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Considering agricultural landscapes as networks can provide information about spatial connectivity relevant for a
wide range of applications including pollination, pest management, and ecology. At global scales, spatial net-
works of agricultural land use inferred from land cover products are well-described by power law rank-size dis-
tributions. However, regional analyses of agricultural land use typically focus on subsets of the total global
network. In this paper, we seek to address the following questions: Does the globally observed scale-free prop-
erty of agricultural networks hold over smaller spatial domains? Can similar properties be observed at kilometer
to meter scales? Does the observed scale-free structure persist as agricultural networks evolve over the growing
season?We analyze 9 intensively cultivated Landsat scenes on 5 continents with a wide range of vegetation dis-
tributions.Wefind that networks of vegetation fractionwithin the domain of each of these Landsat scenes exhibit
substantial variability – but generally still possess similar scaling properties to the global distribution of agricul-
ture. We also find similar results when comparing Landsat and Sentinel-2 imagery for 3 agricultural regions in
Europe, aswell as in an IKONOS image of an agricultural region of China. To illustrate an application of spatial net-
work analysis, we showanexample of networkdisruption.We compare twonetworkswith similar rank-size dis-
tributions that behave differently when nodes are progressively removed. We suggest that treating agricultural
land cover as spatial networks can provide a straightforward way of characterizing the connectivity and evolu-
tion of complex spatial distributions of agriculture across awide range of landscapes and at spatial scales relevant
for practical agricultural applications.
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1. Introduction

The spatial distribution of agriculture in a landscape can provide in-
formation which is complementary to the properties of individually
treated fields or political units. Pollination, insect diversity, and other
ecosystem services are reliant on the spatial connectivity of an agricul-
tural landscape (Diekötter et al., 2008; Ricketts et al., 2006). Outbreaks
of pests and pathogens can sometimes be contained by breaking spatial
adjacency between cropped areas (Gilligan, 2008). The ecology of native
species populations can be altered by habitat fragmentation of natural
landscapes by agriculture (Dixo et al., 2009; Luoto et al., 2003). Howev-
er, the diversity of agricultural landscapes around the globe demands a
tool which is flexible enough to accommodate a wide range of spatial
distributions and connectivity patterns. Network theory provides the
basis for a conceptually simple model which can represent a variety of
processes with complex spatial structure.

Globally, maps of cropland extent have been observed to display an
unexpected consistency in their size distributions (Small and Sousa,
2016). Despite considerable disagreement when compared directly in
the same locations, 4 different global agriculture products possess the
property that the sizes of contiguous patches of agricultural land dimin-
ish at the same rate that their frequency increases (Fig. 1). This property
implies (nearly) uniform distributions of total agricultural area across a
wide range of spatial scales. This implies that the sum of the area of the
largest segments is equal to the sum of the area of the smallest seg-
ments, which is equal to the sum of the segments of any arbitrary size
interval in between. The consistency of this observation across the 4
products is especially surprising given the substantial differences in
the input data, assumptions, and algorithms used in each of the 4 prod-
ucts. The consistency of the observation at global scales begs the ques-
tion of whether this pattern can also be observed at finer spatial scales.

The property of diminishing magnitude with increasing number is
common in nature and is often referred to as a power law relationship.
Power law relationships are also a defining characteristic of many net-
works – often referred to as “scale-free” because of the implied self-sim-
ilarity and lack of a characteristic scale. Because networks are capable of
representing processes with complex spatial structure (e.g. as reviewed
by Barthélemy, 2011), and because many networks (such as those in
Barabási and Albert, 1999) display similar power law relationships to
those observed for agriculture on the global scale, we suggest that net-
works may be a useful tool to characterize agricultural landscapes and
provide insight into processes reliant on agricultural connectivity.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2016.07.038&domain=pdf
http://dx.doi.org/10.1016/j.rse.2016.07.038
mailto:d.sousa@columbia.edu
Journal logo
http://dx.doi.org/10.1016/j.rse.2016.07.038
http://www.sciencedirect.com/science/journal/00344257
www.elsevier.com/locate/rse


Fig. 1.Global comparison of agricultural land cover products (top) and corresponding rank size distributions of agricultural land area (bottom). Areal fractions of land under cultivation for
three global products shownas red, green, and blue brightness. Pairwise spatial correlations between products shown in lower left corner of themapquantify agreement. Segmenting each
continuous fractionmap at N25% and N50% thresholds produces binarymaps. Rank size distributions of contiguous areas of agricultural land cover for eachproduct have similar slopes over
4 orders of magnitude in size. Power law fits to each rank size distribution yield slopes near−1. Size cutoffs estimate lower bound of power law behavior. Small cutoffs for the IASA-IFPRI
andMODISproducts indicate that thepower lawfits all but the smallest segments,while the larger cutoffs in theHYDEand Earthstat products result fromquantization of smaller segments
due to their coarser 10× 10km resolution. Slopes near−1 indicate that areas of agricultural land cover diminish in size at the same rate they increase innumber. The implication is that the
total area of agricultural land cover is nearly uniform across a wide range of segment sizes. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
This figure is adapted from Small and Sousa (2016).
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Several remote sensing studies have used power laws to describe
fire size distributions. For instance, Hantson et al. (2015) studied the
global distribution of fire sizes using a 2° grid and found that a power
law model successfully fit 93% of grid cells with significant fire activity.
Similarly, Malamud et al. (2005) studied wildfires across the contermi-
nous United States and found robust power law fits in 18 different
ecoregions. Kumar et al. (2011) use these established power law rela-
tionships to estimate fire biomass and radiative energy.

