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Abstract 
 

With the recent advances in material processing technologies and the introduction of the material 

genome initiative, material processing has gained an increased level of attention in the research 

community. Primary challenges in most material processing technologies and specifically in composite 

materials are the uncertainties concerning the material’s performance under loading whether it be 

static, dynamic or cyclic. That is due to the variabilities in these technologies that may lead to the 

formation of defects within the material parts at critical location during processing. This dissertation 

presents a deterministic defect modeling framework based on a system of variationally consistent 

formulations that allow for the modeling of the material processing stage and incorporate multi-physics 

coupling for multi-constituent materials. A stabilized and novel discontinuity capturing formulation is 

developed to model multi-phase flow of the materials and their defect while sharply capturing the 

jumps in material properties, material compressibility and kinetic reaction across the multi-phase 

interfaces. 

 

The method is based on employing structured non-moving meshes to solve the Navier-Stokes 

equations employing a finite element method (FEM) stabilized via the Variational Multiscale Method 

(VMS). Within VMS framework a discontinuity capturing method is derived that allows for sharp 

discontinuity capturing of the physical discontinuities of across phases within a single numerical 

element allowing for highly accurate and discrete representation of the interfacial physical phenomena. 

In addition, surface tension is incorporated into the formulation to discretely model jumps in the 

pressure field. The multi-phase interface is evolved employing a stabilized level-set method allowing 

for intricate motion of the two phases and the discontinuities within the Eulerian mesh. The formulation 

is then expanded to incorporate discontinuities in the governing system of equations allowing for 

modeling adjacent compressible-incompressible fluids within a unified formulation. Coupled with the 
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thermal evolution within the constituents of the material and accounting for phase change and mass 

leading to mass transfer across the interface the materials, kinetic evolution of the material viscosities 

is modeled at the material points accounting for variability in the flow behavior as a function of kinetic 

curing. Finally, a previously developed isogeometric FEM method is expanded to model quantum 

defect evolution of strained electronics and the effect of straining on the electronic properties of these 

materials. 

 

Representative numerical tests involving complex multi-phase flows of physical instabilities, 

hydrodynamic collapse of bubbles and convective mass transfer along with electronic band-gap 

structures with strain effects are presented as validations and applications for the framework’s 

robustness. Finally, the chemo-thermo-mechanical coupling and real-life application is presented via 

a fully coupled problem involving processing of a composite bracket during the early curing stages. 
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CHAPTER 1 

INTRODUCTION 
 

 

 

 

This dissertation is aimed to develop a stabilized finite element method capable of 

modeling defects’ transport, growth, shrinkage, coalescence and splitting during a material’s 

processing stage. The defects are modeled as voids or bubbles in a two-phase flow containing 

liquid and gaseous phases separated by an interface. The flow is modeled using Stokes flow 

equations for cases of viscous flow and incompressible Navier-Stokes equations for less viscous 

flows, whilst the interface is evolved through a Level-Set advection equation. In the complex 

process of defect evolution, and especially under laminar flow conditions, the dominant physical 

phenomena that govern the stability and accuracy of the simulations are the interfacial physical 

processes. Under immiscible fluid flow conditions where the defect void is allowed only to migrate 

and change shape, the main interfacial conditions are the a) discontinuous density, b) discontinuous 

viscosity and c) surface tension. These material parameter discontinuities lead to discontinuities in 

the velocity gradient of the momentum equations and the surface tension results in discontinuities 

in the pressure field as well. To model these discontinuities without resorting to any averaging 

scheme, we develop a unique technique using the Variational Multiscale Method to split the 

velocity into coarse and fine scales and then enriching the fine-scale shape functions with weakly 

discontinuous shape functions. This enrichment idea is inspired by the generalized finite element 



2 
 

method but differs in the sense that the enrichment is local to the element ad does not increase the 

size of the linear system. 

Additionally, the enrichment function is easily formed using the underlying implicit 

interface field. This also allows for an automated enrichment that is only active in elements 

intersected by the interface and therefore adapts to the moving interface automatically without 

increasing the size of the global problem and slightly modifies the size of the local fine-scale 

problems of intersected element. The Level-Set method is used to track the interface and avoid the 

use of a Lagrangian mesh which requires high computational cost and is limited to simple 

noninvertible defamation of the elements. While the Level-Set interface is capable of modeling 

the interface with higher accuracy, the surface tension term requires the calculation of the curvature 

of the interface which requires higher-order derivatives (second order for CSF implementation and 

third order for our discontinuous formulation) of the Level-Set function and thus the use of higher 

order elements. Thus, to bypass this difficulty and continue to use low-order elements we adopt a 

curvature augmented Leve-Set method with a constrained formulation to ensure the satisfaction of 

the Eikonal equation as a property of the implicit interface function. This allows us to implement 

a sharply discontinuous surface tension term without resorting to a continuum surface forcing 

technique which misrepresents the shape of the void and the magnitude of the surface tension when 

solved by the momentum equations. 

In the case where mixing or transport across the interface of the void is allowed, and while 

still assuming an incompressible flow condition, mass transfer of an underlying soluble 

contaminant material is modeled using a concentration advection diffusion equation. However, 

since the concentration of this contaminant is varying across the domains and exist in liquid phase 

within the liquid domain and in gaseous phase within the vapor domain an interfacial 
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condensation/evaporation reaction term is needed to model transfer of contaminant across the 

phases. This term is dependent on an activation concentration level, the vapor pressure inside the 

void and a coefficient of vaporization intrinsic to the two fluids. Finally, additional coupling with 

thermal evolution modeling interfacial phase-change is also examined. This complete coupled 

model is aimed to be a generic framework for such thermos-chemo-mechanical multi-flow 

problems when complete coupling is achieved across the different layers of physical phenomena 

on the same physical and numerical domains. 

Chapter 2 presents a new stabilized method that is endowed with variationally derived 

Discontinuity Capturing (DC) features to model steep advection fronts and discontinuities that 

arise in multi-phase flows as well as in mixing flows of immiscible incompressible fluids. Steep 

fronts and discontinuities also arise in hypersonic compressible flows. The new method finds roots 

in the Variational Multiscale (VMS) framework that yields a coupled system of coarse and fine-

scale variational problems. Augmenting the space of functions for the fine-scale fields with weak 

and/or strong discontinuities results in fine-scale models that naturally accommodate jumps in the 

fine fields. Variationally embedding the discontinuity enriched fine-scale models in the coarse-

scale formulation leads to the Variational Multiscale Discontinuity Capturing (VMDC) method 

where stabilization tensors are naturally endowed with discontinuity capturing structure. In the 

regions with sharp gradients, these variationally projected fine-scale models augment the stability 

of the coarse-scale formulation to accurately capture sharply varying coarse solutions. Since the 

proposed method relies on local enrichment, it does not require either the complete or the dynamic 

enrichment algorithms that are invariably employed in methods that use global enrichment ideas. 

The scalar advection equation serves as a model problem to investigate the variational structure of 

the DC terms. The VMDC method is then applied to the Navier-Stokes equations and tested on 
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problems involving two-phase flows with and without surface tension. These test problems 

highlight that fine-scale models not only stabilize the weak form, variationally derived fine models 

that are endowed with sharp discontinuities also augment the coarse scale solutions with features 

that are otherwise not adequately resolved by variational formulations that act only at the coarse-

scale levels.   

 
In chapter 3 a unified method is presented to model the flow of adjacent compressible-

incompressible multi-phase fluids with sharp jumps in the compressibility coefficients across the 

phase interface. The unified formulation incorporates state equations for each phase that allows 

for density variation as a function of pressure and temperature in time and space. The dependence 

is controlled via the isothermal compressibility coefficient that is allowed to vary sharply across 

the phase interface leading to a discontinuity in the underlying continuity equation. Employing the 

VMDC method to capture the discontinuities in the material properties and the compressibility 

coefficients adopted from the flow is modeled using a fixed Eularian mesh augmented with the 

level-set equation to capture the interface evolution. This method allows for flexibility in modeling 

gas bubble growth, shrinkage and collapse due to the nature of the gas being compressible. In 

addition, the method allows for modeling of transport of the deforming bubbles and is shown to 

accommodate merging and separation of bubbles across periodic boundary conditions which 

makes it possible to run long term channel flow simulations. The method is tested for cases where 

surface tension is active and plays a role in the shape evolution of the gas phase across the domain. 

These include problems in 2D and 3D, hence presenting the scalability of the method to higher 

dimensions. 
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Chapter 4 presents a variationally derived stabilized method that is endowed with 

Discontinuity Capturing (DC) features to model elliptic equations embedded with discontinuities 

in its coefficients and jumps in its solution field. Emanating from the Variational Multiscale (VMS) 

framework where the elliptic equation is decomposed into two sub-problems that variationally 

incorporates these discontinuities via a Lagrange multiplier formulation to enforce the interfacial 

discontinuity conditions. This formulation allows for a parameter free Nitsche like formulation to 

enforce the conditions without restoring to conforming meshes to the interface. Employing the 

fine-scale enriched shape functions to capture these discontinuities sharply, the previously 

developed Variational Multiscale Discontinuity Capturing (VMDC) is extended to elliptic 

equations. In addition, a variational surface tension formulation is embedded into the formulation 

allowing for the modeling of Marangoni effects at the interface with a modification the enrichment 

shape functions to allow for normal and tangential discontinuity of the pressure field across the 

interface. Additionally, the stabilized level-set method is employed to model interface evolution 

coupled with the advection diffusion equation to model the thermally induced phase change as 

well. The method is validated via a number of benchmark problems and numerical convergence 

studies are presented. Thereafter, the method is tested for industrial strength problems involving 

solute mass transfer of acid solute across the interface between two fluids. 

 
Chapter 5 presents B-splines and NURBS based finite element method for self-consistent 

solution of the Schrödinger wave equation (SWE). The new equilibrium position of the atoms is 

determined as a function of evolving stretching of the underlying primitive lattice vectors and it 

gets reflected via the evolving effective potential that is employed in the SWE. The nonlinear SWE 

is solved in a self-consistent fashion wherein a Poisson problem that models the Hartree and local 

potentials is solved as a function of the electron charge density. The complex-valued generalized 
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eigenvalue problem arising from SWE yields evolving band gaps that result in changing electronic 

properties of the semiconductor materials. The method is applied to Indium, Silicon, and 

Germanium that are commonly used semiconductor materials. It is then applied to the material 

system comprised of Silicon layer on Silicon-Germanium buffer to show the range of application 

of the method. 

 Process modeling of polymeric materials involves reactive chemistry of multiple 

constituents that are invariably exothermic that gives rise to thermal gradients. The mechanical 

properties of the resulting material are a function of the spatial temporal distribution of the thermal 

field because of the dependence of cure on local temperature distribution. Degree of cure gets 

manifested via mechanical and thermal coefficients that are then embedded in the balance laws to 

carry out performance analysis of the produced part. Chapter 6 presents a summary of the models 

and methods covered in this work along with an introduction of a variationally consistent method, 

embedded with a phenomenological model for thermo-chemical curing of polymeric composites. 

Arrhenius model is employed to make curing a function of time and temperature. This model is 

embedded in the Stokes flow model for the spatial evolution of the bubbles in the viscous resin 

with evolving mechanical properties.



 
 
a This Chapter has been adapted from “Masud, A., & Al-Naseem, A. A. (2018). Variationally derived discontinuity 
capturing methods: Fine scale models with embedded weak and strong discontinuities. Computer Methods in Applied 
Mechanics and Engineering, In Press.” The copyright owner has provided written permission to reprint the work.   
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CHAPTER 2 

VARIATIONALLY DERIVED DISCONTINUITY CAPTURING 
METHODS: FINE SCALE MODELS WITH EMBEDDED WEAK 
AND STRONG DISCONTINUITIES a 
 

 

 

 

2.1 Motivation 
 

Weak and strong discontinuities in the flow physics have been of prime significance in 

highly advective compressible flows [19, 41, 10, 35]. These issues also arise in the flow of 

immiscible fluids where sharp changes in the material properties across the fluid interfaces induce 

rapid changes in flow characteristics [9, 11, 13, 37, 1, 32, 22]. In multiphase flows involving 

gaseous bubbles in the surrounding liquid, surface tension effects induce sharp changes in the 

pressure field [4, 34, 22, 23]. In all these problem classes, steep gradients and discontinuities pose 

considerable challenge to the numerical methods to capture the fields without over-shoots and 

under-shoots across the interfaces of discontinuity.  

The issue of steep gradients has largely been addressed in the domain of high-speed 

compressible flows and various Discontinuity Capturing (DC) techniques have been proposed [19, 

41, 10, 37] that augment the stabilization facilitated by Streamline Upwind Petrov-Galerkin 

(SUPG) [19, 41, 10] and the Galerkin Least-Squares (GLS) [18, 26] methods to accurately capture 

the discontinuity. The DC term in SUPG and GLS methods is comprised of the residual of the 
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Euler-Lagrange equations of the governing system, together with a DC operator that accounts for 

the location and orientation of the steep front [19, 41, 10]. On the other hand, in the context of 

incompressible multiphase flows several techniques have been proposed in the literature [14, 9, 

11, 13, 37, 1, 32, 22, 23] to model flow features that arise due to sharp changes in the viscosity 

and/or density of the fluids across the immiscible interfaces. Commonly used methods are based 

on averaging techniques that smooth out the discontinuities and enforce a monotone transition of 

the material properties over a narrow band across the interface [4, 23]. These methods require a 

regularized Heaviside function that transitions from 0 to 1 across a strip of finite thickness at the 

interface. Although these approaches bypass the issues arising because of sharp discontinuity, they 

introduce parameter dependency that is based on the choice of the regularization function and the 

interface thickness over which this function is defined. Determining a regularized form of the 

Heaviside function and an appropriate thickness parameter that invariably depends on the element 

size has proved to be highly problem dependent [23]. 

From the perspective of immiscible fluids with different viscosities, it is important to 

examine the effects of discontinuity in the material properties on the velocity and pressure fields. 

In the momentum equation the viscous stress is represented by the gradient of the velocity field 

multiplied by the viscosity of the fluid. Any strong discontinuity in viscosity results in a weak 

discontinuity in the velocity field and a strong discontinuity in the velocity gradient. To make the 

discussion precise, by strong discontinuity we mean a steep jump in the field over an infinitesimal 

thickness, and a weak discontinuity corresponds to a discontinuity in the slope of the field at a 

given point. Thus, to accurately model the velocity field across the interface, weakly discontinuous 

interpolation functions are required.  
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A literature review reveals that attempts to modify the interpolation functions within the 

context of finite element methods are mainly divided in two groups: the XFEM/GFEM methods, 

and the Immersed Finite Element Methods (IFEM). In XFEM/GFEM the discontinuity in the 

solution and its gradients is accommodated via expansion of the underlying solution field through 

additional degrees of freedom [9, 39]. These newly added degrees of freedom are interpolated 

using modified (i.e., enriched) Lagrange shape functions that possess the same discontinuities as 

the solution and/or its gradients. The use of such interpolation functions directly in the coarse scale 

field requires modifying the functions in the neighboring elements as well that may not be 

intersected by the discontinuity. Consequently, a direct use of discontinuity enriched functions in 

the global problem results in considerable increase in the computational cost of the numerical 

method. Other methods have been proposed to bypass the need for additional degrees of freedom 

within the XFEM/GFEM methods and they are based on static condensation of the added enriched 

degrees of freedom [11, 1]. These methods still require stabilization techniques developed for the 

mixed-field FEM formulations. On the other hand the Immersed Finite Element Methods [40] are 

different in that the interpolation functions of the global degrees of freedom are directly modified 

while no addition degrees of freedom are added to any nodes. This eliminates the need for degree 

of freedom addition and subtraction algorithms as are used in XFEM, however as discussed in [25] 

IFEM still lacks optimal convergence due to potential discontinuity in the new interpolation 

functions across adjacent element edges. Another class of methods are based on penalty function 

formulation [25], and via Petrov-Galerkin method [44] they enforce the continuity of the fields to 

improve the convergence properties. However, these techniques rely on user defined parameters 

that are highly problem dependent. Other techniques that are based on discontinuous enrichment 
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method [12], weak Galerkin method [33, 43] and cut finite elements [6] have also been proposed 

for problems with embedded interfaces. 

This chapter presents a new method for modeling weak and strong discontinuities in the 

solution and its gradients. The derivation is based on the Variational Multiscale (VMS) method 

that assumes a-priori direct sum decomposition of the space of functions into coarse and fine scale 

space. This results in an overlapping additive decomposition of the solution into coarse and fine 

scales, thereby yielding a system of coupled sub-problems. The fine-scale variational problem is 

employed to derive fine-scale models that are endowed with DC feature and they augment the 

global solution when embedded in the coarse-scale variational equation. Specifically, in the 

present VMDC method, the fine scales are interpolated by bubble functions that are modified via 

composition with discontinuity endowed interpolation functions. Accordingly, the product 

function is local to the element, but it is now also enriched with 0C  discontinuity that helps 

accurately represent the weak discontinuity at the embedded interface. In that sense the fine scales 

serve as an enrichment degree of freedom, an idea similar to the XFEM and GFEM methods. 

Nevertheless, due to the structure of the coarse-scale sub-problem we are able to variationally 

embed the fine-scale fields without the need to solve for the fine degrees of freedom explicitly at 

the global level. 

An outline of this chapter is as follows: Section 2.2 presents the single field advection-

diffusion equation and uses it to introduce the fine-scale enrichment method within the VMS 

framework. The structure of the DC term and the discontinuity embedded stabilization tensor τ  

is analyzed and compared with the widely used definition of the DC operator proposed in Hughes 

et al. [19]. Numerical integration with discontinuous functions over elements requires adaptive 

quadrature rules that are described in Section 2.2.4. Section 2.3 extends this formulation to the 
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Navier-Stokes equations. Surface tension effects are embedded in the governing system of 

equations in Section 2.3.1 to model multiphase fluids. The fine-scale models endowed with DC 

features are derived in Section 2.3.2. Section 2.4 briefly discusses the level-set method along with 

a reinitialization technique. Section 2.5 presents several numerical test cases to establish the 

validity of the proposed VMDC method and show its range of application. 

2.2  A Model Scalar Field Problem: The Advection-Diffusion Equation 

This section employs the advection-diffusion equation as a model problem to develop a 

new class of stabilized methods that are endowed with discontinuity capturing features. We present 

a novel treatment of the fine-scale variational problem that results in stabilization terms that 

naturally inherit a DC structure for modeling discontinuity. 

Let sdnΩ⊂   be an open bounded region with boundary Γ . The advection diffusion equation is 

      in c c fκ⋅∇ − ∆ = Ωv   (2.1) 

                 ˆ      on c c= Γ   (2.2) 

where c  is the unknown field, κ  is piecewise continuous diffusivity. v  is the given flow velocity 

and is assumed solenoidal. The prescribed source function is given by ( )f x , and ĉ represents 

potentially discontinuous boundary conditions on Γ . 

2.2.1  The VMS formulation 

The standard weak form of the advection-diffusion equation is 

  ( , ) ( , ) ( , )q c q c q fκ⋅∇ + ∇ ∇ =v  (2.3) 
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where ( , ) ( ) d
Ω

⋅ ⋅ = ⋅ Ω∫  is the 2 ( )L Ω inner product and q is the weighting function for the scalar 

field c . Employing VMS framework [15, 16, 28] we assume a multiscale decomposition of the 

trial solution and weighting function 

 ( ) ( ) ( )c c c′= +x x x   (2.4) 

 ( ) ( ) ( )q q q′= +x x x   (2.5) 

with appropriate functional spaces for the two scales ′= ⊕   . The coarse scale space is defined 

as { }1
0: ( )c c H= ∈ Ω and the fine scale space is defined as { }: 0  on ec c′ ′ ′= = Γ , with the 

restriction that the two spaces are linearly independent. For the time-independent model problem 

considered here the weighting functions corresponding to each of the scales belong to the same 

functional space as that for the corresponding trial solution. 

2.2.2  The variational multiscale problem 

Following along [28], substituting (2.4) and (2.5) in (2.3) and employing linearity of the 

weighting function slot, we obtain coarse-scale and fine-scale sub-problems. 

Coarse-scale sub-problem: 

  ( , ( )) ( , ( )) ( , )q c c q c c q fκ′ ′⋅∇ + + ∇ ∇ + =v  (2.6) 

Fine-scale sub-problem: 

  ( , ( )) ( , ( )) ( , )q c c q c c q fκ′ ′ ′ ′ ′⋅∇ + + ∇ ∇ + =v   (2.7) 

At this stage the fine-scale sub-problem is solved analytically in terms of the residual of the Euler 

Lagrange equation for the coarse scales. This yields a fine-scale model which is then substituted 

in (2.6) to arrive at the stabilized form as presented below. 
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2.2.2.1 The fine-scale sub-problem 

We write the fine-scale sub-problem in a residual form 

  ( , ) ( , ) ( , )q c q c q rκ′ ′ ′ ′ ′⋅∇ + ∇ ∇ = −v   (2.8) 

where the coarse-scale residual is 

  r c c fκ= ⋅∇ − ∆ −v   (2.9) 

It is important to note that the fine scale problem is driven by the residual of the Euler-Lagrange 

equation of the coarse scale problem, and this makes the method variationally consistent. 

Consequently the fine scale problem gets activated when the coarse residual is not zero. Another 

viewpoint is that when the residual is non-zero the fine-scale model represents the error or the 

missing physics. 

2.2.2.1.1 Embedding discontinuity in the fine scale field 

To solve the fine-scale sub-problem we make certain simplifying assumptions. One 

assumption is to consider that fine scales are non-zero within the elements but they vanish at the 

element boundaries eΓ . This localizes the fine scales to element interiors such that 

 0   on ec q′ ′= = Γ   (2.10) 

To achieve this condition, we expand fine scale fields in terms of bubble functions ( )eb ξ  that are 

non-zero on element interior and zero at the element boundaries. We approach the problem of 

discontinuity by modifying the fine-scale shape functions via embedding the discontinuity 

capturing feature into the fine scales. This enrichment of the fine-scale shape functions is only 

carried out within elements that develop discontinuity in the solution. Consequently, the method 
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avoids any modification to the global system of equations, i.e., the coarse-scale formulation, since 

the shape function modification affects only the local fine-scale sub-problem. In this section we 

develop the bubble function enrichment method for the scalar field problem and in Section 2.5.1 

it is tested on a problem with propagating discontinuity. 

We expand the fine-scale field and the corresponding weighting function as follows 

 
ec bψβ′ =   (2.11) 

 ˆeq bψγ′ =   (2.12) 

where ebψ  is the enriched bubble function, β  is the trial solution coefficients and γ  is the 

weighting function coefficient. As an example, the bubble function employed here is a triaxial 

function that is defined in N  dimensions as 

 { }
 

2

1  
 ( ) (1 )       1,1

N
e

i i i
i

b ξ ξ ξ
=

= − ∈ −∏   (2.13) 

Bubble function (2.13) is multiplied by an enrichment function ψ  which augments the quadratic 

bubble function with a weak discontinuity across the embedded interface. These enrichment 

functions may be defined in terms of an implicit interface function (i.e., the signed distance 

function) in the case where material properties are discontinuous, and this option is examined in 

Section 2.3. In this section we focus on the case where the solution gradients are employed as 

discontinuity indicators, thus giving the following definition of the enrichment function 

 cψ = ∇   (2.14a) 

 cψ∇ = ∇ ∇   (2.14b) 
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where c∇  is the norm gradient of the scalar field. Since discontinuity capturing methods 

invariably lead to nonlinear solution algorithms, the first iteration of the solution provides the 

spatial distribution of the scalar field c . We employ it to obtain a global maximum maxc  and 

minimum minc  value and calculate the average of these values max min( ) 2avgc c c= + . For any given 

element, max
ec  and min

ec  is the local max and min, respectively. An element that satisfies the 

condition max min[( ) ( )] 0e e
avg avgc c c c− − <  is the one that is traversed by discontinuity and therefore 

the enrichment technique is activated in these elements. 

From the modeling perspective, this modification of the fine scale functions introduces 

extra terms in the fine-scale sub-problem. However, it does not increase the size of the coarse scale 

problem and therefore it does not affect the cost of solving the resulting method. Now we substitute 

the enriched representation of the fine scales into the fine-scale sub-problem (2.8) and invoking 

the mean value theorem for the coarse-scale residual that amounts to assuming a constant 

projection of the residual, we get the following algebraic problem 

 ( ) ( ) ( ) 
ˆ( ), ( ) , ( ) ,1e e e e eb b b b b rψ κ ψ ψ ψ β ψ ∇ ∇ + ⋅∇ = − v  (2.15) 

Note that additional terms appear when the gradient operator acts on the enriched bubble functions. 

Remark: The use of mean value theorem was studied in [28] and was found adequate to represent 

the fine-scale solution. 

Remark: In [28, 29] the bubble function employed in the weighting function was modified to 

incorporate the upwinding feature. In addition, it helped retain the advective term even under 

uniform velocity conditions. In these works a comparison with the SUPG formulation was carried 

out for the case of uniform advection (but without the enrichment modification) and identical 
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results were achieved. Therefore, in our present developments we have used the same skewed-

bubble function ˆeb  to expand the fine scale weighting function as was first presented in [28].  

Solving (2.15) for β  we arrive at 

 ( )ˆ ,1eb rβ τ ψ= −   (2.16) 

where 

 ( ) ( ) 

1ˆˆ ( ), ( ) , ( )e e e eb b b bτ ψ κ ψ ψ ψ
−

 = ∇ ∇ + ⋅∇ v   (2.17) 

Substituting (2.16) in (2.11) leads to the fine-scale solution 

 c rτ′ = −   (2.18) 

where stabilization parameter that emanates via the variationally consistent derivation is given as 

 ( )ˆ ,1e eb bτ ψτ ψ=   (2.19) 

Remark: The form of the fine scales in (2.18) possesses discontinuities across the interface only 

within the elements that develop discontinuous solutions as shown in Fig. 2.2. This necessitates 

appropriate numerical integration rules in these elements to accurately evaluate discontinuous 

integrals. Additionally, τ  is part of the integrand in the coarse-scale sub-problem, therefore 

appropriate integration rule is used in these elements for the coarse-scale sub-problem as well.  

Remark: We show the derivation in its entire generality while keeping all the terms that emanate 

via the variationally consistent derivation of τ . However, in the interest of the reader we simplify 

(2.17) to show its comparison with DCτ in [19] and present numerical results in section 2.5 with a 

simplified τ . 
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Remark: The gradient of ψ  drops out unless the coarse scale field is represented via quadratic 

shape functions or higher. 

2.2.2.2  Coarse-scale formulation with variationally embedded discontinuity 

The last step in the development of the Variational Multiscale-Discontinuity Capturing 

(VMDC) method is to embed the fine model in the coarse scale equations. We consider the coarse-

scale problem (2.6) and apply integration by parts to the terms that include the fine scale field c′  

to transfer the gradient operator from the fine scale field on to the weighting function. Employing 

the assumption of vanishing fine scales at the element edges we arrive at 

 ( ) ( ) ( ) ( ) ( ) , , , , ,q c q c q c q c q fκ κ′ ′⋅∇ − ⋅∇ + ∇ ∇ − ∆ =v v   (2.20) 

Substituting (2.18) in (2.20) we obtain the stabilized form for the advection diffusion equation 

 ( ) ( ) ( ) ( ) ( ) , , , , ,q c q r q c q r q fτ κ κτ⋅∇ + ⋅∇ + ∇ ∇ + ∆ =v v   (2.21) 

This stabilized formulation inherits the attributes of the stabilized advection-diffusion equation 

presented in [28]. In addition, it is also endowed with discontinuity capturing features that 

accommodate discontinuous diffusivityκ and discontinuous solution field c . These attributes are 

numerically investigated via the discontinuous boundary condition in the skew-advection problem 

presented in Section 2.5.1. 

