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Abstract

The investigations carried out during this Ph.D. programme relate to the marine
engineering field, more specifically to wave energy conversion. Two different wave energy
converters have been modelled numerically with the aim to assess the feasibility of wave
energy conversion in the Mediterranean Sea. Moreover, the ability of the open source
CFD software REEF3D to generate and absorb waves has been studied through wave
reflection analysis.

The first studied wave energy converter, named HPA-LG, is a heaving point ab-
sorber with a linear generator placed at the seabed. Two variants of the WEC have
been examined. Firslty, the classical configuration with floater and generator has been
analysed. Afterwards, a third body has been added in order to modify the natural
period of the system. The third body is a submerged sphere of neutral buoyancy placed
25 metres below the water surface. Both devices have been tuned to the Mediterranean
wave climate, paying particular attention to the floater dimensions and to the geomet-
rical design of the PTO. Initially, only the heave mode has been modelled and the
performance of both devices has been analysed. Subsequently, the surge mode has been
added to the model. Finally, the effect of the surge in prevalent heaving point absorbers
has been studied.

For the two-body device, although the dynamic behaviour changes when the surge
is included, no relevant differences are observed regarding the power production. When
studying the three-body device, results show two clear trends. On the one hand, for
steep waves the surge leads to a decrease in the production, since the PTO geometrical
limits are reach. On the other hand, for flatter waves it affects positively the power
absorption. However, the overall the negative contribution is more relevant.

The MoonWEC is the second studied wave energy converter, it merges several work-
ing principles with the aim to benefit from the assets of each single principle. It consists
in a hollow floating structure, where water fills a central whole creating a moonpool.
The idea is to create a relative motion between the floater and the moonpool water and
then, absorb the energy via a Wells turbine placed in the moonpool. The model takes
into account the structure motion in heave, surge and pitch; the relative displacement
of the moonpool and the Wells turbine rotation. Device optimization has also been
carried out according to the Mediterranean wave climate, six different CALM mooring



configurations and three Wells turbines have been tested.
Both device show similarities in their performance, their production is maximised

for a specific range of wave conditions. The HPA-LG has a broader optimal range.
However, the MoonWEC is more efficient for mild wave conditions and as a result, its
annual energy production is [50−100] % higher, depending on the location and HPA-LG
variant. Also, its design properties makes it less vulnerable to breakdowns.

The 3D numerical wave tank feature of REEF3D includes different methods to
generate and absorb waves; two different relaxation methods, which use two different
relaxation functions and the active wave absorption. All methods can be implemented
either in the wave generation area and/or at the other edge of the tank. A sensitivity
analysis has been conducted in order to quantify and compare the differences, in terms
of absorption quality and computational performance between these methods. The
reflection analysis developed by Zelt & Skjelbreia (1992), based on an arbitrary number
of wave gauges, has been adopted to conduct the study. Tests include: reflection analysis
in an empty tank with linear, 2nd and 5th order Stoke waves, solitary waves, Cnoidal
waves and irregular waves. Furthermore, wave-structure interaction with a fixed vertical
cylinder and a constant slope bed have been studied relating forces and wave breaking
to reflection. In addition, a comparison with another CFD open source (OpenFOAM)
code has been carried out.

Results are promising; showing good agreement with theoretical values. Although
some differences have been observed depending on the wave generation and absorption
method, high overall absorption rates have been achieved for all methods.

v



vi



Contents

Acronyms xxiii

1 Introduction 1
1.1 Renewable Energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Wave Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 History Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Protoype Classification . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2.1 Oscillating Water Column . . . . . . . . . . . . . . . . . 8
1.2.2.2 Oscillating Bodies . . . . . . . . . . . . . . . . . . . . . 8
1.2.2.3 Overtopping . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Scope of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.1 HPA-LG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.2 MoonWEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Theoretical background 19
2.1 Wave Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Linear wave theory . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.2 Wave Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.1.3 Wave analysis and statistics . . . . . . . . . . . . . . . . . . . . . 36

2.2 Floating structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3 Electric generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3.1 Electromagnetism . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.3.2 Rotative Generator . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.3.3 Linear Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.4 Moonpool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

vii



CONTENTS

2.5 Mooring system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.6 Wells Turbine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3 Wave Resource Assessment 75
3.1 Global and local wave resource . . . . . . . . . . . . . . . . . . . . . . . 75
3.2 Deployment sites identification . . . . . . . . . . . . . . . . . . . . . . . 76
3.3 Extreme wave conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4 Mathematical modelling & numerical methods 85
4.1 Potential flow model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.1.1 Wave generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.1.2 Internal forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.1.3 External forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.1.3.1 Hydrostatic forces . . . . . . . . . . . . . . . . . . . . . 89
4.1.3.2 Hydrodynamic forces . . . . . . . . . . . . . . . . . . . 90
4.1.3.3 Mooring forces . . . . . . . . . . . . . . . . . . . . . . . 97
4.1.3.4 Turbine . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.1.3.5 Electric Generator . . . . . . . . . . . . . . . . . . . . . 105

4.1.4 Equations of motion . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.1.4.1 HPA-LG . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.1.4.2 MoonWEC . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.1.4.3 Moonpool . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.2 REEF3D CFD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.2.1 General equations . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.2.2 Wave generation and absorption . . . . . . . . . . . . . . . . . . 122
4.2.3 Reflection Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5 Dimensioning, Tuning & Optimization 127
5.1 HPA-LG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.1.1 Free oscillation tests . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.1.2 LG Geometric Design . . . . . . . . . . . . . . . . . . . . . . . . 130
5.1.3 Duration of the Simulations . . . . . . . . . . . . . . . . . . . . . 132

5.2 MoonWEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.2.1 Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.2.1.1 Frequency domain . . . . . . . . . . . . . . . . . . . . . 134
5.2.1.2 Time domain . . . . . . . . . . . . . . . . . . . . . . . . 138

5.2.2 Mooring System . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

viii



5.2.3 PTO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
5.2.3.1 Wells Turbine . . . . . . . . . . . . . . . . . . . . . . . 177
5.2.3.2 PM Generator . . . . . . . . . . . . . . . . . . . . . . . 182

6 Results 187
6.1 HPA-LG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

6.1.1 Generic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
6.1.2 Site-Specific . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6.2 MoonWEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
6.2.1 Parametric Instability . . . . . . . . . . . . . . . . . . . . . . . . 193
6.2.2 Net Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
6.2.3 Wells Turbine Working Conditions . . . . . . . . . . . . . . . . . 197
6.2.4 General Performance . . . . . . . . . . . . . . . . . . . . . . . . . 200
6.2.5 Site Specific . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

6.3 CFD Reflection Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
6.3.1 Empty Numerical Wave Tank . . . . . . . . . . . . . . . . . . . . 203
6.3.2 Cylinder Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
6.3.3 Slope Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
6.3.4 OpenFOAM Comparison . . . . . . . . . . . . . . . . . . . . . . 216

7 Conclusions 219
7.1 HPA-LG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
7.2 MoonWEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
7.3 Reflection Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

ix





List of Figures

1.1 a) GHG emissions per capita vs GDP per capita. b) Temperature increase

forecast based on CO2eq concentration on the atmosphere. (30) . . . . . . . 2
1.2 Historical energy source utilization. (10) . . . . . . . . . . . . . . . . . . . . 3
1.3 Global forecasted energetic mix for policy scenario GCAM (34) . . . . . . . . 4
1.4 Kaimei WEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Tapchan WEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Wave Energy Converter classification according to size and orientation. . . . . 7
1.7 Wave Energy converter Classification based on(40). . . . . . . . . . . . . . . 7
1.8 OWC working principle schematic.a) Air outtake phase. b) Air intake phase. . 8
1.9 Different types of existing oscillating bodies WEC. Adaptation from (52) . . . 9
1.10 a) Floating overtopping device. b) Breakwater-integrated overtopping device . 10
1.11 Device Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.12 Device Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Notation and Sketch of the domain for the linear wave theory (73) . . . . . . 21
2.2 Water particle velocities in a wave . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 a) Deep water particle paths b) Shallow water particle paths. (73) . . . . . . 26
2.4 Wave pressure distributions along the vertical axis in the crest and trough of

the wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5 a) Geometric configuration to compute potential energy b)Geometric configu-

ration to compute kinetic energy . . . . . . . . . . . . . . . . . . . . . . . 28
2.6 Evolution of wave height and length over a changing depth for a horizontal

seabed (73) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.7 Geometric representation of the Snell’s law applied for ocean waves at the near-

shore area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.8 Wave diffraction according to different obstacles . . . . . . . . . . . . . . . . 33
2.9 Graphical representation of the wave generation process. . . . . . . . . . . . 36

xi



LIST OF FIGURES

2.10 Variation of the wave spectrum along the length of the fetch. . . . . . . . . . 36
2.11 Illustration of the water surfer elevation variation in time . . . . . . . . . . . 37
2.12 Probability distribution of wave heights registered in a wave record . . . . . . 38
2.13 Logaritmical Rayleigh distribution . . . . . . . . . . . . . . . . . . . . . . . 39
2.14 Curves of equal-probablity of non-dimmensionalized wave height over non-dimmensionalized

wave periods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.15 JOint North Sea WAve Project (JONSWAP) and Pierson-Moskowitz spectra . 43
2.16 Rigid body six modes of motion . . . . . . . . . . . . . . . . . . . . . . . . 44
2.17 Surface element dS of wet surface S of a rigid body . . . . . . . . . . . . . . 45
2.18 Conceptual scheme of the magnetic induction . . . . . . . . . . . . . . . . . 53
2.19 Magnetization curve for a ferromagnetic material . . . . . . . . . . . . . . . 55
2.20 Equivalent electric circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.21 Conceptual representation of the load angle . . . . . . . . . . . . . . . . . . 56
2.22 Cross sectional view in radial and axial direction, respectively, of a typical radial

flux Permanent Magnet Synchronous Generator (PMSG) (69) . . . . . . . . . 59
2.23 Cross sectional views of a typical Linear electric Generator (LG) . . . . . . . 61
2.24 Mooring system types classification scheme . . . . . . . . . . . . . . . . . . 64
2.25 Different mooring system layouts . . . . . . . . . . . . . . . . . . . . . . . 65
2.26 Layout of the Platform-Catenary Anchor Leg Mooring (CALM) system, warn-

ing figure needs to be updated . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.27 Geometry of a deep water catenary line . . . . . . . . . . . . . . . . . . . . 67
2.28 Layout of an air Wells turbine . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.29 Geometrical layout of a NACA aerofoil . . . . . . . . . . . . . . . . . . . . . 70
2.30 Aerodynamic forces. a) Compression stages. b) Suction stages. . . . . . . . . 71
2.31 Geometrical layout of the cascade scheme . . . . . . . . . . . . . . . . . . . 72
2.32 Aerodynamic forces on several symmetrical National Advisory Committee of

Aeronautics (NACA) profiles for several Reynolds numbers a) Variation of the

tangential force coefficient with incident angle. b)Variation of the axial force

coefficient with incident angle (80) . . . . . . . . . . . . . . . . . . . . . . . 73

3.1 Annual global gross theoretical wave power for all WorldWaves grid points

worldwide. (74) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.2 Distribution of average power per unit crest in the Mediterranean between 2001

and 2010. (65) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.3 Case study locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.4 Sea state percentage of occurrence and Percentage of Annual Energy at Alghero. 80

xii



LIST OF FIGURES

3.5 Sea state percentage of occurrence and Percentage of Annual Energy at Mazara

del Vallo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.6 Extreme wave statistics using the half-hourly POT method accounting for all

wave directions at Alghero (31). . . . . . . . . . . . . . . . . . . . . . . . . 82
3.7 Extreme wave statistics using the half-hourly POT method accounting for all

wave directions at Mazara del Vallo (31). . . . . . . . . . . . . . . . . . . . 83

4.1 Potential flow model diagram . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.2 Discretized body wet surface for Boundary Element Method (BEM) calculations 93
4.3 Hydrodynamic coefficients for several DoFs vs. angular frequency. a) Added

Mass coeffcient, b) Radiation damping coefficient, c) Excitation Force coefficient 95
4.4 Prony’s approximation of the impulse response function . . . . . . . . . . . . 97
4.5 Wells turbine (W-T) aerodynamic forces and velocity triangles. a) Compression

stages. b) Suction stages. . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.6 Aerodynamic coefficients on several symmetrical NACA profiles for several

Reynolds numbers a) Variation of the tangential force coefficient with incident

angle. b)Variation of the axial force coefficient with incident angle (80) . . . . 103
4.7 Digitized curves from figure 4.6 for NACA0021 profile (solid lines) and inter-

polated curves for other Reynolds numbers (discontinuous lines). a) Tangential

coefficients, b) Axial coefficients . . . . . . . . . . . . . . . . . . . . . . . 104
4.8 Reference model of the MoonWEC for mathematical characterisation . . . . . 111
4.9 Reference model of the Wells turbine for mathematical characterisation . . . . 112
4.10 Schematic of a numerical wave tank with wave generation and absorption zones

and their respective relaxation functions for the two methods. . . . . . . . . . 123

5.1 Free Oscillation test of the Power Take-Off (PTO)’s translator. a) Influence of

the sphere vs. time. b) Spectral analysis of oscillations and climatic spectra

from Alghero and Mazara del Vallo . . . . . . . . . . . . . . . . . . . . . . 130
5.2 Piston average position at each sea state . . . . . . . . . . . . . . . . . . . . 131
5.3 PTO layout. a) Original form. b) Translator modification. c) Translator&

Stator modification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.4 PTO Active Production Area Ratio vs. Piston Displacement. . . . . . . . . . 132
5.5 Power output deviation from the 1000-wave value vs. Number of Waves. . . . 133
5.6 Resonance peak for the heave and pitch modes for simulations carried out with

different mesh element number. . . . . . . . . . . . . . . . . . . . . . . . . 135
5.7 Mesh of the modelled floating structure with the chosen element number and

final dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

xiii



LIST OF FIGURES

5.8 Hydrodynamic coefficients vs. frequency obtained with the BEM approach for

the different modelled Degree of Freedoms (DoFs). a) added mass coefficients,

b) radiation damping coefficients and c) excitation force coefficients . . . . . . 137
5.9 Response amplitude operator of the MoonWEC for the studied DoFs. . . . . . 138
5.10 Radiation impulse response functions for the surge mode. Analytical curve

(solid line) and approximation with Prony’s approach (dots). . . . . . . . . . 139
5.11 Radiation impulse response functions for the heave mode. Analytical curve

(solid line) and approximation with Prony’s approach (dots). . . . . . . . . . 140
5.12 Radiation impulse response functions for the pitch mode. Analytical curve

(solid line) and approximation with Prony’s approach (dots). . . . . . . . . . 140
5.13 Radiation impulse response functions for the moonpool DoF. Analytical curve

(solid line) and approximation with Prony’s approach (dots). . . . . . . . . . 141
5.14 Decay test results time series of the Moonpool WEC (MoonWEC) for the stud-

ied modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.15 Frequency domain response of the decay test of the MoonWEC for the studied

modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.17 Frequency domain response of the MoonWEC response under the influence of

a monochromatic wave of period T = 3 s, for the studied modes. . . . . . . . 144
5.16 Time series of the MoonWEC response under the influence of a monochromatic

wave of period T = 3 s, for the studied modes. . . . . . . . . . . . . . . . . . 144
5.18 Time series of the MoonWEC response under the influence of a monochromatic

wave of period T = 6 s, for the studied modes. . . . . . . . . . . . . . . . . . 145
5.19 Frequency domain response of the MoonWEC response under the influence of

a monochromatic wave of period T = 6 s, for the studied modes. . . . . . . . 145
5.20 Time and frequency domain MoonWEC response under the influence of a monochro-

matic wave of period T = 6 s, for the heave mode and moonpool absolute and

relative displacements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.21 Time series of the MoonWEC response under the influence of a monochromatic

wave of period T = 19 s, for the studied modes. . . . . . . . . . . . . . . . . 147
5.22 Frequency domain response of the MoonWEC response under the influence of

a monochromatic wave of period T = 19 s, for the studied modes. . . . . . . . 148
5.23 Time series of the MoonWEC response under the influence of an irregular wave

sea state with peak period TP = 6 s, for the studied modes. . . . . . . . . . . 148
5.24 Non-dimmensional Spectra of the MoonWEC studied modes response to irreg-

ular wave sea states. a) for peak period TP = 4 s, b) for peak period TP = 6 s,

c) for peak period TP = 8 s and d) for peak period TP = 10 s. . . . . . . . . 149

xiv



LIST OF FIGURES

5.25 Geometry of a deep water catenary line . . . . . . . . . . . . . . . . . . . . 151

5.26 Geometric CALM system layouts. . . . . . . . . . . . . . . . . . . . . . . . 152

5.27 Decay test time series of the MoonWEC for the studied modes. CALM config-

uration nr. 1 in table 5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.28 Frequency domain response of the decay test of the MoonWEC for the studied

modes.CALM configuration nr. 1 in table 5.4 . . . . . . . . . . . . . . . . . 154

5.29 Time series of the MoonWEC response under the influence of a monochromatic

wave of period T = 3 s, for the studied modes. CALM configuration nr. 1 in

table 5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.30 Frequency domain response of the MoonWEC response under the influence of

a monochromatic wave of period T = 3 s, for the studied modes. CALM

configuration nr. 1 in table 5.4 . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.31 Time series of the MoonWEC response under the influence of a monochromatic

wave of period T = 6 s, for the studied modes. CALM configuration nr. 1 in

table 5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.32 Frequency domain response of the MoonWEC response under the influence of

a monochromatic wave of period T = 6 s, for the studied modes. CALM

configuration nr. 1 in table 5.4 . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.33 Time series of the MoonWEC response under the influence of a monochromatic

wave of period T = 21.75 s, for the studied modes. CALM configuration nr. 1

in table 5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.34 Frequency domain response of the MoonWEC response under the influence of

a monochromatic wave of period T = 21.75 s, for the studied modes. CALM

configuration nr. 1 in table 5.4 . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.35 Time series of the MoonWEC response under the influence of an irregular wave

sea state with peak period TP = 6 s, for the studied modes. MoonWEC config-

uration nr. 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.36 Non-dimmensional Spectra of the MoonWEC studied modes response to irreg-

ular wave sea states. a) for peak period TP = 4 s, b) for peak period TP = 6

s, c) for peak period TP = 8 s and d) for peak period TP = 10 s. CALM

configuration nr. 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.37 Decay test time series of the MoonWEC for the studied modes. CALM config-

uration nr. 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.38 Frequency domain response of the decay test of the MoonWEC for the studied

modes. CALM configuration nr. 2. . . . . . . . . . . . . . . . . . . . . . . . 160

xv



LIST OF FIGURES

5.39 Frequency domain response of the MoonWEC response under the influence of

a monochromatic wave of period T = 17.85 s, for the studied modes. CALM

configuration nr. 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.40 Time series of the MoonWEC response under the influence of an irregular wave

sea state with peak period TP = 6 s, for the studied modes. CALM configura-

tion nr. 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.41 Non-dimmensional Spectra of the MoonWEC studied modes response to irreg-

ular wave sea states. a) for peak period TP = 4 s, b) for peak period TP = 6

s, c) for peak period TP = 8 s and d) for peak period TP = 10 s. CALM

configuration nr. 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.42 Decay test time series of the MoonWEC for the studied modes. CALM config-

uration nr. 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.43 Frequency domain response of the decay test of the MoonWEC for the studied

modes. CALM configuration nr. 3. . . . . . . . . . . . . . . . . . . . . . . . 164

5.44 Frequency domain response of the MoonWEC response under the influence of

a monochromatic wave of period T = 28.75 s, for the studied modes. CALM

configuration nr. 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.45 Time series of the MoonWEC response under the influence of an irregular wave

sea state with peak period TP = 6 s, for the studied modes. CALM configura-

tion nr. 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.46 Non-dimmensional Spectra of the MoonWEC studied modes response to irreg-

ular wave sea states. a) for peak period TP = 4 s, b) for peak period TP = 6

s, c) for peak period TP = 8 s and d) for peak period TP = 10 s. CALM

configuration nr. 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.47 Decay test time series of the MoonWEC for the studied modes. CALM config-

uration nr. 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.48 Frequency domain response of the decay test of the MoonWEC for the studied

modes. CALM configuration nr. 4. . . . . . . . . . . . . . . . . . . . . . . . 166

5.49 Time series of the MoonWEC response under the influence of a monochromatic

wave of period T = 6 s, for the studied modes. CALM configuration nr. 4. . . 167

5.50 Frequency domain response of the MoonWEC response under the influence of

a monochromatic wave of period T = 21 s, for the studied modes. CALM

configuration nr. 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

xvi



LIST OF FIGURES

5.52 Non-dimmensional Spectra of the MoonWEC studied modes response to irreg-

ular wave sea states. a) for peak period TP = 4 s, b) for peak period TP = 6

s, c) for peak period TP = 8 s and d) for peak period TP = 10 s. CALM

configuration nr. 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.51 Time series of the MoonWEC response under the influence of an irregular wave

sea state with peak period TP = 6 s, for the studied modes. CALM configura-

tion nr. 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.53 Frequency domain response of the decay test of the MoonWEC for the studied

modes. CALM configuration nr. 5. . . . . . . . . . . . . . . . . . . . . . . . 169

5.54 Frequency domain response of the MoonWEC response under the influence of

a monochromatic wave of period T = 25 s, for the studied modes. CALM

configuration nr. 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.55 Time series of the MoonWEC response under the influence of an irregular wave

sea state with peak period TP = 6 s, for the studied modes. CALM configura-

tion nr. 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

5.56 Non-dimmensional Spectra of the MoonWEC studied modes response to irreg-

ular wave sea states. a) for peak period TP = 4 s, b) for peak period TP = 6

s, c) for peak period TP = 8 s and d) for peak period TP = 10 s. CALM

configuration nr. 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

5.57 Frequency domain response of the decay test of the MoonWEC for the studied

modes. CALM configuration nr. 6. . . . . . . . . . . . . . . . . . . . . . . . 171

5.58 Frequency domain response of the MoonWEC response under the influence of

a monochromatic wave of period T = 21 s, for the studied modes. CALM

configuration nr. 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.59 Time series of the MoonWEC response under the influence of an irregular wave

sea state with peak period TP = 6 s, for the studied modes. CALM configura-

tion nr. 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.60 Non-dimmensional Spectra of the MoonWEC studied modes response to irreg-

ular wave sea states. a) for peak period TP = 4 s, b) for peak period TP = 6

s, c) for peak period TP = 8 s and d) for peak period TP = 10 s. CALM

configuration nr. 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.61 Natural Period of the CALM-structure system in surge depending on the sea

state input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

5.62 Extreme wave statistics using the half-hourly Peak Over Threshold (POT)

method accounting for all wave directions at Alghero (31). . . . . . . . . . . 175

xvii



LIST OF FIGURES

5.63 Heave, surge and axial tension vs. time for an input sea state withHm0 = 10.5

m and TP = 13.5 s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

5.64 Power produced by the Wells Turbine as function of the damping coefficient

and moonpool velocity. Linear regression of the maximum power damping

coefficient in the dashed line. . . . . . . . . . . . . . . . . . . . . . . . . . . 179

5.65 Angle of attack as function of the damping coefficient and moonpool velocity.

Linear regression of the maximum power damping coefficient in the dashed line. 180

5.66 angular velocity as function of the damping coefficient and moonpool velocity.

Linear regression of the maximum power damping coefficient in the dashed line. 180

5.67 Working conditions of the studied W-Ts for a fixed flow velocity and resistance

damping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

5.68 Generated resistant torque and electric Power of the studied Permanent Magnet

(PM) generator vs. the angular velocity. Nominal conditions marked with squares183

5.69 Generated resistant torque and electric Power of the studied PM generator vs.

the angular velocity. Nominal conditions marked with squares . . . . . . . . . 184

5.70 Generated torque by the turbine (lines) and resistant torque of the studied PM

generator (markers) vs. the the moonpool velocity . . . . . . . . . . . . . . . 185

5.71 Absorbed power by the turbine (lines) and generated electric power of the stud-

ied PM generator (markers) vs. the the moonpool velocity . . . . . . . . . . 186

5.72 Resistance value dictated by the control laws for the different turbines and the

generated electric power of the studied PM generator . . . . . . . . . . . . . 186

6.1 Power matrices for each variant of the device. a) Two bodies only heave, b) two

bodies heave & surge, c) three bodies only heave and d) three bodies heave &

surge. (as in table 5.2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

6.2 Power matrix differences between the two & three-body devices. a) Heave only.

b) Heave & surge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

6.3 Power matrix differences between the heave-only mode and the heave & surge

mode. a) Two-body device. b) Three-body device. . . . . . . . . . . . . . . 189

6.4 Power output difference vs. wave steepness for each device, scatters related to

the model variants specified in table 5.2. . . . . . . . . . . . . . . . . . . . . 190

6.5 Two-body device difference matrices between heave-only mode and heave &

surge mode. a) Active Area Ratio, b) Average amplitude of the piston’s motion,

c) Average piston’s velocity . . . . . . . . . . . . . . . . . . . . . . . . . . 191

xviii



LIST OF FIGURES

6.6 Three-body device difference matrices between heave-only mode and heave &

surge mode. a) Active Area Ratio, b) Average amplitude of the piston’s motion,

c) Average piston’s velocity . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6.7 Average Energy Production (AEP) for each device in both sites. . . . . . . . . 193

6.8 Amplification factor for the meta-centric oscillations, pitch mode and surge for

different input waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

6.9 Mean oscillatory position of the meta-centre,the pitch and surge mode for sev-

eral input waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

6.10 Net Power Matrix for the MoonWEC device . . . . . . . . . . . . . . . . . . 197

6.11 a) Angular Velocity of the different turbines for an input wave of H = 0.5 m

and T = 6 s. Dashed line show the stationary behaviour. b) Moonpool velocity

for the different turbines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

6.12 Angular Velocity of the different turbines for different input waves of heights

H = 0.5 m, H = 1 m, H = 1.5 m and period T = 6 s . . . . . . . . . . . . . 198

6.13 a) Angular Velocity of the different turbines. b) Instantaneous produced power.

For an input sea state of HS = 1.5 and TP = 6 s and 500 waves duration . . . 199

6.14 MoonWEC with 3-blade W-T power output relative to the simulated sea states. 200

6.15 MoonWEC with 4-blade W-T power output relative to the simulated sea states. 201

6.16 MoonWEC with 5-blade W-T power output relative to the simulated sea states. 201

6.17 AEP matrices for the 3-blade turbine device at Alghero and Mazara del Vallo 202

6.18 AEP matrices for the 4-blade turbine device at Alghero and Mazara del Vallo 202

6.19 AEP matrices for the 5-blade turbine device at Alghero and Mazara del Vallo 203

6.20 Normalized incident (regular line) and reflected (bold line) components for the

three methods. The solid line represents the waves with L = 2 m and the dashed

line is for the waves with L = 4 m. Cases a and b from table 6.3 (H = 0.01 m) 205

6.21 Normalized incident (regular line) and reflected (bold line) components for the

three methods. The solid line represents the waves with L = 2 m and the dashed

line is for the waves with L = 4 m. Cases c and d from table 6.3 (H = 0.04 m) 205

6.22 Normalized incident (regular line) and reflected (bold line) components for the

three methods. The solid line represents the waves with L = 2 m and the dashed

line is for the waves with L = 4 m. Cases e and f from table 6.3 (H = 0.1 m) . 206

6.23 Reflection coefficients for all the different method combinations . . . . . . . . 207

xix



6.24 Surface elevation generated according to JONSWAPHS = 0.04 m and TP = 2.0

s with the Relaxation Method (RM)1. (a) Time series of incident (regular line)

and reflected (bold line) irregular wave. (b) Wave amplitude components, total

in bold, incident in regular, reflected in dashed and the reflection coefficient in

dotted line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
6.25 Surface elevation generated according to JONSWAPHS = 0.04 m and TP = 1.2

s with the Active Wave Absorption (AWA) method. (a) Time series of incident

(regular line) and reflected (bold line) irregular wave. (b) Wave amplitude

components, total in bold, incident in regular, reflected in dashed and the

reflection coefficient in dotted line. . . . . . . . . . . . . . . . . . . . . . . . 209
6.26 Reflection coefficients for all the different method combinations for irregular

waves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
6.27 NWT used for simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
6.28 Free surface elevation in NWT. . . . . . . . . . . . . . . . . . . . . . . . . . 211
6.29 Amplitude Forces and reflection coefficients at the front and at the back of the

cylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
6.30 Time-series of incident and reflected waves in front of the cylinder. (a) and (b),

cases e and f in 6.3, respectively . . . . . . . . . . . . . . . . . . . . . . . . 213
6.31 Force measurements at the cylinder. (a) and (b), cases e and f in 6.3, respec-

tively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
6.32 NWT used for simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
6.33 Reflection coefficients for different methods, waves and slopes . . . . . . . . . 216

7.1 Technical sheet of the MoonWEC device . . . . . . . . . . . . . . . . . . . . 223

xx



List of Tables

1.1 Heaving Point Absorber Linear Generator (HPA-LG) characteristics. . . . . . 14
1.2 MoonWEC general characteristics. . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 Rigid body modes of motion. . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.2 Mooring Systems according to the two classification systems. . . . . . . . . . 64

3.1 Main features and statistics of the study sites. . . . . . . . . . . . . . . . . . 78
3.2 Main features and statistics of the study sites. Columns I, II, III, IV represent

the percentage of the annual wave energy in the months of December-February,

March-May, June-August, September-November. . . . . . . . . . . . . . . . . 78
3.3 Percentage of Occurrence Po and Percentage of annual energy PAE correspond-

ing to different wave height intervals. . . . . . . . . . . . . . . . . . . . . . . 79
3.4 Percentage of Occurrence Po and Percentage of annual energy PAE correspond-

ing to different wave period intervals. . . . . . . . . . . . . . . . . . . . . . 79

4.1 Drag coefficients for three-dimensional bodies (L:length, D:diameter) (84). . . 91
4.2 Organisation of the modelled DoFs for the HPA-LG device. . . . . . . . . . . 109

5.1 HPA-LG geometric properties (26). . . . . . . . . . . . . . . . . . . . . . . 128
5.2 Studied WEC devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.3 Resonance Peak location for several structures with different main body diameters.136
5.4 Geometric properties of CALM system configurations. . . . . . . . . . . . . . 152
5.5 Physical properties of spiral strand wire ropes (8). . . . . . . . . . . . . . . . 153
5.6 PM Generator parameters for a Nominal Power of 50kW . . . . . . . . . . . . 183

6.1 AEP for a sea state of HS = 1.5 m and TP = 6 s and several W-T. . . . . . . 200
6.2 AEP at the study sites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
6.3 Tested wave conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

xxi



LIST OF TABLES

6.4 Tested wave conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
6.5 Reflection Coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
6.6 Computational Effort

(
h
s ). . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

xxii



Acronyms

AAR Active Area Ratio.
AEP Average Energy Production.
ALC Articulated Loading Column.
AWA Active Wave Absorption.

BC Boundary Condition.
BEM Boundary Element Method.

CAD Computer Assisted Design.
CALM Catenary Anchor Leg Mooring.
CFD Computational Fluid Dynamics.
CFL Courant–Friedrichs–Lewy.
CoG Centre of Gravity.
CS Control Surface.

DC Direct Current.
DoF Degree of Freedom.

FPSO Floating Production Storage Unit.
FTM Fixed Tower Mooring.

GHG GreenHouse Gas.

HPA-LG Heaving Point Absorber Linear Generator.

IFFT Inverse Fourier Transform.
IPCC Intergovernmental Panel on Climate Change.

xxiii



Acronyms

IRF Impulse Response Function.

JONSWAP JOint North Sea WAve Project.

KC Keulegan-Karpenter.

LG Linear electric Generator.
LHEEA Laboratoire d’Hydrodynamique,Énergétique

et Environnement.

MBL Minimum Breaking Load.
MIT Massachusetts Institute of Technology.
MoonWEC Moonpool WEC.
MPI Message Passing Interface.
MWD Mean Wave Direction.
MWL Mean Water Level.

NACA National Advisory Committee of Aeronautics.
NRBC Non-Reflective Boundary Condition.
NWT Numerical Wave Tank.

O&M Operation and Maintenance.
ODE Ordinary Differential Equation.
OWC Oscillating Water Column.

PDF Probability Distribution Function.
PM Permanent Magnet.
PML Perfectly Match Layer.
PMSG Permanent Magnet Synchronous Generator.
POT Peak Over Threshold.
PTO Power Take-Off.

RANS Reynolds-Averaged Navier-Stokes equations.
RAO Response Amplitude Operator.
RM Relaxation Method.
RON National Italian Wave Measurement Network.

xxiv



Acronyms

SALM Single Anchor Leg Mooring.
SG Synchronous Generator.
SI International System.

TLP Tension Leg Platform.
TVD Total Variation Diminishing.

W-T Wells turbine.
WEC Wave Energy Converter.
WENO Weighted Essentially Non Oscillatory.

xxv





1

Introduction

1.1 Renewable Energies

For the past century and a half continuous wealth creation and economic growth have
reached unprecedented levels throughout human history. A society can only be devel-
oped properly if large amounts of energy are available. With the industrial revolution
and the discovery of fossil fuels as a primary energy resource, the world we live in nowa-
days was made possible. Therefore, it can be stated that the world’s current economic
model is based on fossil fuels consumption, see figure 1.1.a). These however, bring along
some undesired side effects, such as geopolitical instabilities and large GreenHouse Gas
(GHG) emissions. The latter are the major cause of the climate change we are immersed
in, which could cause an increase of the global averaged temperature up to 5◦C by the
year 2100 according to the 5th assessment report of the Intergovernmental Panel on
Climate Change (IPCC) (30), see figure 1.1.b).

Needless to say that this scenario would be catastrophic for humankind and for life
on planet earth in general. In order to prevent such predictions from becoming a reality,
a new energetic model has to be developed. One of the strategies pointed by the IPCC,
along with efficiency increase and demand decrease, is to reduce fossil fuels consumption
and increase, as much as possible and as fast as possible, renewable energy sources as
a primary energy resource, see figure 1.3. A renewable energy resource is understood
as an energy source that can be replenished at the same rate as it is consumed. A
renewable energy can emit GHG, however these ought not to be accounted since they
are absorbed by the planet at the same pace they are emitted and therefore, the global
net balance is zero.

Many are the renewable energy resources. They can be classified in four major

1



1. INTRODUCTION

Figure 1.1: a) GHG emissions per capita vs GDP per capita. b) Temperature increase forecast
based on CO2eq concentration on the atmosphere. (30)

categories according to its nature: geothermal, hydroelectric, biomass and solar. The
first exploits internal earth’s heat stored underneath the planet’s surface. Among its
advantages there is its constancy and among its drawbacks there is its availability. It
is a very stable energy resource, however usually hard to reach, since mostly is found
far deep down the earth crust. The second merely takes advantages of the potential
energy stored in high quoted water reservoirs typically found in mountainous systems.
Biomass, is the oldest and predominant renewable energy resource until the date, see
figure 1.2. Despite not being exempt of GHG emissions, those are not accountable in
global GHG emission balance since they are rapidly absorbed by the same vegetation
that is then used as biomass. Biomass is partially considered as a solar type of energy
resource, since plants in order to thrive need to capture energy from the sun by means
of photosynthesis.

Energy coming from the sun can be harvested directly and indirectly. Direct solar
energy is divided into two main categories, photovoltaic, taking advantage of the semi-
conductor properties of silicon, and thermal, in which sun beams are focused onto a
reduced area. This energy, concentrated in the form of heat, is then stored in a fluid,
typically water.

Wind energy is an indirect form solar energy. Energy coming from the sun is dis-
tributed irregularly throughout the planets surface, reaching its maximum at latitudes
near the equator and decreasing gradually as moving away from it. This causes re-
markable pressure differences in the atmosphere, which in turn creates winds, trying
to displace huge amounts of air from high pressure regions towards low pressure re-
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1.2 Wave Energy

Figure 1.2: Historical energy source utilization. (10)

gions. This process causes an energy density increase as wind energy (0.5kW/m2), as
in average is 5 times more concentrated than solar energy (0.1− 0.3kW/m2), (95).

When winds blow over the water surface, part of its energy is transferred to the
water by friction thus, generating waves. Again, energy in waves (2 − 3kW/m2) is
denser than both, wind and solar. Even though most of solar irradiation energy is lost
in this transmission chain, the gain in energy density is a factor that should attract
expectation for future energy harvesting.

1.2 Wave Energy

Waves are generated far from the coasts, where wind and storms constantly blow over
the fetch and then travel vast distances with practically no loss of energy. As a result, it
becomes also a very constant source of energy, there is no need of site-specific climatic
events in order to ensure the presence of waves, as waves reaching the shore may have
been generated thousands of miles away a few days in the past. Furthermore, wave
energy is a highly predictable resource, nowadays wave propagation computer models
provide accurate forecast of incoming waves up to a week in advance.

Above 2/3’s of the planet surface is covered by oceans and approximately 1/2 of
the world’s population lives within a 100km from the coast. Furthermore, electricity
demand and wave seasonal variability match quite well, specially in northern countries
where peaks occur during late autumn and winter. The great availability of the resource
is another factor to take into account when estimating its potential.

In addition, very low environmental impact has been proved to occur when installing

3
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Figure 1.3: Global forecasted energetic mix for policy scenario GCAM (34)

Wave Energy Converters (WECs). Due to its reduced size and its typical deployment
location (offshore) visual impact is null as well as other impacts for the majority of
other human activities, the only exception could be ship routing. Studies on marine
life surrounding WECs show concern since the issue has still be studied thoroughly;
great uncertainties still prevail on how wave energy may affect the marine ecological
system even showing plausible positive impact since the submerged structures are used
as artificial reefs by the marine fauna, (24).

For all the stated above, the World Energy Council has appraised the wave energy
production potential to be around 2TW , which is roughly the double of the world’s
actual electricity production.

1.2.1 History Review

Despite Wave energy conversion has not fully reached the commercial stage yet, is not
a young discipline. The first patent ever presented in the field is dated from 1799 in
France by the Girards (father and son). Yet it was not until the 1940s when the first
prototypes where developed. Yoshio Masuda (1925-2009), who is considered to be one
of the fathers of wave energy exploitation, conceived the Oscillating Water Column
(OWC) converter concept. By the 1960s, he developed a navigation buoy in which an
OWC system was embedded in order to generate the guiding light. In the late 1970s,
Masuda deployed at open sea the first large scale WEC, the Kaimei, shown in figure 1.4.
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Figure 1.4: Kaimei WEC

Meanwhile in the USA, the US Naval Academy was also working on the OWC concept,
(72).

In the meantime in Europe, Stephen Salter, from the University of Edinburgh, UK,
invented and developed a very different wave energy converter named the Duck, See
(85). Salter’s publication in the influential scientific journal of Nature first brought
the attention of the international scientific community towards wave energy conversion.
Subsequently, the British Government developed and ambitious Research&Development
program on wave energy. The global economy was immersed in an important crisis due
to the rocketing prices of oil. Later in the 1980s due to oil price stabilization and a
change of Government policy, the British Wave Energy Program came to a halt without
any full-sized prototype having been built and tested.

Simultaneously, control strategies were being developed in Norway by Johannes
Falnes and Kjell Budall (1933-89), who introduced the concept of phase-control by
latching. See (41). In 1985, the less ambitious Norwegian program went on to the
construction of two shoreline prototypes, deployed in the coast near Bergen. It is called
the TAPCHAN and consists of an over-topping device with a converging channel, a
reservoir and a low-head hydraulic turbine and a OWC with a vertical axis air turbine.
See figure 1.5

Until the early 1990s the R&D on wave energy in Europe remained mostly academic.
The situation changed drastically with the decision made in 1991 by the European Com-
mission, of including Wave Energy in their R&D programme on Renewable Energies.
Since then, many projects have been funded by the European Commission, involving a
large number of European teams. Several OWC prototypes have been built from the
early 1990s, the LIMPET prototype, built in 1991 in the island of Islay, Scotland, was
replaced by a more powerful (500kW ) version in the year 2000, (99). Pico, in the Azores
Islands, Portugal, is hosting another prototype (400kW ) since 1999. In 2011, the first
breakwater-integrated WEC array was installed in the port of Mutriku in the Basque
Country, Spain.
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Figure 1.5: Tapchan WEC

To sum up, there is a wide variety of WECs, at different development stages, ac-
counting with different shapes, sizes and working principles competing against each
other. Unlike the case of large wind turbines, one could say that for wave energy
conversion the race is still open.

1.2.2 Protoype Classification

As no uniformity has been reached yet in the wave energy sector, different ways to
catalogue the ever increasing number of devices have been established. One of the
most basic ones it classifies the devices according to their deployment location; until
now, three are the classes that this classification offers: in the shoreline, near shore
and offshore. Another common way to distinguish between WECs is to arrange them
according to their size and orientation with respect to the wave front. A device with
reduced typical dimensions with respect to the incident wave length it is commonly
referred to as a point absorber; if this device has more than a body interacting, then
one may classify it as a Multibody system. If the typical dimension of the device is of
the same order of magnitude as the incident wavelength, but no direction predominates
upon another, then the name of Large absorber is adopted. Moreover, if there is a
predominant orientation of the device with respect to the wave front the class changes.
On the one hand, if the orientation of the prototype is perpendicular to the to the
wave front the device is denominated as an Attenuator; on the other hand, if the device
orientation is parallel to the wave front it becomes a Terminator device. See figure 1.6
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1.2 Wave Energy

Figure 1.6: Wave Energy Converter classification according to size and orientation.

Figure 1.7: Wave Energy converter Classification based on(40).

