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Data continuity for the Landsat program relies on accurate cross-calibration among sensors. The Landsat 8 Oper-
ational Land Imager (OLI) has been shown to exhibit superior performance to the sensors on Landsats 4–7 with
respect to radiometric calibration, signal to noise, and geolocation. However, improvements to the positioning of
the spectral response functions on the OLI have resulted in known biases for commonly used spectral indices be-
cause the newband responses integrate absorption features differently fromprevious Landsat sensors. The objec-
tive of this analysis is to quantify the impact of these changes on linear spectral mixturemodels that use imagery
collected by different Landsat sensors. The 2013 underflight of Landsat 7 and Landsat 8 provides an opportunity
to cross calibrate the spectral mixing spaces of the ETM+ and OLI sensors using near-simultaneous acquisitions
of radiancemeasurements from awide variety of land cover typesworldwide.Weuse 80,910,343 pairs ofOLI and
ETM+ spectra to characterize the Landsat 8 OLI spectral mixing space and perform a cross-calibration with
Landsat 7 ETM+. This new global collection of Landsat spectra spans a greater spectral diversity than those
used in prior studies and the resulting Substrate, Vegetation, and Dark (SVD) spectral endmembers (EMs) sup-
plant prior global Landsat EMs. We find only minor (−0.01 b μ b 0.01) differences between SVD fractions for
coregistered pairs of spectra unmixed using the new sensor-specific endmembers identified in this analysis.
Root mean square (RMS) misfit fractions are also shown to be small (b98% of pixels with b5% RMS), in accord
with previous studies using standardized global endmembers. Finally, vegetation is used as an example to illus-
trate the empirical and theoretical relationship between commonly used spectral indices and subpixel fractions.
We include the new global ETM+ and OLI EMs as Supplementary Materials. SVD fractions unmixed using global
EMs thus provide easily computable, linearly scalable, physically based measures of subpixel land cover area
which can be compared accurately across the entire Landsat 4–8 archive without introducing any additional
cross-sensor corrections.
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1. Introduction

The Landsat program provides the longest continuous record of sat-
ellite imaging of the Earth available to the scientific community
(Wulder et al., 2016). One great strength of this record lies in data con-
tinuity provided by the generally excellent cross-calibration between
the sensors on board the different satellites (Markham and Helder,
2012). To extend this continuity into the future, the Operational Land
Imager (OLI) onboard Landsat 8 must be intercalibrated with the rest
of the archive. Over the 3+ years since launch, the OLI has been
shown to exhibit superior performance to previous Landsat sensors
with respect to radiometric calibration (Mishra et al., 2016; Morfitt et
al., 2015), signal to noise (Knight and Kvaran, 2014; Morfitt et al.,
2015; Schott et al., 2016), and geolocation (Storey et al., 2014).

One of the applications enabled by such a deep archive of high quality
Earth observation data is multitemporal analysis to study long-baseline
changes (Vogelmann et al., 2016). However, concern has recently
emerged over the direct intermixing of data collected by both the OLI
and older TM/ETM+ instruments onboard Landsats 4–7 because of the
changes in band placement introduced with Landsat 8 (Holden and
Woodcock, 2016). Statistical corrections and corresponding transfer func-
tions have been introduced to correct for these differences (Roy et al.,
2016). Considerable work has been done to examine the effect of these
discrepancies and corrections in the context of spectral indices. The impli-
cations of these changes for spectral mixture analysis (SMA) are different
than for spectral indices. The implications for multi-sensor and multi-
temporal SMA have been investigated on the regional scale by (Flood,
2014), but, to our knowledge, no attempt has been made to address
these implications for globally standardized spectral mixture models.

The purpose of this study is to characterize the global Landsat 8 OLI
spectral mixing space and cross-calibrate it with the Landsat 4–7 TM/
ETM+ spectral mixing space. Previous work has shown the TM and
ETM+ sensors to provide globally consistent results for Substrate, Veg-
etation, and Dark (SVD) subpixel fraction estimates using SMA (Small,
2004; Small and Milesi, 2013). Extending this cross-calibration to
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include imagery from the OLI onboard Landsat 8 could thus extend this
consistency across the entire 30+ year archive of Landsat 4–8 imagery.
In order to develop a cross calibration suitable formulti-sensor SMA, it is
necessary to compare spectral mixing spaces for both sensors and iden-
tify comparable spectral endmembers that span both spaces. Under
ideal circumstances, this would require spectrally diverse collections
of TM/ETM+ and OLI spectra where both sensors image the same tar-
gets simultaneously.

Before Landsat 8was placed into itsfinal orbit, itwasmaneuvered into
underflight configuration below Landsat 7 for one day: March 30 (Julian
Day 89) 2013. While the two satellites were positioned in this way, they
imaged a diversity of land cover spanning a wide range of spectral reflec-
tance signatures. Each pair of ETM+/OLI images was collected approxi-
mately 2–5 min apart. The short temporal baseline between image pairs
minimizes changes in solar illumination, surface processes and atmo-
spheric effects. The underflight imagery thus provides a rare, nearly
ideal opportunity for cross-calibration of the OLI and ETM+ sensors.