2.2.3  Structure of τ  

In order to understand the behavior of τ derived in (2.19), we first investigate the structure 

of τ  for smooth regions where solution does not possess discontinuity or shock. As stated in the 

definition of the fine-scale enrichment, the fine-scale functions in elements belonging to the 
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smooth region are not augmented with the enrichment function ψ . Accordingly, for these elements 

1ψ = . By substituting 1ψ =  in (2.15) the fine-scale sub-problem reduces to 

 ( ) ( ) ( ) 
ˆ ˆ, , ,1e e e e eb b b b b rκ β ∇ ∇ + ⋅∇ = − v   (2.22) 

which is form identical to the stabilization derived in [28, 29].  

Now we analyze the fine-scale model emanating from (2.15) for elements that are intersected by 

discontinuity. Accordingly, we consider the advection dominated case where 0κ = . The fine-

scale model in (2.15) reduces to 

 ( ) ( )ˆ , ( ) ,1e e eb b b rψ ψ β ψ ⋅∇ = − v   (2.23) 

Following along the lines of the derivations in equations (2.16) to (2.19) we arrive at 

 ( ) ( )
1ˆ , ( ) ,1adv e e e eb b b bτ ψ ψ ψ ψ
−

 = ⋅∇ v   (2.24) 

advτ  in (2.24) provides both stabilization for the advection equation in addition to facilitating the 

DC capturing feature in elements that have discontinuities in the solution. For comparison we 

recall the SUPG formulation and the corresponding DC parameter developed in Hughes et al. [19]. 

 
2

e

SUPG
hτ =

v
  (2.25) 

Similarly, the DC stabilization parameter in [14] is 

 
2

1 1

max 0,
2

e
DC
SUPG

h c c
c

τ

  −  
= ⋅∇  ∇  ∇  

vv   (2.26) 
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The term 
2

eh
v

 in (2.26) is the SUPG stabilization parameter for the advection dominated case. The 

other term with a modified velocity that incorporates the direction of steep gradients of the 

unknown field c , is active only when the magnitude of the gradient is high as stipulated in (2.26). 

Consequently, in the spatial regions with steep gradients in the field c , SUPG stabilization 

parameter is replaced with a DC parameter that employs the component of velocity v  in the 

direction of the gradient c∇ across the interface. 

2.2.3.1  Analysis of the structure of stabilization parameter advτ   

In order to understand the structure of the stabilization parameter advτ  we first pull out the 

DC parameter from (2.26). 

 

2

1
2

e
DC h

c c
c

τ =
⋅∇

∇
∇

v
  (2.27) 

We now consider (2.24) and the enrichment function to be defined as cψ = ∇ , we obtain 

 
( )

( )( )
,1

ˆ ,

e e
adv

e e

b c b c

b c b c
τ ∇ ∇

=
 ∇ ⋅∇ ∇ v

  (2.28) 

We expand the denominator employing ( ) ( )e e eb c b c b c∇ ∇ = ∇ ⊗∇ + ∇⊗∇ , and ignoring the high 

order terms ( )eb c∇⊗∇  leads to 

 
( )
( )( )

,1
ˆ ,

e e
adv

e e

b c b c

b c b c
τ ∇ ∇

=
 ∇ ∇ ⊗∇ v

  (2.29) 
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We make a simplifying choice of only considering the diagonal term of ( )eb c∇ ⊗∇  that reduces 

(2.29) to 

 
( )
( )( )

,1
ˆ ,

e e
adv

e e

b c b c

b c c b
τ ∇ ∇

=
 ∇ ⋅∇ ∇ v

  (2.30) 

 

For ease of discussion if we assume c∇  and v  to be constant within the element, and considering 

that ( ,1) 1eb = , a simplified structure of advτ appears. 

 [ ] ( )
2

1
ˆ ,

e
adv

e e

b
c b bc

c

τ
  =   ⋅∇ ∇  ∇ ∇ 

v
  (2.31) 

Let us now analyze (2.31) in one generic direction (i.e., 1D) and evaluate the second term on the 

RHS of (2.31). Using 1D quadratic shape function for eb , and a linear shape functions with an 

embedded notion of upwinding for ˆeb , we have 

 

( )

( )

( )

2

1
, , ,

1
4

1ˆ 1
2

e

e e
x e

e

b

b b x
h

b

ξ ξ

ξ
ξ

ξ

−


= −

= = − 

= − − 

  (2.32) 

Consequently, the denominator is 

 ( ) [ ]
1

2

1

2 4ˆ ,
3

e e
e eb b jd j

h h
ξ ξ ξ

−

 
∇ = − = 

 
∫   (2.33) 

Since the numerator in (2.31) is a part of advτ which appears inside the element integral we 

integrate the numerator to yield 
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 ( ) ( )
1 1

2

1 1

4,1 1
3

e eb b jd jd jξ ξ ξ
− −

 
= = − = 

 
∫ ∫   (2.34) 

Substituting (2.33) and (2.34) in (2.31) yields 

 
[ ] [ ]

2 2

1 4 3 1
4 (3 )

adv e
e

j h
c cj hc c

c c

τ     = =    ⋅∇ ⋅∇    ∇ ∇   ∇ ∇   

v v
  (2.35) 

Comparing (2.27) and (2.35) we obtain the following relation between the two stabilizing 

parameters 

 
1
2

adv DCτ τ=   (2.36) 

The variationally consistent derivation of advτ as presented above in (2.24) augmented with 

the enrichment function in (2.14a) accounts for both the magnitude as well as the direction of the 

steep gradients in the solution. This feature of embedded directionality is automatically manifested 

when advτ  is integrated over the spatially distributed integration points inside the element in 

conjunction with the enrichment definition given in (2.14a). This is presented in the context of 2D 

bubble functions in Fig. 2.1. The spatially varying advτ  when multiplied by the residual of the 

Euler-Lagrange equations triggers directionality in the residual over the element interiors. In our 

comparison with the classical definition of DCτ  presented in [19] we take the norm of (2.35) to 

compare the magnitude of advτ  in the VMDC method with the magnitude of DCτ  in the SUPG-

DC method. Note that SUPG and GLS methods invariably employ diagonal τ , thereby leading to 

triaxial stabilization. 
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Fig. 2.1. Shape of advτ within an element intersected by a discontinuity in the field. 

Remark: The sub-grid scale bubble function in (2.11) when augmented via embedding the 

gradients of the field given in (2.14a) results in a method that automatically adapts itself to steep 

gradients in the solution field. In this case a priori information about the location of steep 

gradients is not required. 

Remark: The derived advτ  automatically becomes a discontinuity capturing parameter within the 

elements that are traversed by the discontinuity. 

Remark: The difference between the simplified version of the derived stabilization parameter and 

DCτ  [19] is the appearance of bubble function and the integral of its gradient in the expression 

(2.28), thus making it a function that varies over the element domain. In our numerical calculations 

we investigate this feature of the variationally derived form of stabilization parameter via a 2D 

skew-advection problem. 
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2.2.4  Adaptive quadrature construction 

Integration of discontinuous functions has been a challenge for numerical methods. 

Although Gaussian quadrature exactly integrates continuous functions of different orders, it does 

not provide sufficient accuracy when discontinuous functions are present in the integrand. There 

are three main classes of numerical quadrature constructions for discontinuous functions. The first 

method that is most often used in XFEM/GFEM involves the splitting of intersected elements 

along the interface, thus producing two regions where the integrand is continuous. These sub-

elements or sub-cells are further discretized into quadrilaterals or triangles in 2D [39]. 

Subsequently, the Gaussian quadrature rule of sufficiently high order is used to integrate over the 

sub-cells in the intersected elements. An adaptive quadrature construction algorithm is presented 

in [32] for numerical integration of discontinuous functions that are arbitrarily located within the 

element. 

2.3  Two-Phase Navier-Stokes Equations with Surface Tension 

This section considers a vector field problem wherein discontinuity appears due to jumps 

in the viscosity and density of the fluids across the interface sΓ  along which a surface tension 

force is also operational. Let sdnΩ⊂   be a domain consisting of two sub-regions 1Ω  and 2Ω  that 

are separated by an interface sΓ  such that 1 2Ω = Ω Ω  and 1 2 0Ω Ω = . The two sub-domains 

are occupied by two incompressible and immiscible fluids as shown in Fig. 2.2. Subdomains 1Ω  

and 2Ω  are bounded by piecewise smooth boundaries 1Γ  and 2Γ , where 1 2( ) \ sΓ = Γ Γ Γ  and 

1 2( ) \ 0sΓ Γ Γ = . Let the velocity field be defined as ] [( , ) : 0, sdnt TΩ× →v x   and the pressure 
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field ] [( , ) : 0,p t TΩ× →x  . Assuming incompressible two-phase fluid flow, the governing 

equations in each phase are written as follows 

 ( )2   in p
tβ β βρ µ ρ ρ∂
− ∇⋅ +∇ + ⋅∇ = Ω

∂
v ε v v v b   (2.37) 

These are augmented by the incompressibility constraint derived from the continuity equation for 

density . 

 0  in ∇⋅ = Ωv   (2.38) 

The Laplace-Young surface tension jump condition, and the boundary and initial conditions are 

given as follows 

 ( )2     on sp µ δκ −  = Γ n ε v n n   (2.39) 

     on = Γv g   (2.40) 

 ( ),0     in o= Ωv x v   (2.41) 

where β =1,2  corresponds to each phase in Fig. 2.2, ] [: 0, sdnTΩ× →b   is the body force,

0βρ >  is the fluid density of each phase, 0βµ >  is the kinematic viscosity of each phase, δ  is 

the surface tension coefficient that depends on the two-phases (2.and is assumed constant in this 

presentation), ( , )tκ x  and ( , )tn x  are the mean curvature and normal vector of the interface sΓ , 

respectively. The normal vector associated with subdomain β  is assumed to be directed outwards, 

as shown in Fig. 2.2. The initial condition ov  for the velocity field is subject to the 

incompressibility condition, and g  represents the Dirichlet boundary conditions. The density βρ  
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and viscosity βµ  are assumed constant within each phase. The symmetric strain-rate tensor is 

defined as ( ) [ ( ) ] 2s T= ∇ = ∇ + ∇ε v v v v .  

Let { }1
0( ) ( ) sdn

H ∈ ≡ Ω w x   and 2( ) ( )q L∈ ≡ Ωx   represent the weighting functions 

for the velocity and pressure fields, respectively. The trial solutions for the velocity and pressure 

fields are [ ]{ }1
0( , ) ( )  0,sdn

t H T ∈ ≡ Ω × v x   and [ ]{ }2( , ) ( / )  0,sp t L T∈ ≡ Ω Γ ×x   

respectively, and they satisfy the initial and boundary conditions. The weak form of (2.38) is as 

follows 

 ( )( ) ( ) ( ) ( ), 2 , , , ,p
tβ β βρ µ ρ ρ∂  − ∇ ⋅ + ∇ + ⋅∇ = ∂ 
vw w ε v w w v v w b   (2.42) 

Integrating by parts the second and third terms in (2.42) and rearranging leads to 

( )( ) ( ) ( ) ( )( ) ( ), 2 , , , , 2 ,
s

s p p
tβ β β βρ µ ρ µ ρ

Γ

∂  + ∇ − ∇⋅ + ⋅∇ + − = ∂ 
vw w ε v w w v v w n ε v n w b     

(2.43) 

Substituting the Laplace-Young surface tension condition leads to the weak form of the problem 

containing the surface tension conditions for equations (2.37)-(2.41). 

 ( )( ) ( ) ( ) ( ) ( ), 2 , , , , ,
s

s p
t

ρ µ ρ ρ δκ
Γ

∂  + ∇ − ∇⋅ + ⋅∇ = − ∂ 
vw w ε v w w v v w b w n   (2.44) 

 ( ), 0q ∇⋅ =v   (2.45) 
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Where the density and viscosity are now defined via Heaviside function: 

 ( )( ) ( )1 21 H Hρ φ ρ φ ρ= − +   (2.46) 

 ( )( ) ( )1 21 H Hµ φ µ φ µ= − +   (2.47) 

The Heaviside function is in turn a function of the signed distance field ( , )tφ x  that is used to 

implicitly track the interface which is defined as ( , ) 0tφ =x  for all s∈Γx . The Heaviside function 

is a discrete step function defined as: 

 ( )
1  0

H
0  0
φ

φ
φ
<

=  ≥
  (2.48) 

Remark: The surface tension condition is satisfied weakly via the Laplace-Young jump condition 

satisfying the interface integral in  ( 1)sdn −
  that emanates from the integration by parts form of 

the variational equation (2.44).   

Remark: It is important to note that (2.45) and (2.46) accommodate solutions with a continuous 

velocity field, while the pressure field may change sharply across the interface sΓ [13]. This 

results in the jump being manifested only in the pressure field across the interface and with a value 

equal to δκ as in the Laplace-Young problem presented in Section 2.5.3. 
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Fig. 2.2. Schematics of the two-phase flow domain on an Eulerian mesh with interface sΓ for the 
two-phase problem; highlighted elements are intersected by the interface where enriched fine 

scales are used. 

2.3.1  Discontinuous surface force 

The surface tension term in (2.44) is usually transformed into a regularized volumetric 

integral over a finite width ( )O hε =  where h  is the characteristic mesh element size, as is done 

in the continuum surface force technique [4]. In this section we employ the divergence theorem to 

derive a form of surface tension as a discontinuous force. Starting with the surface tension term 

given in (2.44) and employ (i) integration by parts, (ii) the definition of the Heaviside function 

whereby the surface integral vanishes and (iii) considering the surface tension coefficient to be 

constant, we have 

 ( ) ( )( ) ( )
22

, , ,
s

δκ δκ δ κ
Γ ΩΩ
= ∇ ⋅ + ∇w n w w   (2.49) 

This leads to a discontinuous surface force with surface tension applied only in 2Ω . Substituting 

the right hand side of (2.49) in place of the surface tension term in (2.44) leads to a weak form 
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where all integrals are volume integrals: Find ( , )t ∈v x  and ( , )p t ∈x   such that for all 

( )∈w x   and ( )q ∈x  , 

 
( )( ) ( ) ( )

( ) ( )( ) ( )
22

, 2 , , ,

, , ,

s p
t

ρ µ ρ

ρ δκ δ κ
ΩΩ

∂  + ∇ − ∇⋅ + ⋅∇ ∂ 
= − ∇ ⋅ − ∇

vw w ε v w w v v

w b w w
  (2.50) 

 ( ), 0q ∇⋅ =v   (2.51) 

Remark: In the continuum surface force technique developed in [4] the continuum surface force 

is shown to approach the interfacial surface tension force as the 0ε → . 

2.3.2  The variational multiscale method 

As noted earlier, in this chapter the fine-scale variational problem is employed to exploit a 

priori known features of the solution, i.e., weak and strong discontinuities in the velocity and the 

pressure fields, respectively. For the problem under consideration these discontinuities are induced 

because of the discontinuous density and viscosity, as well as due to the discontinuous surface 

force that arises due to surface tension. In the context of multiphase flows, equation (2.37) reveals 

that the jump in the viscosity induces a jump in the velocity gradient, thereby leading to a weakly 

discontinuous velocity. The pressure is strongly discontinuous due to the jump in viscosity and in 

the surface tension force at the interface.  

Following along the lines of our earlier works [7, 30] and the general framework presented in 

Section 2.2.1 we assume an overlapping additive decomposition of the velocity field v  into coarse 

scale v  and fine scale ′v  

 ( ) ( ) ( ), , ,t t t′= +v x v x v x   (2.52) 
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Similarly, the weighting function is decomposed into coarse and fine scales 

 ( ) ( ) ( )′= +w x w x w x   (2.53) 

Substituting (2.52) and (2.53) into (2.50) and (2.51) and utilizing the linearity of the weighting 

function we arrive at two sub-problems 

Coarse-scale sub-problem: 

 
( )( ) ( ) ( ) ( )( )

( ) ( )( ) ( )
22

, , 2 , , ,

, , ,

s p
t t

ρ ρ µ ρ

ρ δκ δ κ
ΩΩ

′∂ ∂    ′ ′ ′+ + ∇ + − ∇⋅ + + ⋅∇ +   ∂ ∂   
= − ∇ ⋅ − ∇

v vw w w ε v v w w v v v v

w b w w
  (2.54) 

 ( )( ), 0q ′∇ ⋅ + =v v  (2.55) 

Fine-scale sub-problem: 

( )( ) ( ) ( ) ( )( )

( ) ( )( ) ( )
22

, , 2 , , ,

, , ,

s p
t t

ρ ρ µ ρ

ρ δκ δ κ
ΩΩ

′∂ ∂   ′ ′ ′ ′ ′ ′ ′ ′+ + ∇ + − ∇⋅ + + ⋅∇ +   ∂ ∂   
′ ′ ′= − ∇ ⋅ − ∇

v vw w w ε v v w w v v v v

w b w w

 (2.56) 

We now focus on the solution of the fine-scale sub-problem with the objective of deriving an 

analytical expression for the fine-scale velocity field in terms of the residual of the Euler-Lagrange 

equations of the coarse-scale governing equations.  

Remark: In linearizing the fine-scale convective term, we drop the higher-order fine-scale terms 

( , )ρ ′ ′⋅∇w v v and ( , )ρ′ ′ ′⋅∇w v v . This is equivalent to adopting a first order approximation to the 

non-linear fine-scale problem whereby only a single iteration is needed to update the fine scales 

in each Newton Raphson iteration for the global nonlinear problem. 
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2.3.2.1  The enriched fine-scale sub-problem: Modeling the fine-scale fields 

Let us consider the fine-scale sub-problem given in (2.56). We use the linearity of the 

symmetric gradients and apply integration by parts to the coarse-scale velocity gradient in the third 

term and to the coarse scale pressure in the fourth term on the left-hand side of (2.56). Making a 

modeling assumption that surface tension is a global feature and therefore not present at the fine-

scale level, we drop these terms. 

 
( )( ) ( ) ( )

( )( ) ( ) ( ) ( )

, 2 , , ,

, , 2 , , ,

s

t

p
t

ρ µ ρ ρ

ρ µ ρ ρ

′∂ ′ ′ ′ ′ ′ ′ ′+ ∇ + ⋅∇ + ⋅∇ = ∂ 
∂ ′ ′ ′ ′ ′− + ∇ ⋅ − ∇ − ⋅∇ + ∂ 

vw w ε v w v v w v v

vw w ε v w w v v w b
  (2.57) 

This simplification however does not deteriorate the modeling capability of the formulation 

because the discontinuous surface force is fully represented in the coarse-scale problem. 

Consequently, the strong and weak discontinuities are present in the fine-scale sub-problem, while 

the surface tension induced steep gradients are present in the coarse scale sub-problem. We thus 

write (2.57) as follows 

 ( )( ) ( ) ( ) ( ), 2 , , , ,s

t
ρ µ ρ ρ

′∂ ′ ′ ′ ′ ′ ′ ′ ′+ ∇ + ⋅∇ + ⋅∇ = − ∂ 
vw w ε v w v v w v v w r   (2.58) 

 

 

where 

 ( )2 p
t

µ ρ ρ∂
≡ − ∇⋅ +∇ + ⋅∇ −
∂
vr ε v v v b   (2.59) 
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is the residual of the Euler-Lagrange equations of the coarse scales, thereby resulting in residual 

driven fine-scale sub-problem. We discretize (2.58) in time using the generalized alpha method 

[21], although any other appropriate time integration technique can also be used. The semi-discrete 

form is 

 
( )( ) ( )

( ) ( )

, 2 , ,

, ,

f f
m

f f

s
n n n

n

n n n

t α α
α

α α

ρ µ ρ

ρ

+ +
+

+ +

 ′∂′ ′ ′ ′ ′+ ∇ + ⋅∇  ∂ 

′ ′ ′+ ⋅∇ = −

vw w ε v w v v

w v v w r

 (2.60) 

The update expression for t ′∂ v  and ′v  are 

 ( )11
m

m m
nn

n nt t tα

α α
γ γ +

+

′ ′ ∂ ∂ ′ ′= − + − ∂ ∂ ∆ 

v v v v   (2.61) 

                                                  ( ) 11
fn a n nf fα α+ +′ ′ ′= − +v v v  (2.62) 

where fα , mα  and γ  are the parameters from the generalized alpha method and t∆  is the time 

step increment. Substituting (2.61) and (2.62) into (2.60) we get the fine-scale variational problem 

 

( ) ( )( ) ( ) ( )

( ) ( )
( ) ( )( ) ( ) ( )

1 1 1 1, 2 , , ,

, 1 , ,

1 2 , , ,

f

s

s

m
n nn n n nf

m m
n n

n

n n n n nf

t

t t α

α ρ α µ ρ ρ
γ

α αρ ρ
γ γ

α µ ρ ρ

+ + + +

+

 ′ ′ ′ ′ ′ ′ ′ ′+ ∇ + ⋅∇ + ⋅∇ ∆

′   ∂′ ′ ′ ′= − − −  ∆ ∂  
 ′ ′ ′ ′ ′ ′− − ∇ + ⋅∇ + ⋅∇ 

w v w ε v w v v w v v

vw v w w r

w ε v w v v w v v

  (2.63) 

Remark: It is evident from (2.63) that the fine-scale problem is dependent on the history of the 

fine-scale velocity and its time derivative. However, tracking fine-scale history terms significantly 

increases the computational cost. Based on the analysis presented in [7] we assume that fine-
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scales are quasi-static. This simplification has negligible effect on the accuracy of the time 

integration or the fine-scale solution. For more details interested reader is referred to [7]. 

Remark: In our implementation we have used the BDF2 time integration scheme which can be 

considered a special case of the generalized alpha method with 1fα =  , 1.5mα =  and 

( 0.5)m fγ α α= − + . 

2.3.2.2  Evaluating fine-scales via enriched bubble functions method 

For the analytical derivation of the fine-scale models, and later on for computational 

expediency and parallelization, we assume the fine-scale trial and weighting functions to be non-

zero within the element and vanish at the element edges: 

 0  on e′ ′= = Γv w   (2.64) 

In our earlier works on Navier Stokes equations for flow problems without sharp 

discontinuities [7, 30], we expanded the fine-scale problem at the current time step 1n +  in terms 

of bubble functions ( )eb ξ  that were defined on the interior of the elements. While this choice 

resulted in stabilized form for the mixed field problem [5], it did not account for discontinuities in 

the velocity and pressure fields, either at the fine-scale or at the coarse-scale levels. 

This section presents a further generalization of the fine-scale problem within the VMS 

framework and it is carried out only in the elements that are intersected by the discontinuity 

interface. The knowledge of the presence of the interface sΓ  that is facilitated via level-set method 

provides an opportunity to embed discontinuities in the interpolation functions for the fine scales. 

Specifically, the bubble functions employed are modified by embedding the feature of 
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discontinuity via composition with a discontinuous function as shown in Fig. 2.3. This 

enhancement of the bubble functions helps in modeling discontinuities in the solution without 

introducing additional degrees of freedom to the global system. We employ these enriched bubbles 

to expand the fine-scale variable 1n+′v . 

Though the notion of enrichment of the degrees of freedom is also used in the 

XFEM/GFEM methods [8] there is a subtle difference in these methods and the proposed VMDC 

method. In GFEM enrichment is applied directly to the global problem and it requires enrichment 

degrees of freedom to be added to the global system. Specifically, nodes in the mesh are enriched 

if the support cloud of their numerical interpolation is intersected by the interface. Such 

enrichments lead to an increase in the size of the system of equations [8], resulting in a significant 

increase in the computational cost and a need for an algorithmic scheme to track the addition and 

removal of degrees of freedom as the interface moves across inter-element edges for the evolving 

interface problems.  

On the contrary, in the fine-scale enrichment method proposed here, the enrichment is 

directly applied to the already existing fine-scale interpolation function. As a virtue of the local 

nature of the fine scale sub-problem no additional degrees of freedom are added to the global nodes 

and therefore the size of the coarse-scale problem is not altered. We wish to note that, like the 

XFEM/GFEM methods, the VMDC method also allows for the modeling of problems with 

evolving interfaces that do not conform to element edges.  

In this section we show the embedding of strong discontinuity by multiplying the local 

bubble functions by a piecewise continuous function ( )ψ φ  that is defined in terms of the signed 

distance field as 
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 ( ) φψ φ φ
φ

 
= +  
 

  (2.65) 

Accordingly, the fine scale trial solution and weighting functions are defined as 

 ( ) ( )eb ψ φ′ =v β ξ   (2.66) 

 ( ) ( )eb ψ φ′ =w γ ξ   (2.67) 

where β  and γ  are the coefficients for the fine-scale trial solution and weighting function, 

respectively. Due to the multiplication of the enrichment function with the bubble function the 

fine-scale sub-problem is defined over sum of element interiors. Additionally, due to the local 

nature of the fine-scale sub-problem the enriched bubble functions are only used within elements 

that are intersected by the phase interface (see Fig. 2.2) without introducing the issues of blended 

nodes as is the case in XFEM/GFEM. Another salient feature of the proposed VMDC framework 

is that the enrichment is sensitive to any movement of the interface within the element. 

Furthermore, the fine-scale interpolation function enrichment can be automatically activated and 

deactivated within an element based on the definition of φ  within that element. 

Substituting (2.66) and (2.77) in (2.63), and ignoring the history dependence of the fine-

scale terms we can solve for the trial solution coefficient 1n+β  as follows 

 ( ) ( ) ( )
1

1 1 ˆ, ,
f

e e e e em
nn n fb b b b b

t α
αψ ψ ψ ψ α ψ
γ

−

++ +
 ′ = = − + ∆ 

v x β τ r   (2.68) 

where τ̂  is defined as 
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( ) ( ) ( ) ( )

( ) ( )

2 2
ˆ

     

e e e e e e T e

e e e e e e

b d b b d b d

b b d b b d

µ ψ µ ψ ψ ψ

ψ ψ ψ ψ

= ∇ Ω + ∇ ⊗∇ Ω + ∇ Ω

+ ⋅ ∇ Ω + ⋅ ∇ Ω

∫ ∫ ∫
∫ ∫

τ I v

v v
  (2.69) 

Employing the mean-value theorem for the coarse-scale residual 
fn α+r  which amounts to an 

element-wise constant projection, (2.68) becomes 

 ( ) ( ) ( )
1

1 1 ˆ, ,1
f

e e e e em
n n f nb b b b b

t α
αψ ψ ψ ψ α ψ
γ

−

+ + +

 ′ = = − + ∆ 
v x β τ r   (2.70)  

 

Fig. 2.3. Plot of (a) bubble function, (b) strong discontinuity enrichment function and (c) 
enriched bubble function in 2D for strong discontinuity. 

Remark: Although we have dropped history dependence of the fine scale, the stabilization tensor 

is still a function of t∆ as shown in (2.70). Furthermore, (2.70) leads to a system of ODE’s that 

need a time integration method to convert it into an algebraic system. 

