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RESEARCH ARTICLE
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Abstract

Otitis media (OM), inflammation of the middle ear (ME), is a common cause of conductive

hearing impairment. Despite the importance of the disease, the aetiology of chronic and

recurrent forms of middle ear inflammatory disease remains poorly understood. Studies of

the human population suggest that there is a significant genetic component predisposing to

the development of chronic OM, although the underlying genes are largely unknown. Using

N-ethyl-N-nitrosourea mutagenesis we identified a recessive mouse mutant, edison, that

spontaneously develops a conductive hearing loss due to chronic OM. The causal mutation

was identified as a missense change, L972P, in the Nischarin (NISCH) gene. edison mice

develop a serous or granulocytic effusion, increasingly macrophage and neutrophil rich with

age, along with a thickened, inflamed mucoperiosteum. We also identified a second hypo-

morphic allele, V33A, with only modest increases in auditory thresholds and reduced inci-

dence of OM. NISCH interacts with several proteins, including ITGA5 that is thought to have

a role in modulating VEGF-induced angiogenesis and vascularization. We identified a signif-

icant genetic interaction between Nisch and Itga5; mice heterozygous for Itga5-null and

homozygous for edison mutations display a significantly increased penetrance and severity

of chronic OM. In order to understand the pathological mechanisms underlying the OM phe-

notype, we studied interacting partners to NISCH along with downstream signalling mole-

cules in the middle ear epithelia of edison mouse. Our analysis implicates PAK1 and RAC1,

and downstream signalling in LIMK1 and NF-κB pathways in the development of chronic

OM.

Author summary

Otitis media (OM) is the most common cause of deafness in children and is primarily

characterised by inflammation of the middle ear. It is the most common cause of surgery
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in children in the developed world, with many children developing recurrent and chronic

forms of OM undergoing tympanostomy tube insertion. There is evidence that a signifi-

cant genetic component contributes towards the development of recurrent and chronic

forms of OM. The mouse has been a powerful tool for identifying the genes involved in

chronic OM. In this study we identified and characterised edison, a novel mouse model of

chronic OM that shares important features with the chronic disease in humans. A muta-

tion in the Nisch gene causes edison mice to spontaneously develop OM following birth

and subsequently develop chronic OM, with an associated hearing loss. Our molecular

analysis of the mutation reveals the underlying pathological mechanisms and pathways

involved in OM in the edison mouse, involving PAK1, RAC1 and downstream signalling

in LIMK1 and NF-κB pathways. Identification of the edison mutant provides an important

genetic disease model of chronic OM and implicates a new gene and genetic pathways

involved in predisposition to OM.

Introduction

Otitis media (OM) is characterised by inflammation of the middle ear (ME), often associated

with a conductive hearing impairment, and is the commonest cause of hearing loss in children.

It is perceived by many to be a transient affliction that in reality places a substantial social,

medical and economic burden on healthcare systems globally [1]. Evidence from studies of the

human population suggests that there is a significant genetic component predisposing to the

development of recurrent and chronic forms of OM [2,3]. Despite the importance of the dis-

ease, many of the genes involved in OM susceptibility have still yet to be identified. At present,

the use of mouse models is the most promising method to identify candidate loci underlying

susceptibility to OM. Mouse models have highlighted the role of Toll-like receptors (TLRs) in

acute OM, in particular the protection against commensal and pathogenic bacteria, and that

persistent NF-κB or TGF-β signalling could be two mechanisms leading to the overactive pro-

inflammatory response seen in chronic OM [4,5].

The large-scale phenotype-driven mouse ENU (N-ethyl-N-nitrosourea) mutagenesis pro-

gram at MRC Harwell [6,7] has previously identified two novel mouse mutants, Jeff and Junbo,

that develop a conductive hearing loss characterised by ME fluid and mucosal inflammation

[8,9]. The Jeff mouse has a mutation in the Fbxo11 gene [10] and the Junbo mouse has a muta-

tion in Evi1 [9]. Studies have revealed that these genes, are involved in signalling of the TGF-β
superfamily, via SMAD proteins [11,12]; negatively regulate NF-κB–dependent inflammation

[13]; and highlight the role of HIF–VEGF pathways in the underlying genetic and pathophysi-

ological mechanisms that predispose to chronic OM [14].

OM mouse models with single gene mutations have identified a number of genes as candi-

date susceptibility genes for human OM, including Tlr2, Tlr4, p73, E2f4, Plg, Tgif1, Evi1 and

Fbxo11 [4]. These genes identified from mouse models of OM are beginning to be studied in

the human population; with significant associations between OM and polymorphisms in

FBXO11 [15,16], TLR2 [17] and TLR4 [17–19].

We have identified and characterised a novel OM mouse mutant, edison, from the ENU

mutagenesis program at MRC Harwell. Homozygous edison mice spontaneously develop a

conductive hearing loss associated with chronic inflammation of the ME, sharing many fea-

tures with chronic OM in humans. The underlying mutation of this phenotype has been iden-

tified as a mutation in the Nisch gene. We have explored the role of Nisch in chronic OM,

relating the edison phenotype to the underlying mechanisms of Nisch function. We have
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utilised double mutants to assess genetic interactions and pathways involved, implicating

PAK1 and RAC1, and downstream signalling events in LIMK1 and NF-κB signalling pathways

in the development of chronic OM. Overall, the edison mouse highlights a new candidate gene

for susceptibility to chronic OM and has provided further insight into the genetic pathways

and pathogenic processes involved.

Results

Identification of the edison mutation

A phenotype-driven ENU mutagenesis screen [20] identified a new recessive mutant, edison
(edsn), with hearing loss. Preliminary phenotyping using a click-box test (20 kHz, 90 dB sound

pressure level (SPL) tone burst) of an age-matched cohort derived from the founder mouse indi-

cated that 6-week-old (wk) mice demonstrated a reduced startle response. SNP-based linkage

analysis and mapping identified an approximately 9 Mb interval on chromosome 14 delineated

by marker rs30778552 and rs46823676 containing 119 genes (Fig 1A). Whole-genome sequenc-

ing identified 60 ENU-induced, de novo variants within the critical 9Mb interval and importantly

only one missense variant was identified. This missense variant was a c.3079T>C substitution in

Nischarin (Nisch) (open reading frame of NCBI RefSeq transcript NM_022656.2) that results in

a Leu972Pro substitution (Fig 1B). The change occurs in a highly conserved region that has been

maintained through evolution (Fig 1C). PROVEAN analysis predicts that this change is ‘‘delete-

rious” and SIFT predicts that it is ‘‘not tolerated”. No other non-synonymous sequence changes

were identified within the minimal interval. The Nisch locus encodes a protein of 1,593 amino

acids, coded for by 22 exons. The protein consists of an N-terminal phox homology (PX) do-

main, six putative leucine-rich repeats (LRRs), a predicted coiled-coil (CC) domain, an alanine/

proline-rich region and a long C-terminal region (Fig 1D).

DNA and sperm archives derived from ENU mutagenesis programmes [21] were utilised to

identify an additional allele at the Nisch locus. We screened ten exons of Nisch employing high

resolution melting analysis of ~10,000 mutant mice and identified a c.98T>C substitution

resulting in a Val33Ala substitution within a conserved region of the NISCH PX domain. We

rederived this second allele, NischV33A, and examined the phenotypes.

Anatomical and histological analysis of edison mutant

Reduced numbers of edison progeny. Heterozygous animals (Nischedsn/+) were inter-

crossed to generate wild-type control, heterozygous and homozygous (Nischedsn/edsn) popula-

tions for the study and the progeny were genotyped. The homozygous mutants were viable,

but the frequency of homozygous mutant offspring at weaning age was 15.9% (34 of 214),

which was below the expected Mendelian ratio (χ2 test: p = 0.0012). To produce additional

homozygous mice for this study, we crossed Nischedsn/+ females with Nischedsn/edsn males. The

frequency of surviving Nischedsn/edsn mice at weaning age was 33.0% (69 of 212), again less than

the expected Mendelian ratio (χ2 test: p< 0.0001). Around 35% of the Nischedsn/edsn animals

from both crosses were missing by weaning age, suggesting embryonic or neonatal lethality.

Retarded growth was also observed in edison mice (S1A Fig). We compared weights of

Nischedsn/edsn mice to wild-type littermates (S1B Fig) and found male Nischedsn/edsn mice to be 35%

smaller (mean weight at 20 wk: Nisch+/+, 43.9 ± 0.72 g, n = 9; Nischedsn/edsn, 27.2 ± 0.82 g, n = 18;

Kruskall-Wallis: p< 0.001). Additionally, male Nischedsn/+ mice were found to be 8% smaller than

wild-type littermates (mean weight at 20 wk: Nischedsn/+, 38.7 ± 0.57 g, n = 20; Kruskall-Wallis:

p< 0.001). Similar observations were seen in female Nischedsn/+ and Nischedsn/edsn mice compared

to wild-type littermates (mean weight at 20 wk: Nisch+/+, 42.7 ± 1.02 g, n = 12; Nischedsn/+,
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40.2 ± 0.67 g, n = 17; Nischedsn/edsn, 26.6 ± 1.09 g, n = 13; Kruskall-Wallis: Nischedsn/+, p = 0.057;

Nischedsn/edsn, p< 0.001).

Mild craniofacial defects in edison mice. We found that all Nischedsn/edsn mice demon-

strated a shortened snout compared with wild-type mice, indicating a mild craniofacial abnor-

mality (S1 Fig). To investigate the craniofacial phenotype of mice, we took dorsoventral X-ray

images of the skulls and computed cranial measurements (S1C Fig). To determine whether

any of the cranial bones showed disproportionate growth, allometric comparisons against

skull length were used to normalise the data for differences in body size (S1C and S1D Fig).

Fig 1. The Nisch gene is mutated in edison mice. (A) SNP mapping of 10 edsn mutants identified an approximately 9 Mb

interval on chromosome 14 delineated by marker rs30778552 and rs46823676. The grayed box indicates the chromosomal

interval bearing the edsn mutation. (B) Sequence analysis of the Nisch locus in Nisch+/+ and Nischedsn/edsn DNA. A

c.3079T>C transition is detected in Nischedsn/edsn mutants that is not present in Nisch+/+ DNA. (C) Conservation of the

mutated leucine residue across species. Mus musculus, ENSMUSG00000021910; Homo sapiens, ENSG00000010322;

Pan troglodytes, ENSPTRG00000015001; Sus scrofa, ENSSSCG00000011442; Gallus gallus, ENSGALG00000043825;

Anolis carolinensis, ENSACAG00000006939. (D) Schematic of the full length NISCH peptide (1593 amino acids). The

molecule consists of a phox-homology (PX) domain, six leucine-rich repeats, a coiled-coil (CC) domain and an alanine/

proline-rich region. Both the PX and CC domains of Nischarin are essential for endosomal targeting and interaction with

phosphatidylinositol 3-phosphate (PI3P) in PI3P-enriched endosomes. Amino acids 709–807 of Nischarin interact with the

integrin α5 (ITGA5) cytoplasmic tail. Both LIMK1 and LKB1 interact with positions 661–869 of Nischarin. Residues 246–

1047 of Nischarin interact with PAK1. Rab14 interacts with amino acids 1190–1593. Finally, Rac1 interacts with two regions

of Nischarin, amino acids 246–1047 and 1190–1593. The positions of the Nischedsn and NischV33A mutations are also

indicated.

https://doi.org/10.1371/journal.pgen.1006969.g001

A mutation in Nischarin causes otitis media

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1006969 August 14, 2017 4 / 28

https://doi.org/10.1371/journal.pgen.1006969.g001
https://doi.org/10.1371/journal.pgen.1006969


Evaluation of Nischedsn/edsn and wild-type skulls revealed a significant difference in allometric

comparisons between nasal bone/skull length (Kruskal- Wallis, p< 0.001) and frontal bone/

skull length (Kruskall-Wallis: p = 0.036). The magnitude of the difference between Nischedsn/edsn

and wild-type mice was small (~3%). No other skeletal defects were evident.

To investigate the orientation and morphology of the Eustachian tube (ET) in edison mice,

the skulls were stained and the angles between the midline of the skull and the bony part of the

left and right ET were measured (S1E and S1F Fig). No statistically significant differences in

ET measurements were detected between Nischedsn/edsn and wild-type mice (Kruskall-Wallis:

Left, p = 0.848; Right, p = 0.324).

Hearing deficits in Nischedsn/edsn animals due to spontaneous otitis media. In order to

assess the onset and progression of the hearing impairment in edison mice, click-evoked ABR

tests to measure auditory function were performed in cohorts of age matched littermates from

3 wk to 20 wk (Fig 2A). Nisch+/+ and Nischedsn/+ mice showed normal ABR thresholds through-

out the time course, whereas significantly elevated thresholds were detected in Nischedsn/edsn

mice as early as 3 wk and progressively increased with age (mean ABR threshold: Nischedsn/edsn,
3 wk = 30 ± 1 dB SPL, n = 36; 20 wk = 46 ± 2 dB SPL, n = 61; Kruskall-Wallis: p< 0.001). We

showed that the mean ABR thresholds were elevated by about 20–30 dB SPL in Nischedsn/edsn

animals when compared with wild-type mice, suggesting a conductive hearing loss.

Visual inspection of the tympanic membrane is a simple method for diagnosing OM. The

cloudy appearance of an eardrum is a semi-quantitative measure of bulla fluid accumulation

and the incidence of OM was assessed in edison mice (Fig 2D). Nisch+/+ and Nischedsn/+ animals

showed a small incidence of unilateral OM (Nisch+/+, 1% unilateral OM, n = 148; Nischedsn/+,

2% unilateral OM, n = 194). In Nischedsn/edsn animals there was a clear trend showing increased

prevalence of OM from 3 wk onwards (Fig 2E). At 3 wk, no Nischedsn/edsn mice had bilateral

OM, 40% had unilateral OM and 60% had no OM phenotype (Fisher Exact: p = 0.028). The

prevalence of OM progressively increased throughout the time course, where at 20 wk 56% of

Nischedsn/edsn mice had bilateral OM, 40% had unilateral OM and only 4% displayed no OM

phenotype (Fisher Exact: p< 0.001).

