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Abstract 

 

In this work, we investigate the mechanisms that control the electroluminescence from p-i-n 

heterostructures containing self-assembled In0.5Ga0.5As quantum dots embedded inside 

GaAs/Al0.3Ga0.7As quantum well as a function of temperature and applied bias. Our results 

reveal that the carrier dynamics at the interface between the quantum dot and the quantum 

well plays a crucial role in the electroluminescence emission. At low temperatures, two 

distinct emission bands are observed. Initially at low bias current, we observe broad 

emissions from quantum well and wetting layers. Another dominant and sharp emission at 

lower energy arises from the quantum dots but only at higher bias currents. We discuss how a 

potential barrier between quantum dots and quantum well can control the density of injected 

carriers undergoing optical recombination. We have also investigated the role of carrier 

capture and escape, quantum-confined stark effect, and band filling effects in the 

electroluminescence emission. In addition, we demonstrate how measurements of temporal 

coherence of individual spectral peaks, can detect the presence of Auger recombination in 

quantum dots under high injection currents. Interestingly, a significant increase in temporal 

coherence of quantum dot emissions is observed, which could be due to a decrease in Auger 

recombination with increasing temperature.  
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1. Introduction 

Quantum dot (QD) laser is a device of great interest in optoelectronics because of its 

expected energy efficiency [1], temperature stability, and spectral sharpness, which can be 

better than existing quantum well (QW) lasers [2]. Three-dimensional spatial confinement 

and atom like sharp density of states in QD are the reasons for its low lasing threshold and 

narrow emission spectra [3-5]. Through improvements in material engineering, growth 

techniques and device level structural modification, QD lasers are getting more efficient and 

applicable for various technologies [6-8]. One such modification for extra confinement of 

charge carriers is embedding quantum dots within quantum well (QD-QW) system [9, 10]. 

Such step-by-step like band structure improves the carrier confinement inside the quantum 

dots and as a result, improves the light emission [11-13]. However, internal potential barriers 

can be formed at the interface of such heterostructures, which can significantly affect the 

carrier transport and electroluminescence inside a QD-QW. Also, the energy levels of QDs, 

which depend on size and mole fractions of alloy materials, determine the extent of thermal 

escape and capture of carriers from QDs and luminescence quenching [10, 14]. Usually, the 

physics of excitonic recombination [15], non-radiative defects [16], thermal escape and re-

capture [17], Auger recombination [18] etc were previously explored to explain the outcome 

of these QD lasers. Numerous electrical and optical investigations were also reported 

showing how these can affect QDs emission. However, there is still hardly any consensus on 

the interpretation of these findings. Specifically, the role of interface potential and its effect 

on electroluminescence spectra and temporal coherence are rarely discussed in the literature. 

Therefore, detailed investigations of all these aforementioned factors can be utilized to 

overcome some generic problems of QD laser diodes such as inability of high power 

emissions, efficiency droop [19] etc.  

In this paper, we present an investigation on the opto-electrical properties as a function 

of applied bias and temperature of an In0.5Ga0.5As/GaAs/Al0.3Ga0.7As QD-QW p-i-n 

heterostructure. We use two similar samples with and without distributed Bragg reflector 

(DBR) stacks. Most of these studies are done on the latter sample without any DBR and the 

first sample is used only for comparison purposes. Detailed descriptions of both samples and 

experimental setups are given in section 2. We observe two distinct electroluminescence (EL) 

peaks at ~8.8 K: one from QDs and the other from QWs and wetting layer (WL) combined. 

In the low current density regime, evolution of both peaks with increasing bias currents are 

analysed. We discuss how the potential barrier formed at the interface of QD and QW can 
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play an important role. Dependence of bias current and temperature of EL spectra are 

discussed in details in section 3 for samples without DBR and it is compared with the other 

sample. Also in the same section, the temporal coherence of the EL of sample without DBR 

is analysed in the high current density regime using a Michelson interferometer. Thereby, we 

explain how Auger recombination (AR) affects optical coherence of the EL from the 

In0.5Ga0.5As QDs in high bias current regime. Surprisingly, the temporal coherence of QD 

emission increases with increasing temperature.  

 

2. Samples and Experimental Methods 

 The two samples investigated here were grown by Molecular Beam Epitaxy (MBE) on 

semi-insulating GaAs (100) substrates. Sample A is a p-i-n heterostructure with QDs 

embedded within a QW. A buffer layer of 500 nm of n-type GaAs (61018/cm3) was grown on 

the substrate at 600C, which serves as n-type bottom electrical contact for the sample. It is 

followed by 800 Å of Al0.3Ga0.7As and six layers of QD-QW system. The central of QD-QW 

structure, which was grown at 450 C, consisted of 100 Å of Al0.3Ga0.7As, 51 Å of GaAs, 11 Å 

In0.5Ga0.5As and 51 Å of GaAs. This way In0.5Ga0.5As quantum dots were grown inside ~100Å 