2.3.3  The Stabilized Weak Form of N.S. Equations with Embedded Discontinuity 

We embed the fine-scale model into the coarse-scale variational problem by substituting 

(2.70) into (2.54) and (2.55). The formal statement for the modified stabilized form with embedded 

DC features is: Find ( , )t ∈v x  and ( , )p t ∈x   such that for all ( )∈w x   and ( )q ∈x  : 

(a) (b) (c) 
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 ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ), , , , , , ,Gal VMS div Gal ST
EnrB q p B q p B F F+ + = +w v w v w v w w   (2.71) 

where the Galerkin terms are 

( ) ( )( ) ( ) ( )( ) ( ) ( ), , , , , 2 , , ,s
GalB q p p q

t
ρ ρ µ∂ = + ⋅∇ + ∇ − ∇⋅ + ∇ ⋅ ∂ 

vw v w w v v w ε v w v   (2.72) 

                      ( ) ( ),GalF ρ=w w b   (2.73) 

and the enriched VMS terms are 

        ( ) ( )( )
( )

( )

2 ,
, , ,

2

                   

Tm

VMS
Enr

q
t

B q p
p

t

α ρ µ
γ

µ ρ ρ

 − + ∇ ⋅ + ⋅∇ + ⋅∇ +∇ ∆ =
 ∂ − ∇ ⋅ +∇ + ⋅∇ −  ∂  

w ε w v w v w
w v

vτ ε v v v b
  (2.74) 

The stabilization tensor that emanates from (2.70) is 

 ( ) ( )
1

ˆ, ,1e e e em
fb b b b

t
αψ ψ ψ α ψ
γ

−
 

≡ + ∆ 
τ τ   (2.75) 

The discontinuous surface force due to surface tension is 

                            ( ) ( )( ) ( )
22

, ,STF δκ δ κ
ΩΩ

= ∇ ⋅ + ∇w w w   (2.76) 

In our earlier work in [30] we added a div-stabilization term for global mass conservation. This 

additional term acts as a fine-scale pressure field stabilization term and helps improve mass 

conservation [30] and satisfaction of the incompressibility condition 

 ( ) ( ), ,div cB τ= ∇ ⋅ ∇ ⋅w v w v   (2.77) 

and the stabilization parameter cτ  is adopted from [25]. 
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 ( ) 1
c Mτ τ −= ⋅G G   (2.78) 

where G  is a second order tensor given as a function of the isoparametric mapping ξ  between 

the physical and reference coordinates defined as T
x x= ∂ ∂G ξ ξ . For our implementation we have 

employed 

 ( )1 trace
3Mτ = τ   (2.79) 

where τ  is given in (2.75). 

This system of equations for the coarse-scale sub-problem is applied to all the elements in 

the mesh. The only difference is the use of the enriched fine scale bubble functions in the elements 

that are intersected by the interface. 

Remark: The activation/deactivation of fine-scale enrichment for the case of an evolving interface 

can be carried out through a simple check on the nodal values of the signed distance field in the 

element to see if it is traversed by the interface. 

Remark: The div-stabilization term presented above can also be derived via the mixed VMS 

method presented in [7]. 

Remark: Numerical tests reveal that for the case of discontinuous viscosity and density, this div-

stabilization term adds stability to the pressure field in the proximity of the interface. Without this 

additional stabilization, significant oscillations are observed in the pressure around the elements 

that have interface traversing through them. 

Remark: The discontinuous surface force formulation augmented with the fine-scale enrichment 

leads to a sharper jump that is curtailed only within a single element. This results in a method that 
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variationally converges with mesh refinement to the exact location of the interface and an accurate 

prediction of pressure field across the interface. 

2.4  Level-Set Evolution Equation 

The interface in two-phase flow problems is tracked via an implicit scalar function that 

evolves via a hyperbolic equation. This equation, commonly termed as the level-set equation is 

driven by the velocity field that is facilitated by the solution of the momentum equation. However 

the level-set equation being hyperbolic needs a stabilization schemes to yield stable solutions. 

Following along the lines of Sections 2 and 3 we employ the time dependent VMS method to 

stabilize the level-set equation. Since we have already presented the stabilized method for the 

advection diffusion equation in Section 2.2, we only present the final stabilized form of the 

hyperbolic equation for the level-set as follows 

 
( ) ( ) ( ) ( )

( ) ( )( )

1 1, , , ,

, 1 , 1 ,

f f
m m

n nn nf f

m m
n nf

n

r r
t t

t t

α α
α αη φ η τ α η φ α η τ
γ γ

α α φη φ η α η φ
γ γ

+ ++ +− + ⋅∇ + ⋅∇
∆ ∆

   ∂
= − − − − ⋅∇   ∆ ∂  

v v

v

  (2.80) 

where φ  is the coarse scale trial solution for the signed distance function defined as 

 ( )
( )

1

2

      in 
      in 

s

s

d
d

φ
+ −Γ Ω= − −Γ Ω

x
x

  (2.81) 

and ( )sd −Γx  is the normal distance function from the interface sΓ to a point x , and η  is the 

coarse-scale weighting function. Due to the higher order derivatives needed to model the interface 

curvature and its gradient in the surface tension term, higher order basis functions are needed. One 

method of bypassing this requirement while still using linear basis functions for the level-set 
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equation is to construct a smoother projection of the gradient and curvature using an L2-projection 

techniques for the gradient, thus yielding smooth gradients as the interface evolves in space and 

time. Nevertheless, accumulation of numerical noise after multiple time steps still leads to 

deviation of the signed distance function φ  and it starts violating the Eikonal condition 1φ∇ = . 

To preserve this condition while still maintaining the value of the signed distance field at the 

interface, a post-processing procedure called reinitialization is required subsequent to the solution 

of the level-set equation. 

2.4.1  Reinitialization 

In order to assure the accuracy of the interface between phases, the signed distance property 

needs to be preserved. This is achieved by a reinitialization process which aims to satisfy the 

Eikonal equation 1φ∇ = , while maintaining the location of the zero level-set 0φ =  at sΓ . A 

commonly used method for reinitialization is to solve the nonlinear hyperbolic PDE [2]. This 

method preserves the location of the interface and is generally solved using pseudo-time steps 

where number of steps needed to obtain converged solution depends on the complexity of the 

interface, thereby resulting in increased computational cost. This technique however suffers from 

mass loss during repeated reinitialization and requires additional mass conserving techniques [2]. 

In [2] a new elliptic reinitialization method is proposed that bypasses the need to solve for 

multiple pseudo-time steps via solving an elliptic minimization problem. In [3] This approach is 

modified by restricting the minimization of the Eikonal equation to elements not intersected by the 

interface and it assure the interface to be held in place via a penalty term applied in the intersected 

elements. 
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2.5  Numerical Results 

2.5.1  Skew-advection problem 

The skew-advection problem shown in Fig. 2.4 is a classical benchmark problem for 

advecting a discontinuous field from the boundary into the domain. We use this problem as a test 

case for our embedded discontinuity method and consider the case with convected sharp 

discontinuities in the advected field. The problem is defined on a biunit domain [0,1] [0,1]Ω = ×  

with a constant advective velocity 1x yv v= = . The boundary conditions are shown in Fig. 2.4. 

Using the fine scale enrichment method along with the adaptive integration algorithm we obtain 

an accurate representation of the discontinuous field within the domain. As we refine the mesh we 

converge at optimal rates in the L2 norm as shown in Fig. 2.7. Comparing our VMDC method (Fig. 

2.5(b)) with the SUPG stabilization (Fig. 2.5(a)) that is augmented with DC terms [19] we observe 

an improvement in the sharpness of the represented discontinuity which is captured within a single 

element. Additionally, the VMDC method is able to advect the discontinuity induced at the 

boundary without any numerical diffusion as compared to the SUPG-DC case. 

 

Fig. 2.4. Skew-advection problem, mesh, interface and boundary conditions, element outlined in 
red shows example of interface intersected element. 
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Fig. 2.5. Skew-advection solution profile for (a) SUPG, (b) SUPG-DC, (c) VMS and (b) VMDC. 

 

Fig. 2.6. Skew-advection field along diagonal ( 0 1 ;  1 0x y< < < < ), comparison between the 
VMDC, Exact solution, and SUPG-DC [19]. 
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Fig. 2.7. L2-convergence of the scalar field for the skew-advection problem (

   1 1 1 1
15 30 60 120h , , ,= ). 

 

Fig. 2.8. Skew-advection solution profile for (a) SUPG, (b) SUPG-DC, (c) VMS and (d) VMDC. 
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Finally in Fig. 2.8 we show another skew-advection configuration where the interface is skewed 

in a 2:1 ratio. The VMDC method is able to capture the jump across a single element thus showing 

the versatility of the method in capturing different discontinuity orientations. 

Remark: The fine-scale bubble functions when augmented via the gradient of the field result in a 

non-linear scalar field. In this case the VMDC method introduces nonlinearity in the system 

because of the dependence of the stabilization parameter on the field itself. It is important to note 

that the variational consistency of the formulation and of the stabilization parameter results in 

quadratic convergence of the solution in the Euclidian norm. 

Remark: For the case of discontinuous material properties where the interface is prescribed via 

the level-set field, convergence is attained in 1 iteration, as is expected of linear problems. This 

feature can result in substantial cost savings for large scale 3D problems. 

2.5.2  Extensional flow problem 

This numerical problem involves two layered immiscible fluids that are subjected to a 

linearly varying skew flow, where the flow physics is dominated by the viscosity of the fluid. The 

jump in viscosity across the interface separating the two fluids induces a jump in the pressure field 

across the fluid interface. Since, the interface does not conform to the mesh lines, it introduces a 

discontinuity that requires a discontinuity capturing method to produce solution without 

oscillations. We compare the VMDC method to a pressure enrichment technique presented in [1]. 

The schematics of the problem setup is shown in given in Fig. 2.9. The problem domain is

[0,1] [0,1]Ω = × , where the density for both the fluids is 10ρ =  and the viscosity varies sharply 

from 1 5µ =  for fluid-1 to 2 1µ =  for fluid-2. 
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Fig. 2.9. Extensional flow problem setup. 

The boundary conditions for velocity are 1xv x= −  and yv y=  at gΓ . These boundary conditions 

are applied along all the boundaries of the domain and considering zero gravity forces, the exact 

solution for this problem is given as 

 ( ) ( )( ) ( ) ( )2 21
1 22, 2 Hp x y x x y a yρ µ µ= − + + − −   (2.82) 

where the Heaviside function ( )H a y−  is defined as follows 

 ( )
1  if  

H
0  if  

y a
a y

y a
<

− ≡  >
  (2.83) 

For the present problem 0.5a = in (2.83). By inspecting the results in Fig. 2.11 one could see the 

agreement between the present VMDC method and the pressure enrichment approach introduced 

in [1]. We are thus able to represent the pressure jump across a single element as shown in Fig. 

2.10. Furthermore, in order to use equal order interpolation while satisfying the inf-sup conditions, 

Ausas et al. [1] require additional stabilization which is separate from the pressure enrichment. In 

the VMDC method both the inf-sup condition and the discontinuity capturing are achieved via the 
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variationally derived fine scales. Fig. 2.11 presents the pressure profile which is compared to the 

method presented in [1] and with the exact solution. It is evident that the VMDC method 

approaches the exact solution with a sharper jump. Since we have an exact solution for this 

problem, we can use it to numerically establish variational convergence of the VMDC method. As 

shown in Fig. 2.12, the VMDC method is able to achieve optimal convergence with reduced error 

when compared to the method presented in [1]. 

 

Fig. 2.10. Computed pressure profile. 
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Fig. 2.11. Pressure profile across the interface for the 35 35×  mesh. 

 

Fig. 2.12. L2-convergence of the pressure field for extensional flow problem. 

2.5.3  Laplace-Young problem 

To compare the VMDC method with the classical continuum surface force method [4] in 

terms of accommodating the surface tension effects we employ the Laplace-Young problem (a.k.a. 

the static bubble problem). This test case verifies the accuracy of surface tension and the sharpness 
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of the jump in the pressure field. The problem is defined on a 2D domain [0,1] [0,1]Ω = × . A 

circular interface centered at (0.5,0.5)=x  with radius 0.2R =  is used to define the location of the 

interface between the liquid and gas phases for the application of the surface tension force. In order 

to highlight the jump induced in the pressure field due to surface tension alone and to avoid any 

contribution to the jump due to material parameter discontinuity, the density and viscosity of the 

fluids inside and outside the interface are both set equal to 1. All boundaries are set to zero 

pressure, and no-slip conditions are applied. The surface tension coefficient is set as δ =1  which 

results in a jump in the pressure field given by p Rδ∆ = . Using these parameters the exact 

solution is 

 
0     0

(
5     0

)p
φ
φ
>

=  <
x   (2.84) 

Where the signed distance function )(φ x  is negative inside the circular interface. In Fig. 2.13 we 

compare the proposed discontinuous surface force method with the continuum surface force 

method [4] in terms of the surface tension representation. Using the regularized surface force via 

the continuum surface force formulation, the jump is spread over several elements and the effect 

is smeared, leading to reduced accuracy in the representation of the location of the interface. The 

discontinuous surface force formulation augmented with the fine-scale enrichment leads to a 

sharper jump that is contained only within a single element. This leads to a method that 

variationally converges with mesh refinement to the exact location of the interface and an accurate 

calculation of the pressure field inside the interface. Fig. 2.14 shows the pressure profile for a finer 

mesh using the VMDC method. 
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Fig. 2.13. Laplace-Young problem with surface tension: (a) regularized continuum surface force 
solution, and (b) sharp discontinous surface force solution. (coarse mesh) 

 

Fig. 2.14. Laplace-Young problem with surface tension for sharp discontinous surface force 
solution. (fine mesh) 

The accurate and sharp representation of the discontinuity becomes increasingly important 

when several PDEs within a system, such as in the present case, depend on each other via the 

coupling terms that change sharply across the interface. In Fig. 2.15 we plot the pressure profile 

across 0.5y =  for the mesh comprised of 32 32×  four node quadrilaterals. In Figures 2.16-2.17 

we explore the case of two adjacent static bubbles of 0.125R =  which results in an exact pressure 

jump of 8p∆ = . The VMDC method is shown to precisely model the jumps in the pressure field 

in very close proximity as shown in Fig. 2.16(a) where the two bubbles are separated by only two 
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elements. Fig. 2.16(b) shows pressure profile for a finer mesh. This shows the robustness of the 

method for application to problem classes where bubble migration and interaction may become 

important. Fig. 2.17 shows pressure profile for 128 128×  mesh and the jump is captured within 

one element without overshoots or undershoots. Fig. 2.18 shows the optimal convergence of 

VMDC in comparison to [34]. The meshes used for this study are 162, 322, 642 and 1282. Since we 

have an exact solution for this problem it can be used for checking variational convergence of the 

method. Specifically, the 162 mesh with VMDC yields approximately the same engineering 

accuracy as the 642 mesh using the method proposed in [34]. 

 

Fig. 2.15. Comparison of pressure profile, sharpness of gradient and proximity to exact interface 
location between the continuum surface force and the sharp discontinuous surface force methods. 

  

Fig. 2.16. Pressure profile for the two-bubble case (a) coarse mesh (322) and (b) fine mesh 
(1282). 

(a) (b) 
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Fig. 2.17. Line plot for the pressure field through the centerline along x-axis. 

 

Fig. 2.18. L2-convergence of the velocity field for single static bubble. 

2.5.4  Rising Bubble with Surface Tension 

The motion of a rising bubble is a moving interface problem. The material properties of 

the two immiscible fluids are taken from [20] and are presented in Table 2.1. The density and 

viscosity of the bubble is chosen to be less than that of the surrounding medium. The dimensions, 
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initial two-phase configuration, and the boundary conditions are shown in Fig. 2.19. The two fluids 

are initially at rest and the problem is driven by the buoyancy forces induced by the discontinuous 

material properties in addition to the surface tension that is applied along the interface. 

Table 2.1: Material properties for the Rising Bubble problem. 

 

 

The problem is modeled using the Navier-Stokes equations augmented with VMDC and 

surface tension formulation as presented in Section 2.3, and the level-set method is employed to 

track the evolution of the interface. In addition to the material discontinuity, the evolution of this 

problem depends on the surface tension which dictates the jump in the pressure field and the shape 

of the bubble as it rises. While higher values of surface tension help in reducing the interface 

distortion during the rise of the bubble, the high surface tension coefficient leads to larger jumps 

in the pressure field. As the location and shape of the interface evolve, the VMDC method 

maintains a sharp representation of the pressure discontinuity within a single element that the 

interface traverses. 

Material properties of the two fluids 

Viscosity lµ (surrounding medium) 1 

Viscosity bµ (bubble) 10 

Density lρ (surrounding medium) 1000 

Density bρ (bubble) 100 

Gravity 0.98 

Surface Tension 24.5 
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As the level-set field evolves the pressure discontinuity moves from one element to the 

next, which requires the local fine-scale enrichment to move along with the interface. The VMDC 

method naturally allows for this enrichment motion to occur due to the direct coupling between 

the enrichment functions used in the VMDC method and the level-set field itself. Therefore, 

enrichment is activated in the intersected elements and subsequently deactivated as the interface 

leaves these elements. 

 

 

Fig. 2.19. Rising bubble problem: Domain dimensions and boundary conditions. 

The simulation is run for 3 sec. with a fixed time step of 1
50t∆ =  which is a coarse step 

size as compared to the step size used in [20]. The shape of the interface at time points 0.6 t s= , 

1.2 t s= , 1.8 t s=  and 3 t s=  are shown in Fig. 2.20. In this simulation a 40 80×  mesh was used 

that corresponds to the coarsest mesh size used in the methods presented in [20].  

tΩ   

1Ω   

2Ω   
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Remark: The rising bubble problem has been run in [23] employing the anisotropic adaptive 

remeshing method and using a time step of 1
500t∆ =  and for the coarsest mesh size in [20] the 

time step used  was 1
640t∆ = . These two time steps are approximately 10 times smaller than that 

used in the present VMDC method. This numerical example shows that the enhanced stability 

afforded by the VMDC formulation results in significant cost effectiveness of the method. 

 

Fig. 2.20. Shape of the interface at 0.6, 1.2, 1.8 and 3 sec. 

Fig. 2.21 presents the vorticity magnitude as the bubble rises. To provide a quantitative comparison 

with the results presented in [20] we use time evolution of the center of mass 

2 2
 1 c d dΩ Ω= ∫ Ω ∫ ΩX x   of the bubble and the rising velocity of the center of mass 

2 2
 / 1 c d dΩ Ω= ∫ Ω ∫ ΩV v . We compare the VMDC method with the two methods in [20] that 

produce approximately identical results (TP2D and MoonMD) and therefore we use the plots of 

the later method in Fig. 2.22. The MoonMD method is an arbitrary Eulerian-Lagrangian method 

with grid motion and the VMDC coarse mesh shows close agreement with it for evolution of the 

center of mass in Fig. 2.22(a). Fig. 2.22(b) shows the comparison of the rising velocity of the 
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center of mass between the VMDC method and the MoonMD method. To illustrate the 

discontinuity capturing feature of the VMDC method for transient advective discontinuities, we 

present in Fig. 2.23 and Fig. 2.24 the warped pressure profile at different time steps. These figures 

highlight the sharp discontinuity in the pressure field and show the precise location of the interface 

sΓ  inside the elements intersected by the interface. The jump in pressure is not only captured in a 

single element, this feature of the method is maintained as the interface evolves the through layers 

of elements. 

 

Fig. 2.21. Magnitude of vorticity at 0.6, 1.2, 1.8 and 3 sec. 

 

Fig. 2.22. Evolution of center of mass of the bubble: (a) position and (b) rising velocity. 

(a) (b) 
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Fig. 2.23. Spatial distribution of (a) close up of pressure profile at 0.6 sec and (b) close up 
of the location of the interface sΓ  in the element. 

 

Fig. 2.24. Spatial distribution of (a) close up of pressure profile at 1.2 sec and (b) close up 
of the location of the interface sΓ  in the element. 

We want to emphasize that as compared to the methods presented in [20], no mass correction step 

has been employed in the present method. Still the total mass loss is within 3 %. This mass loss 

can be significantly reduced with time step refinement and an addition of a mass correction 

algorithm. However, such an algorithm is not implemented in the present chapter. 

2.5.5  Rayleigh-Taylor instability 

This section presents transient mixing of two immiscible fluids with different densities also 

known as the Rayleigh-Taylor instability problem. The two fluids are initially at rest with the 

denser fluid on top of the lighter fluid. Fig. 2.25 shows the schematics of the problem where the 

(a) (b) 

(a) (b) 
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dimensions are 1a =  and 4b = . The initial interface is given by ( )0.05cos 2y xπ=  dividing the 

domain into two sub-domains and slip boundary conditions are prescribed on all the boundaries. 

The material properties associated with each subdomain are given in Table 2.2. 

Table 2.2: Material properties for the Rayleigh-Taylor instability problem. 

 

 

 

 

 

The flow is modeled using incompressible Navier-Stokes equations, and the interface is 

evolved via the level-set advection equation. In this problem the dominant physical phenomena 

that govern the stability and accuracy of the simulation are the pressure and velocity field 

variations at the interface that are a function of (a) discontinuous density, and (b) discontinuous 

viscosity. These material parameter discontinuities lead to discontinuities in the velocity gradient 

and pressure field across the interface. To model these discontinuities without resorting to 

averaging schemes, we employ the stabilized two phase Navier-Stokes equations presented in 

Section 2.3. However, in this test case we do not consider the surface tension effects. 

The level-set method presented in Section 2.4 is used to track the interface and it helps 

avoid the use of a Lagrangian mesh which can break down under excessive element distortions 

and therefore would require continuous re-meshing to yield a viable computational grid. The 

Viscosity (top fluid) tµ  0.0135 g/(cm s) 

Viscosity (bottom fluid) bµ  0.0045 g/(cm s) 

Density (top fluid) lρ  3 kg/m3 

Density (bottom fluid) gρ  1 kg/m3 

Gravity 10 m/s2 
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enrichment idea in this method is local to the elements and does not increase the size of the linear 

system. Additionally, the enrichment function is easily formed using the underlying implicit 

interface field facilitated by the level-set evolution equation. This also allows for local enrichment 

that is only active in elements intersected by the interface and therefore adapts to the moving 

interface automatically. This method only slightly increases the computations in the local fine-

scale sub-problems over the intersected element, but without increasing the size of the global 

problem. 

 

Fig. 2.25. Rayleigh-Taylor Instability interface and domain dimensions. 

The simulation is run for 1.25 sec. with a fixed time step of 0.01t∆ =  and the instantaneous 

interfacial profiles at time points 0.5 t s= , 0.7 t s= , 1.0 t s=  and 1.25 t s=  are shown in Fig. 

2.26. The shape of the interface is compared with the data presented in [23] and a qualitatively 

good agreement is achieved using the VMDC method. In these simulations two meshes comprising 

32 128×  elements for the coarser mesh and 64 256×  elements for the finer mesh are employed. 

The grid size of the finer mesh is similar to the finer mesh in [23]. However, unlike the evolving 

anisotropic element representation with adaptive re-meshing used in reference [23] our 
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calculations are all performed on the first formed mesh. It can be appreciated that as the problem 

evolves, the interface topology becomes quite intricate, thereby making the first formed mesh 

fairly coarse for the simulation. The provision of the fine scale variational problem with enhanced 

enrichment is not only able to stabilize the method, it is automatically able to account for the 

physics which would otherwise be lost because of the spatial grid becoming relatively coarser to 

capture the physical features that are much refined as compared to those at the start of the problem. 

Table 2.3 presents the mass conservation property of the method for various time points 

for the two meshes, calculated in terms of the fluid area, during the evolution of the problem. The 

maximum mass loss after 1.25 sec. is 1.84% for the fine mesh and approximately 3% for the coarse 

mesh. 

Table 2.3: Normalized mass loss for the Rayleigh-Taylor instability problem. 

Time (sec) 

Normalized Mass Loss 

Coarse Mesh 

(32 X 128) 

Fine Mesh 

(64 X 256) 

0.70 0.0015 0.0011 

1.00 0.0086 0.0048 

1.25 0.0184 0.0328 
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Fig. 2.26. Shape of the interface at 0.5, 0.7, 1.0 and 1.25 sec. 

Fig. 2.27 presents the magnitude of the vorticity for the selected time points and highlights 

the evolving physical complexity of the flow. The velocity profile data for the coarse and fine 

mesh at 1.00t =  sec. and 1.25t =  sec. are shown in Figs. 2.28 and 2.29. 
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Fig. 2.27. Magnitude of vorticity for at 0.5, 0.7, 1.0 and 1.25 sec. 

 

Fig. 2.28. Velocity component yv  across the width at 0.375y = −  and 1.00sect = . 
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Fig. 2.29. Velocity component yv  across the width at 0.375y = −  and 1.25sect = . 

 

Fig. 2.30. Temporal evolution of velocity component yv  at spatial points A

( )0.28125, 0.375x y= − = −  and B ( )0.28125, 0.375x y= = −  for the fine mesh (64 256)× . 

Fig. 2.30 presents time evolution of the vertical velocity for two symmetric points in the 64 256×  

mesh. The close agreement between the two symmetric points is used as a measure of robustness 

and accuracy in time of the VMDC method. To provide insight into the evolving complexity of 
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the physics in this problem we have plotted the nodal values of the Reynolds number in Fig. 2.31. 

As time progresses, not only the Reynolds number increases rapidly, there is a steep spatial 

variation in the Reynolds number. These high gradients in the Reynolds number can initiate weak 

instabilities in the solution. This is compounded by the intricate interface topology that makes the 

level-set field deviate from the strict definition of the singed distance field, which can trigger 

another weak instability in the solution that can eventually make it hard for the method to converge. 

This issue is also there in the Lagrangian mesh methods [36, 42] that require repeated remeshing 

and the first order projection errors between successive meshes eventually catch up with the 

stability of the method thereby leading to non-convergence of the numerical method. 

 

Fig. 2.31. Spatial distribution of instantaneous local Reynolds number for the Rayleigh-
Taylor instability problem at 0.5, 0.7, 1.0 and 1.25 sec. 