Alternatively, the most widely used classification is done according to the working
principle of the device. This methodology (40), divides the converters in three main
classes, the Oscillating Water Columns, the Oscillating bodies and the Overtopping
devices. Then, a sub-classification, which divides the prototypes according to the type
of structure, floating or fixed, is applied. Finally, one last subdivision is done with
respect to the motion used to convert to electricity. Figure 1.7 maps this classification
system and gives some real examples. The following paragraphs are dedicated to explain
in detail the working principles shown in figure 1.7.
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1.2.2.1 Oscillating Water Column

Oscillating water column devices are usually composed by a caisson, which is partially
submerged and where air is trapped in the upper part. The chamber is open to the sea at
the bottom and to the atmosphere at the top. When waves approach pressure differential
excites the water column of the chamber, which in turn forces the air contained in it
to flow through the top opening. A self-rectifying turbine attached to an electrical
generator is usually placed in that opening in order to use the air flow to produce
electricity. OWCs can be located at the shore line, either in ad-hoc facility or integrated
in breakwaters, or offshore where the caisson is part of a floating structure subjected to
the action of waves. Figure 1.8 shows the two phases of the working cicle of OWCs.

Figure 1.8: OWC working principle schematic.a) Air outtake phase. b) Air intake phase.

1.2.2.2 Oscillating Bodies

Unlike OWCs, this type of devices absorb mechanical power from the wave by interact-
ing directly with it. A structure is placed in the water and then excited by waves as
these pass through. Energy conversion can be carried out by motion absolute difference
with respect to a fixed point or by relative difference with respect to another moving
structure, as in the case of a multibody system. This motion however, is usually re-
stricted to a degree of freedom, whether it be in the vertical direction (Heave), in the
horizontal direction (surge), rotation (pitch) or even a combination between them. In
addition, the structure can be placed near-shore or offshore and floating or attach to a
fixed frame, giving a large number of combinations in which to achieve energy conver-
sion, each one with its advantages and drawbacks. Figure 1.9 exemplifies some of the
concepts previously described.

8



1.3 Scope of the thesis

Figure 1.9: Different types of existing oscillating bodies WEC. Adaptation from (52)

1.2.2.3 Overtopping

Overtopping devices take advantage of wave potential energy by storing water in an
reservoir placed at a higher quota that the mean sea level. Waves provide the energy
needed to transfer the water into the basin. Once there, water is slowly released back
to the sea through a low-head turbine connected to an electrical generator. Like in
the oscillating water column devices, overtopping devices can be designed as floating
structures placed offshore or deployed in the shore line held by fixed structures. A
way to reduce construction and maintenance costs is to build such prototypes integrat-
edly in port facilities such as breakwaters. Figure 1.10 displays an example of floating
overtopping device, the Wave Dragon, and an example of a port-integrated prototype.

1.3 Scope of the thesis

Even though quite a remarkable amount of research has been devoted to wave en-
ergy conversion over the past quarter of century, it has not been uniformly distributed
throughout the planet. Some areas, such as the Atlantic front in Europe or the USA
and Japan, have lead this field since its birth. Reasons for that may be whether the
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Figure 1.10: a) Floating overtopping device. b) Breakwater-integrated overtopping device

economic predominance of such regions, whether to be on hold of the predominant re-
source. Higher wave energy fluxes contribute to the thought that a specific territory
may be more appropriate for wave energy exploitation. However, experience has shown
it is not always the case, numerous failures in deployment operations and sea trials
have strengthen the thought that areas with lower average wave energy fluxes may be
also opportune at such purpose. In other words, less powerful wave climates imply less
undesired effects related to stormy conditions and survivability of the devices, which
makes it in turn more economically convenient and that, makes these areas attractive-
ness grow considerably. As a consequence, regions with minor wave energy potential,
such as the Mediterranean, Black and Baltic Sea areas, have recently started to focus
their attention in this topic.

Following the logic exposed above, this document aims to assess wave energy con-
version in the Mediterranean Sea. In order to do so, two different wave energy converter
prototypes specifically tuned for the Mediterranean wave climate are presented. Numer-
ical models have been developed and tested for several Mediterranean locations, relying
in wave data gathered over 25 years by the buoys of the National Italian Wave Measure-
ment Network (RON). Both devices have been designed from scratch and dimensioned
according to the conditions given at the deployment sites. Finally, a comparison be-
tween them has been carried out in order to identify the specific traits that makes a
device more suitable than other and proof that the original hypotheses were correct.

While one of the devices is an adaptation based on the review of an existing concept,
the other one has been built upon a new concept which intends to merge several working
principles. This new approach allows to select and stack the advantages of each single
working principle while cancelling out the negative effects the single working principle
can produce when applied at mild wave climates.
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1.4 Concepts

In the following section, the developed devices in this thesis will be exposed. Detailed
explanation of their working principle will be given paying special attention to the
different components of the devices, how they work and why they have been chosen.

The terminology used to refer to such devices is somewhat descriptive on the device
characteristics. The first device has been named HPA-LG, acronym which derives from
Heaving Point Absorber Linear Generator. The first three letters describe the WEC
typology whereas the last two describe the PTO typology. The second device name is
MoonWEC instead, and it gives reference to a key structural part of the WEC, which
is a moonpool.

1.4.1 HPA-LG

The HPA-LG has been the the first of the two devices to be modelled. It is a three
body device composed by a floating structure, a submerged body of neutral buoyancy
and the power take-off body, used to generate the electricity. The floating structure has
a cylindrical shape and will usually be referred to as a buoy. The submerged body has
a spherical shape and is located at half of the distance between the water free surface
and the sea bottom. The third body is the translator of the electric linear generator
used for the energy conversion and it is placed at the seabed. Figure 1.11, which shows
a schematic layout of the device, aims to reinforce the understanding of the reader and
therefore, dimensions shown are not in scale to the modelled device.
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Figure 1.11: Device Layout

The HPA-LG can be classified as a Point Absorber since the buoy dimensions are
relatively small compared to the typical wavelength of the incident waves given at
the deployment site. It could also be classified as a multi-body WEC; however, the
author believes the point absorber class fits better the characteristics of the device
since only one body, the cylindrical buoy, is directly interacting with waves. When
assuming the deployment location classification, the HPA-LG has been conceived to be
installed at depths between 50−100 m, hence it is set into the offshore device category.
When making reference to the classification shown in figure 1.7, it clearly falls into the
oscillating bodies family and when referring to figure 1.9 it is a heaving float (the main
degree of freedom is the vertical one), more precisely number one.

The purpose of the submerged sphere is to tune the natural frequency of the system
in order to match it with the most common wave climate frequencies given at the
deployment site. By adding an additional body the mass of the system is augmented
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and by placing it at a sufficient depth, the majority of radiation the induced by the
body is avoided, minimizing the total loss of energy.

The wave motion nature has always been the main challenge when it comes to per-
form its energy conversion. The characteristic periodicity of waves makes it very difficult
to achieve the efficient electric conversion directly through a traditional rotative ma-
chine. One of the solution that requires less transformation of the mechanical power
absorber is the electric linear generator. The particularity of this PTO systems is that
the movement used to generate the electricity is no longer rotational but translational.
The translator is conformed by permanent magnets oriented in a alternate pole configu-
ration. The stator, surrounding the translator, is filled with winding coils. In this way,
when the translator moves an electromagnetic field is induced in the stator coils. The
main drawback of this system is that when the translator reaches the extreme position
(rest or trough of the wave), there is a change in the sign of motion, implying reduced
velocities at that point, which in turn is translated into low electric power generation,
since electromagnetic induction is strictly related to the translator velocity.

The HPA-LG is interconnected by lines, the float and the submerged body are attach
through a steel wire and the submerged body is also attached to the translator of the
linear generator by another wire. Finally, the translator is linked to the stator of the
linear generator by a very stiff spring. The linear generator is fixed at the bottom by
a dead-weight (concrete base) acting, together with the interconnecting lines as the
mooring system of the device.

Table 1.1 reports the general characteristics of the HPA-LG device synthesizing what
described in this subsection.

1.4.2 MoonWEC

The has been conceived from a fresh start. Inspired in the Oxyflux device (14, 15),
this concept cannot fit in any of the previous classification systems and at the same it
could suit more than one simultaneously. The novelty of MoonWEC is that encompasses
distinct working principles as formulated in the previous section.

It is composed by to bodies, a floating structure and a Wells turbine. The floater has
a hollow cylinder with its axis coincident to the structure’s vertical axis. When placed in
water this cylinder is filled by water creating what is commonly known as a moonpool.
When set under the action of waves, not only the structure is excited but so is the
moonpool creating a third virtual body. The moonpool then behaves as a deformable
body, thus being able to reach the resonant state if well tuned. The energy conversion
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Parameter Value Unit
depth 50 m
Buoy ø 5.0 m

Buoy height 1.25 m
Buoy draft 0.25 m
Buoy Mass 4000 kg

Submerged body ø 3.0 m
Submerged body mass 21736 kg
Distance between bodies 25 m

Wire stiffness 5 · 106 N/m
End stop stiffness 5 · 106 N/m
PTO stiffness 5 · 104 N/m

PTO Nominal Power 10 kW
Translator length 1.867 m
Stator length 1.264 m

Translator mass 100 kg

Table 1.1: HPA-LG characteristics.

is supposed to be carried out by taking advantage of the relative motion between the
floating structure and the moonpool. In order to maximize its relative motion, both
bodies need to be resonating synchronously with completely opposite phases.

Energy conversion is then performed by the Wells turbine. This type of turbine
is usually in air as performing fluid. The author however, believes, and has found
no evidence against using it in other fluid flows such as water flows. The reason for
applying it under highly pressurized air flows is to maximize the turbine rotational speed
in order to achieve a good kinematic coupling with the electric generator. The choice
of the Wells turbine relies on the fact that is a self rectifying turbine. A self rectifying
turbine can handle bidirectional flows without varying the sense of rotation. By taking
advantage of this property, electricity can be generated with a conventional rotative
electric generator, which is cheaper and more efficient than the alternatives commonly
used in wave energy conversion.

The MoonWEC is moored to the seabed through a particular catenary system com-
monly known as CALM system. Catenary systems are specially suitable for heaving
WECs since they mainly block other degrees of freedom while releasing the heave mode
free and thus, not interfering with energy conversion motion.

To sum up, the MoonWEC can be considered a point absorber, with oscillating body
in heave and an OWC device. The overtopping principle can also be taken into account
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if considered that water can overflow the floating structure causing an extra discharge
in the moonpool. However, this effect has not been taken into consideration in this
thesis as it could be the topic of another Ph.D. thesis itself due to its complexity.

Figure 1.12 displays a representation from the MoonWEC including the moonpool
and table 1.2 outlines its general characteristics.

Figure 1.12: Device Layout

1.5 Structure of the Thesis

This document is divided into 7 chapters, including the introduction. The second chap-
ter is devoted to gather all the theoretical knowledge used to produce this dissertation.
Therefore, theories from diverse scientific fields are exposed in it. Beginning with wave
theory, which is the core of development of the thesis, the Airy theory is developed
thoroughly. Afterwards, theory enticing body dynamics and specially wave-structure
interaction will be carefully described. Following on, theory behind electric linear gen-
erators, which includes the laws of electromagnetic induction, will be stated. Subse-
quently, an overview of the moonpool hydrodynamic behaviour will be exposed. In
the next section of the chapter, different types of mooring systems are exposed and its
behaviour is explained. Finally, aerodynamics of Wells turbines are formulated.

In the third chapter, a characterisation of the wave resource in the Mediterranean
Sea is carried out identifying the two most promising locations off the Italians coasts.
A thorough analysis of the wave climate at both locations has been performed and the
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Parameter Value Unit
depth 50 m

MoonWEC ø 5.0 m
Structure height 10.0 m
Structure draft 9.0 m
Structure Mass 150 ton

CoG 4.3 m
Moonpool ø 2.2 m

Wells turbine profile NACA0021 -
Wells turbine solidity 0.47 -

Wells turbine hub-to-tip ratio 2/3 -
Wells turbine chord length 0.5 m

PM Generator Nominal power 50 kW
Mooring wire type Six Strand -
Mooring wire ø 75 mm

Mooring wire length 150 m
Anchor point 120 m

Table 1.2: MoonWEC general characteristics.

most common conditions have been identified. Furthermore, the extreme wave events
statistics have been studied in order to ensure the devices’ survivability.

In the fourth chapter, the mathematical modelling used to describe the behaviour of
the simulated wave energy converters is described in full detail. Two family models have
been applied numerically in order to simulate the WECs. The first model is based on
the wave potential theory, which follows a Lagrangian approach. On the other hand, an
open source software called REEf3D has also been used. Results have been compared
in order to validate the potential model. REEf3D is a Computational Fluid Dynamics
(CFD) code which follows an Eulerian approach to solve the Reynolds Averaged Navier-
Stokes equation at each cell of the fluid domain.

The fifth chapter goes through the dimmensionig of both wave energy converters.
Using first a very simple empirical approach, in order to set the basic parameters defining
the devices. Afterwards frequency domain models are used to reach a higher level of
detail allowing to tune most of the parameters defining the prototypes. Subsequently,
the time domain models are developed. Lying in the time domain allows to include
all the effects that have a non-linear behaviour. Level of accuracy reached with time
domain can already be considered satisfying.

In the sixth chapter, the results obtained in this study, for both devices and for all
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the models described in the previous paragraph, are presented and compared. Finally,
in the last chapter the pertinent conclusions are drawn and some possible future work
development are stated.
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2

Theoretical background

2.1 Wave Mechanics

2.1.1 Linear wave theory

The linear wave theory (11) is based on the velocity potential concept, which is the
spatial integral form of the velocity. Laplace and Bernoulli formulated, in equations 2.1
and 2.2 respectively, the equations of motion of the fluid within the domain.

∇2φ =
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
(2.1)

∂φ

∂t
+

1

2
|∇φ|2 +

p

ρ
+ gz = 0 (2.2)

These equations with the right Boundary Conditions (BCs) become the basis of the
ideal wave motion theory under the following hypothesis:

• Inviscid fluid

• Irrotational motion

• conservative forces

Furthermore, experimental studies have demonstrated that another constrain must
be added to maintain the theory validity. The period of the sea waves must be within the
following range 1.1s < T < 30s. However, this is not a major problem since practically
the totality of wind-generated sea waves rely within that range.
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In the following paragraphs the linear wave theory, also known as first order theory,
will be developed. the theory is applied within the boundaries of a domain. The adopted
domain has four boundaries, two lateral ones, the bottom boundary and the free surface
boundary.As previously stated, in order to make such theory valid, all the boundaries
need to be linear. Firstly, the free surface BC is linearised. This constrain is composed
by two equations, the kinematic equation 2.3 and the dynamic equation 2.4, which have
the following expressions:

∂η

∂t
+
∂φ

∂x

∂η

∂x
+
∂φ

∂y

∂η

∂y
− ∂φ

∂z
= 0 for z = η(x, y, t) (2.3)

gη +
∂φ

∂t
+

1

2
[(
∂φ

∂x

2

+
∂φ

∂y

2

+
∂φ

∂z

2

] = 0forz = η(x, y, t) (2.4)

The non linearity of the equations is obvious for the unknown parameters η φ but
there is another implicit non linear condition in z = η(x, y, t) which is part of the solution
and therefore, another unknown parameter. The linearisation of these equations requires
the introduction of new constrains. Figure 2.1 fully describes a progressive periodic wave
and all its parameters; this wave propagates in a flat-bottomed channel, following the
x axis, and is mainly defined by the period T , its wavelength L and its wave height
H = 2a. Analysing the figure, the proportion among the different parameters is clear
and the orders of magnitude can securely be determined:

η = O(H)
∂η

∂t
= O(

H

T

∂η

∂x
= O(

H

L
(2.5)
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Figure 2.1: Notation and Sketch of the domain for the linear wave theory (73)

The maximum velocity of the water particles can be approximated to πH/T , which
leads to the next expression

umax = vmax = wmax =
∂φ

∂xmax
=
∂φ

∂ymax
=
∂φ

∂zmax
=
πH

T
= O(

H

T
(2.6)

Knowing that, in addition to the wave celerity c = L/T , the non linear terms of the
equations 2.3 and 2.4 have the following orders of magnitude:

∂φ

∂z
= O(

H

T
) = O(c

L

T
) (2.7)

∂η

∂t
= O(

H

T
) = O(

∂φ

∂z
) (2.8)

∂φ

∂x

∂η

∂x
=
∂φ

∂y

∂η

∂y
= O(c

H2

L2
) =

H

L
O(
∂φ

∂z
) (2.9)

These relations proof that the non linear terms have an order of magnitude H/L
times that of the linear terms, and assuming that the wave slope is ε = H/L <<< 1,
the non linear terms of the free surface BC can be neglected due to its small influence.
Once the quadratic terms have been suppressed there is still the implicit non linearity
which needs to be dealt with. If the free water surface is given the value of zero, the
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critical condition can be expanded using the Taylor series, showing the following result:

η
∂2φ

∂z2
(x, 0, t) = O(

H

T

H

h
) = O(c

H

L

H

h
) (2.10)

In which the term ε can be identified again, also note that H/h <<< 1. Thus,
making the order of magnitude close to zero and therefore identifying this term as
negligible. After performing the dimensional analysis and the pertinent transformations,
the free surface BC expressions are linearised under the form of:

∂η

∂t
− ∂φ

∂z
= 0forz = 0 (2.11)

gη +
∂φ

∂t
= 0forz = 0 (2.12)

To simplify even more these BCs, both expressions can be merged into a single
equation to form the BC at the free water surface. See equation 2.15. The following
BC is the bottom BC, assuming an impermeable seabed and constant depth, one can
show that vertical velocity at the bottom must be zero, being this BC already linear, as
equation 2.16 shows. Finally, the well known linearised form of the Bernoulli’s equation
can be also used as shown in 2.14, where p+ is the pressure excess induced by the wave
in the fluid. Up to this point, all the equations describing the dynamics of the fluid have
been linearised and the mathematical problem is governed by the following expressions.

∇2φ =
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
(2.13)

p+ = p+ ρgz = −ρ∂φ
∂t

(2.14)

∂2φ

∂t2
+ g

∂φ

∂z
= 0forz = 0 (2.15)

∂φ

∂z
= 0forz = −h (2.16)

A solution for the velocity potential and velocity field can now be found. However, a
new hypothesis and a simplification need to be formulated in order to solve the problem.
The former is the periodicity hypothesis, stating that waves need to be periodic either
in the temporal domain and in the spatial domain, which implies a constant period
of waves and a constant shape of waves throughout the domain. Equations 2.17 and
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2.18 define mathematically the temporal and spatial periodicity hypothesis respectively.
The latter is a simplification by means of a reduction of the domain by considering bi-
dimensional in the xz plane, hence neglecting the y component of the velocity potential
in equation 2.13.

∂φ

∂x
(x, z, t) =

∂φ

∂x
(x, z, t+ T ) (2.17)

∂φ

∂x
(x, z, t) =

∂φ

∂x
(x+ L, z, t) (2.18)

The periodicity hypothesis shows that the previously described phase celerity rela-
tion c = L/T is constant, finding a valid link between the the spatial and the temporal
domain. This link can be used by formulating a new variable theta, which fulfils the
conditions described above:

θ = 2π(
x

L
− t

T
) (2.19)

Dependencies now change from η(x, t) and φ(x, z, t) to η(θ) and φ(θ, z). Two new
parameters need to be introduced in order to achieve full determination of the equations
of motion (2.13 -2.16). These are called the wave number k = 2π/L and the angular
frequency ω = 2π/T . Applying the changes, the simplified Laplace system of equations
of acquires the following shape:

θ = kx− ωt (2.20)

∂2φ

∂z2
+ k2

∂2φ

∂θ2
= 0 (2.21)

p+ = p+ ρgz = −ρ∂φ
∂t

(2.22)

∂φ

∂z
+
ω2

g

∂2φ

∂θ2
= 0forz = 0 (2.23)

∂φ

∂z
= 0forz = −h (2.24)

∂φ

∂θ
[θ = −2π

t

T
, z] =

∂φ

∂θ
[θ = −2π(1− t

T
), z]periodicity (2.25)
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Equation 2.21 can be identified as an Ordinary Differential Equation (ODE), the
solution by means of the proper application of the BCs yields the velocity potential
solution and the free water surface:

φ(θ, z) =
ag

ω

cosh[k(h+ z)]

cosh(kh)
sin θ (2.26)

η = a cos θ (2.27)

However, the problem is not yet fully defined since the wave number k is still an
arbitrary number however, given that no relation between ω and k has been provided
yet, and thus a wavelength cannot be computed for a fixed period. Combining the free
surface BC in equation 2.27 and the derivative of equation 2.26 the following expressions
are obtained:

[
∂φ

∂z
]z=0 =

ag

ω
tanh(kh) sin θ (2.28)

[
∂2φ

∂t2
]z=0 = −agω sin θ (2.29)

Substituting both equations 2.28 and 2.29 into equation 2.15 the relation of disper-
sion (equation 2.30 is obtained and it reports the relation of wave energy loss in wave
propagation depending on the frequency.

ω2 = gk tanh(kh) (2.30)

Once the relation of dispersion is found the velocity field can easily be calculated
by applying the spatial derivatives of the velocity potential. Since the domain is bi-
dimensional only two components are yielded, the horizontal velocity u and the vertical
velocity w.

u(θ, z) =
∂φ

∂x
=
agk

w

cosh[k(h+ z)]

cosh(kh)
cos θ (2.31)

w(θ, z) =
∂φ

∂x
=
agk

w

sinh[k(h+ z)]

cosh(kh)
sin θ (2.32)

Three different groups can be distinguished in equation 2.31 and 2.32, the first group
expresses the wave characteristics i.e. wave amplitude, wave number and wave angular
frequency; the second group reflects the velocity variation with respect to the vertical
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position and the third group states the harmonic behaviour of the wave. See 2.2

Figure 2.2: Water particle velocities in a wave

Water particle trajectories and acceleration are then found by time integration and
time derivatives respectively. To reach a better understanding of the linear wave theory
water particle trajectories are derived as example:

xp(t) = x0 +

∫
u[x(t), z(t)]dtzp(t) = z0 +

∫
w[x(t), z(t)]dt (2.33)

Performing the integral and after some mathematical simplification passages the
particle trajectory expressions are obtained:

xp(t) = x0 − a
cosh[k(h+ z0)]

sinh(kh)
sin θ0 (2.34)

zp(t) = z0 + a
sinh[k(h+ z0)]

sinh(kh)
cos θ0 (2.35)

Where θ0 = ωt− kx0. Using the terms:

α = a
cosh[k(h+ z0)]

sinh(kh)
β = a

sinh[k(h+ z0)]

sinh(kh)
(2.36)

Dividing equations 2.34 and 2.35 by α and β respectively, squaring them and then
adding them, the obtained result is the well known ellipse equation:

[xp(t)− x0]2

α2
+

[zp(t)− z0]2

β2
= 1 (2.37)

The parameters α and β, which define the shape of the ellipse vary according with
the water depth. For deep waters conditions the particle trajectories are perfect circles,
which radii decrease with depth, see figure 2.3.a. If the sea bed is close enough to the
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Figure 2.3: a) Deep water particle paths b) Shallow water particle paths. (73)

water surface to exert an influence on the wave behaviour, i.e. shallow water conditions,
then the ellipse has different major and manor radii, and the latter decreases with water
depth, due the bottom BC, where only horizontal trajectories are found. See figure 2.3.b

The pressure distribution throughout the fluid domain is obtained through the lin-
earised Bernoulli’s equation 2.14:

p+ = −ρ∂φ
∂t

= ρag
cosh[k(h+ z)]

cosh(kh)
cos θ = ρgη(θ)

cosh[k(h+ z)]

cosh(kh)
= ρgKpη(θ) (2.38)

Where Kp is the pressure response factor and fulfils the following relation KP <= 1

depending on the value of z. If the equation 2.38 is substituted into the equation 2.14
the entire pressure profile is yielded:

p = p+ − ρgz = ρg(Kpη − z) (2.39)

When z = 0 then Kp = 1 thus resulting in a pressure p = ρgη. Therefore in the
crest of the wave the pressure is p = ρga and in the trough of the wave the pressure
is p = −ρga. As the depth of the study point grows also the pressure does having the
component p+ less important, since the hydrostatic component after a certain value is
dominant. See figure 2.4
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Figure 2.4: Wave pressure distributions along the vertical axis in the crest and trough of the
wave

In the linear wave theory all dissipative phenomena are neglected and therefore, the
energy related to the wave motion is composed only by two components, the potential
energy and the kinetic energy. As an oscillating motion, the energy at a certain point
(x, z) is time dependant. However, the energy at a certain point at a certain time is not
really a matter of major interest from the engineering point of view. A much more used
term is the specific energy, defined as the mean energy (in time) per unit of surface or,
in other words, the density of energy. In the following paragraphs the expressions of
potential and kinetic energy will be derived separately and finally merged together.

Figure 2.5.a shows the schematic geometric basis to compute the potential energy.
An elementary fluid column is the studied area of interest. That column has a unitary
width (perpendicular to the xz plane), a differential length dx and a height of h + η.
The elementary potential energy is:

dĒp1 = ghGdm (2.40)

The mass of the fluid column is equal to:

dm = ρ(h+ η)dx (2.41)

This can be substituted into equation (2.40):

dĒp1 =
1

2
ρg(h+ η)2dx (2.42)

Which in turn, is implicitly time dependant, owing to the free surface η(x, t). The
final step to obtain the potential energy density is to integrate equation 2.42 over x and
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Figure 2.5: a) Geometric configuration to compute potential energy b)Geometric configuration
to compute kinetic energy

t:

Ēp1 =
1

LT

∫ t+T

t

∫ x+L

x
dĒp1 =

ρg

2LT

∫ t+T

t

∫ x+L

x
(h+ η)2dxdt (2.43)

After some trigonometrical manipulation equation (2.43) reaches the simplest form
of:

Ēp = ρg
a2

4
(2.44)

To developed the kinetic energy expression the schematic shown in figure 2.5.b is
followed. The study area is also an elementary region of fluid mass, which length, height
and width are respectively dx, dz and 1. The resulting expression is:

dĒC(t) =
1

2
(u2 + w2)dm =

ρ

2
(u2 + w2)dxdz (2.45)

Integrating along the vertical and averaging with respect to time and length the
following expression is obtained

ĒC =
1

LT

∫ t+T

t

∫ 0

−h

∫ x+L

x
dĒCdxdzdt =

ρ

2LT

∫ t+T

t

∫ 0

−h

∫ x+L

x
(u2+w2)dxdzdt (2.46)

After some mathematical manipulation and trigonometric operations the final sim-
plified expression of the kinetic energy is obtained:

ĒC = ρg
a2

4
(2.47)

Finally the only remaining passage to obtain the total energy is to sum the kinetic
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and potential terms:

Ē ≡ ĒC + ĒP =
1

8
ρgH2 (2.48)

It is important to remember that this expression is valid for a unitary horizontal
section, that is why is called energy density. Another interesting conclusion is that the
energy density is not function of the wave period, it only depends on its wave height.
Reason why the wave height is the main design parameter for coastal structures.

At thins point the bases of the linear wave theory have been exposed. Despite the
initial hypothesis, the linear wave theory accepts slight variations of the hypothesis by
suffering small modifications, such as water depth or propagation direction variation.
Monochromatic waves are scarcely ever found in real seas, even a reduced portion of
sea surface is composed by a large number of different waves, which have different
heights,directions, periods and phases. Groups of waves and reflected waves will be
treated in the following paragraphs.

The principle of superposition of waves and its effects is also valid within the linear
wave theory premises, such principle is stated in equation 2.49:

η(x, t) =
∑
n

ηn =
∑
n

an sin(knx− ωnt+ δn) (2.49)

Some particular cases can be identified:

a) Waves that propagate in the same direction and have same periods

a.1) If their phases are equal

•
η(x, t) = (a1 + a2) sin(kx− ωt+ δ) (2.50)

a.2) If their phases are π rad opposed

•
η(x, t) = (a1 − a2) sin(kx− ωt+ π) (2.51)

b) Waves that propagate in the same direction and have different periods

•
η(x, t) = 2a[cos(δk − δωt− δ) sin(kx− ωt)] (2.52)

c) Waves that propagate in opposed direction (reflected)

c.1) Total reflection: if ai = ar

29



2. THEORETICAL BACKGROUND

•
η(x, t) = 2ar cos(kx) cos(ωt) (2.53)

c.2) If waves amplitudes are different

d) The minimum and maximum values of the free surface elevation are:

d.minimum)
|ηmin| = ai − ar (2.54)

d.maximum)
|ηmax| = ai + ar (2.55)

Reflection is measured with the reflection coefficient CR = ar
ai
. When more than one

wave is present a group of waves is formed. Wave groups have a particular behaviour
depending on the characteristic of each component wave. A wave group has a specific
shape, defined by its envelope, and celerity, which is different from the individual wave
celerity. The group celerity is the velocity in which the energy contained in the group
propagates, and also determines the envelope variation. The find the group celerity the
dispersion relation is needed and its final expression can be simplified depending on the
depth i.e. shallow or deep waters.

cg =
c

2
(1 +G) (2.56)

Where G derives from the relation of dispersion and assumes the following shape
G = 2kh

sinh(2kh) , after some mathematical manipulation one can show that:

cg0 =
1

2
c0for deep watercg = c =

√
ghfor shallow water (2.57)

After finding the group celerity the next logical step is to describe the energy prop-
agation in a group of waves. The energy flux in a wave group is the energy of the wave
multiplied by the group celerity:

Ēf = cgĒ =
1

16
ρgH2c[1 +

2kh

sinh(2kh)
] (2.58)

When approaching the shoreline, in the area called surf or near-shore, the seabed
starts having a significant influence in the wave behaviour. The first wave response
at the presence of seabed is called shoaling. When the wave reaches that area has
gradually less space to propagate while the energy remains constant, keep in mind that
in the linear wave theory there is no energy loss until wave breaking where the theory
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is no longer valid. As a result, an initial smooth decrease in wave height is given to
give place to a sudden substantial increase of the wave height as the bottom keeps
getting closer, see figure 2.6. The shoaling development is represented by the shoaling
coefficient KS :

Figure 2.6: Evolution of wave height and length over a changing depth for a horizontal seabed
(73)

KS =
H

H0
=

√
c0
2cg

=
1√

tanh(kh)(1 +G)
(2.59)

The offshore direction of propagation of waves is not always perpendicular to coastal
line; however when breaking, waves have turn and oriented perpendicularly to the coast.
This phenomenon is called refraction and follows the law of Snell, developed for light
waves but also valid for sea waves, which delivers the refraction coefficient Kr. Figure
(2.7) shows a geometric representation of the Snell’s law applied in the near-shore area,
determining the wave front width used to compute the refraction coefficient in the
following way: Kr =

√
L1
L2

.
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Figure 2.7: Geometric representation of the Snell’s law applied for ocean waves at the near-
shore area

Depending on the coastline shape, the wave height can increase or decrease when
refracted, i.e. if the coast is a bay (concave form) waves will tend to spread into a wider
area and therefore, their height will decrease. On the contrary, if the coast is a cape
(convex form) the waves will tend to concentrate towards the tip of the cape and their
height will grow, see figure 2.7. The height in this case is computed by combining both
coefficients, the shoaling and the refraction coefficient: KrKs = H

H0
=
√

c0
2cg

√
L1
L2

.

Finally, the last part of the linear wave theory is based on another particular phe-
nomenon, also found in light waves, called diffraction. When a wave finds an obstacle
when propagating, right after overtaking it there can be a sudden change in the wave
propagation direction. Diffraction will occur depending on the obstacle size; if this is
bigger than one order of magnitude less than the wavelength will take place, if the
obstacle is smaller, the wave has enough energy to overcome it without particularly
feeling its presence. The German mathematician Helmholtz proposed an adaptation of
the Laplace equation in order to capture the diffraction phenomenon:

φ(x, y, z, t) = =f(z)Φ(x, y)e−tiw (2.60)

η(x, y, z, t) = <H(x, y)e−tiw (2.61)

Where f(z) = cosh[k(h+z)]
cosh(kH) . After some mathematical operations and simplification

the Helmholtz version of the Laplace equation yields:

∂2Φ

∂x2
+
∂2Φ

∂y2
+ k2Φ = 0 (2.62)
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This equation which results in an elliptic form, has been proved valid for the following
cases:

• Straight hurdle of semi-infinite length.

• Finite gap in an infinite length straight hurdle.

• Isolated obstacle made of a straight hurdle of finite length.

• Isolated obstacle which horizontal section is circular.

The last of these cases could be a sufficiently big floating structure. Diffraction is an
element that needs to be considered when designing wave energy converters depending
on the size of the device. This subject will be further exposed in depth in the following
sections. Figure 2.8 illustrates the typical behaviour of diffracted waves for different
types of obstacles.

Figure 2.8: Wave diffraction according to different obstacles

2.1.2 Wave Generation

The most common waves in the spectrum of sea waves are those generated by the wind.
Wind-generated waves are much more complex than the typical mono-chromatic wave
widely used in literature. To achieve a complete outlook of the behaviour of waves it is
crucial to understand how they are generated. It is essential to have a means to quantify
and predict the action of wind-generated waves, especially under extreme conditions,
usually set as primary design parameter in engineering. A record of water surface at a
given location under stormy conditions shows a very irregular pattern. A wave record at
a nearby location can show a very different shape but has similar statistical properties.
The records of a particular area can contain locally wind-generated waves as well as
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swells which have propagated thousands of kilometres away ranging very differently in
height and period.

The average wave height and period of wind-generated waves strongly depends on t
he wind velocity, duration, and fetch. For a given wind velocity and, unlimited fetch and
duration there is an upper limit over which waves cannot grow due to energy dissipation
given by wave breaking and water surface turbulent phenomena. When the energetic
balance is reached is known as fully developed sea state condition. Fortunately, this
condition is rarely attained, even in the event of large storms.

Waves within the generation process have shorter and random crests. These, not
only propagate in one direction but within a range which spans from the predominant
wind direction. As they propagate throughout the area over which the wind is blowing
they gradually grow in average height and period. After leaving the area of active wind
generation, the surface profile becomes smoother forming what is commonly known
as swell. Swells propagate large distances with minimum losses of energy, such as air
resistance, internal friction or angular speeding of the wave field. Once the surf zone,
also known as near-shore, is reached some particular phenomena, such as shoaling,
reflection, refraction and diffraction start taking place, mainly due to the interaction
of the wave with the seabed. Finally, the wave breaking occurs releasing most of the
energy transported by the wave.

Wind blowing over the surface of a water body will transfer energy energy into the
water in the form of surface current and by generating waves on the water surface. There
are turbulent pressings in the wind field that apply a fluctuating pressure on the water
surface. These fluctuations are not strictly periodic and can quickly vary in magnitude
and frequency, they move forward within a range of velocities. They cause the water
surface to undulate, develop and grow. This growth is mainly achieved as a results of
resonant interaction that takes place between the forward moving fluctuations and the
free waves propagating at the same velocity as the pressure fluctuations. Once the wave
is born and somewhat consolidated another mechanism takes action, as the wind blows
over a forward moving wave, a complex air flow is formed over the wave. This flow
causes a secondary air circulation around the parallel wave crest axis. Consequently,
below that axis, where the wind velocity is equal to the wave celerity, the air flow is
reversed from the relative forward moving point of view of the wave. As opposed, above
the axis, the air relative velocity has the same sign as the wave celerity and therefore, a
flow circulation in the vertical plane above the wave surface is created. That flow causes
a pressure distribution on the surface that is out of phase with the surface displacement
and thus, resulting in a momentum transfer to the wave that selectively amplifies the
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wave steepness, i.e. the steeper the wave the faster it grows. There exist also shear
effects on the growth of waves but they have been proved to have minor relevance.
Wave to wave interaction also causes substantial on wave growth, being the smaller
wave that transfers the energy to the bigger one under certain conditions, depending
on the phase and direction.

For wave prediction, wave climate analysis, design of coastal and offshore structures
is convenient to choose a single wave height and period as representative parameters of
a full wind-waves spectrum. Sorting the heights of a wave records and then averaging
the highest n% the Hn is obtained. The most used representative wave height is the
H33 and is commonly known as the significant wave height HS . The value of the 33%

it is chosen since it is the value an experienced observer would report when visually
estimating the height of a sea state. The significant wave period TS is the wave period
that corresponds to HS .

Whether the significant wave height and period or the resulting spectrum, are strictly
related to the Fetch F , wind velocityW and duration td. Other factors, such as the fetch
width, the water depth, the atmospheric stability, the temporal and spatial variability
in the wind field or the bottom characteristics (under shallow water conditions) can, to
a certain extent, affect the waves characteristics. As previously stated, waves have not
a single direction but they spread around the predominant direction. When propagat-
ing throughout the fetch waves increase their period whereas its directional spreading
decreases. For this reason, the narrower the fetch is the fewer the possibilities are that
short waves remain within the fetch limits. Water depth affects the water surface shape
and kinematics. Bottom friction also dissipates energy decreasing the growth rate and
thus the ultimate wave size and the atmospheric stability directly affects the wind field.
However, all these factors are usually neglected due to their small contribution to wave
formation and growth, leaving the fetch length F , the wind velocityW and the duration
of the wind td as the only accountable parameters.

When the duration exceeds the time required for the waves to travel the whole
fetch, td > F

Cg
, waves will grow continuously and their characteristics at the end of

the fetch will only depend on F and W , this is known as the fetch limited conditions
and is represented by the line OAB in figure 2.9. On the contrary, when the duration
of the the wind does not allow waves to travel the whole length of the fetch under
its influence, waves reach a certain size and the stabilize, which is known by the term
duration limited condition, shown in line OAC in figure 2.9. When the fetch is extremely
long and the fetch limited conditions are fulfilled, note that line OAB in figure 2.9 will
reach a horizontal asymptotic behaviour, having reach the fully developed sea condition
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as previously mentioned.

Figure 2.9: Graphical representation of the wave generation process.

A wave spectrum is a plot of the wave energy density at each frequency component.
Figure 2.10 shows the evolution of wave spectrum as the waves propagate along the fetch
and confirms what stated above. A decrease of the peak frequency can be identified,
confirming the growth in period. Furthermore, the area below spectrum increases during
the process endorsing the growth in height. Finally, the shape of the spectrum evolves
as well getting more peaked and narrow, explaining that diverse and disperse waves
tend to merge forming a predominant type of wave.

Figure 2.10: Variation of the wave spectrum along the length of the fetch.

2.1.3 Wave analysis and statistics

The general understanding of wind-generated waves comes mostly from the analysis
of wave records. Most of these records are point measurements of the water surface
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variation at a fixed location. There are two recurrent methods to analyse wave data,
relying in two different domains, the time domain and the frequency domain. The
former consists in identifying individual waves in the record and analyse statistically its
properties. The latter consists in conducting a Fourier analysis of the wave record to
develop a full wave spectrum. Both methods are described in this section following the
previous order.

Figure 2.11 is a graphical representation of a short fragment of a typical wave
record. In time domain, the most commonly used analysis procedure is the zero-crossing
method, which has two variants, the zero-down-crossing and the zero-up-crossing. Both
methods have exactly the same validity and the results are totally equivalent, the only
difference lies in referencing framework. However, the most commonly used method is
the zero-up-crossing (46). A mean water surface elevation is set and each point that
crosses the mean surface elevation is registered. The elapsed time between two consecu-
tive points is the wave period and the maximum absolute vertical distance with respect
to the mean level, that is to say, the difference between the wave crest and trough, is the
wave height. In the zero-up-crossing procedure, waves are counted when water surface
level crosses the zero level switching from negative to positive values as opposite to the
zero-down-crossing where the values switch from positive to negative. Small fluctuations
are left apart from the counting, filtering out the high frequency components.

Figure 2.11: Illustration of the water surfer elevation variation in time

A major concern in the analysis is the distribution of height in the record. Wave
heights can be plotted as a height-frequency distribution, note that in this case the term
frequency refers to frequency of occurrence and not the inverse of the wave period; that
is probability. Figure 2.12 represents an example of such distribution, where p(H) is
the frequency of occurrence and H is the wave height. The shaded area is the upper
one-third of the wave height and its averages gives the significant wave height.
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Figure 2.12: Probability distribution of wave heights registered in a wave record

For engineering purposes the most important distribution of wave heights is the one
generated by storms. Longuet-Higgins (67) proved that this kind of distributions is
well defined by the Rayleigh probability distribution, which can be written with the
following expression:

p(H) =
2H

H2
rms

e−
H

Hrms

2
(2.63)

Where the root mean squared height Hrms is given by

Hrms =

√√√√ N∑
i=1

H2
i

N
(2.64)

Where Hi is the individual wave height among the N waves contained in the wave
record. From the Rayleigh distribution the following useful relationships can be ex-
tracted, HS = 1.416Hrms and H100 = 0.886Hrms. The cumulative probability distri-
bution results in:

P (H) =

∫ H

0
p(H)dH = 1− e−

H
Hrms

2
(2.65)

For engineering purposes is much more interesting to know the percentage of waves
having a greater height that the give threshold.

1− P (H) = e−
H

Hrms
2

(2.66)
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Nesting the relationship which links HS and Hrms in equation 2.66 the following
relation is obtained: 1 − P (HS) = e−(1.416)2 = 0.135, revealing that 13.5% of waves
during a storm might have higher waves than the significant wave height. Figure 2.13 is
a very useful adapted form of the Rayleigh’s distribution, line a displays the probability
P of a certain wave with height H to occur with respect to the ratio H

Hrms
whereas line

b shows the average height of the n highest fraction of waves.

Figure 2.13: Logaritmical Rayleigh distribution

When a sea state, defined by a spectrum of waves reaches the shore, wave breaking
limits the wave height distribution at a higher end. Some authors have modified the
Rayleigh distribution to match that behaviour. There is no upper limit to the wave
heights specified by the Rayleigh distribution. Longuet-Higgins (67) demonstrated that
for a storm with relatively large number of waves N , the expected value of the highest
wave is:

Hmax = 0.707HS

√
lnN (2.67)

This relation is valid in the offshore areas where the waves are not affected by
the seabed and there are no breaking conditions, which due to its highly non-linear
behaviour void the validity of this expression.

