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ABSTRACT  
 
Biological treatment processes at water resource recovery facilities (WRRFs; a.k.a. wastewater 

treatment plants) are approaching the limit of technology for nitrogen and phosphorus removal. 

Algae treatment technologies have the ability to remove additional nitrogen and phosphorus, 

thereby lowering the effluent nutrient discharge level at WRRFs. A critical challenge for the 

adoption of algal technologies, however, is the lack of robust algae modeling platforms for 

wastewater treatment that can predict process performance under fluctuating reactor conditions 

and despite the inevitable biodiversity of influent wastewater. One necessary step towards 

improved modeling capabilities for algae treatment systems is the development of generalizable 

model parameters, such as stoichiometric parameters – like those used in the International Water 

Association’s (IWA’s) Activated Sludge Models (ASMs). This work introduces universal 

stoichiometric coefficients for algal process modeling derived from the conserved enzymatic 

properties for seven algae species using 11 genome-scale models. The model parameters 

include yield coefficients for algae grown under various energy inputs (photoautotrophic and 

heterotrophic), nitrogen sources (ammonia and nitrate), and carbon sources (inorganic, acetate, 

and glucose) as well as stoichiometric parameters for the accumulation of storage compounds 

(starch and lipids). Generalizable stoichiometric parameters based on conserved metabolic 

properties would bolster accuracy and the accessibility of algal process models. This will help 

promote the use of algal technologies by wastewater design engineers and utilities to improve the 

effluent quality at water resource recovery facilities. 
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CHAPTER 1. Introduction 
 
Nutrient levels in water bodies play a critical role in the health of aquatic ecosystems. High 

nitrogen and phosphorus levels in natural waters can lead to eutrophication, or an increase growth 

in algae and cyanobacteria. The increase in phototrophic organisms and their subsequent 

degradation causes there to be limited oxygen available as well as cyanotoxins in the water, which 

in turn kills higher level organisms such as fish (Chislock, 2013). There have been several 

eutrophication problems worldwide that have had significant impact on the economy and human 

well-being. Hypoxic zones in the Gulf of Mexico, Chesapeake Bay, and Lake Taihu have created 

dead zones where fish can no longer live (Duan et al., 2009; Rabalais, Turner, & Wiseman, 2002; 

Ruhl & Rybicki, 2010); the decline in fish availability causes several issues for the seafood industry 

and fisheries such as an increase in forced migration and predation among species (Rabalais et 

al., 2002). Eutrophication can also cause an increase in toxins produced in the water by algae 

and cyanobacteria species. With an increase in toxin levels, water bodies have limited 

recreational use and can pose a health risk to communities. For example, Lake Erie commonly 

has do-not-swim zones due to increased toxins during the summer months (Rinta-Kanto et al., 

2009). In addition, harmful algae blooms prior to the Beijing Olympics caused military personnel 

and volunteers to have to come clean up the Olympic sailing venue (Conley et al., 2009). 

Furthermore, several outbreaks of Pyrodinium blooms have caused illness to spread throughout 

the Philippines due to the high consumption of shellfish that have eaten toxic algae (Hallegraeff, 

1993).  

One of the largest discharging units to natural water bodies are water resource recovery facilities, 

also known as wastewater treatment plants (Ruhl & Rybicki, 2010). Water resource recovery 

facilities take incoming wastewater from homes, industrial plants, office buildings, and other 

locations and remove organic carbon as well as nitrogen and phosphorus before discharging the 

water to a natural water body. The quality of effluent water being discharged by the WRRF can 

have a significant impact on the aquatic ecosystem in the receiving water body by possibly 

enhancing eutrophication or introducing unnatural chemical species into the water. WRRFs need 

to operate with the goal of limiting eutrophication and harmful algal blooms in natural systems 

(Paerl et al., 2011). The Environmental Protection Agency (EPA) controls the level of organic 

carbon, nitrogen, and phosphorus that can be found in WRRF effluent so that natural water bodies 

are exposed to minimal harm in the United States. Throughout the years, the EPA is continuing 

to lower the effluent discharge limits for nitrogen and phosphorus concentration so that society 
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can have cleaner water in our communities (Carey & Migliaccio, 2009). Nitrogen is typically 

removed at WRRFs through the process of nitrification and denitrification. Together these 

processes convert inorganic nitrogen in the water into dinitrogen gas; the limit of technology for 

nitrification and denitrification allows effluent levels to reach approximately 3 mg N L-1 (Bott and 

Parker, 2011; U.S. EPA, 2015).  At most WRRFs, phosphorus is commonly removed through 

chemical processes or enhanced biological phosphorus removal (EBPR), both of which can 

achieve effluent quality of  0.1 mg P L-1 (Tchobanoglous, Burton, Stensel, & Metcalf & Eddy, 2003; 

U.S. EPA, 2015).  

As effluent nitrogen and phosphorus limits become more stringent, wastewater utilities are looking 

for new technologies to help achieve lower nitrogen and phosphorus effluent concentrations. Algal 

technologies have advantageous properties for use in WRRFs. Algae wastewater treatment 

technologies have the possibility to lower effluent nutrient concentrations by removing inorganic 

and organic nutrients (nitrogen and phosphorus) that are not easily removed with current WWRF 

systems. Algal technologies have the potential to also produce valuable coproducts such as 

animal feed, fertilizers, and bioenergy feed-stocks.  

A significant hurdle to the widespread application of algal technologies at WRRFs is the replication 

of algae cultivation processes (Guest, van Loosdrecht, Skerlos, & Love, 2013) Water resource 

recovery facilities are found in various geographical locations and have varying influent streams. 

Wastewater is beneficial to use as a medium for algae cultivation because of its high nutrient level 

and the economic feasibility of linking the two processes. However, due to variability in 

composition and the inevitable biodiversity of wastewater, achieving an axenic culture within the 

system is not feasible. Because of possible differences in mixed microalgae communities at any 

given WRRF, it is beneficial to have process design parameters that are conserved across algae 

species, allowing for the replication of algal technologies regardless of WRRF influent and 

location. To increase the utilization of algal biological nutrient removal technologies in industry, it 

is necessary to understand the metabolic properties under various energy inputs 

(photoautotrophic and heterotrophic), carbon sources (carbon dioxide, acetate, and glucose), 

nitrogen sources (ammonia and nitrate), and the conserved qualities of these metabolic properties 

among various algae species. A universal approach needs to be taken to understand how algae 

of various species uptake nutrients and store energy from wastewater so that more accurate and 

reproducible models can be developed for algae technologies used in wastewater treatment. 
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The objective of this thesis is to show the development of universal stoichiometric properties for 

algae process modeling in the context of wastewater treatment. The background section will give 

a broad view of modeling in the wastewater treatment industry. How algae modeling fits into 

wastewater modeling platforms will be addressed, including current processes, gaps in the 

research field, and promising future directions. Chapter 3, Enzyme Conservation, will explore how 

species-specific algae metabolic data can be adapted for mixed algal community process 

modeling by showing the steps taken to elicit data demonstrating the conservation of metabolic 

processes among algae species. With the enzyme conservation basis shown in chapter 3, chapter 

4 will dive into the process of lumped pathway metabolic modeling or taking enzyme conservation 

data and developing yield coefficients for key metabolic processes in algal treatment 

technologies. Conclusions that can be drawn from the work as well as the engineering 

significance of the research will be explained in chapters 5.   
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CHAPTER 2. Background 

2.1 Current Wastewater Treatment Modeling Practices. The wastewater treatment industry 

has models developed for processes common to most WRRFs, including nitrogen and 

phosphorus removal, known as the activated sludge models (ASMs). The activated sludge 

models have driven wastewater treatment modeling research in a positive and productive 

direction since their development. The ASM modeling format has allowed the wastewater 

modeling community to come together and follow common nomenclature and a comprehensive 

layout of the model known as the Petersen matrix (Henze, Gujer, Mino, & van Loosdrecht, 2000; 

Petersen 1965). The consistency among the wastewater industry has driven the field forward and 

also allowed for cohesiveness between all stakeholders from operators to consultants.  The 

activated sludge models include kinetic rate equations and stoichiometric coefficients along with 

typical values used in the models for kinetic constants and stoichiometric coefficients (Henze et 

al., 2000). The ASMs give empirical yield coefficient values as a preliminary estimate for running 

the model, stating that experiments should be completed to develop parameters, such as 

stoichiometric yield coefficients, for specific WRRFs (Henze et al., 2000). Differences in modeling 

parameters among WRRFs are believed to be due to environmental influences such as changes 

in pH, temperature, and inhibitory and/or stimulatory compounds in the influent (Henze, 1986). 

Considering the future of the wastewater treatment modeling industry, a push for more 

mechanisms based on biochemical properties instead of empirical values is important (Daigger, 

2011).  

2.2 Algae Treatment Technologies in Wastewater Modeling. The wastewater industry has 

exceled in developing a universal modeling structure for biological nutrient removal processes, 

including nitrification, denitrification, and enhanced biological phosphorus removal. The modeling 

of algae systems for wastewater treatment has not been as directed in creating a format similar 

to the ASMs to follow for the algae modeling research community. In order for algae technologies 

to take off, the modeling of microalgal systems needs to become increasingly universal like the 

ASMs. Currently, most processing parameters in industry for algae technologies are based on 

experimental data and presented in various formats (Baroukh, Muñoz-Tamayo, Steyer, & 

Bernard, 2015; Wágner et al., 2016). Experimental data is necessary for validating models and 

understanding algae metabolism, however, processing parameters from experimental studies can 

be difficult to utilize universally. While these values are extremely useful for pure culture and single 

species applications, they are not as useful for wastewater treatment which cannot use pure 

culture or single species cultivation due to the biodiversity of wastewater. It is difficult to utilize 
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empirical data in a mixed culture system because experimental studies would have to be 

completed for each new community formed, requiring intensive resources and time most WRRFs 

do not have. Generalizable model properties are needed to advance the use of algae treatment 

systems.  

2.3 Metabolic Modeling of Algal Systems. One way to develop generalizable model properties 

is to develop model properties based on the species’ metabolism instead of empirical, 

experimental data. Metabolic modeling considers the processes being completed inside the 

microorganism (i.e. Glycolysis, fatty acid synthesis, oxidative phosphorylation, etc.) instead of 

looking at the microorganism as a “black box” with only inputs and outputs and no insight into 

what goes on inside the cell (C. Yang, Hua, & Shimizu, 2000). Similar to current wastewater 

treatment process models, kinetic and stoichiometric properties are the two key properties needed 

for modeling growth in algal cultivation systems. Kinetic properties vary with time, making it difficult 

to incorporate kinetic properties into metabolic models.  Stoichiometric properties are modeled in 

steady state, which allows for the analysis of yield while considering the whole metabolic network 

(Shastri & Morgan, 2005). Developing stoichiometric coefficients, specifically yield coefficients 

based on the metabolism of microalgae, is a step needed for creating generalizable algae process 

models. Metabolic modeling uses biochemical data representing a species’ or communities’ 

metabolism to develop stoichiometric parameters for processing operations. Metabolic models 

range from whole genome scale models (Chang et al., 2011) to specific storage process models 

(Filipe & Daigger, 1999). Although there is a push and consensus that metabolic information 

needs to be incorporated into algae process models (Boyle & Morgan, 2009), very few models 

have actually taken metabolism into account during model development (Baroukh, Muñoz-

Tamayo, Steyer, & Bernard, 2014; Fleck-Schneider, Lehr, & Posten, 2007; Guest et al., 2013). 

Metabolic modeling has the potential to limit the number of model inputs and provide parameters 

that are viable across various components of microalgae growth important to the wastewater 

treatment industry. The energy input for growth (photoautotrophic, heterotrophic, and mixotrophic) 

(C. Yang et al., 2000; Zuñiga et al., 2018) can be represented by metabolic models along with  

differences in nitrogen source (Perez-Garcia, Bashan, & Esther Puente, 2011), nitrogen 

availability (Hu et al., 2008; Yanqun Li, Horsman, Wang, Wu, & Lan, 2008), and the accumulation 

of storage compounds (Baroukh et al., 2014; Guest et al., 2013).  

2.4 Growth Conditions. Microalgae have the capability to grow under photoautotrophic, 

heterotrophic, and mixotrophic conditions. Photoautotrophy is the most common growth modeled. 

During photoautotrophic growth, microalgae harness energy from sunlight and take up carbon 
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dioxide, converting inorganic carbon to organic carbon that makes up the microalgae biomass. 

Photoautotrophic growth is most similar to plant growth. Heterotrophic growth is when cells use 

an external organic carbon source for both energy and growth. In this study, heterotrophic growth 

on acetate and glucose was considered. Heterotrophic growth of algae has been found to have 

higher productivities at lower operational costs (Liang, Sarkany, & Cui, 2009; Xiong, Liu, Wu, 

Yang, & Wu, 2010). Heterotrophic models are becoming more populous in recent years, but there 

is still a lot of work to be done to understand the kinetic and stoichiometric properties of 

heterotrophic algae growth. Mixotrophic growth occurs when both photoautotrophic and 

heterotrophic growth conditions are taking place. Mixotrophic growth models are usually formed 

by summing values from both photoautotrophic and heterotrophic models (Adesanya, Davey, 

Scott, & Smith, 2014; Boyle & Morgan, 2009; Lee, Jalalizadeh, & Zhang, 2015) Like heterotrophic 

growth, there are also few models available considering mixotrophic growth, however mixotrophic 

growth has the potential to have higher algae biomass yield than heterotrophic conditions with a 

lower cost than photoautotrophic growth. Due to the higher yield and lower cost associated with 

mixotrophic growth, there is a growing interest in modeling mixotrophic algal cultivation (Boyle & 

Morgan, 2009).   

2.5 Nitrogen. For the present study, three different nitrogen nutrient conditions were considered: 

nitrogen in the form of ammonia (nitrogen replete), nitrogen in the form of nitrate (nitrogen replete), 

and no nitrogen present (nitrogen deplete). In wastewater, the two most common forms of 

nitrogen that are focused on for removal are ammonia and nitrate (Tchobanoglous et al., 2003). 

Nitrate and ammonia are the also two target nitrogen species for removal in wastewater treatment 

due to the harm nitrate and ammonia can cause in natural water bodies if left in the effluent of 

WRRFs.  