Additionally, in Fig. 2.32 we compare the interface shape on a given mesh of 64 256×  

elements using the regularized or the averaging method versus the proposed VMDC method with 

sharp fine-scale enrichment features at 1.0t =  sec. We can see that the regularized method gives 

rise to artificial and erroneous interfaces within the lighter fluid. 
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Fig. 2.32. Interface profile at t = 1.0 sec. for (a) the VMDC method and (b) the interface 
regularized method. 
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CHAPTER 3 

A UNIFIED FORMULATION FOR COMPRESSIBLE 
INCOMPRESSIBLE MULTIPHASE FLOWS WITH 
CONVECTING INTERPHASE DISCONTINUITIES b 
 

 

 

 

3.1 Motivation 
 

Multiphase flows involving multiple fluid constituents that are governed by constituent 

specific balance laws and constitutive relations are invariably encountered in advanced 

engineering applications. Such problems are of great significance in micro-fluidics [11, 29, 31] as 

well as in biological fluid flows. In the design, processing, and manufacturing of modern 

engineered materials, multi-phase flows play a crucial role in evolving the material properties of 

the constituents as well as that of the final product. In injection molding of polymeric materials 

and in additive manufacturing with polymeric ink, chemical reactions that accompany these 

processes give rise to gaseous phase that results in the formation of bubbles. These bubbles evolve 

in shape and size till the time the liquid resin cures and jells into a solid phase. For these processes 

to be investigated in detail, robust numerical methods are required that can model the flow patterns 

and flow behaviors during the various manufacturing stages. These numerical methods also 

constitute the building blocks for simulation-based design of materials that can help in 

understanding the nonlinear instabilities [19, 40] that arise in complex flows. 
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A literature review reveals that most of the published work on multiphase flows has been 

limited to either incompressible two-phase flows or compressible two-phase flows. Among the 

methods that assume both the fluids to be incompressible include (i) Lagrangian methods [4, 16, 

35, 18] that require mesh moving techniques to account for interface evolution, or (ii) meshfree 

methods such as the Smooth-Particle Hydrodynamics (SPH) methods [4, 16, 18] that allow for 

particle motion to accommodate the evolution of moving interfaces. The SPH methods have also 

been used to model the discontinuities in the Kelvin-Helmholtz instability by adding artificial 

viscosity terms [4, 18]. It has however been reported in the literature that artificial viscosity does 

alter the evolution of instability at the interface. Although both methods allow for sharp 

discontinuities in the material properties across the interfaces, they have invariably been presented 

in the context of either (i) two-phase compressible fluids or (ii) two-phase incompressible fluids. 

In these works the word multiphase refers to the use of different constitutive equations for the 

discretely represented constituents. A drawback in employing such schemes is that modeling gas 

and liquid phases as incompressible does not allow for volume change in the gaseous phase which 

is nonphysical and restricts hydrodynamic compression of gas bubbles. On the other hand 

modeling both phases as compressible requires an equation of state to impose the incompressibility 

condition in the liquid phase, else mass conservation would not be satisfied in the liquid 

subdomain. Relatively recently, the SPH methods have been extended to model combined 

compressible-incompressible flows in a unified way (ICSPH) [18] with weakly compressible SPH 

in the compressible phase while enforcing incompressibility in the liquid subdomain via a 

projection-based formulation. Although SPH method allows for complex motions of the interface 

due to the meshfree nature of the numerical scheme, the projection-based formulations for 

incompressible regions have been reported to suffer from inaccuracies and inconsistencies that are 
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not fully understood. Within the Finite Volume framework, various methods have been proposed 

[7] to address inter-constituent coupling in multiphase fluids that utilize the ghost fluid method 

(GFM). In GFM, each phase domain is extended across the interface into a ghost subdomain of 

the same fluid, and subsequently the solution of the subdomain is cut at the interface, thereby 

achieving a sharply discontinuous solution. Other methods employing discontinuous Galerkin 

formulations [30, 32] and multi-integrated moments [37, 38] have also been proposed in the 

literature. 

A finite element method for unified compressible-incompressible system was introduced in 

[13, 14] and employed in [5, 12] for the modeling of two-phase flow of compressible gaseous 

phase interacting with an incompressible liquid phase. To account for the discontinuities in the 

viscosity and density across the phase boundaries and considering that density is no longer constant 

in the gaseous phase, we have developed the Variational Multiscale Discontinuity Capturing 

(VMDC) method [22]. In the current work we extend VMDC to multiphase flows and augment 

the formulation with a div-stabilization scheme that enforces element-wise incompressibility 

within the liquid phase while allowing for the compressibility effects in the gaseous phase as given 

by the corresponding equation of state. The VMDC method allows for sharp discontinuities in the 

pressure, velocity and density fields to be curtailed within the elements that are traversed by the 

interface, and without appearance of Gibbs phenomena or non-physical oscillations in the fields. 

This sharp DC capturing feature in our formulation [22] is in contrasts with other finite element 

methods that employ the unified compressible-incompressible formulation and assume a 

regularized variation of material properties and compressibility coefficients across the interface 

[5, 12]. The proposed method is then employed to study isothermal Kelvin-Helmholtz instability 
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to show the robustness of the new formulation and its applicability to outstanding fundamental 

problems of engineering interest. 

The structure of this chapter is as follows: Section 3.2 presents the strong form of the unified 

compressible-incompressible formulation. It then presents the VMDC formulation to stabilize the 

mixed field problem and to account for the discontinuities in material properties and 

compressibility coefficients. Section 3.3 briefly discusses the level-set method and the 

reinitialization process employed to model interface evolution along with a global mass 

conservation algorithm for problems involving incompressible fluids alone. In Section 3.4 we 

present several numerical test cases involving shrinkage and compression of bubbles and model 

the isothermal Kelvin-Helmholtz instability. In addition, a 3D simulation of bubble migration and 

merging under buoyancy and surface tension effects is presented to show the applicability of the 

method to problems of engineering interest. 

3.2 Compressible-Incompressible Navier-Stokes Equations 

This section presents the Navier-Stokes equations with discontinuous material properties 

across the phase boundaries. Let sdnΩ⊂   be an open bounded region consisting of two sub-

regions 1Ω  and 2Ω  separated by an interface sΓ  such that 1 2Ω = Ω Ω  and 1 2 0Ω Ω = , with 

piecewise smooth boundaries 1∂Ω  and 2∂Ω  where ( )1 2 \∂Ω = ∂Ω ∂Ω Γ  that do not overlap 

( )1 2 \ 0∂Ω ∂Ω Γ = . The phase interface is defined such that it does not necessarily conform to 

the element boundaries in the computational domain. The compressible Navier-Stokes equations 

for the conservation of mass and momentum including surface tension are: 

 ( ) 0                                                                         in 
t
χ

χ

ρ
ρ

∂
+∇ ⋅ = Ω

∂
v   (3.1) 
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 ( )                                             in p
tχ χ χρ ρ µ∂
+ ∇ ⋅ ⊗ − ∆ +∇ = Ω

∂
v v v v f   (3.2) 

 ( )2                                                                    on sp µ δκ −  = Γ n ε v n n  (3.3) 

where v  is the velocity field, p is the pressure field and χρ  is the density which is piecewise 

continuous within each sub-region and discontinuous across the interface. χµ  is the piecewise 

constant viscosity which varies sharply across the interface sΓ , and the subscript χ =1,2  

corresponds to the two sub-regions, respectively. ρ=f b is the body force is and the parameter δ  

is the surface tension coefficient. κ  is the curvature of the interface between the phases at a point 

and n  is the outward unit normal to the interface at that point. It is important to note that the 

surface tension term in (3.3) induces a jump in the pressure field that will need careful attention to 

develop a stable and convergent numerical method. 

 

3.2.1 Unified Compressible-Incompressible Formulation 

To develop a unified formulation, it is necessary to append to (3.1)-(3.3) an equation of state 

that defines the evolution of density as a function of pressure in the compressible sub-region of the 

domain Ω . We adopt the formulation in [13, 14] where the state equation is given as 

 
T

d dp
dt p dt

χ χρ ρ∂
=

∂
  (3.4) 

Substituting (3.4) in (3.1) yields 

 

 
1 0

T

p p
p t
χ

χ

ρ
ρ

∂ ∂ + ⋅∇ +∇⋅ = ∂ ∂ 
v v   (3.5) 
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which is an equation expressed in terms of the pressure field since density varies through 

dependence on pressure as given by the state equation. Equation (3.5) therefore constitutes the 

modified continuity equation where 1
p p

χχ

χ

ρ
β

ρ
∂

≡
∂

 is defined as the isothermal compressibility 

coefficient. This leads to a unified continuity equation:  

 0p
p p
t

χβ ∂ + ⋅∇ +∇⋅ = ∂ 
v v   (3.7) 

The value of the coefficients p
χβ  determines if the fluid is compressible ( 0)p

χβ ≠  or 

incompressible ( 0)p
χβ = . The sharp discontinuity in this coefficient across the phase boundaries 

can lead to instabilities in the pressure field that requires a stabilized discontinuity capturing 

method. In this work we employ the VMDC [22] method which is modified for the unified 

continuity equation.  

The standard weak form that accommodates the jump induced by the surface tension given in (3.3) 

is written as: 

 ( , ) ( , ) ( , ) ( , ) ( , ) ( , )t pχ χ χρ ρ µ δκ Γ+ ⋅∇ + ∇ ∇ − ∇⋅ = −w v w v v w v w w f w n  (3.9) 

 ( , ) ( , ) ( , ) 0p t pq p q p qχ χβ β+ ⋅∇ + ∇⋅ =v v   (3.10) 

where ( , ) ( ) d
Ω

⋅ ⋅ = ⋅ Ω∫  is the 2 ( )L Ω inner product where w is the weighting function for the 

velocity field, t t= ∂ ∂v v  is the time derivative of the velocity field, q  is the weighting function 

for the pressure field and tp p t= ∂ ∂  is the time derivative of the pressure field. The last term on 

the right-hand side of (9) is an interfacial term that is defined along the interphase boundary and 

will be evaluated along the discretized interfaces in the elements that are traversed by the 
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interphase boundary. Linear approximation is adopted to model discrete interfaces within the 

element, namely, a line in 2D and a surface in 3D. Subsequently, a triangulation of the traversed 

element is performed to obtain the integration sub-cells that are then used to evaluate the 

discontinuous functions. This triangulation scheme is briefly presented in Section 3.2.4. 

Remark: The density is neither constant nor uniform within the compressible sub-domain and 

varies as a function of the pressure field. In this chapter the state equation used is the ideal gas 

law which is enforced locally. Accordingly, density is calculated point wise at each integration 

point using the relation comp p RTρ = , where the universal gas constant is 287R = , and the 

reference temperature for the isothermal cases presented in the numerical section is 300T = (i.e. 

27o C). 

3.2.2 The refined variational multiscale problem 

In this section we employ the Variational Multiscale framework (VMS) [8, 23, 25, 26] to 

develop a stabilized formulation for the class of compressible-incompressible multiphase flows. 

These problems are amenable to Kelvin-Helmholtz instability induced because of velocity shear 

in a single fluid or due to velocity difference across the phase boundary sΓ . Kelvin-Helmholtz 

instability is a global phenomenon and numerical methods proposed to model this physical 

instability tackle it at the global mesh level. These methods however introduce mesh dependent 

parameters [19, 40]. This chapter takes a fundamental departure from this line of thought and 

attempts to address the Kelvin-Helmholtz instability directly at the element level. Using the 

variationally consistent fine-scale modeling method that is facilitated by the VMS framework [24, 

17], we extended [22] to stabilized methods with the provision for sharp internal layers across 

phase boundaries. Following along the developments in [22] we highlight the additional terms that 
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appear in the governing equations that permeate all through the variational framework, and 

subsequently appear in the fine-scale models. Accounting for these effects in the fine-scale fields 

and employing the notion of residual based stabilization directly over the sum of element interiors 

we derive a method that is stable and convergent. The VMDC stabilization also provides a means 

for the enforcement of interface conditions between the phase boundaries. Pressure is computed 

as a field variable in the incompressible domain where the density field remains constant. In the 

compressible region the evolving pressure dictates the evolution of density via the modified 

equation of state, as schematically shown in Fig. 3.1. The two equations of state that are operational 

across the phase boundary even within an element are triggered by the isothermal compressibility 

coefficient at the time of evaluation of element quantities via the sub-cell integration as discussed 

in section 3.2.4. In the SPH method on the other hand these conditions are imposed discretely 

along interphase boundaries [4, 18]. 

The VMDC method extended to the unified compressible-incompressible formulation 

provides a variational basis for interfacial coupling as well as interfacial stabilization. 

Consequently, sharp shifts in the governing system of PDEs [36, 15] from incompressible NSEs 

to compressible NSEs across the phase boundary along with sharp changes in the material 

coefficients of viscosity and density are addressed directly at the element level and without 

resorting to ad-hoc diffusive approximations of the interface. 
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Fig. 3.1. Interphase boundary and density evolution in the compressible phase. 

The velocity field and its corresponding weighting function is split into a coarse-scale and 

fine-scale as follows: 

 ( ) ( ) ( ), , ,t t t′= +v x v x v x   (3.11)

 ( ) ( ) ( )′= +w x w x w x   (3.12) 

In the nonlinear case this scale separation is to be viewed in the context of projections where 

( , ) ( , )t t=v x v x  is the projection of the total solution on to the space of resolvable or computable 

scales  . The fine scales ( , )t′ ′∈ =v x     such that ′= ⊕    where  and ′  are L2 

orthogonal, and ⊕  is a direct sum decomposition on the admissible spaces of functions. We 

substitute (3.11) and (3.12) into (3.9) and (3.10) to yield two sub-problems for the unified 

multiphase formulation. 

Coarse-scale sub-problem: 

 
( ) ( ) ( )( ) ( ) ( ) ( )( )
( )

, , 2 , , ,

, ( , )

s
t t pρ ρ µ ρ

ρ δκ Γ

′ ′ ′ ′+ + ∇ + − ∇⋅ + + ⋅∇ +

= −

w v w v w ε v v w w v v v v

w b w n
  (3.13) 

incompΩ   

compΩ   
( , ) and 

(Incompressible)

o
p t ρ ρ=x

  

( , ) ( , )

(Compressible)

p t tρ→x x
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 ( , ) ( , ( ) ) ( , ( )) 0p t pq p q p qβ β ′ ′+ + ⋅∇ + ∇⋅ + =v v v v  (3.14) 

Fine-scale sub-problem: 

 
( ) ( ) ( )( ) ( ) ( ) ( )( )
( )

, , 2 , , ,

, ( , )

s
t t pρ ρ µ ρ

ρ δκ Γ

′ ′ ′ ′ ′ ′ ′ ′ ′+ + ∇ + − ∇⋅ + + ⋅∇ +

′ ′= −

w v w v w ε v v w w v v v v

w b w n
 (3.15) 

where the density, viscosity and compressibility coefficient vary sharply as a function of the level-

set field ( , )tφ x  which is defined as a singed-distance function.  

 
1 2

1 2
1 2

(1 )
(1 )

(1 )p p p

ρ ρ ρ
µ µ µ

β β β

= − +


= − + 
= − + 

 
 

 

  (3.16) 

and ( )φ  is the Heaviside function defined in terms of the level-set field ( , )tφ x  which is 

positive inside domain 1χ =  and negative in the second domain 2χ = . 

 
( )    in  2

1    if  0
( )                       ( ) ( )      in  1

0    if  0
0        on  s

d
d

χ
φ

φ φ χ
φ

− =
≤ = = = >  Γ

x
x x   (3.17) 

We now turn to obtaining an analytical solution for the fine-scales by expanding the fine-scales 

via bubble functions that are non-zero within the element and zero on the element boundaries (i.e. 

0  on e′ ′= = ∂Ωv w ). This choice localizes the discrete problem to a set of local problems over the 

sum of element interiors. Without loss of generality in this work we have used quadratic bubble 

functions though other admissible options can also be employed. Moreover, we employ the VMDC 

method [22] for enriching the bubble functions to capture the discontinuities in the velocity and 

pressure fields across the interphase boundaries. In the context of the unified compressible-

incompressible formulation this allows the modeling of two fluids with significantly different state 
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equations that are activated via the discontinuous compressibility coefficients. The fine-scale 

velocity and corresponding weighting function are given as: 

 ebψ′ =v β   (3.18) 

 ebψ′ =w γ   (3.19) 

where eb  is the element bubble function, while the enrichment function ψ  is defined with the help 

of the signed distance field φ  that is used to track the location of the interface. Therefore, the 

enrichment is given as ( )ψ φ φ=  which allows for weak discontinuity in the velocity field and 

sharp discontinuity in the pressure field. Since the fine-scale problem (3.15) is time-dependent, its 

linearization yields a system of ordinary differential equations (ODEs) that requires an ODE 

integrator or time stepping method. Although one can use any appropriate time integrator for 

ODEs, we employ the generalized alpha method and substitute (3.18) and (3.19) into (3.15) to 

derive the fine-scale model. 

  ( ) ( ) ( ) ( )
1

1 1 ˆ, , ,
f

e e e e e e
ST

m
nn n fb b b b b b

t α
αψ ψ ψ ψ α ψ ψ
γ

−

Γ++ +
   ′ = = − + −   ∆ 

v x β τ r r   (3.20) 

where the residual vectors and stabilization tensor τ̂  are defined as: 

 

( )

( ) ( ) ( ) ( )
( ) ( )

2 2

2

ˆ

     

t

ST

e e e e e e T e

e e e e e e

p

b d b b d b d

b b d b b d

µ ρ ρ
δκ

µ ψ µ ψ ψ ψ

ψ ψ ψ ψ

≡ − ∇⋅ +∇ + ⋅∇ −

≡

≡ ∇ Ω + ∇ ⊗∇ Ω + ∇ Ω

+ ⋅ ∇ Ω + ⋅ ∇ Ω

∫ ∫ ∫
∫ ∫

r v ε v v v b
r n

τ I v

v v

  (3.21) 
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In this work we have chosen to circumvent the fine-scale solution procedure and suffice with 

the presentation of the final form for the fine scales. Interested readers are referred to [22] for full 

derivation of the method. 

Remark: In [22] the surface tension force was transformed into a discontinuous volume force. In 

the present work surface tension is applied at the discretized interface which preserves this term 

in the fine-scale sub-problem. This introduces an interfacial stabilizing term in the representation 

of fine scales in the elements that are traversed by the interface. 

3.2.3 Embedding the Fine-Scale model into the Coarse-Scale formulation 

Now we embed the fine scale solution (3.20) into (3.13) and (3.14) to obtain the stabilized 

coarse-scale formulation. The formal statement for the unified formulation of the Navier-Stokes 

equations with discontinuity capturing features is: Find ( , )tv x and ( , )p tx  such that for all ( )w x  

and ( )q x : 

 ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ), , , , , , ,Uni Uni Uni
Gal VMDC div Gal STB q p B q p B F F+ + = +w v w v w v w w   (3.22) 

The Galerkin terms and body force are given as 

 
( ) ( )( ) ( ) ( ) ( )( )

( ) ( )
, , , , , 2 ,

                                  , , ( , ) ( , )

Uni s
Gal t

p t p

B q p

p q q p q p

ρ ρ µ

β β

= + ⋅∇ + ∇

− ∇⋅ + ∇ ⋅ + + ⋅∇

w v w v w v v w ε v

w v v
  (3.23) 

                                        ( ) ( ),GalF ρ=w w b   (3.24) 

and the VMDC stabilization for the compressible-incompressible formulation is 
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( ) ( )( )
( )

( )( ) ( )

2 ,
, , ,

2 ,

                   

Tm
pUni

VMDC
e

t ST

q q p
tB q p

p b

α ρ µ β
γ

µ ρ ρ ψ δκ
Γ

 − + ∇ ⋅ + ⋅∇ + ⋅∇ +∇ + ∇ ∆=  
 − ∇ ⋅ +∇ + ⋅∇ − + 

w ε w v w v w
w v

τ v ε v v v b τ n
 (3.25) 

The stabilization tensors that are extracted from (3.20) are 

 
( ) ( )

( )

1

1

ˆ, ,1

ˆ,

e e e em
f

e e em
ST f

b b b b
t

b b b
t

αψ ψ ψ α ψ
γ

αψ ψ ψ α
γ

−

−

 
≡ + ∆ 

 
≡ + ∆ 

τ τ

τ τ

  (3.26) 

The interface surface tension force is given as 

 ( ) ( ),STF δκ
Γ

= −w w n   (3.27) 

In our previous work involving incompressible flows [22] we had added a div-stabilization term 

for the conservation of global mass in the incompressible fluid in order to help enforce element-

wise incompressibility condition. However, with the unified compressible-incompressible 

formulation the residual of the continuity equation is no longer ∇⋅v  and therefore we substitute 

the residual presented in (3.7) to enforce mass conservation in the locations that corresponds to the 

incompressible liquid phase and allow for volume change within the compressible gaseous region. 

 ( ) ( )( ), ,Uni
div c p tB p pτ β= ∇ ⋅ + ⋅∇ +∇⋅w v w v v   (3.28) 

As in [22] the div-stabilization parameter cτ  is 

 ( ) 1
c Mτ τ −= ⋅G G   (3.29) 

where G  is defined in terms of the gradient of the mapping T
x x= ∂ ∂G ξ ξ  and Mτ  is given as 
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 ( )1 trace
3Mτ = τ   (3.30) 

and τ  is given in (3.26a). 

The system presented in (3.22) provides the variational formulation for the unified 

compressible-incompressible multi-phase fluids incorporating VMDC stabilization. This 

formulation accommodates equal order interpolation and is endowed with discontinuity capturing 

features. 

3.2.4 Numerical Integration via Sub-cell Method 

While evaluating integrals of discontinuous functions via adaptive quadrature [27] is adequate 

for 2D problems [22], the computational cost for 3D problems becomes exceedingly high because 

of the large number of integration points involved. For the application of the method in 3D, we 

utilize the integration sub-cell algorithm [20] in elements that are traversed by the interface along 

with discrete interface representation and tessellation of these elements. We present general ideas 

in the context of trilinear hexahedral element; however the method is not limited to this element 

type alone. This process is carried out in three steps. The first step is to utilize the nodal values of 

the level-set field ( , )tφ x  to identify the intersection points along each edge if the value of level-

set at the two nodes sharing the edge differ in sign as given by the formula 1 2 1

2 1

( )
int 1 ( )

x xx x φ
φ φ

−
−= − . After 

all intersection points are identified a Delaunay tessellation is performed to generate sub-cells 

(triangles in 2D and tetrahedrons in 3D) where integration points are defined in terms of reference 

coordinates ,   and ξ ζ η . The weights of the integration points are then rescaled based on the 

volume ratio between the sub-cell and the hexahedron element. In addition, the intersection points 

are used to form a linear discrete representation of the interface (line in 2D and plane surface in 
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3D) which is also triangulated to generate corresponding integration points for surface integrations. 

This algorithm allows for the evaluation of the discontinuous integrals with significantly less 

integration points compared to the brute-force adaptive quadrature and does not require a tolerance 

criterion either. Hence, this algorithm is much more suited for larger simulations in 3D due to its 

cost effectiveness in terms of total number of integration points per tessellated element. 

3.3 The Level-Set Method 

To track the phase interface evolution, we employ the well-established level-set method [2, 3]. 

In the level-set method the interface is tracked via a signed distance field ( , )tφ x  that is transported 

through an advection equation. 

 0tφ φ+ ⋅∇ =v   (3.31) 

where the velocity v  is obtained from the solution of the Navier-Stokes equation presented 

in section 3.2. As a result of this choice, the transport velocity may be highly complex and 

thus a stabilization is required to obtain a non-oscillatory solution of the level-set equation. 

As presented in [22] we employ the VMS formulation along with the generalized alpha 

method for time discretization. The VMS stabilization induce time-dependent stabilization 

parameter τ   that results in accurate non-diffusive stabilization. During the evolution of the 

interface, and due to the accumulation of numerical noise in the level-set field, this field may 

slowly deviate from its original signed distance definition. Therefore, a reinitialization 

process is periodically required during the simulation to retain the signed distance definition 

of the φ  field which is achieved via an elliptic reinitialization step as presented in [2]. We 

refer readers who are interested in the VMS stabilization of the level-set equation to [22] and 

those interested in the elliptic reinitialization process to [2] for more information. 
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3.3.1 Mass Conservation Algorithm 

The level-set equation given in (3.31) is a non-conservative advection equation that does not 

conserve the mass of the regions separated by the interface. Although the VMDC method was 

shown to have low mass loss error, even for complex interface flows [34], we employ a mass 

conservation algorithm to satisfy global mass for cases of incompressible flow in both regions. 

In these problems of the numerical section we employ the algorithm presented in [34] where 

a correction term 1 1 1( )n int n n
corr g gV V Sφ + + += −   is employed to shift the level-set field after the 

transport and reinitialization processes are performed for a time step. In this correction int
gV  

is the initial volume of the gas phase at the beginning of the simulation, which is used as a 

reference for correction and 1n
gV +  is the gas phase volume at the current step after the transport 

and reinitialization and 1nS +  is the interface area of the current step. This correction is added 

to the level-set field before the time step is advanced 1 1 1n n n
New uncorr corrφ φ φ+ + += +  . This algorithm 

provides global mass conservation even under large interface deformations and bubble 

merging problems as presented in the numerical section. 

3.4 Numerical Section 

In this section we present 2D and 3D problems utilizing the unified compressible-

incompressible formulation with and without surface tension. Three types of test cases are 

explored to analyze the mathematical attributes of stability and accuracy of the method: (i) mixed 

compressible-incompressible flows, (ii) incompressible flows of two immiscible fluids, and (iii) 

flow of compressible fluids. Another feature investigated in the numerical section is the cell-

cutting method for sub-cell integration inside the elements that are traversed by the interface. This 
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method provides accurate integration of discontinuous functions in the variational formulation 

without resorting to an extensively high number of integration points nor to adaptive integration 

schemes that result in increased computational time. 

An important technical issue that arises in the coupled modeling and analysis of compressible 

and incompressible fluids across a common interface is related to the difference in densities and 

density evolution of the two mediums as it affects the speed of sound in each medium. In addition, 

a second pronounced feature is that of compressibility across the interface. These features give rise 

to the well-known Kelvin-Helmholtz instability [19, 40]. Typical methods to solve this class of 

problems involve simplifying assumptions by considering either a compressible or an 

incompressible flow of the bilayer fluids that are undergoing shearing velocity at phase boundary. 

The method developed in this chapter addresses this issue right at the element level via a 

variationally consistent fine-scale enrichment that couples two different PDEs across the 

interphase boundary even at the element level. It therefore provides a unique method to couple 

both compressible and incompressible fluids that exist in the traversed elements. We embed 

discontinuity in the fine scale shape functions and it gives rise to stabilization terms in (3.25). The 

bubble translation case presented in section 3.4.1 is employed to analyze the cut elements and to 

plot tr( )τ  for a generic element during the translation process. In problems 4.2 and 4.3 where air 

and water are modeled the corresponding isothermal compressibility coefficient used is 

69.8692327 10a
pβ

−= ×  Pa-1 (in air) and 90.444 10w
pβ

−= ×  Pa-1 (in water). The VMDC method is 

extended to model 3D incompressible flows involving complex interface motion including 

translation and merging of bubbles. Finally, the Kelvin-Helmholtz instability problem which is 

significant in several applications and tracks physical instability in the fluid system is analyzed.  
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3.4.1 Bubble translation with periodic BCs 

This section presents a numerical test case of a single bubble translating across a section of a 

pipe under a parabolic mean flow. Objective of this test case is to evaluate the proposed method 

with and without surface tension along the interface as it passes across the periodic boundaries. 

This would allow for the simulation of long term flow behavior and hydrodynamic and mass 

transfer characteristics of slug flow in pipes. These flows contain dispersed small bubbles that give 

rise to gas-liquid interfaces of different length scales [39, 21]. In these flows the unique aspects of 

the problem are primarily observed around the moving and deforming bubbles. Simulating such 

problems without the need for discretizing the entire length of the pipe significantly reduces the 

computational cost. The problem description shown in Fig. 3.2 is a biunit domain with periodic 

boundary conditions in the x-axis direction. A bubble of radius 0.2R =  is placed in the center of 

the domain at time ot . The density inside the bubble is 1bρ =  and density in the surrounding liquid 

is 1000lρ = . The viscosity inside the bubble is 0.1bµ =  while in the surrounding medium is given 

as 10lµ = .  