In NischV33A/V33A animals, examination of auditory function revealed that mice develop a

milder hearing deficit compared to Nischedsn/edsn mice (Fig 2B). Although progressive, the

onset of the hearing deficit was observed at 8 wk in NischV33A/V33A animals. Visual inspection

of the tympanic membrane was used to assess the incidence of OM in NischV33A/V33A mice (Fig

2F). At 12 wk, NischV33A/V33A mice exhibited significantly increased prevalence of OM com-

pared to wild-type littermates (Fisher Exact: p = 0.011). In NischV33A/V33A mutants, 10% had

bilateral OM, 50% had unilateral OM and only 40% displayed no OM phenotype (n = 10). The

less significant hearing deficit and limited disease progression suggests that the NischV33A allele

is hypomorphic in nature. Compound heterozygotes carrying both Nischedsn and NischV33A

alleles showed a similar phenotype to Nischedsn/edsn mice (Fig 2C and 2G). NischV33A/edsn mice

develop a spontaneous chronic OM, with an associated elevation in ABR hearing thresholds.

The hearing deficit was progressive, with onset recorded at 4 wk in NischV33A/edsn mice. At 12

wk, the incidence of OM in NischV33A/edsn mice was assessed and 50% had bilateral OM, 33%

had unilateral OM and only 17% displayed no OM phenotype (n = 6) (Fig 2G). This increased

prevalence of OM in NischV33A/edsn mice at 12 wk was significantly different compared to wild-

type littermates (Fisher Exact: p = 0.015).

We assessed whether there was a sensorineural element to the hearing loss in Nischedsn/edsn

mice by evaluating frequency-specific auditory function and the inner ear morphology (S2

Fig). We tested 5 mice for each genotype from 4 wk to 20 wk for ABR response at 3 frequencies

8, 16, and 32 kHz. Parallel shifts in audiometric profiles across frequencies at the different ages

were recorded, consistent with an underlying conductive hearing loss (S2A Fig). We analysed
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the inner ear morphology from 5 mice for each genotype at 20 wk to examine the structure of

the organ of Corti and the sensory cells (S2B–S2D Fig). Histological examination of mid-mod-

iolar sections of the cochlea revealed no obvious abnormalities in Nischedsn/edsn mice. Similarly,

ultra-structural analysis of the inner ear with scanning electron microscopy showed no evi-

dence of hair cell damage or hair cell loss, with Nischedsn/edsn mice displaying normal cell and

bundle morphology throughout the cochlear turn (basal, mid and apical).

Histological analysis of middle ear demonstrates chronic otitis media. Histological

examination was performed to investigate the pathological changes in the ME of edison mice

(Fig 3). Wild-type and Nischedsn/+ mice at 20 weeks displayed clear ME cavities, lined with a

thin mucoperiosteum (Fig 3A and 3B). Nischedsn/edsn mice develop chronic otitis media with

ME cavities filled with a cellular exudate and lined with a thickened mucoperiosteum (Fig 3C

and 3D). The mucosal inflammation was diffuse and of moderate severity. Papillary to polyp-

oid exophytic growths were observed projecting into the ME cavity (Fig 3E). The polypoid

Fig 2. Mild to moderate hearing impairments in Nischedsn/edsn, NischV33A/V33A and Nischedsn/V33A mice due to otitis media. (A-C)

Click-evoked ABR thresholds across a time course show a mild to moderate progressive hearing impairment in (A) Nischedsn/edsn, (B)

NischV33A/V33A and (C) NischV33A/edsn mice. Expected ABR threshold range for normal hearing was between 15–30 dB SPL (dashed red

lines). * P < 0.05; *** P < 0.001. (A) Nisch+/+, n = 10–33; Nischedsn/+, n = 12–33; Nischedsn/edsn, n = 14–25. (B) Nisch+/+, n = 10; NischV33A/+,

n = 13; NischV33A/V33A, n = 10. (C) Nisch+/+, n = 5; Nischedsn/+, n = 6; NischV33A/+, n = 4; NischV33A/edsn, n = 6. Error bars indicate standard

error of mean. A Kruskall-Wallis test was performed followed by Dunn’s multiple comparison tests for post-hoc analysis. (D) Visual

inspection of the tympanic membrane is a simple method for diagnosing OM. Wild-type (Nisch+/+) mice have no visible fluid behind the

tympanic membrane and the malleus is easily recognizable, while affected Nischedsn/edsn mice have fluid behind the tympanic membrane

and the malleus is obscured. (E) The incidence of bilateral and unilateral OM increases in prevalence with age in Nischedsn/edsn mice. (F, G)

At 12 wk, an increased proportion of (F) NischV33A/V33A and (G) NischV33A/edsn mice display bilateral and unilateral OM.

https://doi.org/10.1371/journal.pgen.1006969.g002

A mutation in Nischarin causes otitis media

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1006969 August 14, 2017 6 / 28

https://doi.org/10.1371/journal.pgen.1006969.g002
https://doi.org/10.1371/journal.pgen.1006969


projections were most likely due to fibroblast stimulation as a consequence of chronic inflam-

mation. There were small accumulations of inflammatory cells and dilated lymphatic and

blood vessels in the mucoperiosteum (Fig 3E). In middle ears with the most severe phenotype,

there were instances showing inflammation of the tympanic membrane (Fig 3F). There were

differing types of ME effusion: a thin watery effusion, a dense granulocyte-rich effusion, or a

Fig 3. Middle ear histology indicates chronic otitis media in Nischedsn/edsn mice. (A-D) H&E stained transverse sections of the MEC

and mucoperiosteum, in 20 wk (A, B) Nisch+/+ and (C, D) Nischedsn/edsn mice. Wild-type animals have no inflammation or exudate in the MEC

and a thin mucoperiosteum covers the temporal bone. Nischedsn/edsn mice exhibit chronic inflammation with an exudate and thickened

mucoperiosteum. (E, F) Additional characteristics of chronic OM in Nischedsn/edsn middle ears; changes include (E) fibrous polyps, with dilated

lymphatic (+) and blood vessels (*) in the mucoperiosteum, and (F) fibrous thickening of the tympanic membrane. (G-I) Differing types of middle

ear effusion; from (G) a thin watery effusion, (I) a dense granulocyte-rich effusion, or (H) a combination of both. (J) Immunohistochemical

staining of a Nischedsn/edsn ear with OM using an F4/80 antibody shows a cellular exudate rich in macrophages (brown). Representative image

from four mice (K) Blinded assessment of mean mucosal thickness displays a progressive thickening in Nischedsn/edsn ears with OM, showing

significant increases throughout the study. There is no histological difference seen in mean mucosal thickness between Nischedsn/edsn Normal

ears and wild-type littermates. The criteria used to impartially categorise the ears into Nischedsn/edsn OM and Nischedsn/edsn Normal was from

visualisation of tympanic membrane. Nisch+/+ n = 10–14; Nischedsn/+ n = 10–22; Nischedsn/edsn OM n = 8–16; Nischedsn/edsn Normal n = 3–10. (L,

M, N, O) H&E stained transverse sections of the MEC and mucoperiosteum, in 12 wk (L, M) NischV33A/V33A and (N, O) NischV33A/edsn mice,

displaying chronic OM in both. (P, Q) Blinded assessment of mean mucosal thickness shows significant increases in both (P) NischV33A/V33A and

(Q) NischV33A/edsn mice. Combined data is presented including mice with OM and mice with clear ears. (P) Nisch+/+ n = 6; NischV33A/+ n = 6;

NischV33A/V33A n = 18. (Q) Nisch+/+ n = 10; Nischedsn/+ n = 6; NischV33A/+ n = 6; NischV33A/edsn n = 12. C, cochlea; ET, eustachian tube; E,

exudate; MΦ, foamy macrophage; MEC, middle ear cavity; MP, mucoperiosteum (arrowheads); PMN, polymorphonuclear cells; TB, temporal

bone; TM, tympanic membrane; *, blood vessels; +, lymphatic vessels. A, C, L, N scale bar = 2 mm; F scale bar = 500 μm; B, D, E, M, O scale

bar = 200 μm; G-J scale bar = 100 μm. * P < 0.05; ** P < 0.01; *** P < 0.001. Error bars indicate standard error of mean. A Kruskall-Wallis test

was performed followed by Dunn’s multiple comparison tests for post-hoc analysis.

https://doi.org/10.1371/journal.pgen.1006969.g003

A mutation in Nischarin causes otitis media

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1006969 August 14, 2017 7 / 28

https://doi.org/10.1371/journal.pgen.1006969.g003
https://doi.org/10.1371/journal.pgen.1006969


combination of both (Fig 3G–3I). F4/80 stained sections identified increased macrophage

infiltration in the exudates of some Nischedsn/edsn mice, with the presence of enlarged foamy

macrophages containing coarsely granular material (Fig 3J).

To further investigate the ME phenotype in edison, heads were sectioned at 3, 4, 6, 8 and 20

wk. At 3 wk, most Nischedsn/edsn animals displayed a normal wild-type phenotype with clear

ears (71%, n = 14 ears), and only three mice had a thin watery effusion (21%, n = 14 ears). At 4

wk, there were five Nischedsn/edsn ears that contained fluid in the ME cavity with a thickened

epithelial lining (50%, n = 10 ears). Two ears had a thin watery effusion, and three ears dis-

played a cellular effusion with the presence of polymorphonuclear cells (PMNs) that are the

first responding inflammatory cells that migrate towards the site of inflammation. In 6 wk

Nischedsn/edsn animals, four ears showed inflammation in the ME cavity with a thickened epi-

thelial lining (33%, n = 12 ears), with three of these ears also containing a cellular effusion. By

8 wk, the inflammation in Nischedsn/edsn animals had progressed to a chronic inflammation

with effusion, as evidenced by a thick cellular fluid in the bulla cavity along with a greatly

thickened ME mucosa (67%, n = 12 ears). There was variability in the type of effusion found,

where two ears exhibited a serous effusion and in six ears the ME fluid was thick with the pres-

ence of macrophages and PMNs. Nischedsn/edsn mice studied at 20 wk displayed a chronic

inflammation with effusion, similar to what was observed at 8 wk. Seventeen ears presented a

chronic inflammation (77%, n = 22 ears), eleven of which contained fluid. Ten ears exhibited a

thick effusion with the presence of macrophages and PMNs and in only one ear a serous exu-

date was observed. Cellular debris-like aggregates were present in the thick effusions and

developing polyps were observed in the ME mucosa. None of the wild-type or Nischedsn/+ mice

evaluated displayed signs of OM pathology at any time point.

To quantify the chronic inflammation observed in Nischedsn/edsn mice and assess any sub-

clinical changes in pathology, blinded assessment of the mucoperiosteum thickness was car-

ried out in all edison genotypes from 3 wk to 20 wk (Fig 3K). As there was variation in the

penetrance of OM in Nischedsn/edsn mice, the ears were categorised into those that had an OM

phenotype and those that did not, Nischedsn/edsn OM and Nischedsn/edsn Normal respectively.

The criteria used to impartially categorise the ears into Nischedsn/edsn OM and Nischedsn/edsn

Normal was visualisation of tympanic membrane. Nischedsn/edsn Normal ears displayed normal,

wild-type ME mucosal morphology of between 9.0 μm to 17.0 μm mucosal thickness, with no

significant differences compared to wild-type littermates. In contrast, mucosal thickness

observed in Nischedsn/edsn OM ears showed a mucosal morphology that progressively thickened

with age. At 3 wk, Nischedsn/edsn OM ears had a mean mucosal thickness of 28.4 ± 8.49 μm and

by 20 wk, the mean mucosal thickness had increased to 80.0 ± 7.73 μm. Nischedsn/edsn OM ears

showed significantly increased thickening of the ME mucosa at every time point, when com-

pared to Nisch+/+ ears (Kruskall-Wallis: 3 wk, p = 0.013; 4 wk, p = 0.001; 6 wk, p = 0.06; 8 wk,

p< 0.001; 20 wk, p< 0.001).

Furthermore, histological analysis confirmed that NischV33A/V33A and NischV33A/edsn ears

develop chronic OM with a fluid-filled cavity, lined with thickened mucoperiosteum (Fig 3L–

3Q). However, there is a clear phenotypic gradient in the severity of OM seen in NischV33A/V33A,

NischV33A/edsn and Nischedsn/edsn mice. At 12 wk, NischV33A/V33A mice had a mean mucosal thick-

ness of 24.0 ± 3.60 μm (Kruskall-Wallis: p = 0.018) and NischV33A/edsn mice had a mean mucosal

thickness of 37.2 ± 6.98 μm (Kruskall-Wallis: p = 0.017).

Upregulation of hypoxia and inflammatory genes in middle ear fluid. Venous blood

and ear fluid was used to perform RT-qPCR to look for expression changes in inflammatory

and hypoxia responsive genes (S3 Fig). Relative to a normoxic baseline control of Nischedsn/edsn

white blood cells (WBC), the inflammatory cells that accumulate within the bulla fluids of

Nischedsn/edsn mice showed elevated expression of Hif1a (30-fold; t-test: p< 0.001) and the HIF
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responsive gene Vegfa (87-fold; t-test: p< 0.001). Il1b (15-fold; t-test: p = 0.003) and Tnfa
(66-fold; t-test: p< 0.001) are known modulators of Hif1a translation and expression data

indicated that they were also elevated in Nischedsn/edsn bulla fluid inflammatory cells relative to

WBC (S3 Fig). Additionally expression of Src, which is a known mediator of VEGF signalling,

was also significantly elevated in Nischedsn/edsn bulla compared to WBC (24-fold; t-test: p =

0.005). Finally, Evi1 and Fbxo11 were expressed in the bulla fluid of Nischedsn/edsn mice, but

only Evi1 (256-fold; t-test: p = 0.006) was expressed at higher levels relative to WBC.