Besides considering the most common forms of nitrogen present in wastewater treatment plants, 

the condition of nitrogen deplete, or no nitrogen in the system, was also considered. Nitrogen 

depletion is important to consider because when nitrogen is not present in the system, it promotes 

the accumulation of algal storage products, such as carbohydrates and lipids (Hu et al., 2008; 

Perez-Garcia et al., 2011). Carbohydrates and lipids produced by microalgae are considered 

promising feedstocks for biofuels (Balaji, Gopi, & Muthuvelan, 2013; Chisti, 2008) and bio-based 

products such as bioplastics (Balaji et al., 2013). 

 

When looking at modeling nitrogen in algae systems, there are some factors to consider. For 

instance, the uptake of nitrate and ammonia by the algae cell requires different amounts of energy. 
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Ammonia can be taken up and directly used in its given form for protein and biomass synthesis 

within the cell. Nitrate, however, must be converted to a usable form once it enters the cell. This 

conversion causes the cell to put more energy towards nitrogen accumulation when nitrate is the 

nitrogen source present, making less energy available to the cell for other purposes such as 

growth (Geider & Osborne, 1989; Eppley, 1969). When modeling algae process systems, the 

difference in energy requirement between nitrogen sources is an important consideration to 

understand cell growth and energy consumption.   

2.6 Storage Polymers. The two storage polymers focused on for this study are carbohydrates 

and lipids. Carbohydrates have several qualities that lead to microalgae technologies being  

promising for the wastewater treatment industry. For example, carbohydrates can become a 

potential biofuel source. Carbohydrates can be converted to bioenergy via multiple processes. 

Anaerobic digestion converts carbohydrates from algae into methane and carbon dioxide gas; the 

methane can be harnessed and used for power generation. Anaerobic fermentation is another 

common carbohydrate processing technique in which the carbohydrates produced in algae are 

broken down into sugars and fermented into bioethanol (Markou, Angelidaki, & Georgakakis, 

2012).  

Besides carbohydrates being a biofuel feedstock, carbohydrates are also important for algae 

nitrogen uptake during diurnal cycles. The accumulation of carbohydrates within the cell help 

algae cells outcompete other non-photoautotrophic species in the absence of light by allowing the 

cell to continue to grow and take up nutrients in the absence of light by metabolizing 

carbohydrates (van Aalst-van Leeuwen, Pot, van Loosdrecht, & Heijnen, 1997a). Lipid storage 

molecules can also be used for this purpose; however, it is harder to mobilize and metabolize 

lipids within the cell; lipid storage molecules are less dynamic than carbohydrate storage 

molecules (Guest et al., 2013).  

Lipids are seen as another important storage polymer to model in algae species. Lipids can be 

converted into biodiesel via several processes; the most commonly considered method for lipid 

separation from biomass is hydrothermal liquefaction (HTL). HTL works by thermochemically 

converting whole wet algal cells into biodiesel (Leow, R. Witter, et al., 2015; Yalin Li et al., 2017). 

A lipid solvent extraction is another biodiesel production method that can be completed on dried 

algal biomass to extract lipids (Mata, Martins, & Caetano, 2010). After the lipids are extracted, 

transesterification is one process used to convert the algae lipids into biodiesel by a multistep 

reaction that converts triglycerides (algae lipids) to glycerol (Mata et al., 2010).  
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Storage polymers are very important components of algal biomass and metabolism, however, 

there has not been a lot of research done around the kinetic and stoichiometric properties of 

carbohydrates and lipids in algae. A recent (2014) study found only nine algae process models 

that had any focus on carbon storage (Baroukh et al., 2014). In addition, only two of these nine 

models modeled carbon storage in microalgae using metabolic properties (Fleck-Schneider et al., 

2007; Guest et al., 2013). More work needs to focus on the modeling properties of carbon storage 

compounds; storage compounds are important to algae growth, nutrient uptake, and the 

processing of algae into valuable products such as algae-based biofuels.   

2.7 Metabolic Data Types. With the advances in genomic analyses and the increased number 

of molecular tools available allowing for full genomic annotations of algae species (Koskimaki, 

Blazier, Clarens, & Papin, 2013; Tirichine & Bowler, 2011), it is now possible to gain a better 

understanding of the algal metabolism. Full scale genomic annotations of algae species have 

been primarily used for understanding the effects of genetic modifications to algae species for 

increased lipid and/or carbohydrate production (Carrier et al., 2018; Vieler et al., 2012). While 

genetic manipulation is useful in some aspects of the industry, full scale genomic data has found 

to be too complex, hard to manipulate, and species specific for wastewater treatment process 

modeling. In the context of wastewater treatment with mixed algae communities, genomic 

analyses cannot easily be used as a form of metabolic data. Metabolic Reconstructions of full 

genome annotations are one step taken to provide more refined data for algal metabolisms      

(Boyle & Morgan, 2009; Gomes de Oliveira Dal’Molin, Quek, Palfreyman, & Nielsen, 2011; Imam, 

Schäuble, Valenzuela, de Lomana, et al., 2015). A metabolic reconstruction for a given organism 

uses available experimental knowledge about the metabolism of a given species along with 

genome annotation for the species to determine metabolic pathways present in a given species 

and the reactions making up those pathways that are performed by certain enzymes (Chang et 

al., 2011). Metabolic reconstructions give an overall view of the species metabolism, however 

they are very complex, commonly containing about 1000-2000 metabolites and anywhere from 

300 to 2000 reactions (Gomes de Oliveira Dal’Molin et al., 2011; Imam, Schäuble, Valenzuela, 

de Lomana, et al., 2015; Wu, Xiong, Dai, & Wu, 2015; Zuñiga et al., 2018). Metabolic 

reconstructions have been used for metabolic engineering manipulations, such as increasing the 

flux through a preferred pathway and analyzing species through flux balance analysis (Baroukh 

et al., 2015; Boyle & Morgan, 2009; Guarnieri et al., 2011; Shastri & Morgan, 2005). Metabolic 

reconstructions are useful in these instances for pure culture applications, but do not work well 

for mixed community analyses and modeling, which is the type of modeling needed in wastewater 
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treatment. Even though the model created by the metabolic reconstruction is difficult to use for 

multiple species as is, it is useful for determining the conservation of given enzymes across algae 

species.  
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CHAPTER 3. Enzyme Conservation   
 

3.1 Algae Species Considered. Eleven microalgae metabolic reconstruction data sets were 

found to be published with attached enzyme data and were analyzed for seven different algae 

species.  The algae species include: Chlamydomonas reinhardtii (Boyle & Morgan, 2009; Chang 

et al., 2011; Gomes de Oliveira Dal’Molin et al., 2011; Imam, Schäuble, Valenzuela, de Lomana, 

et al., 2015; Manichaikul et al., 2009), Nannochloropsis oceanica (Vieler et al., 2012), Chlorella 

protothecoides (Wu et al., 2015), Chlorella vulgaris (Zuñiga et al., 2018), Chlorella variabillis 

(Juneja, Chaplen, & Murthy, 2016), Ostreococcus lucimarinus, and Ostreococcus tauri (Krumholz, 

Yang, Weisenhorn, Henry, & Libourel, 2012). The universal enzymatic properties of algae were 

considered across the seven species for sixteen relevant metabolic pathways.  

3.2 Metabolic Pathways Considered. Sixteen pathways were chosen to make up the metabolic 

model of algae metabolism (table 3.1). The 16 pathways were chosen by looking at metabolic 

reconstruction models and understanding what metabolites would be important for achieving the 

desired outcome including nutrient assimilation from wastewater and energy compound storage. 

Even though models created by metabolic reconstructions are complex and hard to manipulate, 

the information is useful for developing yield coefficients for use in engineering operation and 

design based on the metabolic properties of algae. The major algae metabolic pathways included 

are involved in: central carbon metabolism, nitrogen assimilation, phosphorus assimilation, lipid 

synthesis and storage and carbohydrate synthesis and storage and can be found in table 3.1.  

Table 3.1 Included Metabolic Pathways  
1 Glycolysis 9 Glyoxylate cycle 
2 Pentose phosphate pathway  10 Beta oxidation 
3 Tricarboxylic acid (TCA) cycle  11 Fatty acid synthesis 
4 Photosynthesis 12 Carbohydrate (starch) synthesis 
5 Calvin cycle  13 Carbohydrate (starch) degradation  
6 Photorespiration 14 Triacylglycerol (lipid) synthesis 
7 Ammonia assimilation 15 Triacylglycerol (lipid) degradation  
8 Nitrate assimilation 16 Gluconeogenesis  

 

Three conditions were analyzed by conducting a literature review of algae metabolic 

reconstructions: photoautotrophic growth, heterotrophic growth, and nitrogen limited conditions. 

During photoautotrophic growth, sunlight provides energy to the cell and carbon dioxide is the 

carbon source for the algae cell. During heterotrophic growth, no light is present and both the 

energy and carbon source for the algae is organic carbon, such as glucose or acetate. When little 
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to no nitrogen is present in the algae media, the algae cell is said to be under nitrogen limited 

conditions. 

 

Several metabolic reconstructions that were analyzed have been formed in silico under the three 

conditions described above. The metabolic reconstructions were commonly broken down into 

metabolic pathways during previous analyses in order to see which pathways were expressed 

and not expressed under specific growth conditions. While some metabolic pathways showed 

clear trends of expression that varied under the different growth conditions, other pathways did 

not show any trends at all. Brief descriptions of the overall trends of expression in metabolic 

pathways are provided below.  

 

Glycolysis, or the Embden–Meyerhof–Parnas (EMP) pathway, has flux under all three conditions. 

Light intensity and availability to algae has little effect on glycolysis, making the flux close to 

constant under photoautotrophic, heterotrophic and nitrogen limited conditions (Imam, Schäuble, 

Valenzuela, de Lomana, et al., 2015; C. Yang et al., 2000). However, different molecules may 

enter and leave the glycolysis pathway under the three conditions. For example, under 

photoautotrophic conditions, glyceraldehyde-3-phosphate produced from photosynthesis enters 

glycolysis and under heterotrophic conditions with glucose as the organic carbon source, glucose 

will be converted into glucose-6-phosphate which will then go through glycolysis.  

 

The pentose phosphate pathway has more variation in flux and activity under the various 

conditions. The pentose phosphate pathway is most active under heterotrophic conditions, or 

when no light is available to the cell (Boyle & Morgan, 2009; Perez-Garcia et al., 2011; Wu et al., 

2015; Xiong et al., 2010) In addition, the pentose phosphate pathway has increased activity under 

nitrogen limitation (Imam, Schäuble, Valenzuela, López García de Lomana, et al., 2015). 

 

Both light intensity and nitrogen availability do not have significant effects on the tricarboxylic acid 

(TCA) cycle (Perez-Garcia et al., 2011; Xiong et al., 2010; C. Yang et al., 2000). The TCA cycle 

is similar to glycolysis in that it has flux under all three conditions: photoautotrophic, heterotrophic, 

and nitrogen limited. Also, like glycolysis, different molecules can enter the TCA cycle at different 

points of the cycle depending on the condition the cell is exposed to.   

 

Photosynthesis is active under photoautotrophic conditions and not active under heterotrophic 

conditions because photosynthesis always needs a light source for energy (Wu et al., 2015; C. 
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Yang et al., 2000). When nitrogen is the flux of photosynthesis decreases; but the metabolic 

pathway is still active (Radakovits et al., 2012; Xiong et al., 2010). Photosynthesis can also have 

an increased or decreased flux based on the type of light the algae is exposed to such as white 

light, red light, blue light, or a combination of light types (Juneja et al., 2016). 

 

After photosynthesis, the carbon compounds produced enter the Calvin-Benson cycle. The 

Calvin-Benson cycle increases in flux when light is present, or during photoautotrophic conditions 

(Boyle & Morgan, 2009; Shastri & Morgan, 2005; Wu et al., 2015; C. Yang et al., 2000). The cycle 

decreases in flux when light is not present, but it is still active (Perez-Garcia et al., 2011; C. Yang 

et al., 2000).  

 

Photorespiration occurs when oxygen is utilized by the first enzyme of the Calvin-Benson cycle 

(ribulose- 1,5-biphosphate carboxylase/oxygenase) instead of carbon dioxide. Photorespiration 

commonly occurs when the oxygen saturation in the media is above 7.19 gO2 m-3 (Chisti, 2008; 

Solimeno et al., 2015) There is a lot of conflicting modeling assumptions around including or 

excluding photorespiration in a model; more research needs to be done in order to truly 

understand the significance of the photorespiratory pathway and when it is active and not active 

in regards to light and nitrogen availability (Arnold & Nikoloski, 2013; Baroukh et al., 2015). 

Photorespiration was analyzed for enzyme conservation but is not included as a pathway in the 

model developed from metabolic reconstruction data due to the fact that wastewater treatment 

algae technologies being considered will have oxygen levels below saturation (C. Yang et al., 

2000). 

 

Nitrogen assimilation into the cell is important both for nutrient removal in WRRFs and for cell 

growth. Two forms of nitrogen that can be assimilated by algae cells were analyzed: nitrate and 

ammonia. Both nitrate assimilation and ammonia assimilation in the algae cell increase in flux 

when light is present to the system  (Imam, Schäuble, Valenzuela, López García de Lomana, et 

al., 2015). Nitrate and ammonia assimilation are also both dependent on the type of nitrogen 

available to the cell. For example, if ammonia is present to the cell, the flux of nitrate assimilated 

into the algal metabolism will decrease because ammonia is the preferred nitrogen source for 

algae (Perez-Garcia et al., 2011). Similar to photosynthesis, the type of light available to the 

system may also play a role in the flux of nitrate and ammonia assimilation (Kamiya & Kowallik, 

1987). 
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The glyoxylate cycle allows the cell to metabolize acetate. The flux through the glyoxylate cycle 

increases under heterotrophic conditions when acetate is the organic carbon source (Boyle & 

Morgan, 2009; Perez-Garcia et al., 2011; Shastri & Morgan, 2005). When nitrogen is limited in 

the system, the activity of the glyoxylate cycle decreases; however, the pathway still remains 

active (Imam, Schäuble, Valenzuela, López García de Lomana, et al., 2015).  

 

The cell synthesizes fatty acids which can be utilized in the cell or converted into lipid storage 

molecules (triacylglycerol). Beta oxidation breaks down fatty acids that have been previously 

synthesized by the algal cell.  Future work needs to be completed in order to determine when 

fatty acid synthesis and beta oxidation are most active. Although it is known that under nitrogen 

limitation lipid storage increases, there is still uncertainty around the mechanisms of fatty acid 

synthesis and beta oxidation under nitrogen limited conditions in relation to lipid storage. Some 

believe that under nitrogen limitation, no fatty acid synthesis is occurring and the cell is utilizing 

already formed fatty acids to form lipid storage molecules such as triacylglycerol (Xiong et al., 

2010).  