The joint wave height-period probability distribution is also of interest. Figure 2.14
shows the distribution of the wave height versus the wave period, note that the values are
non-dimmensionalized according to the average value of the record. The contour lines
denote equal probability of occurrence. The significant wave period TS is considered
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to be more stable statistically than the average period and therefore, is preferred to
represent the records.

Figure 2.14: Curves of equal-probablity of non-dimmensionalized wave height over non-
dimmensionalized wave periods.

The frequency domain analysis consists in analysing the resulting spectrum of a
wave record. A water surface profile can be reproduced by a series of sine waves with
different amplitudes,periods,phases and propagation directions. A full representation of
it can be achieved by s directional wave spectrum, which is produced when the sum of
the energy density of the components S(f, θ) is discretized versus the wave frequency
f and direction θ. However, in most of the cases, a θ corresponding to the mean wave
direction is picked and the spectrum is represented only as a function of the frequency
S(f). From the linear wave theory, the energy density of a monochromatic wave is
ρgH2

8 . The fluid density ρ and the acceleration of gravity g are constant values can be
left apart from the following expression:

S(f, θ)dfdθ =

f+df∑
f

θ+dθ∑
θ

H2

8
(2.68)

Where H is the wave height in the record, this expression is further simplified for
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the one-dimensional spectrum as:

S(f, θ)dfdθ =

f+df∑
f

H2

8
(2.69)

The exact scale and shape of the a wave spectrum depends on the generating factors,
stated on section (2.1.2), takes the following general form

S(f) =
A

f5
e
−B
f4 (2.70)

Where A and B are adjusting scale factors that can be written as function of the
wind-wave generating parameters or as function of the representative wave parameters
such as the significant wave height and period (HS ,TS). An important way to define a
wave spectrum can be by means of the spectral moments, the nth moment is the defined
as:

mn =

∫ ∞
0

S(f)fndf (2.71)

For instance the 0th moment the area below the spectral curve and states the total
energy of the sea state. From the linear wave theory, the total energy density is twice
the potential energy and is written as:

E = 2Ep =
2

T∗

∫ T∗

0
ρgη(

η

2
)dt (2.72)

Where T∗ is the length of the analysed wave record and the bar over the E denotes
the energy density. Equation 2.72 can be rewritten as:

E = ρgη2 =
ρg
∑
η2

N∗
(2.73)

In that occasion the bar over E denotes the average of the sum of N∗ water surface
values from a wave record of length T∗. From the definition of Hrms and HS the energy
density can also be expressed as:

E =
ρgHrms

2

8
=
ρgH2

S

16
= ρgm0 (2.74)

Rearranging equation 2.74 the significant wave height of a spectrum is yielded:
HS = 4

√
m0. and hence, HS takes the name of Hm0 in the frequency analysis.

The Rayleigh distribution is a useful model for the expected distribution of wave
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heights for stormy conditions, but clearly not enough and thus needs to be complemented
by spectral information. Several one-dimensional wave spectra have been proposed and
they all derive from the expression 2.70. The two most commonly used spectra are
presented and described in the following lines. The first type is the Pierson-Moskowitz
Spectrum (78). The authors analysed wave and wind records from the British fleet
operating in the north Atlantic and selected records representing, in the majority of the
case, fully developed seas for wind velocities between 20 and 40 knots to generate the
spectrum reported below:

S(f) =
αg2

(2π)4f5
e
−0.74( 4g

2πWf
)4 (2.75)

WhereW is the wind speed measured at 19.5 meters above the mean sea level. Other
wind-generated wave formation parameters such as the fetch length or the duration are
not taken into account due to the fully developed sea conditions. The α coefficient is a
scale factor and usually set to 8.1 × 10−3. The following relationships can be derived
from the Pierson-Moskowitz spectrum formula: Hm0 = 0.21W 2

g and fp = 0.87g
2πW .

(54) is the other spectrum model described in this thesis and, by far the most
widely used. stands for JOint North Sea WAve Project and it was elaborated by
laboratories from four different countries. Wave and wind measurements were taken
with sufficient wind durations to produce a deep water fetch limited model. The model
development begins with a simple association, if the wind velocity W is isolated from
the peak frequency relation of the Pierson-Moskowitz spectrum and the substituted into
equation 2.75 the following equation is obtained:

S(f) =
αg2

(2π)4f5
e
−1.25( fp

f
)4 (2.76)

Hence, the JONSWAP spectral equation is a slight modification of equation 2.76
achieved by developing relationships for α and fp with the wind speed and the fetch.
Finally, enhancing the spectrum peak by a factor of γ, which aims to adapt the spectrum
to different types of sea conditions, the final JONSWAP spectrum is obtained:

S(f) =
αg2

(2π)4f5
e
−1.25( fp

f
)4
γa (2.77)

Where

a = e
−[ (f−fp)

2

2σ2f2p
]
σ = 0.07whenf < fpσ = 0.09whenf >= fp (2.78)
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The coefficient α, γ and fp are given by the following relationships:

α = 0.076(
gF

W 2
)−0.22 (2.79)

fp =
3.5g

w
(
gF

w2
)−0.33 (2.80)

α = 7(
gF

W 2
)−0.143 (2.81)

However, In the JONSWAP spectrum the parameter γ has a range of values from
1.6 to 6 and for wind seas the γ = 3.3 is generally used. Nowadays, the JONSWAP
spectrum has become the most widely used spectrum for engineering design and for
laboratory irregular wave experiments. Figure 2.15 plots the generic shape of both
spectra; depending on the chosen γ parameter, the JONSWAP spectrum accentuates
its energy density at the peak value, differences outside the peak range are rather low.

Figure 2.15: JONSWAP and Pierson-Moskowitz spectra

2.2 Floating structures

Wave-structure interaction is a key subject in this thesis. In order the maximize the
WECs performance, the dynamical behaviour of the device needs to be tuned to meet
specific requirements, such as resonance for certain wave conditions. Therefore, this
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Mode # Component Mode Name
1 u1 = Ux surge
2 u2 = Uy sway
3 u3 = Uz heave
4 u4 = Ωx roll
5 u5 = Ωy pitch
6 u6 = Ωz yaw

Table 2.1: Rigid body modes of motion.

section is aimed to describe thoroughly all the phenomena affecting floating bodies
under the action of waves.

The first step when studying floating structure dynamics is to create a reference
coordinate framework upon which all variables will be based. The most widely used
reference system is the Cartesian coordinate system in which (7), three axis: x, y and
z are defined. For simplicity, the centre of the coordinate system is usually set at the
centre of gravity of the studied structure or at the Mean Water Level (MWL). Each axis
is orthogonal to the other, defining the normal vector of three planes that describe the
three-dimensional space. A free-moving body has six DoFs, three of them describing the
translations and the other three, the rotations. Therefore, in mathematical formulae
the subscripts 1 − 3 are linked to the translations and 4 − 6 to the rotations. Modes
1, 2 and 4, 5 are ambiguous, specially if the structure is axisymetric with respect to the
z axis and therefore they may be interchanged. However, common praxis is to remove
this ambiguity when there is an incident wave; orienting the structure so as to make
the wave propagation direction coincide with the x-axis of the structure, see figure 2.16.
In marine structures, each DoF is associated to a particular name, as reported in table
2.1.

Figure 2.16: Rigid body six modes of motion
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Rigid body dynamics are governed by the Newton’s second law.

∑
~F = m~a (2.82)

Where ~F = F1, F2, F3, F4, F5, F6 ≡ Fx, Fy, Fz,Mx,My,Mz is the force vector for
each mode, m is the mass matrix of the body, in which the first three components of
the diagonal are the mass of the body and the last three are the moments of inertia
and ~a = a1, a2, a3, a4, a5, a6 is the acceleration vector of the body for each mode. For
floating bodies the

∑ ~F is decomposed in two main types of forces exerted by fluids:
~F = ~Fhd + ~Fhs, the hydrodynamic forces and the hydrostatic force respectively.

In this thesis all derivations of hydrodynamic forces have been developed under
the linear wave theory hypothesis (section 2.1.1). Consider figure 2.17, where p is
the hydrodynamic pressure, thus integrating over the wet surface p(−ni)dS = −pnidS
yields the total force for the ith mode:

Figure 2.17: Surface element dS of wet surface S of a rigid body

Fi = −
∫∫

S
pnidS (2.83)

In terms of complex amplitudes, using the relation p̂ = −iωρ ˆphi for a given potential
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ˆphi,

Fi = iωρ

∫∫
S

ˆphinidS (2.84)

For i = [1−3] International System (SI) units are (N) and for i = [4−6] SI units are
(Nm). These are the general expressions for the hydrodynamic force. However, hydro-
dynamic forces can be divided into three subcategories: ~Fhd = ~Fe+ ~Fr+ ~Fdrag, the wave
excitation force, the radiation damping force and the viscous drag force respectively.

To account only for the effect of an incident wave, the body is held fixed, resulting
into a potential φ̂ due only to the disturbance created by the oncoming waves. In
such case, being Fe ≡ Fe,1, Fe,1, Fe,1, Fe,1, Fe,1, Fe,1, = ~Fe, ~Me the generalized excitation
force/moment vector. Using equation 2.83

Fe,i = iωρ

∫∫
S

(φ̂0 + φ̂d)nidS (2.85)

Where the wave potential φ̂ is decomposed in two components, φ̂0 and φ̂d, which
are the undisturbed wave field and the diffracted wave field respectively. The latter is
created when the BC for the wet surface is not satisfied and thus the following relation
takes over:

−∂φ̂d
∂n

=
∂φ̂0
∂n

onS (2.86)

The rest of BC, on the seabed z = −h (2.16) and on the free water surface z =

0 (2.23 must be fulfilled. If the body dimensions are reduced in comparison of the
wavelength, the diffraction problem can neglected. In order to determine this threshold
the Keulegan-Karpenter (KC) number is used.

KC =
2πA

L
(2.87)

Where A is the typical body dimension and L is the wavelength. If KC > 10 the
body may be considered small and thus, dominated by drag forces. As a result, the
diffraction potential may be neglected, resulting in a computational advantage since the
the boundary-value problem of equation (2.86) may not be solved. The following linear
system for the excitation problem is defined:

F̂e = f(ω)A (2.88)

where A, the input of the system, is the amplitude of the undisturbed incident
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wave field at the origin η̂0(0, 0) and f the excitation coefficients is the transfer function.
As linear waves are adopted the Fourier transforms can be applied to obtain the the
frequency-dependant values:

Fe(ω) = f(ω)A(ω) (2.89)

The inverse Fourier transform of f(ω) is the impulse response function of the wave
excitation force, usually assuming a non-casual behaviour due to the nature of its source,
distant storms or oscillating wave-makers. By applying the inverse Fourier transform
to equation (2.89),

Fe,t(t) = ft(t) ∗ a(t) =

∫ ∞
−∞

ft(t− τ)a(τ)dτ =

∫ ∞
−∞

ft(τ)a(t− τ)dτ (2.90)

Where f(t) is obtained as follows and f(ω) is computed by applying with the correct
BCs the equation (2.85.

ft(t) =
1

2π

∫ ∞
∞

f(ω)eiωtdω (2.91)

If instead of fixing the body and let the incoming wave go through the opposite is
done, moving the body and setting the incident wave potential to zero another phe-
nomenon occurs. The structure produce waves as the result of displacing the water
around its surface due to its motion. This produced waves are radiated waves and this
phenomenon is called radiation, and of course, radiated waves exert a reaction force
on the body surface, the so called radiation force. The radiated wave with a velocity
potential φr given by

φ̂r =

6∑
j=1

ϕj ûj (2.92)

where ϕj is a coefficient of proportionality and ûj is the velocity of the body in the
jth mode. The radiation reaction force on the j′th mode deriving from the jth mode is

F̂r,j,j′ = iωρ

∫∫
S
ϕj ûjnj′dS (2.93)

Regardless the jth mode, ûj is a constant throughout the surface as the body is
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rigid, thus one can write

F̂r,j,j′ = −Zj,j′ ûj (2.94)

Where Zj,j′ is called the radiation impedance, having SI units (Ns/m) for Zj,j′(j =

1, 2, 3, j′) and (Nsm/rad) for Zj,j′(j = 4, 5, 6, j′) and assuming the following form

Zj,j′ = −iωρ
∫∫

S
ϕjnj′dS (2.95)

Using the wet-surface BC one can obtain

Zj,j′ = −iωρ
∫∫

S
ϕj
∂ϕj′

∂n
dS = −iωρ

∫∫
S
ϕj
∂ϕ∗j′

∂n
dS (2.96)

Whereas ϕj is complex, ∂ϕj′∂n is real on S in order to fulfil the BC. Hence by applying
the conjugate no change. However, the a reciprocity relation can be found as Zj,j′ = Zj′,j

making the 6×6 impedance matrix symmetric. Since ω is real, it is convenient to divide
Zj,j′ into real and imaginary parts:

Zj,j′ = Rj,j′ + iXj,j′ = Rj,j′ + iωmj,j′ (2.97)

where Rj,j′ is named the radiation resistance matrix, Xj,j′ the radiation reactance
matrix andmj,j′ is the added mass matrix, which physical meaning is the fluid mass dis-
placed by the body while moving. Assuming that the body has an harmonic monochro-
matic monochromatic movement with frequency ω the radiation force can be expressed
as

Fr(ω) = −Z(ω)u(ω) (2.98)

Where u(ω) is the Fourier transform of u(t) and Z(ω) is the transfer function of
the system, corresponding to the inverse Fourier transform of the radiation impulse
response function. Note that, unlike the excitation force case the radiation system is
causal

z(t) = 0fort < 0 (2.99)

Meaning that Fr(t) = 0 before a u(t) is established, as the body velocity is the only
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cause for waves to be radiated. Analogously to equation (2.97) Z can be rewritten as:

Z(ω) = R(ω) + iωm(w) (2.100)

The fact that Z is causal allows the derivation of R(ω) and m(ω) by the application
of the Kramers-Kronig relations. Noting that m(ω) does not vanish at ω →∞ a related
transfer function needs to be introduced in order to avoid such singularity

H(ω) = m(ω)−m(∞) +
R(ω)

iω
(2.101)

Now, substituting equations (2.100) and (2.101) into equation (2.98) the following
expression for the radiation force is obtained

Fr(ω) = F
′
r(ω)− iωm(∞)u(ω) (2.102)

where

F
′
r(ω) = −iωH(ω)u(ω) = −K(ω)u(ω) (2.103)

Applying the inverse Fourier transform to the extended form of Fr(ω) the following
expression is obtained:

Fr,t(t) = −k(t) ∗ ut(t)−m(∞)(̇u)t(t) (2.104)

where the kernel k(t) of the convolution is found by applying the Kramers-Kronig
relations with the causality particularity:

k(t) =
1

2π

∫ ∞
−∞

K(ω)eiωtdω =
2

π

∫ ∞
0

R(ω) cos(ωt)dω = 2F−1R(ω) (2.105)

Due to the principle of causality, all the information contained contained in the two
matrix functions R(ω) and m(ω) is expressed altogether in the real matrix function k(t)

and in the constant matrix m(∞).

As reported in equation (2.87), if the KC > 10, then the small body hypothesis can
be taken into consideration, stating the drag forces are predominant over the diffraction
forces. The drag force has two components, the surface frictional drag and wake pressure
drag. The overall effect that the drag force induces to the body is extremely complicated,
to such extent that is still not fully understood. Empirical analysis however, have
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brought to a formula which is still the widely used to the present date:

Fd =
1

2
ρCdAdu

2 (2.106)

Where Ad is the area of the wet part of the body projected onto the normal plane
of the velocity, Cd is the drag coefficient, which mainly depends on the shape of the
body, the roughness of the surface, the KC number and on the Reynolds number (Re).
Finally, u is the relative velocity between the body and the fluid flow, in equation (2.106
the flow is assumed to be steady. Nonetheless, in the presence of waves the flow cannot
be assumed steady as it varies harmonically, the adapted expression for the drag force
under the presence of waves is

Fd =
1

2
ρCdAd|u|u (2.107)

The absolute value allows predict the oscillatory behaviour of waves by taking into
account the sign of the velocity. For simple body shape, Cd can be found tabulated
in literature deriving physical experiments. For more complex shapes however; on
the one hand, ad-hoc experimental tests need to be carried out in order to determine
such parameter; on the other hand, the fast growing computation capacity has led to
the irruption of a new tool, the CFD which allow to perform simulations in order to
determine the Cd parameter in a much more efficient way, either in terms of cost and
times.

Finally, the last force force to be determined is the hydrostatic force, caused by the
hydrostatic pressure and first postulated by Archimedes. Back in the ancient Greek
times, the Philosopher theorized the following principle: A body placed in a liquid loses
and amount of weight equal to the weight of the liquid that it displaces. Following
this observation, the equation of hydrostatics can be derived. Considering a partially
submerged body, which displaces a volume V of water. Consider alsoW the total weight
of the body, A its cross-sectional area and d its draft. Then, following the Archimedes
principle one can write

W = γV = (ρg)Ad (2.108)

Where γ is the weight density of the liquid, water in this case. As W is a force, the
hydrostatic pressure acting on the bottom of the body can be assumed to p = −ρgd.
From its equilibrium position, lets assume the body be given a small downwards vertical
displacement −δz. From the Archimedes theorem the new equilibrium position results
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in the following equation:

γ(δV ) = −ρg(δz)A = δpA (2.109)

This variation from the equilibrium, in this example in the vertical axis, causes then
a restoring force that tends to bring the body back to its initial equilibrium position.
The restoring force, also known as buoyancy force in a more general form is given by
the following expression:

Fb = −W = (ρgV )~k (2.110)

Where ~k is the unit vector of the vertical direction in the orientation of the body.

2.3 Electric generators

The power chain in wave energy converters has three main steps. As seen in section
(2.1), one of the manifestations of energy transport in the ocean are waves. Part of this
energy is then captured by the wave energy converter structure through the mechanical
laws, expressed mainly by motion, as reported in section (2.2). Finally, the mechanical
energy stored in the device structure needs to be converted in a usable, transportable
and continuous form energy. The most efficient kind of energy known to the present
day is the electricity. Mechanical energy can be transformed into electrical energy
through electrical generators. Countless types of generators have been been invented
over the past two centuries, when electricity and its enormous exploitation potential
was discovered. Nonetheless, in this thesis only two types of generators are of interest,
since are the two most suitable and promising technologies for wave energy conversion.

Firstly, a general outlook on the laws of electromagnetism will be given in order to
acquire the generic knowledge that allows full comprehension on the working principle of
electromagnetic generators. Secondly, the traditional rotative machine used to convert
the electricity in the MoonWEC device will be explained in detail. Finally, the LG,
an innovative technology usually adopted in wave energy conversion and used in the
HPA-LG will be exposed.
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2.3.1 Electromagnetism

Electromagnetic laws are well represented by the Maxwell’s equation:

∇ ·D = ρc (2.111)

∇ ·B = 0 (2.112)

∇× E = −∂B
∂t

(2.113)

∇×H = J +
∂D

∂t
(2.114)

Where B is the magnetic flux density or magnetic induction, D is the displacement
field, E is the electric field and H is the magnetizing field or magnetic field intensity.
On the other side of the equations there are ρc that refers to the charge density and J ,
which is the free current density. Equation 2.112 states that the flux of the magnetic
induction must be zero in the whole domain of the body. In spite of electric fields,
magnetic fields must complete a close loop. Equation (2.113) expresses that the curl
of the electric must match the reverse variation of the magnetic field in time. The
magnetic field intensity can also be expressed by the following equation, having A/m
as units:

H =
1

4π
I

∫
C

~dl × ~rl
r2

(2.115)

Integration is performed over the circuit C that carries the current I. This current
gives place to an H-field at the point P. the unit vector ~rl and the resistance r the
direction and distance from the circuit C to the point P . See figure 2.18
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Figure 2.18: Conceptual scheme of the magnetic induction

The magnetic field induction is closely related to the force exerted on a conduc-
tor carrying an electrical current. The material property known as the permeability
constant µ acts as link with the magnetizing field:

B = µH (2.116)

Thus, determining how strong will be its capability to induce a magnetic field in
Tesla (T). The magnetic flux through a surface S is measured in Webbers (W) and
defined by:

Φ =

∫
S
Bd~a (2.117)

Another important concept is he magnetization M . Namely, the magnetic momen-
tum per unit of volume at a point in a given medium, it has the same units as the
magnetic field intensity H and contributes to the magnetic induction in the following
way:

B = µ0(H +M) (2.118)

Where µ0 is the permeability of free space, the vacuum. Using the Stokes’ theorem,
equation 2.114 can be reformulated as follows:∮

C
Hd~l =

∫
S
Jd~a (2.119)

Equation (2.119) is the Ampere’s law and states that the integral of the magnetic
field intensity over a closed loop yields the integral of the density of current going
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through inner surface S surrounded by the circuit C. This is the theoretical origin of
the solenoids or coil turns, the final total current in a coil is the one obtained in equation
(2.119) times the number of turns of the coil. The Stokes’ theorem can also be applied
in the left hand side of equation (2.113) and in the right hand side of equation (2.117),
resulting in:

e = −dΦ

dt
(2.120)

This is known as the Faraday’s law for induction. The e is the induced voltage by the
total magnetic flux bounded by the circuit. The direction of the induced current is what
generates the opposition against the flux change by the magnetic field. As in the case of
the Ampere’s law, the induced voltage for the circuit is multiplied by the number of turns
of the coil. However, none of these behaviours would be as they are without the existence
of a kind of materials with unique properties, the ferromagnetic materials. This type of
materials are magnetic dipoles that can reach very high levels of magnetization M , this
ability is expressed through the relative permeability µ. Equations (2.116) and (2.118)
can be combined to show the dependence between M and µ:

µ = µ0(1 +
M

M
(2.121)

The relative permeability of ferromagnetic materials is quite elevated and therefore,
used to build devices to guide the magnetic flux. Each material has a curve of mag-
netization, in which depending on the applied magnetic field; a magnetic induction is
achieved to a greater or lesser extent. When the ferromagnetic material reaches the
saturation means that the magnetic induction stabilizes and thus, magnetization no
longer increases. See figure (2.19).
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Figure 2.19: Magnetization curve for a ferromagnetic material

Each generator has a magnetic equivalent, which has been described in full detail
above but also has an electric equivalent, which is usually known as the equivalent
circuit, illustrated in figure (2.20). The induced voltage is Enl, it can bee seen as a no
load voltage and is the measurable voltage at the coil ends when no electric current is
flowing through the generator. XS is the synchronous reactance and RC is the resistance
of the of the coil windings. Rload can be purely resistive, reactive or a combination of
both. The meaning of the load is the useful interface in which the output power will
be used, could be an appliance, a house or simply the national grid. Finally, U is the
voltage used by that interface and is in phase with the current in the armature Ia.

Figure 2.20: Equivalent electric circuit
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The equivalent circuit equation can be deduced following the Kirschof’s law for the
tension U :

U = Enl − (Rc + jXs)Ia = RloadIa (2.122)

Although the simple appearance of this equation, due to complex numbers and the
electric angular velocity deriving it, to solve the problem another schematic way is used,
based in trigonometry rather than electromagnetism. Figure 2.21 illustrates a phasor
diagram describing the relations between the different parts of the equivalent circuit.
This allows to solve the problem rather easily through a trigonometric relation

Figure 2.21: Conceptual representation of the load angle

The angle δ between the pure resistive load voltage and the real load voltage is called
load angle and determines in an easy manner the degree of reactance of the equivalent
circuit. Electric theory states that the lower the load angle, the smaller the apparent
power and thus, the higher the power factor of the generator.

U = Enl cos δ −RIa (2.123)

The term RIa represents the copper losses by the Joule effect, which is power trans-
formed into heat. The copper losses are not the only losses occurring in electric gener-
ators. Typical losses found in induction generators are:

• Losses due to the changing magnetic field

– Hysteresis losses

– Eddy current losses

• Resistive losses in the coil windings (Joule Effect)

• Mechanical losses due to friction and deformation
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The majority of generators have a multi-phase system, which means that the coil
windings are composed of several parallel circuits. Each single circuit is called a phase.
the most used system worldwide is the three-phase system in which is phase is shifted
2π/3 electrical radians from the other. This system is used because it allows a constant
power production in case of rotative machines but not for linear generators. Electric
angle for linear generator is not constant, denoting a velocity variation of the translator.
Actually, at the end-stop points (crest and trough of the wave) the velocity is zero and
so is the instant power output.

The induction generator uses the same principle of the equation 2.120 where a time
varying electromagnetic field induces an electromagnetic voltage in the coil windings.
The induced voltage in the generator is the sum of all voltages separately at each
coil per phase. As the vertical motion of the translator has been assumed sinusoidal
monochromatic so the magnetic induction must be:

B = B̂ sin(x− ωt) (2.124)

Where B̂ is the maximum induction (equivalent amplitude), x is the reference point
at the stator and ω is the angular velocity of the translator. The single flux related to
a coil at a certain time t is described by the following expression:

Λ =
ω

2π
NlB̂

∫ π
2

−π
2

sin(x−$t)dx =
ω

π
NlB̂ sin$t (2.125)

Where $ is the pole width, N the number of turns and l the length of a coil turn.
Consequently, the induced voltage yields:

e = −∂Λ

∂t
= $NlB̂ cos$t = 2fωNlB̂ cos 2πft (2.126)

The effective root mean square voltage E is defined:

E =
ê√
2

=
√

2fωNlB̂ (2.127)

Were ê is the maximum voltage.Finally, once the output tension U and the intensity
current I are known the electric power can easily be determined, as the result of their
multiplication S =

√
(3)UI.
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2.3.2 Rotative Generator

According the working principle there are three main categories of electric generators:
the synchronous, the induction and the parametric machines (25). Parametric gener-
ators have in most configurations doubly salient magnetic circuit structures, that is;
the magnetic anisotropy is exploited in both the rotor and the stator. Their simplicity
and ruggedness has made them adequate for several applications. However, they suffer
from copper losses on the stator and core losses in both the stator and rotor. Induction
generators mount a cage rotor and single or dual windings in the stator. The main ad-
vantage of such class of generators is that they can either work as motors or generators
depending on the driving entity, if supplied to a fixed frequency and voltage becomes a
motor, if driven by a prime mover becomes a generator. Synchronous Generator (SG)
have a stator magnetic circuit composed by with slots, usually containing three-phase
windings and a rotor. The rotor design stablish the SG configuration, which is based on
two excitation principles, the heteropolar and the homopolar excitation. Heteropolar
SGs subdivide in four categories: the multipolar Direct Current (DC) excited rotor, the
claw pole excited rotor, variable reluctance rotor and the PM rotor. The homopolar
SGs are usually excited in the stator, whether it be electrically or mounting PMs in the
stator.

Lately, PMSGs are being mounted in wind turbines due to its capacity to deliver
medium to high power (in the range of tenths of [5 − 500]kW ) at low rotative speed
drive [20− 200]rpm with high efficiency rates, (63). This allows to get rid of reductors
and gearboxes, which usually have a negative effect in efficiency and are often the cause
for breakdowns and high maintenance costs. Furthermore, PMSGs are capable to deal
with variable rotation speed without a significant loss of efficiency. However, technical
difficulties arise in the manufacturing process of PMSGs at the state of the art level
leading to high production costs. Working conditions of some types of WECs, such as
the MoonWEC are similar to the ones reported. Therefore, it is reasonable to state that
direct-driven PMSGs can also be suitable for wave energy conversion.

PM excitation offers high flexibility when it comes to the generator design, shape,
size, position orientation of the magnetization direction conform the variables of mul-
tiple configurations. The list expands to radial or axial flux machines, longitudinal or
transversal flux machines, inner or outer rotor and interior or exterior mounted magnets.
The radial flux machine with inner rotor and exterior mounted magnets is the configu-
ration with the most mature manufacturing technology (69), having lower production
costs and thus being more competitive than other configurations has been chosen for
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the MoonWEC. All radial flux machines are in turn longitudinal flux machines, which
means that the plane of the flux path is parallel to the axis of rotation. In a radial flux
machine the normal vector to the air gap (distance between the rotor and the stator)
is perpendicular to the rotation axis. The choice of the inner rotor position is merely
practical. Mainly, PMSGs energy losses are copper losses, which translates into heat, it
is convenient to place the stator windings on the outer part of the generator, close to the
housing in order to optimize the cooling system. Surface magnets are mounted also for
simplicity reasons, magnets are glued to the rotor surface in order to resist centrifugal
forces. Moreover, this is the configuration that offers smallest flux leakage resulting
in a high power factor. Graphical description of the above described configuration is
provided in figure 2.22.

Figure 2.22: Cross sectional view in radial and axial direction, respectively, of a typical radial
flux PMSG (69)

All synchronous machines are driven by the following relation:

n =
f

p
(2.128)

Where n is the rotation speed of the shaft, f is the electric frequency of the generator
and p is the number of poles.

2.3.3 Linear Generator

A linear generator is a relatively new concept of electric generator, it hasn’t reached
the commercial stage in large numbers yet and therefore, a lot of research is currently
ongoing in order to optimize its performance. In the wave energy conversion field only
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a few prototypes have been built and tested, still most of the research is still computer
based by performing simulations. As seen in section 2.3.2, an induction generator is
composed of two main components, the rotor and the stator; in linear generators the
structure of is the same. However, the rotor no longer rotates but translates, carrying
linear trajectories. This alternate motion has some drawbacks, mainly efficiency loss
due to the variation of the translator velocity. Nevertheless, it has been conceived to
achieve a perfect adaptation to the vertical wave motion; allowing to get rid of extra
mechanical components, which decrease the overall efficiency of the system and increase
the possibilities of breakdown events.

The only novelty in the stator is that it varies in shape to adapt to the new moving
part. Between the translator and the stator there is a small distance called air gap, this
is a crucial part of the generator. On the one hand, a really reduced air gap could lead
to mechanical failure during the lifetime of the generator. Mainly because of structure
deformations caused by the intense loads under which the generator is set. On the other
hand, a wide air gap has a tremendous negative effect in the electromagnetic induction
efficiency, practically leaving the generator out of use.

The translator is mounted with permanent magnets between pole shoes. These,
are steel bars with their poles placed face to face, and its functionality is to guide the
magnetic flux towards the air gap and over to the stator. Once the magnetic flux has
crossed the air gap is led through the stator-tooth to the stator-yoke where the flux is
divided into two parts and sent back to the translator to close the loop in accordance
to the Maxwell’s equations. The previous process and the LG architecture are reported
in figure 2.23. As the translator moves along the stator a time varying magnetic field
is created in the stator coils, this variation can be measured by an angle due to the
periodicity of the harmonic motion of waves. This angle is called the electric angle
and is what causes the variation of w in equation 2.127. Assuming that the translator
follows the monochromatic wave, ω can be computed with the following equation:

w = ŵsin(δt) (2.129)

.
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Figure 2.23: Cross sectional views of a typical LG

2.4 Moonpool

The moonpool is one of the main characteristics of the MoonWEC (section 1.4.2). A
moonpool is water column found in the inner part of a floating structure, usually having
a cylindrical shape. This concept was born in the Oil&Gas sector, since many offshore
platforms hold one in order to provide space for the risers and give shelter from the
open sea for Operation&Maintenance involving subs. Moonpools can also be found in
ships for special operations such as in Floating Production Storage Units (FPSOs).

Born as a mere void space for practical reason, the moonpool concept soon grew
in relevance as complex phenomena, such as resonant states and swirl currents, were
observed to be taking place within the moonpool. Needless to say that this, in general,
are undesired effects since endanger either the safety of personnel working in such units
either the stability of the whole structure itself. The phenomenon was first described by
(9), in which a mathematical model was validated over experimental tests. The relative
motion between the moonpool surface and a floating structure in heave was studied
under several conditions. It assumed that the water column behaved like a frictionless
piston that varies its mass proportionally to the piston position. Hence, the natural
frequency of the moonpool was derived

ωres =

√
ρgA

ρAT + ah
(2.130)

Where A is the cross-sectional area of the moopool, T is its draft and ah is the added
mass coefficient, derived from the potential theory. Actually, the water motions inside a
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moonpool were represented as a spring-mass system by (19). Both of them found that
the heave motion of the structure is affected by the characteristics of the moonpool
and that can be properly tuned by placing an appropriately designed guide plate, as
in (90). (51) derived a 2-DoF coupling dynamic model of a spar in heave highlighting
the moonpool hydrodynamic characteristics in predicting the dynamic behaviour of the
spar. A 6-DoF nonlinear model of a spar platform was developed by (89) including the
risers dynamic behaviour. Finally, the opening rate of the guide plate in spar platform
in heave was studied by (66), showing than the response of the platform can totally
vary response depending depending on the guide plate configuration.

The water motion inside a moonpool can be derived by using the deformable con-
trol volume approach, as the moonpool changes in size over time. Hence, the mass
conservation condition must be fulfilled

∫
S
ρ( ~vMP − ~vS)× ~ndA = −dMMP

dt
(2.131)

where ρ is the water density, ~vMP is the velocity of the water flowing through the
control surface, ~vS is the velocity of the floating structure and MMP is the moonpool
mass. Note that ( ~vMP − ( ~vS) is the relative velocity ~Vr between the moonpool and
the floating structure from the moonpool reference frame. The equation of motion of
a moonpool is obtained by applying Newton’s second law by means of the equation
momentum for a deformable control volume as written in (53):

∑
~F =

d

dt
(

∫
CV

~V ρd∆) +

∫
CS

~V ρ(~Vr × ~n)dA (2.132)

Where ~V is the fluid velocity in the control volume CV , ~Vr is the relative fluid
velocity flowing across the control surface CS. The left hand side of equation (2.132)
incorporates the forces acting on the control surface and the weight force due to the
trapped water particles in the moonpool

~F = −gMMP + puSg (2.133)

Where g is the gravity acceleration and pu is the pressure acting on the upper side
of the control surface. The Force acting on the lower side of the control surface can be
expressed as follows:

Fl = Fh + Fe + Fc + Fr + Fd = plSg (2.134)
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Where Fh is the force exerted by the hydrostatic pressure, Fe is the wave excitation
force, Fr is the radiation force, Fd and Fc is the coupling term of the moonpool and the
floating structure, mainly given by inertial constraints. The pressure difference between
the two sides of the control surface is the cause of the fluid acceleration. Therefore, the
following equation of motion is obtained

(pl−pu)Sg×~n = ~Fh+ ~Fe+ ~Fc+ ~Fr+ ~Fd−~gMMP−
d

dt
(

∫
CV

~V ρd∆)+

∫
CS

~V ρ(~Vr×~n)dA = MMP
d~Vr
dt

(2.135)

By applying the constraints that a specific system imposes into equation (2.135);
the dynamics of such system, representing the moonpool, are fully determined.

2.5 Mooring system

A crucial matter in the design of floating structures is how to hold them fixed, for obvious
reasons a floating structure may not be left adrift. Depending on the structure purpose
the mooring system will have completely different settings. Therefore, the mooring of
structure is an extensive field and, in literature, usually treated separately from the
pure wave-structure interaction field. On the one hand, a mooring system needs to be
sufficiently stiff to allow docking for Operation and Maintenance (O&M) operations,
ensure the structure keeping within the tolerances and maintain the specified distances
between different mooring lines. On the other hand, it must be compliant enough to
reduce the forces on anchors and mooring lines and to accommodate to the tidal range.
Ensuring both, operability and survivability regimes is what makes a specific mooring
system viable. Mooring systems are composed by two main components; the anchoring
system, which guarantees the fixation onto the sea bed, and the mooring lines, which
interconnect the structure and the anchors. Mooring systems can be classified according
to two principles, reported in figure (2.24).
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Geometrical Classification Functional Classification
Passive MS Active MS Reactive MS

Turret X X
Spread X X
CALM X X
SALM X X X
ALC X X
FTM X X
TLP X

Table 2.2: Mooring Systems according to the two classification systems.

Figure 2.24: Mooring system types classification scheme

The geometrical classification, based on the layout configuration, basically states if
the structure is connected by a single point (turret), several points (spread) or needs to
be linked to a support external auxiliary structure holding the mooring system (dynamic
system). Among the most widely used dynamic mooring systems are the Catenary
Anchor Leg Mooring , the Single Anchor Leg Mooring (SALM), the Articulated Loading
Column (ALC), the Fixed Tower Mooring (FTM) and the Tension Leg Platform (TLP).
The functional classification states if, slack (passive) or taut (active) mooring lines are
installed, or if a reaction an external reaction force is needed as in assisted mooring by
thrusting. Figure (2.25.a), .b), .c), .d) and .e) ) show their layout, respectively. Table
2.2 reports the classification of each mooring system.

In this thesis, two types of mooring system are addressed, one for each studies
device. The HPA-LG is moored to the sea bed by a variant of the TLP system. The
generator, placed at the seabed, acts a gravity foundation and the line interconnecting
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Figure 2.25: Different mooring system layouts
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the buoy and the translator also operates as the mooring line. Hence, being in tension
it assumes the behaviour of a single tension leg. The line, which is a steel wire has
a very high axial stiffness restricting to a minimum its elongation. The MoonWEC
is moored by means of a CALM system composed by four catenary lines, providing a
strong symmetric behaviour with respect to the vertical plane. Thus, in the modelling
only two lines have been modelled.

CALM systems are particularly suitable when horizontal displacements need to be
reduced by at the same time leaving free the vertical oscillation. Is for that reason that
has been chosen to moor the MoonWEC device. The dynamic behaviour of the CALM
system is quite complex, accounting with a highly nonlinear response, mainly due to
the high inertia and drag of the lines. The size of the lines makes so that such effects
may not be neglected. Therefore, its dynamics cannot be decoupled and are integrated
into the overall floating structure dynamics. Figure (2.26) shows the layout of a floating
platform moored by a CALM system. The deriving simplified equation of motion for
the surge mode results in

Figure 2.26: Layout of the Platform-CALM system, warning figure needs to be updated

mq̈ + Cdq̇ + (Slx − Srx) = Fe (2.136)

Where m is the platform mass, Cd is the linearised drag coefficient, Slx and Srx are
the horizontal components of the chain tension at the points A and B respectively and
Fe is the wave excitation force in the surge mode. Since the chain inertia cannot be
neglected the Newton’s second law must stated at the chain level, nesting it to the
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general equation of motion as follows

Slx = T l0 +mcẍ
l
cS

r
x = T r0 −mcẍ

r
c (2.137)

Where T l0 and T r0 are the horizontal chain tension at the equilibrium position for
the A and B points respectively, mc is the mass of the line and ẍl,rc are the acceleration
of the left and right chain at its centroid respectively. T l,r0 are found by performing a
static analysis of the line configuration at its equilibrium position.

Figure (2.27) illustrates the shape of a deep water catenary line. The origin of its
reference frame is located at the zero slope point, where the line lies on the seabed
(x0, y0, z0) = (0, 0, 0). The anchoring point is defined by the coordinates (xm, ym, zm)

and the point of attachment to the floating structure is denoted by the coordinates
(xT , yT , zT ). leff is the suspended length of the line, where l is its horizontal projection
and l′ is the total horizontal distance from the structure to the anchoring point. h is
the water depth and θ(s) is the slope angle of the line with respect to the plane (x, y)

at the point s.

Figure 2.27: Geometry of a deep water catenary line

The geometric configuration is given by (x(s), y(s), z(s) and θ(s) for 0 ≤ s ≥ leff .
Introducing the following dimensionless parameters

X1 =
Pl

T0
L =

Pleff
T0

H =
Ph

T0
(2.138)
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Where P is the linear specific weight, in wet conditions, of the line and T0 is the
horizontal tension in the (x, y) plane, the catenary equations result in

X1 = sinh−1(L) (2.139)

H = cosh(X1)− 1 (2.140)

By squaring equations (2.139) and (2.140) and then subtracting them the following
relation is obtained

L2 −H2 = sinh2(X1)− cosh2(X1) + 2 cosh(X1)− 1 = 2(cosh(X1)− 1) = 2H (2.141)

L =
√
H2 + 2H (2.142)

By reverting the dimensionless form of equation (2.142) by applying the equation
(2.138) and subsequently the equation (2.139), two relations between the leff and T0

are provided

leff =

√
h(h+ 2

T0
P

(2.143)

leff =
T0
P

sinh(
Pl

T0
) (2.144)

Thus, by combining equations (2.143) and (2.144) a expression providing relation
between T0 and the horizontally projected length of the suspend line l is yielded

T0
P

sinh(
Pl

T0
) =

√
h(h+ 2

T0
P

) (2.145)

Now, by deriving the following geometric relation from figure (2.27): lT−l′−leff+l =

0 and combining it with equation (2.143), an expression in terms of the known lT , l′, l
and h is derived and solved for T0

lT − l′ + l =
√
h(h+ 2T0P ;

T0 = P [(lT−l′+l)2−h2]
2h

(2.146)

After having found T0, the chain acceleration needs to be found for the ODE de-
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scribing the dynamics of the platform-CALM system be fully determined and may be
solved. From figures (2.26) and (2.27) the position of the chain can be derived

xlc = (l + q)− βlt(
h+ k

leff,t
), xrc = (l + q)− βrt (

h+ k

leff,t
) + w, (2.147)

where w is the width of the platform,leff,t is the effective length of the line at the
time t and βl,r is a chain shape parameter

βl,rt =
P

T l,rt
(2.148)

where T l,rt is the instantaneous horizontal chain at each time t. T l,rt and leff,t

are computed following the same procedure shown for T0 and leff using the updated
coordinates for the time t. By applying the time derivative twice to xcl, r the chain
acceleration ẍl,rc is yielded

ẍl,rc = q̈ ∓ β̈l,rt (
h+ k

leff,t
)∓ 2β̇l,rt

k̇

leff,t
∓ βl,rt

k̈

leff,t
(2.149)

Now, the platform-CALM system is fully determined and can be solved by the ODE
integral of the equation of motion.