Lung abnormalities. Due to the reduced numbers of Nischedsn/edsn progeny at weaning

age, we studied the mice at E16.5, E18.5 and P0 to search for any physiological defect that may

contribute to lethality (Fig 4A–4D). In some Nischedsn/edsn mice we observed morphological

lung defects including thickened interstitial mesenchyme and smaller airspaces than in wild-

type littermates. At E16.5, 33% of Nischedsn/edsn lungs appeared severely affected (n = 6). This

was replicated at E18.5 and P0, whereby 30% (n = 10) and 29% (n = 7) of Nischedsn/edsn lungs

appeared severely affected respectively. At each time point, the width of airspaces in severely

affected Nischedsn/edsn mutants was significantly smaller than wild-type tissue (one-way

ANOVA: p< 0.001), whereas no difference in the number of airspaces was observed. The

reduced numbers of Nischedsn/edsn progeny are likely a consequence of their lung defect.

Consistent with a number of other adult mouse mutants harbouring defects in embryonic

lung generation [22], histological evaluation of adult edison lungs revealed enlargement of the

airspaces in Nischedsn/edsn mice, characteristic of an emphysema-like phenotype (Fig 4E–4H).

On average, the airspace width in surviving adult Nischedsn/edsn lungs was significantly larger

than wild-type tissue (Kruskall-Wallis: p< 0.001). Moreover, in Nischedsn/edsn lungs quantifica-

tion of the number of airspaces indicated a significant decrease compared to wild-type (Kruskall-

Wallis: p< 0.001). Interestingly, the severity of the emphysema-like lung phenotype observed in

Nischedsn/edsn replicates the severity of the OM phenotype in the ME (Fig 4I–4M). The mean

number of airspaces in Nischedsn/edsn animals with no OM phenotype was significantly higher

compared to Nischedsn/edsn animals with bilateral OM (Clear, 200 ± 6.8; Bilateral OM, 104 ± 6.8;

Kruskall-Wallis: p< 0.001). Similarly, the average airspace width in Nischedsn/edsn mice with no

OM phenotype was significantly smaller than Nischedsn/edsn animals with bilateral OM (Clear,

36.4 ± 1.31 μm; Bilateral OM, 80.4 ± 2.97 μm; Kruskall-Wallis: p< 0.001).

Macrophages are the primary phagocytic cells in the lungs. In wild-type lungs, F4/80-posi-

tive cells are generally relatively small and rounded (Fig 4N). In contrast, abnormal accumula-

tions of enlarged alveolar macrophages containing coarsely granular material were observed

within the lungs of Nischedsn/edsn mice (Fig 4O).

Genetic interaction of Nisch and Itga5

NISCH binds to the cytoplasmic domain of ITGA5 [23], and is thought to regulate its expres-

sion [24]. Cross-talk between VEGF and integrins has been shown to be a critical factor in the

regulation of angiogenesis and vascularization [25]. Given these findings we examined the

genetic interaction between Nisch and Itga5. Nischedsn/+ mice and Itga5tm1Hyn/+; Nischedsn/+

double heterozygotes were intercrossed to produce Itga5tm1Hyn/+; Nischedsn/edsn littermates for

the study, with Itga5tm1Hyn/+; Nisch+/+ and Itga5+/+; Nischedsn/edsn progeny as littermate controls

(Fig 5).

Itga5+/+; Nisch+/+, Itga5+/+; Nischedsn/+ and Itga5tm1Hyn/+; Nisch+/+ mice showed normal click

ABR thresholds across the study (Fig 5A). Both Itga5+/+; Nischedsn/edsn and Itga5tm1Hyn/+;

Nischedsn/edsn mice displayed a progressive hearing loss with onset at 4 wk. Interestingly,

Itga5tm1Hyn/+; Nischedsn/edsn mice exhibited significantly elevated auditory thresholds compared

to Itga5+/+; Nischedsn/edsn mice, throughout the time course (Kruskall-Wallis: p< 0.01). At 20
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wk, Itga5tm1Hyn/+; Nischedsn/edsn animals were recorded with a mean click ABR threshold of

61 ± 3 dB SPL, compared to 40 ± 4 dB SPL for Itga5+/+; Nischedsn/edsn mice. There was a

Fig 4. Nischedsn/edsn mice display embryonic and adult lung abnormalities. (A-D) At E16.5, E18.5 and P0, some Nischedsn/edsn embryos

display lung abnormalities. H&E stained lung sections from (A) Nisch+/+ and (B) severely affected Nischedsn/edsn mice at P0, show thickened

interstitial mesenchyme and smaller airspaces in Nischedsn/edsn lungs. (C) Number of airspaces was counted in three different 6.5 x 105 μm2

regions for all embryos and new born mice, with no significant difference between genotypes. (D) Airspace diameters were measured for 30

airspaces in three different regions for all embryos and new born mice. The mean airspace width in severely affected Nischedsn/edsn animals

was significantly smaller. Nisch+/+ n = 6–9; Nischedsn/+ n = 11–15; Nischedsn/edsn n = 6–10; mildly affected Nischedsn/edsn n = 4–7; severely

affected Nischedsn/edsn n = 2–3. (E-H) Adult Nischedsn/edsn mice exhibit an emphysema-like phenotype. H&E stained lung sections from (E)

Nisch+/+ and (F) Nischedsn/edsn animals at 20 wk, show enlargement of air spaces in Nischedsn/edsn lungs accompanied by disruption of normal

alveolar architecture. (G) In Nischedsn/edsn lungs quantification of the number of airspaces indicated a significant decrease compared to wild-

type and (H) the mean airspace width in Nischedsn/edsn lungs was significantly larger than in wild-type tissue. Nisch+/+ n = 10; Nischedsn/+

n = 10; Nischedsn/edsn n = 18. (I-M) The severity of the emphysema-like lung phenotype observed in Nischedsn/edsn replicates the severity of the

OM phenotype in the middle ear. H&E stained lung sections from Nischedsn/edsn animals at 20 wk show the increasing severity of the

emphysema-like phenotype from mice with (I) no OM phenotype, to (J) unilateral OM and to (K) bilateral OM. (L) The mean number of

airspaces in Nischedsn/edsn animals with no OM phenotype was significantly increased compared to Nischedsn/edsn animals with bilateral OM.

(M) The mean airspace width in Nischedsn/edsn mice with no OM phenotype was significantly smaller than Nischedsn/edsn animals with bilateral

OM. Bilateral OM n = 10; Unilateral OM n = 6; Clear n = 2. (N, O) Immunohistochemical staining of lung sections using an F4/80 antibody.

Lung sections from (N) Nisch+/+ and (O) Nischedsn/edsn animals at 20 wk stained with F4/80 show collections of enlarged alveolar

macrophages (brown) in Nischedsn/edsn lungs compared to wild-type littermates. Representative images from four mice per genotype. N, O

scale bar = 200 μm; A, B, E, F, I, J, K scale bar = 100 μm. ns P > 0.05; * P < 0.05; ** P < 0.01; *** P < 0.001. Error bars indicate standard

error of mean. Embryonic lung data in panels C and D were analysed by one-way ANOVAs and Holm-Sidak’s multiple comparison

procedures for post-hoc testing. Adult lung data (G, H, L, M) was not normally distributed and a Kruskall-Wallis test was performed followed

by Dunn’s multiple comparison tests for post-hoc analysis.

https://doi.org/10.1371/journal.pgen.1006969.g004
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Fig 5. Deficiencies in Nisch and Itga5 exacerbate the otitis media phenotype. (A) Click-evoked ABR thresholds across a time course

show Itga5tm1Hyn/+; Nischedsn/edsn mice exhibit significantly elevated auditory thresholds compared to Itga5+/+; Nischedsn/edsn mice.

Additionally, a mild late-onset hearing deficit is observed in Itga5tm1Hyn/+; Nischedsn/+ mice, with onset at 12 wk. Expected ABR threshold

range for normal hearing was between 15–30 dB SPL (dashed red lines). Itga5+/+; Nisch+/+ n = 14; Itga5+/+; Nischedsn/+ n = 14; Itga5tm1Hyn/+;

Nisch+/+ n = 15; Itga5tm1Hyn/+; Nischedsn/+ n = 13; Itga5+/+; Nischedsn/edsn n = 8; Itga5tm1Hyn/+; Nischedsn/edsn n = 12. (B-D) Visual inspection of

the tympanic membrane was used as a semi-quantitative measure for the prevalence of OM. (B) Itga5+/+; Nisch+/+ mice show a very low

prevalence of unilateral OM at 4 wk and 6 wk only. (C) Itga5+/+; Nischedsn/edsn mice show a progressive increase in prevalence of OM,

whereas (D) Itga5tm1Hyn/+; Nischedsn/edsn mice display a consistently high prevalence of bilateral OM throughout the time course. (E-J) H&E

stained transverse sections of the MEC and mucoperiosteum, in 20 wk (E, F) Itga5+/+ Nisch+/+, (G, H) Itga5+/+; Nischedsn/edsn and (I, J)

Itga5tm1Hyn/+; Nischedsn/edsn mice. Both Itga5+/+; Nischedsn/edsn and Itga5tm1Hyn/+; Nischedsn/edsn mice demonstrate chronic inflammation with

an exudate. Inflammation of mucosa was more severe in sections from Itga5tm1Hyn/+; Nischedsn/edsn ears, with increased polypoid exophytic

growths and a thick cellular effusion. (K) Blinded assessment of mean mucosal thickness demonstrates significant increases in Itga5tm1Hyn/+;

Nischedsn/+, Itga5+/+; Nischedsn/edsn and Itga5tm1Hyn/+; Nischedsn/edsn mice compared to wild-type. Both Itga5+/+; Nischedsn/edsn and Itga5tm1Hyn/+;

Nischedsn/edsn mice exhibit significant increases in mucosal thickness compared to Itga5tm1Hyn/+; Nischedsn/+ mice. Itga5+/+; Nisch+/+ n = 12;

Itga5+/+; Nischedsn/+ n = 8; Itga5tm1Hyn/+; Nisch+/+ n = 10; Itga5tm1Hyn/+; Nischedsn/+ n = 18; Itga5+/+; Nischedsn/edsn n = 10; Itga5tm1Hyn/+;

Nischedsn/edsn n = 10. (L) To account for the disparities in OM prevalence, the mean mucosal thickness was additionally assessed for OM ears

only. Itga5tm1Hyn/+; Nischedsn/edsn OM ears exhibit significant increases in mucosal thickness compared to Itga5+/+; Nischedsn/edsn OM ears.

OM only: Itga5tm1Hyn/+; Nischedsn/+ n = 3; Itga5+/+; Nischedsn/edsn n = 8; Itga5tm1Hyn/+; Nischedsn/edsn n = 9. C, cochlea; ET, eustachian tube; E,

exudate; MEC, middle ear cavity; MP, mucoperiosteum (arrowheads); TB, temporal bone; TM, tympanic membrane. E, G, I scale bar = 2 mm;

F, H, J scale bar = 200 μm. ns P > 0.05; * P < 0.05; ** P < 0.01; *** P < 0.001. Error bars indicate standard error of mean. A Kruskall-Wallis

test was performed followed by Dunn’s multiple comparison tests for post-hoc analysis.

https://doi.org/10.1371/journal.pgen.1006969.g005
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consistently high prevalence of OM in Itga5tm1Hyn/+; Nischedsn/edsn mice compared to Itga5+/+;

Nischedsn/edsn animals (Fig 5C and 5D). Itga5tm1Hyn/+; Nischedsn/edsn mice exhibited significantly

increased OM prevalence at 4 wk compared to Itga5+/+; Nischedsn/edsn mice (Fisher Exact:

p = 0.026). At 4 wk, 67% of Itga5tm1Hyn/+; Nischedsn/edsn mutants had bilateral OM and 33% had

unilateral OM (n = 12), whereas in Itga5+/+; Nischedsn/edsn mice at 4 wk, 13% had bilateral OM,

63% unilateral OM and 25% showed no OM phenotype (n = 8). By 20 wk, the difference in OM

prevalence observed between Itga5tm1Hyn/+; Nischedsn/edsn and Itga5+/+; Nischedsn/edsn mice was still

increased (Fisher Exact: p = 0.051). In Itga5tm1Hyn/+; Nischedsn/edsn mutants at 20 wk, 83% had

bilateral OM and 17% had unilateral OM (n = 12). While, in Itga5+/+; Nischedsn/edsn mice at 20

wk, 38% had bilateral OM, 25% unilateral OM and 37% showed no OM phenotype (n = 8). One

Itga5tm1Hyn/+; Nisch+/+ mouse (n = 15) displayed unilateral OM at 4 wk, with no other recordings

at later time points (S4A Fig).

Histological examination confirmed that Itga5+/+; Nischedsn/edsn and Itga5tm1Hyn/+; Nischedsn/edsn

mice develop chronic OM (Fig 5E–5J). Itga5tm1Hyn/+; Nischedsn/edsn mice displayed a more severe

mucosal inflammation, with increased polypoid exophytic growths and a thick cellular effusion.

Blinded assessment of the mucoperiosteum thickness (Fig 5K) indicated that both Itga5+/+;

Nischedsn/edsn and Itga5tm1Hyn/+; Nischedsn/edsn mice had significant mucosal thickening compared

to wild-type littermates (Kruskall-Wallis: p = 0.003 and p< 0.001 respectively). Additionally,

when only OM ears from Itga5+/+; Nischedsn/edsn and Itga5tm1Hyn/+; Nischedsn/edsn mice were com-

pared (Fig 5L), there was a significant increase in mucosal thickness observed in Itga5tm1Hyn/+;

Nischedsn/edsn mice (Itga5+/+; Nischedsn/edsn, 97.8 ± 12.12 μm, n = 8; Itga5tm1Hyn/+; Nischedsn/edsn,
137.9 ± 10.85 μm, n = 9; Kruskall-Wallis: p = 0.026).