GaAs/Al0.3Ga0.7As QW. This was followed by 800 Å Al0.3Ga0.7As layer.  Finally, the structure 

is capped with 1.3 m of highly doped p-type Al0.6Ga0.4As/GaAs (61018/cm3) for top 

electrical contact. Ring shaped mesas of diameter ~400 m and area of ~5x10-4 cm2 were 

made with gold for both optical and electrical access from the top. For sample B, the 3 key 

differences over sample A are – (i) there are three layers of QD-QW system instead of six (as 

in sample A), (ii) the 800 Å Al0.3Ga0.7As layer above and below the QD-QW layers are 

replaced by 1100 Å Al0.3Ga0.7As layer, (iii) 20 repetitions of Al0.6Ga0.4As (18 Å) and GaAs 

(10 Å) were deposited at 600C on either side of this active structure which works as DBR 

cavity. 

 Samples are kept within customized copper sample holder inside ARS CS204-DMX-20 

closed cycle cryostat for temperature dependent measurements. The electrical bias is applied 

using Agilent’s E4980A LCR meter in DC mode. EL spectra are measured with CCS200 

spectrometer from Thorlabs. Spectral bandwidth of the spectrometer is kept < 2 nm (@ 633 

nm) unless specified otherwise.  EL was measured under forward bias levels above which the 

device capacitance (30 mV, 1 kHz) goes to negative [20, 21]. The 2 correction was 
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incorporated in all EL spectra presented here. We want to further clarify that bias currents 

range for spectral studies in section 3.1 is from 0.11 mA to 2.2 mA. 

 Measurements of temporal coherence are done using a piezo controlled Michelson 

Interferometer. Light coming from samples is first focused on a 50:50 beam splitter. Distance 

between mirrors and beam splitter is used to create a temporal lag (τ) between the two split 

beams. These temporally separated beams are then superimposed to create interference 

pattern whose visibility determines the magnitude of temporal coherence e.g. magnitude of 

first order correlation function g(1)(τ). One of the interferometer arm is controlled by a Piezo 

controller having a minimum spatial resolution of 20 nm and other arm is controlled by a 

stepper motor having a resolution of 10 m. Position of mirrors are optimized to be at equal 

length from beam splitter to measure autocorrelation function g(1)(τ=0). Output of the 

interferometer is fed to Acton Research’s SP2555i monochromator with a full spectral 

bandwidth of 9.6 nm to separate the interference patterns arising out of two different spectral 

regions. Interference patterns are finally recorded with Thorlabs BC106N-VIS/M CCD 

camera. For coherence studies, we have used bias currents from 1 mA to 15 mA.  

 

3. Experimental Results.  

3.1 Bias dependence of electroluminescence from QD and QW-WL 

 Figure 1 shows the EL spectra measured at ~8.8 K with varying levels of forward 

bias. Decreasing values of forward bias voltages and corresponding currents are indicated 

inside figure 1(a), (b) and (c), respectively. We clearly see two distinct bands: one around 

1.33 eV due to the EL from the In0.5Ga0.5As QDs and another one around 1.47 eV due to the 

GaAs/Al0.3Ga0.7As QW and In0.5Ga0.5As wetting layer.  From now on, we will refer to the 

emission at 1.47 eV as QW-WL emission as it also has the contributions of QD wetting 

layers.  It is evident from figure 1(c) that at low bias currents, the emission of the QW-WL 

peak is more prominent than the actual In0.5Ga0.5As QD peak. It can be seen from the contour 

diagram in figure 1(d) that even the emission of QW-WL starts before the QD emission. The 

QD peak begins to show up only after a bias current of ~0.33 mA. This implies that after 

initial injection of carriers, the first major radiative recombination happens inside QW-WL, 

not at QD. However, at higher bias currents, intensity of these QD peaks increase 

substantially as compared to the QW-WL peaks.  
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In order to understand the above-mentioned observations, we draw a schematic of the 

QD-QW heterostructure sample and its potential landscape in figure 2(a) and 2(b), 

respectively. The gray shadow over QDs in figure 2(a) and inset of figure 2(b) indicates the 

presence of a potential barrier at In0.5Ga0.5As/GaAs interface [9, 22-24] of the conduction 

band. This is likely to be created by the transfer of electrons from the higher lying GaAs 

conduction band to low potential regions of In0.5Ga0.5As conduction band at the interface. 

Clearly, such depletion potential barrier at the interface between GaAs and In0.5Ga0.5As can 

affect carrier injection from QW to QD. Injected electrons confined by this potential barrier 

can get trapped within the QW, then these recombine with available holes inside this region 

and emit light. As a result, at low bias currents, as shown in figure 1(c), the QW-WL 

emission is greater in intensity than QD. With increasing carrier injection at higher forward 

bias currents, electrons can eventually cross into QD, and electroluminescence from QD 

increases gradually as shown in figure 1(a) and 1(b). A similar study based on such potential 

barrier at the interface of a heterostructure is given by Dan P Popescu et al. [9] and X Mu et 

al. [22] in InAs/In0.15Ga0.85As/GaAs quantum dot-well system. P Popescu et al. had 

speculated that it can act as additional activation energy for photoluminescence other than 

thermal activation energy for carrier escape. Although, both of them have considered the 

presence of potential barriers in both conduction and valence bands due to compositionally 

induced strain, here we mostly focus on the effect of potential barrier in the conduction band 

only.  

