

)2


E






sup
r6s



H ∗ Pr(X̄ir) −
1

N

N∑

j=1

1(X̄jr 6 X̄ir)





2





ds

6
2λ√
6

∫t

0

√

√

√

√

E

[

sup
r6s

N∑

i=1

(XNi (r) − X̄
i
r)
2

]

ds.

This, by comparison with the ODE ẏ = K
√
y, implies that there exists a Ct > 0 such that

E[sup
s6t

N∑

i=1

(

XNi (s) − X̄
i
s

)2
] 6 Ct.

This, together with (3.1.7), implies (4.1.9).



64 A system of rank-based interacting diffusions

3.2 Long-time behavior of the model

In this section we study the stability properties of the model in Section 3.1. Of course,
when λ = 0, the particle system (3.1.3) and its nonlinear limit (3.1.5) have no chance of
having a stationary measure, since they are just Brownian motions with a positive drift,
reflected in zero. We are interested in finding under which conditions on λ the Markov
processes have a stationary measure and whether they converge towards it as the time goes
to infinity.

3.2.1 Background: stability of Markov processes

Let us introduce some mathematical background for the study of stability and long-time
behavior of Markov processes. We start with the definition of a distance between proba-
bility measures, different from the Wasserstein distance defined in Chapter 2.

Definition 3.2.1 (Total variation distance). Let µ, ν be two probability measures on the
same Polish metric space (M,d), then the total variation distance between µ, ν is defined
as follows:

‖µ− ν‖TV =
1

2
sup

{∫

fdµ−

∫

fdν : ‖f‖∞ 6 1

}

= inf {P(X 6= Y) : for a coupling (X, Y) s.t. Law(X) = µ; Law(Y) = ν} .

Clearly the total variation distance is equivalent to the W1 Wasserstein distance when
d(x, y) = 1(x 6= y) on M.

The stability of Markov processes has been extensively studied in literature, among the
others, let us cite the three well-known papers from Meyn and Tweedie [68, 69, 70]. In
particular in [70] we find a criterion for exponential ergodicity of continuous-time Markov
processes.

Definition 3.2.2 (Exponential ergodicity [70]). Let X = {Xt}t>0 be a Markov process
with values in a measurable space (E,E) and stationary measure π. We say that X is
exponentially ergodic if there exist a positive constant β < 1 and a finite valued function
B such that

‖P (Xt ∈ ·) − π‖TV 6 B(x)βt for all t > 0, x ∈ E,
when X0 = x a.s..

In [70] the authors give a Foster-Lyapunov criterion for exponential ergodicity, in the
sense that they use the infinitesimal generator L of the Markov process and a Lyapunov
function defined as follows.

Assumption 3.2.1 (Foster-Lyapunov condition). Let V : E → R+ a positive, measurable
function in the domain D(L) of the generator of the Markov process X, that is norm-like,
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i.e. the level sets {x ∈ E : V(x) 6 K} are precompact for each K > 0. The function V is such
that there exist two positive constants γ > 0 and 0 < H <∞ such that

LV(x) 6 −γV(x) +H,

for all x ∈ E.

Any function V satisfying Assumption 3.2.1 is called Lyapunov function for the Markov
process X, a terminology that comes from the theory of dynamical systems.

Theorem 3.2.1 (Theorem 6.1 in [70]). Let X = {Xt}t>0 be an irreducible and positive
recurrent Markov process with stationary measure π. Suppose that it exists a function V
satisfying Assumption 3.2.1, then the process is exponentially ergodic, i.e. there exists two
positive constant β < 1 and C > 0 such that

‖P (Xt ∈ ·) − π‖TV 6 C(V(x) + 1)βt for all t > 0, x ∈ E,

when X0 = x a.s.. Moreover, we have the following estimate on π:

∫

E

V(x)π(dx) 6
H

γ
. (3.2.1)

Theorem 3.2.1 gives an estimate of rate of convergence of the law of the process towards
its stationary measure and it gives also an estimate on the stationary measure itself, with
the bound (3.2.1).

None of the results above with Lyapunov functions can be applied in the case of non-
linear Markov processes, see [32]. Indeed, the infinitesimal generator of a McKean-Vlasov
process does not even exist. However, if X is a McKean-Vlasov process, we can intuitively
define an operator Lµ that depends on a measure µ and such that, for all time t > 0

d

dt
E[f(Xt)] = E[Lµtf(Xt)],

where µt = Law(Xt). The stability study for nonlinear Markov processes is highly non-
trivial and it usually relies on some ad hoc procedures. The stationary measures are
obtained by solving the stationary Fokker-Planck equation, which, by definition is actually
nonlinear. We find in literature different situations. In the case of [9, 63], the authors
prove the existence and uniqueness of a stationary measure and they prove it is attractive.
The approach of [63] relies on the proof of a uniform (in time) propagation of chaos and
a functional inequality (in this case a log-Sobolev inequality) for the N-particle system
stationary measure, with a constant that does not depend on N. The nonlinear model
in [43] has exactly two stationary measures and, under some reasonable conditions, the
authors prove that only one of these two is attractive. In [54], the authors prove that,
under reasonable conditions, the process (3.1.2) has a continuum of stationary measures.
In [55], the authors prove that each of these stationary measures attract solutions starting
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from its basin of attraction, the subset of probability measures with the same first moment.

We know that a mean field interacting particle system is characterized by the fact that,
for all t > 0, the empirical measure of the particle system is such that

µN(t) → µt,

where µt is the law of a nonlinear Markov process, for which we may wonder whether it
converges to some stationary measure when t goes to infinity. At the same time, we know
that, if the N particle system is ergodic, the empirical measure converges to the stationary
emprirical measure when the time goes to infinity, i.e.

µN(t) → µN∞.

Then, we study if the measure µN∞ has a weak limit when N grows to infinity, i.e. if the
sequence of stationary measures is chaotic. This means that, in some situations, it is
possible to find a measure µ∞ such that the following diagram commutes:

µN(t)
t→∞−−−→ µN∞

N→ ∞







y







y

N→ ∞

µt −−−→
t→∞

µ∞

(3.2.2)

We will prove in the following that the model presented in Section 3.1 belongs to the class
of models for which this study may be performed.

3.2.2 Exponential ergodicity of the particle systems

In this Section we fix N > 0 and we study the long time behavior of the system with N
particles. We study the particle system along the lines of the work [72] on one-dimensional
Brownian particles with rank dependent drift. Indeed, we highlight that, by considering the
increasing reordering of the vector XN as YN = (YN1 , . . . , Y

N
N), we can express the evolution

of our particle system as the process

dXNi (t) = dB
1
t +

N∑

k=1

(δ− λ
k− 1

N
)1(XNi (t) = Y

N
k (t))dt+ dK

N
i (t). (3.2.3)

By classical results, this is equivalent to





YNi (t) = Y
N
i (0) + (δ− λ i−1

N
)t+ βit + V

i,i−1
t − Vi,i+1t ,

Vi,i−1t =
∫t
0
1(YNi (s) = Y

N
i−1(s))dV

i,i−1
s , for i = 2, . . . ,N,

V1,0t =
∫t
0
1(YN1 (s) = 0)dV

1,0
s ,

Vi,i+1t =
∫t
0
1(YNi (s) = Y

N
i+1(s))dV

i,i+1
s , for i = 1, . . . ,N− 1,

(3.2.4)
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where βit =
∑N
k=1

∫t
0
1(XNk (s) = YNi (s))dB

k
s is a Brownian motion. Weak existence and

uniqueness of solutions of a system like (3.2.4) is given by the theory of reflecting Brown-
ian motions in polyhedra, see [72, 88]. Here we do not have any problem of well-posedness
because (3.2.4) is simply a reordering of (3.2.3), for which Proposition 3.1.1 and Propo-
sition 3.1.2 ensure existence and uniqueness of strong solutions. Let us state a Lemma
from [72, Lemma 9], deduced by general results in [88], that is crucial for the study of
stationary distribution of (3.2.3).

Lemma 3.2.1. Let Z = {Zt}t>0 be a N-dimensional Brownian motion in a domain

ΛN =
{
x ∈ R

N : bi(x) > 0 for i = 1, . . . ,N
}
,

where {bi}i=1,...,N are N linearly independent functionals. Let Z have identity covariance
matrix, normal reflection at the boundaries and constant drift vector D such that

N∑

i=1

Dixi = −

N∑

i=1

aibi(x) for all x ∈ R
N. (3.2.5)

The process Z has a stationary probability distribution if and only if ai > 0 for all i =
1, . . . ,N. Moreover, in the stationary state (when it exists), the bi(Z) are independent
exponential random variables with parameter 2ai and the process in its stationary state is
reversible.

The proof of Lemma 3.2.1 is a particular case of [88, Theorem 1.2]. It is based on
the observation that Z is in duality with itself w.r.t. the measure ρ on the domain whose
density is exp(2D · x). With the change of variable yi = bi(x) and the relation (3.2.5), we
see that the distribution of the bi(x) under ρ has joint density

∏N
i=1 exp(−2aiyi), which

has finite mass if and only if ai > 0 for all i = 1, . . . ,N.

Let us apply Lemma 3.2.1 to our case.

Theorem 3.2.2. The process XN, solution to (3.1.3), has a unique stationary distribution
πN if and only if

λ > 2δ
N

N− 1
. (3.2.6)

Moreover, this stationary distribution is such that the gaps

(YN1 , Y
N
2 − YN1 , Y

N
3 − YN2 , . . . , Y

N
N − YNN−1)

are independent exponential random variables, respectively with parameter 2ai, where

ai =
λ

2N

[

(N+ 1− i)

(

i−
λ(2−N) + 2δN

λ

)]

. (3.2.7)
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Proof. This proof comes from the direct application of Lemma 3.2.1. We consider the
process YN defined in (3.2.4), that belongs to the domain

ΛN =
{
y ∈ R

N : y1 > 0, y2 − y1 > 0, y3 − y2 > 0, . . . , yN − yN−1 > 0
}
,

i.e. the functionals are defined as b1(x) = x1 and bi(x) = xi−xi−1 for all i = 2, . . . ,N. The
drift term D of the process YN has the following components:

Di = δ− λ
i− 1

N
,

for all i = 1, . . . ,N. By solving (3.2.5), we clearly get (3.2.7). Therefore, the necessary and
sufficient condition for ergodicity ( ai > 0 for all i = 1, . . . ,N) in our case it is reduced
simply to condition (3.2.6).

The exponential convergence of the process XN to its stationary distribution πN from
any initial condition is ensured by the recent results in [77], in which the author proves,
via Lyapunov function argument, exponential ergodicity for Brownian motions reflected in
a convex polyhedral cone. Therefore, we define the gap process GN

.
= {GN(t)}t>0 such

that, for all t > 0

GN(t)
.
=
(

YN1 (t), Y
N
2 (t) − Y

N
1 (t), . . . , Y

N
N(t) − Y

N
N−1(t)

)

.

In the terminology of [77], GN is a reflected Brownian motion in R
N
+ whose reflection matrix

on the boundary is

R =















1 −1
2

0 0 . . . 0

−1
2

1 −1
2

0 . . . 0

0 −1
2

1 −1
2
. . . 0

... . . .
. . . . . . . . . 0

0 . . . . . . 0 −1
2
1















,

the covariance matrix A and the drift vector µ are

A =















1 −1 0 0 . . . 0

−1 2 −1 0 . . . 0

0 −1 1 −1 . . . 0
... . . .

. . . . . . . . . 0

0 . . . . . . 0 −1 2















, µ =















δ

−λ 1
N

−λ 2
N

...
−λN−1

N















.

Under the conditions for the existence of a unique stationary measure for GN, following [77],
we define the function

V(g)
.
= eaϕ(gTR−1g),

for any g ∈ R
N
+ and ϕ a positive C∞ function such that, for some 0 < s1 < s2 <∞

ϕ(s)
.
=

{
0 for s 6 s1,
s for s > s2.

There exists a sufficiently small and two constants 0 < s1 < s2 < +∞ such that function
V satisfies Assumption 3.2.1 and the process GN (consequently also the process XN) is
exponentially ergodic.
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3.2.3 Stationary distribution for the nonlinear process

The study of the invariant measures for the nonlinear process relies on the analysis of the
correspondent stationary Fokker-Planck equation. Indeed, the nonlinear process (3.1.5)
has a density function pt(x) that is the solution of the following PDE with boundary
conditions: {

∂tpt(x) =
1
2
∂2xpt(x) + ∂x(λH ∗ pt(x) − δ)pt(x)) ∀ x > 0;

(δ− λH ∗ Pt(0))pt(0) = 1
2
∂xpt(x)|x=0 ∀ t > 0.

Theorem 3.2.3. The process X, solution to (3.1.5), has a unique stationary measure π if
and only if

λ > 2δ.

The proof of this theorem follows the line of [54, Lemma 2.1], we sketch here the main
steps.

Proof. Consider the stationary Fokker-Planck equation with boundary conditions
{

1
2
∂2xπ+ ∂x(λH ∗ π− δ)π) = 0 ∀ x > 0;

(δ− λH ∗ π(0))π(0) = 1
2
∂xπ(x)|x=0.

(3.2.8)

Then any probability measure π solving (3.2.8) in the weak sense is a stationary measure
for X. Let us consider a solution π to (3.2.8), that must be absolutely continuous w.r.t. the
Lebesgue measure, thanks to the regularizing effect of the second derivative. Therefore,
we write (3.2.8) as

∂2xx(π− 2δH ∗ π+ λ(H ∗ π)2) = 0.
Let f : R+ → R

+ be the density function of a solution of (3.2.8) and let F(x) =
∫x
0
f(y)dy be

its cumulative distribution function, then F must be the solution of the following Cauchy
problem {

dF
dx

= 2δF− λF2 + β,

F(0) = 0,
(3.2.9)

for certain constants β to be determined. The solution to (3.2.9) is of the following form:

F(x) =
δ+

√

δ2 + βλ

λ









1− e−2x
√
δ2+βλ

1−
δ+

√
δ2+βλ

δ−
√
δ2+βλ

e−2x
√
δ2+βλ









. (3.2.10)

Therefore, we must find β such that limx→∞ F(x) = 1, that is β = λ − 2δ. For all δ, λ > 0
there exists a unique solution F∞ to (3.2.9) with β = λ− 2δ

F(x) =
1− e−2x(λ−δ)

1+ λ
λ−2δ

e−2x(λ−δ)
,

this F is the CDF of a probability measure if and only if dF(x)
dx

> 0 for all x > 0, that means
if and only if λ > 2δ.



70 A system of rank-based interacting diffusions

Therefore, if and only if λ > 2δ, there exists a unique stationary measure π on [0,∞),
which is absolutely continuous w.r.t. the lebesgue measure and it has CDF F.

Adapting the approach in [55] to our framework, we can get a result on the long-
time behavior of any solution of (3.1.5), in the sense that we have the convergence to
the stationary measure in Wasserstein distance, without any rate of convergence. Indeed,
starting from any initial condition µ0 with finite first moment and W2(µ0, π) < +∞, we
consider Pt the law of the solution to (3.1.5). Then, for all p > 2 such thatWp(µ0, π) < +∞,
we have

lim
t→∞

Wq(Pt, π) = 0, for all 1 6 q < p.

As the authors observe in [55, Section 3.3], in our framework we may as well obtain an
exponential rate of convergence in W2 Wassertein distance when the process (3.1.5) starts
from an initial condition sufficiently close to the stationary measure.

3.2.4 Propagation of chaos for the stationary measures

At the end of Section 3.2.1 we mentioned that, in some cases, it is possible to prove the
chaoticity of the sequence of the N particle system’s stationary measures. In the previous
sections, we see that for

λ > 4δ

there is exponential ergodicity of the particle system (3.1.3) for every N > 2, there exists
a unique and attracting stationary measure for the nonlinear Markov process (3.1.5) and,
of course, there is propagation of chaos for every fixed t > 0. We wonder if we can close a
diagram like (3.2.2), since so far we proved the following

µN(t)
t→∞−−−→ µN∞

N→ ∞







y

?

Pt −−−→
t→∞

π

The missing step is therefore to prove is the sequence of stationary measures {πN} is π-
chaotic.

In the paper [74] the author proves, for p > 1, the Wp-chaoticity of the sequence of sta-
tionary measures by means of the convergence of the Laplace transforms, together with the
uniform boundedness of the sequence |XN1 |

p under the N particle system’s stationary mea-
sure. We believe that, by mimicking the same computations, we could get Wp-chaoticity
of the sequence {πN}.
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Let us underline, that proving that the sequence of stationary measures πN is π-chaotic
is equivalent to prove weak convergence of the sequence of stationary empirical measures
to π. Fix δ > 0 and λ > 4δ. The stationary measure π has density function:

f(x) =
4(λ− δ)2(λ− 2δ)e−2(λ−δ)x

(λ− 2δ+ λe−2(λ−δ)x)2
. (3.2.11)

If we call m∗ the median of the probability measure π, i.e. such that F(m∗) = 1/2, it is
clear from (3.2.11) that

m∗ =
1

2(λ− δ)
log
[

3λ− 4δ

λ− 2δ

]

.

At the level of N particle system, we know as well the median of the stationary empirical
measure µN∞, that is the position YNdN2 e

of the dN
2
eth ranked particle, where YN is the

reordered particle system (3.2.4) under πN. We know that, in the stationary regimes, YNdN2 e
is the sum of dN

2
e independent exponential random variables, with known parameters. For

instance, we can compute its mean and variance.

EπN [Y
N
dN2 e

]=

dN2 e∑

i=1

1

2ai
=

dN2 e∑

i=1

N

λ(N+ 1− i)
(

i−
λ(2−N)+2δN

λ

)

6
N

λ(2N− 1) − 2δN

[

ln

(

N
(

3
2
λ− 2δ

)

− 2λ

N(λ− 2δ) − 2λ

)

+ ln(2) +O
(

1

N

)

]

N→∞−→ 1

2(λ− δ)
ln
(

3λ− 4δ

λ− 2δ

)

= m∗

VarπN [Y
N
dN2 e

]=

dN2 e∑

i=1

1

4a2i
=

dN2 e∑

i=1

N2

λ2(N+ 1− i)2
(

i−
λ(2−N)+2δN

λ

)2

N→∞−→ 0

We can make the same computations for other quantiles of the measure π, compared
with the quantiles of the stationary empirical measure µN∞, for which we know the explicit
distribution in terms of the independent gaps between successive particles. Therefore, for
any p ∈ (0,1), the sequence of p-quantiles of the stationary empirical measure {xNp }, which
is a sequence of random variables, converges a.s. to the deterministic value xp, that is the
p-quantile of π. The convergence of any p-quantile such that the pseudo inverse of the
limit CDF F−1(p) is continuous in p is equivalent to weak convergence. Since π admits a
density, we have that a.s. the sequence of stationary empirical measures converges weakly
to π.
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Chapter 4

A system of random walks with

asymmetric interaction

In this chapter we study a system of mean field interacting random walks on the positive
integers, reflected at zero, presented in [2]. Each particle has a drift δ > 0 towards infinity
and a parameter λ > 0 that tunes an interaction. This interaction is asymmetric in the
sense that it pushes each particle towards the origin, but it depends on the number of
particles at the left of the affected one. We are interested in studying the mean field limit
of this model and its stability properties.

4.1 The model

In this section we describe all the details of the model we are interested in. As in the previ-
ous chapters, we start with the description of the N particle system, then we heuristically
describe its mean field limit and we prove well-posedness and propagation of chaos.

4.1.1 The particle system

We fix N > 2 and we consider N particles, each of them moving on the nonnegative inte-
gers. Let XN = (XN1 , . . . , X

N
N) ∈ N

N be the vector of the particles’ positions. Each particle
has an intrinsic dynamics and it experiences an interaction.

- The intrinsic dynamics is given by a simple biased random walk, with jump ampli-
tude one, independent of the other particles and reflected at zero. This is described
by 2 independent Poisson clocks for each particle, one with rate 1, governing the
downward jump and the other with rate 1+ δ, δ > 0, governing the upward jump.

- The interaction dynamics is tuned by a parameter λ > 0. Every pair of particles,
for example

(XNi , X
N
j )
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is activated with a space-dependent rate

λ

N
φ(XNi , X

N
j ).

Here φ : N2 → [0,1] is a bounded interaction function, symmetric in its argument.
If the two particles are in the same position, i.e. XNi = XNj , then nothing happens.
Otherwise, if they are in different sites, for example XNi < X

N
j , then the one in the

highest position (in the example XNj ) is encouraged to move down. This means that
its position makes a backward jump of amplitude

ψ(XNj , X
N
i ),

where ψ : N2 → N is a symmetric function such that 1 6 ψ(x, y) 6 x∨ y for all (x, y)
∈ N

2.