Studies of a wide range of other phenomena in the natural sciences
also find power law behavior. Desert vegetation in the Kalahari was
found by Scanlon et al. (2007) to follow a robust power law distribution
across 1.5 orders of magnitude. Horizontal cloud sizes were found by
Wood and Field (2011) to be well represented by power laws from
sizes ranging from 0.1 km to at least 1500 km. Earthquakes (famously
described by Gutenberg and Richter, 1956), wind profiles (as
characterized by Hsu et al., 1994), and landslide area (characterized
by Guzzetti et al., 2002) provide but a few of the myriad other cases in
which power laws have been used to describe Earth processes. Interest-
ed readers may find more detailed descriptions of similar processes in
references such as Turcotte (1997) and Sornette (2006).

The goal of this paper is to investigate the question of whether the
globally observed scaling property of agricultural land cover holds
over smaller areas and at spatial scales relevant to the questions of pol-
lination, pathogen transmission, and ecology. Specifically, we seek to as-
sess the robustness of the global scaling relationship at the decameter
spatial scale for a set of diverse agricultural landscapes spanning 5 con-
tinents. To our knowledge, the investigation of heavy-tailed size distri-
butions of contiguous patches of agriculture has not yet been
performed in the literature.We ultimately seek to answer the question:
Do the size distributions of agricultural landscapes already observed at
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global scales maintain similarity to true power laws at spatial scales re-
solving individual fields? This question has direct relevance to several
agricultural applications because of the implications for spatial connec-
tivity of agricultural networks at scaleswhere interventions are feasible.

2. Background

2.1. Rank-size plots and heavy-tailed distributions

Some processes in nature tend to produce objects or events that
cluster around one characteristic size, with large deviations from this
value being relatively infrequent. However, other processes produce ob-
jects or events that can take on a wide range of sizes – sometimes vary-
ing over several orders magnitude. When viewed as realizations of
random variables, distributions which can take on a wide range of
values are said to be heavy tailed. In a heavy tailed distribution, concepts
fromGaussian statistics such as mean and standard deviation have little
utility since the random variable deviates highly from that of a Gaussian
(i.e., extreme events are much more common than predicted by a
Gaussian distribution). Several types of heavy-tailed distribution
which have been invoked by different authors to describe natural phe-
nomena include the Weibull (e.g. wind speed, Seguro and Lambert,
2000), log-normal (e.g. distribution of chemical concentrations,
Limpert et al., 2001) and power law (e.g. city size, Auerbach, 1913;
Lotka, 1941; Zipf, 1942) distributions.

In the case of phenomena characterized by heavy tailed distribu-
tions, rank-size plots can be an intuitive tool for displaying both the
magnitude and frequency of observations. Because such processes
often span several orders of magnitude, such plots are typically
displayed on logarithmic axes. Such a visualization scheme can be desir-
able because of its conceptual simplicity and minimum of assumptions
about the form of the data. In the case where a rank-size plot is linear
on logarithmic axes, the power law distribution is often considered a
likely candidate for the underlying process. A power law distribution
is defined by a constant factor and an exponent. If a set of features is
distributed according to a power law, the slope of the rank-size plot in
log-log space is related to the power law exponent α by the following
expression from Li (2002):

slope ¼ −
1

α−1

Nonparametric statistical methods have been developed to deter-
mine the power lawof best fit, the portion of the distributionmost likely
to be power law, and confidence intervals using Monte Carlo and the
Kolmogorov-Smirnoff goodness-of-fit statistic. For an excellent descrip-
tion of these tools and their application to a wide range of datasets, see
Clauset et al. (2009). When observations are binned logarithmically, a
rank-size distribution with a slope of −1 (corresponding to a power
law exponent of −2) corresponds to a uniform distribution across
scales (Small et al., 2011).

Importantly, linearity of the rank-size plot alone does not rule out
the possibility of other similar heavy tailed distributions describing
the data equally well – or even better (Clauset et al., 2009). For this rea-
son, in this paper we only use power law fitting as a convenient way to
quantify the degree of linearity and slope of the rank-size plots. We re-
main noncommittal about the ultimate formof the underlying probabil-
ity density function and suggestmore rigorous analysis as a direction for
future work on this topic.

2.2. Scale-free networks and constrained networks

The most basic pieces of networks are nodes and links. Nodes are
connected to each other by links. Depending on the network, some
nodes may be linked to many other nodes, some may be linked to
only a few, and some nodes may not linked to any other nodes at all.
Each set of interconnected nodes is called a component. Within each
component, all nodes are connected to each other either directly or in-
directly (i.e. through other nodes within the same component). No
node within one component can be linked to a node within another
component. A network is a set of components. In many networks, all
nodes are linked to each other (directly or indirectly) to form a single
“giant” component (Newman, 2010). Other networks have many
components.

