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ABSTRACT 17 

There is growing awareness that indoor exposure to particulate matter with diameter ≤ 2.5µm (PM2.5) is 18 

associated with an increased risk of adverse health effects. Cooking is a key indoor source of PM2.5 and 19 

an activity conducted daily in most homes. Population scale models can predict occupant exposures to 20 

PM2.5, but these predictions are sensitive to the emission rates used. Reported emission rates are highly 21 

variable, and are typically for the cooking of single ingredients and not full meals. Accordingly, there is 22 

a need to assess PM2.5 emissions from the cooking of complete meals. 23 

Mean PM2.5 emission rates and source strengths were measured for four complete meals. Temporal 24 

PM2.5 concentrations and particle size distributions were recorded using an optical particle counter 25 

(OPC), and gravimetric sampling was used to determine calibration factors.  26 

Mean emission rates and source strengths varied between 0.54—3.7 mg/min and 15—68 mg, 27 

respectively, with 95% confidence. Using a cooker hood (apparent capture efficiency >90%) and frying 28 

in non-stick pans were found to significantly reduce emissions. OPC calibration factors varied between 29 

1.5—5.0 showing that a single value cannot be used for all meals and that gravimetric sampling is 30 

necessary when measuring PM2.5 concentrations in kitchens. 31 

Key Words: cooker hood, gas burner, source strength, size distribution, calibration factor 32 

PRACTICAL IMPLICATIONS 33 

Cooking is a key indoor source of PM2.5 in most houses and may contribute significantly to personal 34 

exposure and adversely affect health if PM2.5 concentrations are not maintained below known health-35 

based thresholds. 36 

When determining PM2.5 exposure indoors using an optical particle counter (OPC), its measurements 37 

should be accompanied by those from a gravimetric sampler to provide a calibration factor for the OPC 38 

with which to scale its measurements. OPC calibration factors vary by meal and so it is only possible to 39 

use a single factor for all meals by introducing significant uncertainty. 40 
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Good exposure mitigation measures in domestic kitchens include the use of a cooker hood that covers 41 

the front burners, the use of non-stick frying pans, and cooking methods that avoid the browning or 42 

charring of food. This is especially important in airtight dwellings where ventilation may be inadequate 43 

or in other houses during the heating season when occupants seek to reduce ventilation rates to obtain 44 

thermal comfort or to minimize heating fuel costs. 45 
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1 INTRODUCTION 46 

Airborne fine particulate matter with a diameter ≤2.5 µm (PM2.5) has been identified as a priority indoor 47 

air pollutant in US homes1. This is because PM2.5 is prevalent and both acute and chronic exposure is 48 

linked to an increased risk of adverse health effects, including cardiovascular and respiratory morbidity, 49 

and mortality2. Existing research has primarily focussed on exposure to PM2.5 from ambient sources. 50 

But, there is a growing interest in the risks posed by PM2.5 from indoor sources because people typically 51 

spend most of their time inside; for example, people in the UK spend 70% of their time in their houses3. 52 

In addition, improvements in dwelling airtightness without compensatory purpose provided ventilation 53 

has led to lower ventilation rates4 and a reduction in contaminant dilution. In many homes, indoor 54 

sources have been found to have a greater effect on indoor PM2.5 concentrations than those from ambient 55 

sources5, and so emissions from indoor sources might be an increasingly important source of personal 56 

PM2.5 exposure. 57 

Cooking has frequently been identified as an indoor PM2.5 source by in situ monitoring in dwellings6-10. 58 

Frying and grilling were found to increase indoor PM2.5 concentrations by up to 30 and 90 times the 59 

ambient concentration, respectively8. Furthermore, Chan et al.11 found emission events exceeding 30 60 

minutes were more frequent around meal times, with the highest occurrence between 17:00 and 21:00, 61 

suggesting that the cooking of an evening meal is an important PM2.5 emission source. Elevated risks of 62 

lung cancer, particularly in women, are associated with emissions from cooking and with poor kitchen 63 

ventilation12. Cooking using traditional Woks in kitchens without a cooker hood is associated with an 64 

increased lung cancer risk for non-smoking Taiwanese women13, and several known carcinogens have 65 

been identified as constituents of cooking emissions14. The cooking method and conditions are not 66 

exclusive to Taiwan or Asia. Additionally, in a risk assessment of inhalation exposure to trace elements 67 

when cooking in under-ventilated spaces, estimated carcinogenic and non-carcinogenic risks were 68 

higher than safe levels for most elements considered15. However, concern has been raised about relating 69 

health effects directly with the diameter of particles alone, since PM2.5 is a complex mixture of particles 70 

with a range of characteristics including size, water solubility, chemical composition, and metal 71 

content16. 72 
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Large scale in situ monitoring is often invasive, and cost and time prohibitive. An alternative is to model 73 

stocks of dwellings to estimate exposures at the population scale and to predict the impacts of 74 

interventions. Model predictions are sensitive to the emission rates used17, and reported emissions from 75 

cooking are highly variable, even for the same cooking methods and ingredients; for example, reported 76 

emission rates for toasting vary between 0.11 mg/min8 and 9.5 mg/min18. Accordingly, stock models 77 

must account for the uncertainty in emission rates in their predicted concentrations, and modelling 78 

frameworks have been developed to do this17. 79 

There are five main factors that affect cooking emissions. Firstly, the cooking method has a clear effect 80 

on the emission rate. Dry, water based, and oil based cooking processes all have very different emission 81 

rates, and oil based methods, such as frying, have the highest19. Similarly, burned food, grilling/broiling, 82 

and frying are found to have the highest mean emission rates8,20,21. Higher emission rates are found from 83 

stir frying than pan frying, attributable to higher temperatures22. Higher particle numbers and mass 84 

concentrations at higher cooking temperatures are found by some23 but not all; 24 maybe because the oil 85 

smoke point, the temperature at which the oil visibly smokes, was not reached. 86 

Secondly, there is evidence that ingredients influence PM2.5 emissions, and oil type is perhaps the most 87 

significant23,25. The oil smoke point is important, but so are the composition and water content19,26,27. 88 

Emission rates from the heating of different cooking oils have been found to vary26,28. Corn, coconut, 89 

and olive oils are found to have higher emission rates than from soybean, safflower, canola, and peanut 90 

oils26. This difference was mostly related to the smoke point of the oils, except that olive oil generated 91 

PM2.5 at the same temperature as corn and coconut oils despite having a higher smoke point. In contrast, 92 

corn and soybean oils are found to have a lower emission rate than rapeseed and sunflower oils28. 93 

Thirdly, the effects of non-essential additives, such as seasonings, on emission rates when heating oil 94 

have been investigated29. In controlled laboratory tests, the addition of sea and table salt to canola oil 95 

reduced the PM2.5 emission rate. A similar test reduced emission rates by 56% when salt was added to 96 

corn oil30. 97 

Fourthly, the food type is important. A positive correlation is found between the fat content of foods and 98 

their emission rate23,25,31. Additionally, the water content of foods could impact particle size distribution 99 

when grilling ground beef32. 100 
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Finally, there is some evidence that the cooking equipment used is influential. For example, adsorbed 101 

organic matter on the surface of pans may generate particulate matter when heated19. Heating an empty 102 

pan is found to emit ultra-fine particles (UFP) but not PM2.5
33. Additionally, higher emission rates are 103 

reported when using gas burners rather than electric hobs (also known as a cooktop)19,34, but not by 104 

others23, possibly due to the confounding effect of hob temperature. 105 

There are numerous studies investigating cooking emissions and influencing factors by the cooking of 106 

single ingredients. Examples include toasted bread, 9.5±10.8 mg/min, fried chicken breast, 15.2 mg/min, 107 

and deep fried French fries, 0.34±0.03 mg/min18. However, the cooking of individual components, rather 108 

than full meals, may not be representative of typical home meal preparation. The addition of ingredients 109 

at various stages of the cooking process may affect PM2.5 emission rates; for example, by amending 110 

cooking temperatures. However, the need to protect public health is arguably more important than 111 

proving this hypothesis, and so there is a need to investigate the effects of repetitively cooking multiple 112 

food types concurrently in a controlled and systematic manner, because it has not been done before and 113 

the data can be used to inform policy. 114 

It is also important to consider the impact of mitigation strategies on emission rates. It is unreasonable 115 

to expect cooking to be removed from dwellings en masse. Instead, emitted pollutants need to be 116 

extracted at their source using a cooker hood (also known as a range, exhaust, or extractor hood). This 117 

device reduces exposure risks by capturing emitted pollutants before they mix with kitchen air. 118 

Ventilation requirements for kitchens vary around the world. In the UK, kitchens in new dwellings are 119 

required to have an intermittent extract rate of 60 l/s, or 30 l/s through a cooker hood, but there is no 120 

requirement to modify the ventilation strategy in existing dwellings35. Whereas in the Netherlands, a 121 

kitchen ventilation rate of 21 l/s is required in new dwellings36. In comparison, ASHRAE Standard 62.2 122 

recommends 50 l/s and 150 l/s with and without a cooker hood37, respectively. Mullen et al.38 found 123 

lower concentrations of CO, NO and NOx in households that reported using kitchen ventilation than 124 

those that did not, and a simulation of Southern Californian dwellings predicted that using cooker hoods 125 

in all dwellings increased the percentage of homes meeting air quality standards39. 126 