The reported conduction band offset of In0.53Ga0.47As/GaAs is ∆𝐸𝐶
𝑄𝐷

 ~0.43eV at 4.2K 

[25] while GaAs/Al0.32Ga0.68As is ∆𝐸𝐶
𝑄𝑊

~0.25eV [26-28]. It is worth noting that the 

magnitude of band offset determines the amount of charge transferred at the interface, and 

hence the height of interface potential barrier. Here, we have ignored interface potential 

barrier, if any, between GaAs/Al0.3Ga0.7As because we did not observe any emission from 

Al0.3Ga0.7As at these currents. However, at even higher bias currents > 5 mA used for 

coherence studies in section 3.3, a small emission peak is observed from Al0.3Ga0.7As at 

1.85eV. Around 60% of the energy difference between band gaps of Al0.3Ga0.7As and GaAs 

agrees with the reported value of ∆𝐸𝐶
𝑄𝑊

. However, it is interesting to note from figure 1 that 

the difference in the emission energy between In0.5Ga0.5As QD and QW-WL is only 

~140meV at ~8.8K indicating that the ground state energy levels of QD are quite elevated 

because of high gallium content and small size of QDs. The difference between the ground 
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state conduction band energy level of QD and top of the QD-QW potential barrier is referred 

as 𝐸𝑙𝑜𝑐  [29] in this report as shown in figure 2(b).  

                                                                  𝐸𝑙𝑜𝑐 =  ∆𝐸𝑐
𝑄𝐷 − 𝐸1

𝑄𝐷
                                                       (1)    

where ∆𝐸𝑐
𝑄𝐷

is conduction band offset of In0.5Ga0.5As/GaAs and 𝐸1
𝑄𝐷

 is ground state 

energy level of QD. This 𝐸𝑙𝑜𝑐  is strongly dependent on QD size and gallium content. This 

information will be used to explain thermal quenching and coherence increase in section 3.3 

and 3.4, respectively.  

In figure 3(a) and 3(b), we plot the variation of peak energy and FWHM of the QD 

electroluminescence spectra shown in figure 1 as a function of bias currents at ~8.8 K. We 

observed that the electroluminescence peak energy of In0.5Ga0.5As QD slightly blue shifts 

with increasing applied bias. However, the variation of FWHM is not monotonic with 

increasing bias currents. In order to explain these findings for lower bias currents (<1 mA), it 

is worth pointing out that our sample is a p-i-n heterostructure and its p side is always at 

higher potential than n side when no bias is applied. This potential difference due to the 

doping difference across the device creates a built-in potential (𝑉𝑏𝑖) within the intrinsic 

layers as shown in figure 2(b). When an additional external potential (𝑉𝑒𝑥𝑡) is applied in the 

forward direction, it tries to negate [30] this built-in potential and the effective applied 

potential (𝑉𝑒𝑓𝑓) across the heterostructure is reduced as shown in equation (2). 

                                                𝑉𝑒𝑓𝑓 = 𝑉𝑏𝑖 − 𝑉𝑒𝑥𝑡                                               (2) 

From 0.5 mA to 1 mA, the reduction of 𝑉𝑒𝑓𝑓  while increasing 𝑉𝑒𝑥𝑡  can show reverse 

quantum confined Stark effect (QCSE) [31]. This can result in the observed initial lowering 

of FWHM. QCSE in a QD can be understood as shifting of energy levels under the influence 

of 𝑉𝑒𝑓𝑓  within the confinement of QD. While 𝑉𝑒𝑓𝑓  is reducing under increasing forward 

bias, the quantum dot conduction band energy levels shift higher, and the valence band 

energy levels shift lower in a reversed QCSE due to a net reduction of junction electric field. 

This shifting of energy levels also shifts electron and holes wave function closer resulting in 

an increased overlap as shown in figure 2(b). This increases the emission energy but 

decreases the FWHM at lower bias currents. It is also clear from figure 3(b), that FWHM 

increases slightly at higher bias currents (> 1 mA). We further suggest that such variation of 
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FWHM with bias currents can be explained by a combination of QCSE and band-filling 

effects [32]. It is possible that QCSE is more important at lower injection currents and band-

filling effects can be dominant at higher injection currents. For injection currents above 1 

mA, one may also expect enhancement of Auger recombinations [33-35] within In0.5Ga0.5As 

QDs as will be discussed later in section 3.3. Such increasing presence of Auger like non-

radiative processes at higher bias currents can also broaden the FWHM as reported here. 

Figure 4(a) and 4(b) shows the variation of spectrally integrated EL (Int. EL) of 

individual peaks with respect to bias current and bias voltage. The Int. EL of both QD peak 

and QW-WL peak increase with bias current but the rate of increase of Int. EL of QD (Int. 