In a network, each node has a certain number of links. The frequency
distribution of the number of links per node is called the degree distri-
bution of the network. In some networks, the degree distribution can
be well-characterized by a power law. These networks are called
scale-free networks. For these networks, when the distribution of de-
gree sizes versus rank (ordinal number: 1= largest, 2= second largest,
3 = third largest,…) is plotted on logarithmic axes, the result is linear.
The slope of this line can vary substantially for different networks
(Barabási and Albert, 1999; Clauset et al., 2009). The wide range of de-
grees necessary for a power law distribution is possible in some cases
because many networks have no limit (or some very large limit) to
the number of links that each node can have. Networks are already
used in the field of landscape ecology under the term graph theory
(Cantwell and Forman, 1993; Gardner et al., 1992; McIntyre et al.,
2014; Urban and Keitt, 2001). For a general review of network theory,
see Albert and Barabási (2002) and Newman (2010).

In this paper we treat landscapes as networks of land cover. The spa-
tial domain of interest determines the total possible spatial extent of the
network it contains. As the network grows within the rectangular grid
of the domain, each pixel is treated as a potential node. In this paper, a
pixel becomes a node of a spatial network if it satisfies a single criterion:
subpixel vegetation abundance above the threshold of analysis.We con-
sider twopixels to be directly linked if they are spatially adjacent to each
other. For this reason, nodes in land cover networks on a regular
rectangular grid (as is the case in this study) have a maximum number
of direct links (Steinwendner, 2002). Because we use the Queen's case
for connectivity (all immediate neighbors including diagonals), this
number is 8. In this case, the parameter of interest is not the degree
distribution but the component size distribution, as the sizes of each
component (spatially contiguous patch of agricultural land) can possess
a wide range of values. The rank-size plots used in this paper show the
distribution of component sizes in a single network.We refer to the par-
ticular type of spatial network defined in this way as a bounded spatial
network (Small and Sousa, 2015).

Small and Sousa (2016) show that four land cover products which
seek to map agricultural land use at the global scale exhibit empirical
component size distributions characterized by linearity in logarithmic
space and slope of −1, despite differences in spatial patterns (Fig. 1,
from Small and Sousa (2016)). This result holds across a wide range of
analysis thresholds (described in more detail below). This suggests
that agriculture may be well characterized as a scale-free spatial net-
work on the global scale. Other types of land cover products have also
been found to exhibit similar properties on the global scale (Small and
Sousa, 2015).

Scale-free networkshave been shown to result from two simple con-
ditions: network growth and preferential attachment (Barabási and
Albert, 1999). Preferential attachment is sometimes described as “rich
get richer”– i.e., new nodes to attach more frequently to existing
nodes with greater numbers of links, or to components with a greater
number of nodes, than to their less connected counterparts. The net-
works we consider fill space on a surface. This generates a mechanism
for preferential attachment because the surface has finite area and larg-
er components naturally have larger perimeters to which new nodes
can link. If new nodes are generated randomly in space, components
with larger perimeters will exhibit preferential attachment – without
the need for a situation-specific mechanism for preference. To the ex-
tent that components with larger sizes (i.e. areas) also have larger pe-
rimeters, a mechanism for preferential attachment is inherent to
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bounded spatial networks on a surface. For more detailed background
and mechanism, see Small and Sousa (2015).

3. Data & methods

To quantify the scaling properties of different agricultural land-
scapes, we choose images that are dominated by agricultural land
cover and then use the following procedure. Beginning with raw
Landsat data, we first calibrate from DN to radiance to exoatmospheric
reflectance. We then estimate vegetation fraction (Fv) at each pixel
using the standardized global endmembers from Small and Milesi
(2013), generating a continuous field of sub-pixel vegetation
abundance.

Sentinel data are processed by first resampling all 12 bands to 10 m
resolution and then unmixing into Substrate, Vegetation, and Dark
components. Subpixel vegetation fraction from this unmixing is then
used for subsequent network analysis. Sentinel-2 spectral unmixing is
performed using local SVD endmembers since global Sentinel-2
endmembers are not currently available. As noted previously (Small
and Milesi, 2013), local substrate EMs can differ substantially from the
global EMs and produce systematic differences in fraction estimates
between global and local EMs. These differences are most prominent
in substrate fraction estimates.