Let XN(t) = (XN1 (t), . . . , X
N
N(t)) be Markov process with the above dynamics at each time

t > 0, then for all i = 1, . . . ,N the particle XNi (t) does the following moves:

XNi (t) −ψ(X
N
i (t), X

N
j (t)) with rate

λ

N
φ(XNi (t), X

N
j (t)),

for all j = 1, . . . ,N and only if XNi (t) > XNj (t). The infinitesimal generator LN of this
Markov process acts on bounded measurable function f : NN → R in the following way:

LNf(z) =

N∑

i=1

(1(zi > 0)(f(z− ei) − f(z)) + (1+ δ)(f(z+ ei) − f(z)))

+
λ

N

N∑

i=1

N∑

k=1

1(zk < zi)φ(zk, zi) (f(z− eiψ(zk, zi)) − f(z)) ,

(4.1.1)

where ei is the vector (0, . . . ,0,1,0, . . . ,0) with the i-th coordinate equal to 1 and zero
otherwise. Since the jump rates are bounded, the process is well defined and admit a
solution for every initial condition in N

N. It will be useful to notice that, for all filtered
probability space (Ω,F, {Ft}t>0,P), XN is solution of the following system of SDEs: for
i = 1, . . . ,N,

dXNi (t) =−1(XNi (t
−) > 0)

∫∞

0

1[0,1](u)N
i
(−)(du, dt) +

∫∞

0

1[0,1+δ](u)N
i
(+)(du, dt)

−

∫

[0,1]

∫∞

0

XNi (t−)−1∑

k=0

ψ(k, XNi (t
−))1Ik(XNi (t−),µN

t−
)(h)1[0,λ](u)N

i(du, dh, dt),

(4.1.2)

where {Ni(−),N
i
(+),N

i}i=1,...,N are independent stationary Poisson processes with charac-
teristic measures, respectively, dudt, dudt and dudhdt, and

µNt =
1

N

N∑

i=1

δXNi (t)
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indicates the empirical measures, as usual. The intervals are such that, for all k > 0 we
have

Ik(x, µ)
.
=

(

k−1∑

y=0

φ(y, x)µ(y),

k∑

y=0

φ(y, x)µ(y)

]

and I0
.
= (0,φ(0, x)µ(0)].

4.1.2 The nonlinear processes

In this section we introduce, at a heuristic level, the nonlinear process, that stands for
the macroscopic description of the model presented in Section 4.1.1. As we said in the
previous chapters, heuristically the mean field limit is obtained under the assumption that
there exists a law µt that is the weak limit of the sequence of empirical measures, i.e.

{µNt }t>0
N→∞−→ {µt}t>0.

In this framework, let us consider the nonlinear SDE defined as follows

dX(t) = − 1(X(t−) > 0)

∫∞

0

1[0,1](u)N(−)(du, dt) +

∫∞

0

1[0,1+δ](u)N(+)(du, dt)

−

∫

[0,1]

∫∞

0

X(t−)−1∑

k=0

ψ(k, X(t−))1Ik(X(t−),µt−)(h)1[0,λ](u)N(du, dh, dt),

(4.1.3)

where µt = Law(X(t)), {N(−),N(+),N} are independent stationary Poisson processes with
characteristic measures, respectively, dudt, dudt and dudhdt. The intervals Ik(x, µ) are
defined as in (4.1.2). The well-posedness of (4.1.3) for every initial condition supported on
N will be proved together with the mean field limit, as in Chapter 3. Indeed, the existence
of a process that solves (4.1.3) is ensured by the tightness of the sequence of empirical
measures.

In order to ensure uniqueness of the nonlinear system, we require the backward jumps
to satisfy the following condition.

Assumption 4.1.1. There exists C < ∞ such that for all x, y ∈ N and α,β ∈ M(N)

probability measure on N

∣

∣

∣

∣

∣

x∨y−1∑

k=0

ψ(k, x∨ y) |Ik(x, α)∆Ik(y, α)|

∣

∣

∣

∣

∣

6 C|x− y|,

where for A,B two intervals of the real line A∆B
.
= A\B ∪ B\A and

∣

∣

∣

∣

∣

∣

∑

(x,y,z)∈A

α(y)α(z) − β(y)β(z)

∣

∣

∣

∣

∣

∣

6 C
∑

x∈N

|α(x) − β(x)|,

where A
.
= {(x, y, z) ∈ N

3 : z > x, z > y, z−ψ(y, z) = x}.
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Assumption 4.1.1 is rather technical; it resembles a Lipschitz-type condition on the
coefficients and it is sufficient for the proof of uniqueness via Gronwall inequalities, as
the following result shows. However, it is more general than any condition on jumps we
considered in Chapter 2. Indeed, we can prove pathwise propagation of chaos only for
a small subclass of models among the ones described here. This is the reason why we
adopt the approach via the solution of the martingale problem, which is more flexible than
the coupling procedure. In Section 4.1.4, we present a particular model of this class that
satisfies Assumption 2.1.1 and for which pathwise propagation of chaos holds, with the
expected rate of 1√

N
.

Proposition 4.1.1. Grant Assumption 4.1.1, then pathwise uniqueness holds for the non-
linear SDE (4.1.3) in the class of processes with initial conditions supported on N.

Proof. Step 1: uniqueness in law. Let µ be the law of X and µt its time-marginal. We
consider the following equation, for all x ∈ N

d

dt
µt(x) =µt(x+ 1) − (1+ δ)µt(x) + 1(x > 0)((1+ δ)µt(x− 1) − µt(x))

+ λ





∑

(h,k)∈Ax

µt(h)µt(k)φ(h, k) − µt(x)

x−1∑

k=0

φ(k, x)µt(k)



 ,

(4.1.4)

where Ax
.
= {(h, k) ∈ N

2 : h < k, k > x, k−ψ(h, k) = x}. Since we are looking for processes
with initial condition supported on N, µ0 is a measure on N, thus the same is true for µt
for all t > 0 and (4.1.4) is actually the equation for the time evolution of the law µt. Set
xk(t)

.
= µt(k) for all k > 0, then (4.1.4) is equivalent to the following infinite dimensional

system of ODEs:






ẋ0 = x1 − (1+ δ)x0 + λ
∑

(h,k)∈A0

xhxkφ(h, k)

ẋn = xn+1 − xn + (1+ δ)(xn−1 − xn) + λ





∑

(h,k)∈An

xhxkφ(h, k) − xn

n−1∑

k=0

xkφ(k, x)





n = 1,2, . . .

(4.1.5)

Therefore, we are looking for the uniqueness of the solution of (4.1.5) in the subspace

M1 =
{
x ∈ l1 s.t. ‖x‖1 = 1 and xi ∈ [0,1] ∀ i

}
.

Let x(t) and y(t) be two solutions of (4.1.5) with the same initial condition. Fix T > 0, we
want to prove that ‖x(t) − y(t)‖1 = 0 for all t ∈ [0, T ]. By a simple integration of (4.1.5)
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and some bound, we get

‖x(t) − y(t)‖1 =
∞∑

n=0

|xn(t) − yn(t)|

6‖x(0) − y(0)‖1 +
∫t

0

(4+ 2δ)

∞∑

n=0

|xn(s) − yn(s)|ds

+λ

∫t

0

∞∑

n=0

∣

∣

∣

∣

∣

∣





∑

(h,k)∈An

xh(s)xk(s)φ(h, k) −

n−1∑

k=0

xn(s)xk(s)φ(k, n)





−





∑

(h,k)∈An

yh(s)yk(s)φ(h, k) −

n−1∑

k=0

yn(s)yk(s)φ(k, n)





∣

∣

∣

∣

∣

∣

ds.

Now the role of Assumption 4.1.1 is clear, since we have

‖x(t) − y(t)‖1 6‖x(0) − y(0)‖1 + 2(2+ δ)
∫t

0

‖x(s) − y(s)‖1ds

+ λ

∫t

0

∞∑

n=0

|xn(s) − yn(s)|

∣

∣

∣

∣

∣

∞∑

k=n+1

xk(s) −

n−1∑

k=0

xk(s)

∣

∣

∣

∣

∣

ds

+ λ

∫t

0

∞∑

n=0

|yn(s)|

∣

∣

∣

∣

∣

∞∑

k=n+1

(xk(s) − yk(s)) −

n−1∑

k=0

(xk(s) − yk(s))

∣

∣

∣

∣

∣

ds

6‖x(0) − y(0)‖1 + 2(2+ δ+ (C+ 1)λ)

∫t

0

‖x(s) − y(s)‖1ds.

By applying Gronwall Lemma, since ‖x(0) − y(0)‖1 = 0, we get ‖x(t) − y(t)‖1 = 0 for all
t ∈ [0, T ]. By the arbitrariness of T > 0, we get uniqueness for µ.

Step 2: pathwise uniqueness. We fix a stochastic basis (Ω,F, {Ft}t>0,P) and we consider
two solutions X1 = (X1(t))t>0 and X2 = (X2(t))t>0 driven by the same Poisson processes
and such that a.s. X1(0) = X2(0) ∈ N. We know, by point i), that these two solutions
coincide in law, i.e. µ1 = µ2.

Fix T > 0, then we want to prove that E
[

supt∈[0,T ] |X
1(t) − X2(t)|

]

= 0.

E

[

sup
t∈[0,T ]

|X1(t) − X2(t)|

]

6 E

[∫T

0

∣

∣1(X1(t) > 0) − 1(X2(t) > 0)
∣

∣dt

+λ

∫T

0

∫

[0,1]

∣

∣

∣

∣

∣

∣

X1(t)−1∑

k=0

ψ(k, X1(t))1Ik(X1(t),µ1(t))(h) −

X2(t)−1∑

k=0

ψ(k, X2(t))1Ik(X2(t),µ2(t))(h)

∣

∣

∣

∣

∣

∣

dhds



.

First, we know by the previous step that there is weak uniqueness, i.e. µ1(t) = µ2(t).
Moreover, by hypothesis we have that |φ(·, ·)| 6 1. Therefore we perform the following
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bound:

E

[

sup
t∈[0,T ]

|X1(t) − X2(t)|

]

6

∫T

0

E

[

sup
s∈[0,t]

|X1(t) − X2(t)|

]

dt

+ λ

∫T

0

E



|X1(t) − X2(t)|

X1(t)∧X2(t)−1∑

k=0

µ1(t)({k})



dt

+ λ

∫T

0

E





∣

∣

∣

∣

∣

∣

X1(t)∧X2(t)−1∑

k=0

ψ(k, X1(t))|Ik(X
1(t), µ1t)∆Ik(X

2(t), µ1t)|

∣

∣

∣

∣

∣

∣



dt

+ λ

∫T

0

E





X1(t)∨X2(t)−1∑

k=X1(t)∧X2(t)

|X1(t)∨ X2(t) − k|µ1(t)({k})



dt.

We bound the third term in the right-hand side by means of Assumption 4.1.1. Then, we
consider the fourth term and, obviously, we have that, for all t > 0,

X1(t)∨X2(t)−1∑

k=X1(t)∧X2(t)

|X1(t)∨ X2(t) − k|µ1(t)({k}) 6 |X1(t) − X2(t)|

X1(t)∨X2(t)−1∑

k=X1(t)∧X2(t)

µ1(t)({k}).

Moreover, since µ1(t) is a probability measure for all t > 0, we recall that, obviously,

X1(t)∨X2(t)−1∑

k=0

µ1(t)({k}) 6 1.

Therefore, we obtain

E

[

sup
t∈[0,T ]

|X1(t) − X2(t)|

]

6 (1+ (C+ 1)λ)

∫T

0

E

[

sup
s∈[0,t]

|X1(s) − X2(s)|

]

dt.

Now, we apply Gronwall Lemma and we get the thesis.

As we mentioned, weak existence of a solution to (4.1.3) is a consequence of propagation
of chaos and it will be shown in the following section. Therefore, we end this section by
stating the result on well-posedness of (4.1.3), but we postpone its proof to the end of
Section 4.1.3.

Theorem 4.1.1. Grant Assumption 4.1.1, then for every F0-measurable initial condition
X0 with values in N, there exists a unique strong solution to (4.1.3).
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4.1.3 Propagation of chaos

In the proof of propagation of chaos for the particle system (4.1.2), we progress step by
step with the same approach of Section 3.1.2. This means that we first prove tightness and
consistency of the sequence of empirical measures. To this aim, let us define the martingale
problem associated to (4.1.3).

Definition 4.1.1. We say that the law Q on D(R+,R+) of any (Xt)t>0 satisfying (4.1.3) is
the solution of the martingale problem correspondent to (4.1.3) if the following properties
hold.

i) Q ◦ X−1
0 = µ0, for µ0 measure on N.

ii) Let Lµ be the generator defined on every bounded function f by

Lµf(x) = 1(x > 0)(f(x−1)−f(x))+(1+δ)(f(x+1)−f(x))+λ

x−1∑

k=0

φ(k, x)µ(k)(f(x−ψ(k, x))−f(x)).

Then, for all f ∈ Cb, for all t > 0

Mf
t = f(Xt) − f(X0) −

∫ t

0

Lµsf(Xs)ds

is a Q-martingale, where µs = µ ◦ X−1
s .

Proposition 4.1.2. Fix a filtered probability space (Ω,F, {Ft}t>0,P) and an initial con-
dition XN(0) whose law is µ0-chaotic, for a law µ0 on N. Let XNt>0 be the solution to
(4.1.2). Then:

a) the sequence of empirical measures
{
µN

}
is tight in M

(

D(R+)2
)

;

b) any limit point µ of the sequence µN solves the martingale problem correspondent to
(4.1.3).

Proof. a) We know that, under our conditions of exchangeability of the components, prov-
ing point a) is equivalent to prove that the sequence of processes {(XN1 (t))t>0, N > 2} is
tight in D(R+,R+), see [83]. To this aim, we use Aldous’s criterion, see [12], and we want
prove the two following statements.

i) For all T > 0,

lim
K↑∞

sup
N>1

P

(

sup
t∈[0,T ]

XN1 (t) > K

)

= 0.

ii) For all T > 0, ε > 0

lim
ρ↓0

lim sup
N→∞

sup
(S,S ′)∈AρT

P
(

|XN1 (S) − X
N
1 (S

′)| > ε
)

= 0,

where AρT
.
= {(τ, τ ′) stopping times s.t. 0 6 τ 6 τ ′ 6 τ+ ρ 6 T a.s.}.
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- Condition i) follows immediately from the fact that, if we fix T > 0, ∀ N > 1 we have

P

(

sup
t∈[0,T ]

XN1 (t) > K

)

6
E
[

supt∈[0,T ] |X
N
1 (t)|

]

K

(we take into account only the jumps on the right )

6
1

K
E

[

sup
t∈[0,T ]

∫ t

0

∫∞

0

1[0,1+δ](u)N
i
(+)(du, ds)

]

6
(1+ δ)T

K
.

- To prove condition ii), we know that

P
(

|XN1 (S) − X
N
1 (S

′)| > ε
)

6 P
(

|XN1 (S) − X
N
1 (S

′)| > 0
)

.

We write |XN1 (S) − X
N
1 (S

′)| by means of (4.1.2):

|XN1 (S) − X
N
1 (S

′)| 6

∣

∣

∣

∣

∣

−

∫S ′

S

1(XN1 (t
−) > 0)

∫∞

0

1[0,1](u)N
1
(−)(du, dt)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∫S′

S

∫

[0,1]

∫∞

0

XN
1 (t−)−1∑

k=0

ψ(k, XN1 (t
−))1Ik(XN

1 (t−),µN
t−

)(h)1[0,λ](u)N
1(du, dh, dt)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫S ′

S

∫∞

0

1[0,1+δ](u)N
1
(+)(du, dt)

∣

∣

∣

∣

∣

.
= A−

(S,S ′) + B(S,S ′) +A
+
(S,S ′).

Since we have 3 terms involving only integrals with respect to Poisson random mea-
sures, the probability of those terms being strictly greater than 0 is equal to the
probability that there is at least one jump in the time interval [S, S ′], therefore

P(A−
(S,S ′) + B(S,S ′) +A

+
(S,S ′) > 0) 6 P

(

A−
(S,S ′) > 0

)

+ P
(

B(S,S ′) > 0
)

+ P

(

A+
(S,S ′) > 0

)

6 P(A−
(S,S′)

> 1) + P

(∫S′

S

∫1

0

∫∞

0

1[0,λ)(u)N
1(du, dh, dt) > 1

)

+ P(A+
(S,S′)

> 1)

6 E[A−
(S,S′)

] + E

[∫S′

S

∫1

0

∫∞

0

1[0,λ)(u)N
1(du, dh, dt)

]

+ E[A+
(S,S′)

] 6 ρ(2+ λ+ δ).

By taking the limit for ρ ↓ 0 we get the thesis.

b) A probability measure Q ∈ M(D(R+,R+)) that is solution to the martingale problem
defined in Definition 4.1.1 must satisfy the two conditions i) and ii).

i) Clearly µ ◦ X−1
0 = µ0, since µ ◦ X−1

0 is the limit of the sequence 1
N

∑N
i=1 δXNi (0) that,

by µ0-chaoticity clearly converges weakly to µ0.
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ii) Step 1) As in Section 3.1.2, we follow the approach of Sznitman, [81], and we define
a functional

F : M(D(R+,R+)) → R

that is zero on the measures satisfying this martingale problem defined in Defini-
tion 4.1.1. Fix ϕ ∈ Cb, 0 6 s1 6 · · · 6 sq 6 s 6 t, g1, . . . , gq ∈ Cb and define

F(Q)
.
= 〈Q,

(

φ(X(t)) − φ(X(s)) −

∫ t

s

LQuφ(X(u))du

)

g1(X(s1)) . . . gq(X(sq))〉.

We want to prove that for all Q limit point of µN, F(Q) = 0 a.s..

Step 2) We firstly prove that limN→∞ E
[

F(µN)2
]

= 0. We consider

E
[

F(µN)2
]

= E

[

1

N2

N∑

i=1

(Mϕi
t −Mϕi

s )2g21(X
N
i (s1)) . . . g

2
q(X

N
i (sq))

]

+ E

[

1

N2

N∑

i6=j
(Mϕi

t −Mϕi
s )(M

ϕj
t −M

ϕj
s )g1(X

N
i (s1))g1(X

N
j (s1)) . . .

]

,

where Mϕi
t = ϕ(XNi (t)) − ϕ(X

N
i (0)) −

∫t
0
LµN(u)ϕ(X

N
i (u))du for i = 1, . . . ,N are or-

thogonal martingales, i.e.

〈Mϕi ,Mϕj〉 = 0 for all i 6= j.

Indeed, by applying Ito’s rule for jump processes to ϕ(XNi (t))−ϕ(X
N
i (0)), we see that

Mϕi
t −Mϕi

s is simply the sum of integrals w.r.t. the three martingales Ñi(−), Ñi(+)

and Ñi. Therefore, by hypothesis, it is orthogonal to Mϕj
t −M

ϕj
s for all j 6= i. We

also know how to rewrite the quadratic variation:

〈Mϕi
t −Mϕi

s 〉 =
∫ t

s

∫∞

0

(

ϕ(XNi (r) + 1[0,1](u)) −ϕ(X
N
i (r))

)2
dudr

+

∫ t

s

∫∞

0

(

ϕ(XNi (r) − 1[0,1](u)) −ϕ(X
N
i (r))

)2
1(XNi (r) > 0)dudr

+

∫t

s

∫∞

0

∫

[0,1]



ϕ



XNi (r) −

XN
i (r)−1∑

k=0

ψ(k, XNi (r))1Ik(XN
i (r),µN

r )(h)1[0,λ)(u)



−ϕ(XNi (r))





2

dhdudr.

Then, for a constant K > 0, depending on {gi}i=1,...,q, and C > 0, depending on the
function ϕ, we have

E
[

F(µN)2
]

6
K

N2

N∑

i=1

E [〈Mϕi
t −Mϕi

s 〉] + K

N2

N∑

i6=j
E
[

〈Mϕi
t −Mϕi

s ,M
ϕj
t −M

ϕj
s 〉
]

6
K

N2

N∑

i=1

C(2+ λ)(t− s) 6
KC(2+ λ)(t− s)

N
,
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therefore limN→∞ E
[

F(µN)2
]

= 0.

Step 3) We are left to prove that E
[

F(Q)2
]

= limN→∞ E
[

F(µN)2
]

, from Sznitman
[83] we know that it is sufficient to verify

Q ({∆X(t) 6= 0} ∪ {∆X(s) 6= 0} ∪ {∆X(s1) 6= 0} ∪ · · · ∪ {∆X(sq) 6= 0}) = 0 a.s.,

where ∆X(t) = X(t) − X(t−).

By contradiction, assume that there exists a t̄ ∈ {s1, . . . , sq, s, t} such that Q(∆X(t̄) 6=
0) > 0 with positive probability. That is, there exists a constant b > 0 such that the
event

E
.
= {Q(∆X(t̄) > 0) > b}

has positive probability. For every ε > 0 we can define the open set of D(R+,R+)

Dε
.
= {x ∈ D(R+,R+) s.t. sup

s∈(t̄−ε,t̄+ε)

|∆xs| > 0}

and the open set of M(D(R+,R+))

Pdε
.
= {µ s.t. µ(Dε) > d}.

We see that E ⊂ {Q(Dεa) > d} and, by Portmanteau theorem,

lim inf
N→∞

P(µN ∈ Pdε) > P(Q ∈ Pdε) > P(E) > 0.

We bound the term on the left-hand by means of

{µN ∈ Pdε } ⊂
{
1

N

N∑

i=1

1(XNi performs at least one jump in (t− ε, t+ ε)) > d

}

.