Additionally, double heterozygotes (Itga5tm1Hyn/+; Nischedsn/+) exhibited a mild late-onset

hearing loss, with onset at 12 wk (Fig 5A). Visualisation of the tympanic membrane showed

this mild hearing loss was associated with a late-onset in the prevalence of OM from 12 wk in

Itga5tm1Hyn/+; Nischedsn/+ mice (S4B Fig). By 20 wk, Itga5tm1Hyn/+; Nischedsn/+ mice exhibited sig-

nificantly increased prevalence of OM compared to wild-type littermates (Fisher Exact:

p = 0.041). In Itga5tm1Hyn/+; Nischedsn/+ mutants at 20 wk, 31% had unilateral OM and 69% had

no OM phenotype (n = 13). Histological examination confirmed that Itga5tm1Hyn/+; Nischedsn/+

mice develop chronic OM (S4D and S4F Fig). The mucosal inflammation was diffuse and of

mild severity, with the presence of a cellular effusion. Blinded assessment of the mucoperios-

teum thickness indicated that Itga5tm1Hyn/+; Nischedsn/+ mice had significant mucosal thicken-

ing compared to wild-type littermates (Fig 5K).

Expression analysis in wild-type, Nischedsn/edsn and Itga5tm1Hyn/+;

Nischedsn/edsn mice

We proceeded to investigate the expression of interacting partners to NISCH, including ITGA5,

as well as key downstream effectors in order to relate the underlying mutation to the edison phe-

notype. In addition to binding ITGA5, NISCH has also been shown to interact directly with

PAK1 [23,26], and RAC1 [27]. As well as being a downstream effector of PAK1, LIMK1 [28]

also interacts directly with NISCH. In addition PAK controls NF-κB activation [29] and RAC1

leads to activation of NF-κB [30,31]. We thus performed IHC expression analysis of NISCH,

ITGA5, phosphorylated-PAK1 (p-PAK1), phosphorylated-LIMK1/2 (p-LIMK1/2), RAC1 and

NF-κB p65 on ME epithelia from wild-type, Nischedsn/edsn and Itga5tm1Hyn/+; Nischedsn/edsn mice.

In addition, we assessed protein expression in ME epithelia by western blot analysis for each of

these proteins.

IHC labelling for NISCH, ITGA5 and p-PAK1 was observed in ME epithelial cells with sim-

ilar patterns of expression in Nisch+/+, Nischedsn/edsn and Itga5tm1Hyn/+; Nischedsn/edsn mice. No
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obvious differences in localisation were observed for these three proteins, although staining

was stronger in Nischedsn/edsn and Itga5tm1Hyn/+; Nischedsn/edsn mice (Fig 6A–6C). Western analy-

sis of ME epithelial cell lysates showed raised levels of ITGA5 in Nischedsn/edsn mice but not

Fig 6. Protein expression analysis of NISCH interacting partners and downstream pathways in middle

ear by immunohistochemistry. Middle ear sections of Nisch+/+, Nischedsn/edsn and Itga5tm1Hyn/+; Nischedsn/edsn

mice at 3 wk, stained with (A) NISCH, (B) ITGA5, (C) p-PAK1, (D) p-LIMK1/2, (E) RAC1, (F) NF-κB p65, (G) FAK

and (H) p-SMAD2 antibodies. To quantify the results middle ear epithelial cells in wild-types and mutants were

counted in four middle ears from each genotype. Scale bar = 100 μm. ns P > 0.05; * P < 0.05; ** P < 0.01; ***
P < 0.001. Error bars indicate standard error of mean. The data was analysed by one-way ANOVAs and Holm-

Sidak’s multiple comparison procedures for post-hoc testing.

https://doi.org/10.1371/journal.pgen.1006969.g006

A mutation in Nischarin causes otitis media

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1006969 August 14, 2017 13 / 28

https://doi.org/10.1371/journal.pgen.1006969.g006
https://doi.org/10.1371/journal.pgen.1006969


significantly different compared to wild-type (t-test: p = 0.071) and not surprisingly a signifi-

cant decline in levels between Nischedsn/edsn and Itga5tm1Hyn/+; Nischedsn/edsn mice (t-test:

p = 0.020) (Fig 7A). PAK1 protein levels were significantly raised in both Nischedsn/edsn (t-test:

p = 0.002), and Itga5tm1Hyn/+; Nischedsn/edsn mice (t-test: p = 0.006) when compared to wild-

type, but not between Nischedsn/edsn and Itga5tm1Hyn/+; Nischedsn/edsn mice (t-test: p = 0.282)

(Fig 7B).

Available antibodies for p-LIMK1 were ineffective. However, we carried out expression anal-

yses using a p-LIMK1/2 and LIMK1 antibody. IHC analysis of p-LIMK1/2 expression in ME

epithelial cells revealed nuclear localisation and increased expression from both Nischedsn/edsn

and Itga5tm1Hyn/+; Nischedsn/edsn mice (one-way ANOVA: p< 0.001) compared to wild-type.

Fig 7. Protein expression analysis of NISCH interacting partners and downstream pathways in

middle ear by western blot. Middle ear epithelial cells extracts of Nisch+/+, Nischedsn/edsn and Itga5tm1Hyn/+;

Nischedsn/edsn mice at 8 wk, probed with (A) ITGA5, (B) PAK1, (C) p-LIMK1/2, (D) LIMK1, (E) RAC1, (F) NF-κB
p65, (G) p-NFκB p65, (H) FAK, (I) p-FAK, (J) p-SRC and (K) p-SMAD2 antibodies. The results presented are

from four independent experiments for all the antibodies except for ITGA5, PAK1, LIMK1, p-NFκB p65 and

FAK, where three independent experiments were used to present the data. ns P > 0.05; * P < 0.05; ** P < 0.01;

*** P < 0.001. Error bars indicate standard error of mean. A Student’s t-test was performed to analyse the data.

https://doi.org/10.1371/journal.pgen.1006969.g007
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However, no significant difference was observed between ME epithelial cells in Nischedsn/edsn

and Itga5tm1Hyn/+; Nischedsn/edsn mice (one-way ANOVA: p = 0.704) (Fig 6D). Similarly, protein

levels of p-LIMK1/2 in ME epithelial cells were significantly raised in Nischedsn/edsn (t-test:

p = 0.039) and Itga5tm1Hyn/+; Nischedsn/edsn (t-test: p = 0.038) compared to wild-type. No differ-

ence was detected between Nischedsn/edsn and Itga5tm1Hyn/+; Nischedsn/edsn samples (t-test:

p = 0.598), consistent with the observations from immunohistochemistry (Fig 7C). In addition,

levels of LIMK1 in ME epithelial cells were also significantly raised in Itga5tm1Hyn/+; Nischedsn/edsn

compared to wild-type (t-test: p = 0.030) and Nischedsn/edsn (t-test: p = 0.041) mice (Fig 7D).

IHC analysis of RAC1 demonstrated nuclear localisation and increased expression from

Itga5tm1Hyn/+; Nischedsn/edsn mice compared to wild-type (one-way ANOVA: p< 0.001) (Fig

6E). Moreover, in agreement with these observations, protein levels of RAC1 were significantly

raised in Itga5tm1Hyn/+; Nischedsn/edsn mice (t-test: p = 0.033), compared to wild-type (Fig 7E).

IHC analysis of NF-κB p65 expression showed nuclear localisation and raised levels of pro-

tein in both Nischedsn/edsn and Itga5tm1Hyn/+; Nischedsn/edsn mice compared to wild-type (one-

way ANOVA: p = 0.017 and p<0.001 respectively). Moreover, there was a significant enhance-

ment of NF-κB labelling in the double mutant compared to Nischedsn/edsn (one-way ANOVA:

p = 0.026) (Fig 6F). In agreement with IHC, we found significantly higher levels of NF-κB p65

by western blot in both mutants compared to wild-type (t-test: p = 0.039 and p = 0.041) (Fig

7F). We also examined levels of activated NF-κB p65 by western blot employing an antibody

that recognises phosphorylated-NF-κB [Ser 276] p65 (p-NF-κB p65) and detected significantly

higher levels of the activated protein in both mutants compared to wild-type (t-test: p = 0.030

and p = 0.035) (Fig 7G).

In addition, we investigated the expression of two pathways that are implicated in the devel-

opment of chronic OM (see Introduction), or are regulated by NISCH interacting partners.

First, we evaluated levels of focal adhesion kinase (FAK) and SRC. Cross-talk between integ-

rins and VEGF is a critical factor in the regulation of angiogenesis, vascularisation and vascular

permeability [25]. Integrins regulate VE-cadherin via the activation of SRC, and FAK catalytic

activity is required when α5β1 integrin stimulates SRC activation through FAK phosphoryla-

tion. FAK inhibition prevents VEGF-stimulated vascular permeability underlining the impor-

tance of FAK activity in the regulation of adherens junctions [32]. Tyr 397 in human FAK

becomes phosphorylated upon integrin engagement and creates a binding site for SRC. This

results in release of the inactive conformation of SRC (Tyr 527) and leads to autophosphoryla-

tion of SRC on Tyr 416. Activated SRC further phosphorylates FAK on additional residues,

one of which is Tyr 576. The activated FAK-SRC complex then initiates multiple downstream

signalling pathways [33,34]. IHC of ME epithelial cells showed there was increased expression

of total FAK in both Nischedsn/edsn and Itga5tm1Hyn/+; Nischedsn/edsn compared to wild-type mice

(one-way ANOVA: p = 0.015 and p< 0.001 respectively). A significant difference was also

observed between Nischedsn/edsn and Itga5tm1Hyn/+; Nischedsn/edsn ears (one-way ANOVA:

p = 0.005) (Fig 6G).

To study protein levels of FAK we used an antibody raised against the last 50 amino acids at

the C-terminal of the human protein. There are nine known mouse isoforms of FAK (http://

www.uniprot.org/uniprot/P34152) produced by alternative promoter usage and alternative

splicing and the antibody is potentially able to detect six of them. We detected three main

bands in ME epithelial cell lysates at 124, 115 and 100kDa. The full-length canonical isoform is

124kDa. We detected significantly increased levels of the full length 124kDa FAK1 protein in

Nischedsn/edsn mutants compared to wild-type (t-test: p = 0.014). The level of the 115kDa form

was significantly raised in Nischedsn/edsn (t-test: p = 0.014) and Itga5tm1Hyn/+; Nischedsn/edsn (t-

test: p = 0.001) mice compared to wild-type, while the 100kDa form was the main isoform

detected in wild-type samples. A significant difference was detected in the levels of the 100kDa

A mutation in Nischarin causes otitis media

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1006969 August 14, 2017 15 / 28

http://www.uniprot.org/uniprot/P34152
http://www.uniprot.org/uniprot/P34152
https://doi.org/10.1371/journal.pgen.1006969


between wild-type and Itga5tm1Hyn/+; Nischedsn/edsn (t-test: p = 0.0005) (Fig 7H). Furthermore

we used phosphorylated-FAK (p-FAK) [Y576] and phosphorylated-SRC (p-SRC) [Y527] anti-

bodies to test the activity of the FAK-SRC complex in middle ear epithelia. Using a p-FAK

[Y576] antibody, which recognises activated FAK, we detected an increase in the activated

FAK in the Nischedsn/edsn tissue compared to the wild-type ME epithelial cell lysate (t-test:

p = 0.007) (Fig 7I). Not surprisingly, in the double mutant Itga5tm1Hyn/+; Nischedsn/edsn, levels of

activated FAK were not significantly different to wild-type. Using a p-SRC [Y527] antibody,

which recognises inactive SRC, we detected complementary results to that seen with activated

FAK. We found reduced levels of protein in Nischedsn/edsn ME lysates compared to the wild

types (t-test: p = 0.002) but no differences between wild-type and Itga5tm1Hyn/+; Nischedsn/edsn

(Fig 7J).

Finally, we proceeded to evaluate activation of the TGF-β pathway during chronic ME dis-

ease by assessment of phosphorylated-SMAD2 (p-SMAD2). IHC analysis of p-SMAD2

revealed significantly raised levels in Itga5tm1Hyn/+; Nischedsn/edsn mice compared to wild-

type (one-way ANOVA: p< 0.001). However, there was no significant difference between

Nischedsn/edsn and wild-type mice (one-way ANOVA: p = 0.680) (Fig 6H). In addition, protein

levels of p-SMAD2 in ME epithelial cells were significantly higher in Itga5tm1Hyn/+; Nischedsn/edsn

mice compared to wild-type (t-test: p = 0.029) or Nischedsn/edsn (t-test: p = 0.024) mice. Again

no difference was detected between wild-type and Nischedsn/edsn mice (t-test: p = 0.864)

(Fig 7K).

IHC analysis of this suite of proteins in airway epithelia revealed many similarities to that

seen in ME epithelia (S5 Fig). Levels of NISCH appeared to be raised in both Nischedsn/edsn and

Itga5tm1Hyn/+; Nischedsn/edsn mice compared to wild-type. Furthermore, increased epithelia expres-

sion of p-LIMK1/2 in both Nischedsn/edsn and Itga5tm1Hyn/+; Nischedsn/edsn mice mirrored the find-

ings in ME epithelia. Similarly, RAC1 epithelial levels were significantly raised in Itga5tm1Hyn/+;

Nischedsn/edsn mice, while NF-κB and FAK expression was raised in both Nischedsn/edsn and

Itga5tm1Hyn/+; Nischedsn/edsn mice. However, we observed no significant changes in p-SMAD2

levels in mutant airways. In contrast, in lung tissue we observed very few significant changes in

protein levels by western blot analysis (S5 Fig). These results may reflect the complexity of tis-

sues and cell types isolated from dissected material and the visible mesenchymal expression for

many of these proteins in airway tissue.

Discussion

In a large-scale ENU mutagenesis screen we recovered a new recessive mouse model of

chronic OM, edison. The edison mutant carries a Leu972Pro change in the Nischarin gene.