We then segment the Fv images at several different fraction thresh-
olds with the ENVI segmentation algorithm, using the Queen's case of 8
neighbors including diagonals. The ENVI segmentation algorithm finds
spatially contiguous groups of pixels which all obey the rule used for
segmentation. In this case, the rule used is Fv above a given threshold.
All spatially adjacent pixels with Fv above this threshold are labeled
with the same segment number. We use the Queen's case as our metric
for spatial adjacency in order to provide the most liberal estimate of
connectivity. We use a minimum segment size of 8100 m2 (9 Landsat
pixels or 81 Sentinel-2 pixels) to account for spatial autocorrelation of
the input imagery and avoid large numbers of spurious detections.
Allowing smaller segments in Sentinel imagery has the effect of resolv-
ing the characteristic field size of the landscape and is discussed in
Fig. 2. Illustration of network progression with threshold. This 1000 × 1000 pixel subscene of La
Insets show size distributions for each threshold. At threshold of Fv N 0.8, only a few fields emer
more fields are included and adjacent fields connect. The size distribution steepens and loses its
case). After this point, further lowering of the threshold results in a majority of segments supe
other vegetation fraction images in this paper.
(Small & Sousa, forthcoming). The segmentation algorithm produces a
map of segments corresponding to spatially contiguous patches of veg-
etation (for each threshold). The agricultural network is thus composed
of all pixels in the image for which the following two conditions are
true: (1) Fv of the pixel is above the given threshold and (2) the pixel
is spatially adjacent (directly or indirectly) to at least 8 other pixels
(Landsat) or 80 other pixels (Sentinel) which also have Fv above the
given threshold.

Next, we calculate the total area of each segment (for each thresh-
old). The resulting segment size maps (for each threshold) provide
both the size distributions and a depiction of the spatial network struc-
ture. Segment areas are then sorted into a descending list and plotted
against ordinal number (i.e. rank) on logarithmic axes.

Awide range of thresholdswas applied in each case and resultswere
compared. Fig. 2 shows the typical progression of a rank-size distribu-
tion at full resolution for an example region in northern California. Im-
ages of the spatial structure of the network are shown for several
different thresholds, with inset size distributions. Segment sizes are
color coded on both the image and the rank-size plot. At a threshold
of 100% subpixel vegetation abundance, all pixels fall below the thresh-
old and there is nonetwork. As the threshold is lowered,more pixels are
included in the network and form components (contiguous patches). At
this phase the components correspond to individual fields or groups of
closely spaced fields with high Fv. Continuing to lower the threshold
eventually results in connection of more and more components into
larger contiguous areas as pixels with lower Fv are added to the
network. Eventually enough pixels become part of the network that
components begin connecting to form much larger components.
Eventually the larger components superconnect and form one massive
unit. If the threshold continues to be lowered to negligible Fv, the entire
spatial domain of the image becomes part of the network. For more de-
tail on the general methodology used to segment continuous fields, see
Small and Sousa (2015) and Small et al. (2011).

Disruption of agricultural networks was performed by sequential
erosion using a morphological operator. For each iteration of the analy-
sis, segment area maps were converted into binary maps indicating
ndsat vegetation fraction was thresholded at successive values (upper left of each image).
ge as part of the network and the size distribution is nearlyflat. As the threshold decreases,
curvature. This continues until the size distribution becomes straight (near Fv N 0.3 in this
rconnecting into a small number of very large segments. This progression is typical of the
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presence or absence of agriculture. These binary maps were then con-
volvedwith a 3 × 3 pixel Gaussian filter. Any pixel with a full set of 8 ag-
ricultural neighbors was unchanged, but any pixel with one or more
non-agricultural neighbor decreased in value. A threshold of 1 was
then applied and segment areas were recaluclated. This produced the
effect of removing every pixel in the image on the boundary of the net-
work. The output of one erosional step was then used as the input for
the next step.

Power law exponents were fit using the statistically robust algo-
rithm described by Clauset et al. (2009) and converted to slopes of the
size distributions using the relation given in Eq. (1). Power law fits are
also characterized by size cutoffs describing how far the power law
properties plausibly extend down the lower tail of the distribution. Cut-
offs were determined using the same algorithm by choosing the mini-
mum of the Kolmogorov-Smirnoff (KS) statistic for sets of points
extending sequentially farther into the lower tail of the distribution. Sig-
nificancewas estimated using aMonte Carlo approach to generate 1000
synthetic datasets and calculating the KS goodness-of-fit for each. Using
this approach, large p values represent plausible power law fits. We use
the suggestion of Clauset et al. (2009) in presenting significant power
Fig. 3. A. Agricultural landscapes used for scaling analysis. Scenes were chosen to represent a d
range of field sizes, competing land uses, climate zones, and landmanagement practices is depi
panel a. Inset shows vegetation fraction histogram for each Landsat scene, with arrows indic
sensitivity of the network structure to threshold. Distributions of vegetation fraction are diff
near −1 and giant components forming as thresholds approach the median vegetation frac
landscape properties vary from scene to scene, resulting in a wide range of vegetation fraction
law fits as those with p N 0.1, which is a stricter test than accepting as
plausible distributions with p N 0.05.

While significant p values indicate that a power law distribution
cannot be ruled out, they do not decisively show it to be a better fit
than other heavy tailed distributions such as log-normal. Comparison
of power law versus log-normal and Weibull distributions was per-
formed by computing the Likelihood Ratio for each fit to each
distribution. In all 27 cases, the power law gave a better fit (i.e. yielded
a higher Likelihood value) than either the log-normal or Weibull distri-
butions. However, despite outperforming both of the other two heavy
tailed distributions, we remain non-committal about the true form of
the underlying distributions being a strict power law.More information
would be required to substantiate this claim than is available at the
present time, and rigorous statistical testing of the power law hypothe-
sis could be a useful avenue for futurework. In this paper, we simply use
the power law as a convenientmetric of linearity of the rank-size distri-
butions in logarithmic space.