ELQD) is greater than that of QW-WL. The explanation of this behaviour has been discussed 

already in previous paragraphs in terms of interface potential barrier as shown in figure 2(b) 

and how it quantitatively affects the carrier injections and radiative recombinations from both 

QD and QW-WL. Also, in the inset of figure 4(a), we have plotted the difference ‘Int. ELQW-

WL - Int. ELQD’ (black) and the ratio ‘Int. ELQW-WL/Int. ELQD’ (blue) to clearly indicate such 

variation of QW-WL and QD integrated intensities in accordance with our above 

explanations.    

Increasing bias voltages lead to changes in both effective potential (𝑉𝑒𝑓𝑓) and 

interface potential barrier between QW and QD. In figure 4(b) we fit Int. ELQD versus bias 

voltage to understand how applied voltage can affect the potential barrier and band alignment 

at the interface. Here Int. ELQD is fitted with a stretched exponential function with respect to 

bias voltage. The reason for this empirical fit is given in the following discussion. As such, 

any simple relationship between current and voltage in a diode is given by Shockley diode 

model [36] and expressed by equation (3) 

                                                    𝐼(𝑉, 𝑇) = 𝐼0 [exp (
𝑒𝑉

𝑘𝐵𝑇
) − 1]                                       (3) 

In the differential form, equation (3) can be written as, 

                                                            
𝑑𝐼

𝑑𝑉
∝ (𝐼 + 𝐼0)                                                            (4) 

The reverse saturation current 𝐼0 can be mostly ignored because we are only working in 

forward bias and 𝐼0 being a constant does not affect the proportionality relation in equation 

(4). Total sum of Int. EL from QD and QW-WL [𝛴(𝐸𝐿) = Int. ELQD  +  Int. ELQW−WL] 
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increases linearly with bias current (𝐼) as shown in the inset of figure 4(b). This indicates that 

𝛴(𝐸𝐿) is approximately proportional to bias current 𝐼 in forward bias when any QD based 

light emitting device is operational. Therefore, assuming that the external quantum efficiency 

of such sample is also independent of the bias current, we replace I with the total Int. EL 

(𝛴(𝐸𝐿)) in equation (4) as, 

                                                          
𝑑Σ(𝐸𝐿)

𝑑𝑉
∝ 𝛴(𝐸𝐿)                                                           (5)  

If similar relation is needed for Int. ELQD, i.e. 
𝑑(𝐸𝐿𝑄𝐷)

𝑑𝑉
, then we also have to consider the 

contributions of Int. ELQW-WL towards Int. ELQD. The emission coming from QW-WL has a 

major dependence on the interface potential barrier which controls the level of carrier 

injection to QD. Nevertheless, we do not know the exact relation between potential barrier 

and QW-WL emission. However, we understand that the potential barrier should change with 

bias voltage, which affects the QW-WL emission. Hence, to get the above differential 

relation for QD only, we need to introduce another term for such additional dependences on 

bias voltage. Such empirical dependence on bias voltage which is in accordance with our data 

can be given below as, 

                                             
𝑑(𝐸𝐿𝑄𝐷)

𝑑𝑉
∝ (𝐸𝐿𝑄𝐷)/𝑉𝑛                                            (6) 

 Putting the constant of proportionality in equation (6) as 𝛼 gives, 

                                             
𝑑(𝐸𝐿𝑄𝐷)

𝑑𝑉
= 𝛼𝐸𝐿𝑄𝐷/𝑉𝑛                                                   (7) 

Finally solving the differential equation (7), we get the stretched exponential form of that 

empirical dependence as, 

                                                     𝐸𝐿𝑄𝐷 = 𝐴. exp (
−𝛼

𝑚𝑉𝑚
)                                                   (8) 

Here, A is constant of integration and m = (n+1). We believe that α has inverse temperature 

dependence. Since the curve fitting is done at a constant temperature (~8.8 K) and only the 

bias is varied, the exact temperature dependence cannot be extracted from this relationship. 

The estimates obtained from the curve fitting of equation (8) are A = 1482 ± 72 a.u., α = 365 

± 28 a.u. and m = 5.6 ± 0.1, respectively. Such stretched exponential dependence may be 
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indicative of the presence of energy dispersive and bias dependent rate processes within the 

heterostructure. 

For further understanding of the effective role of the potential barrier at the 

In0.5Ga0.5As/GaAs interface in confining the carriers undergoing radiative recombination in 

either QD or in QW-WL, we fit a log-log plot of Int. EL vs. bias current of QD and QW-WL 

at ~8.8 K as shown in figure 4(c). The power law exponent for Int. ELQD is found to be 

1.73±0.02. For Int. ELQW-WL, this exponent is 0.78±0.02. This exponent value around unity is 

possibly connected to the presence of excitonic recombinations in the QW-WL layers. 

Clearly, more carriers are being effectively recombined inside QDs as compared to QW-WL. 