Nischedsn/edsn homozygotes display a progressive middle ear disease with 56% of mice display-

ing bilateral OM by 20 weeks and elevated ABR thresholds of 20–30 dB SPL indicative of a

conductive hearing loss. We derived an additional ENU allele (NischV33A) in the Nischarin

gene which also presents with progressive chronic OM, but where ABR thresholds were only

very moderately increased and at 12 weeks only 10% of the mice had bilateral OM. It appears

that the NischV33A allele is severely hypomorphic. Compound heterozygotes of the edison and

NischV33A alleles showed an intermediate non-complementing OM phenotype. We did not

identify any sensorineural element to the hearing loss in the Nischedsn/edsn mutant.

The chronic OM in Nischedsn/edsn mice is exemplified by exudate within the ME cavity and a

thickened mucoperiosteum and polypoid exophytic growths, sometimes associated with an

inflamed tympanic membrane. Serous or granulocyte-rich effusions were observed, but as the

mice aged a thick effusion was predominately observed rich in macrophages and PMNs.

Examination of ME exudates for upregulation of both inflammatory genes and hypoxia genes
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found that both Il-1b and Tnfa were both upregulated, as were Hif1a and the HIF responsive

gene Vegfa. This is similar to the findings reported for other mouse models of chronic OM,

such as the Jeff [8], Junbo [9] and Tgif1 [35] mutants. Both the middle ear and the lungs have

substantial similarities in structure and function [36] and, intriguingly, we identified a lung

defect in Nischedsn/edsn mice. During embryonic development, we found a significant reduction

in airspace width, while in the adults, we observed an emphysema-like phenotype with

enlarged airspace width and a reduced number of airspaces. In utero, the network of airways is

generated first followed by formation of the gas-exchanging units (alveoli) that develop from

the distal ends of the small airways. As a consequence disruption to lung development often

results in narrower airspaces in embryonic lungs but enlarged airspaces post-natally because of

insufficient generation of alveoli. These lung abnormalities likely account for the deficit of

Nischedsn/edsn mice recovered from the various crosses that we report.

The discovery of the involvement of Nischarin in the development of inflammatory middle

ear disease identifies a novel gene and associated pathways that are involved in OM. This led

us to explore the intersection with known pathways of OM [11,13,14] and the downstream sig-

nalling mechanisms that lead to the OM phenotype. Nischarin is a highly conserved protein

across mammalian species, consisting of an N-terminal phox homology (PX) domain, 6 puta-

tive leucine-rich repeats, a coiled-coil domain, an alanine/proline-rich region and a long C-ter-

minal region. NISCH has a multitude of interacting partners, including ITGA5 [37], PAK1

[26], Rac1 [27,38], LIMK1 [28], Rab14, PI3P [38], and LKB1 [39]. Association of NISCH with

these interacting partners underlines its broad impact on the regulation of cell motility, cell

invasion, vesicle maturation, as well as its role as a tumour suppressor [28,37,38,40]. Most

notably, the binding of NISCH to ITGA5 [37] is thought to mediate the translocation of

ITGA5 from the cell membrane to endosomes [24] thus regulating ITGA5 levels. As we discuss

above, integrins have been shown to play a critical role in modulating VEGF-induced angio-

genesis and vascularization [25]. These pathways thus intersect with the hypoxia-response

pathways mediated by HIF-1a which have been demonstrated to be involved with the develop-

ment of chronic OM in the Junbo and Jeff models [14]. Hypoxia leads to upregulation of

VEGFA and downstream pathway genes resulting in VEGF-induced angiogenesis and vascu-

lar leak. VEGFR inhibitors moderated angiogenesis and lymphangiogenesis in the Junbo
mouse. For these reasons we sought to explore the role of ITGA5 in the edison mutant, and

also to characterise the responses of downstream pathways which may illuminate the mecha-

nisms of OM development in edison.

We found a strong genetic interaction between edison and Itga5 mutants. Itga5tm1Hyn/+;

Nischedsn/edsn double mutants compared to Nischedsn/edsn mice showed significantly elevated

ABR thresholds as well as a very significant raised frequency of bilateral OM in mice from 4

weeks onwards. In summary, the OM was more highly penetrant from an earlier age, and

commensurately less progressive. Given the interactions of ITGA5 and NISCH, along with the

interactions of NISCH with diverse molecules involved in LIMK1 and NF-κB signalling, we

sought to interpret this genetic interaction in the context of known signalling pathways and

interactions downstream of NISCH. Moreover, in developing a mechanistic model, we took

into account the reports that interaction of ITGA5 with NISCH affects some of the down-

stream interactions of the NISCH molecule itself.

RAC1 signalling regulates disparate cellular functions mediated through a variety of effector

proteins [30,31]. PAK1 is a key downstream effector of RAC1 [41,42], with binding of RAC1

leading to activation of PAK1 [43]. NISCH represses this pathway, and NISCH has been

shown to block RAC1 induced cell migration through binding to PAK1; interaction with

NISCH strongly inhibits the kinase activity of PAK1 [23]. RAC1 activation of PAK1 enhances

the interaction between NISCH and PAK1, while notably expression of ITGA5 also increases
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the association between NISCH and PAK1 [23]. LIMK1 is a downstream effector of PAK1 [44]

and has been shown to be involved in vascular permeability [45]. NISCH is also an interacting

partner with LIMK1, regulating cell invasion through repression of the LIMK1-cofilin pathway

[28]. NISCH also regulates PAK1-independent RAC1 signalling through direct interaction with

RAC1 [27]. RAC1 stimulates the phosphorylation and degradation of IkB and up-regulates NF-

κB [46,47]. Overexpression of NISCH has been shown to suppress the ability of RAC1 to stimu-

late NF-κB activation [27]. The Junbo OM mutant carries a mutation in the Evi1 gene, and it is

noteworthy that EVI1 is a negative-feedback regulator of NF-κB [13]. The mutation in Junbo
leads to activation of NF-κB and inappropriate regulation of the inflammatory response [13].

We have assessed the expression of the critical genes within these pathways in the ME epi-

thelia of wild-type, Nischedsn/edsn and Itga5tm1Hyn/+; Nischedsn/edsn mice. First, we observed that

levels of ITGA5 were raised in Nischedsn/edsn mice though not significantly, reflecting the role of

NISCH in regulating ITGA5 levels. Not surprisingly, ITGA5 was significantly reduced com-

pared to edison mice in the double mutant, Itga5tm1Hyn/+; Nischedsn/edsn. We found significantly

raised levels of activated p-PAK1 in both mutant lines compared to wild-type, which was mir-

rored by downstream raised levels of p-LIMK1/2 in both Nischedsn/edsn and Itga5tm1Hyn/+;

Nischedsn/edsn mice. Raised levels of p-LIMK1/2 were also reflected in the IHC assessment.

LIMK1 levels were also raised in Nischedsn/edsn Itga5tm1Hyn/+ mice. We were unable to assess

directly levels of p-LIMK1 due to the ineffectiveness of available antibodies. While RAC1 pro-

tein levels were not affected in Nischedsn/edsn mice, they were significantly raised in the double

mutant, Itga5tm1Hyn/+; Nischedsn/edsn mice which was mirrored in the IHC assessment. We also

found by both IHC and western analysis that NF-κB levels were raised in both Nischedsn/edsn

and Itga5tm1Hyn/+; Nischedsn/edsn mice compared to wild-type. Moreover, there is evidence from

IHC that the effect of the two mutations are additive and that the double mutant shows a sig-

nificantly higher level of NF-κB expression compared to Nischedsn/edsn mice. While the protein

analysis shows a similar trend the differences between Nischedsn/edsn and Itga5tm1Hyn/+;

Nischedsn/edsn mice are not significant.

Overall, our analysis indicates that the edison mutation leads to activation of PAK1 and

PAK1-independent RAC1 pathways with increased levels of NF-κB and p-LIMK1/2 each of

which may lead to inflammatory and vascular permeability effects. In addition, a combination

of mutations in NISCH and ITGA5 can lead to an exacerbation of raised protein levels which

may underlie the more severe phenotype seen in the double mutant, Itga5tm1Hyn/+; Nischedsn/edsn.
This may reflect the role of ITGA5 in enhancing binding of NISCH to PAK1, and provides us

with a model of the mechanism underlying the Nischedsn/edsn and Itga5tm1Hyn/+; Nischedsn/edsn

phenotypes (Fig 8). We surmise that impairing function of NISCH leads to derepression of

RAC1 pathways, while reducing levels of ITGA5 in combination with impaired NISCH leads to

further derepression and activation of downstream pathways manifested in the more severe

phenotype. However, we did not observe significantly raised levels of RAC1 in the single mu-

tant. Nevertheless, we found raised levels of NF-κB that may reflect activation of PAK1 indepen-

dent pathways.

ITGA5 is known to be involved with the activation of SRC protein tyrosine kinase, as well

as FAK, both of which are involved with mediating VEGF induced vascular leak [32]. ITGA5

can mediate its effects by phosphorylation of FAK and binding of activated FAK to SRC lead-

ing to conformational SRC activation [33]. Alternatively, for example in the context of neuro-

blastoma cell motility, FAK is required for integrin α5β1-mediated SRC phosphorylation [34].

We thus investigated FAK and SRC levels in the mutant mice, focusing on activated FAK and

inactive SRC. We found total levels of the full length isoform of the FAK protein raised in

Nischedsn/edsn mice. However, in Itga5tm1Hyn/+; Nischedsn/edsn mice, full length FAK protein was

not significantly different to wild-type. Importantly, we detected raised levels of activated FAK
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along with reduced levels of inactive SRC in Nischedsn/edsn mice. These changes may contribute

to angiogenesis and vascular permeability through upregulation of VEGF signalling pathways.

The genes mutated in previously characterised OM models (Junbo, Jeff and Tgif1), have

been reported to regulate the TGF-β signalling pathway [11,12,35]. There is considerable

cross-talk between TGF-β signalling and hypoxia pathways and mutations that perturb the

TGF-β pathway might be expected to perturb hypoxia responses with downstream conse-

quences on VEGFA and VEGF signalling, as is observed in the mutants studied [14]. We dis-

cuss above the raised levels of HIF-1a and VEGFA found in the edison mutant. We thus

assessed TGF-β signalling (in edison), and found that p-SMAD2 levels are significantly raised

in Itga5tm1Hyn/+; Nischedsn/edsn mice, but not in Nischedsn/edsn. The lack of raised p-SMAD2 levels

in the Nischedsn/edsn mouse suggests that activation of TGF-β signalling is not a primary event

underlying the development of chronic OM in the edison mouse. Rather, the upregulation of

p-SMAD2 in the double mutant may reflect the very severe inflammatory state of the middle

ear leading to activation of TGF-β pathways.

In summary (see Fig 8), we conclude that mutations in Nischarin impact upon PAK-depen-

dent and PAK-independent RAC pathways with downstream signalling effects on LIMK1 and

NF-κB. Moreover, the interplay between Nischarin and ITGA5 likely underlies impacts on FAK

and SRC signalling which may lead to VEGF mediated vascular leak. The combined effects on

LIMK1, NF-κB and FAK signalling can account for the observed inflammatory changes in the edi-
son middle ear, which along with vascular leak and middle ear exudate, produce a chronic OM.

Together, the pathways changes we describe provide a mechanism underlying the observed phe-

notypic changes in edison. Moreover, these studies further enhance our knowledge of the relevant

genetic pathways that contribute to middle ear inflammatory disease, as well as a panel of new

genes that are candidates for genetic susceptibility to chronic OM in the human population.

Materials and methods

Ethics statement

Mice were bred and maintained by Mary Lyon Centre, MRC Harwell and were housed in spe-

cific-pathogen free conditions. All animal experimentation was approved by the Animal

Fig 8. Proposed mechanism. Model of the mechanism of action in wild-type mice (Itga5+/+; Nisch+/+), during the onset OM in edison mice (Itga5+/+;

Nischedsn/edsn) and in double mutants (Itga5tm1Hyn/+; Nischedsn/edsn). Nisch, Nischarin; Nischedsn, Nischarin with the edison mutation; ITGA5, integrin α5;

ITGB1, integrin β1; FAK, Focal adhesion kinase; PAK1, p21-activated kinase 1; LIMK1, LIM domain kinase 1; Rac1, Ras-related C3 botulinum toxin

substrate 1; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; SRC, Proto-oncogene tyrosine-protein kinase; VEGF, Vascular

endothelial growth factor. Red capped lines represent inhibition, yellow capped lines represent reduced inhibition and grey capped lines represent low

inhibition. The blue arrow indicates the role of ITGA5 in enhancing binding of NISCH to PAK1. Green arrows indicate direct activation of downstream

members of the pathway and dashed green arrows indicate indirect activation. Grey arrows indicate slightly raised levels of proteins, while yellow indicates

raised levels and red indicates highly raised levels.

https://doi.org/10.1371/journal.pgen.1006969.g008
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Welfare and Ethical Review Body at MRC Harwell (License Numbers: 30/3015 and 30/3280).

The humane care and use of mice in this study was under the authority of the appropriate UK

Home Office Project License.

Phenotype-driven ENU-mutagenesis screen

The founder mouse carrying the edison mutation was generated in a large-scale phenotype-

driven ENU mutagenesis program at MRC Harwell [20]. Briefly, Male C57BL/6J mice were

mutagenized and mated to C3H.Pde6b+ females (a C3H stock that does not carry the retinal

degeneration allele Pde6brd). G3 offspring were screened for a variety of abnormalities, includ-

ing deafness and vestibular dysfunction. The edison founder was identified due to lack of a

Preyer reflex when presented with a calibrated 20 kHz, 90 dB SPL tone burst via a click-

box test.