The data used in this study were (1) Landsat TM/ETM+/OLI scenes
selected fromdiverse agricultural regions across 5 continents, (2) Senti-
nel-2 scenes selected from 3 agricultural regions in Europe, and (3) one
iverse set of landscapes characterized by agricultural extensification and intensification. A
cted. B. Rank-Size distributions for vegetation fraction from the 9 Landsat scenes shown in
ating the segmentation thresholds. Rank-Size distributions for each scene illustrate the
erent for each landscape but most scenes have linear rank size distributions with slopes
tion. C. Slope of Rank-Size distribution versus threshold for nine Landsat scenes. Local
distributions. These distributions control the progression of slope of the size distributions.
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IKONOS scene of an intensively cultivated region in Anhui, China. All
Landsat scenes were acquired from the USGS Earth Resources Observa-
tion and Science Center (www.glovis.usgs.gov). All Sentinel scenes
were acquired from the ESA SciHub web portal (www.scihub.
copernicus.eu). For Landsat and IKONOS data, we use UTM equal area
projections at the native resolution of the sensor. For Sentinel-2 data,
we resample all 12 bands to the 10 m resolution native to the Senti-
nel-2 VNIR sensor in UTM equal area projection. Landsat scenes in this
analysis are referred to by their WRS-2 path and row identifiers: i.e.
scene p029r030 corresponds to Path 29, Row 30 (South Dakota).

The scenes were chosen to represent a diverse set of landscapes
dominated by extensive agriculture, spanning a range of field sizes, cli-
mate zones, phenologies, and landmanagement practices. Awide range
of crops are represented, including regions dominated by one or two
grains (e.g. rice and/or wheat) as well as regions producing a balance
of both commodity and specialty crops. The 9 Landsat scenes used in
this study were selected quasi-randomly from the Landsat archive to
meet the criteria of: lack of cloud cover, diversity of agricultural prac-
tices, and range of hydrologic and climatic milieu. They were selected
quasi-randomly in time to represent a range of stages of the phenologic
cycle. We do not claim that these 9 scenes fully sample the global
distribution, but rather suggest that their results represent a diverse
set of potential endmembers of the global distribution of agricultural
landscapes.

Fig. 3A shows false color composites of the 9 Landsat scenes used
for this analysis. Spatial configuration of agriculture across scenes
varies widely from nearly wall-to-wall coverage (e.g. South Dakota
and North China) to regions strongly limited in spatial extent by irri-
gation (e.g. Salton Trough and Indus). A range in extent of sectioning
of the landscape by roads and rivers is apparent. Field size varies
widely both across scenes and within scenes. Scenes were chosen
at varying stages of the annual cycle, from soon after planting to
maximum greenness. All scenes contain some non-agricultural
vegetation ranging from tropical forest to desert shrubs – but all
are dominated by agriculture. The Bavaria scene contains several for-
est patches, but all are managed forests so are effectively part of the
agriculture/silviculture mosaic.

The spatial extent and abundance of non-agricultural vegetation
varies from scene to scene. While the presence of some non-cultivated
vegetation violates the assumption made in the analysis that networks
of vegetation fraction strictly represent networks of agricultural activity,
we have attempted to choose regions dominated by extensive cropland.

http://www.glovis.usgs.gov
http://www.scihub.copernicus.eu
http://www.scihub.copernicus.eu
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We also suggest that, for some applications such as species migration
and pollination, vegetation networks may be closer to the phenomenon
of interest than strict definitions of cropland. Further, while consider-
able uncertainty exists as to the definition of cropland in global agricul-
ture maps (reviewed in Small and Sousa, 2016), subpixel vegetation
abundance represents a physically meaningful quantity which can be
directly compared across widely varying landscapes. While using Fv as
a general proxy for agriculture would not be valid in many landscapes,
we hold that its properties of simplicity and consistency justify its use
in the examples chosen in the context of this analysis.
4. Analysis

4.1. Landsat

Fig. 3B shows Rank-Size plots for 3 different thresholds for each of
the 9 Landsat scenes from Fig. 3A. Fv distribution for each scene is
inset with the three thresholds indicated using vertical arrows. His-
tograms vary widely from scene to scene in central tendency, disper-
sion, and number of modes, reflecting differences between the
landscapes described above. Thresholds are adjusted accordingly
from scene to scene to capture similar positions in the distribution.
Horizontal arrows on the rank-size plots indicate the cutoff for
power law fit that maximized the goodness-of-fit criterion. Italicized
thresholds and slopes have p values N 0.1, indicating a statistically
plausible power law fit. The statistical significance of the fit is not
critical for the purposes of this analysis because we use the power
law exponent as a tool to quantify the slope of the rank-size plot,
not as an assertion of the generating process itself. We include the
goodness-of-fit result for the benefit of readers inclined to favor
the power law mechanism.

