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Abstract
The current climate warming in theArcticmay increase themicrobial degradation of vast pools of soil
carbon (C); however, the temperature sensitivity of decomposition is often highly dependent on the
quality of accumulated soil C. Grazing by reindeer (Rangifer tarandus L.) substantially affects the
dominant vegetation and often increases graminoids in relation to dwarf shrubs in ecosystems, but the
effect of this vegetation shift on the soil C quality has not been previously investigated.We analyzed
the soil C quality and rate ofmicrobiallymediatedCO2 release at different temperatures in long-term
laboratory incubations using soils from lightly grazed dwarf shrub-dominated and heavily grazed
graminoid-dominated tundra ecosystem. The soil C quality was characterized by solid-state cross-
polarizationmagic angle spinning (CPMAS 13CNMR) spectroscopy, which showed a higher relative
proportion of carbohydrate C under light grazing and higher relative proportion of aliphatic not-O-
substitutedCunder heavy grazing. Initialmeasurements showed lower temperature sensitivity of the
CO2 release in soils under light grazing comparedwith soil under heavy grazing, but the overall CO2

release rate and its temperature sensitivity increased under light grazing as the soil incubation
progressed. At the end of incubation, significantlymore carbohydrate Chad been lost in soils under
light grazing comparedwith heavy grazing. Thesefindings indicate that theremay be a link between
the grazer-induced effects on soil C quality and the potential of soils to release CO2 to atmosphere.We
suggest that vegetation shifts induced by grazing could influence the proportion of accumulated soil C
that is vulnerable tomicrobial degradation underwarming climate.

Introduction

Because low temperatures limit decomposition, tun-

dra ecosystems store substantial quantities of C in the

form of old organic matter (OM). This accumulated

soil C constitutes by far the largest C stock of tundra

ecosystems, and overall, tundra soils store half of the

global soil carbon (C) stocks [1]. The ongoingwarming

of the Arctic may enhance the decomposition of

accumulated soil C, which would release vast amounts

of CO2 to the atmosphere and create a positive

feedback loop with respect to climate change [2].
Investigations on the susceptibility of soil C stocks to

increasing temperatures have recognized that the

effects of increasing temperatures on soil C

decompositionmay depend on the chemical quality of

the accumulated soil C. The temperature sensitivity of

decomposition has been repeatedly demonstrated to

increase with declining C quality (i.e. decomposability

of accumulatedC) in the soil and litter [3–7].
The chemical composition of the accumulated

tundra soil C may largely be determined by the domi-

nant vegetation composition, because the different

plant species and growth forms vary in the chemical

composition and the decomposability of litter pro-

duced [8–10]. In tundra, grazing by large ungulates

exerts important effects on vegetation, often promot-

ing the abundance of graminoids in relation to dwarf

shrubs and mosses [11–16]. Although many tundra

ecosystems are grazed by reindeer/caribou (Rangifer
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tarandus L.) especially in Northernmost Eurasia where
the management of semi-domesticated reindeer con-
stitutes an importantmeans of land-use [17], it has not
been investigated how the grazer-induced vegetation
shifts influence on the quality of accumulated soil C.
Furthermore, it is unclear whether the complex chan-
ges in soils induced by grazingmay influence the sensi-
tivity of soil C decomposition to increasing
temperatures. Grazer-induced shifts in the vegetation
from mosses and dwarf shrubs to graminoids is likely
to alter the soil C quality. Graminoid litter is generally
degraded more rapidly than dwarf shrub andmoss lit-
ter [18, 19]; however, graminoids may also promote
soil C accumulation through the production of dense
mats of fibrous root biomass [9]. Dwarf shrub-domi-
nated vegetation produces phenol-rich and highly
aromatic litter that decomposes at a slow rate [9, 18],
which—according to kinetic theory—should increase
with temperature to a greater extent than the degrada-
tion of labile C [2, 20]. Along with soil C quality, graz-
ing causes substantial changes in the soil microclimate
and nutrient concentrations [21, 22], which could also
alter soil microbial responses to increasing tempera-
tures. The decomposition rates are regulated by com-
plex interactions among soil C quality, substrate
diffusion, soil microbial temperature acclimation, and
nutrient stoichiometry [23–25]. Grazers in turn simul-
taneously alter several of these properties, making it
difficult to isolate mechanisms by which grazers influ-
ence microbial activity as well as its temperature
sensitivity.