The ability of a cooker hood to capture particles is indicated by its capture efficiency (CE). Singer  et 127 

al.40 defined CE as the percentage of emitted particles that are extracted before they mix with room air, 128 
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whereas Lunden et al.22 defined CE as the percentage of emitted particles that are extracted either 129 

directly or during operation. A cooker hood’s CE is a function of the airflow rate through the hood, 130 

physical features that entrain pollutants towards the device, the installation height and capture volume, 131 

and the burner location and coverage by the hood40. Lunden et al.22 found particle CEs of 4-39% for stir 132 

frying on the front burner, and 70-99% for the back burner. Singer et al.40 reported similar findings. 133 

Lunden et al.22 also found that CEs for particulates were different to those for gases, and that this 134 

difference varied between hoods from different manufacturers. 135 

This paper aims to advance the understanding of PM2.5 emissions that occur when cooking full main 136 

meals. It does this by cooking four hot meals commonly prepared in Northern European countries under 137 

controlled conditions using a kitchen laboratory. The cooking methods are varied to help identify 138 

parameters that affect emissions, and the cooker hood is explored as an exposure mitigation measure.  139 

2 METHODS AND MATERIALS 140 

2.1 Laboratory Facilities 141 

All of the experiments were performed under controlled ventilation conditions in a test chamber with a 142 

depth of 3.65 m, width of 2.66 m, height of 2.68 m, and volume of 𝑉 = 26.02±0.08 m3. The chamber 143 

layout, including its dimensions, the placement of the cooker hood and the size of cabinets, is 144 

comparable to the EN 61591341 standard for kitchen test facilities. The only addition was the use of a 145 

ceiling diffuser to supply air, intended to simultaneously enhance the mixing of the space and minimize 146 

stratification and disturbances of the airflow under the cooker hood42. Supply air was delivered by an 147 

HVAC unit equipped with an AFPRO F7 filter. To minimize uncontrolled infiltration and exfiltration, 148 

the supply air flowrate was adjusted so that the pressure difference between the test chamber and its 149 

surroundings was less than 0.5 Pa when measured by a Halstrup-Walcher EMA 84 digital pressure 150 

gauge. 151 

Tests were performed for two ventilation scenarios that varied the flow rate and location of the 152 

ventilation extract. The first is a low ventilation scenario with an airflow rate of 21 l/s (75 m3/h), the 153 

minimum required in domestic kitchens by the Netherlands Building Regulations36. It was achieved 154 

using a single extract grille located in the middle of the chamber 94 cm below the ceiling; see Position 155 
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A in Figure 1. The second is a high ventilation scenario achieved using a cooker hood with a flow rate 156 

of 83 l/s (300 m3/h). The hood’s airflow rate was controlled by a centrifugal fan located outside the 157 

chamber and set by measuring the pressure drop over an orifice plate following EN ISO 5167-243. The 158 

main tests were conducted using the low ventilation scenario (see Sections 2.3.1-2.3.3) but the high 159 

ventilation scenario was used to support additional analyses (see Section 2.3.4). 160 

Full mixing conditions were assumed. An SMC TR16 fan was used during the low ventilation scenario 161 

to enhance air mixing, but not for the high scenario to avoid reducing the capture efficiency of the cooker 162 

hood by disturbing the airflow under it; see Section 3.5. 163 

A Pelgrim GK 564 gas stove with four burners was used as a heat source; see Figure 1. The maximum 164 

flowrates, �̇� (l/min), and power, 𝐻 (kW), per burner were �̇� = 3.2 l/min and 𝐻 = 1.7 kW for the back 165 

left burner, �̇� = 4.5 l/min and 𝐻 = 2.4 kW for the back-right burner, 𝑄 ̇ = 2.5 l/min and 𝐻 = 1.3 kW for 166 

the front-left burner, and 𝑄 ̇ = 1.9 l/min and 𝐻 = 1.0 kW for the front-right burner. 167 

2.1.1 Cooker Hood 168 

A ducted cooker hood is a ventilation device located immediately above a stove that aims to capture and 169 

remove contaminants emitted by combustion and cooking before they mix in a space. It should cover 170 

the front-burners and contain a damp-buffer (where the sides that frame the hood protrude below its 171 

central horizontal plate) to ensure high CEs40,44. A consumer standard ATAG WS9011QAM ducted 172 

cooker hood was selected to meet the criteria of the high ventilation scenario and installed 70 cm above 173 

the kitchen counter (see Figure 1), which approximately agrees with Singer et al.40 and Lunden et al22. 174 

The cooker hood is 90 cm wide and 53.5 cm deep, and is equipped with a small damp-buffer of height 175 

3 cm (see Figure S1). The exhaust hood extended over the front burners whose centres were 40 cm from 176 

the wall. When frying pans were used on the front burners, the smaller pan (∅=24 cm) was completely 177 

covered by the hood, whereas the larger pan (∅=28 cm) protruded by 0.5 cm. 178 

2.2 PM2.5 Measurement Equipment 179 

The PM2.5 concentration and particle size distribution were measured in the test chamber using a Grimm 180 

11-R Mini Laser Aerosol Spectrometer optical particle counter (OPC), factory calibrated using dolomite 181 

dust. It measures particles with diameters between 0.25-32 µm and classifies them into 31 size bins. It 182 
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detects concentrations between 0.1 µg/m3 and 100 mg/m3, and identifies particle counts of up to 2 183 

million particles per litre, at a sampling frequency of 6 seconds. The OPC was placed below the extract 184 

grille at 1.25 m above the floor, at point A in Figure 1. There are number of known issues with using 185 

OPCs to measure PM2.5
60 and the consequences are discussed in Section 3. 186 

OPCs pass an aerosol through a laser beam to measure the degree of light scattering, which varies 187 

according to the mass concentration, size, shape, and composition of its particles45. They are calibrated 188 

using test dust with known properties, commonly solid, spherical, and non-absorptive polystyrene latex 189 

spheres with a defined distribution of diameters46. If the physical or optical properties of the measured 190 

particles differ from those of the test dust, the mass concentrations reported by the OPC must be 191 

corrected18. The correction is made by multiplying a measured concentration by a calibration factor45. 192 

Additionally, the OPC may also underestimate the concentrations if a significant proportion of the 193 

emitted particles are smaller than the lower detection limit of the device61. Accordingly, concurrent 194 

gravimetric sampling (GS) was used to determine the true mass concentrations using filter-based GS 195 

devices for each test meal. Air was drawn through a TECORA fine air inlet, a low volume sampler head, 196 

and a glass-fibre 47 mm filter at 2.3 m3/h using Gilian Aircon2 electric pumps for a defined period of 197 

time, following EN1234147. The volumetric flow rates were checked with a calibrated Yokogawa RAGL 198 

rotameter before and after each collection period. Each filter was weighed before and after a test in 199 

accordance with MDHS 14/448, and so the mass increase, flow rate, and measurement time are used to 200 

calculate the mean concentration. The calibration factor is the mean average of the ratios of the GS and 201 

OPC mean concentrations. Three GS devices were placed at the same height as the OPC and 0.5 m to 202 

the left, right, and rear of it; see Positions B-D in Figure 1. 203 

2.3 Test Meals and Cooking Methods 204 

To derive a typical portion size, we used data reported for the Dutch National Food Consumption Survey 205 

(DNFCS)49, a periodic survey of food consumed by the Dutch population. In the DNFCS, data is 206 

weighted and aggregated by age and sex, where each group is designed to be representative by age, 207 

region of the country, degree of urbanisation, and education level. We used a portion size in line with 208 

those reported by the DNFCS for the 31-50 age group for men (n=348) and women (n=351) because it 209 
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covers the majority of the adult Dutch population and thus indicates typical adult portion sizes. Four 210 

meals were chosen comprising carbohydrates, vegetables, and meat based protein sources, because the 211 

DNFC indicates that <7% of the population has special eating habits that include vegetarianism. The 212 

proportions of meat, potatoes and vegetables were guided by the median mass eaten per consumption 213 

day by men and women aged 31-50 years. This data was used to formulate meal types that could be 214 

cooked using a stove with a high degree of repeatability. 215 

2.3.1 Test Meal Descriptions 216 

The ingredients of the four meals are given in Table 1, and were selected because they are typically 217 

Dutch and broadly European. Meal 1 is a reference meal whose emissions may be compared to the 218 

others. The ingredients for Meals 1 and 2 were informed by the DNFCS49 and the types of meat are 219 

consistent with common Western cooking ingredients14. The mass of each solid ingredient and volume 220 

of each liquid were constant and estimated for a median man and woman. All ingredients were 221 

supermarket brand basic ingredients except for the straight to wok noodles, which were branded. Fresh 222 

ingredients were refrigerated at 4ºC before cooking whereas the canned and dry ingredients, oil and 223 

additives were all stored at room temperature. Solid ingredients were weighed using a Zhongshan Camry 224 

EK9210K electronic kitchen scale and the salt was weighed with a Mettler AM50 microbalance. Liquid 225 

ingredients were measured using a 25 ml measuring cylinder, and 250 ml and 1000 ml beakers. 226 

2.3.2 Cooking Equipment 227 

A cooking protocol was developed based on gas flow rates and cooking time, following Lunden et al.22. 228 

The gas flow rate was controlled with the cooker controls and monitored using 2 parallel Bronkhorst F-229 

201EV mass flow controllers. It was displayed in real-time, summed, and adjusted to meet required flow 230 

rates. Pan temperatures were identified during preliminary tests using a ThermaCAMTM SC640 FLIR 231 

thermal camera following Buonanno et al.23. The time taken to reach a required temperature and the gas 232 

flow rate were noted. Thereafter, only the gas flow rate and the time were used to control pan 233 

temperature. Four pans were used: (i) a TEFAL Titanium Pro 28 cm non-stick stir-fry pan; (ii) a TEFAL 234 