Fig. 3C shows Rank-Size slope estimates for several thresholds for
each of the 9 Landsat scenes. Error bars indicate 95% confidence. As
the threshold is successively lowered, rank-size slopes generally in-
crease toward more negative values. This corresponds to an increase
in overall network size and in the size of individual components, consis-
tent with the network growthmechanism proposed in Small and Sousa
(2015). Prominent exceptions to this rule correspond to cases of severe
non-Gaussianity of the vegetation histogram, e.g. bimodality in the
Mato Grosso and North China Landsat scenes and a broad, asymmetric
shoulder in the South Dakota scene. Slopes near −1 indicate that
segments decrease in size at roughly the same rate that they increase
in frequency. Slopes pass through a value of −1 for 8 of the 9 scenes
considered here. The two scenes with slopes consistently shallower
than −1, Indus and Salton Trough, are characterized by exponential-
like Fv histograms with a mode of Fv ≈ 0.
4.2. Sentinel-2

Fig. 4 shows network structure intercomparisons between Landsat
and Sentinel-2 for three 30 km × 30 km agricultural landscapes in Eu-
rope. In Fig. 4A, we examine an agricultural basin in Abbruzzo, Italy im-
aged on successive days in December 2015. The segment size image of
the agricultural network (middle row) reveals a range of spatial



622 D. Sousa, C. Small / Remote Sensing of Environment 184 (2016) 615–627
patterns of contiguous photosynthetic agriculture, from isolated small
fields to clusters of closely spaced fields with separators which are not
resolved by either 30 m Landsat or 10 m Sentinel-2 sensors. However,
close visual inspection reveals several cases where fields grouped to-
gether in Landsat imagery are broken apart in Sentinel imagery – and
vice versa. This is possible because increasing spatial resolution can
have (at least) two processes working in opposite directions: ability to
resolve narrow connectors which do not emerge above threshold in
coarse resolution imagery (enhancing connectivity) and ability to
Fig. 4. A. Comparison of Landsat- and Sentinel-derived networks from a 30 km × 30 km agri
histograms show vegetation fraction (lower left) and total area by segment size (upper r
30 km × 30 km agricultural region in Bavaria, Germany. 1:1 lines shown on the rank-size c
segment size (upper right) distributions. C. Comparison of Landsat- and Sentinel-derived ne
shown on the rank-size curves in black. Inset histograms show vegetation fraction (lower left)
resolve narrow separators which are presented in coarse resolution im-
agery as a mixed pixel above threshold (reducing connectivity). Which
of these processes dominates varies based on the local geometry of the
segment at play.

In Fig. 4B,weexamine a subset of the agriculture/silviculturemosaic in
Bavaria used in the global analysis of Fig. 3. In this case, we examine the
agricultural network over a range of nearly 25 years and 17 days offset
in the phenological cycle. As a result, the overall greenness of the land-
scape is notably different, although the spatial arrangement of fields is
cultural region in Abbruzzo, Italy. 1:1 lines shown on the rank-size curves in black. Inset
ight) distributions. B. Comparison of Landsat- and Sentinel-derived networks from a
urves in black. Inset histograms show vegetation fraction (lower left) and total area by
tworks for a 30 km × 30 km agricultural region in Centre-Val de Loire, France. 1:1 lines
and total area by segment size (upper right) distributions.
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generally stable. The segment size images reveal the breakup and
connection of segments as a result of interannual, phenological, and
resolution-based differences in the images. In spite of these differences,
the rank-size distributions of segment areas remain remarkably
consistent.

Fig. 4C shows a region in Centre-Val de Loire, France 1 year and
14 days apart. In both cases, the agricultural network is dominated
by large segments, identifiable both by visual inspection of the seg-
ment area images and by rank-size slopes steeper than −1. Loci of
closely spaced fields which dominate the landscape appear to be
generally stable in their position, but the connectivity between
them varies. While the spatial positions of the largest components
shift due to this variation in connectivity, the rank-size plots again
remain remarkably stable.

4.3. IKONOS

Fig. 5 shows the procedure of successive thresholding when repeat-
ed for a ~39 km2 IKONOS image in Anhui, China. The 4-band image was
unmixed into SVD fractions using local endmembers. Successive
thresholding was then applied to the Fv image. Segment area maps for
four representative thresholds demonstrating the progression of the
network are shown in the top 4 panels. The progression of the IKONOS
size distributions with changing threshold (bottom right panel) is
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similar to that of the Landsat scene shown in Fig. 2. At high thresholds
IKONOS size distributions have high curvature and shallow slopes. The
slope of the size distribution steepens as the threshold is reduced and
the lower-tail power law cutoff gradually moves up the distribution.
Curvature is even more pronounced than for Landsat at this phase.
Once a threshold near 0.3 is reached, however, the size distribution
loses most of its curvature and becomes linear. The slope of the size dis-
tribution crosses −1 at this point and the lower-tail cutoff rapidly
moves deep into the lower tail of the distribution. As the threshold is de-
creased below this level, the network superconnects into a few giant
components. The total number of segments (i.e. maximum rank) begins
to decrease and the bottom of size distribution moves to the left. These
properties are all similar to those observed for the Landsat and Sentinel
scenes in Figs. 3 and 4.