It was recently discovered that tundra grazing his-
tory may be an important determinant for the
response of ecosystem C balance to climate warming
[29]. Using a site where different sub-sections have
been subjected to drastically differing grazing inten-
sities for the past 50 years, it was found that warming
decreased the ecosystem C sink under light grazing,
but had no effect under heavy grazing [29]. The long-
term differences in grazing intensity had induced a
vegetation shift from evergreen and deciduous dwarf
shrubs under light grazing toward graminoids under
heavy grazing [13], and increased soil nutrient avail-
ability, litter and soil decomposition rates and ecosys-
tem respiration [21, 26–29]. Given that the
susceptibility of soil C stocks to warming has a key
importance for the response of the total ecosystem C
stocks to warming, a separate study investigating the
effect of grazing on the C quality and the temperature
sensitivity of CO2 release in the accumulated soil Cwas
warranted. We characterized litter and soil at different
long-term grazing intensities, and conducted labora-
tory incubations at different temperatures with litter
and soil. Soil and litter was analyzed using solid-state
cross-polarization magic angle spinning nuclear mag-
netic resonance (CPMAS 13C NMR) spectroscopy,
which is a powerful tool for characterizing the struc-
ture of soils and litters [30–32]. We based our hypoth-
eses on the predictions of the kinetic theory. Because

vegetation is more lignin rich under light grazing than
heavy grazing [13, 28], we first hypothesized that (1)
litter and soil C under light grazing should be more
aromatic and recalcitrant to microbial decomposition
[2]; therefore, lower rates of CO2 release should be
observed in soil incubations compared with those of
soils under heavy grazing. Because high aromaticity is
often linked with a higher temperature sensitivity of
decomposition [2, 3, 20], we hypothesized that (2) soil
C decomposition rates should show greater increases
with temperature in soils under light grazing than
those under heavy grazing.

Materials andmethods

Study site
The study site was a mesic, nutrient-rich tundra heath
(Raisduoddar (69°31′N, 21°19′E), located in North-
ernmost Norway). The soil is classified as Inceptisol,
and has a coarse texture typical ofmountain soils being
composed of sand and silt fractions with a consider-
able gravel component. The soils are freely draining
with a surface organic horizon of 0.5–11 cm thick,
while pHvaries from4.8 to 5.4 independent of grazing.
The vegetation community is characterized as an
Arctic Empetrum–Dicranum–Lichen type heath [33].
Because of a pasture rotation fence built in the 1960s,
one sub-section of lightly grazed tundra (LG) is briefly
used as a passage, whereas the other sub-section of
heavily grazed tundra (HG) is subjected to intensive
grazing during reindeer migration. The highest graz-
ing intensity is encountered in a 50 mwide and several
kilometers long zone on the HG side of the fence
during the first weeks of August, when reindeer gather
near the fence before migrating to the winter ranges
[28]. The abundances of evergreen and deciduous
dwarf shrubs are higher in the LG tundra, while the
abundances of graminoids, plant productivity, soil
nutrient availability and soil temperature are consider-
ably higher in the HG tundra [13, 21, 27, 28]. The
average soil temperatures for June–August 2010 mea-
sured at approximately 3 cm depth (n=3, EasyLog
EL-USB, Lascar Electronics, Erie, Pennsylvania, USA)
were 7.9±0.2 °C and 9.2±0.2 °C (mean+S.E.)
for the LG andHG tundra communities, respectively.