 

Fig. 3.2. Translating bubble: problem domain and boundary conditions. 



86 
 

The problem is modeled using three different mesh sizes 202, 402, and 802 where we track the 

migration of the bubble under a parabolic horizontal velocity profile applied at the inflow boundary 

with a maximum value of 0.25xv =  at 0.5y = . The time step employed is 0.05t∆ =  for all mesh 

sizes and the model is simulated until the bubble is approximately back to its initial position. This 

test is considered both with and without surface tension effects. 

 

Fig. 3.3. Interface evolution without surface tension: (a) 1.2t =  (b) 1.8t =  and (c) 3.0t =   

 

Fig. 3.4. The contour of (a) trace of stabilization tensor τ  within a single traversed element, and 
(b) the location of the plotted element that is highlighted with dashed line in the 202 mesh. 

(a) 

(a) 

(b) (c) 

(b) 
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Fig. 3.5. Comparison of (a) adaptive integration and (b) sub-cell integration and (c) the 
triangulation of an element. 

Fig. 3.3 shows the profiles of each mesh at different time steps where Fig. 3.3(b) presents a 

step during which the bubble is crossing the periodic boundary. Mass conservation in section 3.3.1 

was not activated in this problem so as to assess the intrinsic mass conservation capability of the 

method as bubbles pass through the periodic boundary. After a cycle of translational flow, the 

bubble is deformed into the parabolic shape as that of the inflow velocity profile. The mass loss 

for each mesh is 4.26%, 2.02% and 0.81% for the meshes 202, 402, and 802 respectively. The 

convergence of the mass conservation to the original mass as the mesh is refined shows that the 

proposed method has a variational structure that helps achieve better conservation properties with 

refinement. In addition, in Fig. 3.4 we show a contour of the values of the trace of the stabilizing 

tensor and how it varies within a single element traversed by the interface. In Fig. 3.4(a) the effect 

of the enrichment is apparent through the skewed value of tr( )τ  such that each section of the 

intersected element accounts for the stability of a different fluid. A comparison is drawn in Fig. 

3.5 showing the difference in density of integration points and hence computational cost between 

the adaptive integration algorithm [27] and the sub-cell integration technique [20] employed in the 

proposed method. As the former algorithm leads to an extensive number of integration points when 

(a) (b) (c) 
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high accuracy is needed, the sub-cell technique produces approximately 99 % less integration 

points with comparable accuracy as shown in Table 3.1. 

Table 3.1. Comparison of computational cost via integration points for two quadrature 
generation algorithms 

 

 

In Fig. 3.6 we show the weak discontinuity in the pressure field for the case without surface 

tension while in Fig. 3.7 the pressure jump across the interface is shown due to surface tension 

effects with a coefficient of 10δ =  captured sharply across a single element on both sides of the 

periodic boundary. 

Quadrature Method 
Adaptive integration 

(ref. [27]) 

Dense Gaussian 

integration 

Sub-cell integration 

(ref. [20]) 

Generation 

Algorithm 

Compare 3-point 

Gauss rule with          

8-point Gauss rule 

with octree subdivision 

20-point Gauss rule 

for brick element 

Triangulation of 

intersected elements 

Tolerance of 

integration accuracy 
61 10−×  NA NA 

Resulting number of 

integration points 
137589 8000 1560 
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Fig. 3.6. Pressure profile at 1.8t =  for the meshes (a) 202, (b) 402 and (c) 802 (without surface 
tension). 

 

Fig. 3.7. Pressure profile at 1.8t =  for the meshes (a) 202, (b) 402 and (c) 802 (with surface 
tension). 

3.4.2 Bubble shrinkage under applied pressure. 

 

This problem presents the case of a uniformly shrinking air bubble because of the 

compressibility of the gaseous phases under high applied pressure. The problem is defined on a 

square domain of side length 0.1 m with an initial circular air bubble of radius 0.03R = m with 

non-homogeneous inflow boundary conditions as shown in Fig. 3.8. 

(a) (b) (c) 
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Fig. 3.8. Configuration and inflow conditions for the shrinkage problem. 

The gaseous bubble is surrounded by water (considered incompressible) and is compressed 

uniformly form all directions with an inflow velocity of 0.0025 ms-1 prescribed along all the 

boundaries. The pressure is initially set equal to zero all through both domains and the density of 

water is held at a constant value of 1000wρ =  kgm-3, while the initial density of the bubble is 

0 1.1768aρ =  kgm-3. The density of the air bubble evolves following the ideal gas law 

1 0 /n
a a p rTρ ρ+ = +  where 287r =  is ideal gas constant, 300T =  is the ambient temperature, and 

p  is the kinematic pressure. The problem is run using two mesh sizes 322 and 642 with a time step 

of 0.01t∆ =  used for both the meshes. In Fig. 3.9 we show the evolution of the shape and volume 

of the bubble as it shrinks at different time levels on an underlying fixed mesh of 642 elements. 
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Fig. 3.9. Bubble shrinkage under external pressure field. 

 

Fig. 3.10. Density and bubble width evolution at 0.5y =  over 5 different time steps as the bubble 
shrinks. 
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Due to the incompressibility of the water surrounding the bubble the water density does not 

evolve in time, however in Fig. 3.10 we track the density evolution within the bubble as evaluated 

via the ideal gas law at different time step. Fig. 3.10 shows the decrease of the bubble width as it 

shrinks over time represented by the dashed line, while the density increases as the volume of the 

bubble decreases as expected. This shows the incorporation of volume and density evolution at the 

same time due to the unified compressibility formulation. As the bubble shrinks, the pressure 

inside the cavity increases nonlinearly as shown in Fig. 3.11. The bubble density asymptotes to a 

very high value up to the collapses of the bubble at 2.82 sec. This value is determined via the 

analytical expression of the density given as 2
0 0.001( ) / (1 )exact t

a a R
t

π
ρ ρ= − . The corresponding exact 

pressure is calculated via the ideal gas law and hence we present a comparison of the present 

numerical method with the analytical pressure along with the numerical solutions of other methods 

in the literature in Fig. 3.11. The pressure evolution with two mesh sizes using the proposed 

method is shown to better capture the pressure evolution in comparison with [9, 12] where a finite 

volume framework is employed coupled with a conservative volume of fluid method to track the 

interface. The present method is also shown to converge to the analytical solution with mesh 

refinement as opposed to the remeshing technique presented in [12] which overestimates the 

pressure using an evolving mesh with 10,000 elements. Fig. 3.12 shows the optimal convergence 

of the error in the pressure field as the numerical domain is refined at a specific time step. Hence 

the method is shown to retain the variational convergence features even for such a nonlinearly 

evolving problem. 
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Fig. 3.11. Pressure evolution inside the bubble. 

 

Fig. 3.12. L2-norm of the pressure error at time step 0.65t = . 
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Remark: It is important to not that the time step used in the present method is approximately 10 

times coarser than that used in [9, 12] which indicates the cost effectiveness of the proposed 

numerical method. 

3.4.3 One-sided compression of bubble 

This section models one-sided compression of an air bubble in a water cavity. The gaseous 

bubble has a radius of 0.25r =  and is contained within a closed square cavity with side length of 

1m that is filled with water. The dotted boundaries in Fig. 3.13 represent the walls enclosing the 

cavity with slip boundary conditions, and the inlet is shown to be on the left side at 0.25 0.75y≤ ≤

. The inflow velocity along this open region is given as 2 3
16( 0, ) ( ) 100xv x t y y t= = − − +  which 

leads to an analytical volume reduction of the bubble given by 2100
16 96( ) t

aV t π= − . The time step used 

is 0.01t∆ =  sec. for two mesh sizes of 502 and 1002. The pressure in the domain is set to an initial 

value of 5( 0) 10p t = = . The effect of gravity is ignored, so the pressure grows uniformly in the 

surrounding liquid. 

 

Fig. 3.13. Configuration and inflow conditions for one-sided compression problem. 
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In Fig. 3.14(a) and Fig. 3.15(a) we show the level-set field corresponding to the shape of the bubble 

at different two different time steps on top of the velocity magnitude profile. Fig. 3.14(b) and Fig. 

3.15(b), show the velocity contour on the profile. As a virtue of the discontinuity capturing feature 

of the formulation, the velocity is shown to have a weak discontinuity across the single layer of 

elements that are traversed by the interface. A volume evolution obtained via the present method 

is compared in Fig. 3.16 with the analytical solution and other numerical method [5, 12]. In both 

502 and 1002 meshes the present method is shown to better capture the volume evolution in 

comparison to where the present method employs a sharp discontinuity of the compressibility 

coefficients and material properties instead of the regularization technique employed in [5, 12]. In 

Fig. 3.17 we present the shape evolution of the bubble as it is compressed at successive time steps. 

Fig. 3.18 shows the spatial and temporal evolution of the divergence of the velocity field, which 

is an indicator for the compressibility of the fluid. As the bubble is compressed, the divergence of 

velocity within the bubble increases while the 0∇⋅ ≈v  is consistently maintained within the 

surrounding incompressible medium. In addition, this sharp difference is shown to be independent 

of the mesh as it is not evolved to capture such discontinuity in the flow. 

 

Fig. 3.14. Warped magnitude of the velocity field at 0.16t =  sec: (a) Shape of the level-set, and 
(b) Contour of velocity magnitude. 

(a) (b) 
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Fig. 3.15. Warped magnitude of the velocity field at 0.33t =  sec: (a) Shape of the level-set, and 
(b) Contour of velocity magnitude. 

Remark: The mesh used in this problem is a fixed mesh. The enhanced accuracy in the calculation 

of the volume as a function of time is primarily due to the capability of the variational discontinuity 

capturing method to accurately model the jumps within one element. Moreover, the adaptive mesh 

evolving technique used in [12] employs two meshes, a coarse mesh with 3579 elements and a fine 

mesh with 12,548 elements. 

(a) (b) 
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Fig. 3.16. Comparison of the volume reduction with the analytical solution and other numerical 
methods. 

 
Fig. 3.17. Evolution of the interface at different times. 
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Fig. 3.18. Magnitude of the divergence of velocity field.  

3.4.4 Merging of 3D bubbles with surface tension 

Merging of convecting bubbles poses a challenge for numerical methods due to the intricacy 

of the interface evolution during the merging process [1, 10]. In this section we present a case of 

merging of two misaligned air bubbles with surface tension effects that are being convected due 

to buoyancy effects. The problem is modeled employing the unified formulation with a value of 

zero for the isothermal compressibility coefficient in both phases. This reduces the unified 

formulation to an incompressible two-constituent form so that we can compare our computed 

results with published data under same modeling assumptions as that in the literature. This problem 

is important in validating the robustness of the method for modeling complex motion of the 

interface.  Two spherical bubbles of same volume ( 0.5R = ) are slightly misaligned where the 

lower bubble is centered at ( 1.5, 1.5, 1.0)x y z= = =  and upper bubble at 

( 1.5, 1.75, 2.25)x y z= = =  in a domain of 4
3[0, ] [0, ] [0, ]L L LΩ = × ×  where 3L = . The top 

boundary is modeled as an outflow boundary while all other boundaries of the domain are defined 

as non-penetration boundaries. The two bubbles constitute one phase and have same density and 

viscosity which is given as ( 30.04 kg/m  ,  0.005 kg/msb bρ µ= = ). The surrounding medium is the 

second constituent that has different values of density and viscosity (



99 
 

31.0 kg/m ,  0.1 kg/msm mρ µ= = ). Bubbles rise because of buoyancy effects and gravity driving 

this problem is chosen as 10g =  ms-1 which is applied in the z-direction. The surface tension 

coefficient is selected 0.2δ = . The mesh employed for this problem is comprised of 30 30 40× ×  

hexahedral elements with a constant time step of 0.001t∆ = . A literature review reveals that 

qualitative comparison of interface shape evolution has been employed as a measure for validating 

the method [1, 10]. Figure 3.19 presents the interface for different time steps which is in close 

agreement with the shape of the interface reported in [1]. 
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Fig. 3.19. Shape of the interface at different time levels: (a) 0.125t s= , (b) 0.25t s= , (c)
0.35t s= , and (d) 0.4t s= . 

(c) (d) 

(a) (b) 
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Fig. 3.20. Pressure profile at different time levels: (a) 0.125t s= , (b) 0.25t s= , (c) 0.35t s= , and 
(d) 0.4t s= . 

Figure 3.20 shows pressure profile at different time levels with pressure field projected on 

the surface of the bubbles along with cross sectional view of the pressure field in the surrounding 

fluid. Figure 3.21 provides internal view of the pressure profile at multiple cut planes along the 

three axes for two different time levels. The pressure discontinuity that arises due to surface tension 

effects is captured within a single layer of elements in all spatial directions and for the two time 

(c) (d) 

(a) (b) 
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points. These figures show the robustness of the method in accurately capturing the discontinuities 

within a single layer of elements in higher dimensions. 

        

                                 

Fig. 3.21. Pressure profiles along multiple cut planes in the 3D domain at time levels:                          
(a) 0.25t s= , (b) 0.35t s= . 

(b) 

(a) 
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Remark: It is notable to specify that the current method allows for the reduction of the number of 

elements compare to previously presented methods in [1, 10]. This is apparent as we use a coarse 

mesh with nearly 5 % the number of elements used for the same problem in [1]. 

 

3.4.5 Kelvin-Helmholtz Instability 

In this section we present coupled compressible-incompressible flow that gives rise to the well-

known Kelvin-Helmholtz instability. This instability arises due to shearing velocity across the 

interface between the two fluids that have discontinuous material properties and different 

governing equations for each constituent. The biunit domain [0,1] [0,1]Ω = ×  is divided into a 

middle strip that lies between 0.25 0.75y< <  and is comprised of a denser incompressible fluid 

that is flowing with a uniform initial velocity in the x-direction of magnitude 0.5xv = − . On either 

side of this middle strip (0 0.25,  0.75 1)y y< ≤ ≤ <  lies the lighter compressible fluid which is 

initialized with a uniform velocity in the opposite direction, i.e., 0.5xv = . The instability at the 

interface is initiated via a perturbation to the velocity in the y-direction given as: 

 
| 0.25|

|(1 ) 0.25|

     0 0.5
sin(2 )

     0.5 1.0

y

y y

e y
v v x

e y
δ π λ

− −

− − −

 ≤ <
= ×

≤ ≤
  (32) 

where the perturbation amplitude is 0.025vδ =  and the wavelength is 1/ 6λ = . The density in the 

incompressible domain is set equal to 1 2ρ = and the density in the compressible domain is 2 1ρ = . 

This 2:1 ratio in density has been chosen to allow for the instability to evolve into a vortex as high 

ratios have been shown to suppress such an evolution of the disturbance [33]. The viscosity for 

both fluids has been chosen to be 0.0005µ =  to reduce the role of viscosity in the suppression of 
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instability. The Eulerian computational domains consists of 2002 and 4002 elements with a time 

step of 0.0125t∆ = .  

Fig. 3.22 shows interface evolution for various time points during the initial stage with an 

apparent evolution of the interface that grows into vortices along the interface. These figures show 

the evolution of the instability in the full nonlinear regime and the rolling vortices can clearly be 

seen. The proposed VMDC method embedded with stabilized terms for multiphase flows together 

with level-set based capturing of the interface successfully captures the evolving instabilities all 

through the nonlinear regime. The corresponding vorticity is shown in Fig. 3.23 where the 

magnitude and vortex formation are also shown to evolve with time. To examine the evolution of 

the instability during the initial stages a comparison with the linear stability theory is presented in 

Fig. 3.24. Within the range from 0t =  to 0.15t =  the evolution of interfacial disturbance follows 

the trend given by the linear stability theory. Furthermore, in the linear regime the error stays 

curtailed within the element characteristic length 1/h x= ∆ . However, as noted in reference [18] 

departure from the linear instability theory is expected as the instability evolves further into the 

nonlinear regime. 
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Fig. 3.22. Interface evolution at different time steps: (a) 0.5t s= , (b) 1.0t s= , and (c) 1.5t s= . 

(a) (b) 

(c) 
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Fig. 3.23. Vorticity magnitude at different time steps: (a) 0.5t s= , (b) 1.0t s= , and (c) 1.5t s= . 

(a) (b) 

(c) 
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Fig. 3.24. Interface disturbance evolution comparison with analytical stability estimate. 

In Fig. 3.25 at three different time steps we show local Reynolds number with pointwise 

variation and jumps across the interface. In Fig. 3.25(a)-(c) we see the evolution of the jump of the 

Reynolds number across the interface with sharp jumps captured with single elements via the 

proposed method. In Fig. 3.25(d) the profile jumps are shown at the interface despite the relatively 

high variation and complex interface structure.  

 

10
h   
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Fig. 3.25. Local Reynolds Number evolution across the domain at different time steps: (a)
0.5t s= , (b) 1.0t s= , and (c) 1.5t s=  and a close-up of the warped Reynolds number in (d) at 

1.5t s= . 

 

 

(a) (b) 

(c) (d) 
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CHAPTER 4 

A STABILIZED DISCONTINUITY CAPTURING 
FORMULATION: COUPLED MULTIPHASE FLOW WITH 
SOLUTE MASS TRANSFER AND PHASE CHANGE EFFECTS 
 

 

 

 

4.1  Motivation 

In [11] we employed ADE to develop a stable method with provision for developing and 

capturing steep gradients over any given set of elements that are traversed by discontinuity which 

is motivated by the level-set field. The diffusivity of the ADE was assumed the same on either side 

of the interface. In the vector field equations of NSE, we embedded this feature via a novel fine-

scale model. Surface tension effects were embedded but in an equivalent volumetric sense. In this 

paper we extend the ADE model to accommodate a-priori discontinuity in the field and its gradient 

across, to account for the provision of jump in the diffusivity coefficients n the equations. With 

these features, this ADE model corresponds to convective-diffusive heat transfer across two 

immiscible fluids with different thermal conductivities. Accordingly, we need to enforce jump 

conditions both on the fields and its gradients that become a part of the governing system of 

equations. This same advective-diffusive model can also be used for evolution of concentration 

over subdomains with well-defined boundaries and markedly different diffusivity coefficients 

exist. We will first present a stabilized form for this model equation, and it will then be coupled 

with the NSE in Section 4.3 to develop a coupled thermomechanical system. We will employ this 

framework for concentration evolution in multiphase flow with well-defined inter phase 
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boundaries. We start with the general framework presented in [25] for Laplace equations and 

employed in [26] for diffusive heat transfer. 

In various areas of material processing such as additive manufacturing and injection 

molding of composite materials, material flow during these processes involves multiple aspects 

including the existence of dissolved solutes, thermal variation and phase change of the constituents 

of the material. This complex coupling of multiple physical phenomena controls the overall 

structural integrity, reliability and even the material porosity within manufactured parts. Modeling 

such processes in a coupled manner would mean the need of an accurate and consistent predictive 

numerical method that allows the investigation of the effects of each one of these variables on the 

final product. 

This chapter is organized as follows. In Section 4.2 we present the concentration evolution 

equation with interfacial condition enforcement via the Lagrange multiplier method. Section 4.3 

presents the coupled thermo-mechanical formulation showing the final form of the stabilized 

thermal equations, where the derivation is analogous to the concentration equations in the 

preceding section. In Section 4.4 we briefly discuss the employed interface tracking algorithm via 

the level-set method and in section 4.5 we present numerical problems that show the viability of 

the method for mass transfer and thermally induced phase change. 

 

4.2 The concentration ADE with embedded discontinuities 

This section considers the transient concentration advection diffusion problem with a 

discontinuous diffusion coefficient and strong discontinuity in the scalar field. The issue of sharp 

discontinuities has been studied in the literature and various DC techniques have been proposed. 

Interested reader is referred to [11, 16, 3, 4] and references therein. Our objective is to derive a 
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stabilized form that is based on a novel treatment of the fine-scale variational problem and we 

show that the stabilization terms thus derived naturally inherit a DC structure for modeling 

discontinuity while also enforcing jump conditions at the embedded interface. 

Let sdnΩ⊂   be an open bounded region consisting of two sub-regions 1Ω  and 2Ω  separated by 

an interface sΓ  such that 1 2Ω = Ω Ω  and 1 2 0Ω Ω = , with piecewise smooth boundaries 1∂Ω  

and 2∂Ω  where ( )1 2 \ s∂Ω = ∂Ω ∂Ω Γ
 that do not overlap ( )1 2 \ 0s∂Ω ∂Ω Γ =

. The advection 

diffusion equation over the composite domain is: 

               in tc c c fακ+ ⋅∇ − ∆ = Ωv   (4.1) 

 
 

          0             on scα ακ
Γ

∇ ⋅ = Γn   (4.2) 

 
 

                 0             on scα α Γ
= Γ  (4.3) 

where c  is the concentration field, κ  and   are piecewise continuous diffusivity and jump 

coefficient, respectively, which sharply vary across the interface Γ , α =1,2 . The discontinuity 

in (4.3) is analogous to the Henry’s law discontinuity which induces discontinuity in the scalar 

field for mass transfer problems. v  is the given flow velocity, which may also be a solution of the 

momentum equation as shown in the numerical section and is assumed solenoidal. The term ( )f x  

is possibly a discontinuous forcing term across the interface. 

4.2.1 The VMS formulation 

 

Employing the Lagrange multiplier λ   to enforce the discontinuity at the interface we 

hence arrive at the following weak form of the advection-diffusion equation is: 

 ( ) ( ) ( )
 ( ) ( ), , , , ,

s
s

tq c q c q c q q fα ακ λ
Γ Γ

+ ⋅∇ + ∇ ∇ − =v   (4.4) 
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 

( , ) 0
ss

cαη ΓΓ
=   (4.5) 

where ( ) ( ), d
Ω

⋅ ⋅ = ⋅ Ω∫ is the ( )2L Ω inner product, q  is the weighting function 

corresponding to the scalar field c  and η  is the weighting function corresponding to the Lagrange 

multiplier λ . We note that the weak function is multiplied by the discontinuous coefficient α  to 

enforce (4.3) weakly in the Galerkin formulation. The fourth term in (4.4) emanates from the 

conservation of the flux field across the interface defined in (4.2). Employing the Variational 

Multiscale Method (VMS), we decompose both the trial solution and weighting function as 

follows: 

 ( ) ( ) ( )c c c′= +x x x   (4.6) 

 ( ) ( ) ( )q q q′= +x x x   (4.7) 

defined as 1
0, ( )c q H∈ Ω  where 

 

1 2
0 ( ) : { ( ) : 0}H a L aΩ = ∈ Ω =  and the fine scale is defined as 

,c q′ ′∈  where 
 

2: { ( ) : 0}a L aα= ∈ Ω = . This leads to expanding the coarse scale trial and 

weighting functions using piecewise continuous linear shape functions and the fine scale trial and 

weighting functions using the enriched bubble shape function as done in [11]. The scalar 

decomposition of the functional spaces for the two scales is ′= ⊕   . The coarse scale space is 

defined as ( ){ }1
0:c c H= ∈ Ω and the fine scale space is defined as 

{ }: | 0  on ec c c′ ′ ′ ′= ∈ = Γ  , with the restriction that the two spaces are linearly independent 

and that the fine-scale is quasi-static (i.e. 0tc′ = ). The weighting function corresponding to each 

of the scales belong to the same functional space as that for the trial solution. 
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4.2.1.1    The variational multiscale problem 

We follow along the lines of [12], substituting (4.6) and (4.7) in (4.4) and (4.5) and 

employing linearity of the weighting function slot, leads to coarse-scale and fine-scale sub-

problems:  

Coarse-scale sub-problem 

 ( ) ( ) ( ) ( ) ( )  ( ) ( ), , , , , , ,
s

s
tq c q c q c q c q c q q fα ακ κ λ Γ Γ

′ ′+ ⋅∇ + ∇ ∇ + ⋅∇ + ∇ ∇ − =v v  (4.8) 

  

 

( , ) ( , ) 0
s s ss

c cαη ηΓ Γ ΓΓ
′+ =   (4.9) 

Fine-scale sub-problem 

 
( ) ( ) ( )

 ( ) ( )

, , ( ) , ( )

, ,
s

s

tq c q c c q c c

q q f

α α α α

α α

κ

λ
Γ Γ

′ ′ ′ ′ ′+ ⋅∇ + + ∇ ∇ +

′ ′− =

v  

 
  (4.10) 

The fine-scale sub-problem is now solved analytically in terms of the residual of the Euler 

Lagrange equation for the coarse scales. The resulting fine-scale model will be then substituted in 

(4.8)-(4.9) to yield the final stabilized form. 

4.2.1.2     The fine-scale sub-problem 

 
In order to solve the fine-scale sub-problem we first state the fine-scale problem in a 

residual form: 

 ( ) ( ) ( )
 ( ), , , ,

s
q c q c q r q cα α α α α ακ λ κ

Γ
′ ′ ′ ′ ′ ′⋅∇ + ∇ ∇ = − + − ∇ ⋅v n      (4.11) 

where the coarse-scale residual is: 

 tr c c c fακ= + ⋅∇ − ∆ −v   (4.12) 
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The coarse scale jump term is reduced via reverse integration by parts. In this case the residual of 

the Euler-Lagrange equation is the main drive for the derived fine-scale solution which lead to a 

variationally consistent method and therefore reduces the error in the coarse-scale. Therefore, the 

fine-scale residual accounts for the non-zero residual error along with the discontinuities and the 

discontinuities that are enforced along the evolving interface. Moreover, any physical implications 

are modeled via the fine-scale solution as a function of the residual error. 

 

4.2.1.3      Embedding discontinuity in the fine scale while enforcing jump conditions 

 
In order to solve, the fine-scale sub-problem we adopt certain assumptions in our 

formulation. The initial assumption is to consider a fine scale which is non-zero within the 

elements but vanishes at the element boundaries eΓ . This localization of the fine scales keeping it 

within the element interior is achieved by: 

 0   on ec q′ ′= = Γ   (4.13) 

In order for these assumptions to be met we expand fine scale fields in terms of bubble 

functions ( )eb ξ  that are non-zero on element interior and zero on the element boundaries. Due to 

the discontinuity in the scalar field and its gradients induced because of (4.3) and the discontinuity 

in the coefficient ακ across the interface Γ that cuts through the element the solution possesses 

either strong or weak discontinuity across the interface. In this case, the interface location, across 

which the parameters are discontinuous, is known a priori via the embedded level-set function, it 

can be incorporated in the solution. Literature review reveals that a common procedure by which 

such discontinuities are accounted for is regularization of the discontinuity over several elements 

usually spanning the region adjoining the interface. This smoothing procedure eliminates any 
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abrupt jumps that are difficult to be modeled monotone using piecewise continuous shape 

functions. 

Using the VMDC method presented in [11] we approach the problem of discontinuity by 

modifying the fine-scale shape functions via embedding the discontinuity capturing capability into 

our fine scales. However, this enrichment of the fine-scale shape function is only carried out within 

elements that develop discontinuity in the solution. This method avoids any modification to the 

global system of equations, i.e., the coarse-scale sub-problem, since the shape function 

modification affects only the local fine-scale sub-problem. In this section we develop the bubble 

function enrichment method for the scalar field problem. In section 5.4 it is tested on a problem 

with discontinuity in the scalar field across the interface. 