We have already explained that Int. ELQD depends upon the bias current that incorporates the 

effect of potential barrier. After a particular applied bias, the carrier jumps into QD from QW 

after crossing that barrier and carrier transport in QDs increases exponentially. The exponent 

value ~2 in case of QD indicates that EL intensity is increasing in QDs faster than that of 

QWs with increasing bias current. Usually, such large exponent points to bi-molecular 

recombination of free electrons and holes. However, all charge carriers inside these QDs are 

quantum confined from all three spatial directions. Therefore, we tend to attribute this higher 

exponent value (~2) to the symptomatic presence of trions or biexcitons related with radiative 

recombination in QDs [37]. Such evidences of the presence of trions or biexcitons may also 

point towards likelihood of non-radiative Auger recombination of these excitonic complexes 

[34] and how it is broadening the EL peaks in figure 3(b) at higher bias currents. Further 

details of these understandings will be discussed again in section 3.3. 

 

3.2 Temperature dependence of electroluminescence from QD and QW-WL 

Figure 5(a) shows EL spectra at different temperatures under a constant bias current 

of ~2.2 mA. At such high current, a significant number of carriers can easily cross the 

interface potential barriers between QW-WL and QD, and finally get trapped inside the QDs. 

Hence, we expect no significant contribution from this interface potential barrier over the 

investigated temperature range. However, any QD-based light emitting devices operating at 

lower threshold currents, this barrier can play a decisive role. EL from QW-WL is visible 

from ~8.8 K to 200 K, while the QD emission is detected up to 300K, which is also depicted 

as colour coded contour plot in figure 5(b). The main reason for emission quenching in case 

of QD as well as QW-WL are thermal escape of charge carriers and activation of non-
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radiative defects states at high temperatures. The potential energy barrier for carrier escape in 

case of QD is 𝐸𝑙𝑜𝑐~140 meV, while in the case of QW-WL, it is band offset at 

GaAs/Al0.3Ga0.7As ∆𝐸𝐶
𝑄𝑊

~250 meV. Despite a smaller potential energy barrier, the QD 

emission is still detectable up to 300K because the QDs have strong spatial confinement of 

charge carriers leading to increased probability of electron-hole recombinations. Moreover, 

the QD ground state also provides the lowest energy for the system of injected carriers. In 

case of QW-WL, carriers escape to Al0.3Ga0.7As barrier layer and are swept away from the 

active region to become irrelevant for EL in this spectral range. Therefore, even after 

receiving some escaped carriers from QD, non-radiative recombination and thermal escape 

can collectively dominate over radiative recombinations leading to significant emission 

quenching in QW-WL. As a result, the QW-WL peak is nearly non-existent above 200K.   

The peak energy of QDs is also red shifted with increasing temperatures. Variation of 

QD peak energy is fitted with three models, namely Varshni [38], Vina et al. [39], and 

Passler [40] as shown in figure 6. The fitted parameters are given in Table 1. Previously, it 

was shown that the behaviour of the peak energy of QDs with respect to temperature is 

sigmoidal [10, 17]. In some of these previous studies, the measured peak energy actually red 

shifts more than that predicted using Varshni fitting after a particular temperature. This effect 

was attributed to redistribution of charge carriers among QDs, where charge carriers get 

transferred into bigger QDs with lower emission energy. However, in our case, no such 

sigmoidal variation of peak energy is observed with increasing temperature. This is possible 

if there are no effective channels of carrier redistribution between the QDs either through 

wetting layer or QW even though the thermal escape of carriers from QDs is possible at 

higher temperatures.  

 Table 1. Fitted parameter of Varshni, Vina et al. and Passler model for peak energy of QD 

Models: Varshni Passler Vina et al. 

 𝑬(𝑻) = 𝑬(𝟎) −
𝜶𝑻𝟐

𝜷 + 𝑻
 

𝑬(𝑻) = 𝑬(𝟎) −
𝜶𝜽

𝟐
( √𝟏 +

𝝅𝟐

𝟔
(

𝟐𝑻

𝜽
)

𝟐

+ (
𝟐𝑻

𝜽
)

𝟒𝟒

− 𝟏) 𝑬(𝑻) = 𝒂 − 𝒃 (𝟏 +
𝟐

𝒆
𝜽
𝑻 − 𝟏

) 

E(0) (eV) 1.338 1.338 a = 1.361 ± 0.003 eV 

10-4 α (eV/K) 3.0 ± 0.5 2.4 ± 0.2 b=0.023 ± 0.004 eV 

β or θ (K) β = 230 ± 87  θ = 205 ± 47  θ =300 ± 36  
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In figure 7(a) and 7(b), the Int. ELQD and Int. ELQW-WL are plotted as a function of 

inverse of sample temperature (1/T), respectively, and fitted using Arrhenius equations (9) of 

EL quenching with only a single activation energy. The effective free energy barrier is given 

by:  

                                      𝐼(𝑇) =
𝐼0

1+𝐴.𝑒𝑥𝑝(−
𝐸𝑎

𝑘𝐵𝑇
)
                                                      (9) 

where 𝑘𝐵 is the Boltzman constant, 𝐼0 is integrated EL at 8.8 K, 𝐸𝑎 is the activation energy, 

and 𝐴 is a pre-exponential factor. 𝐸𝑎 and 𝐴 are fitting parameters and are given in Table 2. 