Soil and litter sampling
Five blocks were established along the reindeer fence
that separates LG and HG sub-sections (distance
between blocks >20 m) in 2010. Within each block,
we selected plots with similar exposure and hydro-
logical status of approximately 1×1 m on both the
LG and HG sides of the reindeer fence (distance
between plots with differing grazing intensity<20 m).
Soil material was collected before the annual reindeer
migration (8 August 2010) by coring approximately
1 kg of fresh soil, which corresponded to 3–5 soil cores
(diameter 10 cm) of 5–10 cm depth in the soil organic
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layer. In the laboratory, soils were sieved (2 mmmesh
size) and pre-incubated for 2–3 months at 4 °C to
deplete soils of the most labile C substances. Senescent
leaves of bilberry (Vacciniummyrtillus L.), bog bilberry
(Vaccinium uliginosum L.), dwarf birch (Betula nana
L.) andmountain crowberry (Empetrum nigrum L. ssp.
hermaphroditum, Hagerup) were collected from LG
tundra and senescent stems and leaves of the dominant
sedge species (Carex bigelowii L.) from HG tundra at
the end of the growing season (GS) (17 September
2010). Numerous plant individuals were sampled
from several locations within the study area. Unsorted
root biomass from the LG and HG tundra and
composite moss litter (Dicranum spp., Polytrichum
spp., Pleurozium schreberi) from the LG site were
collected in July 2011. Litter samples were pooled by
species, whereas root biomass was pooled by grazing
intensity. All of the samples were stored at 4 °C (2
weeks) before chemical analyses.

Soil properties andCquality using solid-state
13CNMR
The moisture (105 °C, 12 h) and OM content (loss on
ignition at 475 °C, 4 h)of the fresh soil and litter samples
were determined gravimetrically; the total C and nitro-
gen (N) concentrations were analyzed (EA 1110 CHNS-
O) as the% dry weight, and these amounts were used to
calculate the C:N ratios and soil C stock (kgm−2). To
characterize the litter and soil C quality at different levels
of grazing intensity, we used solid-state 13C CPMAS
NMR spectroscopy. An NMR analysis was conducted
for fresh soils (n=5) and litter (n=1). Sub-samples of
sieved soil andmixed litter were dried (two days, 60 °C),
ground to a fine powder, and treated with 4 M HCl to
increase the signal-to-noise ratio [34]. Comparisons
between theNMRspectra foruntreated andHCl-treated
samples, which had high signal to noise ratios, showed
that the HCl treatment did not affect the shape of the
spectra. We acquired CPMAS 13C NMR spectra for soil
(initial, at 19 °C) and litter samples using a DSX200
spectrometer (Bruker, Coventry, UK) equipped with
double-bearing cylindrical probes (4mm) for cross
polarization andmagic angle spinning (detailed descrip-
tion for data acquisition parameters and conditions see
[35]). Bruker WinNMR software was used to measure
the peak areas for the following chemical shift regions:
0–50 ppm, (aliphatic not-O-substituted), 50–60 ppm
(methoxyls), 60–90 ppm (carbohydrates), 90–110 (carbo-
hydrates and aliphatic lignin), 110–160 (aromatic lignin),
and 160–210 (carboxyl/carbonyl). Areas of the chemical
shift regions were expressed as percentages of the total
area, and all of the NMR results are expressed as a % of
the total C. The chemical shift regions were treated as
functional classes of C. Carbohydrates and methoxyls
are labile substrates easily degradable for many soil
microorganisms, whereas aromatic lignin, aliphatic
non-O-substituted and carboxyls are more resistant to
microbial decomposition and contribute to the

formation of soil OM [36]. Aromaticity and alkyl-to-O-
alkyl ratios were calculated to describe the decomposa-
bility of litter and soil C.