However, while the underflight dataset is nearly ideal for this purpose
inmanyways, there are some caveats. Standard LaSRC surface reflectance
is not available for the OLI underflight data, so this analysis is limited to
exoatmospheric reflectance with no atmospheric correction attempted.
Furthermore, this analysis is both retrospective and global in extent, lim-
iting the results of this study to that of an intercomparison and cross-cal-
ibration, but not a full field validation. We suggest that the unique, near-
synchronous imaging geometry of the underflight data provides valuable
information that is worth exploring despite these limitations.

In this study, we use 80,910,343 unsaturated broadband spectra im-
aged nearly simultaneously by Landsat 7 and Landsat 8 while flown in
underflight configuration to address the following question: How reli-
ably can subpixel Substrate, Vegetation and Dark (SVD) fractions be
used interchangeably between ETM+ and OLI?

We find that the subscenes chosen for this analysis span an even
greater range of the Landsat spectral mixing space than previous (Small,
2004; Small and Milesi, 2013) studies. We suggest that endmembers
(EMs) generated for this study can thus effectively replace previous global
EMs.While the newDark (D) EMdoes not differ substantially fromprevi-
ous EMs, small differences in theVegetation (V) EMand larger differences
in the Substrate (S) EM are apparent. The overall behavior of themodel is
consistent with the findings of (Flood, 2014). The differences in the Veg-
etation EM are consistent with the findings of (Holden and Woodcock,
2016; Roy et al., 2016) as being a result of band placement. The differ-
ences in the Substrate EM are likely due to the wider range of global sub-
strates present in this study than in any previous global study and
constitute an improvement upon previous global models.

As a result, we find that subpixel estimates of SVD fractions for
Landsat 8 using the old and new EMs display strong linear relations,
with estimates of subpixel V fraction essentially unchanged and with
easily correctible biases for S and D. When compared with the new
EMs, all three SVD fractions scale linearly between the sensors with
minimal (μ = −0.01 to 0.01) bias. Root-mean-square (RMS) misfit to
the SVD model for both the old and the new EMs is generally small,
with N98% of all pixels showing b5% error.

Finally, we use vegetation as an example to show the relationship
between commonly used spectral indices and subpixel EM fractions
produced by SMA of Landsat 8. We suggest that fractions estimated by
SMA fromglobal EMsprovide easily computable, linearly scalable, phys-
ically basedmeasures of subpixel land coverwhich can be compared ac-
curately across the entire Landsat 4–8 archive without introducing any
additional cross-sensor corrections.

2. Background

a. Implications of spectral band positioning

The spectral response function of a sensor quantitatively defines its
sensitivity to different wavelengths of light. The radiometric design of
the Landsat 8 OLI featured an improvement on the previous TM/
ETM+ sensors by modifying its spectral response function to narrow
and slightly relocate several of the spectral bands. This has the effect
of reducing the impact of common atmospheric absorptions which im-
pede imaging the land surface (Mishra et al., 2016). However, it also has
the effect of subtly changing the broadband spectrum imaged by OLI for
any object which is not spectrally flat over the wavelengths for which
the spectral response function was modified.

Fig. 1 shows the effect of the different spectral responses of the OLI
and ETM+ sensors. Four sample green vegetation spectra (column 1)
are shown, as well as four sample mineral spectra (column 3) from
the USGS spectral library. The response functions of the two Landsat
sensors are plotted as well to demonstrate the portions of the spectrum
over which they are sensitive. The narrowing and slight adjustment to
the position of the NIR and SWIR bands (black, cyan, and gold) are evi-
dent. Superimposed on each of these spectra are simulated Landsat 7
and 8 broadband spectra computed by convolving the reflectance spec-
tra with the response functions of the sensors as described above.

Column 2 shows the difference between the OLI and ETM+ reflec-
tances derived from the laboratory spectra. The essential shape and fun-
damental characteristics of the spectra are all very similar, but
perceptible differences in the spectra are detectible. While the differ-
ences in aggregate are generally b0.01 reflectance units (b5%), the dif-
ferences can approach 0.02 reflectance units (10%) for individual
bands in some cases.

b. Spectral mixture models and linear spectral unmixing

At the scale of the 30m Landsat pixel, most landscapes are spectrally
heterogeneous. As a result, most pixels imaged by Landsat sensors are
spectral mixtures of different materials (e.g. soils, vegetation, water,
etc)with varying amounts of subpixel shadow. The continuumof aggre-
gate radiance spectra imaged by a sensor forms a spectral mixing space
inwhich each pixel occupies a location determined by the relative abun-
dance of material reflectances imaged in the Ground Instantaneous
Field Of View (GIFOV) of the pixel. In situations where multiple scatter-
ing among subpixel targets is small compared to single scattering from
each subpixel target to the sensor, the aggregate response of the sensor
often varies in proportion to the relative abundance of the spectrally
distinct materials (Singer and McCord, 1979).