We expand the fine-scale solution and the corresponding weighting function as follows: 

 
ec bψβ′ =   (4.14) 

 ˆeq bψγ′ =   (4.15) 

where ebψ is the enriched bubble function, β  is the trial solution coefficients and γ  is the 

weighting function coefficient. The bubble function employed here is a triaxial function that is 

defined in N  dimensions as: 

 ( ) ( ) { }
 

2

1  
 1        1,1

N
e

i i i
i

b ξ ξ ξ
=

= − ∈ −∏   (4.16) 

The bubble function (4.16) is composed with an enrichment function ψ  which allows the 

fine-scale to model a strong discontinuity across the multi-phase interface in both the field and its 

gradients. This enrichment of shape functions adds to the mathematical modeling ability of the 
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fine-scale to represent the discontinuity feature that is otherwise missing from the coarse scales 

because of the 1C  continuity of the element shape functions that are typically used in the coarse 

scale variational-problem. This enrichment function may be defined in terms of an implicit 

interface function (i.e. the signed distance function) in the case where material properties are 

discontinuous. 

 1 2
| |1 1

| | | | 2
φ φ φψ
φ φ

    
= + + −    

    
    (4.17) 

In the enrichment function φ  is the gradient of the scalar solution field that detects the location of 

high gradients where the discontinuity of the scalar field exists. In all generality, this modification 

introduces extra terms in the fine-scale sub-problem but does not increase the size of the coarse 

scale problem and therefore it does not affect the cost of solving the coarse scale problem. 

Substituting the enriched bubble function expansion into the fine-scale sub-problem (4.10) and 

invoking the mean value theorem for the coarse-scale residual: 

 
( ) ( )
( ) ( )

, ( ) ( ), ( )

, ,
s

e e e e

e e

b b b b

b r b c

α α α

α α α

ψ ψ ψ κ ψ β

ψ ψ λ κ
Γ

 ⋅∇ + ∇ ∇ 

= − + − ∇ ⋅

v

n 

 
 

 

 
 (4.18) 

This is equivalent to assuming a constant projection of the residual which. In additional the 

existence of the enrichment functions leads to multiple new terms that appear when we expand the 

gradient operator that acts on the enriched bubble functions. 

 

Remark: In our previous work we have investigated the effect of employing the mean value 

theorem [19] and was found adequate to represent the fine-scale solution. 
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Remark: As done in [18, 19] the upwinding bubble function is employed in the weighting function 

for the advection term to incorporate the upwinding feature. This allows the advection term to be 

retained for advection-dominated problems and for the advection term to not vanish during the 

integration process of the fin-scale terms. Therefore, the same skewed-bubble function ˆeb  is used 

to expand the fine scale weighting function.  

 

We now solve for β  to arrive at: 

 ( ) ( ),1 ,1 ( )
s

e eb r b cα α αβ τ ψ ψ λ κ
Γ

 = − − − ∇ ⋅  
n 

 
 

    (4.19) 

where 

 ( ) ( ) 1
, ( ) ( ), ( )e e e eb b b bα α ατ ψ ψ ψ κ ψ

−
 = ⋅∇ + ∇ ∇ v    (4.20) 

Substituting (4.19) in (4.14) we arrive at the fine-scale solution: 

 ec bβ ψ′ =   (4.21) 

Remark: The fine-scale solution given in (4.21) accounts for the discontinuities across the 

interface for elements that are intersected by the interface and is automatically inactivated for all 

other elements. This is also the case for the interfacial conditions that are existent only along the 

discrete interface within the intersected elements. The use of discontinuous enrichment functions 

requires appropriate numerical integration rules in these elements to accurately evaluate 

discontinuous integrals. This special integration, employed via sub-cell integration, is need in the 

evaluation of the coarse-scale integrand with these elements as well since τ  is part of the 

integrand in the coarse-scale sub-problem.  
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4.2.1.4     Coarse-scale formulation with variationally embedded discontinuity 

The last step in the development of the Variational Multiscale-Discontinuity Capturing 

(VMDC) method with embedded interfacial conditions is to embed the fine model in the coarse 

scale equations. We consider the coarse-scale problem (4.8)-(4.9) and first start by embedding the 

fine-scale solution into (4.9) to arrive at a closed form expression for the Lagrange multiplier. This 

reduces the need for solving a mixed field problem with dedicated degrees of freedom for the 

Lagrange multiplier and bypasses the need to satisfy the inf-sup conditions for a mixed field 

problem. To simplify the solution of (4.9), the interior residual is ignored which is analogous to 

assuming orthogonality between the coarse and fine scales. In addition, we employed the mean-

value theorem to extract the jump residual rΓ  outside the integral which makes the equation local. 

Now we can substitute the fine scale back into the CS problem, where we start by embedding it 

into the continuity equation (4.9) 

 
 ( , ) ( , ) ( , )

( , ) ( , )

( , ) ( , ) 0

s s ss

s ss

s ss

e e

e e

e e

c b b r

b b

b b c

α α

α α

α α α

η η ψ τ ψ

η ψ τ ψ λ

η ψ τ ψ κ

Γ Γ ΓΓ

Γ ΓΓ

Γ ΓΓ

−

+

− ∇ ⋅ =n

 

 

   

 
 
 

   

 
 
 

 

 

 

  (4.22) 

Now we assume the second term in (4.22) to be zero (i.e. the internal residual is ignored 

which is analogous to assuming orthogonality between coarse and fine-scale) in the elements that 

are intersected by the interface. In other elements the Lagrange multiplier is zero and therefore 

(4.9) is not active and the stabilization simply reduces to the VMS stabilization for ADE as in [12]. 

We also employ the mean value theorem for the Lagrange multiplier and the coarse-scale flux term 

at the interface which will yield 

  ( , ) ( , ) ( ,1) ( ) 0
s s s s

e ec b b cα α αη η ψ τ ψ λ κΓ Γ Γ Γ+ − ∇ ⋅ =n   

   
   

    (4.23) 
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Imposing the requirement that (4.23) holds for all values η  results in the following expression 

which is solved analytically for λ  at the interface. 

  

1ˆ
s

c cαλ τ κ−
Γ= − + ∇ ⋅n   (4.24) 

Where the stabilizing parameter is defined as: 

 ( )2
ˆ ,1

s

ebατ τ ψ
Γ

=  

 
 

   (4.25) 

Applying integration by parts to the terms that include the fine scale field c′  to transfer the gradient 

operator from the fine scale field on to the weighting functions. Employing the assumption of 

vanishing fine scales at the element edges (4.8) becomes 

 ( ) ( ) ( ) ( ) ( )  ( ) ( ), , , , , , ,tq c q c q c q c q c q q fα ακ κ λ Γ Γ
′ ′+ ⋅∇ − ⋅∇ + ∇ ∇ − ∆ − =v v   (4.26) 

Substituting (4.21) and (4.24) in (4.26) we obtain the stabilized form for the advection diffusion 

equation: 

 
( ) ( ) ( )

 

 ( )  ( )  ( ) ( )1

, , , ( , ) ( , )

ˆ , { }, { }, ,
s ss s ss s

tq c q c q c r q r q

c q c q q c q f

α α

α α

κ τ τ κ

τ κ κ−
Γ ΓΓ Γ ΓΓ Γ

+ ⋅∇ + ∇ ∇ + ⋅∇ + ∆

+ + ∇ ⋅ + ∇ ⋅ =

v v

n n

 

  (4.27) 

Where the parameter τ  and the average due to the contribution from both sides of the interface 

are given as 

 

( )

1 2

,1

{ } ( ) 2

e eb b

a a aα

τ τψ ψ=

= +



  (4.28) 

The final stabilized formulation accounts for the stabilization of the advection-diffusion equation 

as done in previous work [18, 19]. However, it is also endowed with discontinuity capturing 

features that accommodate discontinuous diffusivity ακ and discontinuous solution field c and 
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allows for the enforcement of the interfacial boundary conditions given in the strong form of the 

governing equation. 

Remark: This formulation allows for one-way coupling between the concentration advection-

diffusion equation and the momentum equations where the momentum equation drives the 

advection of the concentration while still retaining the interface conditions. However, two-way 

coupling may be achieved by allowing the concentration at or near the interface to affect the 

surface tension coefficient and the fluid viscosity within the bulk of the phases. This is validated 

via variability in the surface tension coefficient that is discussed in the next section. 

4.3 Thermo-Mechanical Flow Governing Equations 

In this section we revisit the stabilized Navier-Stokes equations presented in [11] with a 

modified surface tension term by bringing the variability of the surface tension coefficient along 

the interface. This variability leads to a spatial variation in the surface tension coefficient which 

activates the Marangoni effects that add a new term to the surface tension jump condition in the 

tangential direction to the interface. Therefore, the pressure jump across the interface will be a 

jump both in the normal and tangential directions to the interface. This added effect allows for the 

two-way coupling between the concentration evolution and the momentum equations which is 

essential for the cases of defect evolution in manufacturing processes. This will require a 

modification the enrichment function used in the VMDC method to capture the pressure 

discontinuities in both normal and tangential directions. We also present the thermal field 

evolution equations that allow for thermo-mechanical coupling and incorporating phase change at 

the interface. This phase change leads to mass transfer from one phase to the other in cases of 

vaporization and condensation. 
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4.3.1 Coupling of Governing Equations 

Let sdnΩ⊂   be a domain consisting of two regions 1Ω  and 2Ω  that are separated by an 

interface sΓ  such that 1 2Ω = Ω Ω  and 1 2 0Ω Ω = . The two regions are occupied by two 

different fluid phases. Regions 1Ω  and 2Ω  are bounded by piecewise smooth boundaries 1Γ  and 

2Γ , where 1 2( ) \ sΓ = Γ Γ Γ  and 1 2( ) \ 0sΓ Γ Γ = . Let the velocity field be defined as 

] [( , ) : 0, sdnt TΩ× →v x   and the pressure field ] [( , ) : 0,p t TΩ× →x  . Modeling the two-phase 

fluid flow via the Navier-Stokes equations 

 ( )2                                in STp f
tβ β β βρ µ ρ ρ∂
− ∇⋅ +∇ + ⋅∇ = + Ω

∂
v ε v v v b   (4.29) 

Augmented with the continuity equation for density evolution 

 ( ) 0                                                                            in 
t
β

β

ρ
ρ

∂
+∇ ⋅ = Ω

∂
v   (4.30) 

and the thermal evolution equation 

                                                    in p pc c R
tβ ββ β β
θρ ρ θ κ θ∂
+ ⋅∇ − ∆ = Ω

∂
v   (4.31) 

subject to the interface Dirichlet condition enforcing the temperature to equal the saturation 

temperature satθ  at the interface 

 

 

 

0                                                                                                   on  

                                                                                 

s

satα

θ

κ θ θ

= Γ

∇ ⋅ =n    on  

                                                                                                   on  

s

sat sθ θ

Γ

= Γ

  (4.32) 
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which is enforced in a manner similar to that presented in section 2. In the previous equations 

] [: 0, sdnTΩ× →b   is the body force, 0βρ >  is the fluid density of each phase, 0βµ >  is the 

kinematic viscosity of each phase. The symmetric strain-rate tensor is defined as 

( ) [ ( ) ] 2s T= ∇ = ∇ + ∇ε v v v v  and STf  is the surface force due to surface tension condition at the 

interface. θ  is the thermal field, the discontinuous thermal capacity is 0pc
β
>  and the heat flux is 

βκ θ= − ∇q  defined using Fourier’s law with different thermal diffusivities across the interface 

and r  is the heat source/sink. The boundary and initial conditions are given as follows 

 ˆ    on = Γv v   (4.33a) 

 ( ),0     in o= Ωv x v   (4.33b) 

 ˆ    on θ θ= Γ   (4.34a) 

 ( ),0     in oθ θ= Ωx   (4.34b) 

 
Here β =1,2  corresponds to each phase, The initial condition is given as ov  for the velocity field 

and v̂  represents the Dirichlet boundary conditions. The density and viscosity are defined 

discontinuous across the interface via the Heaviside function: 

 ( )( ) ( )1 21 H Hρ φ ρ φ ρ= − +   (4.35a) 

 ( )( ) ( )1 21 H Hµ φ µ φ µ= − +   (4.35b) 

 ( )( ) ( )
1 2

1 H Hp p pc c c
β

φ φ= − +   (4.36a) 

 ( )( ) ( )1 21 H Hβκ φ κ φ κ= − +   (4.36b) 
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The Heaviside function is a function of the signed distance field ( , )tφ x  which is employed in the 

level-set method to track the interface where ( , ) 0tφ =x  for all s∈Γx . The Heaviside function is 

given as: 

 ( )
1  0

H
0  0
φ

φ
φ
<

=  ≥
  (4.37) 

4.3.2 Mass transfer and thermal expansion 

To account for mass transfer across the interface we introduce the definition of the 

discontinuous density into (4.30) as done in [21] and define a temperature dependent mass flux 

term ( )m θ  which introduces mass transfer and allows for the volume growth of either phases. 

 ( )( ) ( )( ) H
1 11 H( ) 1 H( ) ( )m

t φφ ρ φ ρ ∂
∂

∂
− +∇ ⋅ − = −

∂
v   (4.38) 

 ( ) ( ) H
2 2H( ) H( ) ( )m

t φφ ρ φ ρ ∂
∂

∂
+∇ ⋅ =

∂
v   (4.39) 

Here H
φ

∂
∂  localizes the mass transfer term on the right to the interface and φ

φ
∇
∇=n  is the normal 

vector pointing towards the region 1Ω . Therefore, the mass can transfer to the liquid phase via 

condensation or the gaseous phase via evaporation as a function of the thermal fluxes at the 

interface. Now if we divide (4.38) by 1ρ  and divide (4.39) by 2ρ  and then adding the two 

equations the continuity equation (4.30) reduces to the incompressible flow continuity equations 

with an interfacial mass transfer forcing term. 

 H

1 2

1 1 ( )m φρ ρ
∂
∂

 
∇ ⋅ = − 

 
v   (4.40) 

and the mass transfer flux is defined as 
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 m
h

βκ θ∇ ⋅
=

n 

 
    (4.41) 

Thus m  is controlled by the jump in thermal flux at the interface and h  is the difference 

in latent heat during phase change at the interface. Accounting for phase change as done in (4.40) 

leads to a discontinuity in the velocity field 
 

1m
βρ

=v n 

 

 

 in contrast to the discontinuity in the 

pressure field modeled in [11] due to surface tension. Furthermore, phase change adds to the 

pressure discontinuity which is now given as 
 

2 1
STp f m

βρ
= +  

 

 

 thus including an additional 

jump due to phase transition effects [22]. For full derivation of the mass flux m  interested readers 

are referred to [21, 22]. As mass transfer is allowed to occur at the interface via the mass flux m , 

the coupling between the momentum equation and the temperature is still not achieved due to the 

lack of thermally induced flows. Adopting the temperature-driven flow approximation given by 

the Boussinesq force [22], the body force in (4.29) is defined as: 

 (1 ( ))refβξ θ θ= − −b g   (4.42) 

where g  is gravity, βξ  is the thermal expansion coefficient within each phase and refθ  is the 

reference temperature. This modification to the density in gravity driven flow term allows for 

expansion and contraction of the fluid based on βξ  and thus completes the coupling across the 

three governing equations. 

 

4.3.3 Stabilized Variational formulation 

Here we develop the weak form of the governing equations and derive the stabilized form 

leading to the final stabilized formulation. Let { }1
0( ) ( ) sdn

H ∈ ≡ Ω w x   and 2( ) ( )q L∈ ≡ Ωx   
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represent the weighting functions for the velocity and pressure fields, respectively. The trial 

solutions for the velocity and pressure fields are [ ]{ }1
0( , ) ( )  0,sdn

t H T ∈ ≡ Ω × v x   and 

[ ]{ }2( , ) ( / )  0,sp t L T∈ ≡ Ω Γ ×x   respectively, and they satisfy the initial and boundary 

conditions. The weak form of (4.29-4.31) is as follows 

 ( )( ) ( ) ( ) ( ) ( ), 2 , , , , ,
s

s
STp f

t
ρ µ ρ ρ

Γ

∂  + ∇ − ∇⋅ + ⋅∇ = + ∂ 
vw w ε v w w v v w b w   (4.43) 

 ( )
1 2

1 1, ,
s

q q m
ρ ρ

Γ

  
∇ ⋅ = −     

v   (4.44) 

Remark: The derivation of the thermal field equations leading to the stabilized formulation is 

form identical to that of the concentration equation presented in section 4.2. The only difference 

is that the there is no jump in temperature across the interface rather it is held at the saturation 

temperature via a penalty term. We state the final stabilized form in the end of section 4.3.3.4. 

4.3.3.1 Variational surface tension formulation 

In order to derive the stabilized weak form, we first present the surface tension force STf  

in a variational form as derived in [2]. The Laplace-Young surface tension condition is a jump 

condition for the pressure field and is generally given as 

 

 STf kδ δΓ= −∇n  (4.45) 

The second term in (4.38) denoted as the Marangoni force, brings dependence of the surface 

tension force on the variation of the surface tension coefficient ( )δ x  on space via the tangential 

gradient Γ∇  . This spatial variability could be defined through dependence on temperature, solute 
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concentration or other surface values that may vary in space and time as well. A well-known 

phenomenon that depends on the spatial variability of ( )δ x  is the Marangoni effect which is 

investigated in the numerical section. Therefore casting (4.45) in a variational formulation would 

yield 

 ,( )kδ δΓ Γ−∇w n   (4.46) 

which would replace the last term in (4.43). At this stage two challenges arise with (4.46), the first 

being the calculation of the curvature ( )k x  at the interface, which is difficult when employing 

lower order shape functions along with an implicit definition of the interface such as the signed 

distance field. Secondly, the surface tangential gradient would also require an accurate calculation 

of the local tangent vector at each point along the interface. In order to circumvent both issues, the 

Laplace-Beltrami operator is employed as proposed by Bansch [23] and the variational surface 

tension force is defined as 

 :  dδ
Γ

− ∇ Γ∫ P w   (4.47) 

where ≡ − ⊗P 1 n n  is the tangential projection tensor where (4.47) would replace the last term in 

(4.43). This equivalent form incorporates both the normal and tangential jump introduced by 

surface tension and accounts for surface forces at the boundaries of the interface s∂Γ  in the case 

were the interface is not closed. This leads to a variational surface tension that not only 

incorporates Marangoni effects but also depends solely on the first gradient of the signed distance 

field via the normal vector | |φ φ= ∇ ∇n . 
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4.3.3.2 Fine-scale and Coarse-scale problems 

Employing the multiscale decomposition to stabilize the momentum equations and 

incorporate the discontinuity capturing feature [11] we decomposition of the velocity field v  into 

coarse scale v  and fine scale ′v  along with the corresponding weighting function w  into its 

respective coarse scale w   and fine scale ′w  as follows 

 

 ( ) ( ) ( ), , ,t t t′= +v x v x v x   (4.48)

 ( ) ( ) ( )′= +w x w x w x   (4.49) 

Substituting (4.48) and (4.49) into (4.43) and (4.44) and utilizing the linearity of the weighting 

function we arrive at two sub-problems 

Coarse-scale sub-problem: 

 
( )( ) ( ) ( ) ( )( )

( )

, , 2 , , ,

, ( , )

s p
t t

ρ ρ µ ρ

ρ δ Γ

′∂ ∂    ′ ′ ′+ + ∇ + − ∇⋅ + + ⋅∇ +   ∂ ∂   
= − ∇

v vw w w ε v v w w v v v v

w b P w
  (4.50) 

 ( )( )
1 2

1 1, ,
s

q q m
ρ ρ

Γ

  
′∇ ⋅ + = −     

v v  (4.51) 

Fine-scale sub-problem: 

 
( )( ) ( )

( ) ( )( ) ( )

, , 2 , ,

, , ( , )

s p
t t

ρ ρ µ

ρ ρ δ Γ

′∂ ∂   ′ ′ ′ ′ ′+ + ∇ + − ∇⋅   ∂ ∂   
′ ′ ′ ′ ′+ + ⋅∇ + = − ∇

v vw w w ε v v w

w v v v v w b P w
 (4.52) 

At this stage the solution we focus on obtaining the solution of the fine-scale problem in terms of 

the coarse-scale residual and derive an analytical expression for the fine-scale velocity. 
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4.3.3.3 Evaluating fine-scales via enriched bubble functions method 

For evaluating the fine-scale solution we first assume that the fine-scale velocity and 

corresponding weighting function both vanish at the edge of the element and are non-zero within 

the element. 

 0  on e′ ′= = Γv w   (4.53) 

Following along the cases in [11] and in order to adopt the embed the discontinuity 

capturing feature of the VMDC method we define an enrichment function that is local within the 

intersected elements in the domain. This function is defined in terms of the signed distance field 

which is used to track the interface location via the level-set method. The enrichment function is 

defined as: 

 ( ) φψ φ φ
φ

 
= +  
 

  (4.54) 

Accordingly, the fine scale solutions would be expanded in terms of the composition of the 

quadratic bubble function ( )eb ξ  and the enrichment function ( )ψ φ  in order to localize the capture 

of the discontinuity within the element. As a departure from the enrichment presented in [11] is 

the fact that the gradient of the enrichment function is defined separately in this case where: 

 
x y z
ψ ψ ψ φφ

φ
 ∂ ∂ ∂

= = = +  ∂ ∂ ∂  
  (4.55) 

This modification to the natural gradient (4.55) is introduced to allow for tangential 

discontinuity capturing in the velocity and pressure alike. Such a modification is adopted due to 

the a priori knowledge of the existence of the tangential discontinuity due to the Marangoni forces 
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described in section 3.1.2.1. Although the underlying formulation remains the same this 

modification is important in order to accurately capture the tangential force discontinuities within 

the single element without oscillations. The velocity and weighting function are now expanded as 

follows: 

 ( ) ( )eb ψ φ′ =v β ξ   (4.56) 

 ( ) ( )eb ψ φ′ =w γ ξ   (4.57) 

where β  and γ  are the coefficients for the fine-scale trial solution and weighting function, 

respectively. Employing the generalized alpha method to discretize in time and substituting (4.56) 

and (4.57) in (4.52), and ignoring the history dependence of the fine-scale terms we can solve for 

the trial solution coefficient 1n+β  as follows 

( ) ( ) ( ) ( )
1

1 1 ˆ, , , ( )
s

f f

e e e e e ST em
n nn n fb b b b b b

t α α
αψ ψ ψ ψ α ψ ψ
γ

−

Γ
+ ++ +

   ′ = = − + + ∇   ∆   
v x β τ r r       (4.58) 

where τ̂  is defined as 

 
( ) ( ) ( ) ( )

( ) ( )

2 2
ˆ

     

e e e e e e T e

e e e e e e

b d b b d b d

b b d b b d

µ ψ µ ψ ψ ψ

ψ ψ ψ ψ

= ∇ Ω + ∇ ⊗∇ Ω + ∇ Ω

+ ⋅ ∇ Ω + ⋅ ∇ Ω

∫ ∫ ∫
∫ ∫

τ I v

v v
  (4.59) 

and the residuals are: 

 

 

( )2

ST

p
t

µ ρ ρ

δ

∂
≡ − ∇⋅ +∇ + ⋅∇ −
∂

=

vr ε v v v b

r P
  (4.60)  
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We note that the mean-value theorem is used to extract the residual r  from the integral but is not 

used on the surface tension force term STr . 

Remark: It is important to note that as the terms with the gradient of the enrichment ψ∇  in (4.58) 

and (4.59) were ignored for simplicity in [11], they are required in this formulation where the 

Marangoni effects are active. Nevertheless, with the modified definition of ψ∇   and the inclusion 

of the gradient terms is backward compatible with cases where the tangential discontinuities are 

nonexistent and produces similar results to the formulation presented in [11]. 

Remark: Although we have dropped history dependence of the fine scale, the stabilization tensor 

is still a function of t∆ as shown in (4.58). Furthermore, (4.58) leads to a system of ODE’s that 

need a time integration method to convert it into an algebraic system. 

4.3.3.4 Stabilized weak form for NSE with phase change and Marangoni effects 

We embed the fine-scale model into the coarse-scale variational problem by substituting 

(4.58) into (4.50) and (4.51). The formal statement for the modified stabilized form with embedded 

phase change and Marangoni forces is: Find ( , )t ∈v x  and ( , )p t ∈x   such that for all 

( )∈w x   and ( )q ∈x  : 

( ) ( )( ) ( ) ( )( ) ( ) ( ), , , , , , , , , , ( ) ,Gal VMDC PC Gal STB q p B q p F F Fω θ ω θ ω+ = + +w v w v w w w  (4.61) 

where the Galerkin terms are 

( ) ( )( ) ( ) ( )( ) ( )
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p t p

B q p p
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q c c

ρ ρ µ

ω ρ θ ω ρ θ ω κ θ

θ κ ω κ θ ωΓ
ΓΓ

∂ = + ⋅∇ + ∇ − ∇⋅ ∂ 
∇ ⋅ + + ⋅∇ + ∇ ∇

∇ ⋅ + ∇ ⋅

vw v w w v v w ε v w

v v

n n

  (4.62) 

                      ( ), ( , ) ( , )GalF Rω ρ ω= +w b w  (4.63) 
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where the body force includes the Boussinesq forces as well. The phase change forcing terms are: 

 
1 2

1 1,
s

PCF q m
ρ ρ

Γ

  
= −     

  (4.64) 

and the VMDC terms with variational surface forces are 
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The stabilization tensors and parameters that emanate from (4.52) and the thermal VMS solution 
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  (4.66) 

The discontinuous surface force due to surface tension is 

 ( ) ( , )STF δ Γ= − ∇w P w   (4.67) 

along with a div-stabilization term that is added as in [11]. The stabilized formulation in (4.61) is 

not only embedded with discontinuity capturing features in directions normal to the interface, but 

now accommodate tangential discontinuity in both the velocity and pressure fields. In addition, 

this formulation of the NSE accounts for two-way coupling with the temperature evolution 
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equation which leads to a multi-physically coupled system of equations capable of modeling phase 

change across the interphase boundary and thermal expansion. In order to circumvent any possible 

repetition and due to the large similarity between the stabilized formulation presented in section 

4.2 and the stabilized thermal equations we suffice with the stabilized formulation presented 

therein.  

 

4.4 Level-Set equations 

In the context of interface translation, merging or separation the level-set equation is a 

primary instrument used to capture this evolution. As presented in [11] the stabilized level-set 

equations will be used with the velocity field induced by the momentum equation in addition to 

the interfacial mass transfer term. To derive the total advective velocity evolving the level-set 

equation as done in [21, 24], we start by expanding (4.38) and (4.39) as follows: 

 ( ) H
1 1 1

H( ) 1 H( ) H( ) ( )m
t φ
φρ ρ φ ρ φ ∂

∂

∂
− + − ∇ ⋅ − ∇ ⋅ = −

∂
v v   (4.68) 

 H
2 2 2

H( ) H( ) H( ) ( )m
t φ
φρ ρ φ ρ φ ∂

∂

∂
+ ∇ ⋅ + ∇ ⋅ =

∂
v v   (4.69) 

Dividing (4.68-4.69) by 2 1( )ρ ρ− and summing the two equations leads to: 

 
2 1

H( ) H( )
( )t

φ ρφ
ρ ρ

∂
+∇ ⋅ = ∇ ⋅

∂ −
v v   (4.70) 

Expanding the temporal and spatial derivatives as follows: 
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s
t t t
φ φ φ

φ Γ

∂ ∂ ∂ ∂
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 H( )
s

φ φ
Γ
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Substituting (4.71-4.72) and (4.40) into (4.70) and extending this definition of the level-set to the 

whole domain we arrive at a modified level-set equation: 

 
1 2

0m
t
φ ρ φ

ρ ρ
 ∂

+ − ⋅∇ = ∂  
v n   (4.73) 

Therefore, the advective velocity now accounts for the phase change effects when evolving the 

interface boundary. Following along our previous work [11] the stabilized variational formulation 

of (4.73) is derived and a cost effective reinitialization technique is employed to assure the 

numerical stability of the signed distance field during the evolution of the interface. For further 

information interested readers are referred to section 4 of [11]. 