2.6 Wells Turbine

As introduced in section (1.4.2), the MoonWEC device uses a Wells turbine placed in
the moonpool to drive the electric generator. In its simplest form, a W-T consists of
several symmetrical aerofoils placed around a hub, with the chord plane perpendicular
to the axis of rotation, see figure (2.28). The particularity of this kind of turbines is
that, due to the aerofoil symmetry the direction of rotation is always achieved in the
same way regardless the flow bi-directionality direction.
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Figure 2.28: Layout of an air Wells turbine

The aerofoil profile used in W-T is the NACA four-digit series profile, NACA-ABCD
(1). The first digit A, specifies the maximum chamber in percentage of the chord (airfoil
length), the second digit B states the position of the maximum chamber in tenths of the
chord and the last two digits, C and D indicate the maximum thickness of the airfoil
in percentage of the chord. Hence, profiles without chamber, first two digits set to zero
NACA00CD, are symmetrical, see figure (2.29).

Figure 2.29: Geometrical layout of a NACA aerofoil

According to the general airfoil aerodynamics theory, a blade placed into a fluid flow
oriented with α degrees from it generates a lift force L normal to the stream direction
and a drag force D parallel to it, see figure (2.30). L and D increase with the incidence
angle α; however, only up to a limit where beyond flow separation from the aerofoil
takes place, this effect is called stall. For angles greater than the stall angle the drag
force rockets whereas the lift force, which is the turbine’s main driving force, plummets
resulting in a dramatic decrease of the turbine’s efficiency. Figure (2.30) also shows the
velocity triangles, a technique used to then compute the lift and drag forces.
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Figure 2.30: Aerodynamic forces. a) Compression stages. b) Suction stages.

From figure (2.30), the tangential force Ft, the axial force FA and the resultant
aerodynamic force given by the lift and drag forces are derived

FR =
√
L2 +D2 (2.150)

Ft = L sinα−D cosα (2.151)

FA = L cosα+D sinα (2.152)

The performance of a W-T is affected by the mutual aerodynamic interference be-
tween the blades. Interferences are given by velocities induced by the blades on each
other and by the wakes produced by the blades, mainly called inviscid and viscous ef-
fects respectively. These interferences are function of the turbine solidity σ, which is
the ratio of gap distance between blades to the blade chord. The main disturbance is an
increase in velocities upstream of the blades and a decrease in velocities downstream,
that causes an increase of the flow circulation, which in turn leads to a further increase
of the lift force in the aerofoil. A simple method of evaluating the interferences is that
based on the potential flow theory flat plate aerofoils in cascade at a π/2 stagger angle
(92), which consist in unrevolving the rotor to locate all aerofoils in the same plane, see
figure (2.31). According to this study, the value of the lift coefficient Cl for an aerofoil
in cascade can be corrected by a factor k such that Cl = kCl0, where Cl0 refers to the
lift coefficient of the isolated aerofoil, the analytical formula derived in (86) and further
simplified for 90 ◦angle of stagger in (44) for k shows:

k =
2t

πc
tan(

πc

2t
) (2.153)
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Where c is the chord length and t is the pitch as illustrated in figure (2.31). As the
drag force cannot be predicted by the potential flow theory, it is assumed that the drag
coefficient is undisturbed Cd = Cd0 as the majority of the disturbance occurs normally
to the flow. Tangential and axial forces can also be described by means of the Ct and
CA respectively. (79) and (91) suggested that the following relations must be fulfilled

Figure 2.31: Geometrical layout of the cascade scheme

CA
CA0

=
1

1− σ2
(2.154)

Ct
Ct0

=
CA
CA0

(2.155)

Where σ is the turbine solidity and, Ct0 and CA0 are obtained from empirical ex-
periments of the isolated blades. Ct0 and CA0 are dependent on Cl and Cd, which in
turn depend on several parameters such as the blade chord Reynolds number, the Mach
number, the hub-to-tip ratio, tip clearance. To compute the axial and tangential forces
from their coefficients the analogous drag equation (2.106), stated in section (2.2), are
derived
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2.6 Wells Turbine

Figure 2.32: Aerodynamic forces on several symmetrical NACA profiles for several Reynolds
numbers a) Variation of the tangential force coefficient with incident angle. b)Variation of the
axial force coefficient with incident angle (80)

Ft =
1

2
NρCtAbV

2
r (2.156)

FA =
1

2
NρCAAbV

2
r (2.157)

Where ρ is the fluid density, N is the number of blades and Ab is the blade planar
area and is set equal to c the chord length. Many variants of Wells turbine have been
conceived in order to increase its efficiency. Guide vanes may be incorporated on the
rotor hub, in order delay the stall conditions. Blades variable pitch angle are also used
to increase efficiency and enable self starting, as a particularity of W-T is that assisted
start is needed due to the negative Ct values for low incidence angles α, as shown in
figure (2.32). Biplanes W-T are also widely used, consisting in adding a second hub
to increase efficiency by taking advantage of the swirl created downstream of the first
hub, depending on the geometric architecture of the turbine this second hub can rotate
in the opposite direction of the first hub. However, for this thesis none of this variants
have been considered for simplicity.
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3

Wave Resource Assessment

3.1 Global and local wave resource

Waves are a vast resource of energy worldwide, not only for its harvesting potential
but also for its elevated energy density. As mentioned in section 1.2, oceans cover
approximately 2/3rds of the planets surface and half of the world’s populations live
within a range of 100km from the coast. Furthermore, wave energy transport is 5 and
20 times denser than wind energy and solar energy transport, respectively (see (95)).
Moreover, wave seasonal variability usually matches with the electricity demand, as
higher waves are generated during autumn and winter times, coinciding with the needs
of energy to heat buildings.

Waves are not distributed uniformly throughout the oceans. Some areas are usually
hit by bigger waves than others. The wave climate of a particular area basically depends
on the meteo-climatic conditions and geographical characteristics of such area. Figure
3.1 shows the annual averaged wave power distribution for the WorldWave grid points.

Higher wave energy fluxes are found in open oceans from middle to high latitudes for
both hemispheres. Reason for that is the high prevalence of winds at that latitudes and
the long fetches, see section 2.1.2. Also, a predominance of higher fluxes in the western
coasts of the continents can be identified; born from the global circulation patterns,
which mainly generate westerlies over open areas such as oceans. It can also be noticed
that shielded areas such as the Baltic and Mediterranean seas, have much lower average
fluxes than open oceans, despite being located at the appropriate latitudes. This is due
to the small fetches of these areas, or in other words, waves do not have space enough
to grow as they do in the big oceans.

This thesis focuses in wave energy conversion on the Mediterranean Sea, more specif-
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Figure 3.1: Annual global gross theoretical wave power for all WorldWaves grid points world-
wide. (74)

ically off the Italian coasts. A study by (65) shows that in the most energetic areas of the
Mediterranean Sea, the annual average wave energy fluxes range around (8−15)kW/m.
Figure 3.2 illustrates the distribution of the average wave energy flux on the Mediter-
ranean Sea.

More specifically, in the offshore area entrained between the Balearic island of Mi-
norca and Sardinia, energy fluxes are greater than 15kW/m raising a particular interest
on such area.

3.2 Deployment sites identification

For this work, eight locations off the Italian coasts have been characterized. The lo-
cation of the selected sites is shown in figure 3.3. The site selection derives from data
availability; as in these sites buoys from the National Italian Wave Measurement Net-
work (2) have been deployed. The gathered wave data spans over a time period of
almost 20 years. The buoys are moored in deep water, at depths ranging from 60 m in
the Adriatic Sea to about 100m in the Tyrrhenian Sea. Their distance from shore varies
between 1.2km (Crotone) and 15.6km (La Spezia). Table 3.2 reports the main features
and wave energy statistics of the locations, sorted by decreasing wave power potential
(original data from (97)). The Mean Wave Direction (MWD) has not been considered
for the wave climate analysis. The projected devices present an axysimmetry over the
vertical their vertical axis ( see figures 1.11 and 1.12). Hence, the device response is not
altered by the incoming wave direction.
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Figure 3.2: Distribution of average power per unit crest in the Mediterranean between 2001
and 2010. (65)

Figure 3.3: Case study locations

The most energetic sites (1-4 in table 3.1) are located in the Tyrrhenian Sea. The
average annual wave power at these sites ranges between 3.5kW/m and 9.1kW/m,
values comparable to other sites in the North Sea (32). On the other hand, the least
for energetic sites are found in the Ionian and Adriatic Seas; at all these locations, the
annual average wave energy flux is lower than 3kW/m, a value that can be considered
as the lower limit for wave energy harvesting. Table 3.2 reflects the seasonal variability
of the studied locations.

The monthly average wave power strongly varies over the year; the coefficient of
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Site Depth Distance
from shore

Wave record
duration

Missing
data AEP

(m) (km) (y) (%) (kW/m)

1 Alghero 95 5.2 18.8 9 9.1
2 Mazara del Vallo 75 13 18.8 15 4.7
3 Ponza 100 1.44 17.7 10 3.7
4 La Spezia 92 15.6 18.8 13 3.5
5 Crotone 100 1.22 17.5 7 2.9
6 Monopoli 65 6.02 17.7 9 2.1
7 Catania 100 5.1 18.8 9 1.9
8 Ortona 60 10 17.7 12 1.9

Table 3.1: Main features and statistics of the study sites.

Site CV of average monthly wave power (%) I II III IV
1 Alghero 48 38 25 11 26
2 Mazara del Vallo 59 42 27 8 23
3 Ponza 50 37 23 11 28
4 La Spezia 36 33 23 14 30
5 Crotone 56 47 23 4 26
6 Monopoli 55 43 24 11 22
7 Catania 63 43 28 6 24
8 Ortona 66 46 22 9 23

Table 3.2: Main features and statistics of the study sites. Columns I, II, III, IV represent
the percentage of the annual wave energy in the months of December-February, March-May,
June-August, September-November.

variation (CV in table 3.2) of the monthly series represents this variation: the most
constant sites, in terms of wave power, are located in the Northern Tyrrhenian Sea (La
Spezia and Alghero), whereas the highest variability is found in Catania and Ortona.
On the one hand, for every location the most energetic months are December-February
and provide a large amount of the annual wave energy (varying from the 33% in La
Spezia up to the 47% in Crotone). On the other hand, the least energetic months are
June-August, accounting for a very small percentage of the annual energy flux (only 4%

in Crotone). This high seasonal variability, typical of many renewable energy sources, is
strongly correlated to the wind fluctuations, which are smaller in more temperate areas.

The characterization of the wave climate and the wave energy potential in terms of
sea states is shown in tables 3.3 and 3.4. The occurrence of HS − TP events, at each
location, has been obtained from the website of the RON (2). Table 3.3 reports the
percentage of occurrence Po and the percentage of annual energy PAE corresponding
different significant wave height HS intervals and, table 3.4, reports the same amounts
according to given peak wave periods TP intervals. In the design of a WEC, both
parameters, Po and PAE must be taken into account; the wave climate data is needed
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Alghero Mazara Ponza La Spezia Crotone Monopoli Catania Ortona
HS (m) Po PAE Po PAE Po PAE Po PAE Po PAE Po PAE Po PAE Po PAE
< 0.5 31.3 0.4 26.8 0.7 38.7 1.4 42.3 1.7 47.2 2.2 43.5 2.8 55.2 4.8 54.1 3.3
0.5− 1 27.0 3.3 33.4 8.7 30.9 10.6 34.0 13.1 29.0 11.7 35.3 20.1 3.6 18.7 28.2 16.1
1− 1.5 15.0 6.0 19.3 16.0 16.1 17.9 11.9 14.7 12.9 16.7 12.9 22.7 8.4 16.4 10.4 18.2
1.5− 2 9.2 8.2 10.7 19.1 7.6 18.5 5.6 14.8 5.8 16.4 4.5 16.6 3.1 13.5 3.7 13.9
2− 2.5 6.0 9.8 4.9 15.7 3.6 16.0 2.8 13.3 2.3 11.9 2.0 12.9 1.1 8.7 1.5 10.2
2.5− 3 4.0 10.4 2.4 12.7 1.6 11.3 1.6 11.6 0.9 7.9 0.8 8.1 0.5 7.0 0.6 6.4
3− 3.5 2.5 9.5 1.3 9.6 0.8 8.2 0.8 8.4 1.0 12.0 0.6 8.6 0.5 10.1 0.7 11.9
3.5− 4 1.5 8.1 0.6 6.4 0.4 5.7 0.5 7.5 0.5 8.8 0.3 5.3 0.3 8.6 0.4 9.4
4− 5 1.5 11.8 0.5 7.7 0.3 5.9 0.4 8.8 0.4 9.8 0.1 2.4 0.3 9.7 0.3 8.9
5− 6 1.4 18.2 0.1 3.0 0.1 3.2 0.1 4.8 0.1 2.4 0.0 0.2 0.0 2.3 0.0 1.3
6− 7 0.5 9.9 0.0 0.3 0.0 0.6 0.0 1.0 0.0 0.1 0.0 0.0 0.0 0.2 0.0 0.4
> 7 0.2 4.4 0.0 0.1 0.0 0.7 0.0 0.3 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0

Table 3.3: Percentage of Occurrence Po and Percentage of annual energy PAE corresponding
to different wave height intervals.

Alghero Mazara Ponza La Spezia Crotone Monopoli Catania Ortona
TP (s) Po PAE Po PAE Po PAE Po PAE Po PAE Po PAE Po PAE Po PAE
< 3 4.3 0.0 3.4 0.1 4.7 0.1 6.7 0.2 6.8 0.2 5.1 0.2 7.1 0.4 9.1 0.3

3− 4.5 15.0 0.5 16.6 1.9 26.6 3.1 22.4 3.1 28.5 3.7 26.9 4.6 23.9 3.8 35.6 5.2
4.5− 6 25.4 2.8 29.3 9.8 35.6 16.6 24.2 7.8 29.0 13.2 32.7 22.2 22.3 10.9 29.8 21.5
6− 7.5 24.7 8.3 27.9 25.1 22.7 30.4 22.1 19.3 19.6 24.1 19.3 33.0 19.2 16.1 15.7 29.4
7.5− 9 15.0 15.7 14.3 28.6 7.3 28.4 14.0 29.8 7.9 24.0 7.7 23.7 10.2 20.8 5.0 30.2
9− 10.5 9.2 27.9 5.7 24.0 1.7 16.6 7.2 31.0 2.9 24.9 1.8 5.9 4.3 27.9 0.9 10.5
10.5− 12 3.5 29.3 1.3 8.6 0.2 2.8 0.9 7.5 0.4 7.4 0.1 0.3 0.9 12.4 0.0 0.1
12− 13.5 0.8 14.7 0.1 1.2 0.0 0.8 0.1 0.1 0.0 0.8 0.0 0.0 0.1 2.9 0.0 0.0
13.5.15 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
> 15 1.9 0.2 1.4 0.7 1.2 1.1 2.6 1.2 4.8 1.7 6.4 10.1 12.0 4.8 3.8 2.7

Table 3.4: Percentage of Occurrence Po and Percentage of annual energy PAE corresponding
to different wave period intervals.

to maximize the capacity factor (or degree of utilization), i. e.: the amount of time in a
year during it is operating at the rated power. On the other hand, the bivariate energy
distribution is related to the efficiency of the device, which should be maximal for the
range of wave height and peak period providing the bulk of the energy. Unfortunately,
this may not always be achieved due to the very complex nature of waves, which does
not always make the WEC design process effective.

Wave climate data show that the prevalent sea states are characterized by relatively
small waves: in Alghero and Mazara, HS is below 1m during approximately 60% of
the year, whereas in other less energetic locations this percentages increases up to
80%. The peak periods with the highest probability of occurrence are around 6s for
every location, confirming that in the Mediterranean Sea short waves prevail in the
climate. The comparison between the percentage of occurrence and the contribution to
the annual energy shows that most of the annual wave energy is provided by sea states
with a rather low probability of occurrence. From table 3.3 it can be seen that events
having wave heights smaller than 1m, provide only (4 − 15)% of the annual energy
despite having probabilities of occurrence in the range of (60− 80)%. The same trend
is observed for the peak wave period distribution.

79



3. WAVE RESOURCE ASSESSMENT

3 4 5 6 7 8 9 10 11 12

TP (s)

1

2

3

4

H
S
(m

)

Alghero

P0 (%)

0

1

2

3

4

5

3 4 5 6 7 8 9 10 11 12

TP (s)

1

2

3

4

H
S
(m

)

Alghero

PAE (%)

0

1

2

3

4

Figure 3.4: Sea state percentage of occurrence and Percentage of Annual Energy at Alghero.
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Figure 3.5: Sea state percentage of occurrence and Percentage of Annual Energy at Mazara
del Vallo.

As this effect is a very limiting factor WECs design, only the two most energetic
locations have been selected. Their average annual energy flux is reasonably high enough
to foresee feasibility in wave energy exploitation. Also, they are more compact in terms
of probability of occurrence and percentage of annual energy. Figures 3.4 and 3.5 show
the values in tables 3.3 and 3.4 rearranged in a different manner, plotting now Po and
PAE in two bivariate matrices, depending on HS and TP .

Figures 3.4 and 3.5 confirm what already revealed by tables 3.3 and 3.4, the annual
wave energy is concentrated in a different climatic area than the wave occurrence. How-
ever, it can be appreciated that for the case of Mazara del Vallo the two parameters
(Po and PAE) are closer than at Alghero. This effect sets a disjunctive over the design
and tuning strategy. On the one hand, if the device is designed to have its efficiency
peak in accordance to the the Po peak, the device will probably produce less energy
but at a more constant pace, having a high capacity factor over a low annual energy
production. On the other hand, if the device is tuned to peak in efficiency according
to the PAE peak, the total production will probably be higher but produced in a very
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3.3 Extreme wave conditions

reduced amount of time, which makes the capacity factor drop. The optimal procedure
would be to widen as much as possible the high efficiency band of the device in order
to embrace both peaks. Unfortunately, this is only possible up to a certain level, which
may be feasible for Mazara del Vallo but completely unrealistic for Alghero. The author
believes a high capacity factor should prevail over the net value of produced energy and
therefore, the first strategy adopted is to tune the device according to the Po peak.

3.3 Extreme wave conditions

The analysis carried out in section 3.2, aimed to identify the working regime conditions
of the device. However, in the device design procedure two different regimes must be
taken into account. As relevant as the working regime is the survivability regime of
the device. On the technical level, the survivability regime often sets more challenges
than the operational regime, since the device must resists extreme loads generated
by severe storms. Fortunately, having the Mediterranean Sea a milder wave climate
its extreme wave events are less severe than in open oceans and thus, increasing the
survival probabilities of a well designed device.

Severe storms conditions and recurrence are determined by carrying a statistical
analysis of extreme waves. This, aims to identify the sea state height Hm0, period
TP and MWD as well as the risk associated to the such conditions, which is generally
specified by means of the return period Tr and the occurrence probability during the
device lifetime ("encounter probability"). Unlike in the working regimes, where the
statistical populations are time-aggregated on the basis of a regular data sampling; the
extreme conditions regimes are established on the basis of event sampling of the data,
generating time-disaggregated populations. Such events are defined by on partial over-
threshold durations. The most used methodology for its identification, defined by (47),
is the POT method.

The POT method sets the definition of a "sea storm" allowing to simplify the iden-
tification of a sample used for statistical computations. It identifies a sea storm as a
time series of sea states characterised by a series of wave heights, periods and direction
that vary within a given range. This range is defined by thresholds, thereby its name.
For the study area of interest, the central Mediterranean, is given when the following
rules take place, (31):

1. Wave height persistence over the threshold of 1.0 m for more than 12 consecutive
hours
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Figure 3.6: Extreme wave statistics using the half-hourly POT method accounting for all wave
directions at Alghero (31).

2. Wave height decay below the threshold of 1.0 m for less than 6 consecutive hours

3. Original direction belonging to a determined angular sector (±30◦ with respect
to the initial direction)

Occurrence frequencies of various types of storms may be computed by fixing several
thresholds, alwats over 1.0 m. Subsequently, a probability model matching the samples
must be identified. Usually, three Probability Distribution Functions (PDFs) are used:
the Gumbel, Fretchet and Weibull PDFs; whose statistical parameters are chosen to
fit the sample data and depend on the wave climate of the location. The Weibull
distribution was proposed by (47) and has been used in (31). After tuning the PDF,
the return period TR, which is defined as the mean number of years within the general
value Hm0 is not exceeded, may be calculated or vice versa:

HTR = A[− ln
1

λTR
]
1
k +B (3.1)

where, A is the scale parameter of the significant wave height PDF, k is the shape
parameter of the significant wave height PDF, B is the position parameter of the signifi-
cant wave height PDF and λ is the mean number of over-thresholds sea storms observed
in one year. The Italian wave Atlas (31) provides the data of the extreme wave con-
ditions for the selected locations, shown in figures 3.6 and 3.7 for Alghero and Mazara
del Vallo, respectively.

Provided that the design life of must be 25 years, thus TR = 25. From figures 3.6
and 3.7, the 25-year return storm for Alghero and Mazara are: Hm0 = 10.5 m and
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3.3 Extreme wave conditions

Figure 3.7: Extreme wave statistics using the half-hourly POT method accounting for all wave
directions at Mazara del Vallo (31).

TP = 13.5 s, and Hm0 = 5.5 m and TP = 9.5 s, respectively. As the same device is
aimed to be deployed at both locations, the conditions for the former must be chosen
during the design procedure when taking into account the survivability regime.
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4

Mathematical modelling &
numerical methods

In this chapter, all the theoretical notions introduced in chapter 2 are put into practice
by means of numerical modelling. Two different types of numerical models have been
addressed in this thesis. On the one hand, a model based on the potential flow theory
that follows a Lagrangian approach has been developed mainly using the coding com-
mercial software MatlabTMwith the purpose to model the WECs behaviour. On the
other hand, an open-source CFD code has been used to assess the wave reflection on a
Numerical Wave Tanks (NWTs). Computational Fluid Dynamics approach is based on
the solution of the Navier-Stokes equations from an Eulerian point of view in order to
model a fluid domain. The software is named REEF3D and is currently being devel-
oped at NTNU in Trondheim, Norway. One of its main advantages is that is focused on
the marine environment and therefore, the maritime fluid dynamic characteristics are
already embedded in the source code, making it very compact and much easier to use
compared to other CFD software, either it be commercial or non-commercial.

4.1 Potential flow model

Figure (4.1) illustrates the working scheme of the potential flow model, which follows
the classical modelling architecture, i.e: the model receives a series of inputs; afterwards
these inputs are processed in the model core and turned into a series of outputs. The
input parameters of the model can be divided into three categories. The first class is
related to the environmental conditions, which are defined by data files mainly con-
taining time series of water surface elevation and water particle velocities. The second
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input class refers to the device properties, whether it be its geometrical definition, the
mechanical attributes, the mooring system characteristics and the PTO system specs.
Finally, the last type of input are the so called hydrodynamic parameters, which goal
is to link the environmental conditions to the body behaviour.

Mooring

ODE Solver

Inertial Hydrodynamic Aerodynamic Electromagnetic

Figure 4.1: Potential flow model diagram

The model core deals with the input parameters, by handling each input class in a
separate module, according to its nature, and finally coupling all the modules to obtain
the overall performance of the device. The modules used in the model are five: the
dynamic, the hydrodynamic, the aerodynamic, the mooring and the electric module.
Each one resolving a specific component of the device. The model then releases a series
of outputs from different nature; on one side, the kinematics of the device are obtained,
allowing to study, through its motion, its response to certain conditions, on the other
side the averaged electric power for that particular environmental conditions are also
gathered, allowing to build the so called power matrix. The power matrix specifies the
device production for each possible sea state. Finally, by combining the power matrix
with climatic data, long-term site-related performance indicators are obtained such as
the device efficiency and annual production.
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4.1 Potential flow model

4.1.1 Wave generation

The first type of input are the environmental conditions, in the wave energy field these
may comprehend from waves to water salinity passing through ocean currents and winds.
However, for this thesis only waves are considered, since they are the main drivers for
wave energy conversion. Waves are generated adopting the linear wave theory (11),
introduced in section 2.1.1, and defining the domain with whom the WEC interacts.

Regular and irregular waves are considered in order to study the device performance
and behavioural differences between both set-ups. More specifically, water surface ele-
vation and the vertical profile of water particle velocity are retrieved. For the regular
wave case, the former and the latter are obtained by applying the modified version of
equations (2.27) and (2.31-2.32), respectively:

η(t) = a cos(ωt) (4.1)

u(t, z) =
agk

w

cosh[k(h+ z)]

cosh(kh)
cos(ωt) (4.2)

w(t, z) =
agk

w

sinh[k(h+ z)]

cosh(kh)
sin(ωt) (4.3)

Note that, the term θ = kx − ωt (eq. 2.20) has been reduced to θ = ωt since x is
set to 0 as the device is placed at the centre of the coordinate system, having x and
z as the horizontal and the vertical coordinates of the domain, respectively. a is the
wave amplitude, ω is the wave frequency in (rad/s), h is the water depth (m), g is the
gravity acceleration (m/s2), t is the time in (s) and k is the wave number, which has
been computed through the dispersion relation (eq. 2.30). In order to obtain irregular
wave time series the JONSWAP spectrum has been employed, see section 2.1.3, as it
best represents the wave properties given at the selected deployment sites, (16). The
expression of the JONSWAP spectrum (eq. 2.76), when rearranged according to Hm0

and TP instead of the fetch parameters (F ,W ) assumes the following shape:

S(f) = 0.3125
H2
m0TP

( ffp )5
e
−1.25( fp

f
)4
γe
−

(f−fp)2

2σ2f2p (4.4)

Where the peak enhancement parameter is set to γ = 3.3 as it corresponds for wind-
seas. Theoretically, the range of the evaluated frequencies is f = [0−∞); however, as
numerical models do not work in a continuous domain, a discretization for f needs
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to be defined, with an increasing frequency interval ∆f and a cut-off frequency fco.
The chosen range yields f = [0 − 3fp] and ∆f = 1

te
, where te is the total time of the

wave record representing the spectrum. This relation between length of the time series
and the frequency discretization interval is chosen in order not to loose spectral energy
density when performing the Inverse Fourier Transform (IFFT) F−1, thus, in this way
time and frequency domains are univocally related. Nevertheless, there is always a loss
of energy related to the cut-off frequencies of the spectrum (3fp −∞). An algorithm
applying energy compensation has been used. It is based on the ratio of the theoretical
m0 and the value that comes from the numerical integration of the truncated JONSWAP
spectrum. The aim is to generate a modified truncated JONSWAP spectrum which has
the same total energy as the analytic one. Finally, the surface elevation is obtained by
applying the superposition principle to the linear wave theory. Each component of the
spectral energy density represents a monochromatic wave of the sea state:

η =
N∑
i=1

ai cos(ωit+ ϕi) (4.5)

Where ai is the amplitude of the ith monochromatic wave linked to the spectral
density of energy as ai =

√
2Si∆f . ϕi = [0− 2π] is the phase of the wave, which is not

represented in the wave spectrum and thus, it has been generated randomly. The same
set of ϕ has been used in all the simulations in order to ensure that the generated wave
records are identical. Hence, allowing direct confrontations among different versions of
the model.

4.1.2 Internal forces

The dynamics of body motions are controlled by the Newton’s second law,which links
the external and internal forces, see equation (2.82). In the general equation (4.6), the
internal forces are represented by the inertial terms:

[
~F

~M

]
=

[
P T

−T I

]
·

[
~̈τ
~̈
θ

]
= M

[
~̈τ
~̈
θ

]
(4.6)

Where ~F , ~M , ~̈τ and ~̈
θ are the vector of forces, moments, linear acceleration and

angular acceleration respectively. The term M , called the inertia tensor, represents the
inertial properties of the system and is a 6× 6 matrix for a single body, P is the mass
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matrix, I is the inertial matrix, T is the coupling matrix:

P =

M 0 0

0 M 0

0 0 M

 (4.7)

I =

I44 I45 I46

I54 I55 I56

I64 I65 I66

 (4.8)

T =

 0 MzG0 −MyG0

−MzG0 0 MxG0

MyG0 −MxG0 0

 (4.9)

I44 =
∫
M

(Y 2 + Z2)dm I55 =
∫
M

(X2 + Z2)dm I66 =
∫
M

(Y 2 +X2)dm

I45 = I54 = −
∫
M
XY dm I46 = I64 = −

∫
M
XZdm I65 = I56 = −

∫
M
ZY dm

(4.10)

Where Iij are the moments of inertia and X, Y , and Z are the radii of giration of
their respective axis.

4.1.3 External forces

External forces are due to the interaction of the body with the surrounding environment.
That is, the forces exerted by the fluid, the forces of the mooring system and the
forces due to electromagnetic induction caused by the electric generator when converting
the mechanical energy into electric energy. The fluid forces can be divided into two
major types, the hydrostatic and the hydrodynamic forces. The former being the direct
consequence of the balance between the gravity forces. The latter are due to the dynamic
pressure and viscous effects.

4.1.3.1 Hydrostatic forces

As introduced in section 2.2, hydrostatic forces are the formalization of the Archimedes
principle, which states the relation between the weight of a body and its buoyancy. A
floating body at equilibrium must respect the following relations: Mg = ρgV0, XC0 =

XG0 and YC0 = YG0 , where V0 is its volume, C0 its hull centre and G0 its gravity centre.
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Then, the hydrostatic restoring matrix assumes the following shape:

S =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 S33 S34 S35 0

0 0 S43 S44 S45 0

0 0 S53 S54 S55 0

0 0 0 0 0 0


(4.11)

Where:

S33 = ρg
∫∫
SW

dV = ρgSW S44 = ρg
∫∫
SW

Y 2dS + ρgV0(ZC0
− ZC0

)

S55 = ρg
∫∫
SW

X2dS + ρgV0(ZC0 − ZC0) S34 = S43 = ρg
∫∫
S
Y dS

S35 = S53 − ρg
∫∫
S
XdS S45 = S54 − ρg

∫∫
S
XY dS

(4.12)

To compute the hydrostatic force then, the hydrostatic restoring matrix is multiplied
by the body displacement matrix as follows:[

~FHD
~MHD

]
= S

[
~τ

~θ

]
(4.13)

4.1.3.2 Hydrodynamic forces

As introduced in section 2.2, a rigid floating body under the influence of a wave field
is affected by a series of hydrodynamic forces. Due to the dimensions of the studied
devices these hydrodynamic forces are basically reduced to the excitation wave force,
only due to the incident velocity potential (neglecting diffraction), the radiation force
and the viscous drag force. The first two are directly related to the presence of the wave
field whereas the latter is due to the viscous effects of the interaction fluid-structure.

The viscous drag force has been modelled according to equation (2.107). The mod-
elled structures, HPA-LG and the MoonWEC, have complex geometries and no general
drag coefficients Cd have been found for them. A way to obtain the coefficients could
be by means of experimental tests or CFD simulations, however these two methods can
be inconvenient due to reduced infrastructure access for the former and high computa-
tional costs for the latter. Actually, there is a simpler way to model the general drag
force; that is to decompose the structure geometry into several elemental geometries
upon each, a different drag force is applied. Being elemental geometries widely studied,
it is easy to find their drag coefficients in literature. Table 4.1 has been extracted from
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Body Laminar/Turbulent Status Cd
Cube Re > 10000 1.05

Thin Circular Disc Re > 10000 1.1

Cone (θ = 30◦) Re > 10000 0.5

Sphere Laminar Re ≤ 2× 105 0.5
Turbulent Re ≥ 2× 106 0.2

Ellipsoid Laminar Re ≤ 2× 105 0.3− 0.5
Turbulent Re ≥ 2× 106 0.1− 0.2

Hemisphere Re > 10000
Concave Face 0.4
Flat Face 1.2

Rectangular Plate Re > 10000 Normal to the flow 1.1− 1.3

Vertical Cylinder Re ≤ 2× 105
L/D = 1 0.6
L/D =∞ 1.2

Horizontal Cylinder Re > 10000
L/D = 0.5 1.1
L/D = 8 1

Parachute Laminar Flow 1.3

Table 4.1: Drag coefficients for three-dimensional bodies (L:length, D:diameter) (84).

(84) and used as a reference to pick the correct value of the Cd for each drag sub-force.

The wave excitation force is obtained by convoluting the excitation impulse response
function fe(t) with the water surface elevation, see equation (2.90). The excitation im-
pulse response function is obtained from the frequency dependent excitation coefficient
fe(ω), derived from equation (2.84). The radiation force has two terms, see equation
(2.104). An inertial term related to the mass of fluid displaced by the structure during
its motion and a damping term that is also obtained through a convolution between
the radiation memory function k(t) and the structure velocity. Analogously to the ex-
citation force, k(t) depends on a frequency dependent coefficient R(ω) found also with
equation (2.84), reported again below for clarity:

Fi = iωρ

∫∫
S

ˆphinidS (4.14)

It all relies in the resolution of the potential velocity φ̂ and its integration with the
body surface. Numerically, this operation is achieved by the BEM. Several software offer
this capability; among the commercial ones the most widely used are WAMIT R©(6),
developed by the Massachusetts Institute of Technology (MIT), and AQWA, included in
the workbench package of ANSYS R©(3). For this thesis however, an open-source code
has been chosen to obtain the hydrodynamic parameters, it is called NEMOH and it
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has been developed for researches from the Laboratoire d’Hydrodynamique,Énergétique
et Environnement (LHEEA) laboratory at the Ecole Centrale de Nantes, France, over
the past 30 years, (17). Furthermore, NEMOH comes in a package which also includes
a meshing tool and a Matlab toolbox to control NEMOH. The mesher allows to control
the total number of elements, up to 2000 per body, and the angular discretization in
case the structure be axisymmetric. Other than the grid composing the surface of the
modelled structure, it also provides the inertia tensor of the body and the hydrostatic
restoring matrix, see section 4.1.3.1. The former describes the inertial behaviour of
the body whereas the latter accounts for the buoyant response when displaced from its
equilibrium position.

BEM The Boundary Element Method solves the fluid velocity potential on the body
surface. To do so, the following hypotheses are assumed:

H1 Fluid continuity

H2 Strains are proportional to the deformation velocities (Newtonian Fluid)

H3 Fluid homogeneity and isotropy

H4 Inviscid Fluid

H5 The fluid is initially at rest (only gravity as external force)

H6 Atmospheric pressure assumed above the free surface and surface tension neglected

Hypotheses H1, H2 and H3 allow the derivation of the general form of the Navier-
Stokes equation, after applying H4 the perfect fluid equations for irrotational flows
are obtained. With H5 the definition of velocity potential is obtained ~V = ~∇φ. The
problem is then solved as in section 2.1.1 with an additional BC, that of the floating
structure surface, assumed to be impermeable and thus forcing the velocity of the fluid
to be equal to the normal velocity of the body in the normal direction of the structure
surface:

~V ~n|C =
∂φ

∂n
|C = ~VE~nC (4.15)

where the subscripts C and E state the body surface and centre of gravity, respec-
tively. Figure 4.2 illustrates a body surface upon which the body BC is computed by
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the BEM method. Note that the surface is discretized, being the calculations performed
at each element, whose normal defines its properties.

-10

4

3 4

-5

3
2

Mesh for Nemoh

2 1
0

0

-11
-2

-3
0 -4

Figure 4.2: Discretized body wet surface for BEM calculations

To solve the BC on the body, the free surface and and the bottom the Green’s
function are used. The solutions of the problem are the velocities and then the potential
is obtained from the sources through the influence coefficients. These, need to be
discretized and then integrated on the surface panel. In the general form they are
written:

C = C1 + C2 (4.16)

C1 =

∫∫
S
f(

1

MM ′1
)dS(M ′1); forM

′
1(x
′, y′, z′1) (4.17)

C2 =

∫∫
S

∫ π
2

−π
2

g̈(η)dθdS(M ′) (4.18)

The terms C1 are computed by an approximation to the analytical Hess formula as
in (33). For the terms C2 first the θ integral is calculated and then the double integral
S is obtained numerically. Due to the slow variation of the integration term on the
panel, integration in S can be achieved by using the approximation of the one point
formula. To compute the integral in θ, the analytical formulae proposed by (75) are
used. Through the discretization of the integral equations the following linear systems
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are derived:

∂φ̃

∂n
|Mi=

σ̃i
2

+
N∑
j=1

σ̃jK̃ij (4.19)

φ̃|Mi = −
N∑
j=1

σ̃jS̃ij (4.20)

S̃ij =
1

4π

∫∫
S
S̃(Mi,M

′)dS(M ′) (4.21)

K̃ij =
1

4π

∂

∂n
|M ′
∫∫

S
S̃(Mi,M

′)dS(M ′) (4.22)

Where S̃ is the Green’s function of the problem , N the number of bodies and the
sign ~specifies a complex entity. The elemental radiation and diffraction problems φq̃Ri
φ̃D are respectively:

∂φ̃e
∂n
|∑

i
= σqi (4.23)

∂φ̃e
∂n
|∑

i
= −∂φ̃I

∂n
|∑

i
(4.24)

Where σqi = ~eq. ~n for q = 1, 2, 3 and σqi = (~eq−3 ∧O~P0) for q = 4, 5, 6 which are the
modes corresponding to translational and rotational modes respectively. ~eq is the unit
vector of the axis q. The adoption of complex numbers is not only because of ease of
writing but to its savings in computational times. Calculations could be done in real
numbers but the unknowns would then be twice as much as with complex numbers,
having computation times of the order of 8M3 instead of 4M3 for a complex system of
order M , being M the number of panels.

The radiation problem is stated by a body forced with a sinusoidal motion in com-
pletely calm water whereas the diffraction problem is stated by the still body in the
presence of monochromatic waves, where the pressure integral of the diffraction an in-
cident potentials gives the excitation force coefficients. As an example, the radiation
and excitation force coefficients obtained as a result of applying the BEM on a floating
body are reported in figure 4.3. Note that the results are obtained in complex numbers
but expressed in real numbers, the real part of the radiation coefficients are expressed
as the added mass, the imaginary part of the radiation coefficient is expressed as the
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radiation damping and the module of the excitation force coefficients is expressed as
the excitation force influence.
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Figure 4.3: Hydrodynamic coefficients for several DoFs vs. angular frequency. a) Added Mass
coeffcient, b) Radiation damping coefficient, c) Excitation Force coefficient

When using irregular waves a transformation of the radiation coefficients is required
as shown in section 2.2. The coefficients at infinite frequency for the added mass and
the impulse response function the radiation damping are also delivered by the BEM
code NEMOH, see equations (2.105) and (2.104). Other parameters can be obtained
by means of the BEM such as far field velocity coefficients used to compute the free
surface and drift forces through the Kochin function. However, these are beyond the
scope of this study and therefore its derivation is not exposed in this thesis.

Prony’s method In order to obtain the radiation damping in irregular waves the
convolution of the impulse response function of the radiation damping with the body
velocity must be computed, see equation (2.104). This, forces the integration solver
to attain to a fixed time step, since the body velocities must be known during the
memory time, leading to a considerable increase of the amount of computation time.
A method to approximate the retardation function has been developed by Duclos and
Clément (43). This method, named the Prony’s method is fast and efficient from the
computational point of view, (83) and therefore, it has been adopted in this study.

The Prony’s approach consists in the approximation of the retardation function by
a series of damped exponential parameters. Let’s assume that the impulse response
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function of the radiation force has the following shape:

K(t) ≈
N∑
i=1

αie
βit (4.25)

Using the Prony’s method one can identify the parameters αi and βi to best fit
the original curve of K(t). Creating the following variable that aims to substitute the
convolution in equation (2.104):

Ii(t) =

∫ τ

0
αie

βi(t−τ)dz

dt
dτ (4.26)

where τ is the memory time and z the body position. Then, one can say that the
radiation force yields:

Frad =

N∑
i=1

Ii(t) (4.27)

İi(t) = αi(t) ·
dz

dt
+ βi(t) · Ii(t) (4.28)

Avoiding the convolution, by means of the introduction of a new variable Ii(t) in the
the state-space system composing the ODE equations, decreases the computing time
drastically. However, the size of the system increases since for each couple of parameters
αi and βi a new variable is added to the matrix system. The increase of the size of
the system obviously raises the computational costs of the simulation, but at the same
time, by avoiding the direct convolution for every time-step, the reduction is by far
larger than the increase.

The total length of the K(t), the memory time τ , is chosen as the time when the
amplitude of the oscillations have decreased in two orders of magnitude with respect to
the initial value. The number N of the pair αi - βi is determined through a fitting with
the original impulse response function accounting with R2 ≥ 0.98. See Fig. 4.4
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Figure 4.4: Prony’s approximation of the impulse response function

4.1.3.3 Mooring forces

Each modelled WEC has a different mooring system according to geometrical charac-
teristic and motion constrains, the HPA-LG and MoonWEC are moored with a single
TLP system and and CALM system, respectively. Therefore, two models have been
developed to account for the mooring forces. In this subsection, the modelling of the
forces that keep the structures in place are thoroughly described.

Mono-TLP The HPA-LG is moored to the seabed by gravity, a concrete base, act-
ing as a dead weight is installed onto the sea bottom, the linear electric generator is
placed on top of the base and the interconnecting lines, which drive the electric gener-
ator, also act as mooring lines, as they keep the floating structures in place, under the
form of a single TLP, see section 2.5. Furhtermore, the linear generator accounts with
end-stop mechanisms which provide supplementary stiffness to the system, when the
translator reaches the the end of its natural path. This is a survivability feature since it
is mainly activated under severe stormy conditions to ensure the device integrity. The
interconnecting lines have been modelled as very stiff springs acting only in traction,
corresponding to wires working in tension. The compression phase has been neglected
as, being the elongation negative would correspond to a slack wire, which has no dy-
namic contribution. Actually, for the sake of the device health and performance this
phase ought to be avoided, since the passage from slack to taut wires produces large
strains, which derive in slamming effects that produce regime instability and joint fail-
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ures. The end-stop mechanism is also modelled as a very stiff spring only activated
when a certain threshold is exceeded:

Fline(t) =

{
−Kline∆l(t) for ∆l(t) > 0

0 Otherwise
(4.29)

Fend(t) =

{
−Kend(z(t)− Zlim) for |z(t)| > |Zlim|
0 Otherwise

(4.30)

where Kline is the elastic constant of the wire, ∆l(t) is the wire elongation computed
as the relative displacement between bodies, Kend is the elastic constant of the end-stop
spring, and Zlim is the activation coordinate of the end-stop mechanism.