Soil incubation
To analyze the rates of CO2 release and the tempera-
ture sensitivity of soil decomposition at different levels
of grazing intensity, laboratory incubations at different
temperatures were conducted using the pre-incubated
soils. First, we conducted soil incubation experiments
using constant temperatures (hereafter referred to as
constant temperature incubation, n= 5). Soil (1 gOM
with 60% water-holding capacity (WHC)) samples
were incubated at 4 °C, 9 °C, 14 °C and 19 °C in
120 ml glass vials for six months (27 September
2010–31 March 2011), and CO2 release was analyzed
eight times. Air samples (250 μl) were collected in the
head space of the incubation bottles and analyzed for
CO2 concentrations using a gas chromatograph (HP
6890 equippedwith a TCDdetector andmicro-packed
column) and reported as mg CO2–C produced per g
OM initially present per hour. The CO2 production at
different temperatures (4 °C, 9 °C, 14 °C and 19 °C)
under constant temperature incubation was used to
calculate the Q10 value (depicting the temperature
sensitivity of decomposition) by plotting the natural
logarithm of CO2 release against temperature and
using the slope (k) of the linear regression,
Q10=e(10*k). The CO2 release andQ10 were averaged
over the measurements. The moisture content was
monitored and adjusted to 60% WHC when neces-
sary. To describe the differences in CO2 release and
temperature sensitivity at the beginning and end of the
incubations, the results of the first and last measure-
ment are presented (6 October 2010 and 31 March
2011, respectively).

Second, we conducted long-term soil incubation
experiments that simulated seasonal incubation cycles
between ‘growing seasons’ and ‘winters’ that mimic
the field conditions ([37]; hereafter referred to as sea-
sonal incubation, n=5). Each cycle consisted of a GS
(eight weeks at 19 °C, 14 °C and 9 °C) and winter (6–7
weeks at−5 °C). The length of the ‘GS’was based on a
finding that the soil temperature of our study site is
above 9 °C for approximately eight weeks [28]. The
soil samples were weighed (20 g fresh weight) into
500 ml glass bottles, and the moisture content was
adjusted to 60% WHC. During each ‘GS’, the CO2

release was analyzed four times as described above.
The ‘winter’ CO2 release at−5 °C was measured once
after the first GS and assumed to be the same during
the subsequent winters. The duration of the soil incu-
bation was three complete cycles, which resulted in
299 d of incubation (30 December 2010–24 October
2011). Time-integrated CO2–C loss estimates for dif-
ferent temperatures and grazing intensities in the sea-
sonal incubation were calculated. The seasonal
average CO2 fluxes were calculated and further used to
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calculate the average seasonalQ10. To analyze changes
in the soil C quality during the incubation, we also
characterized the post-incubation soils, which had
been incubated at 19 °C, using NMR analyses and
similar protocols used with fresh soils. For each soil
functional C class, the absolute C change between
fresh and post-incubation soils was calculated accord-
ing to the calculated cumulative C losses and expressed
as g C lost per g initial C.

Statistical analyses
The effects of grazing intensity and temperature on the
GSCO2 release were analyzed with amixedmodel that
included grazing (G) and temperature (T) as fixed
factors, block nested with grazing as a random factor,
and GS as a repeated factor. Because of statistically
significant interactions, the effects of T and GS were
also analyzed separately for the LG and HG sites. The
treatment effects on seasonal Q10 were analyzed with-
out T. Soil C stock, soil quality andQ10 at the first and
last measurement under constant temperature incu-
bation were tested with grazing as a fixed factor and
block nested with grazing as a random factor, whereas
for the CO2 release rates, T was included as a fixed
factor. A Bonferroni test was used as a post hoc test to
detect differences in T and GS between LG and HG
tundra. All of the statistical analyses were conducted
with IBM SPSS Statistics 21 for Windows (IBM SPSS,
Inc., Chicago, IL, USA).