4.4. Practical example – disruption by node removal

Fig. 6 shows how two agricultural networks can respond differently
to disruption by sequentially reducing the area of each component. In
each iteration of this process, all segments in the image are simulta-
neously reduced in size by removing one pixel width from around the
boundary. We refer to this type of disruption as “erosion”. This process
has the potential to remove segments from the network by shrinking
them below the 9 pixel threshold. It also has the potential to break a
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small number of large segments into a large number of smaller seg-
ments (i.e. making little pieces out of big pieces) by separating dense
intra-segment clusters which are only connected by narrow “bridges”.

We disrupt two agricultural networks in this way: one in the Salton
Trough (p039r037) and one in South Dakota (p029r030). The upper
tails of the rank-size distributions are shown in detail for successive
numbers of erosional steps. The Salton Trough network (top)maintains
the structure of its rank-size distribution through 7 erosional iterations,
while the largest segments in the South Dakota network (bottom) rap-
idly dissociate into components with area approximately 2 orders of
magnitude smaller, resulting in a drastic shallowing of the slope of the
sizedistribution. This is a consequence of the differences in spatial struc-
ture and fractal dimension of the two networks.

5. Discussion

Considerable range exists in the slope and curvature of the size dis-
tributions shown in Fig. 3B – but the similarities aremuchmore surpris-
ing than the differences. Indeed, we find it remarkable that there is any
similarity at all given the diversity of landscapes (Fig. 3A) and of vegeta-
tion abundance distributions (histogram insets of Fig. 3B) from which
they are derived. While it is clear that none of the 9 size distributions
here exactly resembles the global size distribution in Fig. 1, it is similarly
clear that none of the 9 landscapes used in this study comes close to
fully sampling the diversity or scope of agriculture at global scales. Fur-
thermore, because the differences between size distributions emerge
Fig. 5. Successive thresholding of vegetation fraction for a 39 km2 IKONOS image of Anh
from the differences in landscapes, these differences can be diagnostic
in characterizing the variability in spatial distributions of agriculture
across widely variable landscapes. From a network perspective, a diver-
sity of size distributions implies a diversity of network structures.

Several potential explanations exist for the differences in rank-size
distributions shown in Fig. 3B. Some Landsat scenes, such as the Salton
Trough and Indus scenes, feature heavily irrigated agricultural land-
scapes in which cropland is tightly clustered around the hydrologic dis-
tribution network. This clustering impacts the rank size distribution and
corresponding power lawfit. All scenes feature some variable amount of
human settlement, and some scenes such as North China, Delhi, and
SouthDakota feature spatially extensive conurbationswhich visibly dis-
rupt the agricultural landscape. The extent to which these populated
areas influence the spatial pattern of the agricultural land in the scene
impacts the rank-size distribution of agricultural land.

Furthermore, the scenes range widely in levels of agricultural devel-
opment, from smallholder farms (e.g. G-B Delta and Delhi), to industrial
scale production (e.g. Salton Trough and South Dakota).While our anal-
ysis captures clusters of agriculture rather than individualfields, the dis-
tribution of field sizes contributes to the size of these clusters and thus
the rank-size distribution. Major non-agricultural curvilinear and recti-
linear features (e.g. rivers and roads) also cross-cut all of the scenes,
providing a plethora of subscene background geometries which break
apart some contiguous segments and encourage others to grow togeth-
er. Finally, a wide range of climate zones from tropical (G-B Delta and
Mato Grosso) to hyperarid (Salton Trough and Indus) impact the
ui, China. Rank-Size plots show a similar succession to those from Landsat in Fig. 2.
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background landscape mosaic within which the contiguous agricultural
land for each scene is embedded. A detailed investigation of the way in
which these (and other) factors generate the differences in rank-size
distributions could provide a rich subject for future work.

Some of the size distributions in Fig. 3B cannot plausibly be de-
scribed as power laws. Some exhibit power law behavior that truncates
in the middle of the distribution. Others show statistically plausible
power law behavior extending deep into the lower tail of the distribu-
tion. We suggest that the important characteristic of the size distribu-
tions is not presence or absence of statistically defensible power law
behavior, but rather that every distribution shown here is similarly
heavy tailed. Every size distribution shows many more small patches
than large patches, and nearly all distributions show that when ordered
by area patches become smaller andmore frequent at similar rates – im-
plying the total area sum of patches at any size is nearly equal to the
total sum at any other size. This property corresponds to a slope near
−1 on the plots in Fig. 3B. Further, Fig. 3C shows that many of the dis-
tributions vary with threshold in a predictable way: starting at high
threshold (right side of the plots), the size distribution increases in
slope as the threshold drops and the components grow (moving right
to left on the plot) until reaching linearity near −1. At this point, a
giant component emerges and dominates the network.