The topology of the full space of radiance (or equivalently reflec-
tance) spectra reveals the linearity of mixing and the composition of
the spectral endmembers and mixtures that bound the space of all
other observed spectralmixtures (Boardman, 1993). In the case of deca-
meter resolution sensors like those on the Landsat satellites, the combi-
nation of spatial and spectral resolution, and positioning of the spectral
bands, resolves characteristics of reflectance spectra that distinguish the
most spectrally distinct materials commonly found in landscapes. Ice,
snow, rock and soil substrates, vegetation, and water each represent a
general class of reflectance spectra that are clearly distinguishable
with broadband sensors at decameter spatial scales (Small, 2004). Of
these, the aggregate broadband reflectances of most landscapes can be
represented accurately as linear mixtures of substrate (S), vegetation
(V) and dark (D) endmembers. The dark endmember corresponds to ei-
ther absorptive, transmissive or non-illuminated surfaces and typically
represents either shadow or water. As a result, linear combinations of
these three spectral endmembers can represent the aggregate reflec-
tance of a very wide range of landscapes at meter to decameter scales
(Small and Milesi, 2013).

By identifying the SVD endmember spectra that bound the spectral
mixing space, it is possible to use these endmembers together with a
linear spectral mixture model to project the 6D feature space of the
Landsat sensors onto a simpler 3D mixing space bounded by spectrally
and functionally distinct components of a wide range of landscapes
(Adams et al., 1986). Inverting a simple three endmember linear spec-
tral mixture model using the SVD endmembers yields estimates of



Fig. 1. Illustration of the effect of changes in spectral response functions for Landsat 8 OLI and Landsat 7 ETM+. Laboratory spectra from the USGS spectral library for sample vegetation
(column 1) andminerals (column 3) convolvedwith the spectral response functions of OLI and ETM+. The simulated reflectance for each sensor is shown in thick lines (L7= black, L8=
magenta). The spectral response functions are generally wider for ETM+ (solid thin lines) than OLI (dashed lines). Differences in broadband reflectance as observed by ETM+ and OLI
(center) depend on both overall albedo and on the depth, width and location of absorptions. While both sensors record similar spectra, individual band-to-band differences can be
nearly 0.02 reflectance units, sometimes exceeding 10% of the value of an individual band. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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areal abundance of each endmember for each pixel in an image. Using
standardized spectral endmembers that span the global mixing space
of spectra allows for intercomparison of fraction estimates derived
from different sensors across space and time. Standardized spectral
endmembers confer all of the benefits of spectral indices, with the
added benefit of using all of the spectral information available while si-
multaneously representingmultiple spectral contributions to themixed
pixel.
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c. Scientific context and limitations of the study

The approach taken in this paper is to calibrate global spectral mix-
ture models of Landsat ETM+ and OLI imagery using the novel global
collection acquired during the Landsat 7 and 8 underflight. While this
has not previously been accomplished, a regional study in Australia ex-
amining the continuity of ETM+ and OLI performance in a multiple lin-
ear regression model, a spectral mixture model, and a spectral index
was performed by (Flood, 2014). In the analysis of (Flood, 2014), the
problem is approached in a different way: ETM+ and OLI imagery
from subsequent overpasses (8 days apart) were bias corrected band-
by-band before being input into biophysical models. Orthogonal Dis-
tance Regression was used to cross-calibrate the imagery, which was
then used to a) predict overstorey foliage projective cover, (an areal es-
timate of vegetation), using top of atmosphere (TOA) reflectance; b)
predict fractional vegetation cover with a linear mixture model of bare
soil, photosynthetic, and non-photosynthetic vegetation, usingmodeled
surface reflectance; and c) compute NDVI. Large systematic changes
were reported in the Near Infrared and Shortwave Infrared 2 bands,
with surprisingly little change in the Shortwave Infrared 1 band. The ap-
proach of (Flood, 2014) corrected for these differences well, resulting in
regression slopes equal to 1.00 and good agreement between ETM+
and OLI fractional land cover.

The collection of Landsat 7/8 underflight data undersamples the sur-
face of the Earth in both space and time. Notably, there are unfortunate-
ly no cloud-free acquisitions over dense tropical forests. The season of
the overpass (late March) results in imaging of senescence of many
high latitude boreal forests. However, this is unlikely to result in appre-
ciable variability in either the vegetation or dark EMs because, as shown
previously (Small and Milesi, 2013), these two EMs show negligible
change on a global scale when compared even with the limited global
subset of (Small, 2004). That the ETM+ vegetation and dark EMs from
this study are very similar to those found by the two previous studies
mentioned here is further evidence that undersampling of vegetation
and dark EMs is not an appreciable source of uncertainty in this analysis.

However, representation of an unusually diverse subset of the global
substrates is a strength of this collection. The global plane of substrates
has previously been shown to be spectrally diverse. Greater sampling of
this portion of the space than was achieved in previous studies further
supports the linearmixing hypothesis in the substrate-rich (and vegeta-
tion-sparse) region of the mixing space, and yields a new global sub-
strate EM which provides the most complete bound on the global
Landsat mixing space to date.