Talent Pro 24 cm non-stick frying; (iii) a BK Conical Glass stainless steel 2 litre saucepan; and (iv) a 235 
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BK Conical Glass stainless steel 1.5 litre saucepan. Hereon, the frying pans are denoted by their diameter 236 

and the saucepans by their volume. All saucepans were covered by a lid during cooking. 237 

Before each test, the pans and cooking materials were cleaned in warm water with standard dishwashing 238 

soap, rinsed with tap water, and dried. At the end of each cooking period all burners were turned off and 239 

a lid was placed on any frying pan to prevent continued emissions, and to give a clear end to the test. 240 

The PM2.5 concentrations in the test chamber were monitored for a further 30 minutes. Between tests, 241 

the chamber was purged of PM2.5 by increasing the exhaust ventilation rate and opening the door to the 242 

laboratory until concentrations returned to background levels of <1 μg/m3. 243 

To investigate the repeatability of emission rates during the cooking period, each meal was cooked 6 244 

times using the low ventilation scenario; see Table 2. Gravimetric measurements were made during the 245 

final repetition to determine calibration factors; see Section 2.2. 246 

2.3.3 Cooking Instructions 247 

The steps required to cook each meal are described here but the ingredient measures are only given in 248 

Table 1 for brevity. Meal 1 begins at minute 0 by heating olive oil in a 28 cm frying pan located on the 249 

front-left burner with a gas flow rate of 2.5±0.1 l/min. At minute 3, when the pan reaches approximately 250 

160°C, the chicken is added and at minute 4 the gas flow is reduced to 1.3±0.1 l/min. At minute 8 the 251 

back left burner is ignited and a 2 litre saucepan containing the water and beans is placed over it, giving 252 

a total gas flow rate of 4.2±0.1 l/min. At minute 10 the front-right burner is ignited and a 24 cm frying 253 

pan containing olive oil is placed over it, giving a total gas flow rate of 5.3±0.2 l/min. At minute 13 the 254 

sliced potatoes are added to the 24 cm frying pan and all ingredients are cooked for a further 15 minutes 255 

until the test ends at minute 28. Throughout the cooking period the chicken is turned every 5 minutes 256 

and the potatoes stirred for 30 seconds at 3 minute intervals. 257 

Meal 2 follows the method of Meal 1 with one main exception: the potatoes are boiled in water instead 258 

of fried. At minute 8 the back-left burner is ignited, giving a total gas flow rate of 4.2±0.1 l/min, and a 259 

1.5 litre saucepan containing the potatoes and water is placed over it. At minute 13 the front-right burner 260 

is ignited to boil the French beans, giving a total gas flow 5.3±0.2 l/min. In this test, the potatoes are not 261 
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stirred during cooking. The test ended at minute 28, therefore the beans were cooked for less time than 262 

in Meal 1, but were cooked by the end of the test.  263 

Meal 3 begins at minute 0, by heating olive oil in the 28 cm frying pan over the rear-right burner with a 264 

gas flow rate of at 4.5±0.1 l/min. At minute 3 the bacon is added and stirred constantly. At minute 7 the 265 

gas flow rate is reduced and the onion and garlic added to the bacon. Simultaneously, the back-left 266 

burner is ignited under a 2 litre saucepan containing water for the pasta, giving a total gas flow rate of 267 

4.1±0.1 l/min. At minute 9 the minced beef is added and the gas flow rate increased to 4.6±0.1 l/min. 268 

At minute 13 the tinned tomatoes are added to the mince, mixed thoroughly, and stirred thereafter at 3 269 

minute intervals until the sauce has simmered for 15 minutes in total. At minute 18 the rear-right burner 270 

is reduced giving a total gas flow rate of 3.9±0.1 l/min, and the pasta is added to the boiling water and 271 

cooked for 10 minutes. At minute 21 the back-left burner is reduced giving a total gas flow rate of 272 

1.9±0.1 l/min. The test ends at minute 28. 273 

Meal 4 only uses the 28 cm frying pan located over the rear-right burner with an initial gas flow rate of 274 

4.5±0.1 l/min. After heating the olive oil, at minute 3 the diced chicken is added, turned at minute 4, and 275 

the burner reduced to 1.1±0.1 l/min at minute 5. At minute 8 the chicken is removed from the pan, the 276 

total gas flow rate is increased to 4.4±0.1 l/min, and the olive oil is added. At minute 10 the vegetables 277 

are added, spread thinly, and stirred continuously. At minute 15 the gas flow rate is reduced to 1.1±0.1 278 

l/min, and the chicken and noodles added to the pan and cooked until the test ends at minute 17. 279 

2.3.4 Additional Tests 280 

Four additional sets of tests were conducted to investigate specific areas of interest, which are reported 281 

in Section 3.4. Firstly, to investigate PM2.5 emission rates from the gas stove, two blank tests were 282 

conducted; see Table 2. These followed the gas flows and timings from the reference meal (see Section 283 

2.3.3) for the low ventilation scenario (see Section 2.1), but neither was food cooked nor pans heated. 284 

Secondly, three tests investigated factors that the literature indicates may affect PM2.5 emissions during 285 

cooking; see Table 2. The reference meal was used with three separate substitutions: (i) any olive oil 286 

used for frying was substituted with Croma brand “Bakken en Braden” liquid margarine to investigate 287 

the findings of Torkmahalleh et al.26 who found that particle emissions varied with oil type; (ii) the non-288 
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stick frying pans were replaced by stainless steel pans; and (iii) the chicken was seasoned with 1 g of 289 

salt before frying, to investigate whether the findings from Torkmahalleh et al.29 could be applied to 290 

realistic cooking methods. Here, Torkmahalleh et al. found that adding salt to oil before heating reduced 291 

particle emissions under controlled laboratory conditions. 292 

Thirdly, to investigate the reduction potential of extracting the PM2.5 at source, the 4 test meals were 293 

prepared using the high ventilation scenario with air solely extracted through the cooker hood. 294 

Finally, Lunden et al.22 found higher particle CEs when frying on the back burners of a stove and so this 295 

was investigated using the reference meal with the frying pans relocated to the back burners; see Table 296 

2. 297 

2.4 Data Processing and Statistical Analysis 298 

The measurements of PM2.5 concentration over time for each test are used to compute a source strength 299 

and an emission rate. Several methods of calculating an emission rate are described in the literature that 300 

take the mass balance model of Ott et al.50 as their basis, but vary by their assumptions about the test 301 

conditions or the emission characteristics50. The most common method assumes a constant emission rate 302 

and either uses the measured concentration at the end of the emission period20, or calculates the 303 

theoretical peak concentration that should occur at the end of that period in a perfectly mixed space18, 304 

to determine the emission rate. Variations of the peak estimation method have been used by Dacunto et 305 

al.18, He et al.8, Jiang et al.51, Lee et al.52, and Olson and Burke20. 306 

Trials indicated that the emission rate is not constant during the cooking period. Therefore, an alternative 307 

method that assumes a variable emission rate is used to determine an average emission rate for the 308 

cooking period. It uses the principle that the area-under-the-curve of a plot of concentration over time, 309 

𝑡 (s), is equivalent to the total mass emitted, the source strength, 𝐺 (µg). The source strength is then 310 

divided by the emission period to give an average emission rate50. Here, the cooking time and emission 311 

period, 𝑇 (s), are considered identical. The average emission rate, 𝑔(𝑇)̅̅ ̅̅ ̅̅  (µg/s), is given by 312 

 𝑔(𝑇)̅̅ ̅̅ ̅̅ =  𝛷𝑉𝐶(𝑇)̅̅ ̅̅ ̅̅ +  
𝑉𝐶(𝑇)

𝑇
 (1) 
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where 𝛷 (s-1) is the total decay rate (the sum of ventilation, deposition, agglomeration, and evaporation 313 

rates), 𝑉 (m3) is the test chamber volume, 𝐶(𝑇)̅̅ ̅̅ ̅̅  (µg/m3) is the average concentration over the emission 314 

period, and 𝐶(𝑇) (µg/m3) is the concentration at the end of the emission period. Then, 𝐺 = 𝑔(𝑇)̅̅ ̅̅ ̅̅  𝑇. 315 

Generally, 𝑔(𝑇)̅̅ ̅̅ ̅̅  is reported in mg/min and 𝐺 in mg. The model is based on assumptions of air 316 

homogeneity, zone isolation, and perfect mixing53. 317 

All parameters are known or obtained from measurements, except for 𝛷, which is determined from the 318 

log-linear regression of concentrations measured during a 30 minute decay period immediately after the 319 

emission period; see Section 2.3.2 and Dacunto et al.18. The precision of estimates in 𝛷 and the 320 

assumptions of the model are determined from the regression where a coefficient of determination (R2) 321 

indicates the proportion of the variance in 𝛷 that is predictable from the measurements of concentration 322 

over time. The standard error (𝛼) in 𝛷 describes uncertainty in its value. The propagated error in 𝑔(𝑇)̅̅ ̅̅ ̅̅  323 

is the root of the sum of the squares of uncertainty in each parameter, obtained by perturbing each one 324 

by its standard error, following Hughes and Hase54. The calculation of 𝛷, 𝑔(𝑇)̅̅ ̅̅ ̅̅ , and 𝐺, and the 325 

uncertainty in them, was made using bespoke MATLAB code55. The resulting emission rates were 326 

compared using a single factor ANOVA with a 5% significance threshold, and two sample t-tests with 327 