CALM system For the MoonWEC device, the CALM system has been implemented
to keep the device at place. In section 2.5, the shape equation for a catenary line has
been derived and then, this relation is used to compute the global dynamic equation
of the line, which depends on the chain acceleration. Equation (2.140) relates the
geometrical characteristics with the static tensions given at the catenary line. Equation
(2.140), reproduced here for convenience in the dimensional form, has two unknowns,
T0 and l:

Ph

T0
= cosh(

Pl

T0
)− 1 (4.31)

Where, T0 is the static tension of the chain in N , P is its linear weight N/m, h is
the water depth and l is the horizontal distance from the joint in the structure and the
point where the chain lies on the seabed in m, see figure 2.27. By combining equation
(4.31) with the geometrical constrain in equation (2.146) and after some mathematical
passages and simplifications one can arrive to the following relation:

cosh(
√

(αh)2 + 2αh− α(lT − l′))− αh− 1 = 0 (4.32)

Being α = P
T0
. Note that equation (4.32) can only be solved iteratively, to carry this

operation numerically several methods are available. In this study a Newton-Raphson
algorithm of the form (102) has been implemented, using equation (4.32) as the control
function:

f(αj) = cosh(
√

(αjh)2 + 2αjh− αj(lT − l′))− αjh− 1 (4.33)
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f ′(αj) = [h
αjh+ 1√

(αjh)2 + 2αjh
− (lT − l′)] sinh(

√
(αjh)2 + 2αjh−αj(lT − l′))−h (4.34)

αj+1 = αj −
f(αj)

f ′(αj)
(4.35)

Where j states the current iteration. The iterative process keeps ongoing while
|αj+1 − αj | > T where T is the tolerance, which has previously been established.

Having obtained the horizontal static tension of the chain, the horizontal force ex-
erted by the catenary line can be yielded from equation (2.137). However, the chain
acceleration ẍc depends also on Tt, which in turn depends on the floating structure
position x and thus, on the structure acceleration ẍ as well. This makes so that an
integration variable of the ODE system representing the systems dynamics has a direct
dependency on another integration variable ẍc(ẍ), violating the variable independence
rule for ODEs resolution. An approximation method of ẍc is adopted to tackle this
issue. This method, proposed by (38), addresses the problematic by substituting the
shape function of the catenary line by the Taylor expansion series to the second or-
der. Considering the shape function of the catenary line for an aleatory position of the
floating structure (x, z):

h+ z = β[cosh(
l + x

β
)− 1] (4.36)

where β = β0 + β̄, is the time updated value of β0 from equation (2.148). Applying
the Taylor series expansion in terms of the equilibrium position x, see (35):

h+ z = (β0 + β̄)[cosh(
l

β0 + β̄
)− 1] + x sinh(

l

β0 + β̄
) (4.37)

Furthermore, the Taylor series expansion may be also written in terms of the pa-
rameter β̄ about its equilibrium position

ηβ̄2 + (ξ + ψx)β̄ + (z − ϕx) = 0 (4.38)

η = l
β2
0

√
h
β0

( hβ0 + 2); ξ = l−h
β0

+ lh
β2
0
;

ψ = l
β2
0
( hβ0 + 1); ϕ =

√
h
β0

( hβ0 + 2)

(4.39)
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Where the analytical solution of β̄ yields

β̄ =
−(ξ + ψx)±

√
(ξ + ψx)2 − 4η(z − ϕx

2η
) (4.40)

Knowing that β̄(x = 0, z = 0) = 0 the only possible solution for equation (4.40)
is by taking only the + sign. Finally, same procedure has been developed for both
dimensions (x, z) where the Taylor series expansion about its stationary points results
in:

β̄(x, z) = ( ξψ+2ηϕ
2ηψ − ψ

2η )x− ( 1
ψ )z + 1

4ηψ [ψ2 − ( ξψ+2ηϕ
ξ )2]x2 + ( ξψ+2ηϕ

ξ3
)xz...

...− ( η
ξ3

)z2 − 1
4ξ3

[ψ2 − 3( ξψ+2ηϕ
ξ )2]zx2 + 3η( ξψ+2ηϕ

ξ5
)xz2 − 2(η

2

ξ5
)z3

(4.41)

Now, substituting equation (2.149) into equation (2.137), and the result into equa-
tion (2.136) the problem gets fully determined, knowing that β̇ and β̈ can be obtained
from the derivatives of equation (4.41), one can show that the equivalent equation of
motion of the structure-mooring systems is:

Fe(t) = meqẍ+ Cdẋ+ [A+ 2Fz + 6Dz2]x+ Ex3 − Cẋż −Gz̈ (4.42)

Where

A = P 2ϕ
ξ ; F = P ( ξψ+2ηϕ

ξ3
)

E = P ξψ+2ηϕ
2ηξ3

[( ξψ+2ηϕ
ξ )2 − ψ2] G = A

g

D = Pη( ξψ+2ηϕ
ξ5

) mc = P
g β0 sinh( l

β0
)

meq = m+ 2mc − A
g h C = 2G

(4.43)

The convenience of this method relies on its computational efficiency, as the model
plummets its computation times for two main reasons. First, the geometrical set-up of
the CALM system is pre-calculated at the beginning, when the system is at rest and
in equilibrium and therefore, the heavy computations regarding the iterative process
to solve equation (2.146) are avoided during the simulation. Second, as the chains
acceleration are embedded within the structure dynamics, the system accounts for two
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less DoFs, which translated into the numerical model means two less ODEs to solve,
with the corresponding savings in computational time.

4.1.3.4 Turbine

The blade of a turbine produces a resistance force to the fluid flow, which by the reaction
principle used is then used to drive the turbine. In the case of the Wells turbine, the
particular blade geometry (NACA00XX symmetric profile, (1)) makes so that the the
tangential component of the resistance force has always the same direction regardless
the fluid flow direction. The resistance force (equation (2.150)) can be subdivided in
two separated forces, the drag force D and the lift force L. The former is parallel to
the flow relative direction but with opposite sign and the latter is perpendicular to the
flow relative direction. Through equations (2.151) and (2.152), these two forces can, in
turn, be decomposed into a parallel and a perpendicular component to the turbine axis;
FA and Ft, respectively. Figure 4.5 illustrates the force schematic of the Wells turbine
blade for both directions of the flow.

Figure 4.5: W-T aerodynamic forces and velocity triangles. a) Compression stages. b) Suction
stages.

Since Ft and FA are a geometrical derivation of L and D, which have the empirical
formulation reported in equation (2.106), the same formulation can also be applied to
compute the tangential and axial components:

Ft =
1

2
ρCt0AbVr(t)

2 (4.44)

FA =
1

2
ρCA0AbVr(t)

2 (4.45)
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Where ρ is the fluid density, Ab is the blade planar area, Vr is the relative velocity,
obtained from the velocity triangle and, CA0 and Ct0 are the isolated-blade coefficients
for the axial and tangential force,respectively. Such coefficients derive from the drag
force coefficients and thus, share a common pattern; i.e., they depend on the blade and
flow characteristics. On the one hand, the shape characteristic is represented by the
angle of attack α, which is the angle of incidence of the relative flow with respect to
the blade symmetry axis. On the other hand, the flow characteristics are represented
by the MACH and Reynolds numbers:

M(t) =
Vr(t)

c
(4.46)

Re(t) =
ρVr(t)C

µ
(4.47)

where Vr is the relative velocity, c is the speed of sound in the sea water, ρ is the sea
water density, µ is dynamic sea water viscosity and C is the chord length of the blade.
When M < 0.3 the flow compressibility can be neglected (49), having in mind that the
speed of sound for sea water is c = 1500 m/s, this makes so that Vr < 450 m/s and as
far as this constraint is respected, Ct0 and CA0 won’t depend on the MACH number,
and equations (4.45) and (4.44) can be applied as is. However, the axial and tangential
coefficients do vary according to the attack angle and the Reynolds number. Figure 4.6
shows the dependency on both parameters according to wind tunnel experiments made
by (81) on different blade geometries.
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Figure 4.6: Aerodynamic coefficients on several symmetrical NACA profiles for several
Reynolds numbers a) Variation of the tangential force coefficient with incident angle.
b)Variation of the axial force coefficient with incident angle (80)

Figure 4.6 has been digitalized in order to store the coefficients variation as function
of α and Re. The free software Plot Digitizer has been used (5) for the digitalization.
Since the relative velocity Vr(t) is function of time, so are α and Re. However, the co-
efficient curves are only available for two different Re number; thus, with the Reynolds
number computed at each time-step an interpolation is needed and carried to obtain
the correct coefficients for that time-step. From figure 4.6, one can note that the stall
angle is also function of the Re number; hence, the interpolation has to be performed
also according to the attack angle and not only to the coefficients. The following in-
terpolation procedure has been applied: firstly, the new angle of attack is interpolated
according to the Re number; subsequently, a new array of attack angles is created
[0 : ∆α : αstall]

◦, where ∆α is the incremental step of α that makes this new array the
same size as the digitalized ones. Afterwards, the interpolation of the coefficient values
is done according to the Re number. Finally, to obtain the single value of the coefficient
one last interpolation based on the current angle of attack is computed. If the current
angle of attack is greater than the stall angle, then coefficient is assumed to be equal
to zero, since after the stall conditions the effective work done by the turbine is null
due to flow separation. Figure 4.7 illustrates the digitized curves from figure 4.6 for
the NACA0021 blade profile (solid line) and the interpolated curves for other Reynolds
numbers (dashed lines).
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Figure 4.7: Digitized curves from figure 4.6 for NACA0021 profile (solid lines) and interpolated
curves for other Reynolds numbers (discontinuous lines). a) Tangential coefficients, b) Axial
coefficients

Once the coefficients for the isolated foil have been yielded, equations (4.48) and
(4.49) are applied to obtain the coefficients accounting for the blade interaction effect:

CA
CA0

=
1

1− σ2
(4.48)

Ct
Ct0

=
CA
CA0

(4.49)

where, σ is the ratio between the blade planar area and the hub-to-tip area. See
figure 4.9 illustrates the plan view of the turbines rotor. Finally, these are applied into
equations (4.50) and (4.51) to obtain the overall tangential and axial forces generated
by the turbine.

Ft =
1

2
NρCtAbV

2
r (4.50)

FA =
1

2
NρCAAbV

2
r (4.51)

Where N is the number of blades of the turbine. FA is then applied to the floating
structure equation of motion, decomposed according to its coordinates. Furthermore,
the flow in the moonpool reacts to the presence of the turbine with a pressure drop;
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this drop is only due to FA, as the component of Ft is null due to its normal orientation
to the flow direction. Therefore, FA is also applied in the moonpool equation of motion
with reversed sign. Finally, the torque T = RmidFt generated by the turbine is applied
in its rotational DoF equation of motion. Rmid is the distance between the middle point
of the blade and the centre of rotation of the turbine.

4.1.3.5 Electric Generator

Synchronous generator models are usually based on the hypothesis that the rotation
speed is constant, proof of that are some parameters such as synchronous reactance in
the equivalent circuit scheme Xs = ωLs, which is assumed to be a constant constant
value; consequently, the electric frequency ω and the inductance Ls must be also con-
stant. However, this is not the case of neither of the studied WEC in this thesis. As
described in section 2.3, this constraint is overcome by the introduction of PM gener-
ators, whose electric production adapts to the speed of the rotor without being forced
to work in the nominal conditions unlike other synchronous machines. However, for
the nominal conditions is where the PM generator efficiency peaks, making it the key
design parameter.

The pole pair width wp is defined as the distance from a north pole of the PM to
the next one; therefore, the electric angular frequency can be expressed as:

ω(t) =
2π

wp
ϕ̇ (4.52)

where ϕ̇ is the speed of the rotor. The electric position θ is obtained by integrating
the electric angular frequency over time:

θ(t) =

∫ t

0
ω(t)dt =

2π

wp
ϕ(t) (4.53)

The magnetic flux, described by equation (2.117), now can be expressed as function
of the electric position θ and the load angle δ. The load angle represents a shifting of
the position due to the load upon which the generator is subjected. The load concept
can be expressed as the destination of the generated electricity. For instance, if the
electricity is to be consumed by an appliance, this will be the load, in the case under
study, the load is the electric distribution grid. Each load has unique characteristics
which are specified by the load angle, resistance and inductance. The induced magnetic
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flux results in:

Φ(t) = Φt cos(θ − δ) = Φt cos[
2π

wp
ϕ− δ] (4.54)

Where Φt is the magnetic flux amplitude, which depends on the magnetic field in a
given stator tooth Bt, on the width of the tooth wt, on the width of the stator stack d,
the total number of poles p, the number of slots per pole q and the number windings per
slot c. Hence, obtaining the following relation Φt = Btwtdpqc. To obtain the induced
voltage, as dictated by the Faraday’s law, equation 2.120 is applied in terms of equation
(4.53), yielding:

e(t) =
2πBtwtdpqc

wp
ϕ̇ sin[

2π

wp
ϕ− δ] (4.55)

The computed voltage corresponds to a phase voltage, as stated in section 2.3, PM
generators being studied for WECs are three-phase generators. Three-phase systems
stabilize electromagnetic induction by minimizing the amplitude of oscillation of the
induced voltage, since when the induced voltage of a certain phase is null the other two
phases compensate the induction by having non-null induced voltages. The optimal
configuration of a three-phase system is achieved by shifting the electric position of
each phase 120◦from the other two phases. Hence, the electric voltage of each phase
results in:

ea(t) = 2πBtwtdpqc
wp

ϕ̇(t) sin[ 2πwpϕ(t)− δ]

eb(t) = 2πBtwtdpqc
wp

ϕ̇(t) sin[ 2πwpϕ(t)− δ + 2π
3 ]

ec(t) = 2πBtwtdpqc
wp

ϕ̇(t) sin[ 2πwpϕ(t)− δ − 2π
3 ]

(4.56)

Following the equivalent electric circuit, represented in figure 2.20, the electric cur-
rent of each phase is computed as follows:

Ia(t) = ea(t) cos δ
Rc+Rload

Ib(t) = eb(t) cos δ
Rc+Rload

Ic(t) = ec(t) cos δ
Rc+Rload

(4.57)
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What is really of interest however, is the voltage at the load bornes as there is
where the generated electricity is sent to the grid, see figure 2.20. The tension at the
load bornes is obtained:

ua(t) = ea(t) cos δ −RcIa(t)

ub(t) = eb(t) cos δ −RcIb(t)

uc(t) = ec(t) cos δ −RcIc(t)

(4.58)

Once all the electric conditions have been found, the next logical step is to compute
the instantaneous generated power ST (t). Electric power is measured in VoltAmpere V A
in the SI units. The total, or apparent, electric power can divided into two subtypes
of power, the active and reactive power. The former is the power that can be used
by the load and is measured in watts W . The latter is considered as a loss, and
derives from the imaginary part of the inductance of the equivalent circuit, measured
in VoltAmpereReactive V AR. For this reason, the reactive part needs to be minimized.
The power angle γ, which is derived from the power phasor diagram ( analogous to
figure 2.21), reports the relation between the active and the reactive power. In the
studied case, being the load considered purely resistive, makes so that γ = 0, condition
that makes the reactive power null and thus, the total power equal to the active power
as from the phasor diagram one can say that S = P cos γ and in this case, the power
factor is cos γ = 1. Finally, the total instantaneous power is obtained by adding each
phase power.

Sa(t) = Pa(t) = ua(t)Ia(t)

Sb(t) = Pb(t) = ub(t)Ib(t)

Sc(t) = Pc(t) = uc(t)Ic(t)

ST (t) = PT (t) = Pa(t) + Pb(t) + Pc(t)

(4.59)

In order to assess the effective generator performance, by means of the nominal speed
and power, the root mean squared parameters have to be derived. These, represent the
equivalent to a direct current system and provide a useful reference for performance
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reference.

erms = max(ea(t))√
2

Irms = max(Ia(t))√
2

urms = max(ua(t))√
2

Prms = urmsIrms

(4.60)

Electromagnetic induction generates also a resistant force Frm that opposes to the
movement. The procedure to obtain such forces begins with the computing of of the
resistant magnetic power, obtained through the generator electric efficiency. Afterwards,
the force is obtained by applying the principle that states that power is force times
velocity. This force has to be applied then into the equation of motion of the electric
generator coupling effectively the electromagnetic and mechanic models.

Prm(t) = PT (t)
ηel

Frm(t) = Prm(t)
ϕ̇

(4.61)

This procedure can be applied either to the rotative machine coupled to the W-T
of the MoonWEC, either to the linear generator of the HPA-LG. However, there is
a main difference between both generators, one has a linear motion and the other a
rotative motion, which has two basic implications in the modelling. The first difference
comes by the representation of the driving velocity of the rotor (or translator) ϕ̇. For
the LG, ϕ̇ is a linear velocity which varies in sign depending whether the translator
is going upwards ( ϕ̇>0) or downwards (ϕ̇<0) and its units are the SI units (m/s).
For the rotative machine instead, ϕ̇ is an angular velocity whose units are revolutions
per second and the pole width is computed as the arch length between two consecutive
north poles. The second main difference within the magnetic resistant force, in which
for the rotative generator is a torque.

4.1.4 Equations of motion

The dynamic behaviour of the studied WECs is governed through the general equation
of motion which is expressed in terms of the Newton’s second law (see equation( 2.82)).
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index Body Mode Coordinate
1 Floater Surge z1
2 Floater Heave z2
3 Submerged Sphere Surge z3
4 Submerged Sphere Heave z4
5 LG Translator Vertical z5

Table 4.2: Organisation of the modelled DoFs for the HPA-LG device.

It implements the coupling of the components from different nature altogether to obtain
global behaviour of the WEC. Each DoF of the system has its own equation of motion,
since the dynamics of a certain DoF can have an influence on another DoFs’ dynamics,
different equations of motions may be correlated by coupling coefficients. Therefore,
when the system has more than one DoF the equations of motion are written in the
matrix form, having the matrix system a dimension according to the number of modelled
DoFs. As the potential flow model follows the Lagrangian approach the system described
by the equation of motion can be modelled as a state-space system. This makes so that,
all the components composing the equation of motion rely either on the position, velocity
or acceleration of it, or any other possible combination between them. A common
denominator links the three state-space variable and that is time, as they are directly
related by the time derivative. Therefore the equation of motion system becomes and
a system of ODEs numerically integrated following a Runge-Kutta scheme of the fifth
order.

4.1.4.1 HPA-LG

The HPA-LG prototype has been modelled as a three-body system account with 5 DoFs.
The first body is the cylindrical floater which has two DoFs, the surge and heave modes
(see figs. 1.11 and 2.16). The second body is a submerged sphere, placed at a depth of
25 m, also accounting for the surge and heave modes. The third body, representing the
linear generator translator, has only been modelled in the vertical direction. Table 4.2
summarizes the modelled DoFs and establishes the indexing of the ODE system.

Following the logic declared by table 4.2 the system of equation of motions is reported
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below. For clarity each equation of motion has been written independently:

(m1 +m∞1 )z̈1(t) = F 1
e (t) + F 1

r (t) + F 13
moor(t) + F 1

d (t)

(m2 +m∞2 )z̈2(t) = F 2
e (t) + F 2

r (t) + F 24
moor(t) + Fh(t)

(m3 +m∞3 )z̈3(t) = F 31
moor(t) + F 35

moorh(t) + F 3
d (t)

(m4 +m∞4 )z̈4(t) = F 42
moor(t) + F 45

moorv(t) + F 4
d (t)

m5z̈5(t) = F 5
moor(t) + Fpto(t)

(4.62)

Where, m is the mass of the body, m∞ is the added mass at ∞ frequency, the
different Fe(t) are the wave excitation forces, Fr(t) are the radiation damping forces,
Fd(t) are the viscous drag forces, Fmoor(t) are the forces exerted by the mooring system,
Fh(t) is the hydrostatic restoring force and Fpto is the force due to the PTO system. For
details on the derivation of these forces refer to sections 4.1.2, 4.1.3.1, 4.1.3.2, 4.1.3.2,
4.1.3.2, 4.1.3.3 and 4.1.3.5.

4.1.4.2 MoonWEC

The MoonWEC has been modelled as a three-body system with five DoFs. The first
body is the floating structure of the device, which is allowed to move in the surge, heave
and pitch modes. The second modelled body is the water entrained in the moonpool
orifice, which has been allowed to move freely only along the symmetry axis of the
floating structure. The moonpol equation of motion however, has been developed in
next section 4.1.4.3, due to its particular dynamic behaviour. The author thinks that
by separating the dynamic derivation of both bodies a more thorough local vision is
obtained for each body, gaining in clarity and comprehension of the whole system.
Finally, the third body is the wells turbine which has one DoF of rotation around the
symmetry axis of the MoonWEC’s structure.

The surge motion of the MoonWEC is referenced by the x coordinate and the index
1, the heave mode is represented by the coordinate y, the index 2 and the pitch rotation
by θ and the index 3 and the rotation of the Wells turbine is stated by the coordinate
ϕ and the index four. As in the previous section, for clarity, the equations of motion
are reported individually despite being part of a matrix system.
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Figure 4.8: Reference model of the MoonWEC for mathematical characterisation

(m1 +m∞
1 )ẍ+ (m13 +m∞

13)θ̈ = F 1
e (t) + F 1

r (t) + F 13
r (t) + F 1

d (t) + F 1
moor + F 1

MP + F 14
d (t)

(m2 +m∞
2 )ÿ = F 2

e (t) + F 2
r (t) + F 2

h (t) + F 2
d (t) + F 2

moor + F 2
MP + F 24

d (t)

(m3 +m∞
3 )θ̈ + (m31 +m∞

31)ẍ = M3
e (t) +M3

r (t) + F 31
r (t) +M1

moor +M1
MP +M3

h(t)

m4ϕ̈ = M4
l (t) +Mpto(t)

(4.63)

Where, m is the mass of the body, m∞ is the added mass at ∞ frequency, the
different Fe(t) are the wave excitation forces, Fr(t) are the radiation damping forces,
Fd(t) are the viscous drag forces, Fmoor(t) are the forces exerted by the mooring system,
Fh(t) is the hydrostatic restoring force, Ml(t) is the lift torque produced by the Wells
turbine and Mpto is the resistant torque due to the PTO system. For details on the
derivation of these forces refer to sections 4.1.2, 4.1.3.1, 4.1.3.2, 4.1.3.2, 4.1.3.2, 4.1.3.3,
4.1.4.3, 4.1.3.4 and 4.1.3.5.
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Figure 4.9: Reference model of the Wells turbine for mathematical characterisation
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4.1.4.3 Moonpool

As introduced in section 2.4, a moonpool is a water column located within an offshore
structure whose lower opening is directly connected to the sea. As a result of wave
excitation, a mooonpool reacts as any floating structure would, having its own natural
period and response to waves. Moonpool dynamics can be approximated as varying
draft floating cylinder, as first demonstrated by (9) and later by (51, 66), who presented
upgraded versions of the initial model. In this thesis, two main new features have been
included in the moonpool model. Firslty, as the dimensions of the MoonWEC are
so to make the pitch mode relevant in the device dynamics, the rotational mode the
structure forces the moonpool to rotate as well. As the rotation of the moonpool is
not around its centre of gravity but the centre of gravity of the MoonWEC, coupling
harmonics are induced in both structures, which makes assume a highly non-linear
behaviour. Secondly, the drag induced by the wells turbine has also been taken into
account by the reaction principle, creating another feedback that increases the overall
dynamics complexity. Figure 4.8 shows the system upon which the mathematical model
is derived. The moonpool is represented by the dashed area.

Following the deformable volume approach we have that the mass conservation must
be respected as stated in equation (2.131), reproduced here for clarity:∫

S
ρ( ~vMP − ~vS)× ~ndA = −dMMP

dt
(4.64)

Realising that ( ~vMP − ~vS) is the relative moonpool velocity ~vr and following the
notation from figure 4.8, the left and right hand side of equation (4.64) can be rewritten
respectively as:

∫
S
ρ~vr × ~ndA = ρSmp(vMP sin(θ)− ẋ, vMP cos(θ)− ẏ)

(
− sin(θ)

− cos(θ)

)
(4.65)

−dMMP

dt
= − d

dt
ρSmp(BG+ ξ) = −ρSmpξ̇ (4.66)

where Smp is the area of the Control Surface (CS) and BG is the distance from the
Centre of Gravity (CoG) of the structure to S. Note that the MoonWEC structure CoG
has been selected as the origin of the reference system. Recomposing equation (4.64)
from equations (4.65) and (4.66), applying the opportune mathematical simplifications
and finally applying the small angle hypothesis, for which sin θ ' θ and cos θ ' 1, the
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absolute velocity of the moonpool is yielded

VMP = ẋθ + ẏ + ξ̇ (4.67)

where the · on top of a variable expresses its time derivative d
dt . The following step is

to derive the momentum equation of a deformable volume, written in equation (2.132),
and here decomposed for the axes x and y as

∑ ~F = (
∑
Fx,
∑
Fy):

∑
Fx =

d

dt
(

∫
CV

vxρd∆) +

∫
CS

vxρ(~Vr × ~n)dA (4.68)

∑
Fy =

d

dt
(

∫
CV

vyρd∆) +

∫
CS

vyρ(~Vr × ~n)dA (4.69)

where, CV and CS are the control volume and surface, respectively; vx and vy are
the horizontal and vertical velocities of the surface point of the moonpool P = (xp, yp),
which are derived from figure 4.8:

xp = x+ ξ sin θ;

vx = d
dtxp = ẋ+ ξ̇ sin θ + θ̇ξ cos θ

(4.70)

yp = y + ξ cos θ;

vy = d
dtyp = ẏ + ξ̇ cos θ − θ̇ξ sin θ

(4.71)

By taking each term of equations (4.68) and (4.69), developing them separately and
then reunifying them, the final equations for

∑
Fx and

∑
Fy are obtained. Note that

the small angle hypothesis has also been applied during this procedure:

d
dt(
∫
CV vxρd∆) = ρSmp

d
dt((ẋ+ ξ̇ sin θ + θ̇ξ cos θ)(BG+ ξ)) = ...

... = ρSmp(ξ̇(ẋ+ ξ̇θ + θ̇ξ) + (BG+ ξ)(ẍ+ ξ̈θ + θ̈ξ + 2θ̇ẋi− θ̇2ξθ))
(4.72)

∫
CS vxρ(~Vr × ~n)dA = ρSmp((ẋ+ ξ̇ sin θ + θ̇ cos θ)(−vMP (cos2 θ + ...

...+ sin2 θ) + ẋ sin θ + ẏ cos θ)) = ρSmp(−ξ̇(ẋ+ ξ̇θ + θ̇ξ))

(4.73)
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∑
Fx = ρSmp((BG+ ξ)(ẍ+ ξ̈θ + θ̈ξ + 2θ̇ξ̇ − θ̇2ξθ)) (4.74)

d
dt(
∫
CV vyρd∆) = ρSmp

d
dt((ẏ + ξ̇ cos θ − ˙thetaξ sin θ)(BG+ ξ)) = ...

= ρSmp(ẋi(ẏ + ξ̇ − θ̇ξθ) + (BG+ ξ)(ÿ + ξ̈ − ¨thetaξθ − 2 ˙thetaẋiθ − ˙theta
2
ξ))

(4.75)

∫
CS vyρ(~Vr × ~n)dA = ρSmp((ẏ + ξ̇ cos θ − θ̇ sin θ)(−vMP (cos2 θ + sin2 θ) + ...

...+ ẋ sin θ + ẏ cos θ)) = ρSmp(−ξ̇(ẏ + ξ̇ − θ̇ξθ))
(4.76)

∑
Fy = ρSmp((BG+ ξ)(ÿ + ξ̈ − θ̈ξθ − 2θ̇ξ̇θ − θ̇2ξ)) (4.77)

Finally, as the moonpool axes are (ξ, σ), the forces (
∑
Fx,
∑
Fy) are projected

accordingly. However, as the surface of the MoonWEC is considered impermeable, the
motion is restricted only in the ξ direction, thus only the ξ projected has been carried
out, following the logic applied in the previous steps, the small angle hypothesis has
been applied in this operation too:

∑
Fξ =

∑
Fx sin θ +

∑
Fy cos θ;

∑
Fξ = ρSmp(BG+ ξ)(ẍθ + ÿ + ξ̈ − θ2ξ)

(4.78)

The term
∑
Fξ, together with the hydrostatic pressure constitute the components

of the pressure at the control surface Smp. The external side of the CS is exposed to
the sea and thus, the pressure exerted on it comprises the hydrostatic term, the inertial
and dynamic terms induced by the radiation, the dynamic and inertial terms due to the
incident wave and a dynamic term due to viscous effects. The expressions reporting the
inner and outer pressures of the CS pi and po yielded

pi =
∑
Fξ

Smp
+ ρg(BG+ ξ)− pw = ρ(BG+ ξ)(ẍθ + ÿ + ξ̈ − θ̇2ξ + g)− pw

po = −ρg(y −BG) + prad + pe + pd

(4.79)
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where, pw is the pressure drop generated by the presence of the Wells turbine. The
balance between the pressure of the two faces of the CS Smp is what drives the motion
of the moonpool, described by the equation of motion. Moreover, despite the fact that
the moonpool is treated as body with a deformable volume, the CS remains constant in
time as the volume variation occurs only along the normal axis ξ. Hence, enabling to
assume the hypothesis of rigid body only in the CS Smp. By multiplying the equation of
motion by Smp, the hydrodynamic terms of radiation, wave excitation and viscous drag
can be computed as stated in section 4.1.3.2, which leads to the following expression:

(pi − po)Smp =
∑
Fξ + ρgSmp(y −BG) + Fd + Fr + Fe + Fwd ;

(ρSmp(BG+ ξ) +mξ
∞)(ξ̈ + ẍθ + ÿ) = fξe ∗ η − 1

2C
ξ
dSmp(ẋθ + ξ̇)2 − ...

...− kξ ∗ (ẋθ + ξ̇)− ρSmp((BG+ ξ)(−θ̇2ξ + g) + g(y −BG))−mξ
∞θ̇(ẋ− ẏ) + Fwd

(4.80)

where mξ
∞ is the added mass coefficient of the moonpool, Cξd is its drag coefficient,

assumed to be equal to an equivalent cylinder drag coefficient, kξ and f ξe are the impulse
response functions of the the wave radiation and excitation, respectively and Fwd is the
drag force deriving from the presence of the Wells turbine. The pressure drop causing
this drag effect is where the energy absorption by the turbine is taking place, used then
to generate the electricity.

As seen on the previous paragraphs, the moonpool is free to move along the ξ axis.
Nevertheless, the relative motion is blocked along the σ axis by means of the structure
walls. This exerts a considerable influence in the MoonWEC dynamics as stated in
equation (4.63) through F xMP and F yMP , see section 4.1.4.2. Such forces, since their
origin is purely inertial, are computed by means of the Newton’s second law:

∑
~F = mMP~aM (4.81)

Where, mMP is the moonpool mass, which has been obtained from equation (4.66)
and M is the centre of gravity of the moonpool. As a result of the deformable volume
condition, the point M (fig. 4.8) is not static with respect to the MoonWEC and its
position varies along the ξ axis. Thus, to compute the acceleration its position must be
found first. This is done by applying the definition of centre of mass, which is no other
than a weighted average along the ξ axis, yielding the following distance ‖GM‖:

‖GM‖ =
−BG2 + ξ2

2(BG+ ξ)
(4.82)
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4.1 Potential flow model

Now, taking the centre of gravity of the structure as reference and projecting GM
onto the (x, y) axes the coordinates of the point M are obtained. Subsequently, the
time derivative of such coordinates is applied twice to find the acceleration and after
some mathematical manipulation and the application of the small angle hypothesis the
following relations are found:

xM = x+ −BG2+ξ2

2(BG+ξ) sin θ

yM = y + −BG2+ξ2

2(BG+ξ) cos θ

(4.83)

dxM
dt = vxM = ẋ+ 1

(BG+ξ) [ξξ̇ sin θ + −BG2+ξ2

2 (− ξ̇ sin θ
(BG+ξ) + cos θθ̇)]

dyM
dt = vyM = ẏ + 1

(BG+ξ) [ξξ̇ sin θ − (−BG2 + ξ2)( ξ̇ cos θ
(BG+ξ) + θ̇ sin θ)]

(4.84)

dvxM
dt = axM = ẍ+ 1

(BG+ξ) [ξ
2θ + ξ̈ξθ + 2ξξ̇(θ̇ − ξ̇

BG+ξ ) + ...

...+ −BG2+ξ2

2 ( ξ̈ξθ
BG+ξ + θ̇2θ + θ̈ − ξ̇

BG+ξ (θ̇ + 1− 2ξ̇θ
BG+ξ ))]

dvyM
dt = ayM = ÿ + 1

(BG+ξ) [ξ̇
2 + ξ̈ξ − 2ξξ̇(θ̇θ + ξ̇

BG+ξ )− ...

...− −BG
2+ξ2

2 (θ̈θ − θ̇2 + 1
(BG+ξ)(ξ̈ − 2ξξ̇(θ̇θ + ξ̇

BG+ξ )))]

(4.85)

Substituting the accelerations into equation (4.81) the forces at the point M are
found. However, these need to be projected onto the axis σ to obtain the component
that has an effective influence to the MoonWEC structure. Finally, an utter projection
of Fσ back to the axes (x, y) yields the forces F xMP and F yMP in the correct reference
system:

Fx = ρSmp(BG+ ξ)axM

Fy = ρSmp(BG+ ξ)ayM

Fσ = Fx cos θ − Fy sin θ = Fx − Fyθ

(4.86)
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Fσ = ρSmp[(BG+ξ)(ẍ−ÿθ)+2ξ̇ξθ+
−BG2 + ξ2

2
(θ̈+ξ̈θ−2θ̇2θ+

1

BG+ ξ
(ξ̈ξθ−ξ̇(θ̇+1)))] (4.87)

F xMP = Fσ cos θ = Fσ

F yMP = −Fσ sin θ = −Fσθ = −ρSmp[(BG+ ξ)ẍθ + −BG2+ξ2

2 (θ̈θ − ξ̇θ(θ̇+1)
BG+ξ )]

(4.88)

Finally, there is only one term left to fully define the dynamic influence of the
moonpool upon the the MoonWEC. It is the moment created by the force Fσ due to
the distance between both gravity centres GM , obtained in equation 4.82:

MG
MP = GMFσ (4.89)

4.2 REEF3D CFD

In thesis, the open source CFD code REEF3D (23) has been used to provide an insight
on how different methods of generating and absorbing waves perform in a Numerical
Wave Tank. The software provides two options for wave generation; the relaxation
method, presented in (71) and further extended by (57), and the Dirichlet approach.
Similarly, wave absorption can be achieved using the relaxation method or active ab-
sorption, such as in (55). Different simulations combining the above methods have been
run in order find the optimal set up.

The rise of computational power in recent years has brought Computational Fluid
Dynamics to the forefront as a supplementary tool to physical testing for marine and
coastal engineering. A lot of effort has been devoted lately towards wave modelling
in CFD. Several models describing wave characteristics and interaction with coastal
structures have been developed and validated.

Being able to simulating wave breaking is one of the star features of CFD; since
its high level of accuracy makes it the only type of model capable to do so. Different
models of spilling and plunging breaking waves models are introduced in (12, 82, 98).
Wave transformation over a submerged bar is presented in (60). Also, emerged structure
interaction, rip currents on barred beaches and wave run-up are investigated in (56).
Different types of porous structures are addressed in (58, 64); regarding their interaction
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with solitary and regular waves for the former and irregular waves for the latter.

Simulations are usually carried in enclosed domains, which emulate wave tanks and
flumes typically used for physical testing. Wave tanks require a special treatment of
the BCs to ensure a good wave generation and an efficient wave absorption. Several
methods to prevent reflection have been implemented with success. These methods
can be divided into two major categories; namely, passive and active absorption. The
former consists in installing a porous medium at the walls of the tank so the energy
of the incoming waves is dissipated. The principle of AWA is to generate the same
reflected wave that reaches the wave-maker but in the exact opposite direction, so they
cancel each other out (42).

In the same way, reflection needs to be dealt within numerical calculations. There
are several different theories to absorb waves and all of them rely on the boundaries’
properties. The first kind of Non-Reflective Boundary Condition (NRBC) to be used
was the Sommerfeld-like NRBC, which defined the radiation condition, described by
Sommerfeld in (88), to be null at the BC. However, it was soon noticed it could gen-
erate relevant spurious waves denoting the presence of large errors in the computed
solution. Afterwards, (76) developed a new type of BC which damps the waves, it is
colloquially known as a sponge layer and consists in adding an extra volume in the do-
main which gradually absorbs the waves. At the beginning of the 80’s several upgrades
to the Sommerfeld NRBC were presented by (21, 36), which consisted in applying some
modifications to the the radiation condition, which made them less sensitive to the rela-
tive wave direction, nevertheless it still generated serious spurious waves in some cases.
These approaches are local, meaning that each element of the boundary has degrees of
freedom.

Afterwards, non-local schemes appeared, in which, each element of the boundary is
coupled sharing common degrees of freedom with the others. The most famous non-local
NRBC is the Dirichlet to Neumann BC, which consists in the coupling of the Dirichlet
condition to the Neumann velocities through the DtN map (61). Then, the Perfectly
Match Layer (PML) (22, 94) BC was invented, which is essentially an upgrade of the
traditional sponge layers (76) with the particularity that their absorption capabilities are
independent from wave frequency and direction of attack. Finally, the high-order local
NRBC (45) were introduced. They differentiate from (21, 36) in the level of accuracy
and in their applicability, the higher the order the more accurate the solution is without
increasing the complexity of the computer code implementation. The methods above
can be applied to all types of waves. For waves in numerical tanks two types of BC are
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mainly used. The sponge layer and the Dirichlet BC.

4.2.1 General equations

REEF3D solves the Reynolds-Averaged Navier-Stokes equations (RANS) using an Eule-
rian approach and under the assumption of incompressible fluid flow. Continuity within
the flow must be fulfilled and thus, the following system is solved:

∂ui
∂xi

= 0 (4.90)

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+

∂

∂xj

[
(ν + νt)

(
∂ui
∂xj

+
∂uj
∂xi

)]
+ gi (4.91)

where u is the time averaged velocity, ρ is the fluid density, p is the pressure, ν is the
kinematic viscosity, νt is the eddy viscosity and g is the gravity acceleration. Turbulence
in the flow is accounted with the k − ω model, where k expresses the turbulent kinetic
energy and ω the specific turbulent dissipation. This turbulence model provides the
eddy viscosity νt, for more detailed information on the model refer to (100).

The Chorin’s projection method (29) is applied to obtain the pressure gradient term
in the RANSs equations for an incompressible flow. Afterwards, the pressure gradient is
neglected in the momentum equations. By integrating in time a new velocity is yielded
and then, treated as an intermediate velocity u∗i . Subsequently, the pressure gradient
is then updated by applying the Poisson’s equation that derives from the divergence of
the intermediate velocity field.

∂

∂xi

(
1

ρ (φn)

∂p

∂xi

)
= − 1

∆t

∂u∗i
∂xi

(4.92)

To solve equation (4.92) the BiCGStab algorithm, presented in (96), has been used.
Finally, the intermediate velocity field is corrected with the new pressure obtaining the
non-divergent velocities for the next time step in the following way:

un+1
i = u∗i −

∆t

ρ (φn)

∂p

∂xi
(4.93)

This procedure can be applied because a staggered grid is used to discretize the
domain. The staggered grid delivers a good coupling between pressure and velocity
and therefore, a divergence free solution is obtained. The convective term of equation
(4.91) is treated numerically with the fifth-order Weighted Essentially Non Oscilla-
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tory (WENO) scheme within the conservative finite-differences discretization frame-
work. Thorough description of the implementation of this method can be found in (59).
The weighting of the ENO stencils gives relative importance to each stencil according
to its smoothness, thus providing very reliable results even for large gradients. The
algorithm reduces to a minimum of third-order in presence of large gradients.

The time-dependent part of the RANS equations is discretized through the Total
Variation Diminishing (TVD) Runge-Kutta scheme (87). This method implements a
variable time step integration over time using the Courant[Pleaseinsert\PrerenderUnicode{âĂŞ}intopreamble]Friedrichs[Pleaseinsert\PrerenderUnicode{âĂŞ}intopreamble]Lewy
(CFL) criterion in order to determine the time step. The CFL number links the maxi-
mum velocity of the domain and the time step, if it is smaller than 1, numerical stability
is achieved with the optimal time step. However, turbulence is not accounted for with
the TVD scheme, since its high velocities would require such a reduced time step that
would rocket the computational costs. Assuming turbulence is of small entity if com-
pared to the momentum equation, a first order implicit Eulerian scheme can be used
to determine the time step of the k − ω turbulence model without having significative
effects on the final results. REEF3D has been parallelized to be run on multiple pro-
cessors simultaneously by decomposing the spatial domain, its management is carried
by the Message Passing Interface (MPI) (Message Passing Interface). Its performance
has been tested on NOTUR’s computational centre Vilje (4) which has 1440 nodes with
two 8-core Intel Sandy Bridge (2.6GHz) and 32 GB of dedicated memory per node.

The free surface is determined by the level set method, thoroughly described in (77).
This method consists in the definition of a distance function φ(~x, t). As shown below,
this function points out the minimum distance from the interface Γ between the two
different fluid phases, water and air in marine applications, being positive for one phase
and negative for the other:

φ(~x, t)


> 0 if ~x ∈ phase 1

= 0 if ~x ∈ Γ

< 0 if ~x ∈ phase 2

(4.94)

The free surface Γ is updated following a velocity field ~u derived from the following
classic convective equation, solved using the same methods stated above, WENO for
the convective term and TVD for the temporal integration:

∂φ

∂t
+ uj

∂φ

∂xj
= 0 (4.95)

121



4. MATHEMATICAL MODELLING & NUMERICAL METHODS

In order to keep the signed distance property and the mass conservation principle
the level set function needs to be reinitialized at every time step.