Since the particle are exchangeable and their jump rates are constants, we have that

P(µN ∈ Pdε) 6
2ε(2+ λ+ δ)

d
.

This leads to the contradiction

0 = lim inf
ε↓0

lim inf
N→∞

P(µN ∈ Pdε) > P(E) > 0

and it proves continuity of F.
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Weak uniqueness of solutions of the martingale problem in Definition 4.1.1 is proved in
Proposition 4.1.1, this implies that the limit of any convergent subsequence of {µN} is the
same deterministic element of the space M(D(R+,R+)). As we anticipated, the previous
results lead to the proof of the well-posedness of the nonlinear SDE (4.1.3).

Proof of Theorem 4.1.1. Existence of a weak solution to (4.1.3) is ensured by Proposi-
tion 4.1.2. Indeed, for all initial condition µ0 ∈ M(N), we can construct a sequence
of processes XN = (XN(t))t>0. For all N > 2, each process has as initial condition
(XN1 (0), . . . , X

N
N(0)), where XNi (0) are i.i.d. random variables µ0-distributed and XN solves

(4.1.2). Then the limit of the sequence of empirical measures {µN}N>2 for N → ∞ is a
solution to (4.1.3). Pathwise uniqueness of this solution is given by Proposition 4.1.1.
By Yamada-Watanabe theorem, pathwise uniqueness together with weak existence gives
existence and uniqueness of strong solutions, see [57].

Finally we can state and prove a complete result of propagation of chaos, that is simply
a consequence of the previous results.

Theorem 4.1.2 (Propagation of chaos). For every µ0 probability measure on N, let PN

∈ M(D(R+,R)N) be the law of the solution of system (4.1.2) with initial condition PN0 =

PN◦(XN0 )−1 that is µ0-chaotic. Then the sequence PN is µ-chaotic, where µ ∈ M(D(R+,R))

is the law of the unique solution of (4.1.3) with initial condition µ0.

Proof. We prove propagation of chaos with the tightness/consistency/uniqueness approach,
see [81, 83].

- From Proposition 4.1.2, point i) we have tightness of the sequence of empirical mea-
sures {µN}N∈N in M(D(R+,R+)).

- From Proposition 4.1.2, point ii) we have that any limit point of a converging subse-
quence {µNk}k∈N is a solution of (4.1.3).

- In Proposition 4.1.1 we proved uniqueness of solution of (4.1.3), this let us conclude
that the limit of the sequence of empirical measures is deterministic.

The three steps above imply the property of propagation of chaos for the particle system
(4.1.2).

4.1.4 Motivation and examples

The class of models that we introduce in this chapter is motivated by genetics, indeed it
can be used as a description of the evolution of genetics traits. Our N particle system may
be interpreted as a population of N individuals. Each individual is characterized by its
fitness level, that is an integer number greater or equal than 0, that is the worst possible
fitness value. Each time that a particle moves, we imagine that the corresponding individ-
ual dies and gives birth to a child whose fitness level is greater or smaller than its own.
The individuals have an intrinsic tendency to improve (given by the biased random walk).
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However, by mimicking the worst individual of the population (the one with lower fitness
level), they may give birth to a child that is much worse than themselves; this of course
corresponds to the leftward jumps due to the asymmetric interaction.

Let us give some explicit examples of models belonging to this class, by specifying the
involved functions.

The small jumps model

The simplest model in our class is such that the size of the jumps induced by the asymmetric
interaction is the minimal, i.e. they are of size 1. We refer to this model as the model with
small jumps. In this case both the rate and the jump function are constantly equal to 1:
for all x 6= y ∈ N

φ(x, y) = 1,

ψ(x, y) = 1.

Let us describe in details this model. For a fixed number N of particles on Z
+, each particle

XNi , for i = 1, . . . ,N, makes the following moves: if XNi > 0, then it goes to

XNi + 1 with rate 1+ δ,
XNi − 1 with rate 1+ λ 1

N

∑N
k=1 1(X

N
k < X

N
i ),

(4.1.6)

while when XNi = 0, the only allowed jump is the one upward. It is clear that here δ > 0

indicates a bias rightward, while λ 1
N

∑N
k=1 1(X

N
k < X

N
i ) is a bias leftward. The infinitesimal

generator of (4.1.6) is given by

LN(SJ)f(z) =

N∑

i=1

(1(zi > 0)∇−
i f(z) + (1+ δ)∇+

i f(z)) +
λ

N

N∑

i=1

∇−
i f(z)

N∑

k=1

1(zk < zi). (4.1.7)

Here ∇−
i f(z) = f(z − ei) − f(z) and ∇+

i f(z) = f(z + ei) − f(z). We associate to (4.1.6) its
correspondent nonlinear Markov process, that is a Markov process {Xt}t>0 whose possibile
transitions at time t > 0 are the following:

Xt + 1 with rate 1+ δ,
Xt − 1 with rate 1+ λµt[0, Xt),

(4.1.8)

where µt = Law(Xt) and, as in (4.1.6), when Xt=0, only the upward jump is allowed.

Let us underline that this small jumps model has a direct link with the diffusion model
described in Chapter 3, that may be seen as its continuous analogue. Each particle per-
forms a random walk with a bias that depends on its rank with respect to all the others,
with the same form of the drift in Chapter 3. Indeed, the rightmost particle, when alone
on its site, has a net drift of δ − λN−1

N
, whereas the leftmost particle has a positive drift
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δ. For this reason, we will use the continuous model as a basis for comparisons in the
analysis of the small jumps model. Despite their similarities, the two models display pecu-
liar differences that emerge in the study of the long-time behavior. In the discrete model
particles can form big clusters on a single site. By our rule, particles in the same site do
not interact: thus the formation of clusters tends to prevent the stabilization of the process.

Before the study of the long-time behavior, motivated by Theorem 3.1.2, we look for
a result of trajectorial propagation of chaos. To this aim, we define a coupling procedure
between a Markov process defined by the generator (4.1.7) and N copies of the nonlinear
Markov process defined in (4.1.8). We fix a filtered probability space (Ω,F, {Ft}t>0,P) and
let µ0 be a probability measure on N. For any N ∈ N let

{(XN(t), X̄t)}t>0 = {(XN1 (t), X̄
1
t , . . . , X

N
N(t), X̄

N
t )}t>0

be a Markov process with initial conditions such that XNi (0) = X̄
i
0 a.s., independent for all

i = 1, . . . ,N and µ0-distributed. Then, for all i = 1, . . . ,N, the pair (XNi (t), X̄
i
t) jumps in

the following positions:

(XNi (t) + 1, X̄
i
t + 1) with rate 1+ δ,

(XNi (t) − 1, X̄
i
t − 1) ” 1(XNi (t) > 0)1(X̄

i
t > 0) + λ

(

µNt [0, X
N
i (t))∧ µt[0, X̄

i
t)
)

,

(XNi (t) − 1, X̄
i
t) ” 1(XNi (t) > 0)1(X̄

i
t = 0) + λ

(

µNt [0, X
N
i (t)) − µt[0, X̄

i
t)
)

+
,

(XNi (t), X̄
i
t − 1) ” 1(XNi (t) = 0)1(X̄

i
t > 0) + λ

(

µt[0, X̄
i
t) − µ

N
t [0, X

N
i (t))

)

+
.

This is equivalent to the so-called basic coupling that we introduced in Chapter 1. Indeed,
we assign to every pair of particles (XNi (t), X̄

i
t)t>0 the same Poisson clocks (the Poisson

random measures) and it maximizes the chances of the two particles to jump together. Of
course, this means that for any continuous and bounded function f : N2N → R

f(XN(t), X̄t) − f(X
N(0), X̄0) −

∫ t

0

Lµsf(X
N(s), X̄s)

is a martingale, where µt = Law(X̄it) for any i = 1, . . . ,N and

Lµf(x, y)=
N∑

i=1

(1+ δ)(f(x+ δi, y+ δi) − f(x, y))

+

[

1(xi > 0)1(yi > 0) + λ

(

1

N

N∑

k=1

1(xk < xi)∧ µ[0, yi)

)]

(f(x− δi, y− δi) − f(x, y))

+

[

1(xi > 0)1(yi = 0) + λ

(

1

N

N∑

k=1

1(xk < xi) − µ[0, yi)

)

+

]

(f(x− δi, y) − f(x, y))

+

[

1(xi = 0)1(yi > 0) + λ

(

µ[0, yi) −
1

N

N∑

k=1

1(xk < xi)

)

+

]

(f(x, y− δi) − f(x, y)).

The following result states the trajectorial propagation of chaos, which is a consequence of
Proposition 2.1.2.
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Theorem 4.1.3. For all t > 0, there exists a positive constant Ct <∞ such that

E[sup
s6t

|XN1 (s) − X̄
1
s |] 6

Ct√
N
. (4.1.9)

Proof. Notice that the jump coefficients here satisfy Assumption 2.1.1, indeed, for all
x, y ∈ N and α,β in M(N) it holds:

|−1(x > 0)λα[0, x) + 1(y > 0)λβ[0, y)| 6λ|α[0, x) − β[0, y)|+ 2λ|1(x = 0) − 1(y = 0)|

63λ|x− y|+ λρ(α,β).

Then, we use Proposition 2.1.2, and we get that, for all t > 0

E[sup
s6t

|XN1 (s) − X̄
1
s |] 6 βN,

where βN
.
= sups∈[0,t] E[ρ(µ

N
X̄s
, µs) is the W1 Wasserstein distance between the empirical

measure of the N copies of the nonlinear process (4.3.1) and its law. We know that there
exists a constant Ct > 0 such that βN 6

Ct√
N

, which proves (4.1.9).

A branching and selection mechanism

Let us cite another interesting model belonging to our class of interacting random walks;
we can relate this model to a branching-and-selection mechanism on the positive inte-
gers. Branching and selection particle systems are popular models in population dynamics,
starting from the work of Brunet and Derrida [17] and followed by many others, for in-
stance [10, 33, 62]. This models are studied in relation to the Fisher-Kolmogorov Petrovsky
Piscounov equation (F-KPP):

∂h

∂x
= ∆h+ h(1− h),

for h = h(x, t), x ∈ R, t > 0.

In our case, we imagine that any individual reproduces with a rate λ and he gives
birth to a child. The fitness of this child is uniformly chosen among the ones of the other
individuals. If the fitness of the newborn is strictly smaller than his parent’s one, the child
kills him, on the other case the child does not survive. In the terminology we introduced,
this means that, for all x 6= y ∈ N

φ(x, y) = 1,

ψ(x, y) = |x− y|.

It is natural, in this case, to imagine that the individuals are characterized by their unfitness
rather than their fitness, such that lower values are related to stronger genetic traits. This
model is clearly very interesting and we may develop its continuous-space analogue as we
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did for the small jumps model. Of course, the continuous-space dynamics would not have
continuous paths in this case, but each particle would behave according a diffusion with
jumps. Following the approach of Chapter 3, we define the infinitesimal generator LN(BS)
of the system on suitable C2 functions f : DN → R in the following way:

LN(BS)f(x) =

N∑

i=1

1

2

∂2

∂x2i
f(x) + δ

∂

∂xi
f(x) + λ

∫xi

0

(f(x− ei(xi − y)) − f(x))µ
N(dy),

the domain of the generator LN(BS) coincides with D
(

LN
)

from Chapter 3. Its mean field
limit is a process on R+ such that its law has a density µt that solves the following Fokker-
Planck equation with boundary conditions

{
∂tµt(x) =

1
2
∂2xµt(x) − δ∂xµt(x) + λµt(x)

∫∞

x
µt(y)dy− λµt(x)

∫x
0
µt(y)dy ∀ x > 0;

δ∂xµt(x)|x=0 − λµt(0) =
1
2
∂2xµt(x)|x=0.

(4.1.10)
Of course, integrating (4.1.10) from 0 to x, for all x > 0 and setting Ft(x) =

∫x
0
µt(y)dy its

CDF, we get the equivalence with the following:

∂tFt(x) =
1

2
∂2xFt(x) − δ∂xFt(x) + λFt(x)(1− Ft(x)),

for all x > 0 and Ft(x) = 0 for x 6 0, for all t > 0, that links this model with the F-KPP
equation.

4.2 Exponential ergodicity of the particle system

In this Section we study the long time behavior of the system with N particles. The main
question we address is whether the asymmetric interaction can balance the drift to infinity,
i.e. we want to understand if the interaction can ensure ergodicity in the N particle system.
Clearly, when λ = 0, the model has no chance of having a stationary measure, because each
particle perform a simple random walk with a nonnegative drift δ > 0 and reflection in
zero. We aim to determine (or to give bounds to) the critical interaction strength

λ∗N(δ)

above which any system described in Section 4.1.1 has a stationary measure.

We restrict the analysis to the specific model with small jumps, defined by (4.1.6), since
it stochastically dominates all the other model in the class we presented in Section 4.1.1,
when the interaction function φ(x, y) ≡ 1. To this aim, following the approach in [58],
we define the stochastic ordering � between probability measures. Let X be a compact
metric space, in which we can define a partial order 6. Let M define the set of continuous
functions on X, which are monotone, i.e.

M
.
= {f : f(x) 6 f(y) for all x 6 y} .
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Definition 4.2.1 (Stochastic ordering). Let µ, ν be two probability measures on X, we
say that

µ � ν
if and only if ∫

X

fdµ 6

∫

X

fdν

for all f ∈ M.

We say that a stochastic process {Xt}t>0 dominates another stochastic process {Yt}t>0
if, whenever Law(Y0) � Law(X0) then Law(Yt) � Law(Xt), for all t > 0. In this sense,
we have the following result on the model with small jumps w.r.t. all the other models
presented in Section 4.1.

Proposition 4.2.1. Let PN and PNS be the law on D(R+,N) of the trajectories of the Markov
processes described, respectively, by the generator (4.1.1) with φ(x, y) ≡ 1 and (4.1.7). For
any measure µ0 on N, if PN(0) � PNS (0), then for all t > 0 PN(t) � PNS (t).

A way to prove stochastic ordering between two measures µ � ν consists in finding a
coupling (X, Y) such that Law(X) = µ, Law(Y) = ν and

P(X 6 Y) = 1,

see Theorem 2.4 in [58]. We will use this equivalence in the proof, by finding a coupling
that preserves the order at any time t > 0.

Proof of Proposition 4.2.1. Let us fix one particular model among the ones defined in Sec-
tion 4.1. We define the basic coupling procedure between this model and the model with
small jumps, the coupling that maximizes the chances of two coupled particles to jump
together. We fix a filtered probability space (Ω,F, {Ft}t>0,P) and let µ0 be a probability
measure on N. For any N ∈ N let

{(XN(t), YN(t)}t>0 = {(XN1 (t), Y
N
1 (t), . . . , X

N
N(t), Y

N
N(t))}t>0

be a Markov process with initial conditions such that XNi (0) 6 YNi (0) a.s., for all i =

1, . . . ,N. Then, for all i = 1, . . . ,N, the pair (XNi (t), Y
N
i (t)) jumps in the following positions:

(XNi + 1, YNi + 1) with rate 1+ δ,

(XNi − 1, YNi − 1) ” 1(XNi > 0)1(Y
N
i > 0),

(XNi − 1, YNi ) ” 1(XNi > 0)1(Y
N
i = 0),

(XNi , Y
N
i − 1) ” 1(XNi = 0)1(YNi > 0),

and for all j 6= i
(XNi −ψ(XNi , X

N
j ), Y

N
i − 1) with rate λ

N

(

1(XNj 6 XNi )∧ 1(YNj 6 YNi )
)

,

(XNi , Y
N
i − 1) ” λ

N

(

1(YNj 6 YNi ) − 1(XNj 6 XNi )
)

+
,

(XNi −ψ(XNi , X
N
j ), Y

N
i ) ” λ

N

(

1(XNj 6 XNi ) − 1(YNj 6 YNi )
)

+
,
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where we omit the time index for simplicity. This coupling is characterized by its own
generator LN

(XN,YN)
. We aim to prove that, since P

(

XNi (0) 6 Y
N
i (0), for i = 1, . . . ,N

)

= 1,
then for all t > 0

P
(

XNi (t) 6 Y
N
i (t), for i = 1, . . . ,N

)

= 1.

Therefore, we consider the generator on the function 1(x1 6 y1, . . . , xN 6 yN), that sum-
marize in the following few terms

LN(XN,YN)1 (x1 6 y1, . . . , xN 6 yN) =
N∑

i=1

1 (xi = 1, yi = 0, xk 6 yk k 6= i)

+

N∑

i=1

∑

j6=i
1 (xi − yi > ψ(xi, xj), xk 6 yk)

λ

N
(1(xj 6 xi)∧ 1(yj 6 yi))

−

N∑

i=1

∑

j6=i
1 (xi = yi, xk 6 yk)

λ

N
(1(yj 6 yi) − 1(xj 6 xi))+

+

N∑

i=1

∑

j6=i
1 (xi − yi > ψ(xi, xj), xk 6 yk)

λ

N
(1(xj 6 xi) − 1(yj 6 yi))+.

Let us focus on the third term in the r.h.s., the one with a minus sign. Fix i = 1, . . . ,N and
j 6= i, the first indicator function says that we are in the case xj 6 yj 6 yi = xi, but then
two following indicators are both equal to 1, meaning that this term is zero. Therefore we
proved that

LN(XN,YN)1 (x1 6 y1, . . . , xN 6 yN) > 0,

i.e. for all t > 0
d

dt
P
(

XNi (t) > Y
N
i (t), i = 1, . . . ,N

)

= E
[

LN(XN,YN)1
(

XNi (t) 6 Y
N
i (t), i = 1, . . . ,N

)

]

> 0.

By hypothesis, this implies that, for all t > 0,

P
(

XNi (t) > Y
N
i (t), i = 1, . . . ,N

)

= P
(

XNi (0) > Y
N
i (0), i = 1, . . . ,N

)

= 1.

Proposition 4.2.1 implies that, for fixed N > 2, δ > 0 and λ > 0 such that the model
with small jumps has a unique stationary measure, say πN(SJ), then every other model
described in Section 4.1 has a stationary measure πN as well and πN � πN(SJ). Then, we
look for the critical interaction strength λ∗N(δ) for the small jumps model. Unfortunately,
in contrast with the continuous analogue of Chapter 3, we could not obtain it in an explicit
form and we give an upper and a lower bound for it. However, the lower bound has the
interesting feature of highlighting the difference between the continuous and the discrete
model, indeed we prove that

λ∗N(δ) > 2δ
N

N− 1
,

where in the right-hand side of the inequality we have the exact critical value of the
continuous model, obtained in Theorem 3.2.2.
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4.2.1 Upper bound for the critical interaction strength in the par-

ticle system

In this section, by means of a Lyapunov function, we give an upper bound on λ∗N(δ). This
upper bound is uniform in N > 2. We determine sufficient conditions for the assumptions
of Theorem 3.2.1 to hold and, therefore, this gives exponential ergodicity of the process
XN.

Theorem 4.2.1. For all δ > 0, there exists a critical value

λ∗up(δ)
.
= 8δ2 + 12δ

such that for all N > 2, for all λ > λ∗up(δ) the process XN = (XN1 , . . . , X
N
N) described in

(4.1.6) is exponentially ergodic. There exists a probability measure πN(SJ) on N
N such that,

for any initial condition XN(0),

‖PNx ((XN1 (t), . . . , XNN(t)) ∈ ·) − πN(SJ)‖TV 6 CN(x)(ρN)
t, ∀ x ∈ N

N, ∀ t > 0,

where CN(x) is bounded, ρN < 1 and ‖ · ‖TV is the total variation norm. πN(SJ) is the unique

stationary measure for the process (XN1 , . . . , X
N
N).

Our purpose is to prove Theorem 4.2.1 by means of a Lyapunov function. We choose a
function that is the product of two exponential functions, encoding two characteristics of
the particle system: the center of mass and the height of the highest “pile” of particles. By
pile of particles we mean the number of particles in the same spatial position. A configu-
ration x = (x1, . . . , xN) of NN shows piles as soon as there exists i 6= j such that xi = xj.
In our dynamics the piles play a crucial role, since particles belonging to the same pile
do not interact. When particles are widespread in the space, the asymmetric interaction
favors the moves that push particles one towards the other. However, when particles are
gathered in the same position they do not feel the interaction and they tend to spread
rightward. This is a peculiarity of the discrete space model, since in the continuous one
we know from Proposition 3.1.2 that multiple collisions do not occur a.s.. This means that
the highest possible pile is of height 2 and moreover it instantaneously disappears, while
in the discrete dynamics piles last for a certain amount of time.

The candidate Lyapunov function depends on two positive parameters α and β that
we tune in order to satisfy the criterion. Let us define, for all x ∈ N

N

ψ(x) =
1

N

N∑

i=1

eαxi ,

φ(x) = e+
β
N η̄,

where η̄ .= maxv∈N

∑N
i=1 1(xi = v), that is the high of the highest pile of the configuration

x. Then, let
VNα,β(x)

.
= ψ(x)φ(x)
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be our candidate Lyapunov function. We briefly describe the idea of the proof. We exploit
the multiplicative form of VNα,β(x) and the fact that we can write

LN(SJ)ψφ = ψLN(SJ)φ+ φLN(SJ)ψ+ 2ΓN(SJ)(φ,ψ),

where ΓN(SJ) is the operator carré du champ associated to LN(SJ), defined for every pair of
functions f, g

ΓN(SJ)(f, g) =
1

2

[

LN(SJ)fg− fL
N
(SJ)g− gL

N
(SJ)f

]

.