Although, the activation energies required for EL quenching from QD and QW-WL are well 

below the respective potential energy barriers, 𝐸𝑙𝑜𝑐 and ∆𝐸𝐶
𝑄𝑊

, the thermal escape of charge 

carriers is still possible. This is because of the existence of thermodynamically non-zero 

probability of carrier escape, i.e. ~exp (
−𝐸𝑎

𝑘𝐵𝑇⁄ ) from such potential wells. A model is 

given in figure 7(c) indicating all such carrier dynamics. These can be both radiative and non-

radiative recombinations inside the QD and the QW. Here we assume that these fitted 

activation energies for both peaks are not only just thermal activation energies for carrier 

escape from QDs and QWs, but also these include the combined effects of activation of 

thermal escape as well as non-radiative recombinations through defects.  

Table 2. Fitted values of Arrhenius equations (9) for QD and QW-WL, respectively 

For QD 

𝐸𝑎 = 21 ± 4 meV 

A = 25 ± 14 

For QW-WL 

 𝐸𝑎= 52 ± 10 meV 

A = 201 ± 192 

 

3.3. Bias and temperature effects on optical coherence 

In the previous sections we reported EL from sample A under bias currents from 0.11 

mA to 2.2 mA. Here, we will present measurements of temporal coherence of EL of QDs and 

QW-WL at even higher biases up to 15mA. For these, we have used basic Michelson 

Interferometry to measure first order autocorrelation function g(1)(τ=0) as described in section 

2. The modulus of g(1)(τ=0) can be directly calculated from the visibility of interference 

pattern generated by the Michelson interferometer [41] using equation (10). In figure 8(a) and 
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8(b), g(1)(τ=0) of spectrally separated EL emissions from QDs and QW-WL at different bias 

currents and temperatures are shown, respectively.  

                     │𝑔(1)(𝜏 = 0)│ = 𝑉𝑖𝑠𝑖𝑏𝑙𝑖𝑡𝑦 =  
𝐼𝑚𝑎𝑥−𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥+𝐼𝑚𝑖𝑛
                                       (10) 

Here Imax and Imin are the maxima and minima of fringes in recorded Michelson 

interference pattern. In figure 8(a), we see that g(1)(τ=0) of QDs decreases with increasing 

bias current while for QW-WL, it is increasing. The decrease of g(1)(τ=0) in case of QDs 

likely due to Auger recombinations (AR) within these QDs at such high bias currents. AR is a 

non-radiative process usually significant at high carrier densities and in low bandgap 

materials. AR is effective in suppressing luminescence and reducing temporal coherence at 

higher injection currents for QD EL. From figure 4(c) it is clear that the Integrated EL of QD 

already begins to saturate above bias currents of ~1 mA. EL spectra at such higher bias 

currents are not shown. Interestingly, the presence of Auger process can be confirmed here 

mainly on the basis of the observed differences in temporal coherence of QDs EL and QW-

WL EL.  This is because, contrary to QDs, QW EL is not affected by AR mainly because of 

the following reasons. First, the QW recombinations only occur from remaining carriers in 

QW-WL, whose density is comparatively smaller than that of QDs. This can be understood 

from the EL of QDs and QW-WL shown in figure 4(a) where EL of QDs exceeds EL of QW-

WL at around 2mA. Secondly, QWs has a higher band gap than QDs [34, 42-44]. Thirdly, 

QWs has a lesser spatial confinement than QDs which also keeps the carrier density below 

the threshold for any significant Auger process. Therefore, the temporal coherence of QW-

WL EL still increases with increasing bias currents in the absence of any significant AR 

process within QW-WL. 

Auger is a three particle scattering process where either two electrons and one hole or 

two holes and one electron (e-e-h+ or h+h+e-) get involved to recombine non-radiatively. The 

recombination energy of e- and h+, instead of getting emitted as photon, is provided to a third 

particle which transfers to higher available energy states resulting in a final overall non-

radiative recombination process. During AR process in QDs, the third charge carrier carrying 

the recombination energy can also undergo transfer from the QD to the QW levels. This type 

of non-radiative AR recombination can destroy temporal phase correlation between emitted 

photons leading to a reduced g(1)(τ=0) in QDs. Also, we already attributed the power law 

exponent of Integrated EL with bias currents to the presence of trions or biexcitons in these 

QDs in section 3.1. This explanation agrees with the discussion provided by Kurzmann et al. 
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[34] for InAs/GaAs QD at 4.2 K where they concluded that trions can effectively contribute 

to AR.  