Results

Chemical quality of litter C
We characterized litter quality using one composite
sample per litter type, and therefore, these analyses are
considered qualitative. The proportion of aromatic
lignin and aromaticity were higher in dwarf shrub
litter than in graminoid litter (table 1). Of the analyzed
litter types, moss litter (collected only from LG)
showed the lowest proportion of aromatic lignin and
aromaticity (table 1). Dwarf shrub litter andmoss litter
showed a higher proportion of aliphatic not-O-
substituted C and higher ratio of alkyl to O-alkyl than
graminoid litter. In the root biomass, the aromaticity
did not differ by grazing intensity; however, the roots
under HG showed a higher proportion of aliphatic
not-O-substituted C and higher ratio of alkyl to
O-alkyl than did the roots under LG, and the roots
under LG showed a higher proportion of carbohy-
drates (table 1). The proportion of carbohydrates was
high in the graminoid andmoss litter (table 1).

Chemical quality of soil C
Similar to litter, soil carbohydrates and aliphatic not-
O-substituted C constituted the most abundant func-
tional C classes (table 1). The patterns in aromaticity
observed in litters were not found in the underlying
soil because the average aromaticity did not differ
between LG and HG soils (tables 1 and 2). In contrast,

the proportion of carbohydrates was higher under LG,
whereas the proportion of aliphatic not-O-substituted
C and ratio of alkyl to O-alkyl were higher under HG
(tables 1 and 2). There was no significant difference in
soil C stock between grazing intensities (F1, 14=0.35,
P=0.56; 2.7±0.4 and 3.1±0.5 kg m−2 forHG and
LG, respectively). However, the C:N ratio was signifi-
cantly lower (F1, 8=25.97, P<0.01) in the HG soils
(17.6±1.3) compared with that of the LG
(28.6±1.7) soils.

CO2 release andQ10 in constant temperature
incubation
At the beginning of the constant temperature incuba-
tion, the CO2 release from soils did not differ by
grazing intensity (no G effect, F1, 8=0.01, P=0.94;
figure 1(a)); however, the Q10 value was higher in the
HG than LG soils (F1, 8=6.26, P=0.04; figure 1(a)).
During the incubation, the CO2 release andQ10 varied
according to the grazing intensity, and at the end of
incubation, Q10 had increased by 64% in LG soils but
decreased by 35% in HG soils compared to the initial
value. The CO2 release was significantly higher in LG
soils compared with that of HG soils at all tempera-
tures except at 4 °C (significant G×T interaction,
F 36.18,3,24 = P<0.01; figure 1(b)), and the Q10 in
LG soils was over two-fold higher than the Q10 in HG
soils (F1, 8=33.84,P<0.01;figure 1(b)).

CO2 release,Q10 andC losses during seasonal
incubation
During seasonal incubation, the average growing
season CO2 release over all temperatures was 75%
higher in the LG soils relative to that of the HG soils
(significant G effect, F1, 9=8.87, P=0.02). The CO2

release rate increased with temperature (significant T
effect, F2, 60=199.08, P<0.01; figures 2(a) and (b)),
although the effects of temperature varied temporally
and according to the grazing intensity, with the
temperature-induced increase in CO2 release intensi-
fying in LG soils during the soil incubation (significant
GS×G×T interaction, F4,40=3.99, P<0.01;
figures 2(a) and (b)).Q10 was higher in LG soils relative
to HG soils throughout the incubation (significant G
effect, F1,17=11.12, P<0.01; figures 2(a) and (b)).
The cumulative CO2–C loss during incubation was
higher in LG soils relative to HG soils. Changes in soil
functional C classes during incubation at 19 °C were
relatively similar in soils under both grazing intensi-
ties. Whereas the proportions of aromatic lignin,
carboxyl/carbonyl C and aromaticity decreased; pro-
portions of aliphatic not-O-substituted C and alkyl-
to-O-alkyl ratios increased; and proportions of meth-
oxyl C, carbohydrates and aliphatic lignin remained
unchanged (table 1). The cumulative losses of carbo-
hydrates and aliphatic not-O-substituted C, however,
were significantly higher in LG soils relative to HG
soils (figure 3, table 2).
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Table 1.The relative proportions of functional C classes expressed as a%of the total C for fresh and post-incubation soils incubated at 19 °Cand the dominant litter types for the lightly grazed (LG) and heavily grazed (HG) tundra. The soil
values are presented as themean±SE, and the litter types are presented as themean.