 

Triacylglycerol (TAG) synthesis and degradation under different light conditions (photoautotrophic 

and heterotrophic growth) has shown conflicting results in metabolic reconstructions. Several 

metabolic reconstructions report an increase in flux for TAG synthesis (Imam, Schäuble, 

Valenzuela, López García de Lomana, et al., 2015; Vieler et al., 2012) while others report an 

increase in TAG synthesis flux when the algae cells are exposed to dark conditions (Wu et al., 

2015; Zuñiga et al., 2018). Contrary to light intensity, when nitrogen is limited in the system, it has 

been concluded that TAG synthesis will increase in flux (Chang et al., 2011; Imam, Schäuble, 

Valenzuela, López García de Lomana, et al., 2015; Radakovits et al., 2012; Vieler et al., 2012). 

TAG degradation occurs when the cell no longer has access to an energy source such as light or 

organic carbon in the absence of light.  

 

Similar to TAG synthesis and degradation, polyglucose (carbohydrate) synthesis and degradation 

has conflicting results when analyzing metabolic reconstructions under different light conditions. 

When light is present, it has been found that the synthesis of polyglucose increases (Juneja et 

al., 2016). However, other studies have shown that in the absence of light the synthesis of 

polyglucose increases (Gomes de Oliveira Dal’Molin et al., 2011; Zuñiga et al., 2018). When the 

algal system is under nitrogen deplete conditions, starch synthesis increases in flux (Imam, 

Schäuble, Valenzuela, López García de Lomana, et al., 2015; Juneja et al., 2016; Xiong et al., 
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2010). In addition, similarly to TAG degradation, starch degradation occurs when the cell no long 

has access to an energy source such as light or organic carbon in the absence of light.  

 

The gluconeogenesis pathway is roughly the reverse of the glycolysis pathway. The pathway is 

not very well understood in relation to the three conditions. It is believed that the gluconeogenesis 

pathway is activated during heterotrophic growth more than photoautotrophic growth (Gomes de 

Oliveira Dal’Molin et al., 2011). Also, under nitrogen starvation it is believed that gluconeogenesis 

is downregulated which is why more storage compounds are formed (Radakovits et al., 2012).  

 

3.3 Enzyme conservation method. Within the sixteen metabolic pathways chosen to represent 

algae metabolism, which enzymes to include within the pathways also had to be considered. All 

enzymes participating in irreversible reactions were made sure to be included along with all 

enzymes requiring or producing energy. Even though there are more enzymes in an alga than in 

our model, such as the 1000+ enzymes included in some metabolic reconstructions, we chose to 

focus on the enzymes necessary for the pathways to function and complete the desired outcome 

(example = TAG storage). Table 3.2 lists all of the metabolic pathways included in the metabolic 

reconstruction analysis along with the number of enzymes included for each enzymatic pathway. 

Sixty-nine enzymes were chosen to be represented across the 16 pathways in the algae model. 

It should be noted that some enzymes are a part of multiple metabolic pathways.  

Table 3.2 Number of enzymes included in all 16 metabolic pathways considered  
Metabolic Pathways  Number of Enzymes in Pathway  
Glycolysis 10 
Pentose phosphate pathway  7 
Tricarboxylic acid (TCA) cycle  9 
Photosynthesis 5 
Calvin cycle  4 
Photorespiration 10 
Ammonia assimilation 2 
Nitrate assimilation 2 
Glyoxylate cycle 5 
Beta oxidation 4 
Fatty acid synthesis 4 
Carbohydrate (starch) synthesis 3 
Carbohydrate (starch) degradation  2 
Triacylglycerol (lipid) synthesis 4 
Triacylglycerol (lipid) degradation  1 
Gluconeogenesis  12 
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Once the enzymes represented in the 16 metabolic pathways of the model were chosen, the 

conservation of enzymes among different algae species was analyzed to determine if all enzymes 

were present in the metabolic reconstruction data sets for different algae species (figure 3.1). 
Each enzyme considered for the study was looked for in the eleven metabolic reconstruction data 

sets to see if the enzyme was present. If the enzyme was present, it was marked as conserved 

in that data set for the specific algae species. A literature review for experimental evidence was 

also completed for enzymes that were not included in the metabolic reconstruction data sets but 

were believed to be present in microalgae metabolism. The pathways analyzed with experimental 

evidence include: ammonia assimilation, nitrate assimilation, carbohydrate synthesis, 

triacylglycerol synthesis, carbohydrate degradation, and triacylglycerol degradation. Several 

experiments were performed in various studies that showed enzymes are present in the algae 

even though they are not represented in the metabolic reconstruction for the given species (Blanc 

et al., 2010; Dong et al., 2013; Jia et al., 2015; Kilian, Benemann, Niyogi, & Vick, 2011; Li, 2014; 

Meuser et al., 2011; Shen, Yuan, Pei, & Mao, 2010; Shi, 2000). Figure 3.1 shows the enzyme 

conservation results from examining eleven metabolic reconstruction data sets as well as 

conducting a literature review for experimental evidence. A complete list of enzyme abbreviations 

can be found in table A.1.    
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Figure 3.1 Enzyme conservation analysis of 11 metabolic reconstruction data sets and experimental 
evidence for 69 enzymes of interest in 16 metabolic pathways.  
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The metabolic pathways were well conserved among the various algae species. Nine of the 

sixteen pathways were completely conserved or had all of the enzymes present in the metabolic 

reconstruction data. These pathways include: glycolysis, photosynthesis, the Calvin cycle, nitrate 

assimilation, beta oxidation, fatty acid synthesis, starch synthesis, triacylglycerol synthesis, and 

starch degradation. For the additional seven metabolic pathways represented in the model, there 

were some differences among enzymes in the pathway for the various metabolic reconstructions. 

For example, in some species the enzyme was present in the algae species, but the enzymatic 

reaction shown for the enzyme in the metabolic reconstruction data set was different. For 

example, the enzyme fumarate reductase was originally included in the TCA cycle metabolic 

pathway, however after analyzing the data sets, it was found that succinate dehydrogenase was 

more common than fumarate reductase in the TCA cycle. Both succinate dehydrogenase and 

fumarate reductase have the same enzymatic reaction, but the enzymes have kinetic differences 

(Vieler et al., 2012; Cecchini, 2002). For the purpose of developing yield coefficients, the kinetic 

differences between the enzymes will not play a role and the enzyme included was assumed to 

be succinate dehydrogenase. However, for kinetic studies the enzyme difference should be 

analyzed further.  

 

Besides having enzymes in the metabolic reconstructions with different reactions or kinetic 

parameters, some enzymes in the metabolic pathways were also missing completely. The 

enzymes could be missing because the reconstruction model did not consider analyzing a certain 

pathway, but also because the enzymes are not actually found in the algae species. The enzyme 

glucose-6-phosphatase was found missing among all of the algae species except one (N. 

oceanica). Glucose-6-phosphatase is the last enzyme in the gluconeogenesis pathway and is 

responsible for converting glucose-6-phosphate back to glucose. Reconverting back to glucose 

via gluconeogenesis is not necessary for the algal metabolism and it is preferable to remove the 

enzyme glucose-6-phosphatase from the model so that all glucose that accumulates in the algae 

cell cannot be secreted back into the medium and will be metabolized by the cell. Glucose-6-

phosphatase is the one enzyme removed from the model and this is reflected by the fact that 

once glucose converts to glucose-6-phosphate by the enzyme glucokinase in the model it can no 

longer return to glucose. 

 

Other enzymes (16 of the 69 enzymes considered) in the metabolic pathways are missing 

sporadically in just one of the seven species considered (see Figure 3.1). Even though one 

enzyme may be missing, it does not necessarily mean it is not present in the algae species. The 
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enzyme could have not been annotated for the metabolic reconstruction depending on the focus 

of the study utilizing the metabolic reconstruction data set such as the effects of varying light 

intensity or the effects on nutrient limitation. For example, photorespiration was one pathway in 

the N. oceanica metabolic reconstruction that was likely not included in the study because the 

focus of the work was on nutrient limitation and not the effect of oxygen saturation in the media, 

explaining why several enzymes are missing in the data set (Vieler et al., 2012). In addition, 

several metabolic reconstruction data sets were available for C. reinhardtii (Boyle & Morgan, 

2009; Chang et al., 2011; Gomes de Oliveira Dal’Molin et al., 2011; Imam, Schäuble, Valenzuela, 

López García de Lomana, et al., 2015; Manichaikul et al., 2009). Among these metabolic 

reconstructions, some have an enzyme missing while others would have this enzyme included. 

Analyzing five metabolic reconstructions of the same species shows that there may be variance 

among the reconstruction data sets that does not accurately represent the enzymes in the algae 

species. Unfortunately, for all algae species beside C. reinhardtii only one metabolic 

reconstruction data set was available. In addition, the metabolic reconstructions are built off of 

genomic annotations, which could be fragmented and incomplete (Corteggiani Carpinelli et al., 

2014). Metabolic reconstructions can also have gaps due to differences between generic and 

specific definitions of the same metabolites; naming and classification differences in databases 

can lead to holes in metabolic reconstructions (Krumholz et al., 2012). Additionally, when trying 

to balance large data sets for metabolic reconstructions to determine yield outputs, the removal 

of unbalanced equations in the reconstruction process can lead to additional gaps (Krumholz et 

al., 2012). Metabolic reconstruction data sets are not perfect representation of all the enzymatic 

properties in algae, but they are a valuable resource for understanding the metabolism of 

microalgae and the data sets give insight into shared enzymatic properties among multiple algae 

species. 

 

When looking at all 69 enzymes considered, only four of the 69 enzymes are missing in two or 

more of the five species. 98% of enzymes are conserved in four out of the seven algae species 

and seventy-seven percent of enzymes are conserved in all seven algae species (figure 3.2). 

Such a low number of enzymes missing in two or more algae species shows the conservation of 

enzymes among different algae species. 
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Figure 3.2 Percent of enzymes conserved in 4/7 to 7/7 algae species considered in the enzyme 
conservation analysis. 
 
The majority of enzymes to be used for the development of a metabolic model are present in 

every algae species considered. This shows the conservation of pathways among algae species 

and how the model can be used for mixed algae communities. The conservation of enzymes 

found gives a strong basis for the simplification of metabolic data into simpler models based on 

key metabolites and lumped enzymatic reactions, known as a lumped pathway metabolic model. 

Boyle and Morgan took their metabolic reconstruction data set and solved for yield parameters 

following different variations of the same metabolic pathways within the cell. When different 

variations were used, the stoichiometric outputs of the metabolic reconstruction did not 

significantly vary (Boyle & Morgan, 2009). Little variation in stoichiometric properties based on 

changes in metabolic pathways gives a strong argument for the effectiveness of simplifying 

metabolic data and still achieving accurate and reproducible results. Although all of the enzymes, 

metabolites, and reactions in the cell preform a function, it is possible to shrink the reconstruction 

down in order to make the model manageable. By basing the lumped pathway metabolic model 

for mixed community algae wastewater treatment technologies off of metabolic reconstructions of 

specific algae species, we are able to harness complex enzymatic data and simplify the 

information to fit the needs of the wastewater processing modeling community (Baroukh et al., 

2015; Daigger, 2011).  
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CHAPTER 4. Metabolic Model Development  
 
4.1 Determination of Key Metabolites. The 69 enzymes used in the enzymatic conservation 

analysis are the necessary enzymes needed for the 16 pathways most prevalent in central carbon 

metabolism, nutrient assimilation, lipid synthesis, lipid storage, polyglucose synthesis and 

polyglucose storage. Understanding how key pathways of microalgal metabolism relate to one 

another is important. When building a lumped pathway metabolic model, the key metabolites of 

the model may be formed and/or consumed in multiple metabolic pathways. The 

interconnectedness of metabolic pathways requires a different framework for understanding the 

metabolic pathways and their relationships with one another. For example, ATP is formed and/or 

consumed across almost all pathways because all major metabolic pathways either use or 

produce energy. In addition, acetyl-CoA is a metabolite involved in seven metabolic pathways 

included in the model. The stoichiometric lumped pathway metabolic model for algal metabolism 

focuses on 14 metabolites that appear across the 16 metabolic pathways as shown in table 4.1.  
 

Table 4.1 Metabolites Considered in Lumped Pathway Metabolic 
Model 
Carbon dioxide Acetate Glucose 

Glucose-6-phosphate Glyceraldehyde-3-
phosphate Acetyl-CoA 

Biomass precursor Functional biomass Triacylglycerol (Lipid) 

Polyglucose 
(carbohydrate) Ammonia Nitrate 

Nicotinamide adenine 
dinucleotide (NADH) 

Adenosine 
triphosphate (ATP).  

 
The 14 metabolites included are a part of multiple metabolic pathways considered. There are 

several additional metabolites in the major metabolic pathways used for the model. The 

metabolites not included in the model are produced and/or consumed in one single metabolic 

pathway or are a pool metabolite that is assumed to have a constant concentration in the cell 

based on the metabolite’s function. For example, Coenzyme-A (CoA) is attached to Acetyl-CoA, 

however CoA is not included in the lumped pathway metabolic model; acetyl-CoA is represented 

as having the same chemical formula as acetate. It is assumed that CoA is held at a constant 

concentration in the cell. Coenzyme-A is either attached to an acetate, forming Acetyl-CoA, or is 

detached and waiting to attach. Coenzyme-A is not formed or consumed by any of the metabolic 

pathways in the model; it just changes form by becoming attached or detached to additional 
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metabolites which is why it is considered a pool metabolite. NAD+ and ADP are also pool 

metabolites; only NADH and ATP are included in the lumped pathway metabolic model.  

4.2 Converting Metabolic Pathways to Reaction Pathways. Once the metabolites for the 

lumped pathway metabolic model were chosen, the diversion points needed to be decided in 

order to relate the reactions to one another in an effective way for lumped pathway metabolic 

modeling. Although the reactions were initially analyzed by the metabolic pathways that the 

reactions were a part of, these pathways would not work for developing the lumped pathway 

metabolic model. Since metabolites are involved in multiple metabolic pathways, the pathways 

need to be reorganized by when the chosen metabolites have the potential to diverge from one 

metabolic pathway to another. For example, in glycolysis glucose is converted to glucose-6-

phosphate by the first enzyme in the pathway, hexokinase . Once glucose-6-phosphate is in the 

cell, it can continue through glycolysis, converting to fructose-6-phosphate, or glucose-6-

phosphate can begin to be synthesized into polyglucose. Glucose-6-phosphate is a key 

metabolite chosen because of the possible diversion from glycolysis to polyglucose synthesis. 