Observed variations of temporal coherence with temperature at a bias current of 15 

mA are shown in figure 8(b). These indicate interesting comparison between QD EL and 

QW-WL EL. With increasing temperature, the coherence of QDs increases despite the 

increase in thermal energy of charge carriers and then it saturates. Due to small 𝐸𝑙𝑜𝑐 in QDs, 

the charge carriers easily escape QDs with increasing temperatures. This can significantly 

lower the carrier density below the required AR threshold inside these QDs. As a result of 

this effective reduction of carrier density at higher temperatures, there can be subsequent 

decrease of Auger recombination [45, 46] leading to an increase of coherence of QD EL with 

increasing temperatures up to a certain level and nearly saturates. However, the g(1)(τ=0) for 

QW-WL emissions are not affected, as expected, due to the absence of any significant Auger 

process at higher temperatures. As a result, the optical coherence of QW-WL EL mostly 

decreases above 50 K with usual increase in non-radiative recombinations with increasing 

temperatures. EL intensity of QW-WL at temperatures higher than ~120 K is small enough to 

get any reasonable estimate of g(1)(τ=0). 

To the best of our knowledge, there are not any literature reports that had related 

coherence of electroluminescence with Auger recombination in QDs. Moreover, here we 

showed an interesting interplay between two effects: electroluminescence quenching and 

temporal coherence of electroluminescence due to the escape of charge carriers from QDs 

with increasing temperatures. On one hand, charge depopulation from QDs results in 

quenching of QD EL with increasing temperatures. On the other hand, due to reduced charge 

carrier density, the ongoing Auger recombination also reduces which results in more coherent 

light emission at higher temperatures. In a way, spectrally selective measurements of 

temporal coherence could be considered as a useful method to sense the presence of AR. 

From the point of view of applications, this sensitivity of g(1)(τ=0) to detect AR and the above 

mentioned interplay between quenching and temporal coherence of electroluminescence can 

be suitable in optimizing quantum dots based light emitting devices. 
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3.4. Experimental Results on Sample B with DBR 

We also investigated sample B, which has a structure similar to a vertical cavity 

surface emitting laser (VCSEL) that include QDs in the active region and DBR stacks on 

both sides, under similar electrical biases and temperatures. Clearly, the EL peaks of QDs and 

QW-WL are distinct and well separated in comparison to sample A as shown in figure 9(a) 

and 9(b). The spectral evolution of peaks with increasing biases at low temperature (~10 K) is 

still the same as Sample A, which indicates the presence of potential barrier at the interface of 

QDs and QW. Although the peak position of QDs in sample B is the same as for sample A, 

the emission peaks in sample B are narrower. The FWHM in sample A ranges from 42 meV 

to 48 meV while in sample B, it saturates to a much smaller maximum value ~30meV. This 

can be explained by the presence of DBR stacks at both ends of the structure, which forms an 

optical cavity. So, we attribute the observed reduction in the emission broadening to the 

selective nature of 1D photonic band gap within such DBR stacks. In sample B, we also 

observe that the peaks follow similar trends with temperature. However, the QW-WL peak 

disappears nearly at 250 K instead of 200 K as observed in sample A. Due to three layers of 

QDs-QWs instead of six as in Sample A, there can be twice the amount of injected charge 

carrier densities in the active region of sample B. This could be the reason behind non-

vanishing of QW-WL EL even at 250 K for Sample B. 

 

4. Conclusion  

We conclude that the interface potential barrier between QDs and QWs has an 

important role in determining carrier dynamics inside In0.5Ga0.5As/GaAs/Al0.3Ga0.7As QD-

QW heterostructure. For device applications, in low current regime, this barrier could play a 

more decisive role. We further found an empirical dependence of EL of QDs on applied bias 

voltage, which directly incorporates the effect of the same interface potential barrier. 

Temperature dependence of electroluminescence spectra shows that thermal escape of 

injected charge carriers and their non-radiative recombinations are the main causes of EL 

quenching. We also performed temporal coherence measurements and argued that Auger 

recombination is a major source for loss of coherence in QDs emission at high carrier 

densities. With increasing temperatures, due to the escape of carriers from QDs, charge 

density reduces resulting in reduced Auger recombinations at a fixed bias current. These 

reduced Auger recombinations then further enhance the first order temporal correlation of 
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light emission. Therefore, depopulation of carriers from QDs results in lower EL but with 

improved optical coherence at higher temperatures.  

In fact, we even argued that measurement of temporal coherence of individual 

spectral peaks could be an important sensitive tool to detect the presence of Auger 

recombinations in QDs. All these results also indicate that by using proper materials and 

device engineering of potential barriers within such QDs heterostructure, a dynamical balance 

can be found between thermally activated loss of carriers which do not recombine radiatively 

and the fraction of injected carriers which produce electroluminescence. Therefore, this work 

demonstrated how such interface potential barrier mediated charge transfers to and from QDs 

help to maintain the crucial interplay between electroluminescence quenching and temporal 

coherence of electroluminescence. Such optimisations will be important to control not only 

the strength, but also the coherence of electroluminescence resulting in an efficient QDs 

based light emitting devices for lasing.  
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Figure 1. (a), (b), (c) Electroluminescence (EL) spectra of In0.5Ga0.5As/GaAs/Al0.3Ga0.7As quantum 

dot-quantum well (QD-QW) heterostructure (sample A) at ~8.8 K under decreasing levels of 

forward bias voltage and corresponding bias currents, respectively. (d) 2D Contour plot of the same 

spectra with colour coded EL intensity at different bias currents. Emission around 1.33 eV is from 