Bonferroni correction, which was used to reduce the probability of a Type 1 error. Here, the 5% 328 

significance level is divided by the number of tests to give a revised significance of 0.83%. This analysis 329 

was conducted using Excel. 330 

By removing contaminants before they are allowed to mix in a space, a cooker hood has the effect of 331 

reducing 𝑔(𝑇)̅̅ ̅̅ ̅̅  to give a net emission rate. To estimate the potential of the cooker hood to do this, 𝑔(𝑇)̅̅ ̅̅ ̅̅  332 

was calculated for each meal (see Section 2.3.1) under low and high ventilation conditions and compared 333 

to give a percentage reduction in 𝑔(𝑇)̅̅ ̅̅ ̅̅  for each meal. 334 

3 RESULTS AND DISCUSSION 335 

PM2.5 concentrations were measured over time following the methods given in Section 2 for each of the 336 

𝑛=4 meals described in Table 1. This section presents results and discusses the scaling of the data, the 337 

emission characteristics for each meal, meal emission rates, confounding factors, the effectiveness of 338 

the cooker hood, and further emissions from the gas burners. 339 
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3.1 Calibration Factors 340 

In order to interpret the measurements of the OPC, a mean calibration factor, 𝐶�̅�, for each meal was 341 

calculated following the method described in Section 2.1, and these have been used to scale the mass 342 

measurements of the OPC described hereon. There is a marked variation by meal: 𝐶1̅=3.9±0.15; 343 

𝐶2̅=5.0±0.096; 𝐶3̅=2.7±0.039; and 𝐶4̅=1.5±0.045. Full results from the gravimetric sampling tests can 344 

be found in Table S1. Gravimetric samples were only collected during a single repetition of each meal, 345 

with samples collected on filters in 3 locations within the test chamber. Therefore, the uncertainty in the 346 

calibration factors does not account for the variation between repetitions, which may be larger. The 347 

variation between meals indicates the composition and optical properties of the emitted PM2.5, and 348 

proportion of particles below the detection limit of the OPC, varied between meals. They also show that 349 

the OPC consistently underestimates particle mass when cooking meals, which agrees with Wang et 350 

al.45 whose OPCs were used to measure PM2.5 in houses. Wang suggests that this is caused by 351 

coincidence losses, deviations in the refractive coefficient, or the presence of high concentrations of 352 

particles that are smaller than the OPC’s detection limit. Each filter was removed from its transport 353 

cassette and equalized in a climate chamber for over 4 hours prior to its second weighing. Trapped 354 

aqueous aerosols are likely to have evaporated and so are a source of calibration factor bias because the 355 

OPC is known to detect them. These calibration factors are higher than others found in literature18,51. 356 

However, the calibration factors given by Dacunto et al.18 and Jiang et al.51 are not determined using a 357 

Grimm calibrated with Dolomite dust and so they are not directly comparable to those given here. 358 

The highest calibration factor was found for Meal 2 whose particle size distribution (see Figure 4a) 359 

indicates that it emitted the highest proportion of small particles, and so this supports the theory that the 360 

deviation might be partially caused by small particles whose diameters are less than those detected by 361 

the Grimm. The differences in 𝐶�̅� could also be attributable to changes in the particle composition. Some 362 

other affecting factors are discussed in Section 3.4.  363 

3.2 Emission Characteristics 364 

Figure 2 shows PM2.5 concentrations measured in the test chamber over time during, and after, the 365 

cooking period. Consistent gradients show steady emission rates and steeper gradients correspond to 366 
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higher emission rates. Although the concentrations were logged at 6 second intervals (see Section 2.2), 367 

they are smoothed here over 1 minute intervals for illustrative purposes. An additional figure in the 368 

supplementary information indicates key moments in the cooking process. All meals show repeatable 369 

temporal trends in PM2.5 concentration, although there is considerable variance in the magnitude of the 370 

concentrations between tests. Cooking is a complex process, and although the process and ingredients 371 

were standardized between repetitions, some level of variation would be expected. In particular, 372 

although ingredients were purchased from the same location, their exact composition was not tested. 373 

When cooking Meals 1 and 2 (chicken, beans and fried or boiled potatoes, respectively), the PM2.5 374 

concentrations initially increase steadily for about 20-25 minutes, and then increase more rapidly for the 375 

remainder of the cooking period. It is not immediately clear what caused this change, but it is possible 376 

that over time, the frying pan temperature increased and moisture was removed from the fried 377 

ingredients leading to Maillard browning. Additionally, it may be caused by particles below the Grimm’s 378 

detection limit coagulating over time until they reach a detectable size. The consistent changes in 379 

gradient exhibited by Figures 2a and 2b show that Meals 1 and 2 share similar emission characteristics, 380 

and this is to be expected given their shared ingredients and similar cooking processes; see Table 1. 381 

However, Figures 2c and 2d show that Meals 3 and 4 are distinctly different. 382 

During the cooking of Meal 3 (pasta bolognaise), the PM2.5 concentration initially increases rapidly, 383 

correlating with high temperature frying. The changes between minutes 7 and 13 correspond to the 384 

adding of ingredients and changes in gas flowrates. The PM2.5 emission rate appears to reduce 385 

substantially after the early peak, after the onions and garlic are added and the gas flow turned down. 386 

During the final repetition of Meal 3, concentrations were notably higher, as they appeared to increase 387 

for longer. The gas supply rate was identical the other repetitions and so the reason for this variation is 388 

not clear, but may be related to a variations in the ingredients. 389 

Meal 4 (stir-fry) also exhibits a high-low-high emission pattern and two distinct peaks. The first peak 390 

occurs when frying the chicken, the second when frying the vegetables, and the reduction in 391 

concentration occurs immediately after the chicken is removed from the 28 cm frying pan, and prior to 392 

the addition of vegetables; see Section 2.3.3. 393 
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3.3 Emission Rates 394 

Figure 2f and Table 3 show that the mean PM2.5 emission rates (𝑔(𝑇)̅̅ ̅̅ ̅̅ ) and source strengths (𝐺) measured 395 

for the four meals described in Section 2.3.1 vary between 0.54-3.7 mg/min and 15-68 mg with 95% 396 

confidence, respectively. Estimated decay rates (see Table S2) ranged from 4.7±0.041 h-1 to 6.1±0.042 397 

h-1, although it should be noted that they have little physical meaning in this context because  they are a 398 

function of particle deposition, agglomeration, evaporation, and other processes, and because the mixed 399 

volume of air may not equal the room volume. The volume term in Equation 1 is an important source of 400 

bias because the room volume we apply (see Section 2.1) includes cupboards (10% of the room volume), 401 

people, and equipment, and assumes that the PM2.5 is equally mixed within all of these entities. However, 402 

is impossible to determine the validity of this assumption with the measurements made and so it is 403 

possible that the bias in 𝑔(𝑇)̅̅ ̅̅ ̅̅  and 𝐺 could be up to 10% of their values. Volume bias is rarely considered; 404 

for example, the emission rates reported in Section 18,11,18,21 all give a volume but do not describe its 405 

calculation. Accordingly, future measurements of emission rates and 𝐺 should seek to minimize the 406 

difference between mixed and space volumes. The coefficients of determination for the decay rate were 407 

𝑅2 >0.97 for Meals 1-4 indicating excellent mixing; see Section 2.4 and Sherman53. 408 

Similar variance in emission rate has been found by Fortmann et al.21 who measured 2.92 mg/min when 409 

stir-frying using an electrically heated hob and 3.36 mg/min and 1.54 mg/min when stir-frying (2 tests) 410 

on a gas burner, which are comparable to the mean 𝑔(𝑇)̅̅ ̅̅ ̅̅ = 3.2±0.24 mg/min for Meal 4. Fortmann et 411 

al. also cooked a full meal using an oven and cooktop and measured the emission rate to be 2.45 mg/min, 412 

which lies between the mean emission rates of Meals 3 and 4. Dacunto et al.18 cooked three single dishes 413 

on an electric hot plate and in an aluminium frying pan. First, they measured an emission rate of 0.4 414 

mg/min and 𝐺 = 5.7 mg for chicken, vegetables, and soy sauce stir fried in olive oil (2 tests), which are 415 

less than those for all meals cooked here. However, when they pan fried chicken drumsticks or thighs 416 

(on the bone with skin on) for 16-28 minutes (6 repeats) a significant increase was found where the 417 

emission rate was 2.5±0.9 mg/min and 𝐺 was 62.2±16.9 mg. Their emission rate lies between the means 418 

for Meals 3 and 4 whereas their 𝐺 is greater than those for our meals and indicates that they cooked for 419 

longer. When Dacunto el al. pan fried chicken breast in olive oil so that it was 25-50% charred, 420 