The first enzymatic reaction of glycolysis makes up reaction pathway six in the lumped pathway 

metabolic model. In a similar manner, glycolysis was broken down into a total of three reaction 

pathways: glucose uptake into the cell (glucose to glucose-6-phosphate), conversion of glucose-

6-phosphate to glyceraldehyde-3-phosphate, and the reaction converting glyceraldehyde-3-

phosphate to pyruvate. This process was completed for all the metabolic pathways in order to 

convert the metabolic pathways into reaction pathways. A resulting 15 reaction pathways 

(represented by R1-R15) were developed for the 16 original metabolic pathways considered. 

Thirteen of the fifteen reaction pathways were formed directly from the enzymatic reactions 

involved in the formation and consumption of each key metabolite. The other two reaction 

pathways, biomass precursor formation reaction pathway and functional biomass formation 

pathway, were adapted from Guest et al., 2013. Figure 4.1 shows all of the reaction pathways 

and their relationships to the metabolites in the lumped pathway metabolic model. The reaction 

pathways included in different metabolic processes and their function are described below.  
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Figure 4.1 Schematic of lumped pathway metabolic model including all reaction equations for 
photoautotrophy and heterotrophy. Completely shaded arrows are active for all growth conditions, lined 
arrows are active of nitrogen deplete conditions only and checkered arrows are active for nitrogen replete 
conditions only. The yellow (R1), blue (R5), and purple arrows (R11) are only active one at a time for 
photoautotrophic growth, heterotrophic growth with glucose, and heterotrophic growth with acetate 
respectively.  

4.2.1 Photoautotrophy. Photoautotrophy comprises photosynthetic processes in the algal 

metabolism, including the photosynthesis light reactions and the Calvin cycle, or dark reactions 

(R1). The cell uptakes carbon dioxide and the end products of the photoautotrophic process are 

glyceraldehyde-3-phosphate (G3P) and oxygen (Blankenship, 2014). The lumped pathway 

metabolic model assumed that there is sufficient light to support the photosynthetic process. The 

exact amount of light will need to be considered if the model is to be used for determining the rate 

of photoautotrophic processes in algae.  
 

4.2.2 Heterotrophy. Heterotrophic growth is considered for carbon sources acetate (R11) and 

glucose (R5) in the lumped pathway metabolic model. Both acetate and glucose require one mole 

of ATP per mole of acetate or glucose transported into the cell. Acetate is then metabolized 

through the cell via the glyoxylate cycle and glucose is metabolized via the Embden-Meyerhof-

Parnas (EMP) pathway (Nelson, Lehninger, & Cox, 2008).  
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4.2.3 Biopolymer Storage and Mobilization. Algae store carbon in the cell as carbohydrate 

and/or lipid biopolymers. The carbohydrate biopolymers are assumed to be stored in the form of 

polyglucose which is equivalent to starch. Polyglucose is formed during nutrient deplete 

conditions from glucose-6-phosphate. Energy in the form of ATP is also required for the storage 

of carbohydrates (R9). Under nutrient replete conditions, stored carbohydrates in the cell can be 

mobilized and used as a carbon source by breaking down polyglucose, without an energy input, 

into glucose-6-phosphate (R10) which can then undergo gluconeogenesis and form 

glyceraldehyde-3-phosphate used for cell growth (R6/R7) (Nelson et al., 2008).  
 

The lipid biopolymers stored and mobilized by algae are assumed to be in the form of 

triacylglycerol (TAG) molecules for all algae species considered, although lipid biopolymers may 

be present in numerous forms. TAG is formed during nutrient deplete conditions from acetyl-CoA 

undergoing fatty acid synthesis to form palmitate and then further combining three palmitate 

molecules with a glycerol molecule to form TAG (R12) (Guest et al., 2013). Both steps require 

ATP in order to form and store TAG. The glycerol concentration within the algae is assumed to 

be constant and either in the attached form as a part of a TAG molecule, or as a detached glycerol-

3-phosphate (similar to coenzyme-A). With nutrient replete conditions, TAG is mobilized in the 

cell and used as a carbon source in the form of acetyl-CoA for cell growth (R13). TAG mobilization 

requires energy to break down the TAG molecule back into the fatty acid components.  

 

4.2.4 Biomass Production Nutrient Uptake and Nutrient Assimilation. Protein, DNA, and 

RNA synthesis are all necessary metabolic functions in the cell. These processes are lumped into 

two reaction equations adapted from Guest et al., 2013 and van Aalst-van Leeuwen, 1997. 

Biomass production is first represented by reaction pathway three (R3): acetyl-CoA forming 

biomass precursors, such as amino acids. Reaction pathway three balances catabolism of acetyl-

CoA required for forming protein, DNA, and RNA precursors from acetyl-CoA (δX). Along with the 

formation of biomass precursors from acetyl-CoA, nitrogen and phosphorus assimilation into the 

cell are also considered a part of reaction three.  The amount of energy in the form of ATP required 

to transport nutrients in the form of nitrate, ammonia, and phosphate are represented as δNO, δNH, 

and δPO respectively. The formation of biomass precursors also requires an amount of ATP, αM. 
Biomass precursor polymerization to form functional biomass is represented by reaction pathway 

four. The amount of ATP required for functional biomass formation is represented by the amount 

of ATP required for polymerization, αX, and the amount of ATP required for cellular maintenance, 

mATP. Both biomass precursor molecules and functional biomass molecules have the same 
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biomass composition, CH1.8O0.5N0.2P0.1 (Guest et al., 2013; Roels, 1980) in the lumped pathway 

metabolic model. Constant parameters descriptions and values can be found in table A.2. 
 

4.2.5 Catabolism and Oxidative Phosphorylation. The tricarboxylic acid (TCA) cycle 

catabolizes acetyl-CoA for cellular energy production in the form of NADH (R14). NADH further 

undergoes oxidative phosphorylation to release oxygen from the cell and produce ATP that can 

be utilized by the cell for growth, storage, and maintenance processes (R15). Oxidative 

phosphorylation relies on the P/O ratio in the lumped pathway metabolic model to determine how 

much ATP is produced per mole of NADH oxidized. The P/O ratio, dPO, can vary with changes in 

the algal metabolism, however, the common modeling practice of holding the P/O ratio constant 

is used for the lumped pathway metabolic model (Roels, 1983; White, 2007). In addition, it has 

been shown that the P/O ratio does not vary with changes in carbon energy sources (carbon 

dioxide, acetate, and glucose) (Verduyn, Stouthamer, Scheffers, & Dijken, 1991).  
 

4.3 Formation of Reaction Equations. The lumped enzymatic reactions making up each 

reaction pathway (R1-R15) in figure 4.1 are converted to a c-mole basis for the lumped pathway 

metabolic model. A c-mole basis is used to compare the carbon flow throughout algal metabolism 

regardless of how many carbon atoms make up a given metabolite. Normalizing the metabolites 

to a c-mole basis allows for easier comparison and increased model capabilities (Roels, 1980, 

1983; van Aalst-van Leeuwen, Pot, van Loosdrecht, & Heijnen, 1997b). Table 4.2 below shows 

all of the reaction equations on a c-mole basis. The reaction equations are divided by the number 

of carbon moles that will make sure every metabolite in the reaction equation is on a c-mole basis. 

For example, if there is one glyceraldehyde-3-phosphate (three carbon molecule) in the reaction 

pathway equation, the glyceraldehyde-3-phosphate molecule wound need to be divided by three. 

However, if there were two glyceraldehyde-3-phosphate molecules formed in the reaction 

equation, the glyceraldehyde-3-phosphate metabolite would need to be divided by six for the six 

carbons present in the form of glyceraldehyde-3-phosphate. The entire reaction equation is 

divided by the same number so as not to change the relationship between the metabolites in the 

reaction. For further analysis, the reaction equations are set equal to zero by moving metabolites 

involved in the reaction pathway forming the reaction equation to one side of the equation. The 

reactants being consumed are subtracted metabolites and the products being formed are added 

metabolites.  
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Table 4.2 Reaction Equations Included in the Metabolic Model  
Equation Reaction Stoichiometry Citations 

𝐑𝟏 Synthesis of G3P 
from CO2 
 

α$ℎ𝑣 + CO* →	O* 	+	
-
.
G3P 

[Caspi, 
Guest,   

Placzek] 
𝐑𝟐 Synthesis of acetyl-

CoA from G3P 
 

-
.
G3P →	 *

.
NADH +	*

.
ATP +	-

.
CO* +

-
.
acetylCoA [****] 

𝐑𝟑a Synthesis of 
biomass precursors 
from acetyl-CoA  
 
 
 

-
*
(1 + δC + δD)acetylCoA + cNH. + dPOG.H

+ IαJ + dϵ −
-
*
δDM ATP

→ CHNOONPPQ + (δC + δD)CO* + (2δC
− 0.1)UNADH 

[Guest,  
Smolders,  

van 
Leeuwen] 

𝐑𝟒 Formation of 
functional biomass 
and cell 
maintenance  
 

CHNOONPPQ + IαC +
JWXY
Z[\]

MATP	 → -
D
(CH-.^O_.`N_.*P_.-)D 

[van 
Leeuwen, 

NDVY] 

𝐑𝟓 Glucose Transport 
 

-
b
Glucose + -

.
ATP → -

.
G6P 

[Tanner, 
Perez-
Garcia] 

𝐑𝟔 Upper Glycolysis 
 -

b
G6P +	-

b
ATP	 → 	 -

.
G3P 

[de Oliveira 
Dal’Molin, 

Perez-
Garcia] 

𝐑𝟕 Upper Glycolysis via 
Pentose Phosphate 
Pathway 
 

-
b
G6P →	 -

b
G3P + -

*
CO* + NADH 

[de Oliveira 
Dal’Molin,  
Nelson,  
Perez-
Garcia] 

𝐑𝟖 Gluconeogenesis: 
synthesis of G6P 
from G3P 
 

-
.
G3P → -

b
G6P [Nelson] 

𝐑𝟗 Polyglucose 
Synthesis  
 

-
b
(polyglucose)D +

-
b
G6P + -

b
ATP → -

b
(polyglucose)Dl- 

[de Oliveira 
Dal’Molin, 
Nelson] 

𝐑𝟏𝟎 Polyglucose 
Degradation  
 

-
b
(polyglucose)Dl- →

-
b
(polyglucose)D +

-
b
G6P [Nelson] 

𝐑𝟏𝟏 Acetate Transport 
 

-
*
acetate + -

*
ATP → -

*
acetylCoA [Placzek] 

𝐑𝟏𝟐b Triacylglycerol 
Synthesis  
 

*`.`
`-
acetylCoA + *G

`-
ATP + G*

`-
NADH → -

`-
TAG 

[Hu,  
Kanehisa,  
Nelson] 

𝐑𝟏𝟑 Triacylglycerol 
Degradation  
 

-
`-
TAG + .

`-
ATP → *`.`

`-
acetylCoA + .`

`-
NADH [Nelson] 

𝐑𝟏𝟒 Tricarboxylic Acid 
Cycle: carbon 
catabolism 
 

-
*
acetylCoA → CO* +

--
b
NADH + -

*
ATP 

[de Oliveira 
Dal’Molin,  
Kanehisa] 

𝐑𝟏𝟓 Oxidative 
Phosphorylation NADH + -

*
O* → δ$nATP [Nelson, 

NDVY] 
a In Reaction equation 3, NH3 may be replaced with NO3

- 
b Elemental TAG composition is assumed to be C51H98O6. 
c (2𝛿p − 0.1) is the simplified form of G(-lqr)HG.*

*
 where 4 is the oxidation value of carbon in the carbon source, 4.2 is the oxidation 

value of carbon in biomass, and 2 is the number of electrons retrieved per mole of NADH oxidized.  
The fifteen reaction equations, normalized to a c-mole basis, used in the development of linear equations 
for the lumped pathway metabolic model. Constant parameters descriptions and values can be found in 
Table A.2 
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4.3.1 Growth Conditions Considered and Reaction Equations Active. Although there are 15 

pathways in the lumped pathway metabolic model, the 15 pathways are not always active for 

every algae processing situation. Table 4.3 shows the growth conditions considered and the 

corresponding reaction equations that are active for the given conditions. There is no one 

condition in which all of the reaction equations are present. The conditions that are varying include 

carbon source: carbon dioxide (photoautotrophic), acetate (heterotrophic), or glucose 

(heterotrophic) and the nitrogen source: ammonia (nutrient replete), nitrate (nutrient replete), or 

no nitrogen source (nutrient deplete). The reaction equations included for nutrient replete 

conditions with ammonia and nutrient replete conditions with nitrate are the same, however the 

coefficients used in the biomass precursor reaction equation, R3, will vary with respect to acetyl-

CoA, carbon dioxide, and ATP based on the nitrogen source used.  

 
Table 4.3 Reaction equations active for each growth and nutrient condition 
considered. 

Conditions Active Reactions Equations 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Photoautotrophic Growth 
Nutrient Replete X X X X  X   X   X  X X 
Photoautotrophic Growth 
Nutrient Deplete  X X X X   X   X   X X X 
Heterotrophic Growth on 
Acetate Nutrient Replete  X X X   X X X  X X  X X 
Heterotrophic Growth on 
Acetate Nutrient Deplete  X X X   X X  X X X X X X 
Heterotrophic Growth on 
Glucose Nutrient Replete  X X X X  X X X   X  X X 
Heterotrophic Growth on 
Glucose Nutrient Deplete  X X X X  X X  X   X X X 
Mobilization of Storage 
Compounds Nutrient Replete  X X X   X X X   X  X X 

 

Based on the carbon source and growth conditions in the cell, certain reactions will be active 

under the given conditions; not all 15 reactions are active at any given time. For example, reaction 

one (R1) is only active under photoautotrophic growth. In addition, reaction pathways nine and 

twelve (R9: polyglucose synthesis and R12: triacylglycerol synthesis) are only active under 

nitrogen limited conditions.  Reactions two through five (R2-R4) are active under all growth and 

media conditions. These reactions include: the second half of glycolysis (R2), acetyl-CoA to 

biomass precursors (R3), and biomass precursors to functional biomass (R4). These three 

reactions make up the core central metabolism pathway which can be seen from the straight path 

from R2-R4 in figure 4.1.  
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The tricarboxylic acid cycle (TCA cycle) and oxidative phosphorylation reactions equations, R14 

and R15 respectively are also present under all growth and media conditions because the algal 

metabolism is always producing or consuming energy compounds, NADH and ATP. Depending 

on the carbon source considered for the growth conditions being tested, the reaction equations 

associated with carbon uptake and metabolism will vary. For photoautotrophic growth, 

photosynthesis (R1) will be included. For heterotrophic growth on acetate, acetate transport into 

the cell (R11) will be included. For heterotrophic growth on glucose, glucose transport into the cell 

(R5) and the first half of the glycolysis pathway (R6/R7) will be active and included in the set of 

linear equations.  