Aliphatic not

O-substituted 0–50 ppm

Methoxyl

50–60 ppm

Carbohydrate

60–90 ppm

Carbohydrate and aliphatic

lignin 90–110 ppm

Aromatic lignin

110–160 ppm

Carboxyl/carbonyl

160–210 ppm Aromaticitya
Alkyl-to-O-alkyl

ratiob

LG, soil

Fresh soil 27.9±0.6 5.1±0.5 39.7±1.4 10.4±0.6 11.1±0.4 5.7±2.0 0.11±0.00 0.51±0.02
Post-incuba-

tion soil

33.4±1.3 6.6±0.3 40.6±1.3 9.9±0.3 7.4±0.4 2.1±0.3 0.07±0.00 0.59±0.03

LG, litter

Mountain

crowberry

42.3 4.1 32.0 7.2 11.3 3.1 0.11 0.98

Dwarf birch 27.8 5.2 39.2 10.3 14.4 3.1 0.14 0.51

Bog bilberry 24.2 5.1 43.4 10.1 14.1 3.0 0.14 0.41

Bilberry 25.5 5.3 43.6 10.6 11.7 3.2 0.12 0.43

Mosses 25.5 7.1 51.0 12.2 3.1 1.0 0.03 0.36

Roots 20.4 7.1 51.0 12.2 9.2 0 0.09 0.29

HG, soil

Fresh soil 32.7±1.9 6.0±0.8 34.3±1.1 9.2±0.7 11.3±0.6 6.6±1.8 0.11±0.01 0.66±0.04
Post-incuba-

tion soil

38.7±1.6 7.1±0.3 34.5±0.9 8.4±0.4 8.2±0.7 3.2±0.4 0.08±0.01 0.78±0.05

HG, litter

Sedge 13.4 7.2 56.7 12.4 8.2 2.1 0.08 0.18

Roots 24.5 9.2 43.9 11.2 10.2 1.0 0.10 0.38

For different litter types, the values are single determinations of composite samples.
a Calculated as aromatic lignin/total signal from all compounds.
b Calculated as aliphatic not-O-substituted/(methoxyl+ carbohydrate+ carbohydrate and aliphatic lignin).
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Table 2.The effect of grazing on relative proportions of soil functional C classes, indexes for fresh soils, and the absolute functional C-class changes during incubation. F-values and their corresponding df-values are presented.

Aliphatic not -O-substituted Methoxyl Carbohydrate Carbohydrate aliphatic lignin Aromatic lignin Carboxyl/carbonyl Aromaticity Alkyl-to-O-alkyl ratio

Fresh soil F1, 8=5.60* F1, 8=0.83 F1, 8=9.26* F1, 8=1.61 F1, 8=0.05 F1, 8=0.10 F1, 8=0.05 F1, 8=11.37**

C change F1, 8=5.59* F1, 8=0.75 F1, 8=7.10* F1, 8=2.41 F1, 8=4.34 F1, 8=0.05

*p�0.05, **p�0.01, ***p<0.001.
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Discussion

Because the LG tundra is dominated by woody dwarf
shrubs and the HG tundra is dominated by grami-
noids, we predicted higher soil C aromaticity, lower
CO2 release rates from soils, and higher temperature

sensitivity under light grazing than heavy grazing
[2, 20]. Opposite to our hypothesis, soil aromaticity
did not differ according to grazing intensity despite the
drastically higher aromaticity of the dominant litter
types in LG areas. Furthermore, the effects of tempera-
ture onCO2 release rates showed complex interactions

Figure 1.TheCO2–C release by soils under light grazing (LG) and heavy grazing (HG) (a) in the early (10 days since the beginning of
the incubation) and (b) later (185 days since the beginning of the incubation) phases under constant temperature incubation. The
values are presented as themean±SE; n=5. Additionally, themeanQ10±SE for each grazing regime is reported in the graphs.