4.2.2 Wave generation and absorption

In REEF3D’s numerical tank, waves can be produced and absorbed with the RM and the
Active Wave Absorption . RM smoothly performs a transition from the analytical values
to the numerical ones when generating waves. In the same way, values are taken back to
the analytical source when absorbing them. This transition is carried progressively in
space and the areas where that occurs are usually denominated relaxation zones. Such
transition is defined in the following manner:

u(x̃)relaxed = Γ(x̃)uanalytical + (1− Γ(x̃))ucomputational

w(x̃)relaxed = Γ(x̃)wanalytical + (1− Γ(x̃))wcomputational

φ(x̃)relaxed = Γ(x̃)φanalytical + (1− Γ(x̃))φcomputational

(4.96)

where u, w and φ are the horizontal and vertical velocities and free surface elevation
respectively at each point x̃ of the relaxation zone, being x̃ the normalized length of
such relaxation zone. Γ(x̃) is the relaxation function which determines the shape of
the relaxation process. REEF3D offers the possibility to use two different relaxation
methods, the one proposed by (37) which will be referred to as Relaxation Method
1 (RM 1), and the one developed by (57) which will be called Relaxation Method 2
(RM 2) hereinafter. RM 1 is composed by three different relaxation zones in which two
different relaxation functions are applied:

Γ(x̃) = −2x̃3 + 3x̃2for x̃ ∈ [0; 1] (4.97)

Γ(x̃) = 1− x̃6for x̃ ∈ [0; 1] (4.98)

Equation (4.97) is applied to generate waves and its relaxation area is usually referred
as the generation zone and located at the inlet boundary. If x̃ is substituted by (1−x̃) in
equation (4.97), its symmetrical function is obtained. That, provides extra performance
when it comes to absorb waves travelling the opposite direction in the flume, such as
reflected waves from structures placed in the numerical tank. Thus, an extra relaxation
zone needs to be defined, which has the same length as the generation one and is placed
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contiguous to it. At the other extreme of the tank, a sponge layer is defined which is
in charge to absorb all the waves reaching that point. Equation (4.98) is in charge to
carry this transition.

In RM 2, just one relaxation function is used, either to generate and absorb waves,
see equation (4.99). The same symmetry procedure implemented in method 1 is also
used here in order to define the wave generating relaxation function and its wave ab-
sorbing variant.

Γ(x̃) = 1− e(x̃
3.5) − 1

e− 1
for x̃ ∈ [0; 1] (4.99)

Analogously, each relaxation process needs its corresponding relaxation zone, de-
signed following the same premises as in method 1. Namely, one wavelength for the
generating and contiguous absorbing zones and two wavelengths for the sponge layer
located at the the other side of the tank. For wave generation, velocities and water
surface level are transitioned from the corresponding wave theory, whereas for wave
absorption velocities are damped down by setting them to zero, water surface elevation
to still water level. Graphical description of the relaxation methods is provided in figure
4.10:
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Figure 4.10: Schematic of a numerical wave tank with wave generation and absorption zones
and their respective relaxation functions for the two methods.

Another possibility REEF3D offers, is to carry wave generation through active wave
absorption. In order to do so, the Dirichlet type of BC is assumed, so the velocities
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required to generate waves are imposed at the inlet BC. In the same way, to achieve the
reflected wave cancellation, the exact same wave needs to be generated in the opposite
direction. Assuming shallow waters within the Airy theory makes this approach straight
forward for 2D waves, since water particle velocities are considered to be constant along
the vertical axis.

This feature can be implemented either in the inlet and outlet boundaries. In the
former, the incident wave velocity is compared to the velocity at the face of the inlet,
the difference is the correction velocity that needs to be applied in order to obtain the
correct waves. In the latter, instead of having incident wave velocities still water is
assumed, so the velocity to absorb the incoming waves is exactly the opposite from the
ones reaching the outlet.

Independently from the wave generation setting described above, REEF3D is able to
generate waves from a wide variety of theories. Such as linear waves, in its three variants
(deep, intermediate and shallow waters), 2nd order Stokes waves, 5th order Stokes waves,
Cnoidal waves, Solitary waves, irregular and focused waves. This flexibility is given by
the fact that the boundaries only need to establish the vertical and horizontal velocity
and the water surface level.

4.2.3 Reflection Analysis

In order to assess which is the best performant method to generate and absorb waves,
the amount of reflection present in the numerical tank needs to be quantified. There
are several existing methods to quantify wave reflection, such as (48), where only two
wave gauges were used and noise cancellation was not possible. Mansard & Funke (70)
introduced a modified version accounting for three gauges which would filter the noise
out. In this work, the method proposed in (101) has been used for the 2D numerical
wave tank. With this approach, the least squared method is used to solve the equations
and a variable weighting scheme is applied to improve accuracy in the following way:

εj,p = aLje
iφj,p + aRje

−iφj,p −Aj,p (4.100)

Ej =

P∑
p=0

Wj,pεj,pε
∗
j,p (4.101)

where aLj and aRj are the incident and reflected wave amplitude coefficient respec-
tively, for frequency j, φj,p is the product of the wave number kj and the position xp of
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wave gauge p, Aj,p is the coefficient obtained after carrying the Fourier analysis of the
reading of gauge p for frequency j, Wj,p is the assigned weight coefficient and Ej is least
squared method parameter to be minimized.The symbol * in ε∗j,p, denotes the conjugate
form of the complex error εj,p. The number P of chosen gauges is arbitrary, after a
sensitivity study on the gauge number it has been concluded that for the simulation
conditions 4 gauges is enough. Substituting equation (4.100) to the minimized form
of equation (4.101) yields the following equation system, composed by two complex
equations and two complex unknowns,aLj and aRj :

aLjSj + aRj

P∑
p=1

Wj,pe
−2iφj,p =

P∑
p=1

Wj,pAj,pe
−iφj,p

aRjSj + aLj

P∑
p=1

Wj,pe
2iφj,p =

P∑
p=1

Wj,pAj,pe
iφj,p

(4.102)

where Sj =
P∑
p=1

Wj,p. Zelt & Skjelbreia (101) propose an ad hoc heuristic approach to

determine the optimal weight distribution to gauges. This method evaluates the relation
between the phase differences related to the wave gauge distances in the following way:

G(∆φj,pq) =
sin2∆φj,pq

1 + (∆φj,pq/π)2
(4.103)

Wj,p =
P∑
q=1

G(∆φj,pq) (4.104)

where∆φj,pq is the phase difference at wave gages p and q for frequency ωj , G(∆φj,pq)

is the goodness function and a large value denotes a correct spacing between gauges p
and q for frequency ωj . For 3D wave tank a variant of (101) has been implemented.
This, presented by (50), takes into account the possible crossed-modes generated by
lateral reflections and the minimum number of wave gauges required to achieve the
necessary accuracy is P = 5. The exact same procedure from above has been adopted
with the only difference of adding a new variable aCj , which represents the cross-modes.
Consequently, equations (4.100) and (4.102) evolve into equations (4.105) and (4.106),
respectively:

εj,p = aLje
iφj,p + aRje

−iφj,p + aCj −Aj,p (4.105)
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aLjSj + aRj

P∑
p=1

Wj,pe
−2iφj,p + aCj

P∑
p=1

Wj,pe
−iφj,p =

P∑
p=1

Wj,pAj,pe
−iφj,p

aRjSj + aLj

P∑
p=1

Wj,pe
2iφj,p + aCj

P∑
p=1

Wj,pe
iφj,p =

P∑
p=1

Wj,pAj,pe
iφj,p

aCjSj + aLj

P∑
p=1

Wj,pe
−iφj,p + aRj

P∑
p=1

Wj,pe
iφj,p =

P∑
p=1

Wj,pAj,p

(4.106)

For regular waves, once aLj and aRj are known, it is straight forward to compute
the reflection coefficient just by dividing them into the following ratio KR = aRj/aLj .
For irregular waves, firstly the zeroth moment wave height need to be computed from
the obtained incident and reflected spectra and then make the ratio KR = Hm0R/Hm0I .

126



5

Dimensioning, Tuning &
Optimization

5.1 HPA-LG

In first approach, the HPA-LG has been modelled only in heave and with the PTO
translator built-in with the floater. Influence on the floater’s shape and draft has been
analysed using three different geometries. A cylinder and two composed geometries, a
cylinder with a conical base and a cylinder with spherical base. The optimal configura-
tion has been found to be the regular cylinder with ∅ = 5m and draft of d = 2.75 m,
(13). Subsequently, a submerged body has been added to the system in order to shift
the device’s natural frequency. Table 5.1 shows the optimal dimensions for the device
only in heave.

Hereinafter, the effect of the surge mode in the heave-prevailing point absorber
HPA-LG is considered. Firstly, the optimal dimension of the submerged body is studied
when accounting for the surge. Afterwards, the geometric design of the PTO system is
optimized to comply by the new requirements deriving from the introduction of the surge
mode. Lastly, a sensitivity analysis on the simulation duration is performed aiming to
identify the minimum stable simulation duration, in terms of power production. The
different variants of the device studied in this work are shown in table 5.2.

5.1.1 Free oscillation tests

The aim of the submerged body is to maximize the power output by shifting the natural
period of the system towards the prevailing wave periods of the study sites sea states.
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Parameter value
Floating body diameter (m) 5

Floating body mass (kg) 4000
Submerged body diameter (m) 5.2

Submerged body mass (kg) 74,840
Distance between bodies (m) 25

PTO Parameters
Nominal Power (kW ) 10
Nominal Speed (m/s) 0.67
Translator length (m) 1.867

Stator length (m) 1.264
Translator mass (kg) 1000

Width of stator sides (m) 0.4
Number of sides (−) 4

Pole width (mm) 50

Table 5.1: HPA-LG geometric properties (26).

N. of Bodies N. of DoFs Surge
A 2 2 X
B 2 3 X
C 3 3 X
D 3 5 X

Table 5.2: Studied WEC devices.
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The shape of the chosen submerged body is a sphere. After the selection of the shape,
the last characteristic to be determined is the radius. For floating bodies, standard
procedure to identify the natural modes of the system is the free oscillating test. This,
consists in varying the initial position from the equilibrium state and observe the evo-
lution over time under total absence of external disturbances; in this case, represented
by a flat sea. The length of the test has been set to 100 s, after this time it has been
observed that the oscillations are completely damped and the system has reached back
the equilibrium state. Setting the equilibrium condition at the point (0, 0) of the coor-
dinate system (z11(t), z13(t)), the initial displacement of the buoy has been established
at (−1.25,−1.25), hence for both, surge and heave.

Figure 5.1 shows the results of the free oscillations test for four different variants of
the device, the first one without sphere, and the rest accounting with a sphere of different
diameter. Figure 5.1.a) shows the evolution of the system over time while figure 5.1.b)
shows the result of the frequency analysis. Furthermore, in black, the “climatic spectra
”of the deployment sites are shown. These, are obtained by computing the weighted
average of each JONSWAP spectrum that characterises the wave climate of the selected
locations; the adopted weighting parameter is the frequency of occurrence. The data
used to compute the wave climates have been obtained from the measurements given
by the RON (2). Climatic spectra give a good insight on which are the most energetic
frequencies at both sites, thus they are used to tune the device performance.

As expected, a strong non-linear behaviour is observed in figure 5.1.a) and no clear
resonance in the piston is detected in figure 5.1.b). Nonetheless, the influence of the
sphere is clear on the dynamic response of the system. Oscillations in the piston in-
crease, in period and amplitude, as the radius of the sphere grows. Judging from the
area of interest (the frequency range of the climate spectra) the optimal solution appears
to be the device accounting with a 2.00m radius sphere since it shows the highest ampli-
tudes. However, not only the oscillations grow with the radius but so the non-linearities
do, giving place to several undesired effects such as, slamming in the wires, end-stop
mechanism activation, translator oscillating outside the productive area. Therefore, the
configuration with the sphere of radius 1.50 m delivers the best performance while as-
suring smooth operation conditions of the device since its response is stable throughout
the whole range of interested frequencies.
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Figure 5.1: Free Oscillation test of the PTO’s translator. a) Influence of the sphere vs. time.
b) Spectral analysis of oscillations and climatic spectra from Alghero and Mazara del Vallo

5.1.2 LG Geometric Design

The surge motion directly causes a variation on the oscillatory regime of the piston.
An extra horizontal component is introduced at the buoy and that makes the total
displacements larger. The total displacement of the buoy is then transferred to the
piston through the steel wire. This produces a shift of the piston mean oscillatory
position (see figure 5.1.a) causing a drop of efficiency since the PTO is designed to
oscillate around zero. In order to solve this undesired effect the PTO has been redesigned
geometrically.

Figure 5.2 shows the mean oscillatory position of the piston for each simulated
condition; at the typical working conditions (TP = [5.5−7.5](s) & HS = [1.0−2.5](m)),
the average oscillatory position is about x̄ = 0.25m. According to such preliminary
result, the piston is extended by 2x̄ and the upper part of the stator is also lengthened
by x̄, see figure 5.3. This combination allows the lower bound of the maximal production
rate to remain unmodified, whereas the upper bound of the minimal production rate
is extended by 2x̄, see figure 5.4. Furthermore, the upper end stop position is also
shifted by x̄ to ensure that the piston smooth motion conditions are not affected by this
change. Figure 5.3 shows the differences between the original design of the PTO and
the optimized one.

The active production area is the surface of the stator, entirely or partially, con-
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Figure 5.2: Piston average position at each sea state

Figure 5.3: PTO layout. a) Original form. b) Translator modification. c) Translator& Stator
modification.
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Figure 5.4: PTO Active Production Area Ratio vs. Piston Displacement.

taining the translator. If divided by the total area of the stator, the Active Area Ratio
(AAR) is obtained. Figure 5.4 maps the differences in the active production area of the
PTO for the original and the modified PTO.

5.1.3 Duration of the Simulations

In order to achieve a reliable estimate of the power absorption a standard length of the
simulations needs to be defined. Due to the wide range of simulated sea states, a fixed
duration of the simulations lacks in consistency, as the system may reach the power
production stabilization at different times depending on the input wave characteristics.
A suitable indicator of the length of the simulations is the number of waves, it is
considered that after 1000 waves the whole wave spectrum is represented by the time
series and thus, so it is its energy. Figure 5.5 shows the value of the power output
deviation from the 1000-wave value of the system D (tab. 5.2) vs. the number of
generated waves. The reason to compute the relative error derives from the fact that
the absolute power output strongly varies depending on the sea state characteristics,
hence making more difficult to compare the results directly.
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Figure 5.5: Power output deviation from the 1000-wave value vs. Number of Waves.

Taking into account the high level of uncertainty at this stage of the research, the au-
thors believe that values below 5% are considered acceptable, if this error is distributed
symmetrically around the normalizing value. Therefore, acceptable values lie within the
interval [−2.5 2.5]%. In Figure 5.5, this condition is satisfied for the first time at 350
waves; thus, the minimum acceptable duration of the time series is 350 waves.

5.2 MoonWEC

The dimensioning, tuning and optimization of the MoonWEC device can be subdivided
into three categories, corresponding to a physical part of the device. Firstly, the floating
structure and the moonpool are dimensioned. The fulfilment of several requirements
has to be assured in order to capture the energy contained in waves in an efficient way.
In other words, resonance of the floating structure and the moonpool has to be reached.
Furthermore, both resonant motions must have phase lag for in order to maximise its
relative movement. Secondly, the mooring system is dimensioned and tuned. The goal
is to design a mooring system that prevents the device from drifting away and also
assures survivability for extreme wave conditions, while modifying as little as possible
the device dynamics for the working conditions. Lastly, the power take-off system,
composed by the Wells turbine and the PM generator is tuned in order to convert the
energy captured by the moonpool in the most possible efficient manner.

5.2.1 Device

As introduced in sections 2.2 and 2.4, a floating structure can be simplified as mass-
spring-damper system. As such, it develops a resonant state if properly excited with a
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specific frequency. This frequency, known as the natural frequency of the system, can
be found with:

ω0 =

√
k

m
(5.1)

Where k is the elasticity constant of the system and m is its total mass. For
complex geometries, k and m might not be constants, as the elasticity may vary with
hydrostatics and the mass with the added mass due to wave radiation. However, for
the heave mode of the moonpool its derivation is immediate (90); due to its simple
cylindrical configuration equation (5.1) can be simplified to :

ω0 =

√
g

d
(5.2)

Where g is the gravity acceleration and d is the moonpool draft. Knowing that the
moonpool has to resonate for sea states around TP = 6s, derivation of the moonpool
draft, and in turn also the structure draft, is direct yielding d = 9m. The diameter
of the moonpool will depend on the power take-off system. From figure 4.7, the range
of desired Reynolds number, for high efficiency performance of the turbine is retrieved.
Supposing a relative velocity between the moonpool and the structre of Vr = 2 m/s, a
blade chord of c = 0.5m (see figure 4.9) yields a Re = 5.5×105, which is in the range of
desired Reynolds numbers. A blade chord of half of meter leads to a moonpool radius
of rm = 1m. Having determined on a first attempt the dimensions of the moonpool,
the structure wrapping the moonpool has to be sized according to the required natural
frequency. In first approach, this is done in the frequency domain, by applying the
Fourier transforms to the time domain equation of motion an analytical solution is
obtained resulting in no need for time integration. Non-linear effects cannot be modelled
in the frequency domain; however, at this stage, this is not a major concern as a general
outlook of the device response is the goal of this phase of the designing process.

5.2.1.1 Frequency domain

After applying the Fourier transform of the linearised equation of motion (4.63), the
following expression is obtained:

Fe = X0(−ω2(m+A) + iωB +KH) (5.3)

Where ω is the frequency of the monochromatic wave exciting the structure, m
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is the mass matrix of the system, A is the added mass matrix, B is the radiation
damping matrix, KH is the hydrostatic stiffness matrix, Fe is the excitation force
coefficient vector and X0 is the Response Amplitude Operator (RAO), which reflects
the unitary response of the system. Except the RAO, which is the unknown variable,
all the other coefficients are known; m and KH are solved using the internal forces
equations described in section 4.1.2 and the hydrodynamic coefficients A, B and Fe are
obtained with the BEM method, section 4.1.3.2.

BEM The first step in finding the hydrodynamic coefficients is to make sure the
chosen mesh for the body surface is correct. Checking the X0 solution convergence with
several meshes reveals the minimum number of elements needed in order to obtain an
accurate solution. This procedure allows also to reduce to the computation times of
the BEM method. Figure 5.6 shows the mesh convergence analysis carried out on a
cylindrical floater with similar dimensions as the MoonWEC’s.
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Figure 5.6: Resonance peak for the heave and pitch modes for simulations carried out with
different mesh element number.

Figure 5.6 shows the RAO in heave and pitch modes within a range of frequencies
for meshes with different element sizes. Since the modelled structure is the same, the
element size influences only the total number of elements of the mesh. Hence, a mesh
with a smaller element size will have a larger number of elements. For the heave mode,
peak location convergence is found at 500 elements; peak amplitude convergence is
observed after 700 elements. The same trend is identified for the pitch mode where
both, peak location and amplitude convergence is reach for 600 elements. The surge
mode it is not shown since no resonance is observed, due to the lack of a mooring system,
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D (m) ω0 (rad/s)

3 1.32
4 1.22
5 1.08
6 0.9
7 0.8
8 0.66

Table 5.3: Resonance Peak location for several structures with different main body diameters.

which causes the response to tend to infinite for frequencies near zero. For all the stated
above, being 700 the number of elements assuring convergence for both modes, it has
been selected as the minimum number of elements for the modelling of the structure
with the open-source code NEMOH.

Once the minimum number of elements has been found, a recursive analysis on the
MoonWEC structure is carried out. The goal is to obtain the resonant state for an
excitation period of T = 6 s which yields an angular frequency of ω = 1.05 rad/s. As
the draft of the structure is fixed by the moonpool constraint, the shape and diameter
of the structure are the only variables left to modify. The structure has a cone shape
on top in order to guarantee a smooth transition in the free surface region. Also, a
damping plate has been installed at the bottom to tune the phase of the device; this
effect however, cannot be modelled in the frequency domain as the drag introduced by
the plate is non-linear. Therefore, the diameter of the of the body is the parameter upon
which the RAO sensitivity analysis has been executed. Table 5.3 reports the resonant
response peak frequency in heave of several structures with different diameters.

The expected trend, according to equation (5.1), is observed in table 5.3. As the
diameter increases so does the mass of the structure and thus, the natural frequency
of the system decreases. The obvious choice according to the target frequency is the
structure with a main body diameter of 5 m since, its natural frequency ω0 = 1.08

practically coincides with most frequent ωp = 1.05 for the selected locations of Alghero
and Mazara del Vallo. Figure 5.7 illustrates both, the final dimension device and the
definitive mesh used for the calculation of the hydrodynamic coefficients.
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Figure 5.7: Mesh of the modelled floating structure with the chosen element number and final
dimensions.

Finally, the hydrodynamic parameters of the selected structure are computed, then
if substituted to equation (5.3) allow to obtain the response of all 6 DoFs of the device.
Since this study is carried in the plane (x, z), the modes of sway, roll, and yaw have
been neglected leaving only the surge, heave and pitch modes. Initially, in order to take
into account the effect that the moonpool has on the floating structure, its inertia has
been added to the floating structure’s only in the surge and pitch DoFs. The heave
mode has been left unaltered since the moonpool is free to move within the structure
in the vertical direction. Figures 5.8 and 5.9 show the hydrodynamic coefficients and
the RAOs of the MoonWEC, respectively.
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Figure 5.8: Hydrodynamic coefficients vs. frequency obtained with the BEM approach for the
different modelled DoFs. a) added mass coefficients, b) radiation damping coefficients and c)
excitation force coefficients
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Figure 5.9: Response amplitude operator of the MoonWEC for the studied DoFs.

A very differentiated peak can be distinguished for every mode in figure 5.9. The
resonance peak in heave mode coincides to the one highlighted in table 5.3, having an
amplitude of ten metres for wave height meter. The pitch natural frequency is located
at 0.2 rad/s, a relatively low frequency that suits the designing requirements; since at
the selected sites, waves matching those frequencies are highly improbable. Unlike in
the heave case; the resonance in pitch is an undesired effect which should be avoided.
Not only for physical reasons, it is clear that the more the devices swings the less stable
the whole WEC dynamics will be, but it should also be avoided for numerical reasons.
During the model derivation (see chapter 4), the hypothesis of small angle has been
used recursively for two main purposes: computational cost reduction and simplicity of
equation derivation. The WEC behaviour in pitch will be a key aspect on the mooring
system designing; whose goal will be, among others, to minimize the rotation in pitch.
The surge mode shows an asymptotic resonant behaviour towards frequency 0. This
is explained because no mooring system has been projected yet and therefore, in the
absence of stiffness in the horizontal direction, the device tends to resonate at frequency
zero, backing equation’s (5.1) prediction.

The next step after concluding the frequency domain analysis is to switch to time
domain in order to consider the non-linear effects. The general behaviour of the device
should not vary significantly if the pre-design in the frequency domain has been executed
properly.

5.2.1.2 Time domain

In the time domain, the determination of the natural frequency of the system for each
DoF is achieved through the performance of the decay tests. These tests consist in giving
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Figure 5.10: Radiation impulse response functions for the surge mode. Analytical curve (solid
line) and approximation with Prony’s approach (dots).

the system an initial state different than that of the equilibrium. Under no external
influence, the system will tend to go back to the equilibrium state. This response,
measured over the time, gives the information about the natural period of the system.

Before performing the tests a little numerical tuning is needed. As stated in section
2.2, in order to compute the radiation effect, the added mass at infinite frequency and the
Impulse Response Function (IRF) need to be calculated from the frequency dependent
hydrodynamic coefficients (figure 5.8). Subsequently, the IRF is approximated with
the Prony’s method. Prony’s approximation relies upon two variables, the number of
couple coefficients αi and βi and the memory time, which is the length of the IRF.
The threshold of 2 orders of magnitude is set in order to establish the memory time.
Furthermore, the possibility to neglect certain IRFs is also evaluated according to this
threshold. Figures (5.10-5.13) show the computed IRFs and their approximation with
the Prony’s method for the surge, heave, pitch, moonpool and cross-influence DoFs,
respectively:
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Figure 5.11: Radiation impulse response functions for the heave mode. Analytical curve (solid
line) and approximation with Prony’s approach (dots).
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Figure 5.13: Radiation impulse response functions for the moonpool DoF. Analytical curve
(solid line) and approximation with Prony’s approach (dots).

Figures 5.10-5.10 show a very good agreement between the actual curve an its ap-
proximation. The Prony’s method has been applied using 6 couples of fitting parameters
αi and βi (see section 4.1.3.2). The resulting memory time, which fulfils the requirement
stated in the previous paragraph, is 75(s). After this time all the modelled impulse re-
sponse function have been damped by at least two orders of magnitude. However, not all
the radiation IRF have been modelled; some crossed-modes have really reduced impact
on the general structure behaviour since they are up to 8 orders of magnitude smaller
than their counterparts and therefore, they have been neglected. No relevant interaction
is found between: surge-heave modes, heave-pitch modes, moonpool-surge modes and
moonpool-pitch, which makes a total of 8 neglected interactions, this number times 6

times 2 results in 96 dimensions saved in the numerical solver.
Having tuned the numerical model, the time domain model is ready and the decay

tests can be carried out.

Decay test In this case no external influence means no wave. The chosen initial
state of the device is IS = (x0, z0, θ0) = (0,−1,−0.15) using the SI units. Note that
null initial displacement has been set for the horizontal dimension. It is meaningless
to test the surge mode when no mooring system has been introduced, since the device
won’t have a reaction force aiming to bring it back to the equilibrium position. The
dynamic response over time of the system is shown in figure 5.14 for the modelled DoFs.
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By carrying a Fourier analysis of the response over time the natural frequencies of the
system are found, results are reported in figure 5.15.

Figure 5.14: Decay test results time series of the MoonWEC for the studied modes.
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Figure 5.15: Frequency domain response of the decay test of the MoonWEC for the studied
modes.

No anomalies are observed in figure 5.14, the heave and pitch modes show symmet-
rical oscillations damped at different rates. The moonpool has an offset of the mean
oscillatory position. This shift has been introduced to express that the results for the
moonpool are obtained at its free water surface, as opposed to the results of the floating
structure which are computed at its centre of gravity. Actually, the observed moonpool
dynamics are the same of the heave mode but in reversed direction. This makes sense
as the computed coordinate of the model is the relative motion between the structure
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and the water in the moonpol (see section 4.1.4.3). Hence, having no external input the
water inside the moonpool remains practically still and thus, moving almost oppositely
to the floating structure. The surge mode shows small oscillations, which are the result
of the cross radiation effect surge-pitch (see figure 5.12). Finally, it assumes a resting
position different than zero confirming the lack of a mooring system.

The results of the decay tests in the frequency domain, shown in figure 5.15, reveal
the natural frequencies of the system. These, show very good agreement with the fre-
quency domain tests in the case of the heave and moonpool modes, 1.1 (rad/s). This
implies that the non-linearities for these modes have little effect under regular condi-
tions. The pitch mode also shows the peak in exact correspondence to the frequency
domain tests, 0.2 (rad/s). Such frequency corresponds to a very long wave, practically
at the limit of the linear wave theory and despite being far from the wave climate at
Alghero and Mazara, it is worth a more thorough study since sea states can contain
wave components with these frequencies. Thereby, for survivability the dynamics of the
device at that particular frequency must be studied.

Decay tests are very useful for the natural period determination. However, the
extent of the system response can not be fully assessed with it due to the lack of forcing
input. To such purpose the forced oscillation tests are carried out.

Forced Oscillations The forced oscillation test consists in forcing the device with
monochromatic waves to analyse its response. There are three regions of interest, which
are determined according to the natural periods obtained in the decay tests. The first
region, hereinafter called the sub-resonating region, is defined by a higher forcing fre-
quency than the natural frequency of the system, where the amplification factor, defined
as the ratio between the response amplitude and the forcing amplitude, is smaller than
one. The second region is the resonating region, found for forcing frequencies similar
to the natural frequency. The amplification factor for that region is supposed to be
greater than one. Lastly, the third region, given by small forcing frequencies compared
to the natural frequency, is referred to as the over-resonating region. The response of
the system should adapt to the amplitude of the forcing, resulting in an amplification
factor around one. This type of response is also known as static response. However, the
damping of the system could change this pattern as for a highly damped systems the
response can always tend to zero as the input energy is very rapidly dissipated. In order
to make a useful comparison of what explained above, in the frequency domain charts
all amplitudes have been non-dimensionalised according to the ruling wave property
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Figure 5.17: Frequency domain response of the MoonWEC response under the influence of a
monochromatic wave of period T = 3 s, for the studied modes.

for each mode. That is, wave amplitude A for heave and moonpool modes and wave
steepness s = H/λ for pitch mode.
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Figure 5.16: Time series of the MoonWEC response under the influence of a monochromatic
wave of period T = 3 s, for the studied modes.

The response of the device for an input wave of T = 3 s follows the expected
behaviour, the system oscillates reacting to the wave perturbation. Figure 5.16 shows
a fragment of the entire time series where the device has reached the steady state.
In figure 5.17, this response is clearly observed through a predominant peak in every
mode for the excitation frequency. The fact that all the response amplitudes lie below
the unit reveals the sub-resonating regime of the device, in total agreement to what
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Figure 5.18: Time series of the MoonWEC response under the influence of a monochromatic
wave of period T = 6 s, for the studied modes.

stated in the previous paragraph, as the excitation frequency is higher than the natural
frequencies of the system. Besides, some residual harmonics are detected around the
natural frequencies of the system. These are introduced by the non-linear behaviour of
the system.
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Figure 5.19: Frequency domain response of the MoonWEC response under the influence of a
monochromatic wave of period T = 6 s, for the studied modes.

Figure 5.19 clearly identifies the resonant state of the device for the heave mode and
the moonpool. The amplification for the heave mode and moonpool are around 4.5 and
7, respectively. Surprisingly, the pitch mode, which should remain in the sub-resonating
region, has an amplification factor of 1.5. This may be due to the presence of the moon-
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Figure 5.20: Time and frequency domain MoonWEC response under the influence of a
monochromatic wave of period T = 6 s, for the heave mode and moonpool absolute and relative
displacements.

pool, which introduces an eccentricity of the system. Whereas the CoG of the floating
structure is fixed, the position of the CoG of the moonpool varies in time, consequence
of the deformable volume condition. Furthermore, the CoG of the structure has been
lifted 30 cm in order to reduce the hydrostatic stiffness and bring the pitch natural
frequency further apart from the most frequent wave climates. These conditions create
a moving metacentre, which in turn, may originate a parametric instability, equivalent
to the parametric roll effect butin pitch. Hence, resulting in a force and moment com-
ponent which depend on this geometric characteristic, changing the dynamic behaviour
of the pitch mode.

The fact that the amplification factor for the moonpool is higher than for the heave
mode shows a lag between the the heave and the absolute moonpool response. Assuming
that the amplitude of motion remains constant regardless its phase angle, if both modes
were in perfect phase (δ = 0 rad), the moonpool relative response would be minimized.
On the contrary, if both responses were completely out of phase (δ = π rad), its
relative response would be maximized. The phase of a floating body depends mainly
on two parameters: its inertia and its damping dissipation. Very little action can
be taken in order to modify the phase of the moonpool as its geometrical constrains
do not allow significant modifications. The phase can be more easily tuned for the
MoonWEC structure but just to a certain extent. Furthermore, there is always the risk
of overdamping the structure, which would result in a loss of energy capturing capacity.
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Figure 5.21: Time series of the MoonWEC response under the influence of a monochromatic
wave of period T = 19 s, for the studied modes.

In figure 5.20 the heave displacement and the absolute and relative (to the structure)
moonpool displacements are plotted. After performing the phase analysis of the curves
with respect to the free surface; the delays found for the structure, the absolute and
relative displacements of the moonpool are respectively: δh = 38.3 ◦, δMa = 151.8 ◦and
δMr = 185.9 ◦. That makes a relative delay between the structure and the relative
motion of the moonpool of δr = δMr − δh = 147.6◦. The only way to increase this
delay this delay would be to reduce the structure delay. However, this is very difficult
to accomplish and does not guarantee that the relative amplitude would be higher. The
actual values are already satisfying as the moonpool relative amplitudes doubles the
absolute one and it is around 60% higher than the structure amplitude.

The test of the device response under the natural period in pitch is shown in figures
5.21 and 5.22. The resonance amplitude factor is 27. Reason for that is the low damping
accounting this mode for small frequencies, see figure 5.8. This could be a potential
critical factor for the device survivability which needs further investigation. The rest of
the modes behave as expected, the heave mode switches to the over-resonating region
showing a static response. Also some harmonics can be observed in heave at its natural
frequencies.

Irregular wave behaviour The final verification of the device performance is carried
out through the analysis of the device response under the influence of an irregular sea
state. Since the device is optimized for periods around T = 6 s, a sea state with a
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Figure 5.22: Frequency domain response of the MoonWEC response under the influence of a
monochromatic wave of period T = 19 s, for the studied modes.

corresponding peak period of TP = 6 s has been selected for this test. In such way,
the overall response of the device can be assessed for a frequency range that assumes
the most persistent occurrence and therefore, supposedly the most influential on the
general device performance, including the energy production. Figure 5.23 plots the
different studied modes behaviour under such sea state in the time domain, showing
the typical behaviour of a floating structure under irregular wave forcing. Resonance
amplification is damped due to wave energy spreading into several frequencies.

Figure 5.23: Time series of the MoonWEC response under the influence of an irregular wave
sea state with peak period TP = 6 s, for the studied modes.

In addition, for the frequency domain three more sea states have been simulated,
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one with a smaller and two with larger TP . So that the response of the system can be
analysed for the different regions. Figure 5.24 plots the response to the four sea states in
the non-dimensional form. This time, the normalizing values are the defining spectrum
parameters of the sea state HS and TP .
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Figure 5.24: Non-dimmensional Spectra of the MoonWEC studied modes response to irregular
wave sea states. a) for peak period TP = 4 s, b) for peak period TP = 6 s, c) for peak period
TP = 8 s and d) for peak period TP = 10 s.

The frequency analysis shows the expected behaviour for the heave mode and the
moonpool, resonance is observed independently from the sea state at the corresponding
natural frequencies. For the first sea state, shown in figure 5.24.a), an incipient reso-
nance is obtained since the majority of the exciting frequencies lie in the sub-resonating
region. In figure 5.24.b), corresponding to the design sea state both resonances are max-
imized. However, its amplification factor is smaller than in the regular wave case, this
is due to the spreading of energy throughout several frequencies, which in turn delivers
a less concentrated response, lower at the peak but higher in the surrounding frequen-
cies. The sea states corresponding to the over-resonating region, shown in figures 5.24.c
and 5.24.d reveal that, despite losing relevance, resonance still persists for the tuning
frequencies, specially for the moonpool relative motion. This attenuation increases with
the difference between the current sea state peak period and the design sea state peak
period. The pitch mode follows quite linearly the shape of the JONSWAP spectrum for
all the simulated cases. Two major traits are observed; firstly, a subtle intensification
of the response found for high frequencies, typically from the design period (T = 6
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s) onwards. As they appear after the resonance of the moonpool, its origin can be
attributed to high-order harmonic components deriving from the coupling between the
moonpool and the floating structure. Secondly, although lying in the sub-resonating
region a relatively high amplitude factor is obtained in figure 5.24.d). Besides the low
radiation damping given at such frequencies (see figure 4.3), the parametric resonance
effect could be taking in as the oscillation frequencies approach the double of the pitch
natural frequency 2ωp0 . Owing to the moonpool motion, the metacentric position of the
devices does not have a constant location and therefore a parametric resonance is in-
duced, resulting in an energy transfer from the moonpool to the pitch mode. This effect
has already been observed in the regular wave cases and will be further documented in
chapter 6.

5.2.2 Mooring System

As introduced in section 1.4.2 and thoroughly described in sections 2.5 and 4.1.3.3,
the MoonWEC incorporates a CALM system to avoid drifting. Several characteristics
can be modified in a CALM system in order to comply with the mooring specifications.
Firstly, the number of lines has to be chosen. At first, being this a two-dimensional study
on the plane (x, z), all the configurations bearing wave directionality are disregarded.
As a result, a symmetric mooring system is designed where its symmetry axis is oriented
vertically and passes through the CoG of the device. Then, the number of lines has
to be set. Afterwards, the geometrical set up of the line is to be decided. Finally, the
chain or wire constituting the line have to be defined.

For this study, configurations with different number of lines have been studied; one
with two lines (one per side of the structure) and another with four lines (two per
side of the structure). On the geometric layout of the line (see figure 5.25), only three
parameters can be predefined, the total length of the line lT = leff + d, the horizontal
distance between the structure and the anchoring point l′, and the vertical distance
from the fair-lead to the sea bottom h. The remaining parameters become determined
using the procedure described in section 4.1.3.3. The chain length is set in proportion
to the water depth and it usually ranges from 3 to 6 times the depth, 3h ≤ lT ≤ 6h. In
order to minimize the line weight, a total length of lT = 3h has been set, taking into
account that the water depth is 50 m, then lT = 150 m.
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Figure 5.25: Geometry of a deep water catenary line

Six geometrical variants have been studied, four accounting with two lines and two
composed by four lines. In turn, from the two-line variants, two are linked to the
structure at its base and the other two at the CoG quote. The four-line variants are
both binded to the structure in the same manner, one fair lead is placed at the base and
the other at the edge of the top cone, coinciding with the still water level. Finally, two
different anchoring points have been set, one at a horizontal distance l′ = 120 m and
the other at l′ = 135 m. Table 5.4 summarizes the main characteristics of the chosen
mooring configurations, including the maximum displacements before the lines go slack
and taut and figure 5.26 illustrates the different variants.

The installed mooring system needs to restrict the motions of structure but not
excessively, particularly for the heave mode. Therefore, the choice between a chain
or a wire is easily made opting by the wire, as those tend to be roughly ten times
lighter than the chains and, as seen on section 4.1.3.3 the linear weight of the line is
a key performance parameter since it influences the shape of the line and in turn, the
horizontal force. Two main types of wires are used for offshore mooring, spiral strand
and six strand. The former are recommended for a design life up to ten years. For
longer design life spiral strand wires are usually chosen since they incorporate coatings
and sheathings. For all the stated above, the spiral wire has been selected as the
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# # of lines l′ (m) h (m) lt (m) ls (m)
1 2 120 41 24.3 11
2 2 135 41 9.3 26
3 2 120 45.8 22.8 15.8
4 2 135 45.8 7.8 30.8

5 4 Ll 120 41 24.3 11
Lu 151.8 50 24.3 18.8

6 4 Ll 135 41 9.3 26
Lu 166.7 50 9.3 33.8

Table 5.4: Geometric properties of CALM system configurations.
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Figure 5.26: Geometric CALM system layouts.
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#
Nominal MBL Axial Nominal Weight (kg/m)

Submerged Nominal Sheathing
diameter Stiffness Nominal Steel Thickness
(mm) (kN) (MN) Unsheathed Sheathed Weight (kg/m) Area (mm2) (mm)

1 76 5647 557 28.4 30.4 23.8 3377 8
2 82 6550 627 33.0 35.1 27.5 3917 8
3 90 7938 760 39.9 42.9 33.4 4747 10
4 95.5 8930 855 44.9 48.1 37.5 5341 10
5 102 10266 982 51.6 55.3 43.1 6139 11
6 108 11427 1093 57.5 61.3 48.0 6834 11
7 114 12775 1222 64.2 68.3 53.6 7640 11
8 121.5 14362 1353 72.2 76.5 59.7 8589 11
9 127 15722 1481 79.1 83.6 66.0 9403 11
10 133 17171 1599 86.8 91.5 72.4 10314 11
11 141 19180 1799 97.5 102.4 81.5 11609 11
12 146.5 20469 1940 105.1 110.2 87.7 12515 11
13 153 22070 2110 114.5 119.7 95.5 13616 11

Table 5.5: Physical properties of spiral strand wire ropes (8).

physical constituent of the line. Table 5.5, taken from the anchor manual (8), reports
the properties of several spiral strand wire ropes. All the calculations for the moorings
have been made relying on this data.

Aiming to minimize the total weight of the system, spiral strand wire nr. 1 in table
5.5 has been selected to model the properties of the lines. As long as the physical
constraints of the system are respected this is the least invasive choice, since a reduced
mooring system implies a minimization of the device response variation with respect
to the unmoored structure. In order to asses the global device response, the same
procedure as for the floating structure has been followed. Firstly, decay tests of the
structure including the mooring system has been carried out. Subsequently, the natural
periods have been tested with regular waves and finally, the global response under
irregular waves has been studied. The same method has been used iteratively from
mooring system nr. 1 to nr. 6 in table 5.4. Figures 5.27 - 5.36 correspond to the
mooring system configuration nr. 1.