 

In figure 4.1, it is shown that either reaction 6 (R6), the first half of glycolysis (glucose-6-

phosphate to glyceraldehyde-3-phosphate) or reaction 7 (R7), the first half of glycolysis also 

including the pentose phosphate pathway, will be included in the set of active reactions equations 

for a given set of conditions. The pentose phosphate pathway is active under heterotrophic growth 

conditions and nitrogen limited growth conditions (Imam, 2015; Perez-Garcia, 2011). This 

includes all sets of reaction equations except for photoautotrophic growth in nutrient replete 

media. Gluconeogenesis (R8) is a reaction equation that acts in reverse of glycolysis and converts 

pyruvate back to glucose-6-phosphate. Gluconeogenesis is only present under heterotrophic 

growth conditions (Baroukh, Turon, & Bernard, 2017). Storage compound (polyglucose and 

triacylglycerol) synthesis and storage compound degradation are also active under different 

growth conditions; both synthesis and degradation of storage compounds cannot be active at the 

same time. Under nutrient replete conditions, polyglucose (PG) synthesis, R9, and triacylglycerol 

(TAG) synthesis, R12, are active reaction equations. Under nutrient deplete, or nutrient limited 

conditions, polyglucose degradation, R10, and triacylglycerol degradation, R13, are active 

reaction equations (Guest et al., 2013). 

 

4.4 Forming Sets of Linear Equations for All of the Conditions Being Evaluated. To 

determine the rates at which specific metabolites are being formed, consumed, mobilized, or 

degraded for each condition set, a set of linear equations must be formed from the given reaction 

equations representing each condition. The linear equations are a set of equations that represent 

the rate of uptake, formation, consumption, degradation, or mobilization for each metabolite in the 

model. To form the linear equations for each metabolite, the reaction equations are inserted into 

a matrix that is multiplied by a rate vector. The matrix is x rows (for the number of reaction 

equations active for each condition as shown in table 4.3) by 16 columns (for the 16 metabolites 
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being considered. If a certain reaction equation does not have a given metabolite, then a zero is 

inserted into the matrix (Roels, 1983). The matrix is different for each condition; however, the 

number of columns never changes. The rate vector is 16 rows (for the sixteen metabolites present 

in the model) by 1 column. Each term in the rate vector is ri where i is equal to one of the sixteen 

metabolites. Definitions for the rate equations can be found in appendix A.3. Multiplying the 

active reaction equations matrix by the rate vector will give a set of linear equations for each 

condition that represent the rate of uptake, formation, consumption, degradation, or mobilization 

for each metabolite. The linear equations are useful to understand all the reactions pathways 

each metabolite takes part in within the model.  

 

4.4.1 Degree of Reduction Balance. The degree of reduction balance is an additional linear 

equation developed for each carbon source: carbon dioxide, acetate, and glucose in combination 

with each nitrogen source: ammonia and nitrate. To calculate the degree of reduction balance, 

the elemental matrix needs to be multiplied by the reaction rate vector and set equal to zero.  
 

𝐸 ∗ 𝑟 = 0 
 
The elemental matrix, E, is 4 rows by 16 columns. The four rows are for each element being 

tracked in the model: carbon, hydrogen, oxygen, nitrogen and the 14 columns represent the 14 

metabolites in the metabolic model. The reaction rate matrix, r, is 14 rows by 1 column. The 

fourteen rows represent the reaction rate associated with each metabolite in the model. The 

degree of reduction balance is a c-mole based linear equation, therefore each reaction rate in the 

r column vector is multiplied by the number of carbon atoms in each metabolite. All of the 

metabolites that do not accumulate in the cell are set equal to zero. The non-zero reaction rates 

in the model are for the following metabolites: the carbon source being used (carbon dioxide, 

acetate, or glucose), functional biomass, polyglucose, triacylglycerol, and oxygen. Solving the 

matrix multiplication will result in the degree of reduction balance (Roels, 1983; Nielson, 1995).  

 

The degree of reduction balance is used to show the transfer and demand of electrons by 

metabolites with non-zero reaction rates in the model. The rate of electrons liberated is set equal 

to the rate of electron sinks, or electron demand.  The reaction rate for oxygen (electrons liberated) 

is represented on one side of the balance and is set equal to the sum of all of the other reaction 

rates terms for the model and their corresponding coefficients (electron sinks).   
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Phosphorus transport and accumulation is included in the model; however, phosphorus is not 

included in the degree of reduction balance linear equation. Phosphorus is not included because 

the degree of reduction balance is used to show the transfer of electrons among metabolites and 

phosphorus is only considered to stay in one state, as orthophosphate that is then assimilated 

into cell biomass. Also, the elemental phosphate in metabolites is not considered for the lumped 

pathway metabolic model which is representing all metabolites on a c-mole basis; only the energy 

involved in phosphate uptake is considered (in reaction equation R3).  

 
Table 4.4 Linear equations for photoautotrophic nutrient-replete metabolism  
# Equation Units 
1a 
 rxyz{ = 0 = .`

`-r-. +
--
b r-G − r-` +

*
.r* + r.(−0.1 + 2δC) moles − (NADH) − hourH- 

2 
 
 
 

ry~$ = 0 = − -
-�r-. +

-
*r-G + δ$nr-` +

*
.r* −

-
brb

− IαC +
JWXY
Z[\]

M rG + (−α� − 0.1ϵ +
-
*δD)r. 

moles − (ATP) − hourH- 

3 
 

r�b$ = 0 = r-_ − rb moles − (G6P	as	C) − hourH- 
4 
 

r�.$ = 0 = r- − r* +	rb moles − (G3P	as	C) − hourH- 
5 
 ry��y = 0 = r-. − r-G +

*
.r* − r.(1 + δD + δC) moles − (ACoA	as	C) − hourH- 

6 
 

r���� = 0 = 	 r. − rG moles − (X���	as	C) − hourH- 
7 
 

r�\�� = 	 rG moles − (XN��	as	C) − hourH- 
8 
 

r~y� = −r-. moles − (TAG	as	C) − hourH- 
9 
 

r$� = −r-_ moles − (PG	as	C) − hourH- 
10 
 rn� = 	 r- −

-
*r-` moles − (O*) − hourH- 

11 
 r�n� = 	−r- + r-G +

-
.r* + (δD + δC	)r. moles − (CO*	as	C) − hourH- 

12b 
 4r�� =

*�_
`- r~y� + 4r$� + 4.2r�\�� - 

a Assumes FADH* = �
�NADH	and	NADH* = NADH 

b Degree of Reduction balance based on Roels, 1983 and Nielsen, 1995. In #12, the coefficient for rXalg is 5.8 when nitrate is the 
nitrogen source. 

 
Table 4.4 shows an example of the linear equations and degree of reduction balance for 

photoautotrophic nutrient replete metabolism. The list of abbreviation for the reaction equations 

can be found in appendix A.3.  The additional linear equations and degree of reduction balances 

associated with the given growth conditions can be found in appendix A.4 – A.10.  

 

4.4.2 Determination of Specific Rates from Linear Equations. Although each metabolite has 

a linear equation, they are not all useful in determining the rate equations and stoichiometric 

coefficients alone because there are too many unknown values. Solving a set of linear equations 
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for a given metabolite rate allows for the model to be simplified and provide useful information 

about algae metabolism. Using the set of linear equations for a given growth and nutrient condition 

as well as the degree of reduction balance for the given carbon source, the specific rate of 

metabolites can be determined. To solve the sets of linear equations, all metabolites which do not 

enter, or become stored in the cell are set equal to zero. These linear equations are the same 

regardless of growth condition and include: ry��y, r�b$, r�.$, r����, rxyz{, and ry~$. Once the 

selected metabolite equations are set equal to zero, the sets of linear equations were solved. 

Table 4.5 shows an example of the solved linear equations for nutrient replete photoautotrophic 

metabolism. Additional linear equation solutions can be found in appendix A.11 – A.13.  
 
Table 4.5 Linear equation solutions for photoautotrophic nutrient-replete metabolism  
Description [units] Nutrient-Replete Metabolism Nutrient-Deplete Metabolism 
Specific Rate of 
Photosynthesis [moles-
(CO2 fixed to G3P)·moles-
(Xalg as C)-1·hour-1] 
 

q${n~x� = 	
µx�

Y�\��
x� +

q$�x�

Y$�x�
+
q~y�x�

Y~y�x� +
my~$
x�

Yy~$x�  q${n~xz = 	
µxz

Y�\��
xz +

q$�xz

Y$�xz
+
q~y�xz

Y~y�xz +
my~$
xz

Yy~$xz  

Specific Rate of CO2 
Production [moles-
(CO2)·moles-(Xalg as C)-1 

·hour-1] 
 

q�n�
x� = 	−q$�x� − q~y�x� − 𝜇x� q�n�

xz = 	−q$�xz − q~y�xz − 𝜇xz 

Specific Rate of O2 
Production [moles-(O2) 
·moles-(Xalg as C)-1·hour-1] 

qn�
x{ = q$�x{ +

-G`
-_*
q~y�x{ + *-

*_
µx{ 

 

qn�
xn = q$�xn +

-G`
-_*
q~y�xn + *�

*_
µxn 

qn�
xz = q$�xz +

-G`
-_*
q~y�xz + *-

*_
µxz 

Note on superscripts: NH; ammonia as nitrogen source, NO; nitrate as nitrogen source, NR; nitrogen source present, could be 
ammonia or nitrate, ND; no nitrogen source present 
Note on parameters: Specific rate equations described using parameter q (specific rate of production), Y (yield coefficient), and µ 
(functional biomass growth rate) 
qPHOT; specific rate of CO2 fixation to G3P, moles-(G3P as C)·mole-(Xalg as C)-1·hr-1 
qCO2; specific rate of CO2 production, moles-(CO2)·mole-(Xalg as C)-1·hr-1 
qO2; specific rate of O2 production, moles-(O2)·mole-(Xalg as C)-1·hr-1 
 

 
The linear equations are solved for three rate equations relevant to cell growth: the specific rate 

of the carbon source fixed in the cell (carbon dioxide, acetate, or glucose), the specific rate of 

carbon dioxide production, and the specific rate of oxygen production. The specific rates are 

developed from the enzymatic reactions and metabolic properties in algae under different growth 

conditions to have robust parameters in order to ground the derivation of more complex kinetic 

parameters in intrinsic biochemical properties of the cell. The scope of this work did not develop 

additional kinetic properties, but the linear equation solutions developed could be used to do so.      

4.4.3 Determination of Stoichiometric Yield Coefficients from Linear Equations. In addition 

to the linear equation solutions, the set of linear equations for a given condition can also be used 
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to solve for stoichiometric yield coefficients. Stoichiometric yield coefficients were solved for four 

metabolites: polyglucose (carbohydrates), triacylglycerol (lipid), biomass, and ATP. The 

stoichiometric coefficients were solved for with the units of c-moles of metabolite of interest (one 

of the four previously listed) per c-mole of carbon source fixed in the cell. The carbon source fixed 

within in the cell is based on the growth condition being analyzed. Three carbon sources were 

considered for stoichiometric yield coefficient development: carbon dioxide (c-mole of carbon 

dioxide fixed to c-mole of glyceraldehyde-3-phosphate), acetate (c-mole acetate fixed to c-mole 

acetyl-CoA), and glucose (c-mole glucose fixed to c-mole glucose-6-phosphate). Table 4.6 shows 

the stoichiometric yield coefficients for photoautotrophic metabolism (nutrient replete and 

deplete). Additional stoichiometric yield coefficients for heterotrophic growth (acetate and 

glucose) can be found in appendix A.14 – A.16.  
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Table 4.6 Stoichiometric yields for photoautotrophic metabolism  
Description [units] Nutrient-Replete Metabolism Nutrient-Deplete Metabolism 
yield of polyglucose on 
CO2 fixed to G3P [(C-
moles PG)·(C-mole CO2 
fixed to G3P)-1] 
 

Yx�
$�
= 	

18 + 34δ$n
15 + 	34δ$n

 Yxz
$�
= 	
18 + 34δ$n
12 + 35δ$n

 

yield of lipid on CO2 fixed 
to G3P [(C-moles LI)·(C-
mole CO2 fixed to G3P)-1] 
 

Yx�
��
=
306 + 578δ$n
135 + 771δ$n

 Yxz
��
=
306 + 578δ$n
297 + 813δ$n

 

yield of biomass on CO2 
fixed to G3P [(C-moles 
biomass)·(C-mole CO2 
fixed to G3P)-1]a 
 

Y�\��

=
170δ$n + 90

90α� + 90αC + 90(0.1ϵ) + 174δ$n + 165δxδ$n + 45δC − 15δ$nδC + 45
 

yield of ATP on CO2 fixed 
to G3P [(moles of ATP)·(C-
mole CO2 fixed to G3P)-1] 

Y x�
y~$

=
9 + 17δ$n

9  Y x�
y~$

=
9 + 17δ$n

9  
a Yield of biomass can only happen under nutrient replete conditions  
 

Polyglucose and triacylglycerol stoichiometric coefficients were solved for because of the interest 

in carbohydrates and lipids for bio-based products, such as biofuels (Pittman, Dean, & Osundeko, 

2011). In addition, carbohydrate and lipid storage play a role in nutrient uptake in the absence of 

sunlight and an external carbon source during phototrophic growth; the storage molecules allow 

for the uptake of nutrients by algae cells at night time, or when it is dark which is a major benefit 

to the wastewater treatment industry (Gardner-Dale, Bradley, & Guest, 2017). Biomass growth is 

important to track in order to know how much biomass will need to be removed from the 

wastewater treatment system so that the system can continue at optimal function. The biomass 

removed can be used in multiple ways. The algae can be anaerobically digested for energy or the 

biomass can be harnessed for multiple bio-products such as biofuel feedstock or fertilizer 