By the form of the jumps and of the involved functions, ΓN(SJ)(φ,ψ) can be bounded with
a term proportional to

(eβ − 1)(eα − 1)VNα,β(x).

For α sufficiently small and β = Cα such that the constant C > 0 is admissible (here the
admissibility of C depends on the values of δ and λ ), we find γ > 0 and a constant H > 0

for which
LN(SJ)V

N
α,β(x) 6 −γVNα,β(x) +H,

i.e. the functio Vα,β satisfies Assumption 3.2.1. This prove the exponential ergodicity
criterion of Meyn and Tweedie, see Theorem 3.2.1.

We treat separately the terms LN(SJ)ψα(x), L
N
(SJ)φβ(x) and ΓN(SJ)(ψβ, φα)(x). We divide

the space N
N into two unbounded subsets, such that we bound the values of LN(SJ)V

N
α,β(x)

with two different approaches. One subset of N
N is the region of space such that where

there is one single tall pile of particles (by tall pile we intend that it contains more
then the half of particles), i.e. the region

ΛN
.
= {x ∈ N

N : η̄(x) >
N

2
}.

The other region is its complementary ΛCN, where the particles are widespread in dif-
ferent positions, there may be a single pile taller than the others, but it does not contain
more than half of the particles.

Proof of Theorem 4.2.1. Fix δ > 0 and N > 2. It is sufficient to prove that the exponential
ergodicity criterion from Meyn and Tweedie, [70] holds for all values of λ greater than
λ∗up(δ).

Let α, β be two positive parameters, as we mentioned, we aim to bound the following
function

LN(SJ)V
N
α,β(x) = φ(x)L

N
(SJ)ψ(x) +ψ(x)L

N
(SJ)φ(x) + Γ

N
(SJ)(φ,ψ)(x).

The bound on LN(SJ)ψα(x) relies basically on the following observation. It is possible

to give a lower bound on the quantity KN
.
= 1

N

∑N
i=1 µ

N[0, xi) in terms of η̄(x). Indeed,
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this term can be rewritten as the number of the unordered pairs of particles in distinct
positions,

KN =
1

N

N∑

i=1

µN[0, xi) =
1

2N2

N∑

i,j=1

1(xj 6= xi) >
1−

η̄(x)

N

2
.

We will use this bound in ΛN, while we will keep the exact expression of KN in ΛCN to
compensate the term coming from LN(SJ)φ(x). We start with the bound on LN(SJ)ψ(x):

LN(SJ)ψ(x) =

N∑

i=1

(1+ δ)∇+
i ψ(x) +∇−

i ψ(x) −

N∑

i=1

1(xi = 0)∇−
i ψ(x) + λ

N∑

i=1

µN[0, xi)∇−
i ψ(x)

=(eα + e−α − 2)ψ(x) + δ(eα − 1)ψ(x) + (1− e−α)
1

N

N∑

i=1

1(xi = 0)

− λ(1− e−α)
1

N

N∑

i=1

eαxiµN[0, xi)

We highlight that, since the functions eαx and µN[0, x) are non-decreasing, for KFG in-
equality, we have:

1

N

N∑

i=1

eαxiµN[0, xi) > ψ(x)
1

N

N∑

i=1

µN[0, xi).

Then we have

LN(SJ)ψ(x) 6 (eα + e−α − 2)ψ(x) + δ(eα − 1)ψ(x) + (1− e−α)
1

N

N∑

i=1

1(xi = 0)

− λ(1− e−α)ψ(x)KN1(Λ
C
N) − λ(1− e

−α)ψ(x)
1−

η̄(x)

N

2
1(ΛN).

The bound on LN(SJ)φ(x), instead, is performed as follows.

i) For all x ∈ ΛN we know that there exists one single tall pile, i.e. a unique

v∗(x) = arg max
v∈N

N∑

i=1

1(xi = v).

Therefore, the function φ(x) changes values under the effect of LN(SJ) only because
of the moves of the particles in three positions: v∗(x) − 1, v∗(x) and v∗(x) + 1. This
means that we can write the action of the generator LN(SJ) as follows:

LN(SJ)φ(x) =

N∑

i=1

(1+ δ)∇+
i φ(x) +∇−

i φ(x) −

N∑

i=1

1(xi = 0)∇−
i φ(x) + λ

N∑

i=1

µN[0, xi)∇−
i φ(x)

= − η̄(x)(1− e−β/N) [1+ δ+ 1(v∗(x) > 0) + λµN[0, v
∗(x))]φ(x)

+ (eβ/N − 1)
[

η(v∗(x) − 1)(1+ δ) + η(v∗(x) + 1)(1+ λµN[0, v∗(x) + 1))
]

φ(x)
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Then, disregarding the non-positive term −η̄(x)(1 − e−β/N)1(v∗(x) > 0)φ(x) and
bounding the number of particles η(k) in position k with (N− η̄(x)) for any k 6= ν∗(x),
we have

LN(SJ)φ(x) 6

[

−
η̄(x)

N
N(1− e−β/N)(1+ δ) −

η̄(x)

N
N(1− e−β/N)λµN[0, v∗(x))

+(N− η̄(x))λµN[0, v∗(x))(eβ/N − 1) + (1+ δ)(N− η̄(x))(eβ/N − 1)

+(N− η̄(x))(eβ/N − 1)λ
η̄(x)

N

]

φ(x).

ii) In the region ΛCN, we bound LN(SJ)φ(x) with the pessimistic assumption that every
jump increases φ(x) of the quantity (eβ/N − 1)φ(x), this means that we bound with

LN(SJ)φ(x) 6

(

N(2+ δ) + λ

N∑

i=1

µN[0, xi)

)

(eβ/N − 1)φ(x).

In the right-hand side the term
∑N
i=1 µ

N[0, xi) = NKN appears and it will compensate
the same term coming from LN(SJ)ψ(x).

The carré du champ term ΓN(SJ)(φ,ψ)(x), because of the fixed jump amplitude of the process,
is bounded as follows:

|ΓN(SJ)(ψ,φ)(x)| 6 N(2+ λ+ δ)(eα − 1)(eβ/N − 1)VNα,β(x).

Given these bounds, we want to identify if there exist λ, α, β positive such that

LN(SJ)V
N
α,β(x) 6 −γNV

N
α,β(x) +H,

for some constants γN > 0 and H > 0, that is the condition for the ergodicity criterion
to hold. In the two complementary regions we have the following bounds, up to terms
bounded by H = (1− e−α)eβ:
A) for x ∈ ΛN:

LN(SJ)V
N
α,β(x) 6

[

(eα + e−α − 2) + δ(eα − 1) − λ(1− e−α)
1−

η̄(x)
N

2

−
η̄(x)

N
N(1− e−β/N)λµN[0, v∗(x)) + (N− η̄(x))λµN[0, v∗(x))(eβ/N − 1)

−
η̄(x)

N
N(1− e−β/N)(1+ δ) + (1+ δ)(N− η̄(x))(eβ/N − 1)

+(N− η̄(x))(eβ/N − 1)λ
η̄(x)

N
+N(2+ δ+ λ)(eβ/N − 1)(eα − 1)

]

VNα,β(x);

B) for x ∈ ΛCN:

LN(SJ)V
N
α,β(x) 6

[

(eα + e−α − 2) + δ(eα − 1) − λ(1− e−α)KN

+(N(2+ δ) + λNKN) (e
β/N − 1) +N(2+ δ+ λ)(eβ/N − 1)(eα − 1)

]

VNα,β(x).
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We want to make the two above parenthesis negative; we start by choosing β = Cα, for a
certain C > 0 and to make α sufficiently small.

Let us look at point A). We can not say anything about the terms

−
η̄(x)

N
N(1− e−β/N)λµN[0, v∗(x)) + (N− η̄(x))λµN[0, v∗(x))(eβ/N − 1), (4.2.1)

but we know that, for β sufficiently small,

(1− e−β/N) ' (eβ/N − 1) ' β

N
.

In this case, since η̄(x)

N
> 1
2
, the expression (4.2.1) is negative and we can neglect it. In the

same way, we disregard also the terms

N(2+ δ+ λ)(eβ/N − 1)(eα − 1) = o(α)

(eα + e−α − 2) = o(α).

We are left to find λ and C such that the expression

δ(eα − 1) − λ(1− e−α)
1− ξ

2
− ξN(1− e−β/N)(1+ δ) + (1+ δ)(1− ξ)N(eβ/N − 1) + (1− ξ)N(eβ/N − 1)λξ

is negative for all ξ ∈ (1
2
,1]. Then, for α sufficiently small, this condition becomes

[

δ− (1− ξ)

(

λ

2
− C(1+ λξ+ δ)

)

− Cξ(1+ δ)

]

α+ o(α) < 0,

for all ξ ∈ (1/2,1], that gives the conditions on C:

{
C 6

λ−4δ
λ

C >
δ
1+δ

.

Now we look at point B). Again, we neglect the terms

N(2+ δ+ λ)(eβ/N − 1)(eα − 1) + (eα + e−α − 2).

We look for conditions under which

δ(eα − 1) − λ(1− e−α)KN + (N(2+ δ) + λNKN) (e
β/N − 1)

is negative for all values assumed by KN when x ∈ ΛCN. This means, for α small,

[δ− λKN + C(2+ δ+ λKN)]α+ o(α) 6 0,
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that gives an additional conditions on C:

C 6
λk− δ

2+ δ+ λk
,

for every k ∈ [1/4,1].

Now, we already see that the conditions are independent of N and they are are admis-
sible only if

λ > 12δ+ 8δ2 = λ∗up(δ).

Let us fix N > 2, δ > 0 and λ > λ∗up(δ), then for α sufficiently small and β = Cα, we
have that the constants for which Vα,β satisfies Assumption 3.2.1 have the following form:

γN = −max

{

sup
ξ∈( 1

2
,1]

[

(eα + e−α − 2) + δ(eα − 1) − λ(1− e−α)
1− ξ

2
−
η̄

N
N(1− e−β/N)λµN[0, v∗)

+(N− η̄)λµN[0, v∗)(eβ/N − 1) + (1− ξ)N(eβ/N − 1)λξ+N(2+ δ+ λ)(eβ/N − 1)(eα − 1)] ,

sup
k∈[ 1

4
,1]

[

(eα + e−α − 2) + δ(eα − 1) − λ(1− e−α)k+ (N(2+ δ) + λNk) (eβ/N − 1)

+N(2+ δ+ λ)(eβ/N − 1)(eα − 1)]};

H = (1− e−α)eβ.

It would be desirable to understand the dependence of the quantities CN(x) and ρN on the
size of the system N. If they could be chosen independent of N, this would be a crucial
step in the proof of chaoticity of the sequence of the stationary measures. Indeed, this,
together with a uniform in time trajectorial propagation of chaos, would give the desired
result. However, a uniform in time propagation of chaos for the system (4.1.6), as in the
continuous model, seems to be very hard to get.

On the other hand, Theorem 3.2.1 implies that

EπN
(SJ)

[

VNα,β(X
N)
]

<
H

γN
,

which is clearly bounded for any N ∈ N. Since we may write Vα,β as a continuous and
unbounded function of the empirical measure as follows:

VNα,β(X
N) = 〈µN, eα·〉eβ supx∈N µ

N(x).

This implies the tightness of the sequence

{Law(µNπN)}N∈N
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of the stationary empirical measures. Then, one may try to adopt the classical approach for
the proof of propagation of chaos, verifying that any limit point of a convergent subsequence
of µN

πN
is stationary for the nonlinear process (4.3.1) and that the stationary measure of

(4.3.1) is unique.

4.2.2 Lower bound for the critical interaction strength in the par-

ticle system

The aim of this section is to highlight, by means of the lower bound for the critical interac-
tion strength λ∗N(δ), the difference between the continuous model presented in Chapter 3
and the small jumps model presented in Section 4.1.4.

As in Section 3.2.2, we consider the increasing reordering of the vector XN(t) that we
now call

(XN(1)(t), . . . , X
N
(N)(t)),

such that XN(1)(t) 6 XN(2)(t) 6 · · · 6 XN(N)(t) for all t > 0. According to the dynamics
(4.1.6), the element XN(1)(t) perform an upward jump of amplitude 1 with rate 1 + δ, a
backward jump of amplitude 1 with rate 1 and it is reflected when XN(1)(t) = 0 and when
XN(1)(t) = XN(2)(t). The same happens for XN(2)(t), with the difference that the rate of
backward jump is 1+ λ 1

N
and the reflection is upward when when XN(2)(t) = X

N
(1)(t) and it

is backward when XN(2)(t) = XN(3)(t). This is a random walk in a wedge, i.e. in the region
WN ⊂ N

N defined as

WN
.
=

{
x ∈ N

N s.t. 0 6 x1 6 x2 6 · · · 6 xN
}
.

The dynamics in the interior of WN is the following, for all i = 1, . . . ,N

x→ x+ ei with rate 1+ δ,

x→ x− ei with rate 1+ λ
i− 1

N
,

The dynamics at the boundaries of WN depends on which “face” of the wedge the point is
in. For instance, fix an index i < N, an N− 1-dimensional “face” of the wedge is the subset

Bi,i+1
.
= {x ∈ WN : xi = xi+1 and xj < xj+1 ∀ j 6= i}.

The dynamics on Bi,i+1 is the same as the interior one for all jumps ±ej, j 6= i, i+ 1, while
the difference is the following

x→ x+ ei+1 with rate 2(1+ δ),

x→ x− ei with rate 2(1+ λ
i− 1

N
).
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In the same way, we define the dynamics on all the other lower dimensional “faces” of the
wedge, according to the dynamics (4.1.6) and the number of particles in the same position.

It is clear that these “faces” corresponds to configurations of particles that show some
piles of particles. For instance the N − 1-dimensional face Bi,i+1 corresponds to the set
of configurations that display one single pile of particles of height 2 involving the ith and
(i+ 1)th ranked particles. Therefore, we may identify the whole boundary of WN with the
set of configurations with at least one pile of particles. We already mentioned that are
exactly these “faces” that creates the main issue in understanding the stationary measure.
Indeed, we defined (YN1 (t), . . . , Y

N
N(t)) the process that evolves according to (3.2.4) in the

region
WN

.
= {y ∈ DN s.t. 0 6 y1 6 y2 6 · · · 6 yN} .

We highlighted in Proposition 3.1.2 that, in this case, there is a.s. no triple collision. This
means that the non-smooth parts of the boundary of the wedge are of no importance and
that it is sufficient to consider reflection conditions on the hyperplanes of dimension N− 1

that bound the wedge and not on their edges. In the discrete case the piles of particles
actually matter and this is confirmed by the following result. We found, for all N > 2, a
lower bound for the critical value λ∗N(δ) that is strictly greater than the critical value for
the continuous space model, proved in Theorem 3.2.2. Therefore, in the random walk, the
strength of the interaction needed to get ergodicity is higher than in the diffusive case.

Theorem 4.2.2. For all N > 2 and for all δ > 0, there exists

λ∗N,lower(δ)
.
=
(

1+ ρ(ε,N)
)

2δ, with ρ(ε,N)
.
=

N2(δ+ 2)

N(N− 1)(δ+ 2) − 2δ
− 1 −→ 0, (4.2.2)

such that, for all λ < λ∗N,lower(δ), the process XN = (XN1 , . . . , X
N
N) generated by (4.1.6) is

transient.

It is clear that, for all fixed N > 2, this lower bound satisfies

λ∗N,lower(δ) > 2δ
N

N− 1
,

i.e. it is strictly greater than the critical interaction strength of the continuous model found
in Theorem 3.2.2.

The proof of this lower bound is made by means of a Lyapunov function. We exploit
the following result on the transience of Markov chains, that is a simplified version of
Theorem 2.2.7 in [39].

Theorem 4.2.3 ( Theorem 2.2.7 in [39]). Let {Xt}t>0 an irreducible Markov process on a
countable space X with infinitesimal generator L and bounded jumps. Suppose there exists
two positive constants ε,C > 0 and a positive function f such that AC

.
= {x ∈ X : f(x) > C} 6=

∅ and
Lf(x) > ε for all x ∈ AC.

Then the process {Xt}t>0 is transient.
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Therefore, we want to define a linear function f[N,λ,δ] : WN → R such that for all
λ > λ∗N,lower(δ)

LNordf[N,λ,δ](x) > 0, (4.2.3)

for all x ∈ WN, where LNord is the generator of the reordered process (XN(1)(t), . . . , X
N
(N)(t)).

The idea for the construction of this Lyapunov function is the following. Firstly, we consider
the barycenter of the particle system

B(x) =

N∑

k=1

xk

as a candidate Lyapunov function. We see that, if λ < 2δ N
N−1

,

LNordB(x) > 0

for all x ∈ WN. If the parameters satisfy this condition, the mean drift of the lowest bN
2
c

particles is positive, i.e. for k = 1, . . . , bN
2
c it holds

LNordxk > 0

for all x in the interior of WN. Then, we may consider, instead of the classic barycenter,
a modification of it that gives more “weight” to the first particles. Therefore, we consider
the vector vε = (1+ ε,1,1,1, . . . ) and define the Laypunov function

fε(x) = 〈vε, x〉 = (1+ ε)x1 +

N∑

k=2

xk

for some ε > 0. We look for the maximal ε > 0 that improves the condition on λ, i.e. we
want to find if there exists ρ(ε,N) > 0 such that LNordfε(x) > 0 for all x ∈ WN, when

λ < 2δ
N

N− 1
+ ρ(ε,N).

Proof of Theorem 4.2.2. We fix N > 2 and δ > 0, then we consider the N dimensional
vector vε = (1+ ε,1,1, . . . ,1) and the function fε(x) = 〈vε, x〉, defined on WN. For x in the
interior of WN the condition for (4.2.3) to hold is

Nδ+ ε− λ
N− 1

2
> 0, (4.2.4)

our aim is to find an admissible ε > 0, that increases the maximal λ satisfying (4.2.3). We
need to check the admissibility of ε in those regions of WN where the mean drift of the
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first particle is negative, that are the regions where the first particle belongs to a pile. Let
first consider the subsets

W(N,k) : = {x ∈ WN : x1 = · · · = xk < xk+1},
where the first particle belongs to a pile of exactly height k, for k = 2, . . . ,N. Then we say
that, for all k = 2, . . . ,N and for all x ∈ W(N,k), it holds

LNordfε(x) > Nδ− kε− λ
N− 1

2
+ λ

k(k− 1)

2N
.

Therefore we want to find the maximal ε > 0 such that

min
k=2,...,N

Nδ− kε− λ
N− 1

2
+ λ

k(k− 1)

2N
> 0,

that is
εmax =

λ

N(δ+ 2)
.

Substituting εmax, we get that (4.2.4) holds for all

λ <
2N2(δ+ 2)δ

N(N− 1)(δ+ 2) − 2δ
= λ∗N,lower(δ).

4.3 Stationary measures for the nonlinear process

Following the approach of Section 4.2, we focus on the stationary measures for the nonlinear
process with small jumps, i.e. the process described in (4.1.8), that corresponds to the
solution {X(t)}t>0 of the following nonlinear SDE

dX(t) = −1(X(t−) > 0)

∫∞

0

1[0,1](u)N(−)(du, dt) +

∫∞

0

1[0,1+δ](u)N(+)(du, dt)

−

∫

[0,1]

∫∞

0

1[0,µt−([0,X(t−)))(h)1[0,λ](u)N(du, dh, dt), (4.3.1)

where µt = Law(X(t)) and {N(−),N(+),N} are independent stationary Poisson processes
with characteristic measures, respectively, dudt, dudt and dudhdt.

We know that the study of stationary measures for nonlinear processes is much more
difficult than the one for classical Markov processes. Motivated by the stability study of its
continuous analogue in Theorem 3.2.3, we conjecture that a stationary measure for (4.3.1),
when it exists, it should be unique. However, proving uniqueness of the stationary measure
for nonlinear processes is a delicate issue. For this reason, in this section we look for the
exact critical value

λ∗(δ)

above which the nonlinear process (4.3.1) has at least one stationary measure. As in
Section 4.2, we could not find the exact value λ∗(δ), so we give an upper and a lower bound
for it.



100 A system of random walks with asymmetric interaction

4.3.1 Upper bound for the critical interaction strength in the non-

linear process

In this section we give a sufficient condition for the existence of at least one stationary
measure for the nonlinear process, solution to (4.3.1). This provides an upper bound for
the interaction strength λ∗(δ) and it is stated in the next theorem.

Theorem 4.3.1. For all δ > 0, there exists a value

λ∗up(δ)
.
= 4δ

such that, for all λ > λ∗up(δ), the nonlinear process(4.3.1) has at least one stationary
distribution.

We prove the existence of at least one stationary distribution by means of a transfor-
mation Γ in the space M(N), for which every stationary distribution of (4.3.1) is a fixed
point. This is an approach widely exploited in the study of quasi-stationary distributions
(QSD) in countable spaces, see [5, 40, 41].