QD while broad emission of QW and WL is around 1.47 eV.  Initial emission from QW-WL at low 

bias current is dominated by emissions from QDs at higher currents.  
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Figure 2. (a) Schematic diagram of the sample(s). The light grey triangles are self-assembled 

In0.5Ga0.5As QDs over the wetting layer (light grey). The QDs are grown inside GaAs/Al0.3Ga0.7As 

QW. The grey shadow over QDs represents the potential barrier which prevents the carrier 

injection. Dotted arrow on left shows the repetition of same structure along the growth direction. 

Sample A has six layers of QD-QWs while Sample B has three layers of QD-QWs only. (b) 

Schematic band diagram of In0.5Ga0.5As/GaAs/Al0.3Ga0.7As QD-QW heterostructure. The direction 

of the applied forward bias is given by the black arrow. Quantized energy levels (blue) of QW 

within the potential barrier at the interface of QDs and QW are shown in the inset. Potential barrier 

at GaAs/Al0.3Ga0.7As interface and wetting layers are omitted from this schematic band diagram for 

simplicity.  
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Figure 3. (a) Peak energy and (b) FWHM of EL spectra of In0.5Ga0.5As QD at ~8.8K are plotted 

respectively as function of bias currents. The error bars in both plots indicate combined 

contributions from experimental bandwidth (∆E~3meV) at the peak wavelength and the errors due 

to fitting Gaussian line shapes to each peak.  
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Figure 4. (a) Integrated EL of the QDs and the QW-WL peak from figure 1 as function of bias 

current. The inset shows the difference of Integrated EL of QW-WL and QD (as QW-QD with 

black dots) which has a maximum around 1 mA. It also shows the ratio of Integrated EL of QW-

WL and QD (as QW/QD with blue dots) which is mostly decreasing with bias current. All lines are 

guide for the eyes only. (b) Integrated EL of QD is fitted against bias voltage. It indicates voltage 

activated increase of EL with increasing forward bias. Inset of (b) shows linear increase of total 

Integrated EL of QW-WL and QD with bias current. (c) Integrated EL of QW-WL and that of QDs 

are plotted against bias currents in log-log scale. The plots are fitted with straight lines (blue) at 

higher currents. Estimated slopes of QW-WL EL and QD EL are 0.78 and 1.73, respectively. 
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Figure 5. (a)  EL spectra at constant bias current ~2.2 mA for different temperatures (b) 2D colour 

coded contour plot of the same spectra at different temperatures. The QW-WL peak vanishes above 

~200 K.  There is a red shift in peak energy of QDs with increasing temperature. 
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Figure 6. Peak energy of QDs emission as function of temperature (black square). The plot is fitted 

with Varshni (Red), Vina et al. (Green), Passler (Blue) models of semiconductor band-gap 

variation with respect to temperature.  
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Figure 7. Integrated EL of (a) QDs and (b) QW-WL are plotted with respect to inverse of 

temperature in K-1, respectively. The plots are fitted with Arrhenius formula of luminescence 

quenching with single activation energy. (c) Schematic diagram for radiative and non-radiative 

transitions in In0.5Ga0.5As/GaAs QD and GaAs/Al0.3Ga0.7As QW. R and R’, and NR’ and NR are 

radiative recombination and non-radiative recombination of QDs and QWs, respectively. 

Downward arrows indicate the carrier capture while upward arrow shows the thermal escape (TE). 

TE1 shows escape for carrier from In0.5Ga0.5As QD to GaAs and TE2 is carrier escape from GaAs 

QW to Al0.3Ga0.7As barrier layer. The grey line between QDs and QW represents the presence of 

interface potential barrier restricting the carriers from entering the QD at low injection currents.  
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Figure 8. First order correlation function, g(1)(=0) are estimated for both EL of QD and EL of 

QW-WL, respectively. These g(1)(=0) are plotted against bias currents at ~8.8 K in (a) and against 

temperatures at a fixed bias current of 15 mA in (b), respectively. All lines in (a) and (b) are guide 

for the eyes only. Auger recombination is possibly weakening the optical coherence at such high 

currents. However, thermal escape of charge carriers from QDs results in reduced carrier density at 

higher temperatures. This suppresses Auger recombination, which shows up as an increase of 

temporal coherence of QD EL at higher temperatures.  
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Figure 9. (a) EL spectra at different applied biases and corrosponding bias currents of Sample B 

with DBR stacks. (b) EL spectra at different temperatures with fixed bias current of ~2.2 mA. Here 

the emisions from both QDs and QW-WL are much sharper in comparison with Sample A.  
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