Figure 5.27 shows the classic behaviour of a decay test in heave and pitch. Both
modes have a clear oscillation period and damping rate. The moonpool, as in the
unmoored case, is plotted as the relative motion to the heave mode and thus, in the
absence of waves behaves like the heave but in the opposite sense. The response in
surge is less typical, the device tends to go back to the equilibrium position with an
asymptotic trend. This is actually how the CALM system behaves due to the strong
kinematic influence of the wire, which not only depends on its position, but also on
its velocity and acceleration. Therefore, the chain damping and inertia slow down its
response, even though being driven by the position. A second harmonic is also detected
at the initial stage of the simulation, see figure 5.27. The coupling effect between the
surge and pitch modes is responsible for these oscillations, partly due to the CALM
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Figure 5.27: Decay test time series of the MoonWEC for the studied modes. CALM configu-
ration nr. 1 in table 5.4
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Figure 5.28: Frequency domain response of the decay test of the MoonWEC for the studied
modes.CALM configuration nr. 1 in table 5.4
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Figure 5.29: Time series of the MoonWEC response under the influence of a monochromatic
wave of period T = 3 s, for the studied modes. CALM configuration nr. 1 in table 5.4

system but mostly owing to the radiation influence between these modes as seen in for
the unmoored system in figure 5.14. Figure 5.28, showing the frequency analysis of the
decay test, confirms that the heave mode is unaltered by the presence of the mooring
system as no differences are appreciated from figure 5.15. The pitch does show a shift in
its natural period, which is now set in T p0 = 21.75 s. As expected, in comparison with
the unmoored device, its natural frequency is increased and its amplitude response is
damped. The asymptotic behaviour in surge is expressed by the continuous component
in the frequency domain and the coupling effect between the surge and pitch modes is
also clearly captured by the frequency analysis.

Figure 5.29-5.34 show the response in the time and frequency domains for monochro-
matic waves inputs with periods T = 3 s,T = 6 s and T = 21.75 s, respectively. The
latter two, correspond to the structures natural periods for the heave and pitch modes.
For T = 3 s, the structure shows a sub-resonating behaviour in all of its modes. For
T = 6 s, resonance is observed for the moonpool and the heave modes. Also, an
amplified response of the pitch mode is detected, which reflects the coupling of the
structure with the moonpool. The surge mode still behaves in a sub-resonating way.
For T = 21.75 s, a clear resonating behaviour is observed in pitch whereas in heave the
over-resonating state has been reached and the moonpool relative motion has almost
completely vanished since the moonpool now is totally in phase with the have mode,
showing that the moonpool has reached the static response state as well. Furthermore,
an harmonic component is shown for the the moonpool around its natural frequency.
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Figure 5.30: Frequency domain response of the MoonWEC response under the influence of a
monochromatic wave of period T = 3 s, for the studied modes. CALM configuration nr. 1 in
table 5.4

Figure 5.31: Time series of the MoonWEC response under the influence of a monochromatic
wave of period T = 6 s, for the studied modes. CALM configuration nr. 1 in table 5.4
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Figure 5.32: Frequency domain response of the MoonWEC response under the influence of a
monochromatic wave of period T = 6 s, for the studied modes. CALM configuration nr. 1 in
table 5.4
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Figure 5.33: Time series of the MoonWEC response under the influence of a monochromatic
wave of period T = 21.75 s, for the studied modes. CALM configuration nr. 1 in table 5.4
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Figure 5.34: Frequency domain response of the MoonWEC response under the influence of a
monochromatic wave of period T = 21.75 s, for the studied modes. CALM configuration nr. 1
in table 5.4

Figure 5.31 shows that when the moonpool is resonating, the mean oscillatory position
in surge and pitch shifts. This is originally a consequence of the metacentric oscillations,
which originate a cascade effect transferring first its energy to the pitch mode and then
to the surge mode by means of the mooring system. This effect is better observed when
the moonpool is resonating since the metacentre oscillations are maximized for that
regime.

Finally, the device behaviour has been tested under the effect of irregular waves. As
for the unmoored device, four sea states have been studied with peak periods TP = 4

s, TP = 6 s, TP = 8 s, TP = 10 s. This analysis allows to understand the transition
of the device from the sub-resonating to the over-resonating state. Figure 5.35 shows
the time series corresponding to the TP = 6 s and 5.36 show the frequency responses in
an non-dimmensional form. Non-dimmensionalisation has been carried out according
to the wave spectrum defining parameters HS and TP .

Figure 5.36 shows that a slight reduction of the resonant response of the moonpool
and the heave mode when compared to the unmoored device. Moreover, the pitch and
surge mode show a relevant low frequency response. Denoting an energy transfer mainly
from the moonpool to the mooring system. Futhermore, the pitch response in figure
5.36.d), is also larger than its unmoored counterpart, expressing the stiffness increase
of the system due to the introduction of the mooring system.

Figures 5.37 - 5.41 correspond to the analysis of the CALM system nr. 2, whose
lines have been pre-tensioned with respect the configuration nr. 1.
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Figure 5.35: Time series of the MoonWEC response under the influence of an irregular wave
sea state with peak period TP = 6 s, for the studied modes. MoonWEC configuration nr. 1
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Figure 5.36: Non-dimmensional Spectra of the MoonWEC studied modes response to irregular
wave sea states. a) for peak period TP = 4 s, b) for peak period TP = 6 s, c) for peak period
TP = 8 s and d) for peak period TP = 10 s. CALM configuration nr. 1.
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Figure 5.37: Decay test time series of the MoonWEC for the studied modes. CALM configu-
ration nr. 2
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Figure 5.38: Frequency domain response of the decay test of the MoonWEC for the studied
modes. CALM configuration nr. 2.
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Figure 5.39: Frequency domain response of the MoonWEC response under the influence of a
monochromatic wave of period T = 17.85 s, for the studied modes. CALM configuration nr. 2

Figure 5.40: Time series of the MoonWEC response under the influence of an irregular wave
sea state with peak period TP = 6 s, for the studied modes. CALM configuration nr. 2
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Figure 5.41: Non-dimmensional Spectra of the MoonWEC studied modes response to irregular
wave sea states. a) for peak period TP = 4 s, b) for peak period TP = 6 s, c) for peak period
TP = 8 s and d) for peak period TP = 10 s. CALM configuration nr. 2

This variant of the device presents a slight reduction of the pitch natural period,
from T p0 = 21.75 s to T p0 = 17.85 s, as shown in figure 5.38. The pre-tensioning of the
lines causes an increase of the rigidity of the system which results in the natural period
shift and in an additional decrease of the response for such mode in the decay tests.
However, its amplification response is substantially enhanced for its natural frequency
and the surrounding frequencies, as depicted by figures 5.39 and 5.41. On the other
hand, the surge returns faster to the equilibrium in the decay tests (figure 5.37) and its
oscillation shift is reduced (figures 5.40 and 5.41). The moonpool and heave mode do
not present any variation with respect variant nr. 1. While the behaviour in surge can
be qualified as more appropriate than in configuration nr. 1, the general increase of the
response in pitch can pose a threat to the device survivability, as its natural frequency
is not so distant from the stormy wave climates at the deployment locations.

In figures figures 5.42 - 5.46 the CALM system nr. 3 analysis is presented. This
mooring system variant shifts the position of the fair-leads from the base of the device
at its CoG quote while maintaining the pre-tensioning degree of variant nr. 1.
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Figure 5.42: Decay test time series of the MoonWEC for the studied modes. CALM configu-
ration nr. 3.
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Figure 5.43: Frequency domain response of the decay test of the MoonWEC for the studied
modes. CALM configuration nr. 3.
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Figure 5.44: Frequency domain response of the MoonWEC response under the influence of a
monochromatic wave of period T = 28.75 s, for the studied modes. CALM configuration nr. 3.
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Figure 5.45: Time series of the MoonWEC response under the influence of an irregular wave
sea state with peak period TP = 6 s, for the studied modes. CALM configuration nr. 3.
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Figure 5.46: Non-dimmensional Spectra of the MoonWEC studied modes response to irregular
wave sea states. a) for peak period TP = 4 s, b) for peak period TP = 6 s, c) for peak period
TP = 8 s and d) for peak period TP = 10 s. CALM configuration nr. 3.

In figures 5.42 and 5.43 is revealed that the heave mode and the moonpool maintain
the same response as in the unmoored device and the previous mooring configurations.
For pitch mode, a minimal variation of the natural frequency is observed with respect to
the device with no mooring, passing from T p0 = 31.25 s to T p0 = 28.75 s. Furhtermore,
its amplification factor at the natural frequency for pitch (figure 5.44) is the lowest
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amongst the studied variants. As for the other cases, the surge presents an offset in the
oscillation centre; however, it is smaller than for the other tested mooring systems as
shown in figure 5.45. Figure 5.46 also states that the pitch response for low frequencies
is much more moderate than for the previous moorings, specially if compared to nr. 2.
To sum up, until now CALM configuration nr. 3 is the mooring variant that shows a
better performance. Working regimes for next scheme, variant nr. 4, are shown below
in figures 5.47 - 5.52.

Figure 5.47: Decay test time series of the MoonWEC for the studied modes. CALM configu-
ration nr. 4.
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Figure 5.48: Frequency domain response of the decay test of the MoonWEC for the studied
modes. CALM configuration nr. 4.
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Figure 5.49: Time series of the MoonWEC response under the influence of a monochromatic
wave of period T = 6 s, for the studied modes. CALM configuration nr. 4.

0 0.25 0.5 0.75 1 1.25 1.5

w (rad/s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

R
es
p
on

se
(-
)

T = 21.75 (s)

Surge Heave Pitch ×10−2 Moonpool

Figure 5.50: Frequency domain response of the MoonWEC response under the influence of a
monochromatic wave of period T = 21 s, for the studied modes. CALM configuration nr. 4.
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Figure 5.52: Non-dimmensional Spectra of the MoonWEC studied modes response to irregular
wave sea states. a) for peak period TP = 4 s, b) for peak period TP = 6 s, c) for peak period
TP = 8 s and d) for peak period TP = 10 s. CALM configuration nr. 4.

Figure 5.51: Time series of the MoonWEC response under the influence of an irregular wave
sea state with peak period TP = 6 s, for the studied modes. CALM configuration nr. 4.

As expected, the pitch natural frequency is increased additionally from the one given
for variant nr. 3 due to the further pre-tensioning of the mooring lines, see figure 5.48.
Moreover, the amplification factor for the natural period in pitch rockets by one order
of magnitude with respect to configuration 3 (figure 5.50). On the contrary, its response
for low frequencies is slightly reduced. On the surge mode, no relevant differences are
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spotted other than a further reduction of the mean oscillation position appreciated in
figure 5.51. The responses for the moonpool and for the heave mode remain invariable
with respect to the other mooring layouts. Figures 5.53 - 5.56 display the analysis of
CALM configuration nr. 5, in which two more lines are added at the top part of the
structure, in an attempt to reduce the surge oscillations while keeping bounded the
pitch motions.
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Figure 5.53: Frequency domain response of the decay test of the MoonWEC for the studied
modes. CALM configuration nr. 5.
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Figure 5.54: Frequency domain response of the MoonWEC response under the influence of a
monochromatic wave of period T = 25 s, for the studied modes. CALM configuration nr. 5.
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Figure 5.55: Time series of the MoonWEC response under the influence of an irregular wave
sea state with peak period TP = 6 s, for the studied modes. CALM configuration nr. 5.
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Figure 5.56: Non-dimmensional Spectra of the MoonWEC studied modes response to irregular
wave sea states. a) for peak period TP = 4 s, b) for peak period TP = 6 s, c) for peak period
TP = 8 s and d) for peak period TP = 10 s. CALM configuration nr. 5.

Coinciding with all of the previous schemes, the response of the moonpool and the
structure in heave remains invariant. Its pitch natural period is T p0 = 25 s ( figure 5.53),
being the second largest after variant nr. 3. Also, its amplification factor for that period
remains relatively restrained (figue 5.54) and its response in low frequencies, as shown
in figure 5.56, is practically identical to the configuration nr. 3. The mean oscillatory
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position in surge is further reduced, although its difference from CALM system nr. 3
might not be considered substantial. FINALLY, the analysis of the last mooring system
is presented in figures 5.57 - 5.60. In CALM scheme nr.6 the four mooring lines have
been further pre-tensioned with respect to configuration nr. 5 seeking to utterly reduce
the mean surge shift.
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Figure 5.57: Frequency domain response of the decay test of the MoonWEC for the studied
modes. CALM configuration nr. 6.
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Figure 5.58: Frequency domain response of the MoonWEC response under the influence of a
monochromatic wave of period T = 21 s, for the studied modes. CALM configuration nr. 6.
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Figure 5.59: Time series of the MoonWEC response under the influence of an irregular wave
sea state with peak period TP = 6 s, for the studied modes. CALM configuration nr. 6.
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Figure 5.60: Non-dimmensional Spectra of the MoonWEC studied modes response to irregular
wave sea states. a) for peak period TP = 4 s, b) for peak period TP = 6 s, c) for peak period
TP = 8 s and d) for peak period TP = 10 s. CALM configuration nr. 6.

The typical effect of the highly pre-tensioned mooring systems are observed in the
analysis. Relatively low natural period for the pitch mode is obtained, its response at
that frequency is amplified with respect to the less pre-tensioned systems. Regarding
the heave and moonpool modes, again no significant change is fetched detected. For
the surge mode, the mean oscillatory position is the lowest amongst all the tested
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configurations. Nonetheless, it cannot be completely eliminated since its origin derives
from the particularity of the metacentric motion.

In conclusion, over the analysis of the past 6 CALM configurations no relevant
change in the dynamics of the structure in heave and the moonpool is detected. The
introduction of the mooring system stiffens the response in pitch. This stiffness is
accentuated for the most pre-tensioned variants not only in surge but also in pitch. On
the one hand, configurations nr. 1 & 2 are quite unstable, especially for low frequencies.
On the other hand, configurations nr. 3 & 5 show high overall stability, being the
performance of nr. 3 slightly better. Furthermore, the fact of having only two lines
instead of four, represents a series of advantages, from economic to design ones.

Until now the working conditions of the system have been analysed. However, for
the analysis to be complete, the survivability of the devices has to be ensured. In order
to do so, two more issues need to be addressed. Firstly, the stability analysis of the
surge motion is carried out to determine its natural periods. Lastly, the system is tested
under severe storm conditions and its response is analysed to ensure it complies with
all the requirements.

Being the mooring system dynamics highly non-linear, its natural period cannot
be determined through the classical procedure of the decay tests. Such non-linearity
implies that the resonant state depends on the excitation input; therefore, its natural
period in surge will vary at each sea state. As described in (38), in order to stablish
the periodicity condition lets rearrange equation (4.42) in the following form, without
considering the excitation force:

meqẍ+Ax = f(x, ẋ, t) = [2Fz + 6Dz2]x+ Ex3 − Cdẋ− Cẋż −Gz̈ (5.4)

Where f, is a continuous periodic real value function. When using the integral
equations and Green’s function a prediction may be done. Assuming that there exists
a positive constant K upon which the following condition is satisfied, M ≤ AK where:

M = Max|f(x, ẋ, t)| : (x, ẋ, t) ∈ Z,
Z = t ∈ [0, τ ], |x| ≤ K, |ẋ| ≤

√
AK

(5.5)

Where τ denotes the periodicity condition: x(0) = x(τ), ẋ(0) = ẋ(τ). Through
the implementation of the Green’s function theorem the homogeneous linear differential
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equation ẍ+Ax = 0 must be satisfied and therefore:

M = Max|[2Fz + 6Dz2]x+ Ex3 − Cdẋ− Cẋż −Gz̈| : (x, ẋ, t) ∈ Z,
M ≤ ((Cd + Cż)

√
a+Gz̈ + 2Fz + 6Dz2 + EK2)K

(5.6)

Finally, ifM is substituted in conditionM ≤ AK, the following relation is obtained:

K2 ≤ A− (Cd + Cż)
√
A−Gz̈ − 2Fz − 6Dz2

E
(5.7)

If one choose a K such that the inequality is respected, then the system will have a
periodic solution with a natural frequency f0 =

√
A. K represents the displacement of

the system from the equilibrium at the initial time. Substituting (z, ż, z̈) by the values
corresponding to a wave of the characteristics of each sea state, the natural frequency of
the system for that particular sea state is yielded. Results for the CALM configuration
nr. 3 are shown in figure 5.61.
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Figure 5.61: Natural Period of the CALM-structure system in surge depending on the sea
state input

All natural periods are well above the limits of wind-generated waves, ranging from
T s0 = [100− 370]. Therefore it can be stated that the device in surge will have bounded
motions and that the resonant state won’t be reached, thus ensuring its stability.

Finally, in order to confirm breakdown of the system is not likely to happen during its
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Figure 5.62: Extreme wave statistics using the half-hourly POT method accounting for all
wave directions at Alghero (31).

design lifetime, which is considered to be 25 years, a test under severe storm conditions
is carried out. In chapter 3, the extreme wave statistics of the deployment sites are
reported. Figure 5.62 from section 3.3 and reproduced below for convenience, shows that
according to the Peak Over Threshold method, the 25 year-return storm for Alghero is
defined by a significant wave height of Hm0 = 10.5 m and peak wave period TP = 13.5

s, while for Mazara del Vallo is Hm0 = 5.5 m and TP = 9.5 s, see figure 3.7.

Choosing the most severe conditions, given at Alghero, the limit conditions the
mooring system must resist are defined. Such sea state has been simulated for a total
length of 1000 waves, which is the number of waves from which the total energy flux
reaches stability. Due to the rough environmental conditions in which the device is
performing, the oscillations in pitch exceed the maximum angle within the small angle
hypothesis is valid. Therefore the model accounting for the pitch mode will be inaccurate
and unstable as such inaccuracies may be propagated to the other DoFs via the coupling
terms. Consequently, the pitch mode has been blocked for this test, allowing the device
to move only in surge and heave. To carry on with the analysis, the device with the
CALM system nr. 3. has been simulated for a storm with Hm0 = 10.5 m and TP = 13.5

s. Figure 5.63 plots the time series of the surge and heave displacements as well as the
instantaneous axial tension of the line.
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Figure 5.63: Heave, surge and axial tension vs. time for an input sea state withHm0 = 10.5
m and TP = 13.5 s

A clear offset in the mean position is observed for the surge mode. However the
oscillations remain bounded within the range of x = [−5 − 15]m, lying well below the
geometric limits established in table 5.4, which are xlim = [−11−23.4]m. Furthermore,
the maximum computed axial load remains two orders of magnitude below the Minimum
Breaking Load (MBL), declared in table 5.5. The results shown in figure 5.63 state the
low probability the for the mooring system to reach the limit position and therefore, to
produce slamming effects. Slamming is a very threatening phenomenon to the device
survivability that must be avoided, since tensions can rapidly increase in several orders
of magnitude. Actually, it is thought to be the main cause for mooring breakdown. For
all the stated above, the chosen mooring configuration for the MoonWEC is the variant
nr. 3 (table 5.4) with a six strand wire with a diameter of ∅ = 76 mm (table 5.5)

5.2.3 PTO

The proper design and optimization of the Power Take-Off system (PTO) is as important
as the structure and mooring ones. While the last keeps the structure safe and in place
and the second last fetches the mechanic energy of waves, the first is in charge to
effectively transform the captured energy in a way that can be directly used, stored or
transported, usually converting it to electricity. The PTO mounted in the MoonWEC
is composed by two elements, a Wells turbine and a PM generator. The former is
in charge to direct the energy trapped in the moonpool to a rotative motion and the
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latter transforms this rotation in electricity following one of the most classic schemes
in engineering. Firstly, the design and optimization process of the W-T is described.
Afterwards, this sequence is repeated for the PM generator.

5.2.3.1 Wells Turbine

As seen on section 4.1.3.4, the W-T performance depends on a large number of parame-
ters. Nevertheless, most of them are very closely related and hence, determining a very
narrow working regime. Its performance is extremely sensitive to a series of conditions.
Namely, the geometric configuration of the blade and the turbine solidity on one side;
and the flow characteristics on the other side. The large sensitivity is expressed through
the relative conditions between the turbine and the flow, which are mainly characterised
by the velocity triangle, see figure 4.5. The relative velocity plays a key role, as is the
driving parameter, together with the chord length, of the generated axial and tangential
forces (equations (4.51) and (4.50), respectively). The coefficients of these forces, cA
and cT , are again dependent on the relative velocity by means of the attack angle α
and the Reynolds number (equation (4.47)). Furthermore, its working region is quite
narrow (see figure 4.7); thus, if α lays outside of the range specified by the figure, stall
conditions are verified and turbines efficiency drops suddenly. For this work, the stall
conditions have been modelled as a totally unproductive regions resulting in no power
production.

Dimensions of the W-T have been set in proportion to the diameter of the moonpool
∅ = 2m. That allows a maximum chord blade of c = 0.5m. As stated in (80), a common
value in Wells turbines is a hub-to-tip ratio is 2/3, as the tip diameter is set equal to the
moonpool diameter, a hub diameter of ∅ = 1.34m is obtained. Solidity of the turbine
σ plays also an important role on the turbine’s efficiency. In this work, several solidities
have been tested by varying the number of blades, starting from three and increasing
by one blade at a time until five. The presence of the turbine implies a reduction in the
area the fluid must flow through. Thereby, and as a result of the continuity hypothesis
formulated in equation (5.8), the water of the moonpool is accelerated when passing
through the turbine. Therefore, in the design process this relation will be applied to the
the axial flow velocity. Nevertheless, the results are shown with respect to the moonpool
velocity, since it is much more linked to the overall device behaviour.

ṁ1

ṁ2
=
ρA1v1
ρA2v2

= 1 (5.8)
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Where ρ is the fluid density, ṁ is the mass flow and A is the area perpendicular to
the flow velocity v. Without the presence of the turbine, the moonpool can oscillate
with a celerity up to 2m/s when resonance conditions are met. A goal is set in first
approach for the design of the turbine, which goes far beyond the issues addressed in
this thesis. The moonpool oscillations have to be reduced to a fourth at least, thus the
maximum relative velocity of the moonpool may not exceed 0.5m/s with the turbine
installed. Part of the energy absorbed by the turbine will be dissipated through the
axial component, mainly by viscous drag effects, and part will be converted into rotation
due to the generated lift effect. The power of such rotation can be computed as:

P = T ϕ̇ (5.9)

Where T is the torque generated by the turbine, introduced in section 4.1.3.4, and ϕ̇
is the rotational velocity. At first stage, a simplification of the electromagnetic resistant
torque is simulated by introducing a rotational linear damping to the turbine. The
resistant torque can be computed as:

TR = Bwϕ̇ (5.10)

Where Bw is the damping coefficient. After identifying the two root parameters, the
resistance damping Bw and the moonpool velocity ξ̇, and having fixed the dimensional
parameters, the parametric space of the turbine is explored. Simulations consist in
applying a constant flow velocity and damping and let the turbine reach the stationary
state. Then, the rotational velocity, the attack angle, the Reynolds number, the relative
velocity and the axial force are yielded. In other words, the turbine working regime of
the turbine is determined. The sweeping of the parametric space allows to identify
the most productive regions and determine the characteristics of the working regime.
Figure 5.64 displays the power produced by the different turbines, accounting with 3,4
and 5 blades, over the parametric space.
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Figure 5.64: Power produced by the Wells Turbine as function of the damping coefficient and
moonpool velocity. Linear regression of the maximum power damping coefficient in the dashed
line.

Two clear areas are observed in figure 5.64, a white region and a coloured region.
The white area corresponds to the stall conditions and therefore, no power is produced.
A strong variation on the power range can be observed with respect to the number
of blades of the turbine. As expected, the greater the number of blades the higher
the output power. The damping coefficient corresponding to the maximum power at
each moonpool velocity matches a linear regression with an R2 > 0.99 for each case,
confirming the linear behaviour of the Wells turbine as stated by (39). The optimal
damping coefficient is shown as a dashed line. Figure 5.65 shows the angle of attack for
the different turbines.

As expected, the angle of attack increases with the damping until it reaches the stall
conditions. For high flow velocities, this increase is more gradual as the working regions
expands due to higher Reynolds numbers, see figure 4.7, whereas for low flow velocities
this change is extremely abrupt, challenging eventual control strategies. The range of
optimal attack angles is around α ≈ 5◦ and does not present substantial alterations
with the flow velocity, the damping coefficient and even the number of blades. Finally,
the rotational velocity is presented in figure 5.66.
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Figure 5.65: Angle of attack as function of the damping coefficient and moonpool velocity.
Linear regression of the maximum power damping coefficient in the dashed line.
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Figure 5.66: angular velocity as function of the damping coefficient and moonpool velocity.
Linear regression of the maximum power damping coefficient in the dashed line.

Figure 5.66, shows null velocities for high damping coefficients and low flow veloci-
ties; and truly high velocities for low damping coefficients and high velocities. Similarly
to figure 5.64, the effect of the number of blades is proportional to the increase of the
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angular velocity. On the other hand, for the optimal damping conditions no substantial
variations are found. Finally, a relation between between the number of blades and the
working region is observed. The higher the number of blades the larger the working area
is, due to increased capacity to bear with the resistance torque. Figure 5.67 shows the
time series of the above described parameters; i.e, the angular velocity and the attack
angle, plus the tangential and axial forces Ft and FA, respectively. Results are shown
for the three modelled turbine variants. A fixed moonpool velocity of ξ̇ = 0.25(m/s)

and the corresponding optimal damping BW have been chosen to set the simulations
up and then have been run until the stationary state is reached.
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Figure 5.67: Working conditions of the studied W-Ts for a fixed flow velocity and resistance
damping.

Transient and stationary regimes are clearly differentiated in figure 5.67. Actually,
even two different behaviours can be identified in the transient regime, a first strong
stroke and a subsequent smooth evolution towards the stationary regime. The cause of
that unusual first behaviour is the action of the so-called turbine’s launching system.
Traditional W-Ts are non self-starting and therefore, need to be put into motion. When
the angular velocity of the W-T is zero, its angle of attack will always be α = 90◦

regardless to the flow velocity. Figure 4.7 shows that an attack angle of 90 ◦ lies far
beyond the working conditions, making it impossible for the turbine to flee from the
stall conditions by itself. Consequently, an external torque is imposed to force the
transition from the stall to the working regime. Once this is reached, the external
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torque is withdrawn leaving the turbine for self-regulation. Technically, this is possible
by turning the electric generator into an electric motor through a proper switch in
the power electronics system. Figure 5.67 confirms what observed in figures 5.66 and
5.65, the optimal attack angle is independent from the turbines solidity σ, since their
stationary values converge despite the different number of blades. On the contrary,
the angular velocity, the axial and tangential forces are sensitive to σ, growing with N .
Also, it is important to note that the axial force FA is higher than the tangential force Ft
by an order of magnitude; highlighting the W-T major criticality, its low hydrodynamic
efficiency. Furthermore, a high risk of over-damping the moonpool is assumed due to the
large value of the axial force. To conclude, although the 5 blade W-T seems the most
appropriate as its power is maximized, the large damping generated by FA can cause
the moonpool oscillations to vanish almost completely, shifting the working conditions
towards very reduced flow velocities, where the absorbed power is minimal.

Having determined the optimal working conditions, the final step is to design an
electric generator that fulfils such requirements. Essentially, the resistant torque of the
PM Generator must be equal to the torque generated by the turbine.

5.2.3.2 PM Generator

The first step in the design process of the PM Generator is to decide its nominal power.
Given the conditions imposed by the W-T, see figure 5.64, the nominal power of the
generator has been set to PN = 50kW . Subsequently, according to that value, the rest
of the generator parameters are set, see section 4.1.3.5. Table 5.6 provides the values of
such parameters and figure 5.68 shows a section view of the of the stator-rotor structure
of the generator. Note that, being this field afar from the author’s field of expertise, the
design process of the generator does not take into account several phenomena, such as
hysteresis cycles, temperature analysis, copper-loses and magnetic material properties.
Aiming to provide a somewhat realistic approximation of the performance of a PM
generator.
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5.2 MoonWEC

Parameter value units
Bt 1.55 T
ωp π/6 rad
d 0.05 m
p 16 -
q 3 -
c 6 -
ωt ωp/2q rad
Rc 0.3735 Ω
Lc 0.0115 H
η 0.791 -
ϕ̇N 21.5 rad/s
PN 50 kW

Table 5.6: PM Generator parameters for a Nominal Power of 50kW .
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Figure 5.68: Generated resistant torque and electric Power of the studied PM generator vs.
the angular velocity. Nominal conditions marked with squares

The working conditions of generator are shown in figure 5.69. The resistant torque
and electric power are plotted over the angular velocity ϕ̇. The nominal conditions
are defined by the maximum torque τ . Beyond this point, due to the generator’s lack
of capacity to further increase the torque, there is a sudden drop of the generator’s
efficiency; despite fact that the produced power can still grow as a result of the angular
velocity increase.
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Figure 5.69: Generated resistant torque and electric Power of the studied PM generator vs.
the angular velocity. Nominal conditions marked with squares

Figure 5.69 shows the nominal power is 50kW and the nominal angular velocity is
21.5 rad/s. Furthermore, the loss of efficiency after the nominal conditions can also be
observed, as the increase in the power output is substantially moderated. In order to
adapt the generator’s behaviour to the turbine’s specification a control strategy must
be designed. From the electric equivalent circuit scheme (figure 2.20), it can be noted
that the current intensity and voltage can be modified by varying the value of the load
resistance. Hence, the electric power is also altered and therefore, the resistant torque
can be modulated. The current state-of-the-art of power electronics allows perfectly to
account with a rheostat that not only takes into account the load induced by the grid but
also an internal load variation. Furthermore, an active control system, which feedbacks
the moonpool velocity to the power electronics central unit, must be implemented. The
active control system applies the control law for the moonpool velocity measurements
and sends the correct signal to the rheostat in order to obtain the electric resistance
that makes the generator operate in the turbine optimal conditions. The active control
system decides, depending on the moonpool velocity measurement, which signal has to
be sent to the rheostat in order to obtain the electric resistance that makes the generator
operate in the turbine optimal conditions.

The control law is obtained by imposing the rotation velocity that ensures the op-
timal turbine working conditions for a given moonpool velocity, found in figure 5.66.
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Figure 5.70: Generated torque by the turbine (lines) and resistant torque of the studied PM
generator (markers) vs. the the moonpool velocity

Then, the resistance load is changed until the resistant torque of the generator matches
the driving torque of the turbine. In figure 5.70, the driving torques for the different
turbines and the generator torques are plotted as lines and markers, respectively.

The complete matching is achieved for the 3 blade turbine. For the 4-blade the
nominal conditions are reached for a ξ̇ = 0.375 m/s. The same effect is observed in the
5-blade turbine when ξ̇ ≥ 0.275 m/s denoting that the generator is not able to generate
required torque by the turbine. Figure 5.71, shows the power absorbed by the turbine
and the electric power generated by the generator, in the same conditions reported in
figure 5.70.

Unlike in the torque case, no match is obtained in figure 5.71. Electric power values
are always below the absorbed power, this is due to generator’s efficiency (see table
5.6), which takes into account the Joule effect and mechanical losses. Furthermore, the
nominal conditions limitation is still identified for the 5-blade turbine. The results of
each marker in figures 5.70 and 5.71 has been obtained with a different load resistance,
such values conform a subset that defines the control law. The control laws for the
different turbines have been obtained through the fitting of such values with a piece-wise
cubic regression. Figure 5.72 shows the obtained control laws for the different turbine
variants as well as the electric power produced by the generator in the background.

185



5. DIMENSIONING, TUNING & OPTIMIZATION

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

ξ
′ (m/s)

0

50

100

150

200

250

300

350

P
 (

k
W

)

N = 3 N = 4 N = 5

Figure 5.71: Absorbed power by the turbine (lines) and generated electric power of the studied
PM generator (markers) vs. the the moonpool velocity

0.1 0.2 0.3 0.4 0.5

50

100

150

200

R
l(
Ω
)

N = 3

0.1 0.2 0.3 0.4 0.5

ξ′(m/s)

20

40

60

80

100

120

R
l(
Ω
)

N = 4

0.1 0.2 0.3 0.4 0.5

ξ′(m/s)

10

20

30

40

50
N = 5

P (kW)

0 10 20 30 40 50
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6

Results

6.1 HPA-LG

6.1.1 Generic

102 simulations, corresponding to the full range of sea states that characterize the
selected locations wave climate, have been simulated for each of the different device
variants, see table 5.2. For each simulation the following data is extracted: displacement
and velocity time-series of each device part and instantaneous produced power. The
production of the device is obtained by averaging the instantaneous power over the
time-series, for each simulated sea state. When combining all the obtained output
powers, characterised by the peak period (TP ) and the significant wave height (HS), a
two-dimensional matrix, commonly named power matrix, is obtained. In order to asses
the device general performance, the power matrix of each variant is shown in figure 6.1.

Figure 6.1.a) displays the two-body variant free to move only in heave (A in table
5.2), figure 6.1.b) presents the two-body variant accounting for the heave and surge
modes (B in table 5.2), figure 6.1.c) summarizes the performance of the three-body
device only in heave (C in table 5.2) and figure 6.1.d) reveals the behaviour of the most
complete model, accounting for three bodies and five degrees of freedom (D in table 5.2).
All the power matrices show the expected behaviour. The general trend shows higher
production rates at higher and steeper waves; furthermore, a substantial increase of the
produced power is noticed when the third body is added. Yet, no evident differences are
observed when the surge is introduced. Therefore, a more thorough analysis is needed
to study such effects in depth. In order to quantify the influence that the submerged
sphere has in the power production, variants A & C, and D & B are confronted by
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Figure 6.1: Power matrices for each variant of the device. a) Two bodies only heave, b) two
bodies heave & surge, c) three bodies only heave and d) three bodies heave & surge. (as in
table 5.2)

subtracting their power output for every sea state. Results are shown in figure 6.2.

A clear patch is observed in figure 6.2.a), having a production peak between TP ’s 7
and 9 seconds, shifting the most productive area towards higher periods, just as pointed
in the previous chapter. The same trend is identified in figure 6.2.b) even though the
surge effect seems to mitigate it substantially. In addition, for very steep waves, this
trend is even reversed and the surge effect is revealed to be counter productive because of
the negative values of the production rate. Meaning that the addition of the submerged
sphere is not always optimal, specifically if the device is to be deployed in a location

Figure 6.2: Power matrix differences between the two & three-body devices. a) Heave only.
b) Heave & surge.
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Figure 6.3: Power matrix differences between the heave-only mode and the heave & surge
mode. a) Two-body device. b) Three-body device.

where wind seas are predominant.

To better explore the device response, the same methodology as in the previous
figure has been applied, subtracting A − B and C − D. By doing so, the pure surge
effect can be analysed for both, the two and three-body device. See figure 6.3.

Figure 6.3 shows contradictory behaviour between devices under the same circum-
stances. The three-body device confirms a clear negative trend in production rates at
the steep-wave area of the matrix whereas a slight positive production rate is identified
at the flat-wave region (figure 6.3.b ). On the other hand, the two-body device produces
slightly more for steep waves when the surge mode is included in the simulation, al-
though no predominant trend can be identified from the results. However, both devices
appear to have high sensitivity to wave steepness since in both figures two major areas
can be distinguished, corresponding to high and low steepness of the waves. Conse-
quently, the difference in each device’s power production has been studied according to
wave steepness. Results are presented in figure 6.4.
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Figure 6.4: Power output difference vs. wave steepness for each device, scatters related to the
model variants specified in table 5.2.

The two-body device (green cloud) reveals no apparent surge-related sensitivity to
wave steepness, since the scatter cloud shows no relevant wave steepness-related ramp
and reduced dispersion. On the contrary, the blue-dotted cloud has a clear wave steep-
ness akin trend, which confirms that the inclusion of the sphere has an evident negative
contribution when it comes to electric power output, as the power difference increases
with the wave steepness. The isolated effect of the sphere (red and black clouds) shows
the same general trend regardless the incorporation of the surge in the model. A net
increase in power production is obtained for low steepness values; progressively, this
increase in power production is mitigated as the the waves get steeper, even reversing
the trend when accounting for the surge.

Although the buoy is the body in direct contact with waves, the electric production
is carried out by thePTO’s piston, which in the case of the three-body device is greatly
influenced by the submerged sphere. To study this behaviour, an analysis of three
parameters concerning the piston’s dynamics has been carried out. The aforementioned
parameters are the following: the active area ratio of the PTO (AAR), the average
velocity of the piston and average amplitude of the piston’s oscillations. The AAR gives
very good insight, not only for the amplitude of the oscillations but also for the offset
of the centre of such oscillations with respect to the equilibrium position. Furthermore,
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Figure 6.5: Two-body device difference matrices between heave-only mode and heave & surge
mode. a) Active Area Ratio, b) Average amplitude of the piston’s motion, c) Average piston’s
velocity

the average oscillation amplitude helps to complete the analysis on this regard, since a
joint study of both parameters allows to obtain a detailed picture on the piston regime.
Finally, it is important to consider as well the average piston’s velocity since it is directly
linked to the power output through the magnetic induction laws.

Figures 6.5 and 6.6 have been computed following the same procedure adopted in
figure 6.3. The values shown are AAR(A)−AAR(B) and AAR(C)−AAR(D), for the
a) section of figures 6.5 and 6.6, respectively. The average piston run of A − B at the
c) section and the average piston velocity for section b).

The combination of negative average piston run and positive AAR differences given
at the top-left corner of the matrix (high and steep waves) shows that the piston presents
smaller oscillations when the surge is taken into account and, on top of it, it is doing
so outside the range where electricity is effectively produced. However, the velocity
differences are also negative at the same area, meaning a higher electricity production.
Considering the values, it can be realized that differences are actually very small. This,
brings about high uncertainty upon the dominance of a specific parameter over the
other. As a matter of fact, this was already observed in figures 6.3.a) and 6.4, where
no clear conclusion can be drawn whether the surge effect is either positive or negative
for the two-body device.
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Figure 6.6: Three-body device difference matrices between heave-only mode and heave & surge
mode. a) Active Area Ratio, b) Average amplitude of the piston’s motion, c) Average piston’s
velocity

For the three-body device instead, a clear pattern can be distinguished for steep
waves. The AAR difference is negative, which implies that the piston oscillates more
effectively when the surge mode is taken into account. Nevertheless, the average piston’s
run and velocity differences are positive and so it means that it also oscillates less and
more slowly. Leaving no doubt to the negative influence of the surge at that region of
the matrix, as already confirmed by figures 6.3.b) and 6.4. This phenomenon can be
explained through the system’s inertia increase due to the sphere. Steeper waves mean
higher wave excitation forces, in the surge direction too, but also faster sign fluctuations
since these are relatively short waves. A fast sign-changing force is less successful when
it comes to excite a heavier object since the momentum that needs to overcome is higher.
Furthermore, this momentum transfer is passed from the buoy to the sphere through
steel wires (note that the sphere is deeply submerged), bringing up the probability of
undesired effects such as, wire-slamming and out-of-phase oscillations.

6.1.2 Site-Specific

The AEP of the simulated devices has been computed for the two selected sites, Alghero
and Mazara del Vallo. The results are shown in figure 6.7.

192



6.2 MoonWEC

Figure 6.7: AEP for each device in both sites.

The three-body device has a higher electricity production, the increase is about
[10 − 25]% at both locations, Alghero and Mazara del Vallo. On the one hand, the
surge has no influence on the long-term electricity production for the two-body device,
results are almost identical either for Alghero or Mazara del Vallo. On the other hand,
for the three-body device instead the production plummets about 15% for Alghero and
17% for Mazara del Vallo, confirming what stated at the previous subsection, i.e: the
inertia introduced by the submerged sphere has a large positive contribution for the
heave mode but a negative one for the surge mode. However, the three-body device is
still more productive than the two-body device.

6.2 MoonWEC

6.2.1 Parametric Instability

A peculiar behaviour of the MoonWEC device in heave and surge modes was identified
in section 5.2. The pitch mode appears to have a larger response than expected for waves
with a period larger than 5 s, yet being smaller than its natural period. Two phenomena
could explain such behaviour. On the one hand, it could be an effect introduced by the
mooring system, in which the dynamics of the pitch mode are influenced by the motion
in surge due to the moments introduced by the mooring lines and vice-versa. On the
other hand, a phenomenon sharing the same principle as the parametric resonance could
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Figure 6.8: Amplification factor for the meta-centric oscillations, pitch mode and surge for
different input waves

be responsible. The relative motion between the floating structure and the moonpool
can give place to boosted motion due the syncing of loads if specific conditions are
given. Such effect, known as parametric roll or pitch for ships, is triggered due to the
non-linear hydrostatics reflecting the hull’s geometry. This is not the case in study as
the hydrostatic effect has been considered linear, see section 4.1.3.1. However, the same
effect could occur as the location of the meta-centre of the device changes in time due
to the relative motion between the moonpool and the structure. As stated by (62),
parametric resonances are given for excitation frequencies at around twice the natural
frequency of the mode in subject. Furthermore, as shown in (93), its intensity is really
sensitive on the damping forces and amplitude of the excitation wave.

In order to determine the nature of the amplification in pitch, the device response
for waves in the range of H = [0.25 − 1.5] m and T = [3 − 16] s has been studied.
Besides the surge and pitch mode, the oscillations of the meta-centre have been analysed
too. Results are shown in figure 6.8. The responses have been non-dimmensionalised
according to the wave steepness, the horizontal component of the water particle orbits
and the wave amplitude for the pitch, surge and meta-centric oscillation, respectively.

As expected, a clear resonant behaviour for the meta-centre of the structure is
identified for T = 6 s. The surge mode, remains in the sub-resonant region for all
cases confirming what previously stated by the stability analysis, see section 5.2.2. The
pitch mode has an amplification factor A > 1 in the range of periods T = (4.25− 14);
after which continues to decrease until T = 14.75 s, from where on, a rapid growth
is observed. This point coincides with half of the natural period in pitch, which is
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Figure 6.9: Mean oscillatory position of the meta-centre,the pitch and surge mode for several
input waves

T pN = 28.75 s. Therefore, despite being discreet, a parametric resonance is identified.
Nevertheless, the cause of the increase in the pitch response in the range T = [4.25−14]

seems to be the correlation with the surge mode induced by the mooring system as both
curves share a common pattern. Furthermore, within this range, a linear response on
the wave height is observed since the normalized values match. A tiny perturbation
in the pitch mode can be observed for T = 6 s, it is caused by the oscillations of the
metacentre. However, the shift in the mean oscillatory position for the surge and pitch
modes observed in section 5.2 cannot be explained with the previous figure. The mean
oscillatory positions, retrieved from the continuous component of the Fourier analysis,
are plotted in figure 6.9 .