We define a continuous time Markov chain on N, parametrized by a measure. Fix µ
∈ M(N), then let {Xµ(t)}t>0 be the process with infinitesimal generator defined as follows.
For f ∈ Cb, and x ∈ N

Lµf(x) = (1+ δ)(f(x+ 1) − f(x)) + 1(x > 0)(1+ λµ[0, x))(f(x− 1) − f(x)). (4.3.2)

It is clear that {Xµ(t)}t>0 is a birth and death process. Assuming λ > δ, for every measure µ,
the process {Xµ(t)}t>0 is ergodic, and πµ denotes its unique stationary distribution. Define
the map

Γ : M(N) → M(N)

µ 7→ πµ,

Notice that, by definition, µ∗ is a stationary distribution for (4.3.1) if and only if it is a
fixed point of Γ .

Proof of Theorem 4.3.1. The proof of the upper bound consists of three steps. First we
define an auxiliary map that stochastically dominates the map Γ , then we prove that this
map preserves a certain subset of M(N), finally we prove that Γ admits at least one fixed
point in that subset.

Step 1. Givenm ∈ R
+, consider the birth and death process with infinitesimal generator

Lmf(x) = (1+ δ)(f(x+ 1) − f(x)) + (1(x > 0) +
λ

2
1(x > m))(f(x− 1) − f(x)),

Since we are assuming λ > 4δ (here λ > 2δ would suffice), this process is ergodic, and
we denote by πm its stationary distribution. We claim that for all µ ∈ M(N), we have
πµ � πmed(µ), where med(µ) denotes the median of µ and � is defined in Definition 4.2.1.
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This is proved by using the basic coupling between Lµ and Lmed(µ), i.e. we consider the
Markov process (Xt, Yt) on N

2 that, at every time t > 0, jumps in the following positions:

(Xt + 1, Yt + 1) with rate 1+ δ,

(Xt − 1, Yt − 1) ” 1(Xt > 0)1(Yt > 0) + λ
(

µ[0, Xt)∧
1(Yt>med(µ))

2

)

,

(Xt − 1, Yt) ” 1(Xt > 0)1(Yt = 0) + λ
(

µ[0, Xt) −
1(Yt>med(µ))

2

)

+
,

(Xt, Yt − 1) ” 1(Xt = 0)1(Yt > 0) + λ
(

1(Yt>med(µ))

2
− µ[0, Xt)

)

+
.

We start by proving that, if Law(X0) � Law(Y0), then Law(Xt) � Law(Yt) for all t > 0,
i.e.

P(Xt 6 Yt) = P(X0 6 Y0) = 1.

We apply the infinitesimal generator of the process (Xt, Yt) to the function 1(x 6 y):

L1(x 6 y) =1(y = 0)1(x = 1) + λ

(

µ[0, x) −
1(y > med(µ))

2

)

+

1(x− 1 = y)

− λ

(

1(y > med(µ))

2
− µ[0, x)

)

+

1(x = y),

but the last term is always 0, then

L1(x 6 y) = 1(y = 0)1(x = 1) + λ

(

µ[0, x) −
1(y > med(µ))

2

)

+

1(x− 1 = y) > 0.

Thus
d

dt
P(Xt 6 Yt) = E[L1(Xt 6 Yt)] > 0

and, if P(X0 6 Y0) = 1 then P(Xt 6 Yt) = 1 for all t > 0.

Since X evolves according to Lµ and Y to Lmed(µ), which are both ergodic, the order is
preserved in equilibrium, i.e.

πµ � πmed(µ)
as desired. We also observe that, by a similar (simpler) coupling argument, πm � πm ′ for
m 6 m ′.

Step 2. We now show that if m∗ is large enough and µ � πm∗ , then πµ � πm∗ . By
Step 1, this follows if we show that πmed(µ) � πm∗ , which amounts to med(µ) 6 m∗; since
µ � πm∗ .Thus, it is enough to show that for some m∗, med(πm∗) 6 m∗. To see this, we
use the explicit formula for the stationary measure of a birth and death process, obtained
by the detailed balance equation: for Z∗ normalizing constant,

{
πm∗(x) = 1

Z∗ (1+ δ)
x for x 6 m∗;

πm∗(x) = 1
Z∗ (1+ δ)

m∗
(

1+δ
1+λ/2

)x−m∗

for x > m∗.
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The desired inequality med(πm∗) 6 m∗ follows if we show that

πm∗ [0,m∗] > πm∗(m∗,∞).

Indeed, this is equivalent to

(1+ δ)bm
∗c+1 − 1

δ
> (1+ δ)bm

∗c 1+ δ

λ/2− δ

and, by simplifying,
λ/2− 2δ

λ/2− δ
>

1

(1+ δ)bm∗c+1 ,

which holds for m∗ sufficiently large.

Step 3. Define the set

Mm∗(N) : = {µ ∈ M(N) : µ � πm∗} ,

where m∗ has been determined in step 2. We have seen that the function Γ maps Mm∗ into
itself. Moreover, Mm∗ is clearly convex, and it is compact for the weak topology, being
closed and tight. The existence of a fixed point follows from Schauder-Tychonov fixed
point theorem if we show that Γ is continuous. Let µn → µ in Mm∗ . By the formula for
the stationary distribution of a birth and death process we have

πµn(x) =
1

Z∗
n

(1+ δ)k
∏k−1
h=0(1+ λµn[0, h))

,

with

Z∗
n : =

∞∑

k=0

(1+ δ)k
∏k−1
h=0(1+ λµn[0, h))

.

Since
(1+ δ)k

∏k−1
h=0(1+ λµn[0, h))

6
(1+ δ)k

∏k−1
h=0(1+ λπm∗ [0, h))

,

by the Dominated Convergence Theorem

Z∗
n → Z∗ :=

∞∑

k=0

(1+ δ)k
∏k−1
h=0(1+ λµ[0, h))

,

and πµn → πµ, which establishes continuity.

Let us underline the importance of this approach with the fixed point argument. It
gives an upper bound for the critical value λ∗∞(δ) which is linear in δ. Indeed, based on some
basic numerical computation, we have the feeling that the condition on λ is not quadratic
in δ, as the one emerging from Theorem 4.2.1. Clearly the one found in Theorem 4.3.1 is
not optimal and in the following sections we propose conjectures for the critical interaction
strength in both the particle system and the nonlinear limit equation.



103

4.3.2 Lower bound for the critical interaction strength in the non-

linear process

In this section we give a simple lower bound for the critical value λ∗(δ). Although we
believe that λ∗(δ) should be strictly greater than its continuous analogue, we could not
find a way to prove it and the lower bound here coincides exactly with the continuous
critical interaction strength of Theorem 3.2.3.

Theorem 4.3.2. For all δ > 0, there exists a

λ∗lower(δ)
.
= 2δ

such that, for all λ < λ∗lower(δ), there is no stationary distribution for the nonlinear pro-
cess (4.3.1).

Proof. We show that, for λ 6 2δ, the nonlinear system has no stationary distributions.
Let us remark, to begin with, that for λ 6 δ the conclusion is essentially obvious: indeed,
the nonlinear Markov process can be coupled, monotonically from below, with a reflected
random walk with forward rate 1+ δ and backward rate 1+ λ, whose distribution at time
t tends to concentrate in +∞ as t ↑ +∞, for any initial distribution.

So assume λ > δ, and suppose there exists a stationary distribution µ. The Markov
process generated by Lµ in (4.3.2) has a strictly negative drift for sufficiently large positions;
this implies that its stationary distribution, that is µ by assumption (because µ must be
a fixed point of the map Γ), has tails not larger than exponentials. In particular, denoting
by (Xt)t>0 the associated stationary process,

E(Xt) < +∞.

Moreover, denoting by id the identity map on N,

0 =
d

dt
E(Xt) = E [L

µid(Xt)] = δ− λ
∑

x>0

µ[0, x)µ(x). (4.3.3)

But
∑

x>0

µ[0, x)µ(x) =
∑

x>0

µ[0, x− 1] (µ[0, x] − µ[0, x− 1])

=
∑

x>0

(

µ2[0, x] − µ2[0, x− 1]
)

−
∑

x>0

µ[0, x] (µ[0, x] − µ[0, x− 1])

= 1−
∑

x>0

µ[0, x− 1] (µ[0, x] − µ[0, x− 1]) −
∑

x>0

µ2(x)

which implies
∑

x>0

µ[0, x)µ(x) <
1

2
.

Inserting this in (4.3.3), we get λ > 2δ, which completes the proof.
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4.4 The exact critical interaction strength

In this section we tackle the problem of getting the exact critical interaction strength by
looking at the dynamics of the gaps between successive particles. With a simple linear
transformation of the process (XN(1), . . . , X

N
(N)), we define the gap process

GN = {(GN1 (t), . . . , G
N
N(t))}t>0,

where GN1
.
= XN(1) and GNi

.
= XN(i) − X

N
(i−1) for i = 2, . . . ,N, that is a reflected random

walk in N
N. In the continuous analogue, this process is a diffusion reflected in RN+ and

we know, from Theorem 3.2.2, its stationary measure for each fixed N. In the stationary
regime the gaps are independent and exponentially distributed with different parameters.
The admissibility of these parameters determines the critical interaction strength in the
continuous model. We do not expect independence of the gaps for all N > 2 in this discrete
setting, because of the importance of triple (or more) collisions of particles. In the following
we give a complete treatment in the case N = 2 and we conjecture the critical value λ∗N(δ)
for N > 2. To this aim we make use of the theory of Jackson networks, that we briefly
introduce in the following.

4.4.1 Jackson networks

Jackson networks are queueing models, firstly introduced by Jackson [52], that proved the
product form of their stationary distribution. An open Jackson network with N nodes is a
Markov process ZN with values in N

N such that, at every time t > 0, the vector

ZN(t)
.
= (ZN1 (t), . . . , Z

N
N(t))

represents the length of N queues. We assume independent Poissonian inputs with pa-
rameters λi at node i, for i = 1, . . . ,N. The servers have exponential service times with
parameters µi and each customer of node i, after being served, has a probability pi,0 of
exiting the system and a probability pi,j of being transferred to node j, for j = 1, . . . ,N.
Therefore, the Markov process ZN performs a jump of amplitude j = (j1, . . . , jN) with the
following rate:

rate(j)
.
=






λi for j = ei,

µipi,0 for j = −ei,

µipi,j for j = −ei + ej.

(4.4.1)

The rates do not change according to the current value of the process ZN, with the only
exception that, of course, if the i-th component is equal to zero, i.e. the queue is empty,
the jumps that decrease that component are suppressed.

Let us discuss the condition for stationarity in Jackson networks. It involves the so-
called Jackson’s system: for all i = 1, . . . ,N

νi = λi +

N∑

j=1

νjpj,i. (4.4.2)
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Here, if we suppose to be in a stationary regime, the solution ν = (ν1, . . . , νN) of the
system (4.4.2) represents the mean number of customers entering each node in a unit time
interval, coming from the outside or from the other nodes. First, the system (4.4.2) admits
a solution if the spectral radius of the matrix {pi,j}i,j=1,dots,N is strictly less than one,
i.e. every customer leaves the network with probability one. Then, we state whether a
stationary measure for the process with rates (4.4.1) exists in the following theorem, due
to Jackson [52].

Theorem 4.4.1. The Jackson network ZN with rates (4.4.1) is ergodic if and only if

νi < µi

for all i = 1, . . . ,N. In that case, the stationary measure is given by

πN,Jack(z) =

N∏

i=1

(

νi

µi

)zi

(1−
νi

µi
),

for all z ∈ N
N.

In [38] the authors also prove exponential ergodicity of Jackson networks under the
same conditions of Theorem 4.4.1, by means of a linear Lyapunov function geometrically
constructed.

4.4.2 Exact study of gap process for N = 2

Let us focus on the small jumps model (4.1.6) with N = 2. Its gap process G2 =

{(G21(t), G
2
2(t))}t>0 is a reflected random walk in the positive quadrant. It jumps according

the following rates:

g s.t. g1 > 0, g2 > 0 → g + (1,−1) with rate 1+ δ

g + (0,−1) ” 1+ λ
2

g + (−1,1) ” 1

g + (0,1) ” 1+ δ

g s.t. g1 = 0, g2 > 0 → g + (1,−1) ” 1+ δ

g + (0,−1) ” 1+ λ
2

g + (0,1) ” 1+ δ

g s.t. g1 > 0, g2 = 0 → g + (−1,1) ” 2

g + (0,1) ” 2+ 2δ

(0,0) → (0,1) ” 2+ 2δ.

The following results gives the exact value of the critical interaction strength λ∗2(δ) and the
expression of the stationary measure for the model.
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Theorem 4.4.2. The process G2 is exponentially ergodic if and only if λ > 2δ2 + 4δ.
Moreover, when it exists, the unique stationary measure π2 has the following explicit form:

π2(0,0) =
C
2

π2(0, y) = C
(

1+δ

1+ λ
2

)y

y > 1,

π2(x,0) =
C
2

(

(1+δ)2

1+ λ
2

)x

x > 1,

π2(x, y) = C
(

(1+δ)2

1+ λ
2

)x (
1+δ

1+ λ
2

)y

x > 1, y > 1,

for C
.
=
2( λ2−δ)(

λ
2−2δ−δ

2)

( λ2+δ2)(
λ
2+1)

.

The proof of exponential ergodicity is based on the link between the gap process G2 and
a particular Jackson network. Indeed, because of the nature of the jumps of the gap process
G2, notice that, except that for the “last gap”, the increase by one unit of a component
causes the decrease by one unit of another. Therefore, we associate to the gap process G2

a two dimensional Jackson network. Let Z2 be such that its parameters take the following
values:

λ1 = 0, µ1 = 1, p1,0 = 0, p1,2 = 1,

λ2 = 1+ δ, µ2 = 2+
λ
2
+ δ, p2,0 =

+ λ
2

µ2
, p2,1 =

1+δ
µ2
.

(4.4.3)

The process Z2 defined in this way has the same jumps and the same rates of G2 in the
internal region N∗ × N∗, while has a slight difference in the rates on the boundaries.

In Figure 4.1 we see the admissible jumps of the gap process G2 and their rates. In
Figure 4.2 we see that the admissible jumps of the Jackson network Z2 are the same of
G2 but the rates of the jumps performed from the x axis are halved w.r.t. the ones of G2.
Therefore, it is easy to see that, if we consider the embedded Markov chain of each process,
the two Markov chains have the same transition matrix. This implies that conditions on
stationary measures and on ergodicity for one process are the same for the other and it is
the key of the following proof.

Proof of Theorem 4.4.2. Consider the 2 nodes Jackson network Z2 with same rates of G2

in the internal region, i.e. the one described by the parameters in (4.4.3). Let (ν1, ν2) be
the solution of the Jackson’s system (4.4.2), that here we write as:

{
ν1 = λ1 + ν2p2,1,

ν2 = λ2 + ν1p1,2.

We know from Theorem 4.4.1 that Z2 is ergodic if and only if νi < µi, for i=1,2. In our
case this condition becomes 





(1+δ)2

(1+ λ
2 )
< 1,

(1+δ)µ2
(1+ λ

2 )
< µ2,

that gives λ > 2δ2 + 4δ. As we mentioned, in [39], by the use of a Lyapunov function, the
authors prove that this is the necessary and sufficient condition for exponential ergodicity
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2+ 2δ

(0,0)

2 2+ 2δ

1+ λ
2

1+ δ

1+ δ

1

1+ δ1+ λ
2

1+ δ

Figure 4.1: Gap process with rates when N = 2.

of the process Z2 and, consequently, for G2.

The invariant measure of the common embedded Markov chain has the following form:

η2(0,0) = 1+ δ

η2(0, y) =
(

3+ 2δ+ λ
2

)

(

1+δ

1+ λ
2

)y

y > 1,

η2(x,0) = (2+ δ)
(

(1+δ)2

1+ λ
2

)x

x > 1,

η2(x, y) =
(

4+ 2δ+ λ
2

)

(

(1+δ)2

1+ λ
2

)x (
1+δ

1+ λ
2

)y

x > 1, y > 1.

Then, for all (x, y) ∈ N
N we divide η2(x, y) by the sum of G2-rates of exiting from (x, y)

and we normalize. Of course, the obtained measure coincide with the explicit form of π2.
This is validated by verifying that π2 solves the stationary equation, i.e. for all bounded
measurable functions f it holds:

∑

(x,y)∈N2

L2f(x, y)π2(x, y) = 0,

where L2 is the infinitesimal generator of G2.
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1+ δ

(0,0)

1 1+ δ

1+ λ
2

1+ δ

1+ δ

1

1+ δ1+ λ
2

1+ δ

Figure 4.2: Associated Jackson network rates when N = 2.

Theorem 4.4.2 gives the exact critical value λ∗2(δ) for the ergodicity of the system and
we see that it is quadratic in δ. Moreover, the explicit expression of π2 proves that, in the
stationary regime, the gaps G21 and G22 are independent. Notice that the lower bound on
λ∗2(δ) obtained in Theorem 4.2.2 is optimal in this case.

4.4.3 Some conjectures

The link between the gap process and a Jackson network for N = 2 suggests an association
with N nodes Jackson network for every fixed N. Unfortunately, when N > 3 the transition
matrix of the embedded Markov chains of GN and ZN are not the same. However we can
propose a conjecture on the critical value λ∗N(δ) based on the properties of the associated
Jackson network. First of all, let us define the Jackson network ZN to associate with the
gap process GN, for a fixed N > 3. ZN must be such that the transition rates in the internal
region N

N
∗ correspond to the ones of the gap process GN. For all i = 1, . . . ,N− 1

z → z− ei + ei+1 with rate 1+ λ i−1
N
,

z → z+ ei − ei+1 ” 1+ δ,

z → z− eN ” 1+ λN−1
N
,

z → z+ eN ” 1+ δ,

(4.4.4)
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where ei is the vector (0, . . . ,0,1,0, . . . ,0) with the i-th coordinate equal to 1.

Proposition 4.4.1. Fix N > 3, the N node Jackson network ZN with transition rates
(4.4.4) is ergodic if, and only if, we have

(1+ δ)N

N−1∏

k=1

(1+ λ
k

N
)

< 1. (4.4.5)

Proof. The Jackson network ZN is such that

λN = 1+ δ,

λj = 0 for all j = 1, . . . ,N− 1,

µ1 = 0,

µj = 2+ δ+ λ
j−1
N
, for all j = 2, . . . ,N,

p1,2 = 1, p1,k = 0, for all k 6= 2,

pj,j+1 =
1+λ j−1N
µj

, pj,j−1 =
1+δ
µj

for all j = 2, . . . ,N− 1,

pj,k = 0 for all j = 2, . . . ,N− 1, and all k 6= j+ 1, j− 1,

pN,0 =
1+λN−1

N

µN
, pN,N−1 =

1+δ
µj

pN,k = 0 for all k 6= N,0.
Let us recall the Jackson system:

νj = λj +

N∑

i=1

νipi,j, for j = 1, . . . ,N.

It is easy to verify that the solution (ν1, . . . , νN) of this is system has the following form:

νj = µj

N+1−j∏

k=1

(1+ δ)

(1+ λN−k
N

)
, for all i = 1, . . . ,N,

that by classical result on Jackson networks gives the following condition:
i∏

k=1

(1+ δ)

(1+ λN−k
N

)
< 1, for all i = 1, . . . ,N,

that is equivalent to (4.4.5).

Conjecture 4.4.1. Fix N > 3, the gap process GN is ergodic if, and only if,

(1+ δ)N

N−1∏

k=1

(1+ λ
k

N
)

< 1.
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This would give an exact critical value λ∗N(δ), i.e. for each N > 3 and each δ > 0 would
be the solution of

(1+ δ)N

N−1∏

k=1

(1+ λ
k

N
)

= 1.

In the continuous framework, the sequence of critical values (that by abuse of notation
we indicate in the same way) λ∗N(δ) converges, as N goes to ∞ to the critical value λ∗∞(δ)

for the nonlinear process. In our case we could not understand if this can be true or not,
since we do not even know if there is a value such that there exists a unique stationary
measure. However we make a conjecture on the critical value for which there exists at least
one stationary measure based on the sequence λ∗N(δ).

Conjecture 4.4.2. Fix δ > 0, then for all λ such that

(1+
1

λ
) ln (1+ λ) − 1 > ln (1+ δ) ,

the nonlinear process (4.3.1) has at least one stationary measure.

Based on the comparison with the continuous model from Chapter 3, we conjecture
also that, when a stationary measure for (4.3.1) exists, then it is unique and that the
chaoticity of the stationary measures holds true also in this case. The Lyapunov function
of Theorem 4.2.1 seems very promising in this direction, since it ensures the tightness of
the sequence of empirical measures, as we observed at the end of Section 4.2.1. Indeed,
given α > 0 from Theorem 4.2.1, there exists K .