This study is performed with TOA reflectance in order to provide a
direct comparison with previous studies and to minimize the complex-
ity of the analysis. As mentioned in the introduction, standard LaSRC
surface reflectance processing is not available for pre-WRS2 Landsat 8
data (USGS, 2016), and modeling of surface reflectance was not
attempted. Furthermore, the retrospective nature of the studyprecludes
true field validation. The global extent of the study and the remote loca-
tion of many of the subscenes precludes precise knowledge of atmo-
spheric or BRDF parameters at the time of the overpass.

The clear atmospheric conditions present in the subscenes we chose
for the analysis was fortuitous and minimizes the contamination by at-
mospheric effects that is common in satellite imaging. Mixture models
cannot correct for most atmospheric contamination problems and sur-
face reflectance should be usedwheneverwell constrained atmospheric
corrections are available.

The unique nature of the near-simultaneous acquisitions in the
underflight dataset greatly reduces the problems of imaging geometry
and atmospheric change which surface reflectance is designed to over-
come. The level of mixture model agreement given by TOA reflectance
in this study allows us to take a conservative stance on the level of
data preprocessing. We do this in order to avoid introducing unneces-
sary sources of uncertainty that can result from using an unjustifiably
complex model. However, a similar analysis characterizing the global
Landsatmixing spacewithmodeled surface reflectance and field valida-
tion would be a valuable line of inquiry in the future.

3. Data & methods

All data used in this study were acquired from the USGS Earth Re-
sources Observation and Science Center at http://glovis.usgs.gov/.
Landsat 8 data were acquired from the “Landsat 8 OLI Pre-WRS 2” col-
lection. Data were processed from DN to radiance (L) using the follow-
ing expression:

Lλ ¼ Gain � DNþ Bias

Exoatmospheric reflectance (Chander and Markham, 2003) was
then computed using the following expression:

ρλ ¼ πLλd
2

ESUNλ sinθ

where ρλ is the reflectance at a givenwavelength, d is the earth-sun dis-
tance, ESUNλ is the solar irradiance, and θ is the sun elevation in degrees.
We manually selected a set of 100 30 × 30 km subscenes from the spa-
tial overlap between the Landsat 7 and 8 acquisitions on the basis of
maximum spectral diversity. Nearly all of the subscenes were cloud-
free, although some subscenes which contained land cover with unusu-
ally diverse spectral properties were included even if minor cloud con-
tamination was present. Both Landsat 7 and 8 analyses were performed
only on pixels unaffected by the SLC-off gaps. No saturated pixels were
used in this analysis.

Linear spectral unmixing represents each pixel reflectance factor (R)
as a linear combination of the input spectral EMs (M) weighted by their
areal fractions (f ) plusmisfit (ε) as R= fM+ ε. A unit sum constraint is
often used, which amounts to adding an additional equation that the
fraction estimates sum to unity (Σf= 1). This set of equations is overde-
termined and the coefficients for the optimal linear combination of EMs
to represent each pixel under the L2 norm can be directly computed
using Weighted Least Squares, where the relative weight of the unit
sum constraint is a tunable parameter. All unmixing was performed
with unit sum constraints with weight = 1.

4. Analysis

Fig. 2 shows the locations of the 30 Landsat 7 and 8 scene pairs used
in this analysis. All scene pairs were collected in underflight configura-
tion. The time difference between Landsat 7 and 8 overpasses was
b6 min for every scene pair. The scenes span a remarkable geographic
diversity of land cover given the short time in which they were collect-
ed. Five continents are represented. Although several images were ac-
quired over mainland Europe (Path 198), unfortunately all except the
one covering Ibiza, Spain were too cloudy for the purposes of this
analysis.

From these 30 image pairs, 100 subscenes of 1,000,000 spectra each
were chosen on the basis of spectral diversity (Fig. 3). Subscenes are
shown both with a common linear stretch (TOA reflectance = 0 to
0.7) and subscene specific 2% linear stretches in an attempt to show
the spectral diversity and complexity included in this sample. Shallow
and deep water are each represented in both coastal and inland water
bodies. Natural and managed vegetation are both present over a wide
range of climate zones and soil types. Geologic diversity includes both
mafic and felsic bedrock, Quaternary alluvium, and sand dunes with
variable grain size and lithology. One large evaporite pan near Kuwala,
India was included to demonstrate the performance of spectrally com-
plexminerals in the global SVDmodel. Despite several cloud-free acqui-
sitions at high northern latitudes, snow and ice was minimized due to
its minor areal coverage within the terrestrial ecoregions of the world

http://glovis.usgs.gov


Fig. 2. Locations of 30 near-simultaneous Landsat 7/8 scene pairs fromwhich the 100 subscenes for this analysiswere chosen. For every scene pair, Landsat 7 and Landsat 8 overpass times
were within 6 min of each other. All scenes were imaged while Landsat 8 was performing its pre-WRS2 underflight of Landsat 7 on March 30 (JD 89), 2013.
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(Olson et al., 2001) and the fact that a larger sample would be required
to accurately represent its true spectral diversity. When pixels in the
SLC-off gaps of Landsat 7 are removed, a total of 80,910,343 coregistered
ETM+ and OLI spectra remain.