Figure 6.9 shows a clear relation between the three DoFs. When the moonpool
is resonating, its oscillations switch upwards due to the deformable volume condition,
causing a displacement of the application point of the moment creating an imbalance
that is compensated with the shift in the mean angle position, which in turn shifts
the mean surge position by action of the mooring system. It is also observed, that
previous to the resonant period, the shifts in pitch and surge are positive and right
after the resonance period become negative while passing through zero at the exact
period of resonance. Such effect, clearly non-linear, derives from the phases between
the structure and the moonpool, the transition from the out-of-phase, given previous
to the resonance, to the in-phase situation found after resonance produces a switch of
sign in the moment balance equation.
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6.2.2 Net Power

The ability of the device to absorb the wave energy in the energy chain prior to the
PTO is assessed by the net power computation. That is, the power entrained in the
moonpool by its relative motion with respect to the floating structure. The net power
is calculated with the classic relation

P (t) = F (t)ξ̇(t) (6.1)

where ξ̇(t) is the relative velocity and F (t) is its equivalent force, obtained from the
2nd Newton’s law:

F (t) = m(t)ξ̈(t) (6.2)

where ξ̈(t) is the relative acceleration and m(t) is the moonpool mass, which is time
varying due to the deformable volume condition and computed as:

m(t) = Smp(BG+ ξ(t)) (6.3)

where, Smp is the cross-section area of the moonpool, BG is the distance from the
base of the moonpool to the CoG of the structure and ξ(t) is the moonpol relative
position. In order to obtain the global performance, 131 different sea states have been
simulated according to the deployment sites characteristics. The duration of the simula-
tions has been set to 500 waves, which is the minimum value to capture both, sea state
energy stabilization and extreme events occurrence. Finally, the instantaneous power
has been computed following the above described procedure and the average value has
been placed in the net power matrix, a bi-variate matrix with respect to the significant
wave height and the peak period. Results are shown in figure 6.10. The resonant region
is clearly observed around TP = 6 s, the design resonant period, confirming what the
previous analysis stated, in which power absorption by the moonpool is maximised.
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Figure 6.10: Net Power Matrix for the MoonWEC device

6.2.3 Wells Turbine Working Conditions

The Wells turbine working conditions assessment is carried out through confrontation
between the stationary regime and the actual performance under the presence of waves.
Waves’ oscillatory motion introduce an acceleration to the moonpool motion which is
not taken into account in the stationary simulations. Therefore, it is expected the Wells
turbine not to reach optimal conditions. Figure 6.11 shows the comparison between the
angular velocity of the several turbines for a monochromatic wave of H = 0.5 m and
T = 6 s and its equivalent stationary situation, where the instantaneous velocity of the
moonpool has been used as the stationary flow velocity, as in figure 5.66.

Figure 6.11 shows that the inertia of the turbine plays a key role in stabilizing the
rotation. The energy stored during the moonpool velocity peaks is then used to keep
the turbine rotating somewhat evenly when the moonpool relative velocity decreases
approaching the stall area. Furthermore, it is observed that the angular velocity de-
creases with the number of installed blades. It can seem nonsense, as when the number
of blades increases so does the turbine tangential force. Nevertheless, the axial force
increases too causing a greater damping in the moonpool which in turn causes a decline
in the oscillations. Figure 6.12 shows the sensitivity of the tested turbines over the wave
height in regular waves.

A separated working area is observed at each turbine for each different wave height.
However, the increment in the angular velocity is not proportional to the wave height.
Also, no relevant differences on the time the each turbine reaches the stationary state
are observed, regardless the wave height input. As expected, the higher the number
of blades the sooner the stationary state is reached, not because its angular velocity is
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Figure 6.11: a) Angular Velocity of the different turbines for an input wave of H = 0.5 m and
T = 6 s. Dashed line show the stationary behaviour. b) Moonpool velocity for the different
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Figure 6.12: Angular Velocity of the different turbines for different input waves of heights
H = 0.5 m, H = 1 m, H = 1.5 m and period T = 6 s
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Figure 6.13: a) Angular Velocity of the different turbines. b) Instantaneous produced power.
For an input sea state of HS = 1.5 and TP = 6 s and 500 waves duration

lower but because the tangential force is larger and hence, so is its acceleration. Finally,
the turbines’ performances have been tested in irregular waves. Figure 6.13 shows the
angular velocity and the instantaneous electric power for the studied turbines under a
sea state of HS = 1.5 m and TP = 6 s and a 500 waves duration.

Figure 6.13 shows a common pattern with figures 6.11 and 6.12. The angular veloc-
ity is inversely proportional to the number of blades of the turbine. The major effects
introduced by irregular waves are identified. Firstly, the variation range of the angular
velocity increases substantially, owing to the higher variability of the free surface of
irregular waves and secondly, the average angular velocity decreases. As already seen in
chapter 5.2.1.2, the energy spreads over several frequencies for irregular waves. There-
fore, the resonant effect in the moonpool is weakened and the turbine rotates slower.
Instantaneous power, shown in figure 6.13.b), displays a very peaked power output. This
pattern, typical from WECs, is due to the variability of the free surface and poses a
series of challenges to the WEC’s power electronics unit. Peaks are typically an order of
magnitude higher than the average production and create large instabilities in the grid,
that is why substations on land account with large capacitors in order to rapidly store
this peaks of energy and release them to the grid gradually afterwards. The fewer the
number of blades in the turbine, the higher the power peaks and, on the contrary; the
higher the number of blades the higher the troughs in the instantaneous power series.
The average power production for each turbine is shown in table 6.1:
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# of blades P̄ kW

3 3.49
4 3.27
5 3.51

Table 6.1: AEP for a sea state of HS = 1.5 m and TP = 6 s and several W-T.

No relevant difference is obtained in power production. However, the more stable
pattern found in the turbine with 5 blades could be a decisive factor in order to make
a choice.

6.2.4 General Performance

In order to assess the performance of the device globally, the power matrix is used. As
introduced in section 6.2.2, the power matrix is a bivariate matrix that presents the
average power output of a WEC at a given sea state. For this study 120 different sea
states, corresponding to the wave climate at the deployment sites, have been simulated
for a duration of the single sea state of 500 waves. Afterwards, the instantaneous
power production has been averaged over time and placed at the corresponding sea
state, defined by the coordinates HS and TP . The procedure has been followed by the
three simulated variants of the Wells turbine. The power matrices presented in figures
6.14-6.16.
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Figure 6.14: MoonWEC with 3-blade W-T power output relative to the simulated sea states.
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Figure 6.15: MoonWEC with 4-blade W-T power output relative to the simulated sea states.
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Figure 6.16: MoonWEC with 5-blade W-T power output relative to the simulated sea states.

The resonant region is still identified in figures 6.14-6.16, yet with less purity than
in figure 6.10. The damping introduced by the turbines is causing a strong attenuation
of the moonpool oscillations. This; in turn, is causing a decrease in the relative velocity
between the blades and the moonpol, which further reduces the tangential force that
generates the turbine’s driving torque. Although the performance between the different
turbines does not vary significantly. The 5-blade Wells turbine performs slightly better
for high waves, the 3-blade turbine achieves higher production rates for small waves and
finally, the 4-blade turbine gives better output rates for steep waves.
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Figure 6.17: AEP matrices for the 3-blade turbine device at Alghero and Mazara del Vallo
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Figure 6.18: AEP matrices for the 4-blade turbine device at Alghero and Mazara del Vallo

6.2.5 Site Specific

A device’s performance will vary depending on the deployment site since it depends on
the wave resource characteristic climate. Therefore, in order to carry out a complete
assessment, site-specific indicators must be generated. An efficient way to do so, is to
cross the power matrix with the wave climate matrix of the installation site. Afterwards,
by scaling it to the yearly hours, the AEP for each sea state is yielded. Hence, combining
the matrices represented in figures 3.4 and 3.5 with the power matrices 6.14-6.16 the
performance of each variant at both studied locations is obtained. Results for the device
with the 3,4 and 5-blade turbine are shown in figures 6.17-6.19, respectively.

Wave climate at the study sites show a clear influence on the device performance.
Furthermore, the patterns observed in figures 6.17-6.19 show good agreement with the
climate figures 3.4 and 3.5, confirming the tuning of the devices has been done properly,
widening the high efficiency range of the device. Also, the traits stated in the previous
paragraph related to the power matrices can be identified, i.e. the 5-blade turbine is
more suited for high waves and the 3-blade turbine for mild climates. Production rates
are not excessively high, fact that would suggest and over-sizing of the Wells turbines.
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Figure 6.19: AEP matrices for the 5-blade turbine device at Alghero and Mazara del Vallo

# of blades Alghero Mazara del Vallo Units
3 24.58 21.48 MWh/y
4 24.47 20.94 MWh/y
5 25.10 20.33 MWh/y

Table 6.2: AEP at the study sites.

Smaller turbines would damp less the moonpool oscillations and hence, gain in rotation;
either in big waves, where performance is quite decent, and in small waves, where there
is a large margin for improvement. Aggregating all the values of the matrices into a
number yields the global performance of the device at the site. The general AEPs are
shown in table 6.2.

As expected very little variation is found. However, it is confirmed that the 5-blade
turbine is more suitable for high wave climates as it achieves the highest production at
Alghero, which accounts for the most powerful climate between the study sites. On the
other hand, the 3-blade turbine it is found to be more efficient for the milder climate of
Mazara del Vallo.

6.3 CFD Reflection Analysis

6.3.1 Empty Numerical Wave Tank

A standard procedure to perform the reflection analysis is by first using an empty wave
tank. That way, if the absorption methods were to be perfect, no reflection would be
detected as no interfering objects are present. Furthermore, since the generated waves
are unidirectional, a 2D numerical wave tank can be used, reducing the numerical
domain considerably.
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The numerical wave tank dimensions have been fixed for all the simulations, having
a length of 25 m, a height of 1 m, a width of 0.025 m and a cell size of dx = dy = dz =

0.025 m, which makes a total of 40000 cells. The still water level is set at 0.5 m from
the base. Simulated wave conditions are reported in table 6.3. In order to analyse the
absorption performance a set of four wave gauges have been set in the domain. Their
exact location varies according the wave characteristics, as stipulated by (101).

Case H(m) L(m) Stokes order
a 0.01 2 1st

b 0.01 4 1st

c 0.04 2 2nd

d 0.04 4 2nd

e 0.1 2 5th

f 0.1 4 2nd

Table 6.3: Tested wave conditions.

Each case has been run for 90 s, at this point stability has been observed for all the
simulations. Simulations applying the different generation-absorption methods (RM1,
RM2, AWA and all the possible combinations between them) have been run for all the
conditions in table 6.3, making the total number of run cases amount to 54. Figures 6.20-
6.22 show the normalized reflection analysis time series for all wave conditions shown
in table 6.3 and the following generation-absorption methods: AWA-AWA, RM1-RM1
and RM2-RM2.
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Figure 6.20: Normalized incident (regular line) and reflected (bold line) components for the
three methods. The solid line represents the waves with L = 2 m and the dashed line is for the
waves with L = 4 m. Cases a and b from table 6.3 (H = 0.01 m)

Figure 6.21: Normalized incident (regular line) and reflected (bold line) components for the
three methods. The solid line represents the waves with L = 2 m and the dashed line is for the
waves with L = 4 m. Cases c and d from table 6.3 (H = 0.04 m)
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Figure 6.22: Normalized incident (regular line) and reflected (bold line) components for the
three methods. The solid line represents the waves with L = 2 m and the dashed line is for the
waves with L = 4 m. Cases e and f from table 6.3 (H = 0.1 m)

Figures 6.20- 6.22 evidence a general trend; independently from the simulated wave,
RMs show better absorption than the AWA. For the latter, the Dirichlet BC is imposed
at the generating and absorbing boundaries, see section 4.2.2. As a result, optimal
absorption is only achieved under shallow water conditions, since a constant velocity
over the vertical is needed in order to have a perfect match between the particle and
the boundary velocities.

On the contrary, no relevant difference is found when comparing the RMs. RM1
uses an extra relaxation zone in the generation area (see figure 4.10) and hence, is less
computationally efficient confirming that RM2 is globally a better choice.

When analysing figures 6.20-6.22 by wave conditions, it can be noted that figure
6.20 shows the best performance, followed by figure 6.21 and then by figure 6.22. This,
denotes a clear absorption sensitivity related to wave steepness, revealing poorer ab-
sorption for steeper waves. However, for the case f (table 6.3), the cause for the higher
amount of reflection may rely in the analysis method, rather than in the effective ab-
sorption itself. Zelt & Skjelbreia’s method (101) is meant to be used for linear waves.
However, it has shown to provide fairly good results for 2nd order waves if the second
harmonic is included in the analysis. In this case, the simulated wave characteristics
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Figure 6.23: Reflection coefficients for all the different method combinations

comply the use of the 5th order Stokes theory in generation and therefore, the use of
Zelt & Skjelbreia’s method (101) may lead to somewhat inaccurate results. In addition,
when looking at the shape of the waves in figure 6.22, it can be stated that specifically
for steep waves the RMs delivers a higher quality absorption than the AWA method.
Figure 6.23 synthesizes the global generation-absorption performance of REEF3D for
all the possible method combinations.

Several different trends are detected from figure 6.23. Firstly, the RMs achieve a
higher absorption quota, as already detected in figures 6.20-6.22. Secondly, the long
waves (L = 4 m) are much better absorbed than the short one (L = 2 m) in all cases.
Thirdly, reflection coefficients rocket for high order waves (case f in table 6.3) when us-
ing RMs, whereas the AWA method appears to be less sensitive to steep waves. Finally,
the best contribution of figure 6.23 is that shows that through a convenient combination
of different methods, high absorption rates can be obtained without sacrificing compu-
tational efficiency. For instance, applying wave generation with the AWA and setting
a numerical beach (RM) at the back of the flume allows to gain in both, quality of
absorption and simulation-running time.

To conclude the analysis in the empty numerical wave tank, two different irregular
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Figure 6.24: Surface elevation generated according to JONSWAP HS = 0.04 m and TP = 2.0
s with the RM1. (a) Time series of incident (regular line) and reflected (bold line) irregular
wave. (b) Wave amplitude components, total in bold, incident in regular, reflected in dashed
and the reflection coefficient in dotted line.

wave sea states have been generated according to the JONSWAP spectrum. Both
spectra are defined by a common peak enhancement parameter of γ = 3.3 andHS = 0.04

m, and two different peak periods of TP = 1.2 s and TP = 2.0 s. For irregular waves,
simulations have been run for 500 s. The duration of simulation was determined after
an spectral analysis which concluded that for 500 s, 90% of the theoretical spectrum
components were generated. Figures 6.24 and 6.25 show the results of the reflection
analysis, for the spectra described above. In sections (a) a 50 s fragment of the incident
and reflected component is displayed, whereas in sections (b) the spectral compositions
of wave amplitudes are presented. The results shown in the next two figure have been
obtained by applying with the RM2.

A common pattern between regular and irregular waves is recognized from the time
series. Figure 6.24.(a) shows a lower reflected component than figure 6.25.(a). The
former corresponds to the TP = 2 s spectrum, denoting longer waves within the spectral
range; whereas the latter is obtained from the TP = 1.2 s spectrum, which defines a
shorter waves sea state. Thus, it can be concluded that also for irregular waves, longer
waves are more efficiently absorbed than shorter waves.

However, different trends are observed in figures 6.24.(b) and 6.25.(b), their reflected
spectra have different shapes. The reflected spectrum of figure (6.24.b) has the typical
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Figure 6.25: Surface elevation generated according to JONSWAP HS = 0.04 m and TP = 1.2
s with the AWA method. (a) Time series of incident (regular line) and reflected (bold line)
irregular wave. (b) Wave amplitude components, total in bold, incident in regular, reflected in
dashed and the reflection coefficient in dotted line.

JONSWAP shape, yet the one from figure (6.25.b) adopts a flat shape and seems to
have a minimum below which no values are present. Since the order of magnitude of
such values is 10−6 m, the numerical minimum might have been reached, as it is strictly
related to the element size. Furthermore, two high reflection areas are identified towards
the edges of the spectra. At low frequency edge, this merely given by the reduction of
the incident wave spectrum. On the contrary, at the high frequency edge, increase of
KR and numerical stability is detected only from 2.1Hz (figure 6.25.b). This manifests
the absorption limit for this particular numerical wave tank configuration.

Like in the case of regular waves, a complete analysis of the generation-absorption
methods has been carried out for the two spectra shown in the figures above. Results
are presented in figure 6.26.
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Figure 6.26: Reflection coefficients for all the different method combinations for irregular
waves.

Results for irregular waves, show a high degree of consistency with the ones obtained
for regular waves; in other words, same trends are identified for both cases, regular
and irregular waves. Such as higher absorption rates for the RMs, higher reflection for
shorter and steeper waves and the possibility to obtain an optimal solution by combining
different methods. This solution would apply if using RMs for the primary absorption
and AWA at the generation area only, indeed AWA-RM1 gives the best performance
for TP = 2s and the third for TP = 1.2s. This last idea is crucial when simulating
irregular waves, because the required simulation timespan needs to be large if a realistic
sea state is to be simulated. Consequently, any decrease of computation times gains in
relevance, particularly if the simulation time-pans are very large and hence, costly from
the computational point of view.

6.3.2 Cylinder Tests

A three-dimensional tank has been set to realize a series of tests including a fixed vertical
cylinder placed at its centre. Dimensions of the numerical wave tank are variable. The
only fixed dimensions are the tank width, which is 5m, the cylinder diameter∅ = 0.25m,
the depth 0.5m and the cell size dx = dy = dz = 0.025m. The length of the tank is
been left variable according to the simulated wavelength and the generation-absorption
method used. Figure 6.27 displays a section view of the described numerical wave tank.
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Figure 6.27: NWT used for simulations.

The cases described in table 6.3 have been selected to run the simulations. The
reflection analysis procedure is, again, the (101) with four wave gauges. The variable
length of the tank and its proportions have been chosen in order to obtain the smallest
tank possible but leaving space enough to perform a high-quality reflection analysis. By
using this system the number of elements of the mesh varies within a range of [3− 6]M

and therefore, the computational gain is substantial, specially if the large number of
elements is taken into account.

Figure 6.28: Free surface elevation in NWT.

Figure 6.28 shows the free surface (η) at time t = 38.3 s for the case a in table
6.3, using the RM2 either for wave generation and absorption with the numerical beach
at the back of the tank. The relaxation areas can be clearly identified from the figure
at both edges of the basin; the generation area where the wave is neat and clear and
the numerical beach where no waves are present. Reflection originated at the cylinder
can be well appreciated in a qualitative way; nonetheless, a quantitative analysis is
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presented in hereinafter.

For this particular analysis, not only the water free surface has been studied but
also the force exerted by the waves onto the cylinder. Furthermore, this force has
been compared to the classical theory developed by McCamy&Fuchs in (68). Moreover,
a relationship between the reflection from the cylinder and the wave forces has been
sought. The results from this analysis are presented in figure 6.29.

Figure 6.29: Amplitude Forces and reflection coefficients at the front and at the back of the
cylinder.

The forces computed around the cylinder match fairly well with the theoretical
approach in every case. Furthermore, no major discrepancy is found between RM2 and
AWA, but in case f of table 6.3.

Reflection has been computed at the front and at the back of the cylinder, see wave
gauge sets in figure 6.27. The reason why it has been decided to control reflection at the
rear part of the cylinder, where reflection is of no relevance for this analysis’ purposes,
is to operate as a double-check that simulation is going as planned. On the one hand,
reflection at the back of the cylinder is stable for each case, although cross-modes and
oblique reflections make reflection slightly higher than what obtained for the empty
numerical wave tank. On the other hand, reflection at the front of the cylinder varies
depending on the generation method for the short waves L = 2m (cases a,c,e in table
6.3). A short length from the relaxation area could explain poor absorbing behaviour
when the reflected wave is beyond a certain size, i.e: reflected wave from a structure.
If this is the case, re-reflection should occur. Re-reflection is no other than a reflected
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Figure 6.30: Time-series of incident and reflected waves in front of the cylinder. (a) and (b),
cases e and f in 6.3, respectively

wave which is reflected again with the same direction as the incident wave. In order to
check that effect, time-series of case e and f are displayed in figure 6.30.

Whereas no re-reflection is identified in figure 6.30.a), a clear trend is observed within
the time span [10 − 20]s, in figure 6.30.b). Since the water level is the composition of
incident and reflected waves, the re-reflection phenomenon should also be appreciated
when observing the time series of the force on the cylinder. Figure 6.31 shows the force
for the two cases described above.

The re-reflection pattern can be identified also from figure 6.31.a), although is very
subtle. The phenomenon can be explained in the following way: the peak of the force
corresponds to the first fully developed wave, then due to the reflection force tends to
decrease and finally, when re-reflection reaches the cylinder the force begins to increase
as re-reflections travels in the same direction of the incident wave. On the contrary, no
effect can be detected from figure 6.31.b) as the force amplitude remains constant after
the initial transient period.

In conclusion, the RM may have some difficulties in absorbing high reflected waves
with the actual configuration (relaxation length=L). Although longer relaxation areas
for wave generation could be defined, it is recommended to switch to the AWA. The
domain is smaller and therefore the simulations shorter and the re-reflection issue is
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Figure 6.31: Force measurements at the cylinder. (a) and (b), cases e and f in 6.3, respectively

avoided.

6.3.3 Slope Tests

The combined effect of wave breaking and bottom slope is of interest to the authors and
reflection could be a suitable indicator to describe such influence. For this series of test a
two-dimensional numerical wave tank has been set. As for the cylinder case, the length
of the tank is not fixed and depends on the generated wave length and the bottom slope,
see figure 6.32. Since the element size is extremely reduced dx = dy = dz = 0.005m in
order to capture the breaking phenomenon properly, a variable size domain allows to
maximise the computational efficiency for each particular simulation.
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Figure 6.32: NWT used for simulations.

Simulations have been based on three parameters, wave height H, wave length L

and bottom slope m. Out of these three parameters, the well known surf similarity
parameter is obtained ( ζ = m√

(
H0
L0

)
), giving good insight of the type of wave breaking

as defined by (20). Table 6.4 defines all the simulated cases. Actually, each case has
been run twice, first using the RM2 and then using the AWA in order to generate waves.
No numerical beach is used at this section since the slope is totally impermeable.

Case H0(m) L0(m) m ζ Breaking
a 0.01 2 1/35 0.40 Spilling
b 0.01 4 1/35 0.57 Transition
c 0.01 2 1/25 0.57 Transition
d 0.01 4 1/25 0.80 Plunging
e 0.01 2 1/15 0.94 Plunging
f 0.01 4 1/15 1.33 Plunging

Table 6.4: Tested wave conditions.

(20) also defined, from empirical experience the following relation: KR = 0.1ζ,
which links the reflection and the surf similarity parameter. In figure 6.33 it has been
represented as Battjes Reflection.
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Figure 6.33: Reflection coefficients for different methods, waves and slopes

For both waves, as expected reflection increases as the slope of the bottom does. In
general, the RM2 achieve higher absorption rates compared to AWA. However, reflection
is always higher than the Battjes assumption. This could be due to the fact that wave
breaking is a very complex process. In CFD, it is usually assumed to be a turbulent
phenomenon in which energy is dissipated. A lack of accuracy in describing the turbulent
processes would decrease the energy dissipation and therefore, this energy would be
compelled to travel back and thus, increasing reflection in the tank as observed in figure
6.33.

6.3.4 OpenFOAM Comparison

Since (55) gave a very detailed overview of different showcases, on the performance of
their AWA algorithm for a numerical wave tank using OpenFOAM. A comparison has
been set up in order to compare both open source codes. In (55), the numerical set-up
was the following: a 2D wave flume 20.62 m long, 0.58 m wide and 0.70 m high with a
cell size of 0.02 m on the horizontal plane and 0.01 m in the vertical. REEF3D works on
a cartesian grid that compels DiveMESH (REEF3D’s meshing tool) to generate cubic
elements, the chosen element size for the mesh is dx = dy = dz = 0.02 m which makes
a total of 36085 elements. The still water level is set at 0.40 m from the base.
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Under this set-up 8 different wave conditions have been tested: Two Solitary waves
with Heights of .05 m and 0.15 m respectively. And then six regular waves, with
periods 2,3 and 4 s, combining the previous wave heights. Using the linear wave theory
for H = 0.05 m and T = 2.0 s, the Stokes 2nd order for H = 0.05 m and T = 3.0 s

and Cnoidal theory for the rest of the cases. For regular waves, the simulation time is
set to 120 s and for the solitary waves is set to 60 s instead. To measure reflection in
the solitary waves a surface elevation gauge has been set at 7.5 m from the inlet. To
analyse reflection for the regular waves the Mansard and Funke method has been used
(70) with the gauges’ spacing specified in (55). The exact same set up and method
have been used in this work in order to obtain the reflection coefficients. Furthermore,
results obtained from simulations accounting with the RM 2 have also been included.
When using the RM for the solitary wave cases (L =∞) the length of the corresponding
relaxation zones was set to 8 m. Results are shown in table (6.5):

T (s) H(m)
0.05 0.15

REEF3D Higuera REEF3D Higuera
RM AWA RM AWA

Solitary 5.50% 1.45% 1.51% 1.16% 1.07% 2.63%
2 1.2% 4.4% 4.6% 2.8% 2.4% 11.2%
3 0.3% 1.5% 3.8% 2.1% 2.8% 7.3%
4 0.8% 0.4% 2.3% 5.9% 2.0% 6.7%

Table 6.5: Reflection Coefficients.

The AWA module in REEF3D obtains lower reflection coefficients for all cases. The
differences are generally low for the small waves (H = 0.05 m), especially for T = 2 s.
As for the high waves (H = 0.15 m), they become quite substantial, moving in the range
of [2− 3]% for REEF3D and [6− 12]% for OpenFOAM. Generally, reflections decrease
with wave steepness, showing good agreement with what stated in the first part of this
section. No clear trend is observed when comparing the method performance for these
cases. For some cases, RM obtains slightly lower reflection coefficients than the AWA,
such as for H = 0.05 m and T = 3 s, but for some others the AWA performs marginally
better, like forH = 0.05 m and T = 3 s. However, the differences are so small on average
that can be considered as irrelevant driving the focus of the choice to the computational
costs. For the solitary waves AWA presents lower reflection coefficients, a reason for
this is that the relaxation areas are too short to deliver an acceptable wave absorption,
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and increasing their size would ultimately rise the computational costs.
In order to obtain comparable results among the simulations computational costs,

the following index has been developed:

CE =
tsim ∗NPr

D
=
(h
s

)
(6.4)

where the tsim is the computational time of the simulation, NPr is the number of
processors used and D is the duration of the simulation. Unlike in fig. (6.23) the size of
the numerical domain has been modified according the requirements of the simulation.
In other words, for all the simulations run with the RM mode the numerical domain
changes due to the relaxation zone length, which is proportional to the wavelength (71).
On the other hand, the size of the domain remains untouched when the AWA is active,
giving the perfect conditions to compare the relevance of the method choice.

T (s) H(m)
0.05 0.15

AWA RM AWA RM
2 0.735 1.14 1.21 1.88
3 0.679 1.28 1.32 3.05
4 0.735 1.36 1.26 3.56

Table 6.6: Computational Effort
(
h
s ).

Table 6.6 shows quite clearly the relevance of the method choice. A constant increase
of the computational effort is observed for the RM as the period increases perfectly
matching the theory, which states that longer waves mean longer numerical domains
due to the relaxation zones. The AWA does not show any signs of correlation with
wavelengths revealing its convenience for certain conditions, such as long waves. For
the worst case (H = 0.15 m and T = 4 s), the computational effort is tripled, whereas
for the best case (H = 0.15 m and T = 4 s) it stands slightly above than the 55%
increase.
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Conclusions

In this thesis, wave energy conversion in the Mediterranean Sea is explored via the
numerical modelling of two different WEC devices. A numerical model based on the
potential flow theory has been set. The code written with the commercial software Mat-
lab r, allows parallel computing and implements several tools to improve its computa-
tional efficiency; such as the Prony’s method to compute the hydrodynamic forces in the
time domain and optimized Newton-Raphson algorithm to handle iterative processes.
Besides, the performance of the CFD open-source code REEF3D (23) is investigated
through wave reflection analysis.

A wave energy resource characterisation of the Italian coasts has been carried out
in order to determine the most promising locations for wave energy conversion. Up to
25 years of wave data from the National Italian Wave Measurement Network (RON)
(2) have been thoroughly analysed. From the eight different locations involved in the
analysis, the two most energetic sites have been identified and selected as possible future
wave energy exploitation spots. Both areas are located in islands; the most energetic is
Alghero, in Sardinia and the second most energetic is Mazara del Vallo, in the south-
western corner of Sicily. Dimensioning and optimization of both WEC has been carried
out according to the wave climate given at the chosen locations.

Both WEC numerical models are based on the potential flow theory and simulate
the device behaviour upon several DoFs in irregular waves. The first modelled device,
named HPA-LG, is a point absorber composed by a heaving buoy and a permanent
magnet linear generator. The second studied WEC is a new technology developed in
this thesis. It merges several current working principles willing to aggregate the assets
of each type. It is a floating OWC but with the particularity that the reduced size of
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the floating structure makes it a point absorber as well with the characteristics of an
oscillating body. Energy conversion is achieved by a Wells turbine placed directly in
the water column.

Several tests have been conducted for REEF3D performance assessment. Different
wave types have been simulated in several environments, such as an empty wave tank, a
mono-pile and a slope. Furthermore, several wave generation and absorption methods
have been tested and compared.

7.1 HPA-LG

With the aim to estimate the feasibility of wave energy conversion in the Mediterranean
Sea, this thesis thoroughly analyses the body dynamics of the HPA-LG device, with
particular focus on the surge effect and in the energy production. Four variants of the
WEC, whose characteristics are reported in table 5.2, have been modelled. The model
runs in the time domain, uses irregular waves, is able to handle multi-body systems
with various degrees of freedom and delivers the instantaneous electric power, which
is later used to obtain both, generic and site-specific performance indicators. In order
to increase its computational efficiency, the code has been parallelized and the prony’s
method has been adopted, reducing the total simulation-time by an order of magnitude.

A sensitivity analysis on the dimension of the submerged body has been performed
by running several free oscillation tests. These, have confirmed that the optimal sub-
merged sphere diameter is ∅ = 1.50m. Figures 5.1 and 6.2 show that the resonant
frequency of the system is shifted towards the most persistent sea state period range.
On the one hand, the presence of the submerged body increases the electric production
by approximately 25% when considering only heave and by 10% when tanking into ac-
count both, heave and surge. On the other hand, it could lead to undesired effects from
the technical/operational point of view, such as the increase of the working time of the
end-stop survival mechanism or the appearance of slamming effects occurring in the
interconnecting lines due to its large inertia. For all the stated above, it is reasonable to
worry about the technical/economical feasibility of a point absorber with a submerged
body disposed in such configuration, particularly when considering the increase of the
electricity production when accounting for the surge.

Another remarkable conclusion that can be drawn from the previous section is that
the surge can either, have no relevant contribution (two-body device) or even cause a
slight decrease on the production (three-body device) as presented in figure 6.7. De-
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pending on the wave characteristics, as identified in figures 6.3 and 6.4, the device tends
to reduce its production rate as the wave steepness grows when including the surge
mode. On the contrary, when the wave steepness is relatively low the electric produc-
tion is increased, yet in smaller proportion since the available wave energy flux is lower
for flatter waves. However, these variations do not represent substantial alterations
in the device productivity. From this, it can be assumed that the surge mode may
be neglected when modelling a two-body point absorber WEC for energy production
assessment only.

The shift of the piston not only affects the electric production directly, but more
importantly, the dynamic behaviour of the device. Since the piston offset makes it
easier to reach the survival position of the device, for the same wave conditions, when
considering the surge, the end-stop mechanism is activated sooner and the more the
end-stop mechanism is working, the higher the probability of breakdowns, which may
be induced by slamming effects and high tensions in wires and springs. Consequently,
the surge mode should be always considered when assessing the mechanical performance
of the device and the survivability conditions.

The average annual production, is rather low for the single device. Therefore, the
exploitation concept for this kind of the devices lies in the wave energy farm. Deploying
a substantially elevated number of devices in arrays. Some studies (18, 27, 28) conclude
that, if well spatially distributed, a wave energy farm can produce at a higher rate than
the single device. Since the available wave power resource in the Mediterranean Sea is
much lower than in other seas, nowadays the only way to make wave energy exploitation
feasible with point absorbers is by means of multiple-device plants.

7.2 MoonWEC

The first step in the MoonWEC’s development process consist in the determination of
the general dimensions of the device through the frequency domain tests. The optimal
draft, for which the moonpool resonates at the established period of T = 6 s is d = 9

m. The draft of the moonpool is equivalent to the draft of the structure. Furthermore,
frequency domain tests also show that the external diameter of the structure must be
∅ = 5 m in order to achieve resonance for that period.

Time domain tests, aimed to define more precisely the dimensional parameters of
the device, reveal good agreement with the results obtained in the frequency domain
tests, defining the natural periods of the device in heave and pitch, T h0 = 6 s and
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T p0 = 31.5 s, respectively. Whereas resonance in heave is the main dimensioning target,
resonance in pitch is a rather undesired effect. That is why such natural period in pitch
is a satisfactory result since it lies at the limit of the linear wave theory making the
resonance event highly improbable. Extra elements, such a disc at the bottom and a
cone at the top, have been added to the structure in order to create a phase lag between
the structure and the moonpool. By increasing the phase between the two parts of the
device, their relative motion is amplified, thus maximising the power absorption. Figure
7.1 shows a technical drawing with the dimensions of the optimized device.
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Afterwards, the mooring system of the device has been designed. The CALM is the
mooring type that best fulfils the dynamic requirements, as exerts very little influence
on the heave mode while preventing the device from drifting away. Six different config-
urations have been tested. A description of the different variants is provided in table
5.4 and figure 5.26. Results show that all variants have very little influence on the heave
mode. Also, it is found that the most pre-tensioned schemes reduce considerably the
natural period in pitch, taking it to a dangerous region where it may likely be excited
during stormy events. Regarding the connection point to the structure, the best per-
formance is achieved when the mooring is attached at the level of the structure’s CoG,
having very little influence in the pitch mode as well. Also, very stable results have been
obtained for the double-line mooring system, where one line is attached at the base of
the structure while binding the other is bound at the top. However, this configuration
has been disregarded due to the extra cost that an extra line represents for very little
gain in performance. The natural period of the system in surge has been found to be
T s0 > 100 s assuring the stability of the system for that mode. Finally, the mooring
system has been tested under the 25-year return period stormy conditions at Alghero.
Results show a good performance, either geometrically and dynamically never reaching
the limit position and minimum breaking load of the wire. However, further investi-
gation should be done in the future at that step, since until now free surface elevation
has been modelled according to the linear wave theory. Loads may increase drastically
due to non-linearity of waves and stormy free surfaces have a non-linear behaviour as
non-linearity increases with steepness.

A low parametric instability has been found due to the interaction between the
moonpool and the structure. Owing to the relative moonpool oscillation the device
metacentre is not static. When the device is resonating, the metacentric oscillations are
maximised and that causes a shift in the average position of the oscillations in pitch
and surge. The short distance between the moonpool and the structure CoG makes
this effect bounded and allows the mooring system to absorb it posing no threat to the
device general stability.

In figure 6.10, the net power is shown. That is, the wave energy absorbed by the
moonpool, which shows higher rates around the natural period in heave T h0 = 6 s

backing the design procedure followed until now. Furthermore, these levels of power
absorption suggest electricity production is feasible, since in the energy chain, they
represent the available power for the PTO.

The PTO system is composed by two elements, a Wells turbine and a PM generator.
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Three different models of W-T have been tested, accounting with 3, 4 and 5 blades. W-
T have truly narrow working conditions; therefore, its efficiency is extremely variable,
being quite elevated for very precise conditions and really low for the rest. In order
to maximise the power production a joint control law has been designed in which, the
PM generator exerts the sufficient resistance to ensure the W-T is always working in
the optimal range regardless external conditions. A closed feedback loop has been im-
plemented in which, the active control system, based on the moonpool velocity, applies
the right rotation resistance. In such way, it is ensured that the energy extracted from
the moonpool is maximal.

In stationary conditions, the angular velocity is proportional to the number of blades.
However, this is not the case in the presence of waves; in fact, the opposite occurs and
as the number of blades increases, the angular velocity decreases. This is due to the
increasing drag component of the turbines that smooths the moonpool oscillations.
This is an important factor in the design process of the turbine as there is the risk of
over-damping the moonpool and dissipate the energy from the waves. Furthermore,
it is seen that variability in the instantaneous power signal decreases as the number
of blades grows. This is an important remark, as one of the major inconveniences in
wave energy conversion is smoothing the highly peaked power signal generated by the
converters. Hence, if the work is partially done in the turbine the power electronics
system may work more efficiently.

Power outputs ranging from (1 − 15) kW have been obtained for the three tested
turbines. Also, an increase of power is identified around the design natural period for
the moonpool and the floating structure confirming its proper tuning. The sensitiv-
ity analysis on the number of blades of the turbine shows very similar results among
turbines; as for example in the annual energy production rates, where at Alghero and
Mazara are around 25MWh/y and 20MWh/y, respectively. A slight higher production
is found for the 5-blade turbine for high waves, performing better at Alghero, and for
the 3-blade turbine for mild waves, achieving higher production rates at Mazara del
Vallo. However, the results indicate the turbine is over dimensioned.

Several modifications in the design of the device will be introduced in the future. A
sensitivity analysis will be conducted on the diameters of the turbine and the moonpool.
By increasing the moonpool diameter its mass is augmented while its natural period is
being kept as it only depends on the draft. That increase in inertia will make the moon-
pool less sensitive to the drag introduced by the turbine. Thus, having the moonpool
higher oscillations will allow the turbine to increase its driving torque. Also, a shift of
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the natural periods of the moonpool and the floating structure in opposite directions
may be tested. Having the moonpool and structure resonating at different frequencies
will no longer concentrate the energy at a single frequency but spread it into a wider
range instead, increasing the energy capture for disseminated wave climates such as the
one given at Alghero.

The work done in this thesis is purely numerical, validation through experimental
tests needs to be done. Especially for the MoonWEC model, being a novel device,
to complete the proof of concept phase and proceed to further development stages,
is of outmost importance to be certain that the model predicts accurately the device
behaviour.

Comparison with the HPA-LG The HPA-LG power matrices show a higher rated
power of the WEC and a broader production regime. Meaning that for high and long
waves performance of the HPA-LG is more efficient. On the contrary, the MoonWEC has
a narrower action range. The MoonWEC takes advantage of the relative motion between
the structure and the moonpool and this is practically null in the over-resonant region,
as both moonpool and structure, account with a static response for these conditions.
However, performance of the MoonWEC is superior for mild waves, having substantial
higher rates, especially for the resonant frequency range. When comparing both annual
energy productions it can be seen that the MoonWEC practically doubles the production
of the 2-body HPA-LG, whereas with respect to the 3-body HPA-LG, the produced
energy is increased by a 50 %. Furthermore, the undesired effects of wire slamming
and end-stop mechanism activation are not given in the MoonWEC. There are no end-
stop in the MoonWEC as the PTO system is completely different and does not require a
maximum safety position. Also, extreme wave climates test has shown that the mooring
system wires are far from reaching the limit condition for a 25-year return storm. For
all the stated above, the MoonWEC seems a more reasonable choice for Mediterranean
wave climates.

7.3 Reflection Analysis

This section of the thesis explores the performance of the CFD open-source software
REEF3D in wave generation and wave absorption in a numerical wave tank. REEF3D
has two different wave absorption and generation modules; the RM and the AWA,
performance between them has also been analysed.
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Several tests have been conducted. First, an empty numerical tank has been tested,
in regular and irregular waves. Afterwards, a 3D tank with a fixed vertical cylinder has
been simulated for several regular waves. Subsequently, a 2D tank with a steep bed has
been set and different several slope values and waves have been analysed. Finally, the
tests carried in (55) have been replicated with REEF3D and the results compared to
the original ones published in (55).

Six different regular waves, going from linear up to 5th order Stokes waves, and 2
irregular sea states based on the JONSWAP spectrum have been used in the empty
tank. It has been common for all tests that the numerical beach implemented with
the RM has higher absorption rates than the AWA. Another common result is that
short and steep waves are more easily reflected than long and flat waves regardless the
implemented absorption method. Reflection rates for irregular sea states are slightly
higher than for regular waves, since high and low frequency components of the spectrum
are not well absorbed.

It must be stressed that the biggest advantage though, lies in the combination of
different modules in the same simulation; i.e. to generate waves the AWA module is
selected and to absorb them a numerical beach is set through the RM2. This particular
configuration delivers the best overall performance, obtaining elevated absorption rates
and reduced computation times, since no extra space for relaxation zones is needed in
the wave generation boundary of the numerical domain.

The same regular wave characteristics have been used for the cylinder tests. How-
ever, the wave generation-absorption modules have been restricted only to RM2 and
AWA since are the most promising ones. The AWA module has proved to be more
resilient to highly reflected waves, such as the ones generated by the structure. Re-
reflection phenomena were observed when using the RM2 for wave generation. A wave-
length for the relaxation zone is not enough to absorb such waves and therefore the size
of the area should be increased, causing a substantial loss of computational efficiency.

Forces computed around the cylinder are in good agreement with the theoretical
values given by (68). Re-reflection phenomena can also be observed in the time-series
of the force, although is not as evident as in the reflection analysis.

Three different slopes and two different regular waves have been simulated in the
last tests. Wave breaking influence on reflection was intended to be shown. The AWA
tends to deliver higher reflection than the RM2, specially for long waves. Furthermore,
reflection coefficients tend to be higher than the empirical values, this could be due to
non ideal capture of the turbulent wave breaking.
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Regarding the comparison with OpenFOAM, REEF3D has proved to have reached
the same level for this matter. It is better performant for regular waves when using RM
module, whereas for the AWA performance is similar. The computational cost of the
simulations is presented proving the high efficiency of the AWA module.
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