𝑔(𝑇)̅̅ ̅̅ ̅̅ =15.2 mg/min and 𝐺 = 289 mg. These high values are most likely caused by the charring, whereas 421 
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our meals only experienced Maillard browning. He et al.8 derived emission rates for a range of cooking 422 

events, including complex and simple meals, from measured PM2.5 mass concentrations over a 48 hour 423 

period in 15 domestic kitchens using an OPC without a calibration factor (see Section 2.2). General 424 

cooking (37 events) gave a median 𝑔(𝑇)̅̅ ̅̅ ̅̅  of 0.11 mg/min (𝜎 = 0.99 mg/min), frying (4 events) gave a 425 

median 2.68 mg/min (𝜎 = 2.18 mg/min), and stove cooking gave a median of 0.24 mg/min (𝜎 = 1.29 426 

mg/min). The lack of control over ventilation rates and emission periods, and the lack of a calibration 427 

factor, mean there are large uncertainties in these values, but the frying broadly agrees with the emission 428 

rates from the meals cooked here whereas the cooking and stove events are much lower. Nevertheless, 429 

it is reassuring that the values of 𝑔(𝑇)̅̅ ̅̅ ̅̅  and 𝐺 given in Table 3 appear plausible given the context provided 430 

here. 431 

Our values of 𝐺 and 𝑔(𝑇)̅̅ ̅̅ ̅̅  can also be compared to those derived from in situ measurements of multiple 432 

household activities that include cooking to give a broader understanding of their significance. Chan et 433 

al.11 calculated emission rates for 836 cooking and non-cooking events in 18 dwellings in California, 434 

finding a mean source strength and emission rate of 30 mg and 1.72 mg/min, respectively, which are 435 

broadly similar to ours. Dacunto et al.18 identified source strengths and emission rates of 1.4 mg and 0.1 436 

mg/min for oven cooked frozen pizza, 72.5 mg and 9.5 mg/min for toasting of bread (90-95% charred), 437 

18.3 mg and 1.6 mg/min for fried salmon, 24.3 mg and 2.1 mg/min for fried pork chop, 19.9 mg and 3.8 438 

mg/min for cigarette smoking, 16.9 mg and 1.3 mg/min for the burning of stick incense, and 215.4 mg 439 

and 16.4 mg/min for an open fire. For an equivalent release period, the 𝑔(𝑇)̅̅ ̅̅ ̅̅  for Meals 1-4 are greater 440 

than those Dacunto et al. found for cooking pizza, less than cigarette smoking, and substantially less 441 

than an open fire. 442 

Table 3 shows that the particle counts exceeded 2×106 particles/litre in 10 of the 24 tests. Here, the 443 

Grimm may experience coincidence errors where multiple particle may be seen as one larger particle. 444 

One might expect coincidence errors to affect the regression analysis, yet the values of R2 are close to 445 

unity and 𝛼 < 1% of 𝛷. For a further discussion of coincidence errors see Section 3.6. 446 

The emission rates in Table 3 have been calculated using an area-under-the-curve method that assumes 447 

a variable emission rate; see Section 2.4 for a justification. However, several other studies8,11,18 apply 448 
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the theoretical peak estimation (also known as the phantom curve) method that assumes a constant 449 

emission rate, which Figure 2 shows to be untrue when cooking meals. For a direct comparison this 450 

method was applied to our data and the constant emission rate was estimated to be 20–56% higher than 451 

𝑔(𝑇)̅̅ ̅̅ ̅̅  for Meal 1, up to 70% lower for Meal 3, and between 0–12% lower for Meal 4. Clearly, there are 452 

significant and non-uniform differences between the two methods. However, the area-under-the-curve 453 

method is appropriate in this context because it is exact, and also general because it makes no 454 

assumptions about the change in the emission rate over time50. Accordingly, we argue that it is 455 

appropriate to apply it to the cooking of meals and that it should be used in future studies of this type 456 

for accuracy and to ensure a fair comparison between tests. 457 

3.4 Factors Affecting Emission Rates 458 

The emission rates given in Table 3 for each meal further highlight the general repeatability of the tests, 459 

which is encouraging given the number of unknown or uncontrollable factors involved in the cooking 460 

of foods. Table 3 also shows there are differences between meals, even when they have similar 461 

ingredients. For example, Meals 1 and 2 differ only by the cooking method applied to their potatoes; 462 

those in Meal 1 are fried, whereas those in Meal 2 are boiled. Here, Meal 1 has the lowest emission rates 463 

even though frying is known to be a strong source of PM2.5 emissions19. Boiling the potatoes emits water 464 

vapour, and increased humidity is known to affect the performance of light scattering measurement 465 

devices56. Additionally, high relative humidity (RH) has been linked to the hygroscopic growth of 466 

particles56,57, and it is possible that the boiling of potatoes created aqueous aerosols that were counted 467 

by the Grimm. Measurements of RH may have indicated any measurement errors and this remains a 468 

confounding factor. Furthermore, frying is responsible for the emission of ultra-fine particles, whose 469 

diameters are below the detection capability of the Grimm14,23. A single factor ANOVA indicates the 470 

mean emission rate for all meals is not the same (𝑝 < 0.05). Multiple two sample t-tests with Bonferroni 471 

correction (see Section 2.4) indicate that the emission rates of Meals 1 and 2 are not significantly 472 

different (𝑝 > 0.0083). This suggests that the emissions from frying could have less influence on the 473 

overall emission rate when cooking meals or there are other experimental explanations that were not 474 

measured, such as pan temperature. These tests also suggest that the emission rates from Meals 1 and 3 475 
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are significantly different, and that Meal 4 emissions differ from all others (𝑝 < 0.0083), but those for 476 

Meal 2 and 3 are not significantly different (𝑝 > 0.0083). 477 

Meal 1 was varied from the base case (see Section 2.3.4) in three ways: (i) using liquid margarine instead 478 

of olive oil; (ii) using a stainless-steel pan instead of a non-stick pan, and (iii) by adding salt. Figure 3 479 

and Table 4 show that frying in a stainless steel pan had an immediately obvious effect on the emission 480 

rates, with the mean emission rate increasing by 940%. Given that the same volume of oil and mass of 481 

the ingredients were used for all tests, the higher emission rates may be a function of the thermal 482 

conductivity of the pans, their surface temperatures, and the adhesion between the food and the pan. 483 

Here, both the chicken and the potatoes were observed sticking to the stainless steel pan in some tests 484 

and the surface of the pan charred, which could have been reduced by adding more oil, itself a known 485 

source of PM2.5. This suggests that using a non-stick pan can minimize PM2.5 emission during frying. 486 

The new stainless steel pan produced the highest emission rate, which then decreased with each 487 

subsequent repetition. This indicates there may be an aging effect that is a function of the changing 488 

properties of the pan’s surface, which may have continued with further repetitions.  489 

The tests with the liquid margarine and with salt show an increase in the mean emission rate of 11% and 490 

47%, respectively, when compared to the reference meal. A t-test suggests these changes are non-491 

significant (𝑝 > 0.05). However, these small differences cannot be ruled out and may be detected by 492 

further tests. These results disagree with the findings of Torkmahalleh et al.27,29 for salt. Torkmahalleh 493 

et al.27,29 added salt to oil before heating, whereas in these tests the salt was added to the chicken before 494 

frying. A better comparison may be found with Torkmahalleh et al.33 who found higher particle 495 

emissions for grilled salted meat than unsalted meat. Our tests found a small increase in emissions, 496 

similar to Torkmahalleh et al.33, however it is not statistically significant. Additionally, the change in 497 

emission rate when margarine is used is also not statistically significant, despite previous suggestions 498 

that the oil type is a significant factor17. 499 

Custom calibration factors were not obtained for each of these variations. In the absence of data, 𝐶1̅=3.9 500 

was used for all three variations, which is a limitation and source of uncertainty. 501 
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3.5 Cooker Hood Capture Efficiency 502 

The 4 meals were prepared whilst using an extracting cooker hood located immediately over the burners 503 

(see Sections 2.3.4 and 2.4). Table 5 gives their emission rates and reductions in their means when 504 

compared to those given for the main tests in Table 3. The percentage reductions in Table 5 are 505 

equivalent to CEs defined by Lunden et al.22; see Section 1. The reductions are >90% for all four meals. 506 

Additionally, Meal 1 was prepared with the fried components cooked on the back burners, closest to the 507 

wall. This resulted in slightly higher reductions that, when tested using a two-sample t-test (𝑝 > 0.05), 508 

are statistically non-significant. This is surprising because Lunden et al.22 found particle CEs of 4-39% 509 

and 70-99% for stir-frying on front and back burners, respectively. Singer et al.40 tested 15 different 510 

hoods and reached the same conclusion. In these studies, the coverage of the front burner by the hoods 511 

was variable. For the two hoods with better burner coverage, Lunden et al.22 measured particle CEs 60-512 

80% and <60%, for stir frying on the front burner, compared to CEs close to 100% for frying on the rear 513 

burner. Of the 15 hoods studied by Singer et al.40, two had coverage >75% during all tests, suggesting 514 

good coverage of the front burners. CEs for these hoods measured between 75-100%. The exact 515 

coverage provided by the hoods was not reported in either study, and both found CEs lower than those 516 

measured here, even at higher exhaust flow rates. It is possible that the high emission reduction found 517 

here is explained by the good coverage of the front burners by the hood (see Section 2.1.1) and by the 518 

presence of a damp-buffer44. The small volume of the test chamber encouraged a closed-loop airflow 519 

pattern that allowed particulates to be captured by the hood long after they were emitted having 520 

circulated around the chamber, and so a CE determined in this way is biased and under-estimates 521 

occupant exposure risk. These inherent biases in the technique can be overcome by cancelling out the 522 

impact of room concentrations. In theory, one way to do this is to increase the chamber volume and 523 

ventilate the chamber far from the hood, or to conduct tests in a full-scale residence62; unfortunately this 524 

is impractical to do without inducing new systematic errors, such as poor mixing. A better way to do it 525 

is to use a steady-state capture efficiency test method58 that ignores uncaptured pollutants. The method 526 

used here may indicate the actual performance of the cooker hood in homes with a kitchen with a similar 527 

volume to the test chamber, which are common in the English housing stock63, but it may be less 528 
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indicative of performance in houses with larger kitchens or in open plan living spaces where air 529 

circulation does not occur. 530 

Meals 3 and 4 both resulted in higher reductions than Meals 1 and 2. However, it was only possible to 531 

calculate emission rates for two of the five repetitions of Meal 3, because the chamber PM2.5 532 

concentrations were too low in other tests. In these tests, the log-linear regression indicated the 533 

concentration increased during the decay period, which may be due to incomplete mixing, and so these 534 

tests were discounted. The total decay rates (𝛷) ranged from 0.076±0.04 3h-1 to 5.6±0.15 h-1 (see Table 535 