 
4.5 Numerical Section 

4.5.1 Planar Interface with Interface Conditions 

 
In this section we present a problem adopted from [15] to evaluate the accuracy in enforcing 

the interfacial Dirichlet conditions given via Henry’s condition in (4.3). The enforcement of this 

condition corresponds to the mass transfer equilibrium condition for vaporization in solute 

convection and mass transfer problems as well as the cases of enforcing fixed saturation 

temperature at the interface for thermo-mechanical flows. This problem validates the enforcement 

of equal flux and the discontinuity of the solution field at the interface. The problem is defined on 

a 3D domain 3[0,1]Ω =  where the interface is located at the plane 0.25x =  across the unit block. 

The diffusivity coefficients are given as 1 1κ =  and 2 5κ = whereas the solution jump coefficients 

are 1 2=  and 2 1= . Homogeneous Dirichlet boundary conditions are enforced at the 

boundaries 0z =  and 1z = , where homogeneous Neuman boundary conditions are enforced on 
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the other boundaries of the domain. Given a prescribed constant velocity field ( )(1 ), ,0 Ty z x= −v  

a designed exact solution is proposed in [15] given as: 

 1

2

cos( ) cos(2 ) ( )    in  
( , )

cos( ) cos(2 ) ( 1)      in  

t

t

e x y az z b
c t

e x y z z
π π
π π

−

−

 + Ω
= 

− Ω
x   (4.74) 

A corresponding forcing term ( , )f tx  is chosen to satisfy this exact solution where the exact 

solution parameters are -0.8972a =  and 0.0261b = . The problem is modeled till time 0.15T =  

with a time step 0.01t∆ =  for four mesh sizes of 38 , 316 , 332  and 364 . In Fig. 4.1 we show the 

interface location cutting through the element for the coarsest mesh without resorting to mesh 

refinement around or near the interface. 

Remark: Although the Nitsche-XFEM method is employed in [15] gradual refinement of the mesh 

is employed within the proximity of the interface. This is not adopted in this work. 

 
Fig. 4.1. Location of the interface at 0.25x =  in the y-z plane. 
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Fig. 4.2. Scalar profile modeled with (a) VMS and (b) VMDC and (c) profile of solution for 38  

mesh at time 0.15T =  across the plane 0.25x = . 
 

Fig. 4.2 shows the discontinuity capturing feature of the proposed method incorporating the 

variational Dirichlet condition enforcement method presented in section 2. However, without the 

use of the enriched fine-scales via the VMDC method, the jump is smeared as shown in Fig. 4.2(a) 

while the discontinuity is better contained within a single element in Fig. 4.2(b). An L2 

convergence is performed for the problem and compared to values presented in [15] (see Fig. 4.3). 

The mesh sizes employed in plotting the error norm from [15] correspond to the size of elements 

far from the interface, while the authors refine the elements closer to the interface twice. Hence, 

as the error is higher for the proposed method, it is important to note that this further mesh 

refinement in the proximity of the interface is not employed in this work. Therefore, when 

comparing the errors it would be better suited to compare the error corresponding to a 38  mesh 

from [15] to a mesh of size 332  for the proposed method, which would clearly show the superiority 

in error reduction of the proposed method with the XFEM-Nitsche method presented in [15]. 

Nevertheless, the proposed method which bypasses the prescription of predefined parameters used 

by the Nitsche method is shown to achieve optimal convergence with mesh refinement. 

(a) (b) 

(c) 
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Fig. 4.3. L2-error norm for scalar field. 

4.5.2 Rotating flow field 

 
This section presents an advection dominated flow that rotates an internal boundary AB 

around the computational domain. Although this problem involves convection of a smooth profile, 

it presents a good test case for the assessing the accuracy of the method in terms of any spurious 

crosswind diffusion that can induce amplitude error after the flow transports the scalar field back 

to the location of the internal boundary. The problem is defined on a bi-unit domain Ω = [ 0.5,0.5−

]×[ 0.5,0.5− ] where the velocity is given as =v ( ,y x− ) and the diffusivity is set equal to 

61 10κ −= × . The Dirichlet boundary conditions at the boundaries of the domain are shown in Fig. 

4.4(a) and the internal boundary is defined at ( 0, 0.5 0x y= − ≤ ≤ ) along line AB where 

( )( )1
2 cos 4 1c yπ π= + + . The profile of the scalar field along the internal boundary is given in Fig. 

4.4(b). We compare the VMS, VMDC and SUPG-DC [6] methods on this problem to assess the 

level of diffusion error induced by each method, and to assess if the discontinuity capturing terms 

in the VMDC and SUPG-DC methods perform identically. We employ the results from VMS [12] 

as the reference for comparison since they are nearly exact (see Fig. 4.5(a)). If we examine Fig. 
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4.5(c) we can see that the SUPG-DC method suffers from a loss in accuracy in amplitude due to 

accumulated error of approximately 10% reduction in amplitude by the end of the simulation, and 

this is in accordance with the remark presented in Hughes et al. [6]. On the other hand, the VMDC 

method shown in Fig. 4.5(b), using either enrichment functions (i.e., scalar field gradient or level-

set based enrichment functions), is able to accurately maintain the amplitude of the scalar field 

with an amplitude reduction of only 1% as presented in Fig. 4.6. 

  

Fig. 4.4. Rotating flow problem: (a) Dirichlet boundary conditions and internal boundary AB, (b) 
Scalar field value along AB. 

 

 
 

Fig. 4.5. Scalar field profile for (a) VMS, (b) VMDC and (c) SUPG-DC [6]. 

A 

B 

    

  

  

Rotating velocity 



142 
 

 

Fig. 4.6. Scalar field amplitude decay along the circumference at r = 0.25. 

4.5.3 Couette flow problem with discontinuous force 

 

In this section we use the couette flow problem to investigate the VMDC method to capture 

discontinuities that are introduced by a discontinuous forcing term. These discontinuities may not 

conform to the mesh lines, e.g., the surface tension force described in Section 3. The domain of 

the problem is a rectangle given by [ ] [ ]0, 0,L HΩ = × where 3L =  is the length and 1H =  is the 

height of the domain. An interface cuts the mesh through a single element as shown in Fig. 4.7 

along a vertical line at 2x = . Although the discontinuous forcing term is defined as a line force in 

[1] via a discrete representation of the interface, in the present work we transform the interface 

force into a discontinuous body force that produces equivalent effects to test our discontinuous 

surface force technique. Although this problem is solved over a 2D mesh, the discontinuity is 

orthogonal to the x-axis and therefore discontinuity capturing capability is verified only in the x-

direction. The material properties do not change across the interface, with a constant value of 1ρ =  
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for the density and 1µ =  for the viscosity all over the domain. This allows for the test case to 

highlight the jump in the pressure field that is induced due to the discontinuous force.  

 

 

 

Fig. 4.7. Couette flow problem setup. 

We prescribe no-slip boundary condition at the top and bottom, and periodic boundary conditions 

in the x-direction. Additionally, to simulate the line force which is prescribed in [1] as 1f =  at the 

interface 2x = , we apply a discontinuous body force that is defined as 

 ( )
    2

3

1   2
3

x x
f x

x x

− ≤= 
 − >


  (4.75) 

This problem has the following exact solution 

 ( ) ( )1, Hp x y x x a
L

= − + −   (4.76) 

The Heaviside function is defined as 

 ( )
1  if  

H
0  if  

x a
x a

x a
≥

− ≡  <
  (4.77) 

x 

y 

Interface Location 
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For the present problem 2a =  in (4.77). Fig. 4.8 presents a comparison between the VMDC 

method and the pressure enrichment method presented in [1], showing enhanced performance of 

the present method. Additionally, the convergence study in Fig. 4.9 shows superior performance 

of the VMDC method with mesh refinement, both in terms of the rate convergence as well as the 

absolute value of the computed error. 

Remark: The characteristic size of the mesh was chosen to be the same as that in [1] for both test 

problems presented in Sections 5.2 and 5.3. It is important to note that the jump or discontinuity 

represented by VMDC is confined within a single element, namely, only the element that is 

intersected by the discontinuity. Since coarse scale shape functions are 1C  continuous over 

element interiors, therefore no kinks can be represented within the element. The variational feature 

that is yielded by the strong discontinuity at the fine scale level is that the coarse scale jump is 

confined to a single element only. 

 

 

Fig. 4.8. Pressure field across the discontinuity. 
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Fig. 4.9. L2-convergence for Couette flow problem with discontinuous force. 

4.5.4 Marangoni effect  

In this problem adopted from [2] we examine the dependence of the surface tension force 

on different aspects of the flow such as temperature, solute concentration or surfactant on the 

interface between the two phases. This dependence induces variation in the surface tension 

coefficient along the interface resulting in the Marangoni effect. The Marangoni effect incorporate 

the variability of surface tension forces in the tangential direction to the interface. This problem is 

defined on a domain [0,12 ] [0,4 ]R RΩ = ×  where the surface tension coefficient is allowed to vary 

as ( ) o xγ γ γ= −x   with the coefficients being 3oγ =  and 1γ = . The interface is centered at 

(6 , 2 )R R=x  where 0.25R = . Along with homogeneous Dirichlet boundary conditions around the 

domain and unit densities and viscosities in both domains, the exact solution of the problem is 

given as: 

 
2

                               
( cos )   

b

b oR

p p r R
p

p p r r Rγ γ θ
= >

=  = + − < 

  (4.78) 
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Employing the variational Laplace-Beltrami form of surface tension presented in section 3.1.3 

along with the tangentially discontinuous fine-scale enrichment functions proposed therein, the 

problem is solved with four different meshes of 15 45× , 30 90× , 60 180×  and 120 360×  with the 

corresponding pressure field profiles shown in Fig. 4.10.  

 

 
Fig. 4.10. Schematic of the problem. 

 

The pressure field is shown to vary both normal to the interface as well as tangentially along the 

interface as the pressure jump is not uniform all through the inner domain. This solution is 

compared with the solution from [2] our VMDC implementation in Fig. 4.11 and superior 

agreement to the exact solution profile is observed 
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Fig. 4.11. Pressure profile comparison between [2], the VMDC method ( 60 180×  mesh) 

and the exact solution. 
 

In addition, a convergence study is performed to show optimal convergence achieved by the 

VMDC method in Fig. 4.12. This confirms the variational consistency of the proposed method and 

the role of the tangentially discontinuous enrichment functions in accommodating the tangential 

pressure discontinuity along the interface. 

 
Fig. 4.12. L2-norm convergence of the pressure field. 
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4.5.5 Falling Droplet with Solute Mass Transfer  

In this section we present a problem involving mass transfer of a solute across an interface 

of a falling droplet in a lighter fluid. The droplet contains water and the surrounding medium is of 

Butanol which is saturated with Succinic acid. The problem adopted from [20] starts with a zero-

initial concentration of the acid in the water droplet and as the denser droplet falls the acid difusses 

into the droplet. The properties of the two fluids is given in Table 4.1 including the solubility 

coefficient that dictates the jump across the interface that is enforced throughout the simulation. 

Table 4.1: Material properties for the Falling Droplet Problem. 

 

 

The surface tension coefficient is 1 N/mmδ =  which reduceds the deformation of the droplet as it 

falls. Fig. 4.13-4.16 shows the shape and concentration of the bubble as at different time steps 

during the simulation which was run with a time step of 0.01t s∆ = . The consecutive stages show 

Material properties of the two fluids 

Viscosity (water droplet) 277 N.s/mm
2
 

Viscosity (Butanol) 100 N.s/mm
2
 

Density (water droplet) 996 kg/m
3
 

Density (Butanol) 866 kg/m
3
 

Mass Diffusivity (water droplet) 0.037 m
2
/s 

Mass Diffusivity (Butanol) 0.016 m
2
/s 

Solubility coefficient (water-droplet) 0.88 

Solubility coefficient (Butanol) 1.0 
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the increase increase in concentration inside the falling droplet despite the sustained jump in 

concentration at the interface due to Henry’s law. This is achieved across a single element due to 

the discontinuity capturing features of the present method. 

 

Fig. 4.13. Concentration field at 0.5t s= . 

 

Fig. 4.14. Concentration field at 1.0t s= . 
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Fig. 4.15. Concentration field at 1.5t s= . 

 

Fig. 4.16. Concentration field at 2t s= . 

 

In addition, Fig. 4.17 shows the pressure field jump due to surface tension along with the 

shape evolution for two time steps. This problem shows the one way coupling between the 

mommntum equations that drive the concentration advection and also present an example of 
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oscillation free mass transfer of solute species between fluids while enforcing interface 

conditions. 

  
Fig. 4.17. Pressure field at 0.5t s=  and 1.0t s= . 
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CHAPTER 5 

B-SPLINES AND NURBS BASED FINITE ELEMENT METHODS 
FOR STRAINED ELECTRONIC STRUCTURE 
CALCULATIONSc 

 

 

 

 

5.1 Motivation 

Flexible and stretchable electronics is bringing fundamental changes in the way electronics 

is getting integrated in our daily lives. At the root of the flexible and stretchable electronics 

revolution lies the class of materials that retain and even enhances their electronic transport 

properties in high strain environments. Significant breakthroughs include foldable electronic 

displays and intelligent textiles comprised of wearable electronics, to name a few. Stretchable 

electronics is also being conceived for various medical devices. Flexible sheets of electrodes that 

can be draped over delicate tissues have been used to map abnormalities in the brain [2]. 

Stretchable high-performance silicon electronics is being used in prosthetic neural interfaces to 

brain implants for controlling Parkinson’s disease [2]. A bio-integrable electronic device attached 

to the skin can provide irritation-free monitoring of heart and muscle activity [3], and noninvasive 

diagnosis of sleep apnea. 



155 
 

 Flexible electronics involves large mechanical deformations of the substrate in which 

electronic circuits are embedded. Understanding the coupled behavior involving the influence of 

mechanical strains on electronic properties is fundamental to the design of flexible electronics [4]. 

Strained silicon is a basic material in the microchip technology today. In strained silicon, electrons 

experience less resistance and flow up to 70 percent faster, which leads to chips that are up to 35 

percent faster. Likewise, with a drive towards smaller and faster microprocessors, the new 

generation of transistors is being conceived with Carbon nanotubes (CNTs) and graphene as the 

building blocks. These materials possess remarkable mechanical and electronic properties [5, 6] 

that are needed in strained nanotechnology. Although availability of accurate interatomic 

potentials makes classical MD simulations a prominent tool for modeling nanotubes [7], however 

single scale methods such as “ab initio” quantum mechanical methods or molecular dynamics 

(MD) methods have difficulty in analyzing hybrid structures due to the limitations in terms of the 

time and the length scales that these methods are confined to [8, 9]. As such, multiscale theories 

and algorithms become the only viable option.  

  This chapter presents a mechano-electronic model for integrated analysis of strained 

Germanium and strained Silicon Germanium buffer (SiGe) due to a Silicon layer overlay. The 

electronic structure modeling is done via a self-consistent solution of the Schrödinger wave 

equation (SWE) that employs electronic potentials that are functions of inter atomic bond lengths 

and angles. Evolving mechanical strains result in new equilibrated atomic locations that get 

manifested in the evaluation of the electronic band gap via the evolving nonlinear electronic 

potentials. A significant feature of the method is a NURBS based finite element formulation for 

the solution of the Schrödinger wave equation [10] in a self-consistent fashion. In this method the 

electronic potentials that are based on the interatomic bond-lengths and bond-angles are 
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consistently updated via the new equilibrated atomic configurations and provide the updated 

electronic properties of the nanomaterial system. SWE is solved over the continuously deforming 

nanomaterial, and for each converged and updated state, the self-consistent solution of SWE at 

critical locations in the spatial domain provides an estimate of the evolving electronic structure of 

the deforming nanomaterial. 

Structure of the chapter is as follows. In Section 5.2 the electronic structure DFT formulation 

is presented via complete variational formulations of the SWE and Poisson equation to solve the 

problem in a self-consistent fashion. In Section 5.3 we present a general coupling framework for 

the mechano-electronic problems and describe how the mechanical properties are evolved to drive 

the electronic properties used in the SWE. Section 5.4 presents a comparative study for solving 

the Poisson problem using Isogeometric basis functions with two novel optimal and reduced 

integration rules for NURBS. Moreover, a full self-consistent problem is solved in Section 5.4 

along with two problems incorporating strained electronics. 

5.2 Electronic Structures Modeling of Strained Nanomaterials 

Strain dependence of the electronic properties has been well documented in the literature. 

Mechanical strains lead to changes in atomic structure in terms of changes in interatomic bond 

lengths and bond angles that in turn affect the nano-scale based material properties [11, 12, 13]. 

Employing the concepts from kinematics, we apply stretching effects to the unit cell lattice vectors 

of the crystal structure. Modification to the lattice vectors creates a relative shift in the band gap 

that results from the effect of stretching on the conductive properties of the underlying material. 

However, this shift is not easily seen in the band-gap diagram unless a similar shift is applied to 



157 
 

the k-points that are used to evaluate the band structure. This results in a shifted band-gap structure 

that shows the effect of the stretching on the conductivity of the bulk material. 

The electronic structure is modeled via the density functional theory (DFT) that provides a 

framework for calculating electronic properties of materials [14]. In DFT, Schrodinger wave 

equation and Poisson equation are solved self-consistently until convergence is achieved. 

Traditional numerical techniques for electronic structure calculations employ plane-wave (PW) 

basis functions [15, 16], which are not local in the real space and therefore limit the size of the 

problem that can be solved. In addition, PW functions are limited to periodic boundary conditions 

which is disadvantageous with respect to cluster and surface calculations. 

We have developed a higher-order formulation for the Schrodinger wave equation using 

B-spline and NURBS basis functions in a finite element setting. In the finite element framework, 

basis functions have local support that yields banded matrices and minimizes communication 

between processors in a parallel environment. Finite element framework also accommodates 

various types of boundary conditions [17], namely Dirichlet, Neumann, and mixed boundary 

conditions. In addition, FEM based methods accommodate periodic boundary conditions that are 

particularly useful for cluster and surface calculations. Although, in this chapter we have presented 

a FEM based method capable to run periodic problems, other FEM based methods have also been 

proposed in [17, 18, 19] that extend FEM to non-periodic solids. These papers employ FEM with 

the orbital-free density function theory (OF-DFT) which depends on approximating the exchange 

energy, correlation energy, and kinetic energy so as to bypass the self- consistent loop and thus 

help reduce the computational cost. Since the proposed NURBS method is FEM based, it can be 

used to run non-periodic problems as well. In our earlier work [10] we presented the cost 

effectiveness of the NURBS-FEM formulation as compared to the costlier planewave formulation. 
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The present work extends the method for computationally economic solutions via employing the 

optimal or reduced integration rules as shown in the numerical section. In addition, the advantage 

of B-spline and NURBS basis functions with respect to Lagrange basis functions is that B-splines 

and NURBS provide 1pC −  continuity, where p is the order of B-spline or NURBS. Furthermore, 

the higher order basis functions can represent high gradient atomic potentials more accurately. 

Unlike Lagrange basis functions that display Gibbs phenomenon for higher order polynomials, B-

spline and NURBS functions have variation diminishing property [20] that is useful in representing 

high gradients in the solution.  

5.2.1 A Variational method for the Schrödinger Wave Equation (SWE):   

Schrödinger wave equation (SWE) is a quantum mechanical equation which is used to 

determine the electronic structure of periodic solids. The eigen-solutions of SWE correspond to 

different quantum states of the system.  SWE has a differential form that involves continuous 

functions of continuous variables and is therefore suitable for the application of variational 

methods. Various approaches [9, 15] have been adopted for the solution of SWE that include finite 

element [21, 22, 23] and finite difference methods [7, 24]. The advantages and utility of finite 

element method over ab-initio methods are discussed in [10]. In [10] we developed a NURBS 

based finite element method for SWE which is the basis of present developments. 

The SWE for periodic solids can be written as: 

 21 1( ) ( ) ( ) ( ) ( ) = ( ) ( ),
2 2

v i v k v V v vε− ∆ − ⋅∇ + + ∀ ∈Ωx k x x x x k x x   (5.1) 

 ( ) = ( ),v vx x R x+ ∀ ∈Γ  (5.2) 

 ( ) = ( )v vn x n x R x⋅∇ ⋅∇ + ∀ ∈Γ  (5.3) 
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where nsdΩ⊂   is an open bounded region with piece wise smooth boundary Γ , = 3sdn  is the 

number of space dimensions, ( )v x  is the complex valued cell periodic function or the unknown 

complex scalar field, namely the wave function (eigenfunction), i is the imaginary unit, x  

represents the position vector, n  represents outward unit normal vector to the boundary Γ  of a 

unit cell, ( )V x  is the electronic potential or the potential energy of an electron in a charge density 

( )e xρ  at the position x  and is considered periodic over a unit cell. ( )kε  is the eigen-energy 

associated with the particle as a function of wavevector (position vector in reciprocal space) k . 

In the context of pseudopotential approximation [25] and Kohn-Sham framework, the all-

electron potential ( )V x  is replaced by effV   

 L nL
eff a a H XCV V V V V= + + +   (5.4) 

L
aV  and nL

aV  are the local and non-local terms in the pseudopotential approximation [25] for an 

atom denoted by subscript a . XCV  is the exchange correlation potential, and HV  is the Hartree 

potential. 

The Schrödinger wave equation (5.1) is solved in a periodic and finite domain. However, the 

non-local term nLV  involves integration over entire space and over all atoms. Pask et al. [20] have 

proposed a method to reduce the non-local term integrated over all space to an integral form 

defined over a unit cell. Therefore, we consider a fully separable pseudopotential for an atom 

denoted by subscript a  that usually has the following form. 

 
,

( , ') = ( ) ( ')nL a a a
a lm l lm

l m
V hx x x xχ χ∑  (5.5) 
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where ( )a
lm xχ  is the product of a projector function and spherical harmonics and a

lh  is a constant. 

This reduces the non-local term to an integral over all space centered around an atom located at at  

in a unit cell with origin nR , where n  runs over all lattice vectors nR , and a  runs over all atoms 

in the unit cell. As presented in [10, 20] the integral centered at an atom a  can be written as sum 

of integrals over unit cells surrounding the atom, which can be further reduced to integral over a 

unit cell.  

 

' '

( ' )

( ' ) ( ') ' = ( ' ) ( ') '

= ( ' ) ( ' ) '

a i a i
lm a n lm a n

nn
ia n
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χ

⋅ ⋅

Ω ′′

⋅ − ′
′ ′Ω

′

− − − −

− − − −

∑∫ ∫

∑∫
 (5.6) 

 Replacing ' nx R−  by 'x and using ( ) ( )=v vx x R+  we have  

 ' '( ' ) ( ') ' = ( ' ) ( ') 'i ia i a i n n
lm a n lm a n

n
v e d R v e e e dk R k Rk x k xx t R x x x t x xχ χ ⋅ − ⋅⋅ ⋅ ′

′Ω
′

− − − −∑∫ ∫  (5.7) 

 The non-local term ( )i nL ie V e vk x k x x− ⋅ ⋅  then reduces to  
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 (5.8) 

5.2.2     The standard weak form for SWE 

The standard weak form for SWE is: 

 ( ) ( ) ( ) ( ) ( )21 1, , , , = ,
2 2 effw i v w v w k v w V v w vk ε− ⋅∇ + ∇ ∇ + +  (5.9) 
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 where w is the weighting function for v , and ( ) ( ), = d
Ω

⋅ ⋅ ⋅ Ω∫  i.e., 2L  product of the indicated 

arguments over domain Ω . We denote as 1 0( ) ( )n nsd sdH C⊂ Ω ∩ Ω  the space of trial solutions 

and weighting functions for the unknown scalar field.  

 { }1= | ( ), ( ) = ( )nsdv v H v v∈ Ω + ∀ ∈Γx x R x  (5.10) 

 Let h ⊂   denote the finite-dimensional approximation of space of trial solutions and 

weighting functions for the unknown scalar field. The Galerkin form of the problem is  

 ( ) ( ) ( ) ( ) ( )21 1, , , , =
2 2

h h h h h h h h h h
effw i v w v w k v w V v w , vk ε− ⋅∇ + ∇ ∇ + +  (5.11) 

 Let 
=1

= nh
i ii

v c N∑  and 
=1

= nh
i ii

w d N∑ , where ,i ic d  are complex coefficients associated with 

corresponding shape functions for the trial solution and weighting functions, respectively. Since 

the shape functions have local support, the discrete equation takes the following form.  

 =ij j ij j
j j

K c M cε∑ ∑  (5.12) 

 where  

 
=1 =1

= ; =
numel numele e

ij ij ij ij
e e

K K M M   (5.13) 

 21 1=
2 2

e
ij i j i j i j eff i jeK N N i N N N N V N N dk k x

Ω

 ∇ ⋅∇ − ⋅ ∇ + + 
 ∫  (5.14) 

 =e
ij i jeM N N dx

Ω∫  (5.15) 

 where   stands for the assembly operation, eΩ∫  represents integration over an element domain 

eΩ  in the finite element mesh, and numel  is the total number of elements in the finite element 

mesh. 
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The effective potential,  effV , is non-linear because of the presence of HV  and XCV  that are in 

turn functions of the electronic charge density. The electronic density ( eρ ) is calculated from 

eigenfunctions [10]. 

5.2.3     Evaluation of Hartree and Local pseudopotential approximations 

The Hartree potential HV  and the local terms in the pseudopotential approximation L
aV  are 

obtained via the solution of the Poisson problem for the total Coulomb potential together with 

periodic Dirichlet and Neumann boundary conditions. 

 ( )2 = ,CV f x x∇ ∀ ∈Ω  (5.16) 

 ( ) ( )= ,C CV Vx x R x+ ∀ ∈Γ  (5.17) 

 ( ) ( )= ,C CV Vn x n x R x⋅∇ ⋅∇ + ∀ ∈Γ  (5.18) 

 where = L
C H aV V V+ , and ( ) = 4 ( ) 4 ( )L

e aa
f x x xπρ πρ− +∑ , and n  represents outward unit normal 

vector to the boundary Γ  of the unit cell Ω . The charge densities that are consistent with a 

derivative periodic smoothly varying function are required to be net neutral in the unit cell. 

 
( ) ( ) ( )

( ) ( )( ) 0

C C

C C

f d V d V d

V V d

x x n x

n x n x R
Ω Ω Γ

Γ

Ω = ∆ Ω = ⋅∇ Γ

= ⋅∇ − ⋅∇ + Γ =

∫ ∫ ∫
∫

 (5.19) 

 

The local pseudopotential term is converted into equivalent density term. These density terms 

for each nuclei position are then superimposed at a location x  in order to obtain the total density. 