(Benemann, 1979; Skjånes, Rebours, & Lindblad, 2013; Ward, Lewis, & Green, 2014). ATP 

stoichiometric coefficients are important values to know because ATP is the energy source of the 

cell; without ATP, cell growth, maintenance, and nutrient uptake would not function properly, and 

algae could not be used to treat wastewater.  
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CHAPTER 5. Conclusion and Engineering Significance 
 
5.1 Conclusion. When considering table 4.6, it can be seen that many of the developed yield 

coefficients are only dependent on one parameter, dPO, or the constant P/O ratio. For 

photoautotrophic metabolism, six out of the seven stoichiometric yield coefficients are solely 

based on the P/O ratio after the systems of linear equations are solved. A similar trend is observed 

for the other conditions with a total of eighteen out of twenty-one developed stoichiometric yield 

coefficients being based solely on dPO. In addition, dPO is a parameter grounded in the biochemical 

processes involved in oxidative phosphorylation. In algae metabolism, along with most microbial 

metabolisms, dPO is a fixed ratio that can only vary from one to three moles of ATP produced per 

mole of NADH oxidized (White, 2007). This range is based on transport properties and the 

structure of the ATP synthase molecule involved in oxidative phosphorylation (White, 2007). In 

the model development, dPO is assumed to be equal to two moles of ATP produced per mole of 

NADH oxidized and the biochemical restriction show that the uncertainty surrounding this 

parameter is minor since the value can only vary from one to three (Stouthamer, 1973a). Having 

a majority of  the developed stoichiometric coefficients rely on one processing parameter, dPO, 

that has little uncertainty surrounding its value allows for more robust modeling processing 

parameters that are grounded in biochemical mechanisms essential to algal metabolism. Tables 
5.1, 5.2, and 5.3 show the numerical yield coefficients for photoautotrophic growth, heterotrophic 

growth with acetate, and heterotrophic growth with glucose respectively based on solving the 

stoichiometric solutions (appendix A.14 – A1.6) with constant values given in appendix A.2.  
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Table 5.1 Stoichiometric yields for photoautotrophic metabolism  
Description [units] Nutrient-Replete 

with Ammonia 
Nutrient-Replete 
with Nitrate 

Nutrient-Deplete 
Metabolism 

yield of polyglucose on CO2 
fixed to G3P [(C-moles PG)·(C-
mole CO2 fixed to G3P)-1] 
 

Yx�$� = 	1.036 Yx�$� = 	1.036 Yxz$� = 	1.049 

yield of lipid on CO2 fixed to G3P 
[(C-moles LI)·(C-mole CO2 fixed 
to G3P)-1] 
 

Yx��� = 0.872 Yx��� = 0.872 Yxz�� = 0.760 

yield of biomass on CO2 fixed to 
G3P [(C-moles biomass)·(C-
mole CO2 fixed to G3P)-1] 
 

Y�\��_x{ = 0.726 Y�\��_xn = 0.528 NAa 

yield of ATP on CO2 fixed to G3P 
[(moles of ATP)·(C-mole CO2 
fixed to G3P)-1] 

Y x�
y~$ = 4.778 Y x�

y~$ = 4.778 Y xzy~$ = 4.778 
a Yield of biomass can only happen under nutrient replete conditions  

 
 
Table 5.2 Stoichiometric for heterotrophic metabolism with acetate  
Description [units] Nutrient-Replete 

with Ammonia 
Nutrient-Replete 
with Nitrate 

Nutrient-Deplete 
Metabolism 

yield of polyglucose on 
glucose fixed to G6P [(C-
moles PG)·(C-mole glucose 
fixed to G6))-1] 
 

Yx�$� = 	0.625 Yx�$� = 	0.625 Yxz$� = 	0.600 

yield of lipid on glucose fixed 
to G6P [(C-moles LI)·(C-mole 
glucose fixed to G6P)-1] 
 

Yx��� = 0.777 Yx��� = 0.777 Yxz�� = 0.502 

yield of biomass on glucose 
fixed to G6P [(C-moles 
biomass)·(C-mole glucose 
fixed to G6P)-1]a 
 

Y�\��_x{ = 0.490 Y�\��_xn = 0.373 NAa 

yield of ATP on glucose fixed 
to G6P [(moles of ATP)·(C-
mole glucose fixed to G6P)-1] 

Y x�
y~$ = 2.500 Y x�

y~$ = 2.500 Y xzy~$ = 2.500 
a Yield of biomass can only happen under nutrient replete conditions  
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Table 5.3 Stoichiometric yields for heterotrophic metabolism with glucose  
Description [units] Nutrient-Replete 

with Ammonia 
Nutrient-Replete 
with Nitrate 

Nutrient-Deplete 
Metabolism 

yield of polyglucose on acetate 
fixed to acetyl-CoA [(C-moles 
PG)·(C-mole acetate fixed to acetyl-
CoA)-1] 
 

Yx�$� = 	0.667 Yx�$� = 	0.667 Yxz$� = 	0.880 

yield of lipid on acetate fixed to 
acetyl-CoA [(C-moles LI)·(C-mole 
acetate fixed to acetyl-CoA)-1] 
 

Yx��� = 1.140 Yx��� = 1.140 Yxz�� = 0.736 

yield of biomass on acetate fixed to 
acetyl-CoA [(C-moles biomass)·(C-
mole acetate fixed to acetyl-CoA)-1]a 
 

Y�\��_x{ = 0.718 Y�\��_xn = 0.547 NAa 

yield of ATP on acetate fixed to 
acetyl-CoA [(moles of ATP)·(C-mole 
acetate fixed to acetyl-CoA)-1] 

Y x�
y~$ = 3.667 Y x�

y~$ = 3.667 Y xzy~$ = 3.667 
a Yield of biomass can only happen under nutrient replete conditions  

 
When analyzing the numerical solution of the stoichiometric yield coefficients, several trends can 

be observed. For example, the nitrogen replete source (ammonia or nitrate) only affects the 

growth yield coefficient parameters; the yield coefficients for polyglucose, lipid, and ATP are the 

same for if nitrogen is present in either form, ammonia or nitrate. The numerical solutions for 

biomass show that the nitrogen source ammonia is preferred for cells over nitrate and this is 

consistent with experimental data (Tchobanoglous et al., 2003). Ammonia is already in the correct 

reduction state when it enters the algal cell while nitrate must be reduced in order to be assimilated 

into algal biomass which requires more energy and leads to a lower biomass yield (Lewin, c1962). 

When considering the yield of polyglucose and lipid for all of the growth conditions, there are 

differences between the nitrogen replete and nitrogen deplete conditions. When nitrogen is not 

present, storage compounds such as polyglucose and lipids accumulate in the cell (Boyle & 

Morgan, 2009). The differences in values are caused primarily by the differences in energy 

requirements the cell needs to uptake and metabolize a given carbon source under different 

growth conditions and nutrient availability. It is also observed that ATP production in the cell is 

not based on nitrogen availability. For any given condition, the amount of ATP produced will be 

the same regardless if nitrogen is available to the cell or not. The amount ATP produce per c-

mole of carbon fixed is the highest for photoautotrophic metabolism, which is consistent with other 

metabolic models finding and experimental evidence (Boyle & Morgan, 2009; Gomes de Oliveira 

Dal’Molin et al., 2011; Wágner et al., 2016; Zuñiga et al., 2018).  

 

Stoichiometric yield coefficient results were compared with available stoichiometric yield 

coefficients reported in algae metabolic models for photoautotrophic growth (Al Ketife, Judd, & 
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Znad, 2016; Bello, Ranganathan, & Brennan, 2017; Buhr & Miller, 1983; Decostere et al., 2017, 

2013; Juneja & Murthy, 2018; Murphy & Berberoglu, 2014; Park & Li, 2015; J. Yang et al., 2011). 

Figure 5.1 shows the range of reported values found for grams of biomass produced per gram of 

carbon dioxide utilized. The numerical yield stoichiometric value is reported (with nitrate as 

nitrogen source) along with the range of biomass growth under photoautotrophic conditions with 

the possible range of dPO from one to three. It can be seen that the developed stoichiometric yield 

coefficient from this study for photoautotrophic biomass falls within the range of other algae model 

study’s reported yield coefficients for photoautotrophic growth.  

 

 
Figure 5.1 Comparison of photoautotrophic nutrient replete with nitrate biomass yield coefficient with 
photoautotrophic yield coefficients provided in literature. The range of the developed photoautotrophic yield 
coefficient with dPO varying from one to three moles of ATP produced per mole of NADH oxidized is also 
shown.  
 

5.2 Engineering Significance. Establishing universal yield coefficients based on conserved 

metabolic properties of algae species will help advance the use of algal technologies in the 

wastewater treatment industry. A generalizable understanding of universally conserved metabolic 

properties under various growth conditions for algal species (i.e., photoautotrophic and 

heterotrophic) will lead to improved models for algae cultivation and support the adoption of algal 

technologies for biological nutrient removal in wastewater.  

 

With improved models, algae technologies can be implemented more widely and operated more 

efficiently to improve WRRFs effluent quality. Water resource recovery facilities are located all 

around the world in different climates, temperature, and elevations. The variability in location can 
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change the communities of algae species that are grown in the area. Unfortunately, WRRFs do 

not have the resources to experimentally validate yield coefficients for each location. Having 

stoichiometric yield coefficients that do not rely on variation in external factors (temperature, pH, 

alkalinity, etc.) and are based on conserved metabolic properties will allow algae technologies at 

various WRRFs have robust models with limited uncertainty estimating the algae system’s 

properties. In addition, the wastewater treatment community has developed a modeling platform 

in order to increase uniformity and ease modeling communication across the industry. Following 

this format in the development and presentation of the newly developed stoichiometric yield 

coefficients will also improve implementation of algae technologies into current modeling formats. 

WRRFs will be able to understand easily how algae system models operate similarly to current 

technologies at WRRFs which will promote adaptability of algae technologies. 
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APPENDIX A. Supporting Material for “Development of Universal Stoichiometric 
Coefficients for Modeling Microalgal Cultivation Systems” 
 
Table A.1 List of enzyme abbreviations used in enzyme conservation analysis 
Enzyme Abbreviation  

Glycolysis  
Glucokinase (hexokinase) GCK 
Glucose -6 - Phosphate isomerase  GPI 
6-phosphofructokinase PFK 
fructose biphosphate aldolase FBA 
Triose phosphate isomerase TPI 
glyceraldehyde-3-phosphate dehydrogenase GAPDH 
phosphoglycerate kinase PGK 
phosphoglycerate mutase GPMA 
phosphopyruvate hydratase (enolase) ENO 
pyruvate kinase PK 

Pentose Phosphate Pathway  
Glucose-6-Phosphate dehydrogenase G6PD 
6-phosphogluconolactonase PGLS 
phosphogluconate dehydrogenase PGD 
ribulose-phosphate 3-epimerase RPE 
ribose-5-phosphate isomerase RPIA 
transketolase TKT 
transaldolase TALDO 

Citric Acid/TCA Cycle  
pyruvate dehydrogenase PDH 
citrate synthase CS 
aconitate hydratase (aconitase) ACON 
isocitrate dehydrogenase IDH 
alpha-ketoglutarate dehydrogenase (2-oxoglutarate dehydrogenase) OGDH 
succinate-CoA ligase (succinyl CoA synthatase) SUCLG 
fumarate reductase SDH 
fumarate hydratase (fumerase) FH 
malate dehydrogenase MDH 

Photosynthesis Light Reactions  
photosystem 2 PS2 
plastoquinol-plastocyanin reductase Cb6f 
photosystem 1 PS1 
ferrodoxin NADP+ reductase FNR 
H+ transporting two sector ATPase ATPase 
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Table A.1 (cont.) 
Calvin Cycle 

phosphoribulokinase PRK 
Ribulose-biphosphate carboxylase (RuBisCo) RuBisCO 
phosphoglycerate kinase PGK 
glyceraldehyde-3-phosphate dehydrogenase GAPDH 

Photorespiration  
Ribulose-biphosphate carboxylase (RuBisCo) RuBisCO 
phosphoglycolate phosphatase PGP 
2-hydroxy-acid oxidase (glycolate oxidase) GLO 
glycine transaminase (glyoxalate-glutamate aminotransferase) GGT 
glycine decarboxylase (aminomethyltransferase) AMT 
serine hydroxymethyltransferase SHMT 
serine aminotransferase SGAT 
glycerate dehydrogenase (hydroxypyruvate reductase/glycerate reductase) GYDH 
glycerate kinase GLXK 
glutamine synthetase and glutamate synthase GLUL 

Ammonia Assimilation  
glutamate-ammonia ligase (glutamine synthetase)  GLUL 
glutamate synthase (NADH)  GLSN 

Nitrate Assimilation 
nitrate reductase  NRA 
ferrodoxin-nitrite reductase  NIR 

Glyoxylate Cycle 
citrate (Si)-synthase CS 
aconitate hydratase (aconitase) ACON 
isocitrate lyase ICL 
malate synthase MSN 
malate dehydrogenase MDH 

Beta Oxidation  
acyl-CoA dehydrogenase  ACDH 
enoyl-CoA hydratase ECHD 
beta-hydroxyacyl-CoA dehydrogenase  HADH 
acyl-CoA C-acetyltransferase (thiolase) ACAT 

Fatty Acid Synthesis 
acetyl CoA carboxylase ACAC 
[acyl carrier protein] S-malonyltransferase MCAT 
beta-keoacyl-[acyl-carrier protein] synthase 1 FABB 
[acyl carrier protein] reductase FABG 

Starch Synthesis 
glucose-1-phosphate adenylyltransferase GLGC 



 49 

Table A.1 (cont.)  
starch synthase GLGA 
1,4-alpha-glucan branching enzyme GBE 

Triacylglycerol Synthesis 
glycerol-3-phosphate 1-O-acyltransferase GPAT 
1-acylglycerol-3-phosphate O-acyltransferase AGPAT 
phosphatidate phosphatase LPIN 
diacylglycerol O-acyltransferase DGAT 