Principal Component (PC) analysis was then performed indepen-
dently on both the Landsat 7 and Landsat 8 subscene mosaics. Landsat
8 Coastal/Aerosol and Cirrus bands were not included in the analysis
in order to facilitate a direct comparison between the sensors. The
resulting Landsat 8 spectral mixing space with corresponding single
pixel EMs is shown in Fig. 4. The Landsat 7 mixing space is not shown,
as it is visually indistinguishable from the Landsat 8 space. As found in
previous work, the space is characterized by sharp, clear apexes corre-
sponding to Vegetation and Dark EMs, but substantial complexity near
Fig. 3. Comparison of 100 OLI subscenes chosen from the near-simultaneous Landsat 7 and Lan
linear stretch (reflectance = 0 to 0.7) as well as with subscene-specific 2% linear stretches t
evergreen and deciduous natural vegetation, agriculture, lithologically variable soil, sedim
exception of the evaporite pan in western India (labeled E), all subscenes are composed of var
the Substrate EM. This complexity reflects the diverse range of rocks
and soils spanning the plane of substrates. Sharp linear edges
connecting (D,V) and (D,S) EMs (clearly visible in the projection show-
ing PC 1 and PC 3) indicates binary linearmixing. Concavity on the edge
connecting (S,V) suggests that Substrate and Vegetation rarely trade off
completely without any subpixel shadow. The elongate cluster of pixels
spectrally distinct from the global mixing space corresponds to the
Evaporite pan (E) in India. The inclusion of these evaporites allows an
opportunity to illustrate the behavior of the model to materials which
are not linear combinations of substrate, vegetation, or dark targets in
broadband visible-IR spectra. Inclusion of these evaporites in the PC ro-
tation does not affect the other fractions because EMs were manually
chosen from the other apexes of the space.
dsat 8 acquisitions from Fig. 2. Each 30 × 30 km subscene is shown with both a common
o illustrate the spectral diversity of the scenes chosen. The subscenes sample a range of
ent, and rock substrates, as well as standing water (both deep and shallow). With the
ying mixtures of rock and soil substrates, vegetation, water and shadow.



Fig. 4. The Landsat 8 OLI spectral mixing space derived from 80,910,343 broadband spectra. The Landsat 7 ETM+ mixing space (not shown) of the near-simultaneous Landsat 7
acquisitions is visually indistinguishable. EM spectra (lower right) selected from the apexes of the scatterplot correspond to the same geographic locations so represent the same
materials - within the uncertainty in the coregistration of each OLI/ETM+ image pair. The prominent cluster with distinct PC 2 values (E) corresponds to an evaporite pan near
Kuwala, India. (For interpretation of the references to colour in this figure, the reader is referred to the web version of this article.)
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Substrate (red), Vegetation (green) and Dark (blue) global EM spec-
tra are shown in Fig. 4. The differences between the ETM+ and OLI EM
spectra are a result of the changes in spectral response functions be-
tween the sensors. These pairs of spectra represent identical geograph-
ical locations imaged at nearly the same time. The Substrate EM
corresponds to a field of sand dunes in the Libyan Sahara (p184r044),
the Vegetation EM corresponds to a homogenous agricultural field in
central Texas (p029r038), and the Dark EM corresponds to deep water
off the Atlantic coast of Long Island, New York (p013r032). While the
dark EM is nearly identical for the two sensors, the Landsat 8 substrate
and vegetation EMs are brighter than the Landsat 7 EMs in all IR wave-
lengths, most prominently in the NIR and SWIR 1. Text files with EM
spectra for both ETM+ and OLI sensors are included as Supplementary
materials.

As expected, the geometry of the mixing space shown here, as well
as the ETM+ spectra of the resulting Vegetation and Dark EMs, are sim-
ilar to those foundby previous studies (RMS differenceswith (Small and
Milesi, 2013) of 0.02 and 0.00 for V and D, respectively). However, the
Substrate EM is substantially brighter across all wavelengths than
found previously (RMS differences with (Small and Milesi, 2013) of
0.14 for the new OLI EM and 0.10 for the new ETM+ EM). The plane
of substrates found in this study is inclusive of the spectral range
found by prior studies, but also contains substantially greater variability
in bright sands. This extension of the plane of substrates is likely a result
of the range of diversity of sands and soils included in this analysis. The
newly identified substrates represent an improvement over previous
models as they are more general and inclusive of the range of land-
scapes present on the surface of the Earth.