S4). Here, 𝑅2 values decreased substantially (𝑅2 <0.83 for accepted tests) and the 𝛼 of the decay rate 536 

increased, indicating a decrease in the mixing quality when compared to the initial tests (see Section 537 

3.2). These are limitations of the method, as the chamber concentrations are likely to be low when using 538 

a functioning cooker hood with a high capture-efficiency. Particles will have deposited on surfaces 539 

during all tests, but the cooker hood may have changed the velocity profile around the cooker and the 540 

deposition rates. The method used here accounts for this change by identifying how much the emission 541 

rate has effectively reduced, and so is measuring an apparent capture efficiency, rather than a true 542 

capture efficiency. This metric is useful because it can be used to estimate indoor PM2.5 concentrations 543 

from a known source and used to inform regulations, but there is significant uncertainty in the 544 

measurements. 545 

A standard method to derive capture efficiencies using ideal gases has been proposed58. And, although 546 

it does not fully account for particle behaviour, there is lower measurement uncertainty. Singer et al.40 547 

calculated their hood CEs by using CO2 as a tracer and measuring its concentration in the exhaust duct. 548 

However, Lunden et al.22 followed the method given in Section 2.3.4 arguing that particle losses in the 549 

hood and ductwork bias both the measured concentrations and the particle CE. This highlights issues 550 

with all methods of measuring cooker hood CE for different pollutants and is an area of ongoing work. 551 

The airflow rate through the cooker hood of 83 l/s is high when compared to the 50 l/s, 30 l/s, and 21 l/s 552 

required by ASHRAE, in the UK, and in the Netherlands, respectively. This flowrate is clearly effective 553 

but it had noise and energy penalties. The airflow rate was not varied but the relationship between it and 554 

the apparent capture efficiency may be non-linear, and so it could be possible to reduce it without 555 

affecting performance significantly. Further work is required. 556 
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3.6 Particle Size Distributions 557 

The distribution of the optical diameter of particles varies over the cooking and decay periods. Figure 2 558 

shows that the peak concentration occurs towards the end of the cooking and emission period for Meals 559 

1 and 2. Therefore, the vast majority of particles discharged during the cooking period have already 560 

been emitted and so the peak concentration is chosen as a suitable moment to analyse the variance in 561 

particle diameter for all meals. Figure 4a shows the distribution of particle diameters between 0.25 −562 

10 𝜇𝑚 at the peak concentration time, averaged over the 6 tests for each meal type. It shows that they 563 

are similar for all four meals, with more particles emitted in the smaller size fractions. Figure 4a shows 564 

that when compared to Meal 1, Meal 2 emitted more particles in the smallest size fractions. Figure 2 565 

shows that Meals 3 and 4 had higher peak concentrations than Meal 1 and 2, and Figure 4a confirms 566 

that they also had higher particle counts. The distribution for Meal 4 is weighted more towards the larger 567 

particle sizes. This agrees with previous findings that particle diameter increased at higher frying 568 

temperatures14. Table 3 indicate that the Grimm may have experienced coincidence errors in some 569 

repetitions of Meals 3 and 4. These increase uncertainty in Figure 4 where large size bins may be over 570 

populated and smaller bins under populated in affected meals. 571 

The three variations in the preparation of the Meal 1 base case (see Sections 2.3.4 and 3.3) altered the 572 

emission rates and the particle size distributions; see Figure 4a and 4b, respectively. Using liquid 573 

margarine resulted in lower particle counts in the larger size fractions (> 2.5 𝜇𝑚 in diameter). Frying 574 

in stainless steel resulted in higher emissions overall, but the particle size distribution is similar to the 575 

base case meal. With the addition of salt, the distribution is weighted towards the smaller size fractions 576 

(< 2.5 𝜇𝑚). 577 

Figure 4c illustrates the particle size distributions when the cooker hood was used. Cooking Meal 1 on 578 

the back burners rather than the front burners also changed the particle size distributions within the 579 

chamber. Table 5 shows the cooker hood captured a slightly greater mass of particles when cooking on 580 

the back burners. However, the differences between Figures 4a and 4c suggest that the cooker hood 581 

captures a greater number of smaller particles (< 0.4 𝜇𝑚) when frying on the front burners. It is not 582 

clear why this occurs, but the particle size distributions are compared at a single moment in time and so 583 
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may change at other times. Also, more of the larger particles (> 0.65 𝜇𝑚) are captured in Meal 3 than 584 

Meal 4, although it is not clear why this has occurred. 585 

3.7 Gas Burners 586 

PM2.5 concentrations were measured during two blank tests (see Section 2.3.4) where the combustion 587 

elements of the Meal 1 preparation were followed (outlined in Section 2.3.3) for the low ventilation 588 

scenario, but no food was cooked. The concentrations are generally <1 μg/m3, and so it was impossible 589 

to identify any decay at the end of the test once the stove burners were switched off. This shows that the 590 

emissions of PM2.5 from the gas burners can be considered negligible, and so have not contributed to the 591 

temporal variation in PM2.5 concentration shown in Figure 2 or the emission rates given in Table 3. 592 

However, gas burners are a known emitter of ultrafine particles and nitrogen oxides21,23, and both 593 

pollutants are associated with negative health effects39. 594 

3.8 Impacts 595 

The PM2.5 source strengths and emission rates of the 4 meals suggest that cooking for a prolonged period 596 

in a house without adequate ventilation could lead to indoor PM2.5 concentrations that exceed those 597 

found outside and could negatively affect the health of occupants; see the health risks discussed in 598 

Section 1. This is especially likely in airtight dwellings where ventilation may be inadequate and during 599 

the heating season when occupants may seek to reduce ventilation rates to minimize heating fuel costs. 600 

Section 3.5 shows that a cooker hood can be used to reduce the PM2.5 emission rate during cooking, 601 

although it is not yet clear what combination of airflow rates and capture efficiencies should be 602 

prescribed by standards or norms. Here, the emission rates in Table 3 can be used to derive appropriate 603 

ventilation rates and capture efficiencies for cooker hoods following the statistical method described by 604 

Salthammer59. The emission rates and their standard errors can also be used as stochastic inputs to stock-605 

scale models of housing used to estimate exposure and predict the chronic health impacts from exposure 606 

to PM2.5 from cooking and the positive changes that may arise from mitigation measures, such as the 607 

installation and use of a cooker hood. 608 
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4 CONCLUSIONS 609 

This work shows that the cooking of meals emits PM2.5. The emission rate varies over time as a particular 610 

meal is cooked and is caused by a range of factors, many of which are unquantifiable. However, frying, 611 

the browning of food, the presence of oil or fat, the pan temperature, and the pan type all contribute. 612 

It is possible to reduce PM2.5 emissions by using a cooking method that does not brown or char the food 613 

and by using a non-stick pan when frying. Other methods were tested that have been shown elsewhere 614 

to affect PM2.5 emission rates, such as replacing oil with liquid margarine and adding salt, but were 615 

found to have a minimal effect only.  616 

The apparent capture efficiency of a cooker hood at a particular airflow rate is an indication of the 617 

proportion by which it reduces an emission rate. This net emission rate of PM2.5 from the cooking of 618 

meals was reduced substantially by using a cooker hood with good coverage of all burners at a high 619 

airflow rate. Although the apparent capture efficiency has the advantage of being derived from 620 

measurements of PM2.5 concentrations, there is significant uncertainty in its measurement caused by 621 

systematic biases. 622 

Measuring capture efficiencies using ideal gases under steady-state conditions is an ideal test method 623 

because it is independent of room dynamics and contaminant interactions. However, in real-world 624 

environments cooking is rarely done under steady-state conditions and its pollutants infrequently act as 625 

ideal gases. In particular these methods do not account for particle behaviour, but they are less uncertain 626 

and only measure the ability of a hood to capture pollutants at their source. This first-order 627 

approximation is acceptable for rating cooker hoods, but a detailed estimation of occupant exposure 628 

inside a dwelling may need to consider these extra factors. 629 

The calibration factors obtained for each meal varied away from unity and so the optical properties of 630 

the PM2.5 emitted by cooking differ from those of the calibration source, here dolomite dust. Therefore, 631 

when measuring PM2.5 concentrations in domestic kitchens using an optical particle counter calibrated 632 

using dolomite dust they must be corrected using an appropriate calibration factor before negative health 633 

effects can be estimated from them with any accuracy. Furthermore, the calibration factors are shown 634 

to vary by meal and so it is not possible to use a single factor for all meals without introducing significant 635 

uncertainty. Calibration factors can be obtained either from concurrent gravimetric sampling, or values 636 
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from the literature can be used with significant uncertainty. It is likely that devices calibrated by sources 637 

other than dolomite dust will also require calibration factors. 638 
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FIGURES 1 

Figure 1: Test chamber dimensions and layout. 2 

Figure 2: PM2.5 Concentrations and emission rates for four test meals 3 

Figure 3: Influence of factors potentially affecting emissions for Meal 1 4 

Figure 4: Peak concentration particle size distributions 5 
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Figure 1 7 

A = location of Grimm 11-R Mini-LAS; B, C & D = gravimetric sampling locations  8 
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Figure 2  
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Figure 3  
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a) Base test meals, mean of 6 tests. 