Gluconeogenesis 
pyruvate carboxylase PC 
malate dehydrogenase MDH 
malate dehydrogenase MDH 
phosphoenolpyruvate carboxykinase PCK 
phosphopyruvate hydratase ENO 
phosphoglycerate mutase GPMA 
phosphoglycerate kinase PGK 
glyceraldehyde-3-phosphate dehydrogenase GAPDH 
Triose phosphate isomerase TPI 
fructose biphosphate aldolase FBA 
fructose 1,6-biphosphatase FBP 
Glucose -6 - Phosphate isomerase  GPI 
glucose-6-phosphatase G6PC 

Starch Degradation 
starch phosphorylase PYGL 
phosphoglucomutase PGM 

Triacylglycerol Degradation  
triacylglycerol lipase GEH 
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Table A.2 Constant stoichiometric parameters used in lumped pathway metabolic model  
Parameter Description Value Units Citations 

𝛿p 

Carbon lost as atmospheric 
CO2 for every c-mole of 

acetyl-CoA converted into 
biomass precursor 

0.266 
c-moles of CO2 

produced per c-mole 
of functional biomass 

(Gommers, 
1988; 

Smolders, 
1994) 

𝛿¢£¤ 

CO2 production from the 
catabolism of acetyl-CoA to 

produce the required reducing 
power for converting nitrate to 

assimilable nitrogen 

0.0 
c-moles of CO2 

produced per c-mole 
of functional biomass 

(Buchanan, 
2015; Guest et 

al., 2013) 

𝛿¢£¥ 

CO2 production from the 
catabolism of acetyl-CoA to 

produce the required reducing 
power for converting nitrate to 

assimilable nitrogen 

0.436 
c-moles of CO2 

produced per c-mole 
of functional biomass 

(Buchanan et 
al., 2015; 
Gomes de 

Oliveira 
Dal’Molin et 
al., 2011) 

𝛼§ 
ATP utilization to convert 
acetyl-CoA to biomass 

precursor  
0.65 

moles ATP per c-
mole of biomass 

precursor 
(Stouthamer, 

1973b) 

𝛼p 
ATP utilization to convert 

biomass precursor to 
functional biomass   

1.5 
moles ATP per c-
mole of functional 

biomass  

(van Aalst-van 
Leeuwen et 
al., 1997a; 

Verduyn et al., 
1991) 

𝛿¨¥ 

P/O ratio; amount of ATP 
produced from NADH through 
the electron transport chain 

and oxidative phosphorylation  

2.0 
moles ATP produced 

per mole NADH 
oxidized 

(Noctor & 
Foyer, 2000) 

𝜖 

ATP utilization to transport 
assimilable phosphorus in the 
form of orthophosphate into 

functional biomass   
0.11*dpo 

moles ATP per mole 
of phosphate 

assimilated into c-
mole of functional 

biomass 

(Smolders et 
al., 1994) 

 
Table A.3 List of metabolites involved in linear equations and the abbreviations used 

Metabolite Abbreviation Units 
Nicotinamide adenine dinucleotide (NADH) rxyz{ moles − (NADH) − hourH- 

Adenosine triphosphate (ATP). ry~$ moles − (ATP) − hourH- 
Glucose-6-phosphate r�b$ moles − (G6P	as	C) − hourH- 

Glyceraldehyde-3-phosphate r�.$ moles − (G3P	as	C) − hourH- 
Acetyl-CoA ry��y moles − (ACoA	as	C) − hourH- 

Biomass precursor r���� moles − (X���	as	C) − hourH- 
Functional biomass r�\�� moles − (XN��	as	C) − hourH- 

Triacylglycerol (Lipid) r~y� moles − (TAG	as	C) − hourH- 
Polyglucose (carbohydrate) r$� moles − (PG	as	C) − hourH- 

Oxygen rn� moles − (O*) − hourH- 
Carbon dioxide r�n� moles − (CO*	as	C) − hourH- 
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Table A.4 Linear equations for photoautotrophic nutrient-replete metabolism 
# Equation Units 
1a 

 rxyz{ = 0 = .`
`-r-. +

--
b r-G − r-` +

*
.r* + r.(−0.1 + 2δC) 

moles − (NADH) − hourH- 

2 
 
 
 

ry~$ = 0 = − -
-�r-. +

-
*r-G + δ$nr-` +

*
.r* −

-
brb

− IαC +
JWXY
Z[\]

M rG + (−α� − (0.1ϵ) +
-
*δD)r. 

moles − (ATP) − hourH- 

3 
 

r�b$ = 0 = r-_ − rb moles − (G6P	as	C) − hourH- 
4 
 

r�.$ = 0 = r- − r* +	rb moles − (G3P	as	C) − hourH- 
5 
 ry��y = 0 = r-. − r-G +

*
.r* − r.(1 + δD + δC) 

moles − (ACoA	as	C) − hourH- 

6 
 

r���� = 0 = 	 r. − rG moles − (X���	as	C) − hourH- 
7 
 

r�\�� = 	 rG moles − (XN��	as	C) − hourH- 

8 
 

r~y� = −r-. moles − (TAG	as	C) − hourH- 
9 
 

r$� = −r-_ moles − (PG	as	C) − hourH- 
10 

 rn� = 	 r- −
-
*r-` moles − (O*) − hourH- 

11 
 r�n� = 	−r- + r-G +

-
.r* + (δD + δC	)r. moles − (CO*	as	C) − hourH- 

12b 
 4r�� =

*�_
`- r~y� + 4r$� + 4.2r�\��  - 

a Assumes FADH* = �
�NADH	and	NADH* = NADH 

b Degree of Reduction balance based on Roels, 1983 and Nielsen, 1995. . In #12, the 
coefficient for rXalg is 5.8 when nitrate is the nitrogen source. 
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Table A.5 Linear equations for photoautotrophic nutrient-deplete metabolism 
# Equation Units 
1a 

 rxyz{ = 0 = −-G-�r-* +
--
b r-G − r-` + r� +

*
.r* + (−0.1

+ 2δC)r. 

moles − (NADH) − hourH- 

2 
 
 
 

ry~$ = 0 = −-br� −
^
-�r-* +

-
*r-G + δ$nr-` +

*
.r*

− IαC +
JWXY
Z[\]

M rG + (−α� − (0.1ϵ) +
-
*δD)r. 

moles − (ATP) − hourH- 

3 
 

r�b$ = 0 = r� + r� moles − (G6P	as	C) − hourH- 
4 
 r�.$ = 0 = r- − r* +

-
*r� moles − (G3P	as	C) − hourH- 

5 
 

ry��y = 0 = −r-* − r-G +
*
.r* − r.(1 + δD + δC) 

moles − (ACoA	as	C) − hourH- 

6 
 

r���� = 0 = 	 r. − rG moles − (X���	as	C) − hourH- 
7 
 

r�\�� = 	 rG moles − (XN��	as	C) − hourH- 
8 
 

r~y� = r-* moles − (TAG	as	C) − hourH- 
9 
 

r$� = r� moles − (PG	as	C) − hourH- 
10 

 r�n� = 	−r- + r-G +
-
.r* +

-
*r� + (δD + δC	)r. moles − (O*) − hourH- 

11 
 rn� = 	 r- −

-
*r-` moles − (CO*) − hourH- 

12b 
 4r�� =

*�_
`- r~y� + 4r$� + 4.2r�\��  - 

a Assumes FADH* = �
�NADH	and	NADH* = NADH 

b Degree of Reduction balance based on Roels, 1983 and Nielsen, 1995. . In #12, the 
coefficient for rXalg is 5.8 when nitrate is the nitrogen source. 
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Table A.6 Linear equations for heterotrophic with acetate nutrient-replete metabolism  
# Equation Units 
1a 

 rxyz{ = 0 = .`
`-r-. +

--
b r-G − r-` +

*
.r* + r� + (−0.1

+ 2δC)r. 

moles − (NADH) − hourH- 

2 
 
 
 

ry~$ = 0 = −-*r-- −
-
-�r-. +

-
*r-G + δ$nr-` +

*
.r*

− IαC +
JWXY
Z[\]

M rG + (−α� − (0.1ϵ) +
-
*δD)r. 

moles − (ATP) − hourH- 

3 
 

r�b$ = 0 = r-_ + r^ − r� moles − (G6P	as	C) − hourH- 
4 
 r�.$ = 0 = −r* +

-
*r� − r^ moles − (G3P	as	C) − hourH- 

5 
 ry��y = 0 = r-- − r-G +

*
.r* − r.(1 + δD + δC) + r-. moles − (ACoA	as	C) − hourH- 

6 
 

r���� = 0 = 	 r. − rG moles − (X���	as	C) − hourH- 
7 
 

r�\�� = 	 rG moles − (XN��	as	C) − hourH- 
8 
 

r~y� = −r-. moles − (TAG	as	C) − hourH- 
9 
 

r$� = −r-_ moles − (PG	as	C) − hourH- 
10 

 rn� = −-*r-` moles − (O*) − hourH- 

11 
 r�n� = r-G +

-
.r* +

-
*r� + (δD + δC	)r. moles − (CO*) − hourH- 

12 
 

ry� = −r-- moles − (AC) − hourH- 
13b 

 4r�� = 4rNP +
*�_
`- r~y� + 4r$� + 4.2r�\��  - 

a Assumes FADH* = �
�NADH	and	NADH* = NADH 

b Degree of Reduction balance based on Roels, 1983 and Nielsen, 1995. . In #12, the 
coefficient for rXalg is 5.8 when nitrate is the nitrogen source. 
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Table A.7 Linear equations for heterotrophic with acetate nutrient-deplete metabolism  
# Equation Units 
1a 

 rxyz{ = 0 = −-G-�r-* +
--
b r-G − r-` +

*
.r* + r� + (−0.1

+ 2δC)r. 

moles − (NADH) − hourH- 

2 
 
 
 

ry~$ = 0 = −-br� −
-
*r-- −

^
-�r-* +

-
*r-G + δ$nr-` +

*
.r*

− IαC +
JWXY
Z[\]

M rG + I−α� − (0.1ϵ) +
-
*δDM r. 

moles − (ATP) − hourH- 

3 
 

r�b$ = 0 = r^ − r� − r� moles − (G6P	as	C) − hourH- 
4 
 r�.$ = 0 = −r* +

-
*r� − r^ moles − (G3P	as	C) − hourH- 

5 
 

ry��y = 0 = r-- − r-* − r-G +
*
.r* − r.(1 + δD + δC) 

moles − (ACoA	as	C) − hourH- 

6 
 

r���� = 0 = 	 r. − rG moles − (X���	as	C) − hourH- 
7 
 

r�\�� = 	 rG moles − (XN��	as	C) − hourH- 
8 
 

r~y� = r-* moles − (TAG	as	C) − hourH- 
9 
 

r$� = r� moles − (PG	as	C) − hourH- 
10 

 rn� = −-*r-` moles − (O*) − hourH- 

11 
 r�n� = r-G +

-
.r* +

-
*r� + (δD + δC	)r. moles − (CO*) − hourH- 

12 
 

ry� = −r-- moles − (AC) − hourH- 
13b  

 4r�� = 4rNP +
*�_
`- r~y� + 4r$� + 4.2r�\��  - 

a Assumes FADH* = �
�NADH	and	NADH* = NADH 

b Degree of Reduction balance based on Roels, 1983 and Nielsen, 1995. . In #12, the 
coefficient for rXalg is 5.8 when nitrate is the nitrogen source. 
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Table A.8 Linear equations for heterotrophic with glucose nutrient-replete metabolism  
# Equation Units 
1a 

 rxyz{ = 0 = .`
`-r-. +

--
b r-G − r-` +

*
.r* + r� + (−0.1

+ 2δC)r. 

moles − (NADH) − hourH- 

2 
 
 
 

ry~$ = 0 = − -
-�r-. +

-
*r-G + δ$nr-` +

*
.r* − IαC +

JWXY
Z[\]

M rG
− -

.r` + (−α� − (0.1ϵ) +
-
*δD)r. 

moles − (ATP) − hourH- 

3 
 

r�b$ = 0 = r-_ + r` + r^ − r� moles − (G6P	as	C) − hourH- 
4 
 r�.$ = 0 = −r* +

-
*r� − r^ moles − (G3P	as	C) − hourH- 

5 
 ry��y = 0 = r-. − r-G +

*
.r* − r.(1 + δD + δC) 

moles − (ACoA	as	C) − hourH- 

6 
 

r���� = 0 = 	 r. − rG moles − (X���	as	C) − hourH- 
7 
 

r�\�� = 	 rG moles − (XN��	as	C) − hourH- 
8 
 

r~y� = −r-. moles − (TAG	as	C) − hourH- 
9 
 

r$� = −r-_ moles − (PG	as	C) − hourH- 
10 

 rn� = −-*r-` moles − (O*) − hourH- 

11 
 r�n� = r-G +

-
.r* +

-
*r� + (δD + δC	)r. moles − (CO*) − hourH- 

12 
 

r��� = −r` moles − (GLC) − hourH- 
13b 

 4r�� = 4r��P +
*�_
`- r~y� + 4r$� + 4.2r�\��  - 

a Assumes FADH* = �
�NADH	and	NADH* = NADH 

b Degree of Reduction balance based on Roels, 1983 and Nielsen, 1995. . In #12, the 
coefficient for rXalg is 5.8 when nitrate is the nitrogen source. 
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Table A.9 Linear equations for heterotrophic with glucose nutrient-deplete metabolism  
# Equation Units 
1a 
 
 

rxyz{ = 0 = −-G-�r-* +
--
b r-G − r-` +

*
.r* + r� + (−0.1

+ 2δC)r. 

moles − (NADH) − hourH- 

2 
 
 
 

ry~$ = 0 = − ^
-�r-* +

-
*r-G + δ$nr-` +

*
.r* −

-
.r` −

-
br�

− IαC +
JWXY
Z[\]

M rG + (−α� − (0.1ϵ) +
-
*δD)r. 