The newly identified global EMs were used to unmix the collections
of both OLI and ETM+underflight spectra. Fig. 5 shows the comparison
of SVD fraction estimates from Landsat 8 OLI spectra as unmixed using
the previous (Small and Milesi, 2013) global EMs and the new
underflight OLI EMs. As expected given the new, more reflective sub-
strate EM, substrate fractions are substantially lower and dark fractions
are substantially higher with the new EMs than with the old. Note that
the x-axes of the Substrate and Dark plots are truncated at upper
bounds of 1.2 and lower bounds of −0.2, respectively. A substantial
number of pixels have substrate fractions as high as 1.4 and dark frac-
tions as low as−0.4 when unmixed with the old EMs. This is expected
as a result of the significantly higher SWIR reflectance of the new OLI
substrate EM. The new EMs more effectively span the global mixing
space and result in the physically plausible bounds of 1.0 and 0.0 for
these fractions. By extending the apexes of the Substrate and (to a lesser
degree) Vegetation EMs, the new OLI & ETM+ mixing spaces encom-
pass the earlier mixing spaces bounded by the older EMs.

The vegetation fractions in Fig. 5 plot close to the 1:1 line, indicating
that vegetation estimates are essentially unchanged between the old
and new sets of EMs. RMS error magnitudes are essentially unchanged
between the two sets of EMs, with N98% of all pixels showing
error b 5%. As expected, the evaporites plot distinctly off the 1:1 line
for all fractions, showing reduced S, increasedV, and reducedD fractions
relative to the rest of the global space. These values are clearly errone-
ous and reflect the inability of the SVDmodel to represent evaporite re-
flectance accurately. The evaporite EM is not included in the SVDmodel
because evaporites represent a small fraction of Earth's surface and lie
outside the primary SVD hull that represents most landscapes. Howev-
er, the quasi-linear binarymixing trend between the evaporite and dark
EMs suggests that a linear mixture model might be useful for mapping
variations inmoisture content of evaporites.Wedo not include an evap-
orite EMhere because our single acquisition is not necessarily represen-
tative of the true diversity of evaporites and range of moisture contents.
We omit ice and snow EMs for the same reason.



Fig. 5. SVD fraction intercomparison for 80,910,343 Landsat 8 spectra by unmixing with old (Small andMilesi, 2013) global EMs and the new 2016 EMs. OLI fractions unmixedwith both
sets of EMs are strongly linear - even though the EMs were derived from independent global collections of spectra. Unmixing with old EMs shows a clear bias toward higher substrate
fractions (μ = −0.11) and lower dark fractions (μ = 0.13) than using the new EMs. Vegetation fraction shows a small bias (μ = −0.02). Error fractions are slightly lower for the new
EMs than the old EMs, but N98% of all pixels have error b 5% for both models. The cluster of pixels distinctly plotting off the linear S, V, and D relations corresponds to evaporites (E)
which are not well represented by either simple 3 EMmodel. Histogram insets show fraction difference (New - Old) between the two models.
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Fig. 6 shows the cross comparison between Landsat 8 underflight
fractions unmixed using the new OLI global EMs (thick lines from Fig.
4) and Landsat 7 underflight fractions unmixed using the corresponding
newglobal ETM+EMs (thin lines from Fig. 4). Biases for all fractions are
small (−0.01 b μ b 0.01) and all fractions cluster tightly around the 1:1
line (σ=0.03 for all fractions andσ=0.00 for error). The small number
of pixels plotting substantially off the 1:1 line can generally be visually
identified as either: 1) movement of macroscale clouds, 2) microscale
atmospheric parameters such as aerosol or water vapor content which
changed over the 1–6 min between satellite overpasses or 3) land
cover types poorly fit by the global SVDmodel such as snow/ice or shal-
low/turbid water. The evaporite cluster remains clearly distinct as a re-
minder of the limits of the model. Some of the dispersion about the 1:1
linemay also be attributed to spatial misregistration between Landsat 7
and 8, although visual comparison shows qualitatively excellent
coregistration in most cases. This suggests that subpixel displacements
between the Landsat 7 and Landsat 8 acquisitions may introduce frac-
tion differences of several percent in some cases, although the majority
of pixels agree to well within 3%. Pixels from the evaporite pan are in-
cluded in the calculation of the descriptive statistics listed here. Exclu-
sion of the evaporite pan would result in a minor reduction in the
bias, dispersion, and overall RMSmisfit reported here. We choose to in-
clude the evaporites in our statistics in order to provide a more conser-
vative estimate of the power of the model on a global scale. The
linearity, lack of bias, and tight clustering of these scatterplots suggest
TM/ETM+ and OLI imagery can be safely used interchangeably
when unmixed using these global EMs. Although subtraction of the
fraction bias values given here might improve agreement between
TM/ETM+andOLI fractions, the bias in each case is significantly smaller
than the 0.03 to 0.07 fraction estimate uncertainty found in vicarious
validations of Landsat SVD fractions with aggregated SVD fractions
from near simultaneous WorldView2 acquisitions (Small and Milesi,
2013).