Figure 2.TheCO2–C release at different temperatures (9 °C, 14 °Cand 19 °C) during the seasonal incubation in (a) lightly grazed
(LG), and (b) heavily grazed (HG) soils. CO2–C releasewasmeasured during ‘growing seasons’ (GS). Days 0–56 depict the first GS,
days 103–159 the secondGS and days 217–273 the thirdGS. CO2–C releasewasmeasured during thefirst ‘winter’ (days 57–102) and
assumed to be the same for the two consecutive winters (days 160–216 and 274–299). The values are presented as themean±SE;
n=5. Additionally, themeanQ10±SE andC loss estimates for each grazing regime and temperature are reported in the graphs.
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between the grazing intensities that varied for the
different phases of soil incubation. Initially, the CO2

release rates did not differ between the grazing
intensities and the temperature sensitivity of decom-
position was lower under light grazing than heavy
grazing (figure 1(a)). However, as the duration of
incubation increased, the CO2 release rate and tem-
perature sensitivity increased in soils under light
grazing compared with soils under heavy grazing
(figures 1(b) and 2). The microbial responses to
temperature under short-term soil incubations may
depict the initial responses of microbial activities to
temperature, whereasmicrobial responses to tempera-
ture under long-term soil incubation may reflect the
responses of soil microbial activities under sustained
higher temperatures (e.g., [38]). Soils incubated at
higher temperatures may be depleted of labile C
substrates at a faster rate compared with soils incu-
bated at low temperatures [25, 39, 40]. Post-incuba-
tion temperature sensitivities and shifts in Q10 during
the course of incubation could thus reflect differing
post-incubation C quality rather than temperature
sensitivity alone. Our findings indicate that under
prolonged warming, a long history of high grazing
intensity might dampen the effects of increasing
temperatures on the decomposition of accumulated
soil C.

Instead of differing by soil C aromaticity, long-
term grazing intensity altered the proportions of car-
bohydrate and aliphatic C, with the proportion of car-
bohydrate C higher in soils under light grazing and
proportion of aliphatic not-O-substituted C higher in
soils under heavy grazing. Similar soil C aromaticity at
both levels of grazing intensity despite a drastic differ-
ence in the dominant vegetation aromaticity could
result from a higher capacity of the soil microbial
community for lignin degradation under light grazing.
The higher carbohydrate abundance in soils under
light grazingmay be caused by highermoss abundance
in the vegetation [29]. Moss biomass is largely com-
posed of carbohydrates and considered to contribute

significantly to soil C accumulation in the tundra [10].
A higher proportion of aliphatic not-O-substituted C
in soils under heavy grazing may result from the dense
fibrous mats of root biomass produced by the grami-
noid-dominant vegetation [9] as graminoid roots con-
tain high concentrations of decomposition-resistant
aliphatic compounds that often accumulate in soils
[41, 42]. Higher alkyl-to-O-alkyl ratios in soils under
heavy grazingmay also reflect amore advanced state of
decomposition [30, 43]; this would be consistent with
observations that soil microbial activity is generally
higher in soils under heavy than light grazing
[21, 27, 28].