 

b) Factors potentially affecting emissions, mean of 5 tests 

 

c) Reduction potential, mean of 5 tests 

Figure 4 
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TABLES 13 

Table 1: Cooking ingredients and methods 14 

Table 2: Overview of measurements to investigate source strength and exposure reduction potential 15 

Table 3: Average emission rates and source strengths for the test meals 16 

Table 4: Influence of factors potentially affecting emissions 17 

Table 5: Average emission rates and emission reduction potential with cooker hood use 18 
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Table 1 20 

Meal Ingredient Measure Cooking Instructions 

1 

Reference 

meal 

28 minutes 

6 repetitions 

Chicken breast fillet 200g Shallow fry in olive oil 

Olive oil 10ml For the chicken 

Pre-sliced pre-cooked potatoes 

(5-10mm thickness) 

330g Fry in olive oil 

Olive oil 50ml For the potatoes 

French/green beans 280g Boil in water 

Water 750ml For beans 

2 

28 minutes 

6 repetitions 

Chicken fillet 200g Shallow fry in olive oil 

Olive oil 10ml For the fillet 

Potatoes sliced in half 330g Boil in water 

Water 600ml For the potatoes 

French/green beans 280g Boil in water 

Water 750ml For the beans 

3 

Pasta 

Bolognese 

28 minutes 

6 repetitions 

Dried farfalle durum wheat pasta 150g Boil in water 

Water 1500ml For the pasta 

Smoked lean bacon lardons (24% fat*) 125g Fry in olive oil 

Chopped onion 115g Fry in olive oil 

Finely chopped garlic 20g Fry in olive oil 

Olive oil 10ml For the fried ingredients 

Minced/ground beef (≤12% fat*) 200g Fry in own fat 

Tinned/canned chopped tomatoes 400g* Add to fried ingredients 

4 

Stir Fry 

17 minutes 

6 repetitions 

Pre-sliced chicken breast 200g Stir-fry in olive oil 

Olive oil 10ml For the chicken pieces 

Pre-chopped fresh vegetables: 330g Stir-fry in olive oil 

White cabbage 27%*  

Red pepper /capsicum 20%*  

Leek 20%*  

French/green beans 20%*  

Bean sprouts 13%*  

Straight to wok Noodles 150g Stir-fry in olive oil 

Olive oil 20ml For the vegetables 

Notes: All ingredients are fresh unless indicated and have not been frozen and defrosted. No 

seasoning was used. The olive oil was 95% refined and 5% extra virgin*. The prefix “pre” shows 

ingredient purchased in the described form. Symbol * denotes data taken from packaging. 

  21 
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 22 

Table 2 

Experiment name N Cooking Duration 

(min) 

Ventilation Rate 

(m3/h) 

Meal 1 (reference)* 6 28 75 

Meal 2 6 28 75 

Meal 3 6 28 75 

Meal 42 6 17 75 

“Blanks”  2 28 75 

Meal 1 – Margarine 5 28 75 

Meal 1 – Stainless steel pan 5 28 75 

Meal 1 – Season meat with salt 5 28 75 

Meal 1 (reference)* 5 28 300 

Meal 2 5 28 300 

Meal 3 5 28 300 

Meal 4 5 17 300 

Meal 1 - frying at backburners 5 28 300 

*, Standard conditions: coated pan, frying on front-burner, in olive oil, gas stove  23 
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Table 3 

 Emission Rate, 𝑔(𝑇)̅̅ ̅̅ ̅̅  (mg min-1) Source Strength, 𝑔𝑠𝑜𝑢𝑟𝑐𝑒 (mg) 

Test Meal 1 Meal 2 Meal 3 Meal 4 Meal 1 Meal 2 Meal 3 Meal 4 

1 0.54 ± 

0.031 

1.0 ± 

0.038 

1.9 ± 

0.066 * 

3.3 ± 0.16 

* 

15 ± 0.88 29 ± 1.1 55 ± 1.9 * 56 ± 2.8 * 

2 0.57 ± 

0.029 

0.70 ± 

0.025 

1.8 ± 

0.082 * 

2.3 ± 0.10 

* 

16 ± 0.80 20 ± 0.71 50 ± 2.3 * 40 ± 1.7 * 

3 0.51 ± 

0.025 

0.71 ± 

0.030 

1.5 ± 

0.059 * 

3.0 ± 0.14 

* 

14 ± 0.71 20 ± 0.83 41 ± 1.6 * 52 ± 2.4 * 

4 0.67 ± 

0.033 

0.91 ± 

0.034 

1.3 ± 

0.055 

3.2 ± 0.15 

* 

19 ± 0.94 26 ± 0.96 36 ± 1.5 55 ± 2.5 * 

5 0.77 ± 

0.038 

0.93 ± 

0.038 

1.7 ± 0.10 

* 

3.4 ± 0.14 

* 

22 ± 1.1 26 ± 1.1 49 ± 2.7 * 58 ± 2.5 * 

6 0.67 ± 

0.035 

0.52 ± 

0.054 

3.4 ± 0.13 

* 

4.2 ± 0.18 19 ± 0.98 16 ± 1.7 95 ± 

3.7 * 

70 ± 3.1 

Mean ± 

𝛼g† 

0.62 ± 

0.041 

0.80 ± 

0.076 
1.9 ± 0.30 3.2 ± 0.24 17± 1.1 23 ± 2.0 54 ± 8.6 55 ± 3.9 

Standard 

Deviation 
0.10 0.19 0.74 0.59 2.8 4.9 21 9.6 

* particle count exceeded 2,000,000 particles/litre 

†standard error 

  24 
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Table 4 

 Meal 1 Emission Rate, 𝑔(𝑇)̅̅ ̅̅ ̅̅  (mg min-1) Meal 1 Source Strength, 𝑔𝑠𝑜𝑢𝑟𝑐𝑒 (mg) 

Test Reference Margarine Stainless 

Steel 

Salt Reference Margarine Stainless 

Steel 

Salt 

1 0.54 ± 

0.031 

0.59 ± 

0.029 

8.6 ± 0.42 

* 

0.87 ± 

0.043 

15 ± 0.88 17 ± 0.82 240 ± 12 * 24 ± 1.2  

2 0.57 ± 

0.029 

0.62 ± 

0.030 

6.7 ± 0.33 

* 

0.77 ± 

0.043 

16 ± 0.80 17 ± 0.85 190 ± 9.2 * 22 ± 1.2 

3 0.51 ± 

0.025 

0.79 ± 

0.038 

6.5 ± 0.32 

* 

1.2 ± 

0.062 

14 ± 0.71 22 ± 1.1 180 ± 8.9 *  35 ± 1.7 

4 0.67 ± 

0.033 

0.83 ± 

0.041 

5.6 ± 0.28 

* 

0.97 ± 

0.048 

19 ± 0.94 23 ± 1.2 160 ± 7.8 * 27 ± 1.3 

5 0.77 ± 

0.038 

0.57 ± 

0.031 

5.0 ± 0.24 

* 

0.63 ± 

0.036 

22 ± 1.1 16 ±0.86 140 ± 6.8 * 18 ± 1.0 

6 0.67 ± 

0.035 

   19 ± 0.98    

Mean ± 

𝛼g† 

0.62 ± 

0.041 

0.68 ± 

0.054 

6.5 ± 0.62 0.90 ± 

0.10 
17 ± 1.1 

19 ± 1.5 180 ± 17 25 ± 2.8 

Standard 

Deviation 
0.10 0.12 1.4 0.23 2.8 3.4 39 6.3 

Increase 

(%) 

 9 940 44  9 940 44 

* particle count exceeded 2,000,000 particles/litre 

†standard error 

 25 

  26 
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Table 5 

 Emission Rate, 𝑔(𝑇)̅̅ ̅̅ ̅̅  (mg min-1) Meal 1 Source Strength, 𝑔𝑠𝑜𝑢𝑟𝑐𝑒 (mg) 