As discussed by (Holden and Woodcock, 2016), differences in the
OLI and ETM+ spectral responses have implications for comparability
of spectral indices. Vegetation indices are a class of commonly used
spectral indices with a direct relationship to one of the land cover frac-
tions (i.e. vegetation fraction). While the relationship between indices
for Landsat ETM+ has already been shown (Small and Milesi, 2013),
this relationship may change on the global scale for OLI due to changes
in NIR bandpositioning resulting in small changes in the intensity of the
red edge. To illustrate the new relationship for OLI and the new global



Fig. 6. Intercomparison of SVD fractions derived from 80,910,343 near-simultaneous ETM+ and OLI spectra using the new underflight ETM+ and OLI EMs. All fractions (including error)
showminimal bias (μ ≤ 1%) off the 1:1 line. Scatter corresponds to either pixels with changing atmosphere in the 1–6min between satellite overpasses or subpixel displacements between
images. Evaporites (E) are notwell represented by the SVDmodel so they also plot off axis. Inset histograms show fraction difference distributions. All three SVD fractions show N95% of all
pixels with differences in the range ± 5%. Error differences show 98% of all pixels have b1% change across sensors for the SVD model.
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EMs from this study, we compare three commonly used vegetation in-
dices with vegetation fraction estimates for the diversity of Landsat 8
OLI spectra in the underflight collection. Fig. 7 shows the relation be-
tween subpixel vegetation fraction (Fv) as estimated with the new
Fig. 7. Vegetation index intercomparison. NDVI, EVI, and SAVI relative to vegetation fraction o
fraction, but with varying dispersion and slope. NDVI shows nonlinear saturation above 0.5 wi
global SVD EMs and three commonly used vegetation indices: Normal-
ized Difference Vegetation Index (NDVI, (Rouse et al., 1973)), Enhanced
Vegetation Index (EVI, (Huete et al., 2002)), and Soil Adjusted Vegeta-
tion Index (SAVI, (Huete, 1988)).
f the same 80,910,343 OLI spectra. SAVI and EVI are quasi-linear functions of vegetation
th considerable dispersion at all fractions.
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The equation used for NDVI is:

NIR−Vr

NIRþ Vr

The equation used for EVI is:

2:5 � NIR−Vr

NIR þ 6 � Vr−7:5 � Vb þ 1

The equation used for SAVI is:

1:5 � NIR−Vr

NIR þ Vr þ 0:5

The relationship between SAVI and Fv is relatively linear for most
pixels with Fv N 0.2, although a substantial bias is present and variance
is wide at low values. The relationship between EVI and Fv is also linear,
although with considerable variability and positive offset from the 1:1
line. The relationship between NDVI and Fv is substantially more com-
plex and shows the well-known saturation effect at high vegetation
fractions.

5. Discussion

The complex relationships of the vegetation indices shown in Fig. 7
may not be intuitive given their arithmetic simplicity. This complexity is
not a function of the geographic limitation of the study or of the limita-
tions of SMA. Instead, the complexity can be shown to have a simple
physical explanation.

To illustrate the basis for the complexity of these relations, we sim-
ulate the effects of subpixel soil reflectance, shadow and atmospheric
scattering on these vegetation indices, compared to true vegetation
fraction. Consider a hypothetical 30 × 30 m Landsat pixel filled with
some amount of green vegetation and some amount of exposed soil
and some amount of shadow. Based on the solar geometry illuminating
the pixel, there will be some variable amount of area (viewed from di-
rectly above) of subpixel shadow cast by the roughness of the soil and
the height and geometry of the vegetation. Areas in deep shadow are il-
luminated only by diffuse scattering with a spectrum dominated by
Fig. 8. a. Calculation of EVI for synthetic mixtures containing every possible integer combinatio
than NDVI. High values of EVI show sensitivity to atmospheric perturbations. b. Calculation of N
vegetation, and shadow. Slight variations in the amount of atmospheric perturbation (simulated
yield substantial differences in the value of the index.
Rayleigh scattering in the atmospheric column between the ground
and sensor – as illustrated by the Dark EM. Between deep shadow and
illuminated substrate and vegetation is a continuous triangular plane
of spectral mixtures. This plane includes 100% illuminated vegetation
with no soil or shadow, 100% illuminated soil with no vegetation or
shadow, and 100% deep shadow (Rayleigh scattering only) – as well
as all combinations thereof. In the case of single scattering, the sensor
essentially integrates these continuous endmember spectra as a linear
sum into a single 6-element broadband spectrum. We use the atmo-
spherically corrected LEDAPS surface reflectance EMs from (Small and
Milesi, 2013)with the linear spectralmixturemodel to simulate all pos-
sible integer mixtures of substrate, vegetation and shadow, then com-
pute vegetation indices (NDVI and EVI) for each synthetic mixture.

Fig. 8 shows the results of a Monte Carlo simulation for every possi-
blemixture of vegetation, soil and shadow in 1% increments, resulting in
5050 simulated Landsat spectra. This simulation is run for 3 different
levels of atmospheric “noise” (in the form of adding an increasingly
opaque Rayleigh scattering spectrum as the dark EM) based on the ex-
pected analytical relationship between scattering of light by particles
much smaller than the wavelength (r α λ−4). The simulation is also
run for 3 different background soils (produced by varying the amplitude
of the soil spectrum as the substrate EM). A common vegetation spec-
trumwas used for all runs andwas chosen to represent a sample broad-
band spectrum of healthy photosynthetic vegetation.