= supN
H
γN

> 0 such that, for all N, the
stationary measure πN(SJ) is such that

EπN
(SJ)

[

∞∑

k=0

eαkµNXN(k)

]

< K, (4.4.6)

where µN
XN

(·) = 1
N

∑N
i=1 δXNi and Law(XN) = πN(SJ). Then we may wish to apply the

approach in [6], where the authors prove chaoticity of the stationary measures of the
Fleming-Viot particle system linked to the subcritical Galton-Watson process. Let us
adapt this approach to our case. Fix δ > 0 and λ > λ∗up(δ), we wish to prove

lim
N→∞

EπN
XN

[∥

∥µNXN(·) − π(·)
∥

∥

TV

]

= 0, (4.4.7)

that implies weak convergence of the stationary empirical measures to the stationary mea-
sure π of (4.3.1) identified in Theorem 4.3.1. Notice that (4.4.7) is equivalent to

lim
N→∞

EπN
XN

[∣

∣µNXN(k) − π(k)
∣

∣

]

= 0,

for all k ∈ N. Then fox k, by definition of stationary measure, we know that

EπN
(SJ)

∣

∣µNXN(k) − π(k)
∣

∣ = EπN
(SJ)

∣

∣µNt (k) − π(k)
∣

∣ ,
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where µNt is the empirical measure of the process XN(t) such that Law(XN(0)) = πN(SJ). Let
us also denote by µt(·, ν) the law at time t > 0 of the solution to (4.3.1), such that ν is the
law of the initial condition. For any C > 0, we consider the following subset of NN

Sα(C)
.
=

{

x ∈ N
N :

∞∑

k=0

eαkµNx (k) 6 C, for µNx =
1

N

N∑

i=1

δxi

}

.

Then it holds

EπN
(SJ)

∣

∣µNt (k) − π(k)
∣

∣ 6EπN
(SJ)

[

1
(

Sα(C)
C
)]

+ EπN
(SJ)

[

1 (Sα(C))
∣

∣µNt (k) − π(k)
∣

∣

]

6 EπN
(SJ)

[

1
(

Sα(C)
C
)]

+ EπN
(SJ)

[

1 (Sα(C))
∣

∣µt(k, µ
N
XN) − π(k)

∣

∣

]

+EπN
(SJ)

[

1 (Sα(C))
∣

∣µNt (k) − µt(k, µ
N
XN)
∣

∣

]

.

Let ε > 0, the first term is treated by means of (4.4.6), such that

EπN
(SJ)

[

1

(

∞∑

h=0

eαhµNXN(h) > C

)]

6
K

C

and we can choose C sufficiently large such that this term is smaller than ε
3
. Now, suppose

that we could prove that, for any initial condition ν belonging to the following set

Sα(C)
.
=

{

ν ∈ M(N) :

∞∑

k=0

eαkν(k) 6 C

}

,

the (4.3.1) is ergodic, i.e. for all ν ∈ Sα(C)

lim
t→∞

‖µt(·, ν) − π(·)‖TV = 0.

Of course, in the event {XN ∈ Sα(C)} is equivalent to the event {µN
XN

∈ Sα(C)}. This
would let us choose t > 0 sufficiently large such that the second term is smaller than ε

3
.

Then, for fixed C, t > 0 the pathwise propagation of chaos proved in Theorem 4.1.3, let us
choose N sufficiently large such that the third term is smaller than ε

3
, as well. This would

prove (4.4.7). We conclude by highlighting that the missing step is the proof of ergodicity
of (4.3.1), which seems to us a reasonable result, but not a trivial one.
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Part III

Generalized Curie-Weiss model
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Chapter 5

Periodic behavior in a generalized

Curie-Weiss model with dissipation

Among the interesting phenomena observed in complex systems, there is the occurrence
of rhythmic behaviors. It is natural to model this systems by means of large families of
interacting units and one question is how periodic behaviors emerge in these systems when
the single units have no tendency to behave periodically.

5.1 Self-sustained periodic behavior

In a particle system we say that we observe a self-sustained periodic behavior if there is a
phase in which the evolution of the macroscopic law of the system has a stable limit cycle,
without the action of any periodic force. Often this periodicity, even if easily detectable by
numerical simulations of the particles for large system’s size, it is a peculiarity of the ther-
modynamic limit and it is quite hard to formally prove it, since it is an infinite dimensional
problem. However, some recent works [27, 47] try to investigate the minimal hypothesis
needed to create self-sustained periodic behavior in mean field interacting particle systems.
In this framework, one key step is to consider interactions that favor cooperation among
units of the same type, but, opposed to the classical models originated from statistical
mechanics, the reversibility of the dynamics seems to be in contrast with the occurrence of
periodic behavior [11, 47]. Therefore, different mechanisms that perturb classical reversible
models have been introduced.

• In [24, 26] the authors introduce particle systems where each particle has its own local
field that undergoes a diffusive and dissipative dynamics. The add of a dissipative
term seems to be a useful tool to create stable periodic orbit in systems otherwise
in equilibrium. The simplest model of this class is the dynamical Curie-Weiss model
with a dissipative term studied in [26], which already displays an interesting behavior
due to the dissipation and the rise of a periodic orbit via a Hopf bifurcation. In [24]we
find a general way of introducing dissipation in systems of interacting diffusions,
together with the study of the dissipative counterpart of the model by Dawson [28].
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• In [47] authors consider active rotators models, one among the others the stochastic
Kuramoto model. They propose different dynamics and interactions for which they
prove periodicity with a very general method. In particular adding a simple disorder
in the initial phase of each rotator for the Kuramoto model, see [1, 23], gives origin
to oscillating behavior in the stationary solutions.

• The role of noise in the dynamics is crucial. It may induce periodicity in systems
which cannot exhibit periodic solutions, giving rise to the phenomenon of noise-
induced periodicity [27, 78, 86]. Moreover, noise has a role in enhancing periodicity
in dynamical systems already proved to have limit cycles, a phenomenon known as
excitability by noise [24, 59].

• The add of a delay in the interactions is proved to give self-sustained periodicity
in multi-populated models. In [85] a fixed time delay is sufficient to create stable
oscillations in a bi-populated spin system with non-cooperative interaction. In [31] a
multi-populated system of interacting Hawkes processes with a delay given by Erlang
kernels is studied and sufficient conditions for the existence of at least one stable limit
cycle are given.

• In [25] the interaction network between two populations is enough to generate peri-
odicity, without the need of a delay in the interaction. In particular, it is a frustrated
interaction that, if strong enough, generates the limit cycles. By frustrated interac-
tion we mean the situation in which one population “wants to copy” the other, but
this one has the tendency to behave oppositely to the first one.

The aim of this chapter is to extend the first approach to the so-called generalized Curie-
Weiss model. We confirm that the dissipative interaction is able to give origin to self-
sustained periodic behaviors in a wide class of mean field particle systems.

5.2 The model

In this section we build step-by-step the class of processes we are interested in. We start
with a brief description of the classical Curie-Weiss spin model and of the class of its
generalized counterpart; then we define a stochastic process related to this class and we
describe how we can break its reversibility by means of the dissipative dynamics.

5.2.1 The Curie-Weiss model

The Curie-Weiss model origins as a mean field approximation of the Ising model for fer-
romagnetism. In this case a magnet is modelled, at microscopic level, by a configuration
of N spins; each spin takes values in the set {−1,+1}. We associate to each configuration
σN ∈ {−1,+1}N an energy, by the Hamiltonian, which is a quadratic function of the mean
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spin value:

HN(σ
N)

.
= −

1

2N

(

N∑

i=1

σNi

)2

. (5.2.1)

For any inverse temperature β = 1
T
> 0 we define the probability measure, called the Gibbs

measure, on {−1,+1}N

PN,β(dσ
N
1 . . . dσ

N
N)

.
=

1

ZN(β)
e−βHN(σN),

where ZN(β)
.
=

∑N
σN∈{−1,+1} e

−βHN(σN) is the normalizing constant. The Gibbs measure
gives higher probability to configurations with minimal energy.

The Curie-Weiss model is defined as the sequence of probability measures {PN,β}N∈N∗

and it shows a phase transition, usually identified as a breakdown in the Law of Large
Numbers, see for example [36]. The previous means that the following weak limit holds:

∑N
i=1 σ

N
i

N

N→ ∞−−−−→
{
δ0 for β 6 1,
1
2
(δm(β) + δ−m(β)) for β > 1,

(5.2.2)

for a certain increasing functionm(·) : (1,∞) → (0,1), called the spontaneous magnetization.
Therefore, the value βc

.
= 1 is a critical value for the Curie-Weiss. When β < βc (i.e. the

temperature is sufficiently high) we see that the spins behave as they were i.i.d. random
variables with mean 0. On the other hand, when β > βc (i.e. for low temperature) the
limit of the empirical mean is a random variable.

5.2.2 The generalized Curie-Weiss model

A natural extension of the previous model is the so-called generalized Curie-Weiss model,
see [37, 35]. The quadratic interaction function in (5.2.1) is replaced by a more general
even function and the spin’s single site distribution in absence of interaction (that in the
classical Curie-Weiss is 1

2
(δ−1 + δ1)) is some symmetric distribution on R. Therefore, we

consider a sequence of probability measures on R
N, for N = 1,2, . . . , given by

PN,β(dx1, . . . , dxN) =
1

ZN(β)
exp

(

Nβg

(

N∑

i=1

xi

N

))

N∏

i=1

ρ(dxi), (5.2.3)

where ρ is the symmetric probability measure on R representing the single-site distribution
of a spin, g is the interaction function, β is again the inverse absolute temperature of
the model and ZN(β) is the normalizing constant. We summarize in the following some
assuptions on these quantities, mainly coming from [35], that are sufficient for the existence
of such a model.

Assumption 5.2.1. The function g and the probability measure ρ satisfy the following
conditions.
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i) g : R → R>0 is an even, C2(R) function, strictly increasing on [0,∞) with g(0) = 0.
It is two-sided real analytic, i.e. ∀ x ∈ R there exists δ > 0 and two real analytic
functions g1 and g2 on (x− δ, x+ δ) such that

g : =

{
g1 on (x− δ, x]

g2 on [x, x+ δ).

ii) ρ is a symmetric Borel probability measure on R, absolutely continuous w.r.t. the
Lebesgue measure and, by abuse of notation, we denote its density function with
ρ(x).

iii) There exists a symmetric, nonconstant, convex function h on R such that

g(x) 6 h(x) for all x ∈ R,
∫

R

eah(x)ρ(x)dx <∞ for all a > 0. (5.2.4)

The key function in the analysis of the asymptotic behavior of the sequence of measures
{PN,β} is the specific Gibbs free energy ψ(β), defined, for all β > 0, as

−βψ(β) = lim
N→∞

1

N
log ZN(β).

This is known to be equivalent to the variational formula:

− βψ(β) = sup
u∈R

{βg(u) − i(u)}, (5.2.5)

where i(u) is defined as the Legendre-Fenchel transform i(u) = supt∈R
{tu − c(t)} of the

quantity c(t) = log
∫

R
etxρ(dx), for all t ∈ R. The role of this formulation appears in the

following theorem, that is the main result of [35].

Theorem 5.2.1 (Theorem 1.2 in [35]). Suppose that Assumption 5.2.1 is satisfied. Then
there exists a non-empty set of critical values

P
.
= {0 < β1 < β2 < . . . },

whose elements are either finite or countably many and converging to infinity.

i) There exists a function m : (0,∞)\P −→ R+ such that

m(β)

{
= 0 for β < β1,
> 0 for β ∈ (β1,∞)\P,

it is strictly increasing in (β1,∞)\P and real analytic on every connected subset of
(0,∞)\P, but it is not the restriction of one real analytic function in any neighborhood
of a critical value βi.
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ii) The function m is such that, for all β ∈ (0,∞)\P, the supremum in the formula
(5.2.5) is attained at the points u = ±m(β) (of course, for β < β1 it is attained at
0).

iii) For any N > 1, let (XN1 , . . . , X
N
N) be a random variable with values in R

N and distri-
bution PN,β. Then the following weak limit holds:

∑N
i=1 X

N
i

N

N→ ∞−−−−→
{
δ0 for β 6 β1,
1
2
(δm(β) + δ−m(β)) for β ∈ (β1,∞)\P.

Theorem 5.2.1 is true also for the classical Curie-Weiss model, where we have P = {1}

and in (5.2.2) the value of the spontaneous magnetization is exactly the point at which the
supremum of (5.2.5) is attained, when ρ = 1

2
(δ−1 + δ1). In general, the nature of phase

transitions of the generalized Curie-Weiss model may be of two type, depending on the
continuity of the function m in the critical value.

Definition 5.2.1. We say that there is a phase transition for the generalized Curie-Weiss
model at the critical value β∗ if either one of the two following conditions is satisfied:

i) limβ↑β∗ m(β) < limβ↓β∗ m(β), in this case we have a first-order phase transition;

ii) limβ↑β∗ m(β) = limβ↓β∗ m(β), but limβ↓β∗ m ′(β) = +∞, in this case we have a second-
order phase transition.

5.2.3 The Langevin dynamics for the generalized Curie-Weiss model

Let µ be a probability density on R
d, for d > 1, sufficiently regular, then the Langevin

dynamics {Xt}t>0 associated to µ is a diffusion process in R
d such that µ is its unique

stationary measure. We define this process as the solution of the following SDE

dXt =
1

2
∇ logµ (Xt)dt+ dBt, (5.2.6)

where B is a d-dimensional Brownian motion. Let us state a classical result on well-
posedness and long-time behavior of Langevin diffusions.

Theorem 5.2.2. Let µ be a probability density function on R
d, for d > 1, such that logµ

∈ C2(Rd) and for all x ∈ R
d

xT∇ logµ(x) 6 C(1+ ‖x‖2),

for a certain C > 0. The SDE (5.2.6) admits a unique strong solution, for any square-
integrable initial condition. Moreover, µ(x)dx is the unique stationary measure of (5.2.6)
and, for all x ∈ R

d such that X0 = x a.s. then

lim
t→∞

‖Px(Xt ∈ ·) − µ(·)‖TV = 0.
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Therefore, for each N fixed, a Langevin dynamics associated to (5.2.3) is a diffusion
process XN with values in R

N such that PN,β is its unique invariant measure, i.e. XN is
solution to the following systems of SDE

dXNi (t) =
β

2
g ′

(∑N
j=1 X

N
j (t)

N

)

dt−
ρ ′(XNi (t))

2ρ(XNi (t))
dt+ dBit, (5.2.7)

where {Bi}i=1,...,N is a family of independent 1-dimensional Brownian motions. The dynam-
ics in (5.2.7) represents an interacting particle system where each particle follows its own
dynamics, given by the last two terms on the right-hand side, and it experiences a mean

field interaction, which depends on the empirical mean of the system mN(t) : =
∑N
j=1X

N
j (t)

N
.

Assumption 5.2.2. The function g and the probability measure ρ satisfy the following
conditions.

i) g ′ is uniformly Lipschitz continuous, i.e. there exists a finite constant L > 0 such
that for all x, y ∈ R

|g ′(x) − g ′(y)| 6 L|x− y|.

ii) We require log(ρ(x)) ∈ C2 and that there exists K > 0 s.t. for all x, y ∈ R

(x− y)

(

ρ ′(x)

ρ(x)
−
ρ ′(y)

ρ(y)

)

6 K(1+ (x− y)2). (5.2.8)

Assumptions 5.2.1 and 5.2.2 ensures well-posedness of (5.2.7) and, as we show later, of
its mean field limit; of course, in this case, Theorem 5.2.2 holds.

5.2.4 The dissipative dynamics

We aim to suitably modify the Langevin dynamics (5.2.7) in order to observe the emer-
gence of self-sustained periodic behavior. Therefore, we choose to break reversibility by
following the approach in [24, 26], where the interaction in the particle system undergoes
its own stochastic dynamics, characterized by a dissipative term.

We suppose that the motion of each particle depends on a “perceived magnetization”
instead of the empirical mean mN(t). To this aim, we introduce the variables λNi , for i =
1, . . . ,N, representing the interaction felt by the spin XNi . They evolve as the magnetization
of the system but they undergo a dissipative and diffusive evolution:

dλNi (t) = −αλNi (t)dt+DdB
2,i
t + dmN(t),

where {B2,i}i=1,...,N are independent Brownian motions. This results in a stochastic process
(XN, λN) with values in R

2N where, at every time t > 0, XN(t) =
(

XN1 (t), . . . , X
N
N(t)

)

is the
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vector of the spins of the N particles and λN =
(

λN1 (t), . . . , λ
N
N(t)

)

is the vector of the
“perceived magnetizations”. The Markov process (XN(t), λN(t)) has infinitesimal generator

LNf(x, λ) =

N∑

i=1

[

1

2

(

βg ′(λi) −
ρ ′(xi)

ρ(xi)

)

∂

∂xi
f(x, λ) +

1

2

∂2

∂x2i
f(x, λ)

+

(

1

2N

N∑

j=1

(

βg ′(λj) −
ρ ′(xj)

ρ(xj)

)

− αλi

)

∂

∂λi
f(x, λ) +

D

2

∂2

∂λ2i
f(x, λ)

]

,

i.e. (XN(t), λN(t)) solves the following system of SDE:





dXN,it = β
2
g ′(λN,it )dt−

ρ ′(XN,it )

2ρ(XN,it )
dt+ dB1,it

dλN,it = −αλN,it dt+ 1
N

∑N
j=1

(

β
2
g ′(λN,jt ) −

ρ ′(XN,jt )

2ρ(X
N,j
t )

)

dt+DdB2,it ,
(5.2.9)

i = 1, . . . ,N, for {(B1,i, B2,i}i=1,...,N a family of independent 2-dimensional Brownian mo-
tions. Well-posedness of this system, under Assumptions 5.2.1 and 5.2.2 is a simple conse-
quence of previous results.

This approach has been proved to break reversibility of the (otherwise reversible)
Langevin dynamics in one particular case, in a way that collective periodic behavior oc-
curs, see [24]. That model is a particular case of the framework we depicted in this section.
Indeed, in [24] the authors consider the particle system {(YN,it , λt), i = 1, . . . ,N}t>0 that
solves the following, for i = 1, . . . ,N

{
dYN,it = (−(YN,it )3 + YN,it )dt− λtdt+ σdB

N,i
t

d
dt
λt = −(α− θ)λt − θE[−Y

3
t + Yt],

where {Bi}i=1,...,N are independent Brownian motions. By the change of variable X = Y
σ
,

we see that the previous system correspond to (5.2.9) with following specifications: β = θ,
D = 0 and

g(x) =x2;

ρ(x) =
1

Z∗ exp
(

x2

2

(

1−
x2σ2

2

))

, for Z∗ normalizing constant.

The model in [26] follows the same lines we described above, but since the state space is
discrete the dynamics is given by a (slight modification of a) Glauber dynamics for the
classical Curie-Weiss.

5.2.5 The nonlinear process and propagation of chaos

The interactions in (5.2.11) are of mean field type and we define the correspondent nonlinear
Markov process (X, λ) on R

2 as the solution of the following nonlinear SDE:





dXt =
β
2
g ′(λt)dt−

ρ ′(Xt)
2ρ(Xt)

dt+ dB1t

dλt = −αλtdt+ 〈µt(x, l), β2g ′(l) − ρ ′(x)
2ρ(x)

〉dt+DdB2t
µt = Law(Xt, λt),

(5.2.10)
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where B = (B1, B2) is a two dimensional Brownian motion. Well-posedness of (5.2.10) is
stated in the following theorem.

Theorem 5.2.3. The nonlinear process (5.2.10) is well-defined, i.e. there exists a unique
strong solution for all square-integrable initial condition (X0, λ0) ∈ R

2.

The proof of Theorem 5.2.3 follows the approach via pathwise estimates we extensively
used in Chapter 2. Notice that the drift coefficient of (5.2.10) satisfies Assumption 2.2.1 in
its spatial coordinate, but not in the measure one. Indeed, it is not always true that, under
Assumptions 5.2.1 and 5.2.2 it holds a Lipschitz condition w.r.t. to the W1 Wasserstein
distance. This is because of the assumption (5.2.8), which implies that the nonlinear
term involves expectations of non-globally Lipschitz functions. However, we will follow the
same approach of Section 2.2, just adapting the proofs by means of an ad hoc treatment
of the mean field term. Indeed, the nonlinear term coincides with the time-derivative
of E[Xt], which drastically simplifies the situation. Due to the absence of jumps in the
dynamics, we use the usual L2 approach. We fix a time T > 0 and wemake use of the
W2 Wasserstein distance on the set M2(C([0, T ],R2)) of square-integrable measures: for all
µ, ν ∈ M2(C([0, T ],R2))

W2,T (µ, ν)
2 = inf

{∫

sup
t∈[0,T ]

‖x(s) − y(s)‖2m(dx, dy),

with m ∈ M2(C([0, T ],R2)× C([0, T ],R2)), π1 ◦m = µ, π2 ◦m = ν
}

.