Considering parallel findings of higher soil C qual-
ity and decomposition temperature sensitivity, it is
possible that the higher proportion of carbohydrate C
under light grazing explains the increased CO2 release
rates under prolonged warming. This hypothesis is
supported by the finding that the total carbohydrate-C
loss during the incubation was higher under light than
heavy grazing (figure 3). Mid- to long-term tempera-
ture sensitivities of microbial respiration are primarily
driven by the availability of readily decomposable
C [39, 44]. Tundra soils harbor large portions of
bioavailable and potentially degradable C, which is
one of the primary causes of the high vulnerability of
accumulated tundra soil C to increasing temperatures
[10, 36, 37, 45–47]. CO2 release rates in tundra corre-
late also positively with the proportion of poly-
saccharides in the accumulated soil C [48]. Because
soil carbohydrates are often stored in ligno–cellulose
complexes and protected by lignin [31, 49], theywould
be degraded at later stages of soil incubation, thus
explaining why CO2 release rates were higher under
light grazing only as the soil incubation progressed.
Soils under light grazing could thus harbor sub-
stantially greater amounts of potentially mineralizable
C than soils under heavy grazing and release larger
quantities of C underwarmer climate.

In addition to soil C quality, the effect of grazing
on microbial temperature adaptation or soil nutrient

Figure 3.The cumulative C changes from each functional C class expressed as the g C class change per g initial total C after the 10
month seasonal incubation at 19 °C for the lightly grazed (LG) and heavily grazed (HG) soils. Values are presented as themean; n=5.
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availability could underlie the differing effects of tem-
peratures on microbial activity. Soil temperatures are
higher under heavy than light grazing [28]. In another
laboratory study at this site, we found that extra-
cellular enzymes under light grazing catalyzed OM
degradation more efficiently at low temperatures than
that under heavy grazing, indicating differing capacity
for temperature adaptation depending on grazing
intensity [22]. Increasing temperatures alter the
microbial community composition and induce func-
tional adaptations to higher temperatures [50–52],
and this temperature acclimation during the incuba-
tion could be stronger under light grazing with initially
more cold-adapted microbial community. It is also
important to note that soil nutrient availability is dras-
tically higher under heavy relative to light grazing [21].
There are a multitude of mechanisms by which high
soil nutrient availability may either intensify or
weaken the effects of temperature on microbial CO2

release [25]. It has also been suggested that if nutrients
limit microbial growth, a larger proportion of C may
be respired to the atmosphere as CO2 (so-called over-
flowmetabolism; [53]).

Our findings of higher temperature sensitivity of
CO2 release from accumulated soil C under light graz-
ing contrast with previous studies at the same study
site showing higher microbial respiration in fresh soils
[21] as well as ecosystem respiration (Re; the sum of
plant and soil faunal respiration, and microbial
decomposition of fresh plant litter, plant root exudates
and accumulated soil C) under heavy grazing. Warm-
ing implemented using open-top chambers also
increasedRe similarly at both levels of grazing intensity
[29]. Increased Re by warming resulted in negligible
effect on the C sink under heavy grazing due to higher
gross ecosystem production (GEP) [29]. Field observa-
tions reflect the balance between GEP and Re, whereas
the data from the present investigation depict the
response of accumulated soil C to increasing tempera-
tures. The divergent findings of field and laboratory
studies suggest that plant respiration is probably more
important source for increased Re under warming but
that prolonged warming may trigger stronger
response in the decomposition of accumulated soil C
pool under light grazing. Given that soil C constitutes
the largest ecosystem C stock in tundra and arctic tun-
dra stores half of the global soil C [1], this is an impor-
tantfinding.

Grazing by domestic and wild ungulates is the
most widespread land use worldwide [54], and large
grazers induce vegetation shifts across biomes and cli-
matic vegetation zones [55]. Grazers have been
demonstrated to influence soil C stability and the tem-
perature sensitivity of decomposition in temperate
grasslands [56, 58]. Our investigation in tundra
demonstrates for the first time that the effects of graz-
ing on the temperature sensitivity of decomposition
may result from differences in the quality of accumu-
lated soil C. In our study site, a reduction in the soil C

quality in response to grazing coincided with a weaker
response of decomposition to increasing temperature.
These findings indicate that grazers have a potential to
limit warming-induced climate feedback from
enhanced soil C decomposition.
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