As the threshold is dropped even further, more and more of the re-
maining patches become connected into the giant component, reducing
the total number of segments until every pixel in the entire domain is
superconnected. The variations in progression of network structure
with threshold are related to the fraction distributions, but the gross
structure described above occurs in a consistent way across a wide
range of conditions. A similar progression is also shown for the IKONOS
image (Fig. 5) over a much smaller spatial domain. Similar progressions
have even been observed in some random spatial networks and a gen-
eral mechanism for the process been proposed (Small and Sousa,
2015). Despite this observed commonality, some of the distributions
shown here vary with changing threshold in a more complex way
Fig. 6.Disruption of agricultural networks by erosion. Images show a 1000 × 1000 pixel subset o
removed from the network, akin to removing rings of an onion. Regular rectilinear patterns cor
process. As pixels are removed, the upper tail of the size distribution may maintain a slope n
network. Networks with size distributions which maintain their slope in the face of erosional
is desirable or undesirable depends on the application.
than described above. This discrepancy often corresponds to severe
non-Gaussianity in the Fv histogram. Detailed analysis of this complex-
ity will be the subject of further study.

Landsat – Sentinel-2 intercomparisons provide an opportunity to
make note of several important limitations of spatial network analysis
for agricultural landscapes. A primary challenge, long recognized, is in
the definition of “agriculture” as observed by remote sensing. In this
study we use vegetation fraction because it is a physically meaningful
quantitywhichhas been shown to be consistent across sensors and scal-
able across spatial resolution. However, it cannot distinguish between
anthropogenically-driven vegetation (i.e. agriculture, including silvicul-
ture) and natural vegetation. When scenes are pre-selected to be dom-
inated by agriculture, as they have been in this study, this problem is
minimized – but not completely eliminated. Inspection of the hillslopes
around the agriculturally-dominated caldera in the Abbruzzo scenepro-
vides one example of this scenario.

Phenology provides another challenge which can be highly complex
in agricultural landscapes. Network analysis of any single image pro-
vides a single snapshot of that landscape in time. As is apparent from
Fig. 4B and C, temporal variability on the order ofweeks can substantial-
ly alter the spatial connectivity of an agricultural landscape. Complete
network-based analyses intended for practical applications must ac-
count for the phenology of the landscapes which they observe, as spa-
tially-dependent processes are often temporally-dependent as well. As
quantified by single-image vegetation fraction, landscapes possess a
temporal progression of connectivity structures – of which the power
law phasemay be short-lived.We find it remarkable that somany agri-
cultural networks, even when undersampled so extensively in both
time and space, still display this unique structure which is so similar
to that of the global network.

Analysis of two seemingly similar agricultural landscapes by net-
work erosion shown in Fig. 6 demonstrates one potential application
of the concepts presented in this paper. In one case (Salton Trough),
power lawbehaviorwith slope near−1 is persistent even after removal
f segment areamaps derived from full Landsat scenes. In each step, all boundary pixels are
respond to real features of the landscape (i.e. roads) which often serve to guide the erosion
ear −1 (top) or flatten considerably (bottom), depending on the spatial structure of the
perturbations may be more robust to disruption. Whether this form of network stability
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of many pixels and considerable reduction of the total size of the net-
work. In another case (South Dakota), the power law behavior of the
network ismuch less robust. Removal of only a few pixels drastically re-
duces the sizes of the largest components (by a factor of ~100), rapidly
breaking apart the largest segments of the network into much smaller
disconnected components. This is clearly a result of the sectioning of
the landscape by the regular grid of the road network. One could imag-
ine a landscape which is more sensitive to small perturbations as being
more easily disruptable – either a dangerous characteristic (as in the
case of pollinator pathways) or a desirable one (as in the case of
quarantining disease outbreaks). Understanding the robustness of the
structure of an agricultural network to disruption could provide applica-
tion-specific insight into practical methods for disrupting (or
preventing disruption of) connectivity across an agricultural landscape.

Another possible application, not shown in this analysis, is to use
multitemporal observations to constrain the growth and attenuation
of agricultural networks in a landscape throughout the complete pheno-
logical cycle. As the agricultural mosaic evolves through time, different
crops are planted, green up, senesce, and are harvested at different
times of year. Taken together, the combination of the spatial distribution
of these crops and their corresponding phenology time series govern
the complete spatiotemporal agricultural network of a landscape. The
diagnostic property of an agricultural landscapemay be not just the net-
work as observed at any one time but rather the robustness of the net-
work properties throughout the course of the year. For instance,
effective pollination may require an agricultural network to remain in
a particularly interconnected state for a certain length of time. Crops
may be particularly susceptible to disease outbreaks at one particular
time of year. Native speciesmay bemore sensitive to disruptions of hab-
itat in migration season than at other times of year. Furthermore, net-
work adaptation to catastrophic environmental stresses such as
drought or widespread disease outbreaks may be easily characterized.
Finally, multitemporal network studies – like all of the analyses per-
formed in this paper – have the added benefit of being easily performed
nearly anywhere on Earth using simple methodologies and freely avail-
able remotely sensed observations.
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