Proof of Theorem 5.2.3. Given any square-integrable law µ0 on R
2, we define a map Γ that

associates to a measure Q ∈ M2(C([0, T ],R2)) the law of the solution {(Xt, λt)}t∈[0,T ] of the
SDE {

dXt =
β
2
g ′(λt)dt−

ρ ′(Xt)
2ρ(Xt)

dt+ dB1t

dλt = −αλtdt+ 〈Qt(dx, dl), β2g ′(l) − ρ ′(x)
2ρ(x)

〉dt+DdB2t ,

that, for µ0 initial condition, admits a unique strong solution for classical results, see [51];
of course a solution to (5.2.10) is a fixed point of Γ . We use a coupling argument to prove
existence (via a Picard iteration) and uniqueness of the fixed point of Γ . Let us start
with the proof of uniqueness, if Q1 and Q2 are two fixed point of Γ , i.e. two measures
in M2(C([0, T ],R2)) such that Q1 = Γ(Q1) and Q2 = Γ(Q2). We couple them as follows.
Let (Ω,F, {Ft}t∈[0,T ],P) be a filtered probability space and {Bt}t∈[0,T ] a two-dimensional
Brownian motion. Then we write

{
dX1t =

β
2
g ′(λ1t)dt−

ρ ′(X1t)
2ρ(X1t)

dt+ dB1t

dλ1t = −αλ1tdt+ 〈Q1t(dx, dl), β2g ′(l) − ρ ′(x)
2ρ(x)

〉dt+DdB2t ,

and {
dX2t =

β
2
g ′(λ2t)dt−

ρ ′(X2t)
2ρ(X2t)

dt+ dB1t

dλ2t = −αλ2tdt+ 〈Q2t(dx, dl), β2g ′(l) − ρ ′(x)
2ρ(x)

〉dt+DdB2t ,
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where the initial conditions are (X10, λ
1
0) = (X20, λ

2
0) a.s., µ0 distributed. We estimate the

distance between Q1 and Q2 by means of the above coupling, i.e.

W2,T (Q
1, Q2) 6

√

√

√

√E

[

sup
t∈[0,T ]

(X1t − X
2
t)
2 + (λ1t − λ

2
t)
2

]

.

The SDE for λ1 and λ2 is linear, then we write explicitly

λ1t − λ
2
t =

∫ t

0

eα(s−t)〈Q1s(dx, dl) −Q2s(dx, dl),
β

2
g ′(l) −

ρ ′(x)

2ρ(x)
〉ds.

Notice that 〈Q1t(dx, dl) −Q2t(dx, dl), β2g ′(l) − ρ ′(x)
2ρ(x)

〉 = d
dt

E
[

X1t − X
2
t

]

, that gives

λ1t − λ
2
t = E

[

X1t − X
2
t

]

− α

∫ t

0

E
[

X1s − X
2
s

]

e−α(t−s)ds.

On the other hand, we use Ito’s formula to obtain

(X1t − X
2
t)
2 = 2

∫ t

0

(X1s − X
2
s)

(

β

2
g ′(λ1s) −

β

2
g ′(λ1s) −

ρ ′(X1s)

2ρ(X1s)
+
ρ ′(X2s)

2ρ(X2s)

)

ds.

Therefore, there exists CT such that

E

[

sup
t∈[0,T ]

(X1t − X
2
t )
2 + (λ1t − λ

2
t )
2

]

6 CT

∫T

0

E

[

sup
t∈[0,s]

(X1t − X
2
t )
2 + (λ1t − λ

2
t )
2

]

ds,

and by Gronwall Lemma this gives W2,T (Q
1, Q2) = 0. With a Picard iteration of the type

Qn = Γ(Qn−1) and with the above arguments, we obtain that

E

[

sup
t∈[0,T ]

(Xnt − Xn−1t )2 + (λnt − λn−1t )2

]

6L

∫T

0

E

[

sup
t∈[0,s]

(Xnt − Xn−1t )2 + (λnt − λn−1t )2

]

ds

+ α2T

∫T

0

W2,s(Q
n−1, Qn−2)2ds,

that gives W2,T (Q
n, Qn−1)2 6

(eLTTα2)n

n!

∫T
0
W2,s(Q

1, Q0)2ds, i.e. {Qn}n∈N is a Cauchy se-
quence for W2,T and therefore for a weaker, but complete, metric on M2(C([0, T ],R2)).

We prove propagation of chaos for the particle system (5.2.9) with the same pathwise
approach.

Theorem 5.2.4. Let (XN(t), λN(t))t>0 be the Markov process solution to (5.2.9) starting
from i.i.d. initial conditions Law((XNi (0), λ

N
i (0))) = µ0 on R

2, where
∫

R2
(x2+λ2)µ0(dx, dλ) <

∞, and denote with PN its law on C([0, T ],R2N). Let (X(t), λ(t))t>0 be the solution to
(5.2.10) with initial condition µ0, and denote with µ its law on C([0, T ],R2). Then, the
sequence (PN)N∈N is µ-chaotic.
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As we said repeatedly in the previous chapters, by the exchangeability of the compo-
nents and of the dynamics, it is well-known that this claim is implied by E

[

W2,T (µ
N, µ)

]

−→0
as N→ +∞, where µN = 1

N

∑N
i=1 δ(XN,λN) (see [83]). Therefore, we apply this approach to

prove the theorem.

Proof of Theorem 5.2.4. On a filtered probability space (Ω,F, {Ft}t∈[0,T ],P), for anyN ∈ N,
take a 2N-dimensional Brownian motion {Bt}t∈[0,T ] and consider the coupled processes given
by






dXN,it = β
2
g ′(λN,it )dt−

ρ ′(XN,it )

2ρ(XN,it )
dt+ dB1,it

dλN,it = −αλN,it dt+ 1
N

∑N
j=1

(

β
2
g ′(λN,jt ) −

ρ ′(XN,jt )

2ρ(X
N,j
t )

)

dt+DdB2,it ,
(5.2.11)

i = 1, . . . ,N, and

{
dX̄N,it = β

2
g ′(λ̄N,it )dt−

ρ ′(X̄N,it )

2ρ(X̄N,it )
dt+ dB1,it

dλ̄N,it = −αλ̄N,it dt+ 〈µt(dx, dl), β2g ′(l) − ρ ′(x)
2ρ(x)

〉dt+DdB2,it ,

i = 1, . . . ,N, where the initial conditions are (XN,i0 , λN,i0 ) = (X̄N,i0 , λ̄N,i0 ) a.s., µ⊗N
0 dis-

tributed. Let µ̄N = 1
N

∑N
j=1 δ(X̄N,j,λ̄N,j), then, similarly to the proof of Theorem 5.2.3, it’s

easy to see that it holds

E
[

W2,T (µ
N, µ̄N)2

]

6E

[

sup
t∈[0,T ]

(XN,1t − X̄N,1t )2 + (λN,1t − λ̄N,1t )2

]

6L

∫T

0

E

[

sup
t∈[0,s]

(XN,1t − X̄N,1t )2 + (λN,1t − λ̄N,1t )2

]

ds

+ α2T

∫T

0

E
[

W2,s(µ
N, µ)2

]

ds,

which, by an application of Gronwall’s Lemma, implies that there exists CT > 0 such that

E
[

W2,T (µ
N, µ̄N)2

]

6 CT

∫T

0

E
[

W2,s(µ
N, µ)2

]

ds. (5.2.12)

Moreover, it is well known that E
[

W2,T (µ̄
N, µ)

]

6 β(N) for some sequence β(N) such that
limN→∞ β(N) = 0. Then, using (5.2.12), we have

E
[

W2,T (µ
N, µ)2

]

6 E
[

W2,T (µ
N, µ̄N)2

]

+ E
[

W2,T (µ̄
N, µ)2

]

6 CT

∫T

0

E
[

W2,s(µ
N, µ)2

]

ds+ β(N) 6 KTβ(N)

for some KT > 0, which concludes the proof.
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5.3 Focus on the Gaussian dynamics

The study of the stability and the long-time behavior of (5.2.10) is particularly hard and
we aim to focus on some particular cases. We choose as single site distribution of spins
the Normal distribution with mean zero and variance σ2. As a consequence we restrict
the interaction function g to the class of functions such that, there exists a symmetric,
nonconstant, convex function h on R with g(x) 6 h(x) for all x ∈ R and

∫

R

eah(x)e−x
2

dx <∞ for all a > 0.

Moreover, let D = 0 and let us consider as initial condition measures of the form

µ0(dx, dλ) = ν0(dx)× δλ0(dλ),

where ν0 is a square-integrable measure on R and δλ0 is a Dirac delta centered in λ0 ∈ R.
This drastically simplifies the treatment. The nonlinear process (X(t), λ(t))t>0 solution of
the following nonlinear SDE:






dXt =
β
2
g ′(λt)dt−

Xt
2σ2
dt+ dBt,

dλt
dt

= −αλt +
β
2
g ′(λt) −

mt

2σ2
,

µt = Law(Xt, λt) and mt = 〈µt(dx, dl), x〉,
(5.3.1)

for {Bt} Brownian motion. The evolution of the “perceived magnetization” follows a deter-
ministic dynamics, i.e. for all t > 0 the law of the process is such that

µt(dx, dλ) = νt(dx)× δλt(dλ).

Moreover, the resulting process is a Gaussian process, specifically it is completely described
by the initial condition µ0 and the quantities {(mt, Vt, λt)}t>0, where Vt = Var[Xt]. In the
following we study the stability properties of (5.3.1) and to compare the behavior of the
process with and without the dissipation in the perceived magnetization.

5.3.1 The case without dissipation, α = 0

We start with the stability study of (5.3.1) without the dissipative term. Let us underline
that, in this case, the variable λt has the same evolution of mt, then if λ0 = E[X0] the
nonlinear process (5.3.1) when α = 0, coincides with the nonlinear limit of a sequence of
particle systems XN, each of them evolving according to the Langevin dynamics (5.2.7)
w.r.t. the Gibbs measure PN,β. Therefore, we may consider this process as the dynamical
generalized Curie-Weiss model in the Gaussian case. We restrict the study to the following
system of ODE: {

ṁt =
β
2
g ′(mt) −

mt

2σ2

V̇t = 1−
Vt
σ2
.

(5.3.2)
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By independence of the two variables, we focus the attention on the one-dimensional ODE
for the evolution of mt. We define the function

fβ(x)
.
= βg ′(x) −

x

σ2
(5.3.3)

and notice that, for a fixed β > 0, the equilibrium points of (5.3.2) belong to the set
{(x, σ2), x ∈ Λ(β)}, where

Λ(β)
.
= {x ∈ R s.t. fβ(x) = 0}.

We call phase transition any change in the number of equilibrium points, according to
the following definition.

Definition 5.3.1. We say that the system (5.3.2) has a phase transition in β∗ if, for
any neighborhood of β∗ the cardinality of the set Λ(β) is not constant.

In the following proposition we study phase transitions and stability of the system 5.3.2,
by focusing on its coordinate m, whose evolution and stability points are less trivial than
the ones for V.

Proposition 5.3.1. Consider the dynamics

ṁt =
β

2
g ′(mt) −

mt

2σ2
, (5.3.4)

for a fixed β > 0, the set of equilibrium points of (5.3.4) is given by Λ(β). Moreover, there
exists a nonempty set CV = {0 < β1 < β2 < · · · < βi < . . . } of critical values for (5.3.4),
that are either finite in number or countably many and divergent to infinity and such that
β ∈ CV if and only if ∃ x R for which fβ(x) = 0 and f ′β(x) = 0.

• If β /∈ CV, let m∗ > 0 be a non-negative equilibrium point. Then the two points ±m∗

are asymptotically stable (resp. unstable) if there exists ε > 0 such that f ′β(y) < 0

(resp. > 0) for all y ∈ (m∗ − ε,m∗ + ε).

• If β ∈ CV, let m∗ > 0 be a non-negative equilibrium point such that f ′β(m
∗) = 0.

If there exists ε > 0 such that fβ(x) > 0 for all x ∈ (m∗ − ε,m∗ + ε), then m∗ is
asymptotically stable from the left and unstable from the right, while the opposite
happens for −m∗ (obviously everything is inverted if fβ(x) 6 0 for all x ∈ (m∗ −

ε,m∗ + ε)). The stability of all the other equilibrium points x∗ ∈ Λ(β) such that
f ′β(x

∗) 6= 0 follows the above description.

Proof. Obviously, since (5.3.4) can be rewritten as

ṁt =
1

2
fβ(mt),

its equilibrium points and their stability depend on the function fβ and on its zeros. It is
clear that, since g ′ is globally Lipschitz continuous, for β sufficiently small the origin is the
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only equilibrium points and it is a global attractor. Moreover, the set CV contains all the
values of β such that the line y = x

σ2β
is tangent to the graph y = g ′(x). By the property

(5.2.4) we get that the set CV is not empty, while its cardinality depends on the regularity
of the function g. The stability of the equilibrium points of (5.3.4) follows from a standard
analysis of the sign of the function fβ.

By means of Proposition 5.3.1, we plan to study stability and long-time behavior of the
solution to (5.3.1) when α = 0. To this aim, we state and prove a lemma concerning the
long-time behavior of the following time-inhomogeneous SDE:

{
dYt = a(t)dt−

Yt
2σ2
dt+ dBt

Y0 ∈ L2(Ω)
(5.3.5)

where a(t) is a deterministic function such that

lim
t→+∞

a(t) = a∗ ∈ R. (5.3.6)

The solution of (5.3.5) will be used as an auxiliary process to prove long-behavior of the
solution of (5.3.1). When α = 0, let {Xt}t>0 be the first component of a solution to (5.3.1)
and {Yt}t>0 be the solution to (5.3.5). Then, if Law(X0) = Law(Y0) and

{
a(t) =

βg ′(mt)

2
,

ṁt =
β
2
g ′(mt) −

mt

2σ2
,

with m0 = E[X0], then, for all t > 0

Law(Xt) = Law(Yt).

The same argument holds true when α > 0, replacing mt with λt.

Lemma 5.3.1. Let {Yt} be the solution of (5.3.5) and Pt(Y0, ·) be its law. Then,

lim
t→+∞

||Pt(Y0, ·) − νa∗(·)||TV = 0

where νa∗(dx) = 1√
2πσ2

e
(x−a∗)2
2σ2 dx.

Proof. First of all, notice that

lim
t→+∞

∣

∣

∣

∣

∫ t

0

e
s−t

2σ2 a(s)ds− a∗
∣

∣

∣

∣

= 0. (5.3.7)

In fact, fix ε > 0, then by (5.3.6), there exists t∗ε such that |a(t) − a∗| < ε for any t > t∗ε.
So,

∣

∣

∣

∣

∫ t

0

e
s−t

2σ2 a(s)ds− a∗
∣

∣

∣

∣

6 e−
t

2σ2

∫ t

0

e
s

2σ2 |a(s) − a∗|ds

= e−
t

2σ2

∫ t∗ε

0

e
s

2σ2 |a(s) − a∗|ds+ e−
t

2σ2

∫ t

t∗ε

e
s

2σ2 εσ2ds

6 e−
t

2σ2 t∗εe
t∗ε
2σ2 max

s∈[0,t∗ε]
|a(s) − a∗|+

ε

2
,
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then, taking t∗∗ε such that

e−
t∗∗ε
2σ2 t∗εe

t∗ε
2σ2 max

s∈[0,t∗ε]
|a(s) − a∗| <

ε

2
,

for any t > t∗∗ε it holds that
∣

∣

∣

∣

∫ t

0

e
s−t

2σ2 a(s)ds− a∗
∣

∣

∣

∣

< ε

and (5.3.7) is proved. By the theory of linear stochastic differential equations it’s well-
known that

(Yt|Y0 = y) ∼ N

(

ye−
t

2σ2 +

∫ t

0

e
s−t

2σ2 a(s)ds, σ2
(

1− e−
t

σ2

)

)

,

then, if µ0(·) = Law(Y0),

||Pt(Y0, ·) − νa∗(·)||TV =

∫

R

||Pt(y, ·) − νa∗(·)||TVdν0(y)

=
1

2

∫

R

∫

R

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

exp





(

x−ye
− t
2σ2 −

∫t
0 e

s−t
2σ2 a(s)ds

)2

2σ2(1−e
− t
2σ2 )





√

2πσ2(1− e−
t

2σ2 )

−
e

(x−a∗)2
2σ2√
2πσ2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

dxdν0(y)

which converges to 0 as t→ +∞ thanks to (5.3.7) and the Dominated Convergence Theo-
rem.

We are now ready to prove the result on the stability points and long-time behavior of
the Markov process (Xt, λt), which is solution to (5.3.1) when α = 0. Let us define what
we mean by phase transition for this dynamical generalized Curie-Weiss model.

Definition 5.3.2. Let β∗ be a value such that, for any neighborhood of β∗, the number
of stationary measures for (5.3.1) when α = 0 is not constant. Then, we say that β∗ is a
phase transition for the dynamical generalized Curie-Weiss model in the Gaussian case.

Theorem 5.3.1. The process (Xt, λt) described by (5.3.1) has a phase transition as de-
fined in Definition 5.3.2, for any β ∈ CV. Fix β > 0, then (Xt, λt) has exactly Card(Λ(β))
stationary solution given by the measures

µ∗
m(dx, dl) =

1√
2πσ2

e−
(x−m)2

2σ2 dx× δm(dl)

for all m ∈ Λ(β). Moreover, for all µ0(dx, dλ) = ν0(dx)×δm0
(dλ), square-integrable initial

conditions with m0 = 〈µ0, x〉

lim
t→∞

‖µt(·) − µ∗
m(·)‖TV = 0, (5.3.8)

where m is the equilibrium point of (5.3.4) such that m0 belongs to the domain of attraction
of m.
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Proof. It is clear that the evolution given by (5.3.1) when α = 0must have a law µt(dx, dl) =
νt(dx) × δmt

(dl) where δmt
is a Dirac delta centered in mt =

∫

R
yνt(dy). Then the sta-

tionary Fokker-Planck gives

0 =
1

2

d2

dx2
ν∗(x) −

d

dx

[(

β

2
g ′(m∗) −

x

2σ2

)

ν∗(x)

]

with m∗ =
∫

R
xν∗(x)dx and µ∗(dx, dl) = ν∗(dx)δm∗(dl). Then, there exists K ∈ R such

that
d

dx
ν∗(x) = K+

(

β

2
g ′(m∗) −

x

2σ2

)

ν∗(x).

Thus ν∗(x) solves a linear ODE, i.e. there exists C ∈ R such that

ν∗(x) = exp(βg ′(m)x−
x2

2σ2
)

(

C+ K

∫

R

exp(−βg ′(m)y+
y2

2σ2
)dy

)

.

Let us define the values of the constants:

• K = 0, indeed, when K 6= 0 ν∗(x) is not integrable;

• C =
∫

R
exp(βg ′(m)x − x2

2σ2
)dx, such that ν∗(x) is the density function of a random

variable.

The admissible functions ν∗ are such that

m∗ =

∫

R

xν∗(x)dx = βσ2g ′(m∗),

this identifies them as the ones corresponding to m∗ ∈ Λ(β).
Now, let us prove the long-time behavior of µt for any square-integrable initial condition
of the type µ0 = ν0 × δm0

. As we said, this implies that µt = νt × δλt and λt = E[Xt] for
all t > 0. We introduce an auxiliary process Yt, solution of

dYt = a(t)dt−
Yt

2σ2
dt+ dBt

with initial condition Y0 ∼ µ0 and a(t) = βg ′(λt)
2

for all t > 0 . Denoting Pt(Y0, ·) = Law(Yt),
it is clear that

‖Pt(Y0, ·) − νt(·)‖TV = 0,

for all t > 0. Then (5.3.8) follows directly from Lemma 5.3.1.

Let us compare the dynamical Curie-Weiss model we described here with its static coun-
terpart. We recall that we are considering a situation in which the single site distribution
of spin is Gaussian ∼ N(0, σ2). This implies that, in this case, (5.2.5) becomes

−βψ(β) = sup
x∈R

{

βg(x) −
x2

2σ2

}

.
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According to Definition 5.2.1 and Theorem 5.2.1 the phase transitions of the generalized
Curie-Weiss model depend on the points in which the supremum of the function

Fβ(x)
.
= βg(x) −

x2

2σ2

is attained. The dynamical approach does not differ too much in a sense that we are inter-
ested in the local maxima and minima of the function Fβ(x) instead that in its supremum.
Indeed, it is clear that the function fβ(x) defined in (5.3.3) coincides with the first deriva-
tive of Fβ(x). According to Definition 5.3.2, a critical value a value β̄ for the dynamical
model is such that, for any neighborhood of β̄, the number of minima and maxima of the
function Fβ is not constant. It is clear that the two sets of critical values CV and P may
be very different, but it is interesting to keep in mind their link through the function Fβ .

5.3.2 The case with dissipation, α > 0

Let us now focus on the system in presence of a dissipative behavior for λt. We again
reduce the problem to the study of a system of ODE, that is the following:

{
ṁt =

β
2
g ′(λt) −

mt

2σ2
,

λ̇t = −αλt +
β
2
g ′(λt) −

mt

2σ2
,

(5.3.9)

where, as before, the independence of the evolution of Vt let us consider a two-dimensional
instead of a three-dimensional system. We consider a simple change of variable y = 1

2σ2
(λ−

m), then we get the system

{
ẏt = − α

2σ2
λt,

λ̇t = yt −
(

α+ 1
2σ2

)

λt +
β
2
g ′(λt),

(5.3.10)

which is a Liénard system. The link with Liénard systems is important; indeed, among
planar differential equations, the systems of this class have been extensively studied, in
particular in relation to their limit cycles, [19, 22, 46, 61, 71, 76]. A system of Liénard type
has the following form:

{
ẋ = y−A(x),

ẏ = −b(x),

for two suitable functions A, b. The usual hypothesis require that a = A ′ and b are C1

functions, b(0) = 0 and b(x)x > 0 for x small enough. A detailed and complete study of
all Liénard systems, with necessary and sufficient conditions for the existence of exactly
k > 0 limit cycles, is still an open problem. However, in literature we can find sufficient
conditions for the existence of at least(or exactly) k > 0 limit cycles, [22, 71]. In this
setting, by a slight abuse of notation, we define the function

fα,β(x) : =

(

α+
1

2σ2

)

x−
β

2
g ′(x);
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of course, this generalizes (5.3.3), indeed f0,β = fβ. For any fixed triplet of parameters
(α,β, σ2), it is clear that (5.3.10) is a Liénard system with A(x) = fα,β(x) and b(x) = α

2σ2
x.