Mapping

The founder edison mouse was maintained by repeated outcrossing to C3H/HeH and inter-

crossing to produce homozygous mutant progeny, identified by the lack of a Preyer reflex. For

linkage analysis genomic DNA from 13 affected mice were screened with 63 strain specific

SNP markers spaced equidistantly across the genome using the Pyrosequencing SNP genotyp-

ing system (QIAGEN). Additional SNP markers were used within linked regions to further

fine map the causal mutation. Markers and primer sequences are available on request from the

authors.

Whole-genome sequencing

Genomic DNA from a single affected edison mouse was sent for next-generation sequencing

(High-Throughput Genomics, WTCHG). Identification, analysis and dissemination of

sequence variant information identified through whole-genome sequencing were achieved

with the tools provided by the MRC Harwell Biocomputing custom sequence analysis pipeline.

Sequence reads were mapped to the NCBI37/mm9 assembly of the reference mouse genome.

Within the critical interval, the mean read depth was 8.17 and the read coverage was 99.64%.

Sequence variants were identified and were subsequently categorised into those which

occurred within exons and splice donor/acceptor sites, and were not known or strain-specific

variants. This led to the identification of a T to C base substitution within exon 14 of Nisch,

which is predicted to cause a Leu972Pro missense change in NISCH protein. This sequence

variant was validated using Sanger sequencing (Source BioScience, UK). Affected and unaf-

fected mice were genotyped using the LightScanner SNP genotyping system (Idaho Technol-

ogy Inc., USA) to confirm the association of genotype to phenotype. In all cases the genotype

correlated with the phenotype.

Gene-driven identification of an additional Nisch allele

DNA from the MRC Harwell ENU-DNA sperm archive (http://www.har.mrc.ac.uk/services/

archiving-distribution/enu-dna-archive) was screened with the LightScanner platform (Idaho

Technology Inc., USA). Briefly, male C57BL/6J mice were treated with ENU and crossed to

C3H/HeH females. F1 progeny (C3H/HeH.C57BL/6J) were rederived and male F1 animals had

sperm and DNA samples taken for archiving. Ten exons of Nisch were screened in DNA from

~10,000 F1 ENU mutagenised animals and potential mutations confirmed with Sanger

sequencing (Source BioScience, UK).
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Genetic background

All edison mice used for phenotyping were congenic on a C3H/HeH background. They were

backcrossed for at least ten generations. The NischV33A strain was rederived by in vitro fertilisa-

tion of C57BL/6J oocytes with F1 sperm from the MRC Harwell ENU-DNA sperm archive and

maintained on a mixed C3H/HeH and C57BL/6J genetic background. NischV33A/+ mice were

intercrossed for phenotypic analysis and crossed to congenic Nischedsn/+ mice for complemen-

tation testing. Cryopreserved Itga5tm1Hyn mutant sperm was imported from the Jackson Labo-

ratory (Stock No. 002274) [48] and the colony was rederived using in vitro fertilisation of

C57BL/6J oocytes. Itga5tm1Hyn mice had been backcrossed 4–5 generations onto a C3H/HeH

background, before crossing to congenic Nischedsn mice for phenotypic analysis.

Genotyping

Genotyping for edison mice was performed using an allelic discrimination assay with primers

5’-GGC AGC ACA AAG ATG GCG GTA AC-3’ and 5’-AAC TGC CGC AAC CGC AAC A-3’

and labelled probes 5’-[6-FAM]_AGC AGC TCG AGC ACA T-3’ (edsn) and 5’-[TET]_CAG

CTC GGG CAC ATG-3’ (Wild-type). The Applied Biosystems 7900HT Fast System (Applied

Biosystems, USA) was used for amplification and analysis. To genotype NischV33A mice, PCR

amplification was performed with primers 5’-GAC TGA GTA CCT TGC AGC TA-3’ and

5’-CTG TAA CGG TGT TTG ATC GTC-3’ and an unlabelled probe 5’-CCC TTT AGG CTT

ATG TCA TCC AGG TTA C_[SpC3]-3’. The LightScanner System (Idaho Technology Inc.,

USA) was used for subsequent unlabelled probe genotyping analysis. Itga5tm1Hyn mice were

genotyped with mutant and control specific primers, as described on the Jackson Laboratory

Mice Database (http://jaxmice.jax.org/strain/002274).

Skull morphology and radiography

Analysis of skulls from 20 wk mice was performed using a Faxitron Mx-20 DC-4 specimen X-

ray System. ImageJ software was used to measure the skull length, nasal bone length, frontal

bone length, parietal bone length and skull width. Allometric comparisons were performed

against skull length with at least 12 mice of each genotype.

Auditory brainstem response

Mice were anesthetized and hearing thresholds determined using ABR, as previously described

[7]. The ABR threshold was measured for each ear. Click-evoked hearing assessments for edi-
son mice were conducted at 3, 4, 6, 8, 12, 16 and 20 wk with cohorts containing at least 14 mice

of each genotype at each time point. Frequency-specific (8, 16, and 32 kHz) analysis of audi-

tory function for edison mice was conducted over a longitudinal time course at 4, 6, 8, 12 and

20 wk with 5 mice of each genotype. At least 10 NischV33A mice were used for click-evoked

ABR analysis across a longitudinal time course at 4, 6, 8 and 12 wk. Finally, click-evoked analy-

sis of Itga5tm1Hyn Nischedsn hearing thresholds were measured across a longitudinal time course

at 4, 6, 8, 12, 16 and 20 wk with at least 8 mice of each genotype.

Histology

Mouse 3, 4, 6, 8, 12, 16 and 20 wk heads from Nisch+/+, Nischedsn/+ and Nischedsn/edsn mice were

fixed for 48 hours in 10% neutral buffered formaldehyde, decalcified in D.F.B decalcifying

agent (Kristensen; Pioneer Research Chemicals) for 72 hours and embedded in paraffin fol-

lowing routine procedures. Perinatal heads were processed in the same manner without the

decalcification steps. Four-micrometre-thick sections were obtained, de-paraffinized in xylene
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substitute and rehydrated via a graded ethanol. For morphological observations, sections were

stained with haemotoxylin and eosin (H&E). The histological sections were used to investigate

the middle ear inflammation of the mice. Evaluation of mean mucosal thickness was by blinded

assessment of a standard 1000 μm length of ME mucosa (avoiding the cochlea and the region

close to the Eustachian tube), the mucosal thickness was averaged from five measurements.

To study the lung morphology of edison mice, H&E stained sections from adult and perina-

tal lungs were viewed using a Zeiss Axiostar Plus bright-field microscope and analysed using

cellB imaging software (Olympus). The data was analysed as previously described [49].

Scanning electron microscopy

To study the ultra-structure of the organ of Corti we dissected the inner ears from five 20 wk

Nisch+/+ and Nischedsn/edsn mice and prepared the samples as previously described [50]. Inner

ears were imaged using a JEOL 6010 LV scanning electron microscope under high vacuum

conditions.

Blood and bulla fluid collection

Blood and bulla fluids were collected, as previously described [14], for analysis using Real-time

quantitative PCR.

Real-time quantitative PCR (RT-qPCR)

Real-time quantitative PCR was performed as previously described [14]. For ear fluid analysis,

each sample pool comprised the fluid from both ears of four individual samples. For blood

analysis each sample pool comprised four individual samples. Murine TaqMan gene expres-

sion assays used for analysis were Hif1a (Mm01283756_m1), Il1b (Mm01336189_m1), Tnfa
(Mm00443258_m1), Vegfa (Mm00437304_m1), Src (Mm00436785_m1), Evi1 (Mm00491303_m1)

and Fbxo11 (Mm01227499_m1). Ppia (Mm02342429_g1) was used as the endogenous control.

Immunohistochemistry

For immunohistochemical analysis, the avidin–biotin complex (ABC) method was used to

look for the localization of NISCH, ITGA5, p-PAK, p-LIMK1/2, RAC1, NF-κB p65, FAK and

p-SMAD2 in wild-type and mutant mouse ME and lungs. The sections through the ears of

mice were de-parafinized, and endogenous peroxidase activity was quenched with 3% hydro-

gen peroxide in isopropanol for 30 min. Vectastain Elite ABC kit (Vector Laboratories, PK

6101) was used to perform the immunohistochemistry. The antibodies were as follows: rabbit

polyclonal anti-NISCH (sc-98980, Santa Cruz Biotechnology), rabbit polyclonal anti-ITGA5

(sc-10729, Santa Cruz Biotechnology), rabbit polyclonal anti-p-αPAK (Thr212) (sc-101772,

Santa Cruz Biotechnology), rabbit polyclonal anti-p-LIMK1/2 (Thr508/505) (sc-28409-R,

Santa Cruz Biotechnology), rabbit polyclonal anti-RAC1 (sc-95, Santa Cruz Biotechnology),

rabbit polyclonal anti-p-SMAD2 (Ser465/467) (AB3849, Chemicon International), rabbit

polyclonal anti-FAK (sc-558, Santa Cruz Biotechnology) rabbit polyclonal anti-NF-κB p65

(ab131485, Abcam). The sections were incubated with the antibodies overnight at the follow-

ing dilutions: p-PAK, 1:50; NISCH, ITGA5, p-LIMK1/2, NF-κB p65, FAK and p-SMAD2,

1:200; Rac1, 1:400. For F4/80 visualisation, sections were treated with 0.05% trypsin in calcium

chloride for 20 min at 37˚C, blocked with 10% rabbit serum (X0902, DAKO), incubated with

rat anti mouse F4/80 (MCA497GA, Serotec) antibody overnight at 1:100 dilution and the next

day after the washes were incubated with biotinylated rabbit anti-rat secondary antibody at

1:400 dilution (E0468, DAKO). The serum and the secondary antibody for all the other
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antibodies were from the Vectastain Elite ABC kit and they were used according to the manu-

facturer’s instructions. DAB+ chromogen system (DAKO K3468) was used to develop the spe-

cific signals. The slides were counterstained with haematoxylin.

Western blot

Total protein extracted from the ME epithelial cells and lungs of two-months-old wild-type,

Nischedsn/edsn and Itga5tm1Hyn/+; Nischedsn/edsn mice were used for the western blot analysis. Each

middle ear sample consisted of combined epithelial cells scooped out of both ears of one

mouse. Each lung sample consisted of whole lung tissue from one mouse. Either three or four

biological replicates were performed for each antibody. The tissues were homogenised in Cel-

Lytic MT Cell Lysis Reagent (Sigma C3228), protease inhibitors, phosphatase inhibitors and

vanadate and centrifuged at 4˚C. Protein concentration was determined using the DC Protein

Assay kit (Bio-Rad). Samples (30 μg from the lung samples and 10 μg from the middle ear sam-

ples) were loaded into 12% NuPAGE Bis-Tris gel, 7% NuPAGE Tris Acetate gel or 3–8%

NuPAGE Tris acetate gels (Invitrogen), blotted onto nitrocellulose membrane (Invitrogen)

and immunostained. 5% non-fat milk in TBST was used as blocking solution and antibody dil-

uent. The antibodies and the dilutions they were used at for the western blot analysis were as

follows: rabbit polyclonal anti-ITGA5 (sc-10729, Santa Cruz Biotechnology) 1:500, rabbit poly-

clonal anti-PAK1 (2602, Cell Signaling) 1:1000, rabbit polyclonal anti-p-LIMK1/2 (Thr508/

505) (sc-28409-R, Santa Cruz Biotechnology) 1:500, goat polyclonal anti LIMK1 (sc-8387,

Santa Cruz Biotechnology) 1:500, rabbit polyclonal anti-RAC1 (sc-95, Santa Cruz Biotechnol-

ogy) 1:500, rabbit polyclonal anti-FAK (sc-558, Santa Cruz Biotechnology) 1:500, rabbit poly-

clonal anti-NF-κB p65 (ab131485, Abcam) 1:1000, rabbit polyclonal p-NFκB p65 (Ser 276)

(sc-101749, Santa Cruz Biotechnology) 1:500, rabbit polyclonal anti-phospho-FAK (Tyr576)

(44-652G, Invitrogen), rabbit polyclonal anti-phospho-SRC (Tyr527) (2105, Cell Signaling),

rabbit polyclonal anti-phospho-SMAD2 (Ser465 /467) (3101, Cell Signaling) 1:500 and actin

(A 2066, Sigma). Goat anti-rabbit IgG (H+L)-HRP conjugate (1706515, Bio-Rad), 1:3000, was

used as a secondary antibody for all the primary antibodies except for LIMK1 for which Rabbit

anti-goat IgG (H+L) secondary antibody, HRP, 1:5000 (81–1620, Invitrogen) was used. ECL

or ECL 2 (GE Healthcare) were used as detection system.

Data analysis

All data are given as unadjusted mean +/- SEM (standard error of the mean) unless stated oth-

erwise. Data were analysed to establish normal distribution. Where data was normally distrib-

uted an ANOVA or Student’s t-test were conducted. If data was not normally distributed the

non-parametric equivalents of these tests were used (Kruskal-Wallis One Way Analysis of Var-

iance on Ranks or Mann-Whitney Rank Sum Test) to establish if data were significant. The

Holm-Sidak method (ANOVA) or Dunn’s method (Ranks) was used for multiple comparisons

versus a control group. Results with values of P< 0.05 were considered statistically significant.

SigmaPlot 11.0 software was used to perform all statistical analysis.