moles − (ATP) − hourH- 

3 
 

r�b$ = 0 = r` + r^ − r� − r� moles − (G6P	as	C) − hourH- 
4 
 r�.$ = 0 = −r* +

-
*r� − r^ moles − (G3P	as	C) − hourH- 

5 
 

ry��y = 0 = −r-* − r-G +
*
.r* − r.(1 + δD + δC) 

moles − (ACoA	as	C) − hourH- 

6 
 

r���� = 0 = 	 r. − rG moles − (X���	as	C) − hourH- 
7 
 

r�\�� = 	 rG moles − (XN��	as	C) − hourH- 
8 
 

r~y� = r-* moles − (TAG	as	C) − hourH- 
9 
 

r$� = r� moles − (PG	as	C) − hourH- 
10 

 rn� = −-*r-` moles − (O*) − hourH- 

11 
 r�n� = r-G +

-
.r* +

-
*r� + (δD + δC	)r. moles − (CO*) − hourH- 

12 
 

r��� = −r` moles − (GLC) − hourH- 
13b 

 4r�� = 4r��P +
*�_
`- r~y� + 4r$� + 4.2r�\��  - 

a Assumes FADH* = �
�NADH	and	NADH* = NADH 

b Degree of Reduction balance based on Roels, 1983 and Nielsen, 1995. . In #12, the 
coefficient for rXalg is 5.8 when nitrate is the nitrogen source. 
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Table A.10 Linear equations for heterotrophic with stored biopolymers nutrient-replete 
metabolism  
# Equation Units 
1a 
 
 

rxyz{ = 0 = .`
`-r-. +

--
b r-G − r-` +

*
.r* + r� + (−0.1

+ 2δC)r. 

moles − (NADH) − hourH- 

2 
 
 
 

ry~$ = 0 = − -
-�r-. +

-
*r-G + δ$nr-` +

*
.r* − IαC +

JWXY
Z[\]

M rG
+ (−α� − (0.1ϵ) +

-
*δD)r. 

moles − (ATP) − hourH- 

3 
 

r�b$ = 0 = r-_ + r^ − r� moles − (G6P	as	C) − hourH- 
4 
 r�.$ = 0 = -

*r� − r* − r^ moles − (G3P	as	C) − hourH- 

5 
 ry��y = 0 = −r-G + r-. +

*
.r* − r.(1 + δD + δC) 

moles − (ACoA	as	C) − hourH- 

6 
 

r���� = 0 = 	 r. − rG moles − (X���	as	C) − hourH- 
7 
 

r�\�� = 	 rG moles − (XN��	as	C) − hourH- 
8 
 

r~y� = −r-. moles − (TAG	as	C) − hourH- 
9 
 

r$� = −r-_ moles − (PG	as	C) − hourH- 
10 

 rn� = −-*r-` moles − (O*) − hourH- 

11 
 r�n� = r-G +

-
.r* +

-
*r� + (δD + δC	)r. moles − (CO*) − hourH- 

12b 
 4r�� =

*�_
`- r~y� + 4r$� + 4.2r�\��  - 

a Assumes FADH* = �
�NADH	and	NADH* = NADH 

b Degree of Reduction balance based on Roels, 1983 and Nielsen, 1995. . In #12, the 
coefficient for rXalg is 5.8 when nitrate is the nitrogen source. 
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Table A.11 Linear equation solutions for photoautotrophic metabolism  
Description [units] Nutrient-Replete Metabolism Nutrient-Deplete Metabolism 

Specific Rate of 
Photosynthesis [moles-
(CO2 fixed to 
G3P)·moles-(Xalg as C)-
1·hour-1] 

 

q${n~x� = 	
µx�

Y�\��
x� +

q$�x�

Y$�x�
+
q~y�x�

Y~y�x� +
my~$
x�

Yy~$x�  q${n~xz = 	
µxz

Y�\��
xz +

q$�xz

Y$�xz
+
q~y�xz

Y~y�xz +
my~$
xz

Yy~$xz  

Specific Rate of CO2 
Production [moles-
(CO2)·moles-(Xalg as C)-1 

·hour-1] 
 

q�n�
x� = 	−q$�x� − q~y�x� − 𝜇x� q�n�

xz = 	−q$�xz − q~y�xz − 𝜇xz 

Specific Rate of O2 
Production [moles-(O2) 
·moles-(Xalg as C)-
1·hour-1] 

qn�
x{ = q$�x{ +

-G`
-_*
q~y�x{ + *-

*_
µx{ 

 

qn�
xn = q$�xn +

-G`
-_*
q~y�xn + *�

*_
µxn 

qn�
xz = q$�xz +

-G`
-_*
q~y�xz + *-

*_
µxz 

Note on superscripts: NH; ammonia as nitrogen source, NO; nitrate as nitrogen source, NR; nitrogen 
source present, could be ammonia or nitrate, ND; no nitrogen source present 
qphot; specific rate of CO2 fixation to G3P, moles-(G3P as C)·mole-(Xalg as C)-1·hr-1 
qCO2; specific rate of CO2 production, moles-(CO2)·mole-(Xalg as C)-1·hr-1 
qO2; specific rate of O2 production, moles-(O2)·mole-(Xalg as C)-1·hr-1 
Additional note: Specific rate equations described using parameter q (specific rate of production), Y 
(yield coefficient), and µ (functional biomass growth rate). Constant parameters descriptions and values 
can be found in table A.2. 

 
 
Table A.12 Linear equation solutions for heterotrophic metabolism with acetate  

Description [units] Nutrient-Replete Metabolism Nutrient-Deplete Metabolism 
Specific Rate of Acetate 
Fixation [moles-
(Acetate fixed to Acetyl-
CoA)·moles-(Xalg as C)-
1·hour-1] 

 

qyPx� = 	
µx�

Y�\��
x� +

q$�x�

Y$�x�
+
q~y�x�

Y~y�x� +
my~$
x�

Yy~$x�  qyPxz = 	
µxz

Y�\��
xz +

q$�xz

Y$�xz
+
q~y�xz

Y~y�xz +
my~$
xz

Yy~$xz  

Specific Rate of CO2 
Production [moles-
(CO2)·moles-(Xalg as C)-1 

·hour-1] 
 

q�n�
x� = 	−qyPx� − q$�x� − q~y�x� − µx� q�n�

xz = 	−qyPxz − q$�xz − q~y�xz − µxz 

Specific Rate of O2 
Production [moles-(O2) 
·moles-(Xalg as C)-
1·hour-1] 

qn�
x{ = qyPx{ + q$�x{ +

-G`
-_*
q~y�x{ + *-

*_
µx{ 

 

qn�
xn = qyPxn + q$�xn +

-G`
-_*
q~y�xn + *�

*_
µxn 

qn�
xz = qyPxz + q$�xz +

-G`
-_*
q~y�xz + *-

*_
µxz 

Note on superscripts: NH; ammonia as nitrogen source, NO; nitrate as nitrogen source, NR; nitrogen 
source present, could be ammonia or nitrate, ND; no nitrogen source present 
qAc; specific rate of acetate fixation to acetyl-CoA, moles-(acetyl-CoA as C)·mole-(Xalg as C)-1·hr-1 
qCO2; specific rate of CO2 production, moles-(CO2)·mole-(Xalg as C)-1·hr-1 
qO2; specific rate of O2 production, moles-(O2)·mole-(Xalg as C)-1·hr-1 
Additional note: Specific rate equations described using parameter q (specific rate of production), Y 
(yield coefficient), and µ (functional biomass growth rate). Constant parameters descriptions and values 
can be found in table A.2. 
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Table A.13 Linear equation solutions for heterotrophic metabolism with glucose  

Description [units] Nutrient-Replete Metabolism Nutrient-Deplete Metabolism 
Specific Rate of 
Glucose Fixation 
[moles-(Glucose fixed 
to G6P)·moles-(Xalg as 
C)-1·hour-1] 

 

q���x� = 	
µx�

Y�\��
x� +

q$�x�

Y$�x�
+
q~y�x�

Y~y�x� +
my~$
x�

Yy~$x�  q���xz = 	
µxz

Y�\��
xz +

q$�xz

Y$�xz
+
q~y�xz

Y~y�xz +
my~$
xz

Yy~$xz  

Specific Rate of CO2 
Production [moles-
(CO2)·moles-(Xalg as C)-1 

·hour-1] 
 

q�n�
x� = 	−q���x� − q$�x� − q~y�x� − µx� q�n�

xz = 	−q���xz − q$�xz − q~y�xz − µxz 

Specific Rate of O2 
Production [moles-(O2) 
·moles-(Xalg as C)-
1·hour-1] 

qn�
x{ = q���x{ + q$�x{ +

-G`
-_*
q~y�x{ + *-

*_
µx{ 

 

qn�
xn = q���xn + q$�xn +

-G`
-_*
q~y�xn + *-

*_
µxn 

 

qn�
xz = q���xz + q$�xz +

-G`
-_*
q~y�xz + *-

*_
µxz 

 

Note on superscripts: NH; ammonia as nitrogen source, NO; nitrate as nitrogen source, NR; nitrogen 
source present, could be ammonia or nitrate, ND; no nitrogen source present 
qGLC; specific rate of glucose fixation to G6P, moles-(G6P as C)·mole-(Xalg as C)-1·hr-1 
qCO2; specific rate of CO2 production, moles-(CO2)·mole-(Xalg as C)-1·hr-1 
qO2; specific rate of O2 production, moles-(O2)·mole-(Xalg as C)-1·hr-1 
Additional note: Specific rate equations described using parameter q (specific rate of production), Y 
(yield coefficient), and µ (functional biomass growth rate). Constant parameters descriptions and values 
can be found in table A.2. 
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Table A.14 Stoichiometric yields derived from linear equation solutions for photoautotrophic 
metabolism  

Description 
[units] 

Nutrient-Replete Metabolism Nutrient-Deplete Metabolism 

yield of 
polyglucose on 
CO2 fixed to G3P 
[(C-moles PG)·(C-
mole CO2 fixed to 
G3P)-1] 
 

Yx�
$�
= 	

18 + 34δ$n
15 + 	34δ$n

 Yxz
$�
= 	
18 + 34𝛿¨¥
12 + 35δ$n

 

yield of lipid on 
CO2 fixed to G3P 
[(C-moles LI)·(C-
mole CO2 fixed to 
G3P)-1] 
 

Yx�
��
=
306 + 578δ$n
135 + 771𝛿¨¥

 Yxz
��
=
306 + 578δ$n
297 + 813𝛿¨¥

 

yield of biomass 
on CO2 fixed to 
G3P [(C-moles 
biomass)·(C-mole 
CO2 fixed to G3P)-
1]a 
 

𝑌¬®¯_£¤

=
170δ$n + 90

90α� + 90αC + 90(0.1ϵ) + 174δ$n + 165𝛿¢£¤δ$n + 45δC − 15δ$nδC + 45
 

	
𝑌¬®¯_£¥

=
170δ$n + 90

90α� + 90αC + 90(0.1ϵ) + 174δ$n + 165𝛿¢£¥δ$n + 45δC − 15δ$nδC + 45
 

 
yield of ATP on 
CO2 fixed to G3P 
[(moles of 
ATP)·(C-mole CO2 
fixed to G3P)-1] 

Y x�
y~$

=
9 + 17δ$n

9  Y xz
y~$

=
9 + 17δ$n

9  

a Yield of biomass can only happen under nutrient replete conditions  
Note: Constant parameters descriptions and values can be found in table A.2 
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Table A.15 Stoichiometric yields derived from linear equation solutions for heterotrophic 
metabolism with acetate  
Description [units] Nutrient-Replete Metabolism Nutrient-Deplete Metabolism 
yield of polyglucose 
on acetate fixed to 
acetyl-CoA [(C-moles 
PG)·(C-mole acetate 
fixed to acetyl-CoA)-1] 
 

Yx�
$�
= 	
4δ$n − 3
	4δ$n

 Yxz
$�
= 	

12δ$n − 9
	12δ$n + 1

 

yield of lipid on 
acetate fixed to 
acetyl-CoA [(C-moles 
LI)·(C-mole acetate 
fixed to acetyl-CoA)-1] 
 

Yx�
��
=
204δ$n − 153
290δ$n − 252

 Yxz
��
=
204δ$n − 153
290δ$n − 72

 

yield of biomass on 
acetate fixed to 
acetyl-CoA [(C-moles 
biomass)·(C-mole 
acetate fixed to 
acetyl-CoA)-1]a 
 

	

𝑌¬®¯_£¤ = 	
2040𝛿¨¥ − 	1530

1020(𝛼§ + 𝛼p + (0.1𝜖) − 𝛿p) + 16830𝛿¢£¤ + 2142𝛿¨¥ − 1020
 

 

𝑌¬®¯_£¥ = 	
2040𝛿¨¥ − 	1530

1020(𝛼§ + 𝛼p + (0.1𝜖) − 𝛿p) + 16830𝛿¢£¥ + 2958𝛿¨¥ − 8364
 

 
 

yield of ATP on 
acetate fixed to 
acetyl-CoA [(moles of 
ATP)·(C-mole acetate 
fixed to acetyl-CoA)-1] 

Y x�
y~$

=
4δ$n − 3

2  Y xz
y~$

=
4δ$n − 3

2  

a Yield of biomass can only happen under nutrient replete conditions  
Note: Constant parameters descriptions and values can be found in table A.2 
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Table A.16 Stoichiometric yields derived from linear equation solutions for heterotrophic 
metabolism with glucose  

Description [units] Nutrient-Replete Metabolism Nutrient-Deplete Metabolism 
yield of polyglucose on 
glucose fixed to G6P 
[(C-moles PG)·(C-mole 
glucose fixed to G6))-1] 
 

Yx�
$�
= 	
6 − 𝛿¨¥

6  Yxz
$�
= 	
12δ$n − 2
12δ$n + 1

 

yield of lipid on glucose 
fixed to G6P [(C-moles 
LI)·(C-mole glucose 
fixed to G6P)-1] 
 

Yx�
��
=
102δ$n − 17
145δ$n − 126

 Yxz
��
=
102δ$n − 17
145δ$n − 36

 

yield of biomass on 
glucose fixed to G6P 
[(C-moles biomass)·(C-
mole glucose fixed to 
G6P)-1]a 
 

Y�\��_°± =
1020δ$n − 170

510(αJ + αC + (0.1ϵ) − δC) + 8415𝛿¢£¤ + 1071δ$n − 510
 

 

Y�\��_°² =
1020δ$n − 170

510(αJ + αC + (0.1ϵ) − δC) + 8415𝛿¢£¥ + 1479δ$n − 4182
 

 
yield of ATP on glucose 
fixed to G6P [(moles of 
ATP)·(C-mole glucose 
fixed to G6P)-1] 

Y x�
y~$

=
6δ$n − 1

3  Y xz
y~$

=
6δ$n − 1

3  

a Yield of biomass can only happen under nutrient replete conditions  
Note: Constant parameters descriptions and values can be found in table A.2 

 
 
 

 

 
 

 

  

 

 

 