In this case, by phase transition we mean any change in the number or in the stability
of equilibrium points and limit cycles of the ODE (5.3.10). In the following theorem we
depict three possible phases of the system and we give sufficient conditions for them to
occur.

i) We can always find a regime of the parameters in which the origin is a global attractor
and there is not any limit cycle.

ii) Under a simple condition on the derivative of the interaction function, we may find
a critical value in which the origin looses its local stability and a stable limit cycle
bifurcates from it.

iii) If the previous situation occurs and the interaction function is sufficiently regular at
infinity, we can find a regime in which there exists a unique limit cycles, which is
attractive.

Let us explain in details what are the conditions under which the above situations are
possible.

Theorem 5.3.2. Fix σ2 > 0 and α > 0 and consider the dynamical system (5.3.10) under
Assumptions 5.2.1 and 5.2.2.

i) There exists β∗ > 0 such that ∀ β ∈ (0, β∗) the origin is a global attractor for (5.3.10).

ii) If g ′′(0) > 0, the origin looses stability via a Hopf bifurcation at the critical value

βH =
2α+ 1

σ2

g ′′(0) .

iii) If g ′′(0) > 0 and there exists C > 0 such that for all x ∈ (C,∞) the function g ′(x)

is concave, then there exists a βUC such that for all β > βUC there exists a unique
limit cycles for (5.3.10).

Proof. i) The strategy consists in finding a Lyapunov function (in the sense of dynamical
systems, in contrast with Section 3.2.1) for the system (5.3.10). Let us consider the function

W(y, λ) =
α

4σ2
λ2 +

y2

2
,

it is clear that

d

dt
W(y(t), λ(t)) = −

α

2σ2
λ

(

(α+
1

2σ2
)λ−

β

2
g ′(λ)

)

= −
α

2σ2
λfα,β(λ). (5.3.11)

As in the proof of Proposition 5.3.1, the problem reduces to consider the intersection of
the graph of the function

y = g ′(λ)
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with a line, that in this case is the line

y =
2α+ 1

σ2

β
λ.

This, indeed, determines the sign of the function fα,β(λ). We see that there exists a β∗

sufficiently small, such that ∀ β < β∗ the only intersection is the origin, meaning that
(5.3.11) is strictly negative except than at (0,0), in which it is zero. Therefore W is a
global Lyapunov function for the system (5.3.10), proving global attractivity of the origin.

ii) A Hopf bifurcation occurs when a stable periodic orbit arises from an equilibrium
point that loses its (local) stability. Such a bifurcation can be detected looking at the
linearized system around this stable equilibrium and finding the values of the parameters for
which a pair of complex eigenvalues crosses the imaginary axis [73, Theorem 2, Chapter 4.4].
Therefore, we consider the system (5.3.10) linearized around the point (0,0), that gives the
linear system:

(

ẏ

λ̇

)

=

(

0 − α
2σ2

1 −
(

α+ 1
2σ2

)

+ β
2
g ′′(0)

)(

y

λ

)

with eigenvalues

x± =
1

2





β

2
g ′′(0) − α−

1

2σ2
±
√

(

β

2
g ′′(0) − α−

1

2σ2

)2

−
2α

σ2



 .

It is clear that, when β = βH, we have a Hopf bifurcation.

iii) Under these hypothesis, there exists a βUC sufficiently large such that ∀ β > βUC,
the function fα,β has exactly three zeros −x∗ < 0 < x∗ and satisfies the following: fα,β is
negative on (0, x∗) and positive and monotonically increasing on (x∗,∞). In this way, for
all β > βUC, the system (5.3.10) satisfies the conditions for the existence and uniqueness
of a limit cycle presented in Theorem 1.1 of [19]. The proof follows the usual approach for
Liénard systems, used also in [26].
First it is shown that the y axis and the function y = fα,β(λ) divides the (λ, y)-plane in
four regions:

I
.
={(λ, y) : λ > 0;y > fα,β(λ)};

II
.
={(λ, y) : λ > 0;y < fα,β(λ)};

III
.
={(λ, y) : λ < 0;y < fα,β(λ)};

IV
.
={(λ, y) : λ < 0;y > fα,β(λ)}.

In each of these four regions the vector field pushes the trajectories to cross either the y
axis or the graph y = fα,β(λ). Therefore each trajectory is forced to revolve clockwise
around the origin.
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Then, for y0 > 0, we consider a trajectory starting from the point (0, y0) and we call y1 > 0
its first intersection with the y-axis in the negative half-plane. We define the function

∆W(y0) =W(0, y1) −W(0, y0).

Of course, when ∆W(ȳ) = 0, the trajectory starting from (0, ȳ) is a periodic orbit. Let
y∗0 > 0 be such that the trajectory starting from (0, y∗0) passes through (x∗,0), the positive
zero of the function fα,β(λ). It is possible to prove that ∆W(y) > 0 for all y 6 y∗0. Then
∆W(y) decreases monotonically to −∞, when y→ ∞, meaning that there exists a unique
ȳ for which it is zero.

As in the case without dissipation, the results on the dynamical system (5.3.9) imme-
diately extend to the Markov process (Xt, λt) solution to (5.3.1). In this case, a periodic
orbit will be a set of measures, which does not contain a single measure and it is invariant
under the dynamics. We define as phase transition any change in the number of these
disjoint invariant sets and in the long-time behavior of the process.

Theorem 5.3.3. Fix α,β > 0, then the process (Xt, λt) described by (5.3.1) has exactly
one stationary solution given by the measures

µ∗
(0,0)(dx, dl) : =

1√
2πσ2

e−
x2

2σ2 dx× δ0(dl).

Let γ be a limit cycle of (5.3.9), then the set

Γ =

{

µ∗
(m,λ)(dx, dl) : =

1√
2πσ2

e−
(x−m)2

2σ2 dx× δλ(dl), for all (m,λ) ∈ γ
}

is an invariant set for the dynamics (5.3.1). Moreover, for all µ0(dx, dλ) = ν0(dx) ×
δλ0(dλ), square-integrable initial conditions with λ0 ∈ R,

lim
t→∞

inf
(m,λ)∈γ

‖µt(·) − µ∗
(m,λ)(·)‖TV = 0,

where γ is the attractor of the trajectory starting from (〈µ0, x〉, λ0) in the dynamical system
(5.3.9); here with γ we mean either a limit cycle or simply the origin.

Proof. The proof follows the same approach of the proof of Theorem 5.3.1, using the
stationary Fokker-Planck equation and the auxiliary results on long-time behavior given
by Lemma 5.3.1.

Theorem 5.3.2 together with Theorem 5.3.3 show that the generalized Curie-Weiss
model with dissipation (5.3.1), at least in this Gaussian case, may undergo different phases.
In particular we find a combination of parameters under which an unstable stationary
measure µ∗

(0,0) coexists with an attractive periodic orbit, which is unique. However, the
framework depicted by these results is far from being complete and we will show that
several other phases may be recreated in a generalized Curie-Weiss model with dissipation,
by suitably choosing the interaction function g and the parameters.
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5.3.3 Coexistence of limit cycles

When one introduces dissipation in a classical Curie-Weiss model [26], a Hopf bifurcation
identifies the transition from disorder to a phase in which a unique globally stable limit
cycle is present. The model introduced here generalizes this scheme: as seen in Theorem
5.3.2, a Hopf bifurcation may occur but, according to the form of the interaction function
g(x), the limiting dynamics may display a richer behavior. Let us summarize some of the
most interesting situation that may occur in this model.

• More than one periodic orbit may coexist and they all revolve around the origin. In
this case the outer one should be stable, the second should be unstable and then they
should alternate.

• Some periodic orbits may appear even when the origin is still locally stable. These
orbits appears through global bifurcations (the Hopf bifurcation is a local one) and
they usually appear in pairs, the outer periodic orbit is stable, while the inner one is
unstable.

The number of limit cycles and their stability mainly depends on the function fα,β(x),
which plays a key role in the study of a Liénard system such as (5.3.10). In general, some
tools to determine the exact number of limit cycles in a Liénard system are available in
literature (see [22, 71] and references therein). However, their application may be cumber-
some in a general setting, since several features of the function fα,β(x) should be studied,
such as the position of its zeroes, its local minima and maxima, their height and so on.
Nevertheless, playing with the form of the interaction function g, we can always create a
Gaussian Curie-Weiss model with dissipation with a customized number of phase transi-
tions and of coexisting limit cycles.

Let us briefly underline the role of the function g in the occurrence of limit cycles in
the dynamics of (5.3.9). To this aim, we rewrite the Liénard system (5.3.10):

{
ẏt = − α

2σ2
λt,

λ̇t = yt − fα,β(λt).

In the rich literature on Liénard system, we see that the form of the function fα,β plays
a fundamental role in the number of limit cycles of the system. In particular, from the
results in [71], we can state the following.

Proposition 5.3.2. Fix σ2, α > 0 and suppose that there exists a β∗ such that the following
conditions are satisfied:

i) the function fα,β∗ has N positive zeros x0 : = 0 < x1 < · · · < xN(< xN+1 a bound ) at
which it changes sign;

ii) for every k = 1, . . . ,N there is a C1 mapping φk : [xk−1, xk] → [xk, xk+1] such that

φk(x)φ
′
k(x) > x and |fα,β∗(φk(x))| > |fα,β∗(x)|;
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iii) the function fα,β∗ on each interval [xk−1, φk−1(xk−1)] for 2 6 k 6 N + 1 has an
extremum at a unique point yk and its derivative is weakly monotone.

Then the generalized Curie-Weiss model with dissipation has at least one regime in which it
has exactly N limit cycles. The outer cycle is stable, then the others alternate as unstable
and stable, respectively.

The proof of this result is a simple application of the results in [71]. It is easy to see
that the function

fα,β(x) =

(

α+
1

2σ2

)

x−
β

2
g ′(x)

depends on the choice of the interaction function g. Since Assumptions 5.2.1 and 5.2.2 are
not very restrictive, g can be manipulated to obtain a system that admits a regime with
the desired number of limit cycles. It is clear that, when the origin is stable, with Proposi-
tion 5.3.2 we can create an even number of periodic orbits, half of them stable and half of
them unstable. On the other hand, if the origin is unstable, we can create an odd number of
periodic orbits, such that the inner and the outer are both stable, while the others alternate.

Let us highlight the links with the model without dissipation. One may think that the
existence of periodic orbits in the Liénard system (5.3.10) depends only on the zeros of the
function fα,β(x). By the form of this function, this would lead to a direct comparison with
the phase transitions in the model without dissipation and its critical values CV. Therefore,
let β∗ ∈ CV be a critical value for (5.3.2) such that two equilibrium points appear (one
stable and one unstable). One could immagine that the value

β∗
α

.
= β∗(1+ 2ασ2) (5.3.12)

is a critical value for the system (5.3.10) and it is such that two periodic orbit appear, one
stable and one unstable. Unfortunately, this is true only when we the origin bifurcates in
two stable points (when α = 0) or in one stable periodic orbit (the Hopf bifurcation when
α > 0). In all the other case, the critical values in CV could not be obtained by choosing
α = 0 in the dissipated case. By numerical evidence, for fixed α, σ2 > 0, we see that the
emergence of two periodic orbits occurs for a value of beta slightly greater than the one
expected from (5.3.12), while the disappearance of two periodic orbits occurs at smaller
values of β than expected. We suppose that this is linked to conditions as the points ii)
and iii) of Proposition 5.3.2.

5.3.4 A suitable interaction function for the coexistence of peri-

odic orbits

By means of an explicit example, we show how we can manipulate the interaction function
g in order to observe the coexistence of two stable limit cycles. Let us define the function

g(x) = tanh
(

ax2 + bx4 + cx6
)

,
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with a, b, c suitable constants such that g stays strictly increasing on [0,∞). Fix σ2 > 0,
then the pair (g, ρ), with ρ ∼ N(0, σ2) clearly satisfies Assumptions 5.2.1 and 5.2.2 and it
defines a generalized Curie-Weiss model. We consider two triplets of constants (1/2,−1,2)

and (1,1,0) in order to observe some particular regimes that do not exist for the classical
Curie-Weiss model with dissipation.

Case A: triplet
(

1
2
,−1,2

)

We see from Figure 5.1 the changes in the concavity of g ′(x). This causes, in the dynamics
without dissipation, three critical values of β and the four following regimes:

- for β < β1 the origin is a global attractor;

- for β ∈ (β1, β2) the origin is locally stable, but there are four other equilibrium points
−x2 < −x1 < 0 < x1 < x2, such that ±x2 are stable and ±x1 are unstable;

- for β ∈ (β2, β3) the origin becomes unstable and two additional stable equilibrium
points appear, · · ·− x1 < −x3 < 0 < x3 < x1 . . . ;

- for β = β3 the pairs of equilibrium points {x3, x1} and {−x3,−x1} collapse and disap-
pear, such that for β > β3 there are three equilibrium points −x2 < 0 < x2, the outer
two are stable and the origin is unstable.

Figure 5.1: The plot of the function g ′ and of lines y = 1
βσ2
x for different values of β. The

number of intersections gives the number of equilibrium points in the positive axes. Left:
the case A. Right: the case B.

The exact critical values may be obtained numerically, and the behavior of the dy-
namical system is clear from Proposition 5.3.1. As we expect, in this case the dissipated
dynamics (5.3.9) actually shows four different regimes as well, but the critical values β̂1(α),
β̂2(α), β̂3(α) are not straightforwardly obtained with the same procedure of the elements
of CV. To be precise, if β1 corresponds to the smallest value of β in which the line y = x

σ2β

is tangent to the graph of y = g ′(x), the value β̂1(α) is strictly greater than the smallest

value of β such that the line y =
2α+ 1

σ2

β
x is tangent to the graph of y = g ′(x). This means

that there exists a β∗ such that the line y =
2α+ 1

σ2

β∗ x intersects the graph of y = g ′(x)
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but any limit cycle occurs. Nevertheless, the system displays a regime of coexistence of
stable limit cycles. Let us better explain the four regimes that we observe in system (5.3.9)
(actually the computations and the plots refer to system (5.3.10), since the link with the
function fα,β is more clear in this case).

- For β < β̂1(α) the origin is a global attractor. Notice that, numerically we can see
that β̂1(α) is greater that the β∗ obtained in Theorem 5.3.2; indeed it is not necessary
that the function fα,β(x) is strictly greater than zero for all x > 0. It is reasonable to
believe, see Figure 5.2(a), that for those β such that the negative part of the function
is “small enough” do not necessary give rose to a periodic orbit.

- For β ∈ (β̂1(α), β̂2(α)) the origin is locally stable and, through a global bifurcation,
two periodic orbits have arised, the larger one is stable and the smaller one is unstable.
Indeed, we can prove numerically that there exists a value β∗ ∈ (β̂1(α), β̂2(α)) such
that the function fα,β∗ satisfies the conditions of Theorem A and B in [71] for the
existence of exactly two limit cycles. See Figure 5.2(b) in which we can observe the
stable outer cycle and the attractivity of the origin.

- Notice that βH = β̂2(α) from Theorem 5.3.2. Therefore, for β ∈ (β̂2(α), β̂3(α)) we
observe two attractive limit cycles, a smaller one spreading from the origin (that is
now unstable) while the bigger one remains from the previous regime: see Figure
5.2(c). The basin of attraction of the two stable orbits are separated by a third
unstable periodic orbit. This is the regime in which we see the coexistence of two
stable periodic orbits, one inside the other. The existence of this regime is again a
consequence of Theorem A and B in [71], because we can numerically find a β∗∗ that
satisfies the hypothesis for the existence of exactly three limit cycles, two stable and
one unstable.

- For β > β̂3(α) we see that only the largest periodic orbit has survived. Indeed, for
in β̂3(α) the smallest stable orbit and the unstable one collapse and disappear. Of
course, we see that this β̂3(α) = βUC defined in Theorem 5.3.2; but from numerical
evidence we suppose that for this value of β the function fα,β has more than one
single zero in the positive half-line, but that the other two zeros are not distant
enough to admit the existence of the two inner orbits. Of course when β is such that
there exists a unique positive zero for fα,β, we analitically prove the existence and
uniqueness of the limit cycle (see Theorem 5.3.2) while for lower values we can only
show it numerically, see Figure 5.2(d).

Case B: triplet (1,1,0)

We see in Figure 5.1 that the shape of g ′ basically allows three different regimes for the
case without dissipation. Indeed, in (5.3.2), the set CV has cardinality 2, i.e. we have
β1 < β2 =

2
σ2

. The three regimes are the following:

- for β < β1 the origin is a global attractor;
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- for β ∈ (β1, β2) there are five equilibrium points −x2 < −x1 < 0 < x1 < x2, where
±x1 are unstable, while the others are stable;

- at β = β1 the two points ±x1 collapse in the origin that becomes unstable, such that
for β > β1 the origin is unstable and the points ±x2 are stable.

We treat this example in the dissipated case (5.3.9) (by means of the Liénard system
(5.3.10)). We expect three regimes and, in particular, we will observe an atypical behavior
at the Hopf bifurcation, where we will not have a small limit cycle bifurcating from the
origin, but the already existing stable limit cycle that becomes a global attractor. In Figure
5.3 we compare the regimes immediately below and above the Hopf bifurcation.

- For β < β1(α), the origin is a global attractor. As is Case A the value β1(α) is
strictly greater than the value in which the line first touches the graph y = g ′(x).

- For β ∈ (β1(α), βH) the origin is stable and we have an unstable periodic orbit
contained in a stable periodic one. When β increase the inner orbit shrinks and the
outer expands.

- For β = βH the Hopf bifurcation is such that the origin looses stability, but this
happens simultaneously to the collapse of the unstable periodic orbit on it. Therefore,
after the bifurcation, we do not see the usual periodic orbit expanding form the origin
because the unique orbit is the stable one (from the previous regime) that becomes
globally stable.

This case is interesting because the Hopf bifurcation do not originates a small periodic
orbit. However, the phenomenon is still a local one, because it is a small unstable orbit
that collapses on the origin changing its stability.
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Figure 5.2: Different regimes for case A. In all the pictures, the black line represents the graph
of y = fα,β(λ) and we fixed α = σ2 = 1. In (a), the regime β < β̂1(α) (β = 1.2): the red
line represents the solution starting from λ(0) = 1, y(0) = 4, which is definitely attracted by the
globally stable origin. In (b), the regime β ∈ (β̂1, β̂2) (β = 2): the red-colored solution, starting
from λ(0) = 2, y(0) = −7, and the blue-colored solution, starting from λ(0) = 0.5, y(0) = −5, are
attracted by a stable limit cycle. Here, the origin is locally stable (the orange-colored solution with
initial condition λ(0) = 0.5, y(0) = −2 is attracted by it) and its basin of attraction is surrounded
by an unstable limit cycle. In (c), the regime β ∈ (β̂2, β̂3) (β = 3.4): the red and blue lines, here
representing solution starting from λ(0) = 0.5, y(0) = −17 and λ(0) = −0.5, y(0) = 10 respectively,
are again attracted by the outer cycle but now the origin is unstable and another stable cycle is
born via the Hopf bifurcation. The orange-colored solution, with initial condition λ(0) = −0.25,
y(0) = 1.5, is attracted by the smallest cycle. The basins of attraction of the stable orbits is
separated by an unstable cycle. In (d), the regime β > β̂3 (β = 6): only the external orbit is
survived and it has become globally attractive, as shown by the red and blue lines, with initial
conditions λ(0) = 0, y(0) = −0.005 and λ(0) = 1.5, y(0) = 31 respectively.
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Figure 5.3: Different regimes for case B close to the Hopf bifurcation. In both pictures, the
black line represents the graph of y = fα,β(λ) and we fixed α = σ2 = 1. In (a), the regime
β ∈ (β̂1(α), βH) (β = 1.2): the situation is qualitatively the same of Figure 5.2(b). The red, blue
and orange lines represent solution starting from λ(0) = 0.5, y(0) = −2, λ(0) = 0, y(0) = −1.5 and
λ(0) = 0, y(0) = −0.8 respectively. In (b), the regime β > βH (β = 1.8): the system has undergone
through a Hopf bifurcation but the stable limit cycle spreading from the origin is not present
here, due to the collapse of the unstable cycle in the origin, leaving the outer orbit to become
globally attractive. The red-colored and blue-colored solutions have initial conditions λ(0) = 0,
y(0) = −0.005 and λ(0) = 0, y(0) = 6 respectively.
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