Supporting information

S1 Fig. Nischedsn/edsn craniofacial defect has no effect on Eustachian tube morphology. (A)

Characteristic image of a male Nischedsn/edsn mutant and a wild-type littermate. (B) Weight

data for male edison mice over a 20 wk longitudinal time course shows Nischedsn/edsn mice are

significantly smaller than both wild-type and Nischedsn/+ littermates throughout the time

course. In addition, Nischedsn/+ mice are also smaller than those wild-type for the allele. �

P< 0.05; �� P< 0.01; ��� P< 0.001. Nisch+/+, n = 9; Nischedsn/+, n = 20; Nischedsn/edsn, n = 18
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(C) Dorsoventral view of a 20 wk wild-type mouse skull showing the measurements used to

analyse skull morphology in this study. SL, skull length; SW, skull width; NB, nasal bone; FB,

frontal bone; PB, parietal bone. (D) Allometric comparisons against skull length show abnor-

mal growth in Nischedsn/edsn skulls at the nasal bone and frontal bone. ns P> 0.05; � P< 0.05;
��� P< 0.001. Nisch+/+, n = 13; Nischedsn/+, n = 18; Nischedsn/edsn, n = 12. (E) Dissected and

stained skulls of Nisch+/+, Nischedsn/+ and Nischedsn/edsn 20 wk mice. Eustachian tube (ET) angle

measurements are indicated by dashed lines. R, right ear; L, left ear. (F) Mean angle between

the midline of the skull and the bony part of the left and the right ET. ns P> 0.05. Nisch+/+,

n = 6; Nischedsn/+, n = 6; Nischedsn/edsn, n = 6. Error bars indicate standard error of mean. Statis-

tics were conducted using one-way ANOVA’s and Holm-Sidak’s multiple comparison tests for

post-hoc analysis.

(TIF)

S2 Fig. No additional auditory abnormalities contributing to Nischedsn/edsn hearing

deficit. (A) Frequency-specific ABR thresholds (8 kHz, 16 kHz, 32 kHz and click-evoked) of

Nischedsn/edsn mice across a longitudinal time course displayed parallel shifts in audiometric

profiles across frequencies, consistent with a conductive hearing loss. n = 5. (B) H&E mid-

modiolar sections of the cochlea showed comparable structure of inner ears in 20 wk Nisch+/+

and Nischedsn/edsn mice. Nisch+/+ n = 5; Nischedsn/edsn n = 5. Scale bar = 1 mm. OC, organ of

Corti; SG, spiral ganglion; SL, spiral ligament; RM, Reissner’s membrane. (C) H&E sections of

the organ of Corti from the mid cochlear turn displayed no differences in the morphology

between Nisch+/+ and Nischedsn/edsn mice at 20 wk. Nisch+/+ n = 5; Nischedsn/edsn n = 5. Scale

bar = 100 μm. OHC, outer hair cell; IHC, inner hair cell. (D) Scanning electron microscopy

(SEM) images showed normal hair cell morphology in 20 wk Nisch+/+ and Nischedsn/edsn mice.

Nisch+/+ n = 5; Nischedsn/edsn n = 5. Scale bar = 10 μm.

(TIF)

S3 Fig. Gene expression in Nischedsn/edsn bulla fluid inflammatory cells compared with

white blood cells. Relative Quantification (RQ) of gene expression using TaqMan RT-qPCR

for Nischedsn/edsn mice at 20 wk. Blood, n = 3 pools; Ear fluid, n = 3 pools. ns P> 0.05; ��

P< 0.01; ��� P< 0.001. Error bars indicate 95% confidence interval. A Student’s t-test of the

replicate 2(−ΔCt) values was performed to analyse the data.

(TIF)

S4 Fig. Itga5tm1Hyn/+ Nischedsn/+ mice develop a mild late-onset otitis media. (A, B) Visual

inspection of the tympanic membrane was used as a semi-quantitative measure for the preva-

lence of OM. (A) Itga5tm1Hyn/+; Nisch+/+ mice show a small incidence of unilateral OM at 4 wk,

whereas in (B) Itga5tm1Hyn/+; Nischedsn/+ animals prevalence of OM increases with age com-

pared to littermates with onset at 12 wk. (C-F) H&E stained transverse sections of the MEC

and mucoperiosteum, in 20 wk (C, E) Itga5tm1Hyn/+; Nisch+/+ and (D, F) Itga5tm1Hyn/+;

Nischedsn/+ animals. Itga5tm1Hyn/+; Nischedsn/+ mice develop OM with a diffuse mucosal inflam-

mation of mild severity, with the presence of a cellular middle ear effusion. C, cochlea; ET,

Eustachian tube; E, exudate; MEC, middle ear cavity; MP, mucoperiosteum (arrowheads); TB,

temporal bone; TM, tympanic membrane. C, D scale bar = 2 mm; E, F scale bar = 200 μm.

(TIF)

S5 Fig. Protein expression analysis of NISCH interacting partners and downstream pathways

in lung. Immunohistochemistry of lung sections of Nisch+/+, Nischedsn/edsn and Itga5tm1Hyn/+;

Nischedsn/edsn mice at 3 wk and total lung extracts at 8 wk, with (A) NISCH, (B) ITGA5, (C) PAK1,

(D) p-LIMK1/2, (E) RAC1, (F) NF-κB p65, (G) p-SMAD2 and (H) FAK antibodies. To quantify

the results from the staining, airway epithelial cells in wild-types and mutants were counted in
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three different regions from four lungs for each genotype. The results presented from the western

blots are from four independent experiments for all the antibodies except for p-LIMK1/2, where

three independent experiments were used to present the data. Scale bar = 100 μm. � P< 0.05.

Error bars indicate standard error of mean. Immunohistochemistry data was analysed by one-

way ANOVAs and Holm-Sidak’s multiple comparison procedures for post-hoc testing. For west-

ern blot analysis a Student’s t-test was performed.

(TIF)

Acknowledgments

We thank the staff in the Mary Lyon Centre, specifically Andy Hinton, Lisa Ireson and Lucie

Vizor for the husbandry and humane care of these mice; the pathology and histology teams;

the genotyping core; and imaging team at MRC Harwell. Additionally, we thank the High-

Throughput Genomics Group at the Wellcome Trust Centre for Human Genetics for the gen-

eration of the sequencing data.

Author Contributions

Conceptualization: Michael Crompton, Hilda Tateossian, Steve D. M. Brown.

Formal analysis: Michael Crompton, Michelle M. Simon, Hilda Tateossian, Steve D. M.

Brown.

Funding acquisition: Mahmood F. Bhutta, Martin J. Burton, Steve D. M. Brown.

Investigation: Michael Crompton, Tom Purnell, Hayley E. Tyrer, Andrew Parker, Greg Ball,

Rachel E. Hardisty-Hughes, Richard Gale, Debbie Williams, Hilda Tateossian.

Methodology: Michael Crompton, Andrew Parker, Debbie Williams, Charlotte H. Dean,

Michelle M. Simon, Hilda Tateossian, Steve D. M. Brown.

Resources: Andrew Parker, Debbie Williams, Ann-Marie Mallon, Sara Wells.

Supervision: Charlotte H. Dean, Hilda Tateossian, Steve D. M. Brown.

Visualization: Michael Crompton, Hilda Tateossian, Steve D. M. Brown.

Writing – original draft: Michael Crompton, Hilda Tateossian, Steve D. M. Brown.

Writing – review & editing: Michael Crompton, Charlotte H. Dean, Hilda Tateossian, Steve

D. M. Brown.

References
1. Monasta L, Ronfani L, Marchetti F, Montico M, Vecchi Brumatti L, et al. (2012) Burden of disease

caused by otitis media: systematic review and global estimates. PLoS One 7: e36226. https://doi.org/

10.1371/journal.pone.0036226 PMID: 22558393

2. Casselbrant ML, Mandel EM, Fall PA, Rockette HE, Kurs-Lasky M, et al. (1999) The heritability of otitis

media: a twin and triplet study. JAMA 282: 2125–2130. PMID: 10591333

3. Rovers M, Haggard M, Gannon M, Koeppen-Schomerus G, Plomin R (2002) Heritability of symptom

domains in otitis media: a longitudinal study of 1,373 twin pairs. Am J Epidemiol 155: 958–964. PMID:

11994236

4. Rye MS, Bhutta MF, Cheeseman MT, Burgner D, Blackwell JM, et al. (2011) Unraveling the genetics of

otitis media: from mouse to human and back again. Mamm Genome 22: 66–82. https://doi.org/10.

1007/s00335-010-9295-1 PMID: 21107580

5. Tyrer HE, Crompton M, Bhutta MF (2013) What have we learned from murine models of otitis media?

Curr Allergy Asthma Rep 13: 501–511. https://doi.org/10.1007/s11882-013-0360-1 PMID: 23775349

A mutation in Nischarin causes otitis media

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1006969 August 14, 2017 25 / 28

https://doi.org/10.1371/journal.pone.0036226
https://doi.org/10.1371/journal.pone.0036226
http://www.ncbi.nlm.nih.gov/pubmed/22558393
http://www.ncbi.nlm.nih.gov/pubmed/10591333
http://www.ncbi.nlm.nih.gov/pubmed/11994236
https://doi.org/10.1007/s00335-010-9295-1
https://doi.org/10.1007/s00335-010-9295-1
http://www.ncbi.nlm.nih.gov/pubmed/21107580
https://doi.org/10.1007/s11882-013-0360-1
http://www.ncbi.nlm.nih.gov/pubmed/23775349
https://doi.org/10.1371/journal.pgen.1006969


6. Nolan PM, Peters J, Strivens M, Rogers D, Hagan J, et al. (2000) A systematic, genome-wide, pheno-

type-driven mutagenesis programme for gene function studies in the mouse. Nat Genet 25: 440–443.

https://doi.org/10.1038/78140 PMID: 10932191

7. Hardisty-Hughes RE, Parker A, Brown SD (2010) A hearing and vestibular phenotyping pipeline to iden-

tify mouse mutants with hearing impairment. Nat Protoc 5: 177–190. https://doi.org/10.1038/nprot.

2009.204 PMID: 20057387

8. Hardisty RE, Erven A, Logan K, Morse S, Guionaud S, et al. (2003) The deaf mouse mutant Jeff (Jf) is a

single gene model of otitis media. J Assoc Res Otolaryngol 4: 130–138. https://doi.org/10.1007/

s10162-002-3015-9 PMID: 12943368

9. Parkinson N, Hardisty-Hughes RE, Tateossian H, Tsai HT, Brooker D, et al. (2006) Mutation at the Evi1

locus in Junbo mice causes susceptibility to otitis media. PLoS Genet 2: e149. https://doi.org/10.1371/

journal.pgen.0020149 PMID: 17029558

10. Hardisty-Hughes RE, Tateossian H, Morse SA, Romero MR, Middleton A, et al. (2006) A mutation in

the F-box gene, Fbxo11, causes otitis media in the Jeff mouse. Hum Mol Genet 15: 3273–3279. https://

doi.org/10.1093/hmg/ddl403 PMID: 17035249

11. Tateossian H, Hardisty-Hughes RE, Morse S, Romero MR, Hilton H, et al. (2009) Regulation of TGF-

beta signalling by Fbxo11, the gene mutated in the Jeff otitis media mouse mutant. Pathogenetics 2: 5.

https://doi.org/10.1186/1755-8417-2-5 PMID: 19580641

12. Kurokawa M, Mitani K, Irie K, Matsuyama T, Takahashi T, et al. (1998) The oncoprotein Evi-1 represses

TGF-beta signalling by inhibiting Smad3. Nature 394: 92–96. https://doi.org/10.1038/27945 PMID:

9665135

13. Xu X, Woo CH, Steere RR, Lee BC, Huang Y, et al. (2012) EVI1 acts as an inducible negative-feedback

regulator of NF-kappaB by inhibiting p65 acetylation. J Immunol 188: 6371–6380. https://doi.org/10.

4049/jimmunol.1103527 PMID: 22581859

14. Cheeseman MT, Tyrer HE, Williams D, Hough TA, Pathak P, et al. (2011) HIF-VEGF pathways are criti-

cal for chronic otitis media in Junbo and Jeff mouse mutants. PLoS Genet 7: e1002336. https://doi.org/

10.1371/journal.pgen.1002336 PMID: 22028672

15. Segade F, Daly KA, Allred D, Hicks PJ, Cox M, et al. (2006) Association of the FBXO11 gene with

chronic otitis media with effusion and recurrent otitis media: the Minnesota COME/ROM Family Study.

Arch Otolaryngol Head Neck Surg 132: 729–733. https://doi.org/10.1001/archotol.132.7.729 PMID:

16847180

16. Rye MS, Wiertsema SP, Scaman ES, Oommen J, Sun W, et al. (2011) FBXO11, a regulator of the

TGFbeta pathway, is associated with severe otitis media in Western Australian children. Genes Immun

12: 352–359. https://doi.org/10.1038/gene.2011.2 PMID: 21293382

17. Jotic A, Jesic S, Zivkovic M, Tomanovic N, Kuveljic J, et al. (2015) Polymorphisms in Toll-like receptors

2 and 4 genes and their expression in chronic suppurative otitis media. Auris Nasus Larynx 42: 431–

437. https://doi.org/10.1016/j.anl.2015.04.010 PMID: 26055429

18. Emonts M, Veenhoven RH, Wiertsema SP, Houwing-Duistermaat JJ, Walraven V, et al. (2007) Genetic

polymorphisms in immunoresponse genes TNFA, IL6, IL10, and TLR4 are associated with recurrent

acute otitis media. Pediatrics 120: 814–823. https://doi.org/10.1542/peds.2007-0524 PMID: 17908769

19. Sale MM, Chen WM, Weeks DE, Mychaleckyj JC, Hou X, et al. (2011) Evaluation of 15 functional candi-

date genes for association with chronic otitis media with effusion and/or recurrent otitis media (COME/

ROM). PLoS One 6: e22297. https://doi.org/10.1371/journal.pone.0022297 PMID: 21857919

20. Thaung C, West K, Clark BJ, McKie L, Morgan JE, et al. (2002) Novel ENU-induced eye mutations in

the mouse: models for human eye disease. Hum Mol Genet 11: 755–767. PMID: 11929848

21. Quwailid MM, Hugill A, Dear N, Vizor L, Wells S, et al. (2004) A gene-driven ENU-based approach to

generating an allelic series in any gene. Mamm Genome 15: 585–591. https://doi.org/10.1007/s00335-

004-2379-z PMID: 15457338

22. Poobalasingam T, Yates LL, Walker SA, Pereira M, Gross NY, et al. (2017) Heterozygous Vangl2Loop-

tail mice reveal novel roles for the planar cell polarity pathway in adult lung homeostasis and repair. Dis

Model Mech.