Test 
Meal 

1 

Meal 1 

– Back 

Burners 

Meal 

2 
Meal 3 

Meal 

4 
Meal 1 

Meal 1 – 

Back 

Burners 

Meal 2 Meal 3 Meal 4 

1 

0.027 

± 

0.0043 

0.040 ± 

0.0020 

0.023 

± 

0.0036 

- * 

0.093 

± 

0.038 

0.75 ± 

0.12 

1.1 ± 

0.056 

0.64 ± 

0.10 
- * 

1.6 ± 

0.65 

2 

0.064 

± 

0.017 

0.029 ± 

0.0022 

0.053 

± 

0.0056 

0.0068 

± 

0.0010 

0.072 

± 

0.022 

1.8 ± 

0.48 

0.80 ± 

0.062 

1.5 ± 

0.16 

0.19 ± 

0.029 

1.2 ± 

0.38 

3 

0.031 

± 

0.0039 

0.053 ± 

0.011 

0.071 

± 

0.017 

0.0080 

± 

0.00094 

0.038 

± 

0.017 

0.87 ± 

0.11 

1.5 ± 

0.31 

2.0 ± 

0.47 

0.22 ± 

0.026 

0.65 ± 

0.30 

4 

0.024 

± 

0.0045 

0.024 ± 

0.0056 

0.015 

± 

0.0021 

- * 

0.027 

± 

0.006 

0.68 ± 

0.13 

0.68 ± 

0.16 

0.42 ± 

0.060 
- * 

0.45 ± 

0.10 

5 

0.062 

± 

0.012 

0.026 ± 

0.0039 

0.037 

± 

0.0039 

- * 
0.23 ± 

0.075 

1.8 ± 

0.25 

0.73 ± 

0.11 

1.0 ± 

0.11 
- * 

3.9 ± 

1.3 

Mean ± 

𝛼g† 

0.042 

± 

0.0089 

0.034 ± 

0.0054 

0.040 

± 

0.010 

0.0074 

± 

0.00060 

0.091 

± 

0.036 

1.2 ± 

0.25 

0.96 ± 

0.15 

1.1 ± 

0.29 

0.15 ± 

0.04 

1.6 ± 

0.61 

Standard 

Deviation 
0.020 0.012 0.023 0.00084 0.081 0.56 0.34 0.64 0.024 1.4 

Reduction 

(%) 
93 94 95 99.6 97 93 94 95 99.7 97 

* concentrations too low to estimate decay rate 27 

†standard error 28 
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Figure S1: The rest rig 13 

Figure S2: Measured concentrations during meals with key moments indicated 14 

Figure S3: PM2.5 Concentrations during blank tests 15 
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b) 3D diagram of cooker hood showing the 
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Figure S1 – The test rig  18 
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Figure S2  
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Table S1 

 Sampling 

Time (s) 

Total Mass (µg) Average Concentration (µg/m3) Calibration Factor ± 

Standard Error  Filter 1 Filter 2 Filter 3 Filter 1 Filter 2 Filter 3 Grimm 

Meal 1 3480 310 340 300 139 153 135 36.3 3.92 ± 0.15 

Meal 2 1680 180 170 170 168 158 158 32.3 4.99 ± 0.096 

Meal 3 3240 1620 1570 1650 783 758 797 290* 2.69 ± 0.039 

Meal 4 2760 1020 1030 1120 578 584 635 401 1.50 ± 0.045 

Pump flow rate was 2.3 m3/h (0.64 l/s) during all tests 

* peak particle count exceeded maximum 2,000,000 particles/litre 
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Table S2 

Decay Rate (h-1) 

Test Meal 1 Meal 2 Meal 3 Meal 4 

 Decay R2 Decay R2 Decay R2 Decay R2 

1 4.8 ± 0.044 0.98 5.9 ± 0.039 0.99 5.9 ± 0.035 * 0.99 5.3 ± 0.016 

* 

1.00 

2 4.7 ± 0.039 0.98 5.3 ± 0.037 0.99 5.8 ± 0.038 * 0.99 5.7 ± 0.019 

* 

1.00 

3 5.0 ± 0.046 0.98 5.6 ± 0.053 0.97 5.8 ± 0.055 * 0.97 5.5 ± 0.016 

* 

1.00 

4 5.3 ± 0.040 0.98 5.6 ± 0.027 0.99 6.0 ± 0.062 0.97 5.5 ± 0.017 

* 

1.00 

5 5.2 ± 0.028 0.99 6.1 ± 0.042 0.99 5.9 ± 0.034 * 0.99 5.6 ± 0.017 

* 

1.00 

6 5.1 ± 0.049 0.97 4.7 ± 0.041 0.98 5.2 ± 0.025 * 0.99 5.6 ± 0.016 1.00 

Mean ± 𝛼Φ† 5.0 ± 0.10  5.5 ± 0.21  5.7 ± 0.12  5.5 ± 0.06  

* particle count exceeded 2,000,000 particles/litre 

†standard error 
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Table S3 

Decay Rate (h-1) 

Test Margarine Stainless Steel Salt 

 Decay R2 Decay R2 Decay R2 

1 5.4 ± 0.045 0.98 4.5 ± 0.014 * 1.00 5.7 ± 0.035 0.99 

2 5.5 ± 0.041 0.98 3.9 ± 0.012 * 1.00 5.5 ± 0.037 0.99 

3 5.6 ± 0.034 0.99 4.5 ± 0.013 * 1.00 5.8 ± 0.032 0.99 

4 5.4 ± 0.031 0.99 4.4 ± 0.012 * 1.00 5.7 ± 0.031 0.99 

5 5.0 ± 0.044 0.98 3.7 ± 0.010 * 1.00 5.3 ± 0.039 0.99 

Mean ± 

𝛼Φ† 
5.4 ± 0.11 

 
4.2 ± 0.16 

 
5.9 ± 0.09 

 

* particle count exceeded 2,000,000 particles/litre 

†standard error 

  29 



12 

 

Table S4 

 Decay Rate (h-1) 

Test Meal 1 Meal 1 - Back Burners Meal 2 Meal 3 Meal 4 

 Decay R2 Decay R2 Decay R2 Decay R2 Decay R2 

1 2.7 ± 0.11 0.66 1.2 ± 0.062 0.55 1.8 ± 0.13 0.39 - * - 3.2 ± 0.12 0.71 

2 3.9 ± 0.12 0.77 0.70 ± 0.029 0.65 4.7 ± 0.17 0.72 0.076 ± 0.043 0.010 3.0 ± 0.11 0.73 

3 2.3 ± 0.11 0.60 2.0 ± 0.059 0.79 4.5 ± 0.17 0.71 0.36 ± 0.047 0.16 2.3 ± 0.073 0.76 

4 1.9 ± 0.12 0.45 1.1 ± 0.059 0.54 1.3 ± 0.14 0.24 - * - 2.1 ± 0.088 0.66 

5 3.8 ± 0.13 0.75 1.7 ± 0.067 0.67 3.6 ± 0.14 0.70 - * - 5.6 ± 0.15 0.83 

Mean ± 

𝛼Φ† 
2.9 ± 0.40 

 
1.3 ± 0.22 

 
3.2 ± 0.68 

 
0.22 ± 0.14 

 
3.3 ± 0.68 

 

* concentrations too low to estimate decay rate 

†standard error 
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Table S1 

 Sampling 

Time (s) 

Total Mass (µg) Average Concentration (µg/m3) Calibration Factor ± 

Standard Error  Filter 1 Filter 2 Filter 3 Filter 1 Filter 2 Filter 3 Grimm 

Meal 1 3480 310 340 300 139 153 135 36.3 3.92 ± 0.15 

Meal 2 1680 180 170 170 168 158 158 32.3 4.99 ± 0.096 

Meal 3 3240 1620 1570 1650 783 758 797 290* 2.69 ± 0.039 

Meal 4 2760 1020 1030 1120 578 584 635 401 1.50 ± 0.045 

Pump flow rate was 2.3 m3/h (0.64 l/s) during all tests 

* peak particle count exceeded maximum 2,000,000 particles/litre 
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Table S2 

Decay Rate (h-1) 

Test Meal 1 Meal 2 Meal 3 Meal 4 

 Decay R2 Decay R2 Decay R2 Decay R2 

1 4.8 ± 0.044 0.98 5.9 ± 0.039 0.99 5.9 ± 0.035 * 0.99 5.3 ± 0.016 

* 

1.00 

2 4.7 ± 0.039 0.98 5.3 ± 0.037 0.99 5.8 ± 0.038 * 0.99 5.7 ± 0.019 

* 

1.00 

3 5.0 ± 0.046 0.98 5.6 ± 0.053 0.97 5.8 ± 0.055 * 0.97 5.5 ± 0.016 

* 

1.00 

4 5.3 ± 0.040 0.98 5.6 ± 0.027 0.99 6.0 ± 0.062 0.97 5.5 ± 0.017 

* 

1.00 

5 5.2 ± 0.028 0.99 6.1 ± 0.042 0.99 5.9 ± 0.034 * 0.99 5.6 ± 0.017 

* 

1.00 

6 5.1 ± 0.049 0.97 4.7 ± 0.041 0.98 5.2 ± 0.025 * 0.99 5.6 ± 0.016 1.00 

Mean ± 𝛼Φ† 5.0 ± 0.10  5.5 ± 0.21  5.7 ± 0.12  5.5 ± 0.06  

* particle count exceeded 2,000,000 particles/litre 

†standard error 
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Decay Rate (h-1) 

Test Margarine Stainless Steel Salt 
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4 5.4 ± 0.031 0.99 4.4 ± 0.012 * 1.00 5.7 ± 0.031 0.99 

5 5.0 ± 0.044 0.98 3.7 ± 0.010 * 1.00 5.3 ± 0.039 0.99 

Mean ± 

𝛼Φ† 
5.4 ± 0.11 

 
4.2 ± 0.16 

 
5.9 ± 0.09 

 

* particle count exceeded 2,000,000 particles/litre 

†standard error 
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Test Meal 1 Meal 1 - Back Burners Meal 2 Meal 3 Meal 4 
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1 2.7 ± 0.11 0.66 1.2 ± 0.062 0.55 1.8 ± 0.13 0.39 - * - 3.2 ± 0.12 0.71 

2 3.9 ± 0.12 0.77 0.70 ± 0.029 0.65 4.7 ± 0.17 0.72 0.076 ± 0.043 0.010 3.0 ± 0.11 0.73 
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Mean ± 
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2.9 ± 0.40 

 
1.3 ± 0.22 
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0.22 ± 0.14 

 
3.3 ± 0.68 

 

* concentrations too low to estimate decay rate 

†standard error 
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