Fv, NDVI and EVI are then computed for all of these synthetic mix-
tures. As expected, inversion of the linear SVDmodel yields accurate re-
sults for Fv, with minimal bias and scatter (in all cases μ b 0.5% and
maximum error of any pixel b2.5%), with nearly uniform dispersion
across the full range of values. The correlation between “true” input
fractional vegetative cover and Fv estimated by unmixing using SMA
in this model is 0.9999.

However, the behavior of the vegetation indices is more com-
plex. Varying the amplitude of atmospheric noise or the spectrum
of the soil substrate can substantially alter the bias and curvature
of the indices. Over a wide range of soils, EVI exhibits substantial
linearity with Fv, although it consistently plots above the 1:1 line
for all but the brightest soil. EVI is also shown to deviate more
strongly from linearity with more severe atmosphere, especially
at high vegetation fractions. NDVI demonstrates its well-known
n of subpixel soil, vegetation, and shadow. EVI exhibits more linearity over a wider range
DVI for synthetic mixtures containing every possible integer combination of subpixel soil,
as Rayleigh scatter times a small random number) and brightness of the soil substrate can
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saturation at high values and greatly variable nonlinear dependen-
cy on the soil spectrum.

This range of values for spectral indiceswith small variations in atmo-
spheric and soil parameters is a result of the functional form of the equa-
tions used in the computation of the indices. NDVI is a simple ratio of the
sum and difference of 2 bands. EVI introduces the visible blue band in
order to account for atmospheric variability, and exhibits substantially en-
hanced stability over a range of conditions as a result. Fv uses the full in-
formation content of all 6 bands in the spectrum and explicitly accounts
for the contributions of both soil and shadow. This results in enhanced
theoretical stability of fraction estimates over indices based on only 2 or
3 bands – stability which also applies to any systematic perturbations
which affect all pixels equally that may be introduced by the changes in
spectral response between ETM+ and OLI.

To the extent that the perturbations affect the EMs in the same way
they would affect any other pixel, selection of new EMs will adjust the
model and correct the subpixel fraction estimates accordingly. This il-
lustrates two fundamental strengths of the linear mixture model rela-
tive to indices that use a subset of bands and do not account for other
factors contributing to themixed pixel reflectance. The use of standard-
ized global endmembers extends these benefits bymaking fraction esti-
mates intercomparable across time and space. We note that the
availability of standardized global endmembers in no way reduces the
utility of locally derived, application-specific endmembers. Given the
ease with which fraction estimates are obtained, analyses can easily in-
clude fractions from both local and global endmembers for comparison.
In fact, given the spectral diversity of the plane of substrates, we advo-
cate the use of local substrate endmembers which may often be more
suitable for substrate-oriented analyses than the very bright substrate
endmember given here.

Importantly, we also note that this stability also only extends to sys-
tematic perturbations which propagate into the EMs. For instance, line-
ar mixture models are not able to correct for perturbations to the
reflectance spectrum produced by spatially and temporally localized at-
mospheric variability. The global linear mixture model presented here,
and indeed no linear mixture model at all, can fully resolve most atmo-
spheric effects – or any similar effects which are not systematic pertur-
bations to the spectral mixing space. This is particularly the case when
the effects are nonlinear.

6. Conclusions

Subpixel EM fractions for Landsats 7 and 8 imaged in
underflight configuration over a wide range of land cover show
considerable agreement and can be well-characterized by the
simple 1:1 relation with minimal bias or scatter. RMS misfit for
both sensors using these new models remains b5% for N98% of the
N80 million pixels, as good or better than the previous EMs. It is
also notable that no atmospheric correction was attempted for
this study (beyond the selection of subscenes which appeared to
be cloud-free). The increasing availability of standardized surface
reflectance products should only improve upon this result. The
agreement found in this study is testament to the work done by
those at NASA, the USGS, and all those who are responsible for
the design and implementation of the radiometric cross-calibra-
tion of these sensors.

The results of the EM fraction comparison suggest that the dif-
ferences in bandpasses between the two sensors can effectively
be taken into account by the use of new EMs based on the near-si-
multaneous imaging of the same geographical locations by the two
sensors – with no additional radiometric correction. In addition,
these EMs nowmore fully span the global mixing space than previ-
ous EMs due to the inclusion of additional bright sands which ex-
tend the plane of substrates beyond previous studies. We suggest
that these new global EMs supplant the EMs from previous studies.
These EMs are freely available online at: www.LDEO.columbia.edu/
~small/GlobalLandsat/ and are included here as Supplementary
Materials in plain text format.

However, the behavior of spectral indices, as already noted by
others, is substantially more complex andmay require cross-calibration
beyond direct download of L1T imagery from the USGS archive if such
indices are to be used operationally to compare TM/ETM+ and OLI im-
agery, as discussed by (Holden and Woodcock, 2016) and (Roy et al.,
2016).
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