23. Alahari SK (2003) Nischarin inhibits Rac induced migration and invasion of epithelial cells by affecting

signaling cascades involving PAK. Exp Cell Res 288: 415–424. PMID: 12915132

24. Lim KP, Hong W (2004) Human Nischarin/imidazoline receptor antisera-selected protein is targeted to

the endosomes by a combined action of a PX domain and a coiled-coil region. J Biol Chem 279:

54770–54782. https://doi.org/10.1074/jbc.M411315200 PMID: 15475348

25. De S, Razorenova O, McCabe NP, O’Toole T, Qin J, et al. (2005) VEGF-integrin interplay controls

tumor growth and vascularization. Proc Natl Acad Sci U S A 102: 7589–7594. https://doi.org/10.1073/

pnas.0502935102 PMID: 15897451

A mutation in Nischarin causes otitis media

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1006969 August 14, 2017 26 / 28

https://doi.org/10.1038/78140
http://www.ncbi.nlm.nih.gov/pubmed/10932191
https://doi.org/10.1038/nprot.2009.204
https://doi.org/10.1038/nprot.2009.204
http://www.ncbi.nlm.nih.gov/pubmed/20057387
https://doi.org/10.1007/s10162-002-3015-9
https://doi.org/10.1007/s10162-002-3015-9
http://www.ncbi.nlm.nih.gov/pubmed/12943368
https://doi.org/10.1371/journal.pgen.0020149
https://doi.org/10.1371/journal.pgen.0020149
http://www.ncbi.nlm.nih.gov/pubmed/17029558
https://doi.org/10.1093/hmg/ddl403
https://doi.org/10.1093/hmg/ddl403
http://www.ncbi.nlm.nih.gov/pubmed/17035249
https://doi.org/10.1186/1755-8417-2-5
http://www.ncbi.nlm.nih.gov/pubmed/19580641
https://doi.org/10.1038/27945
http://www.ncbi.nlm.nih.gov/pubmed/9665135
https://doi.org/10.4049/jimmunol.1103527
https://doi.org/10.4049/jimmunol.1103527
http://www.ncbi.nlm.nih.gov/pubmed/22581859
https://doi.org/10.1371/journal.pgen.1002336
https://doi.org/10.1371/journal.pgen.1002336
http://www.ncbi.nlm.nih.gov/pubmed/22028672
https://doi.org/10.1001/archotol.132.7.729
http://www.ncbi.nlm.nih.gov/pubmed/16847180
https://doi.org/10.1038/gene.2011.2
http://www.ncbi.nlm.nih.gov/pubmed/21293382
https://doi.org/10.1016/j.anl.2015.04.010
http://www.ncbi.nlm.nih.gov/pubmed/26055429
https://doi.org/10.1542/peds.2007-0524
http://www.ncbi.nlm.nih.gov/pubmed/17908769
https://doi.org/10.1371/journal.pone.0022297
http://www.ncbi.nlm.nih.gov/pubmed/21857919
http://www.ncbi.nlm.nih.gov/pubmed/11929848
https://doi.org/10.1007/s00335-004-2379-z
https://doi.org/10.1007/s00335-004-2379-z
http://www.ncbi.nlm.nih.gov/pubmed/15457338
http://www.ncbi.nlm.nih.gov/pubmed/12915132
https://doi.org/10.1074/jbc.M411315200
http://www.ncbi.nlm.nih.gov/pubmed/15475348
https://doi.org/10.1073/pnas.0502935102
https://doi.org/10.1073/pnas.0502935102
http://www.ncbi.nlm.nih.gov/pubmed/15897451
https://doi.org/10.1371/journal.pgen.1006969


26. Alahari SK, Reddig PJ, Juliano RL (2004) The integrin-binding protein Nischarin regulates cell migration

by inhibiting PAK. EMBO J 23: 2777–2788. https://doi.org/10.1038/sj.emboj.7600291 PMID: 15229651

27. Reddig PJ, Xu D, Juliano RL (2005) Regulation of p21-activated kinase-independent Rac1 signal trans-

duction by nischarin. J Biol Chem 280: 30994–31002. https://doi.org/10.1074/jbc.M502546200 PMID:

16002401

28. Ding Y, Milosavljevic T, Alahari SK (2008) Nischarin inhibits LIM kinase to regulate cofilin phosphoryla-

tion and cell invasion. Mol Cell Biol 28: 3742–3756. https://doi.org/10.1128/MCB.01832-07 PMID:

18332102

29. Orr AW, Hahn C, Blackman BR, Schwartz MA (2008) p21-activated kinase signaling regulates oxidant-

dependent NF-kappa B activation by flow. Circ Res 103: 671–679. https://doi.org/10.1161/

CIRCRESAHA.108.182097 PMID: 18669917

30. Gastonguay A, Berg T, Hauser AD, Schuld N, Lorimer E, et al. (2012) The role of Rac1 in the regulation

of NF-kappaB activity, cell proliferation, and cell migration in non-small cell lung carcinoma. Cancer Biol

Ther 13: 647–656. https://doi.org/10.4161/cbt.20082 PMID: 22549160

31. Bosco EE, Mulloy JC, Zheng Y (2009) Rac1 GTPase: a "Rac" of all trades. Cell Mol Life Sci 66: 370–

374. https://doi.org/10.1007/s00018-008-8552-x PMID: 19151919

32. Chen XL, Nam JO, Jean C, Lawson C, Walsh CT, et al. (2012) VEGF-induced vascular permeability is

mediated by FAK. Dev Cell 22: 146–157. https://doi.org/10.1016/j.devcel.2011.11.002 PMID:

22264731

33. Zhao X, Guan JL (2011) Focal adhesion kinase and its signaling pathways in cell migration and angio-

genesis. Adv Drug Deliv Rev 63: 610–615. https://doi.org/10.1016/j.addr.2010.11.001 PMID:

21118706

34. Wu L, Bernard-Trifilo JA, Lim Y, Lim ST, Mitra SK, et al. (2008) Distinct FAK-Src activation events pro-

mote alpha5beta1 and alpha4beta1 integrin-stimulated neuroblastoma cell motility. Oncogene 27:

1439–1448. https://doi.org/10.1038/sj.onc.1210770 PMID: 17828307

35. Tateossian H, Morse S, Parker A, Mburu P, Warr N, et al. (2013) Otitis media in the Tgif knockout

mouse implicates TGFbeta signalling in chronic middle ear inflammatory disease. Hum Mol Genet 22:

2553–2565. https://doi.org/10.1093/hmg/ddt103 PMID: 23459932

36. Takahashi H (2001) The middle ear: the role of ventilation in disease and surgery. Tokyo; New York:

Springer. viii, 105 p. p.

37. Alahari SK, Lee JW, Juliano RL (2000) Nischarin, a novel protein that interacts with the integrin alpha5

subunit and inhibits cell migration. J Cell Biol 151: 1141–1154. PMID: 11121431

38. Kuijl C, Pilli M, Alahari SK, Janssen H, Khoo PS, et al. (2013) Rac and Rab GTPases dual effector

Nischarin regulates vesicle maturation to facilitate survival of intracellular bacteria. EMBO J 32: 713–

727. https://doi.org/10.1038/emboj.2013.10 PMID: 23386062

39. Jain P, Baranwal S, Dong S, Struckhoff AP, Worthylake RA, et al. (2013) Integrin-binding protein

nischarin interacts with tumor suppressor liver kinase B1 (LKB1) to regulate cell migration of breast epi-

thelial cells. J Biol Chem 288: 15495–15509. https://doi.org/10.1074/jbc.M112.418103 PMID:

23572524

40. Baranwal S, Wang Y, Rathinam R, Lee J, Jin L, et al. (2011) Molecular characterization of the tumor-

suppressive function of nischarin in breast cancer. J Natl Cancer Inst 103: 1513–1528. https://doi.org/

10.1093/jnci/djr350 PMID: 21917605

41. Kumar R, Vadlamudi RK (2002) Emerging functions of p21-activated kinases in human cancer cells. J

Cell Physiol 193: 133–144. https://doi.org/10.1002/jcp.10167 PMID: 12384990

42. Bokoch GM (2003) Biology of the p21-activated kinases. Annu Rev Biochem 72: 743–781. https://doi.

org/10.1146/annurev.biochem.72.121801.161742 PMID: 12676796

43. Buchwald G, Hostinova E, Rudolph MG, Kraemer A, Sickmann A, et al. (2001) Conformational switch

and role of phosphorylation in PAK activation. Mol Cell Biol 21: 5179–5189. https://doi.org/10.1128/

MCB.21.15.5179-5189.2001 PMID: 11438672

44. Edwards DC, Sanders LC, Bokoch GM, Gill GN (1999) Activation of LIM-kinase by Pak1 couples Rac/

Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat Cell Biol 1: 253–259. https://doi.org/10.

1038/12963 PMID: 10559936

45. Gorovoy M, Han J, Pan H, Welch E, Neamu R, et al. (2009) LIM kinase 1 promotes endothelial barrier

disruption and neutrophil infiltration in mouse lungs. Circ Res 105: 549–556. https://doi.org/10.1161/

CIRCRESAHA.109.195883 PMID: 19679840

46. Perona R, Montaner S, Saniger L, Sanchez-Perez I, Bravo R, et al. (1997) Activation of the nuclear fac-

tor-kappaB by Rho, CDC42, and Rac-1 proteins. Genes Dev 11: 463–475. PMID: 9042860

47. Bonizzi G, Karin M (2004) The two NF-kappaB activation pathways and their role in innate and adaptive

immunity. Trends Immunol 25: 280–288. https://doi.org/10.1016/j.it.2004.03.008 PMID: 15145317

A mutation in Nischarin causes otitis media

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1006969 August 14, 2017 27 / 28

https://doi.org/10.1038/sj.emboj.7600291
http://www.ncbi.nlm.nih.gov/pubmed/15229651
https://doi.org/10.1074/jbc.M502546200
http://www.ncbi.nlm.nih.gov/pubmed/16002401
https://doi.org/10.1128/MCB.01832-07
http://www.ncbi.nlm.nih.gov/pubmed/18332102
https://doi.org/10.1161/CIRCRESAHA.108.182097
https://doi.org/10.1161/CIRCRESAHA.108.182097
http://www.ncbi.nlm.nih.gov/pubmed/18669917
https://doi.org/10.4161/cbt.20082
http://www.ncbi.nlm.nih.gov/pubmed/22549160
https://doi.org/10.1007/s00018-008-8552-x
http://www.ncbi.nlm.nih.gov/pubmed/19151919
https://doi.org/10.1016/j.devcel.2011.11.002
http://www.ncbi.nlm.nih.gov/pubmed/22264731
https://doi.org/10.1016/j.addr.2010.11.001
http://www.ncbi.nlm.nih.gov/pubmed/21118706
https://doi.org/10.1038/sj.onc.1210770
http://www.ncbi.nlm.nih.gov/pubmed/17828307
https://doi.org/10.1093/hmg/ddt103
http://www.ncbi.nlm.nih.gov/pubmed/23459932
http://www.ncbi.nlm.nih.gov/pubmed/11121431
https://doi.org/10.1038/emboj.2013.10
http://www.ncbi.nlm.nih.gov/pubmed/23386062
https://doi.org/10.1074/jbc.M112.418103
http://www.ncbi.nlm.nih.gov/pubmed/23572524
https://doi.org/10.1093/jnci/djr350
https://doi.org/10.1093/jnci/djr350
http://www.ncbi.nlm.nih.gov/pubmed/21917605
https://doi.org/10.1002/jcp.10167
http://www.ncbi.nlm.nih.gov/pubmed/12384990
https://doi.org/10.1146/annurev.biochem.72.121801.161742
https://doi.org/10.1146/annurev.biochem.72.121801.161742
http://www.ncbi.nlm.nih.gov/pubmed/12676796
https://doi.org/10.1128/MCB.21.15.5179-5189.2001
https://doi.org/10.1128/MCB.21.15.5179-5189.2001
http://www.ncbi.nlm.nih.gov/pubmed/11438672
https://doi.org/10.1038/12963
https://doi.org/10.1038/12963
http://www.ncbi.nlm.nih.gov/pubmed/10559936
https://doi.org/10.1161/CIRCRESAHA.109.195883
https://doi.org/10.1161/CIRCRESAHA.109.195883
http://www.ncbi.nlm.nih.gov/pubmed/19679840
http://www.ncbi.nlm.nih.gov/pubmed/9042860
https://doi.org/10.1016/j.it.2004.03.008
http://www.ncbi.nlm.nih.gov/pubmed/15145317
https://doi.org/10.1371/journal.pgen.1006969


48. Yang JT, Rayburn H, Hynes RO (1993) Embryonic mesodermal defects in alpha 5 integrin-deficient

mice. Development 119: 1093–1105. PMID: 7508365

49. Yates LL, Schnatwinkel C, Hazelwood L, Chessum L, Paudyal A, et al. (2013) Scribble is required for

normal epithelial cell-cell contacts and lumen morphogenesis in the mammalian lung. Dev Biol 373:

267–280. https://doi.org/10.1016/j.ydbio.2012.11.012 PMID: 23195221

50. Mburu P, Romero MR, Hilton H, Parker A, Townsend S, et al. (2010) Gelsolin plays a role in the actin

polymerization complex of hair cell stereocilia. PLoS One 5: e11627. https://doi.org/10.1371/journal.

pone.0011627 PMID: 20661277

A mutation in Nischarin causes otitis media

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1006969 August 14, 2017 28 / 28

http://www.ncbi.nlm.nih.gov/pubmed/7508365
https://doi.org/10.1016/j.ydbio.2012.11.012
http://www.ncbi.nlm.nih.gov/pubmed/23195221
https://doi.org/10.1371/journal.pone.0011627
https://doi.org/10.1371/journal.pone.0011627
http://www.ncbi.nlm.nih.gov/pubmed/20661277
https://doi.org/10.1371/journal.pgen.1006969