(See section 4 of Pask et al. [22] for details.) In addition, the density term ( )f x  also includes the 
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electron charge density. Thus, the solution of Poisson equation includes the effects of local 

pseudopotential term as well as the Hartree potential. 

The standard weak form for the Poisson problem can be written as 

 ( ) ( )( ), = ,Cw V w f x− ∇ ∇  (5.20) 

where w is the weighting function for CV . The space of trial solutions and weighting functions for 

the unknown scalar field is defined as 

 ( ) ( ){ }1= ( ), =nsd
C C C CV |V H V Vx x R x∈ Ω + ∀ ∈Γ  (5.21) 

Let h ⊂   denote the finite-dimensional approximation of space of trial solutions. The 

discretized weak form is:  

 ( ) ( )( ), =h h h
Cw V w , f x− ∇ ∇  (5.22) 

In [10] we developed a solution method for the Schrodinger wave equation that employs a 

higher-order formulation using B-spline and NURBS basis functions in a finite element setting. B-

splines and NURBS (Non-uniform rational B-splines) are parametric functions of rational 

polynomials. A rational B-spline curve in  is defined as follows.  

  (5.23) 

 where  

  (5.24) 

is the  rational B-spline basis function of degree  corresponding to control point  

nsd

( ) ( ),
=1

=
n

i i p
i

C B Rξ ξ∑

( ) ( )

( )
,

,

,
=1

= i p i
i p n

j p j
j

N w
R

N w

ξ
ξ

ξ∑

thi p nsd
iB ∈



164 
 

and weight  for a knot vector . When rational B-splines are defined in a knot vector 

that is non-uniform and open, they are called non-uniform rational B-splines (NURBS). Higher 

dimensional NURBS are defined by taking tensor product of one-dimensional NURBS. For a 

detailed description on how to obtain control points and control net for different geometric 

configurations, interested reader is referred to Hughes et al. [20] and Piegl and Tiller [26]. 

The advantage of B-spline and NURBS basis functions with respect to Lagrange basis 

functions are that B-splines and NURBS provide 1pC −  or 1p kC − − continuity, where p is the order of 

B-spline or NURBS, and k refers to multiplicity of knot values in knot vector. In addition, the 

higher order basis functions can represent high gradient atomic potentials more accurately. In 

addition, unlike Lagrange basis functions that display Gibbs phenomenon for higher order 

polynomials, B-spline and NURBS functions have variation diminishing property [20] This 

property is extremely useful in representing high gradients in the solution. Another significant 

attribute of the use of NURBS functions in our method is that it can lead to an exact representation 

of the geometric description of the domain under consideration. Specifically, for electronic 

structure calculations, NURBS functions can represent geometries with conic sections, like 

cylinders or spheres, accurately with minimum parameters. Unlike the wave-function based 

technology that is primarily applicable to periodic solids, the finite element-based method will be 

applicable to CNTs and nanoribbons that have non-periodic geometric configurations. 

5.3     Coupled Mechano-Electronic Modeling 

For the mechano-electronic interaction problems, each of the two coupled components has 

different mathematical and numerical properties, as well as well-established but distinct numerical 

solvers. Advancing the mechanical and electronic systems simultaneously and in a loosely coupled 

iw { } 1

=1
= n p

i i
ξ + +Ξ
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manner is appealing because it has the potential of reducing the total simulation time and therefore 

be computationally economical. A coupling strategy between quasi-continuum methods and 

Kohn-Sham DFT formulations has been a topic of discussion for non-periodic problems [18, 19]. 

One option is to solve the nonlinear multiscale mechanical problem for elastically deforming 

substrate [27, 28] or employ the general multiscale framework facilitated by [29, 30, 31]. Quasi 

continuum methods for elastically deforming nanomaterials have also been employed to evaluate 

mechanical properties of these nanomaterials [13, 32, 33]. This would provide information on the 

distribution of strain fields that in turn would provide the new equilibrated bond lengths and bond 

angles as shown in Fig. 5.1. Once the updated mechanical configuration is obtained, a self-

consistent solution of the Schrödinger wave equation [10, 34] is obtained on the updated 

mechanically deformed nanomaterial to extract the effects of mechanical deformations on the 

changes in electronic structure and properties. This leads to a procedure that can be described as a 

loosely coupled solution algorithm, shown in Fig. 5.2. Here W and U are the vectors of state 

variables for the mechanical and electronic problem, respectively. The spatial coordinates of the 

nanomaterial are updated via the evolving nanoscale based displacement field represented as dn, 

and this algorithm facilitates one-way coupling between the interacting fields. In the numerical 

section we model the effects of the mechanical part via an applied strain field as described in 

section 5.3.2. 

 (a)       (b) 
Fig. 5.1: Schematic plot of (a) unstrained lattice and (b) strained lattice vectors. 
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5.3.1 The prescribed strain tensor for Unit Cell problem 

Our objective in this work is to focus on the electronic structure calculations of stretchable 

semiconducting materials. Consequently, we apply mechanical deformation as an applied strain 

field, which in the nonlinear elastic framework is incrementally applied, thereby giving rise to 

evolving effective potential that drives the SWE. Due to the planar configuration of 

semiconductors, this stretching is applied biaxially in the plane parallel to the layout of the 

semiconductor, and it results in a reduction in thickness in the direction perpendicular to the 

stretched layer. This is analogous to the Poisson effect in continuum, but in the present context it 

is at the quantum scale. The applied strains that lead to the stretching of the unit cell can be 

specified in multiple ways. In this work we have employed two loading conditions. In the first case 

we directly prescribe the biaxial strain in the planar directions and calculate the strain in the third 

direction using empirically determined moduli [35, 36]. In the second case we utilize empirical 

formulas for strain that is induced by overlaying of a Silicon layer on Germanium to create a SiGe 

buffer. Nevertheless, the modification of the lattice vectors and k-point location is the same in both 

the cases as shown by the band-structures in sections 5.4.2.4 and 5.4.2.5, respectively. 

 

Fig. 5.2: One-way coupled solution procedure. 
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5.3.1.1 Strain tensor for Silicon layer on SiGe buffer: 

We present the biaxial strain tensor together with the corresponding Poisson ratio that is 

needed to determine the strain component in the third direction. The three axial strain 

components in terms of the lattice constant 0a  are: 

 
11

22

33

0 0
0 0
0 0

ε
ε

ε

 
 =  
  

ε   (5.25) 
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33 11
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C
C

ε ε= −   (5.27a) 

 11

12

1677.2 Pa
649.8  Pa

C
C

=
=

  (5.27b) 

where the lattice constant 0a  of the SiGe buffer is evaluated as function of the lattice constants of 

bulk Germanium 0a (Ge) and bulk Silicon 0a (Si) as follows: 

    
2

0 1 0 0 0(Si Ge ) (Si) 0.200326 (1 ) [ (Ge) (Si)]a a a aα α α α α−= = + − + −   (5.28) 

where α  is the ratio of Germanium to SiGe buffer. Dependence of the lattice vectors on the spatial 

coordinates x  results requires an update of the primitive lattice vectors of the Brillouin zone. This 

also affects the k-point grid locations. The updated lattice vectors are a function of strain and are 

given as: 

 1 0 11 2 0 22 3 0 33(1 )    ;    (1 )    ;    (1 )a a aε ε ε= + = + = +a x a y a z  (5.29) 
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5.3.1.2 Strain tensor for bulk Germanium: 

Strained bulk Germanium has been shown to have enhanced light emission and electronic 

conduction properties [36]. Following along Section 5.3.2.1, we strain bulk Germanium biaxially. 

Utilizing the compliances for bulk Germanium given in (5.30b) the strain in the orthogonal 

direction 33ε  is given by (5.27a). The prescribed strains may be incrementally increased as follows: 

 11 22 { 3, 2,..., 2,3} %ε ε= = − −  (5.30a) 

where the negative strain values indicate compression of the bulk Germanium and the positive 

values indicate stretching. The compliance coefficients of Germanium are: 

 11

12

129.2  GPa
47.9  GPa

C
C

=
=

  (5.30b) 

Employing (5.29) we are able to find the new lattice vectors used in the evaluation of the 

effective potential effV  that is employed in solving both the Poisson equation and the SWE. 

5.4 Numerical Results 

Numerical section investigates five different aspects of the model and the method. Employing 

triclinic model, we first present a study on the numerical quadrature points that are sufficient for 

full numerical integration and this aspect relates to numerical efficiency of the method. The second 

test case employs an all electron potential for Indium atom and total energy of the system is used 

as a measure of the convergence of the numerical method. Employing bulk Silicon, we investigate 

the self-consistent solution capability of the method, and then employ bulk Germanium to model 

the electronic band gap as a function of applied stretching. The last test case investigates doping 
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where Silicon grown over Germanium substrate to create SiGe buffer results in enhanced 

electronic conduction properties of the semiconducting nanomaterial. 

5.4.1 Poisson problem: Model analytical potential 

In the proposed method the nonlinear SWE and its potentials are solved in a self-consistent 

fashion which requires the solution of the Poisson equation that yields the Hartree and local 

potentials. To validate the stability and accuracy of the Poisson problem for various order B-splines 

we employ an analytical potential that is given by 

 ( ) ( ) ( )= sin 2 sin 2 sin 2V x y zπ π π  (5.31) 

 The corresponding forcing function, ( ), ,f x y z , is given by the Laplacian of the potential.  

 ( ) ( ) ( ) ( )2, , = 12 sin 2 sin 2 sin 2f x y z x y zπ π π π−  (5.32) 

The domain under consideration is a unit cube, where periodic boundary condition is applied 

on corresponding surfaces. Four uniform meshes composed of 4 3 , 6 3 , 8 3 and 12 3  elements for B-

spline order 2, 3 and 4 are considered. In the legend, the numbers in brackets denote the number 

of degrees of freedom per direction along the three lattice vectors for the corresponding meshes 

and polynomial orders. 
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(a) 

(b) 

(c) 

Fig. 5.3: Plot of the potential along the body diagonal (a) = 2p , (b) = 3p , (c) = 4p  
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(a) 

(b) 

(c) 

Fig. 5.4: Error in the potential along the body diagonal (a) = 2p , (b) = 3p , (c) = 4p  
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Figures 5.3 (a-c) are plots of the potential along body diagonal for = 2, 3, 4p . The plots of 

error in potential along body diagonal are shown in Figures 5.4 (a-c). Even for the crudest mesh, 

it can be seen that by increasing the NURBS order, the maximum amplitude of error decreases by 

an order of magnitude. Fig. 5.5 shows the normalized L 2  norm of the error in the computed 

potential as a function of mesh refinement. Here normalization is done with respect to the L 2  norm 

of the analytical potential in (5.31), and an optimal convergence rate is attained in each of the 

cases. 

 

Fig. 5.5: Convergence rates for the Poisson problem with analytical potential in (5.31).  

5.4.2 Optimal and Reduced Integration Rules for NURBS: The Triclinic Problem 

We employ the triclinic charge density model (for details see section 4.2.1 Masud et al. [10]) 

as a test case to study the optimality, accuracy and computational efficiency of the optimal/reduced 

integration rules recently developed for isogeometric basis functions [37]. The optimal rule is a 

quadrature rule that exactly integrates NURBS and B-splines with the least number of quadrature 
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points. However, the reduced rule is described as the optimal rule for NURBS of order p-1 that is 

then used to integrate NURBS of order p, and this reduced rule may also be exact in some 

circumstances. The optimal and reduced integration rules for NURBS are compared to the 

Gaussian quadrature rule that uses n  points to integrate NURBS of order p  where 2 1p n≤ − . 

Using the optimal Gaussian rule (i.e., least number of points) for p = 2, 3, 4 and 5 optimal 

convergence was still not achieved. Optimal convergence in L 2 ( )Ω  norm was only achieved when 

a Gauss rule with 5n =  was used. Figures 5.6 and 5.7 show a comparison of the convergence in 

 2 ( )L Ω  using the 5-point Gauss rule and the optimal rule for NURBS with order p = 2, 4 and 5 

and reduced rule for order p = 3. 

 

Fig. 5.6: Convergence rates attained with 5-point Gauss quadrature rule. 
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Fig. 5.7: Convergence rates attained using Optimal rule for p = 2, 4, 5 and using the 
reduced rule for p = 3. 

Comparing the computational cost via number of integration points for the two integration 

rules that achieve comparable accuracy and convergence rates in Table 5.1, the optimal rule for 

NURBS can achieve a similar convergence rate with less than 50% the number of integration 

points than are needed for the 5-point Gaussian rule. Moreover, using the reduced rule for p = 3 

the number of integration points are reduced by approximately 85% while still retaining the 

accuracy. 

Remark: Optimal Rule with variable integration points used for NURBS with p=2,4,5 and 

reduced rule for p=3. The reduced rule is obtained by using the integration points generated for 

p=2 in evaluating the integrals for NURBS with p=3. This leads to a small decrease in the 

convergence rate in comparison with the expensive 5-point Gauss rule. 
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Table 5.1: Comparison of computational cost via the integration point count between two 
integration methods. 

 

Mesh Size 

Total Number of 

Gaussian 

Integration 

Points  

(P=2,3,4 and 5) 

Total Number of 

Optimal Rule 

Integration 

Points 

(P=2) 

Total Number of 

Reduced Rule 

Integration 

Points 

(P=3) 

Total Number of 

Optimal Rule 

Integration 

Points 

(P=4) 

Total Number of 

Optimal Rule 

Integration 

Points 

(P=5) 

4x4x4  8000 729 729 2744 4096 

6x6x6  27000 2197 2197 8000 12167 

8x8x8  64000 4913 4913 17576 27000 

10x10x10  125000 9261 9261 32768 50653 

12x12x12  216000 15625 15625 54872 85184 

 

Remark: When using optimal Gaussian quadrature rule of 2n-1 for NURBS, suboptimal 

convergence rates are observed. Thus, without a strategic sampling of points, as done in the case 

of the optimal/reduced rules given in Hughes et.al. [37], an incrementally increasing number of 

Gaussian integration points is needed to achieve optimal convergence for NURBS of increasing 

order. 

5.4.3 Self-consistent Study 

We now present a set of problems that utilize an iterative self-consistent formulation to solve 

the Poisson and Kohn-Sham equations to achieve a converged band-gap structure of the underlying 

semiconductor. 
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5.4.3.1 Indium atom with all electron potential (1D case) 

This case employs all electron potential of Indium atom embedded in the Kohn-Sham 

equations [24] that are solved in a radial domain defined over interval [ ]0, ξ . Since this is a one-

dimensional problem for an isolated atom, we solve the radial Schrödinger equation and Poisson 

problem in spherical coordinates. 

 ( ) ( ) ( ) ( )
2

, , ,2 2

11 =
2 2 n l n l n l

l ld V r R r R r
dr r

ε
+ 

− + + 
 

 (5.33) 

 ( ) ( ), ,
0

= = 0lim limn l n l
r r

R r R r
→ →∞

 (5.34) 

where ( ),n lR r  is the radial wave-function, l  stands for orbital angular momentum quantum 

number, n  stands for principal quantum number, ,n lε  stands for eigenvalues. 

The all electron potential is given by 

 ( ) 49= =n H XC H XCV V V V V V
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where r  represents position vector in three-dimensional space and r  represents radial distance 

from nucleus of an atom. HV  is the Hartree potential, XCV  is the exchange-correlation potential, 

and ,n lf  is the occupation number. 

Since the electron charge density and Hartree terms are functions of radial co-ordinates only, 

the corresponding Poisson problem to be solved for obtaining the Hartree term simplifies to  

 ( )2

2 = 4 e

d U r
r

dr
π ρ−  (5.39) 

 where ( ) ( )= HU r rV r , and boundary conditions imposed are the zero Dirichlet boundary 

conditions. 

 ( ) ( )
=0

= 0; = 0rr
U r U r →∞  (5.40) 

We use Vosko-Wilk-Nusair (NWN) functional of density for obtaining correlation terms [38]. 

A logarithmic mesh is created along the radial direction by varying the control points of the B-

spline mesh as follows. 

 
( )( )
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10 6 200

rr
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+ −

 (5.41) 
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δ

−
+ −

−
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 (5.42) 

where numel  stands for the number of elements along radial direction, iB  stands for the thi  control 

point and p  stands for the order of the B-spline. 

Once the electron charge density is calculated, the total energy ( )tE ρ  can be calculated as 

follows [23]. 
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( ) ( ) ( ) ( ) ( )

( ) ( ) 

=

          =
t k n H XC

i i
i
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f V d

ρ ρ ρ ρ ρ

ε ρ
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 where ( )kE ρ  is the kinetic energy, ( )nE ρ  is the energy of electrostatic interaction with nuclei, 

( )HE ρ  is the Hartree energy and ( )XCE ρ  is the exchange-correlation energy. The integrals 

extend over all space in three dimensions. These terms in summation are calculated as follows.  
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 where ( ) ( ) ( ) ( ), , , ,
1= = ,i n l m n l l mR r Y
r

ψ ψ θ φr r  and ( ), ,l mY θ φ  is spherical harmonics. 
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Table 5.2: Total energy for Indium atom for B-Spline order k = 4 and mesh resolutions of 
200 and 400 elements. Last row NIST provides the reference values. All values are in atomic 

energy unit (Ha). 
 

  ξ   numel  = 200  numel  = 400  

 6   -5737.256830   -5737.259150  

 8   -5737.301165   -5737.302151  

 10   -5737.307346   -5737.307900  

 12   -5737.308460   -5737.308833  

 14   -5737.308716   -5737.308999  

 20   -5737.308860   -5737.309046  

 NIST   -5737.309064   -5737.309064  

 

 

Fig. 5.8: Convergence plot for ( )tE ρ  as a function of number of elements. 
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Fig. 5.9: Convergence plot for energies (equations 5.43-5.47) as a function of radial 
domain length ξ . 

Total energy for Indium atom with all-electron density functional theory calculations for fourth 

order B-splines for two spatial discretization as a function of ξ , where ξ  defines the radial domain 

[ ]0, ξ is presented in Table 5.2. The calculated values are compared with values obtained from the 

National Institute of Standards and Technology (NIST) for the Indium atom [7]. As the domain 

length increases and approaches 20 atomic units, the computed value for total energy, ( )tE ρ , 

approaches reported NIST value.  

B-splines of order 4 and order 6 were used with meshes varying from 50 elements to 400 

elements and asymptotic convergence is achieved as shown in Fig. 5.8. Fig 5.9 and 5.10 show the 

convergence for total energy ( )tE ρ , energy due to electron-nuclei interaction ( )nE ρ , kinetic 

energy ( )kE ρ , Hartree energy ( )HE ρ , and exchange correlation energy ( )XCE ρ , as a function 

of ξ . Fig. 5.9 gives plots for fourth order B-spline with 200 element mesh, while Fig. 5.10 presents 

plots for fourth order B-spline with 400 element mesh. We see that errors in these energies 
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uniformly reduce as 20ξ → . Figures 5.11 and 5.12 are plots for total energy of individual orbitals 

of Indium atom as a function of ξ  for fourth order B-splines with 200 and 400 element meshes, 

respectively. Again, we find convergence of energy values as 20ξ → . Higher resolution mesh 

consistently gives better precision in the computed values. 

 

Fig. 5.10: Convergence plot for energies (equations 5.43-5.47) as a function of radial 
domain length ξ . 

 

Fig. 5.11: Convergence plot for total energies of each orbital as a function of radial 
domain length ξ . 
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Fig. 5.12: Convergence plot for total energies of each orbital as a function of radial 
domain length ξ . 

5.4.3.2 Bulk Silicon and self-consistent solution procedure 

The primitive unit cell (FCC structure [Face centered cubic]) for bulk Silicon is described in 

[10]. A typical conventional unit cell and a corresponding primitive unit cell is shown in Fig. 5.13. 

Fig. 5.14 shows the first Brillouin zone (in the reciprocal space) and its irreducible wedge for the 

corresponding primitive unit cell. The atomic positions are shown with each primitive cell 

containing two Silicon atoms at positions (0, 0, 0)  and ( / 4, / 4, / 4)a a a . 

The high symmetry points of the Brillouin zone are given as follows.  

 ( ) 2 1 1 1 2 3 3= 0, 0, 0 ;      = , , ;      = , , 0 ;
2 2 2 4 4

L K
a a
π π   Γ    
   

 

 ( )2 2 1 2 1 1= 1, 0, 0 ;      = 1, , 0 ;      = 1, ,
2 4 4

X W U
a a a
π π π   

   
   
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Since the eigenfunctions are functions of the wavevector k , after the application of Bloch's 

theorem the electronic charge density needs to be evaluated by performing integration in the 

Brillouin zone. 

 

 
2

, ,
, <

1( ) = ( ) ;      ( ) = ( ) = ( )i i e
BZBZi Fi,k

n f n d n
ε ε

φ ρ ω
ΩΩ∑ ∑∫k k k k k k

k
x x x x k x  (5.49) 

where BZΩ  is the volume of the first Brillouin zone. Monkhorst-Pack algorithm [39] is used to 

numerically integrate the electron charge density in the Brillouin zone. For the present study of 

bulk Silicon, 44 k  points in the irreducible Brillouin zone are used to compute the electron charge 

density. 

          

Fig. 5.13: Conventional unit cell and primitive unit cell. 
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Fig. 5.14: First Brillouin zone and irreducible wedge. 

Figures 5.15 and 5.16 show the band diagram plots for second and third order B-spline basis 

functions along the symmetry points in the Brillouin zone, respectively. The HGH 

pseudopotentials [40] and Perdew-Wang [41] exchange-correlation potential were used for the 

calculations presented here. Experimental studies show that Silicon has a band gap of 1.13 eV. 

The DFT method however underestimates the band gap to below 0.6 eV. This is well known 

artifact of DFT calculations with LDA (local density approximation) exchange-correlation 

functional. 
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Fig. 5.15: Band diagram for Bulk Silicon for B-spline order = 2p . 

 

Fig. 5.16: Band diagram for Bulk Silicon for B-spline order = 3p . 

Remark: The problem run here is periodic and therefore only the atoms within the primitive unit-

cell are modeled which has a lattice vector length of approximately 500-600 picometers including 
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8 Si atoms. The self-consistent solution takes approximately 10 wall time minutes for the coarsest 

mesh (43) and 45 wall time minutes for the finest mesh (103). 

5.4.3.3 Si on SiGe buffer 

In this section we study strained Si grown on Si1-αGeα with different contents α  of  Germanium 

between α = 0.1 and α = 1. The problem is solved using the self-consistent formulation solving 

the Poisson equation and SWE using the HGH pseudopotentials [40] and Perdew-Wang [41] 

exchange-correlation potential. Silicon layer deposited on a Si1-αGeα buffer results in a difference 

between interatomic forces at the interface. This results in biaxial straining of the deposited layer 

of Si. The higher the Germanium content the less Si is in the buffer and the more response it will 

have to the Si overlay. The response to the Si overlay is shown in Fig. 5.17 where the low content 

of Germanium results in minimal straining and therefore insignificant splitting of the conduction 

bands at k-point X. In the case of little straining, the two energy valleys 2∆  and 4∆  have equivalent 

densities of electrons [42]. Fig. 5.18 shows the response when the buffer is composed only of Ge 

which leads to increased slipping in the conductive and valence bands at X leading to enhancement 

in the electronic properties of the material [36]. In this case, there exists a significant shift in the 

minimum energy of the two energy valleys as shown in Fig. 5.18. This leads to an increase in 

possibility of the electrons to transfer from the higher energy valley to the lower energy valley. 

Hence, this yields an increase in the electrons that exhibit higher mobility in the direction of strain 

[001] compared to those with lower mobility resulting in an increased conductivity in a specific 

direction due to the electron density imbalance across the energy valleys [42]. 
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Fig. 5.17: Band diagram for strained Silicon on Silicon Germanium buffer (Si0.9Ge0.1). 

 

Fig. 5.18: Band diagram for strained Silicon on Silicon Germanium buffer (Si0.0Ge1.0). 

Table 5.3 presents a comparison between the values of conduction band energy splitting due to the 

straining. Columns four and six present the potential for various compositions of Si and Ge in 

SiGe. Columns five and seven show the jump in the band gap at k-point X. The proposed finite 
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element method produces band splitting 2 4−∆  values that agree very closely with the values in 

[35]. The table also presents the strain values in the biaxial directions and the orthogonal strain 

resulting due to the Poisson effects. 

Table 5.3: Comparison of the conduction band energy splitting 2 4−∆  using two different SCF 
solution methods. FE is the proposed finite element solution and the last two column corresponds 

to values obtained in [35]. 

α  11(%)ε  33 (%)ε  
FE 

( )u eVΞ  

FE

2 4Δ ( )eV−  

Richard 

et al. [32] 

( )u eVΞ  

Richard 

et al. [32]

2 4Δ ( )eV−  

0.1 0.373 -0.289 11.470 0.076 9.179 0.061 

0.2 0.756 -0.586 9.840 0.132 9.216 0.124 

0.3 1.147 -0.889 9.261 0.188 9.216 0.188 

0.4 1.548 -1.199 9.220 0.246 9.255 0.255 

5.4.3.4 Strained bulk Germanium 

This section investigates the effects of straining of bulk Germanium which affects its properties 

as an optoelectronic material. Following along the solution procedure in Section 5.4.3.3 we employ 

the Poisson problem and SWE with HGH pseudopotentials [40] and Perdew-Wang [41] exchange-

correlation potential. Straining is achieved by applying 3% tensile stretch biaxially in the direction 

[001] using the compliances presented in Section 5.3.2. The band gap structure for unstrained 

Germanium is shown in Figures 5.19 and that of the strained Germanium is shown in Fig. 5.20. 

Each problem is run for NURBS of order p = 2 using a 3D structured mesh of 43, 83 and 123 for 

the unit cell. Similar to trends seen in SiGe, Fig. 5.20 shows that the splitting in the valence and 
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conductive bands alters the conductive properties of the material [36] by reducing the resistivity 

of the semiconductor. 

 

Fig. 5.19: Band diagram for unstrained Bulk Germanium for B-spline order = 2p . 

  

Fig. 5.20: Band diagram for strained Bulk Germanium for B-spline order = 2p  with 3% 
strain. 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK DIRECTIONS 
 

 

6.1    Conclusion 

In chapter 2 we presented a variationally consistent derivation of Discontinuity Capturing 

(DC) finite element methods for application to advection dominated flows, multi-phase flows with 

jumps in pressure and/or concentration fields, and problems that involve mixing flows of 

immiscible incompressible fluids. The proposed Variational Multiscale Discontinuity Capturing 

(VMDC) method finds roots in the Variational Multiscale (VMS) framework that yields a coupled 

system of coarse and fine-scale variational problems. The structure of the fine-scale variational 

problem is central to the derivation of VMDC method and facilitates the embedding of weak and/or 

strong discontinuities in the space of fine-scale functions. This results in sub-grid scale models 

that are naturally endowed with weak and/or strong discontinuities. Specifically, the fine scales 

are interpolated by bubble functions that by definition vanish on the element edges, thereby 

localizing the fine-scale problem to the sum of element interiors. These bubble functions are 

modified via composition with additional interpolation functions that are endowed with weak 

discontinuity that helps in accurately modeling weak discontinuities in the unknown fields across 

the embedded interfaces.   

For the case of mixing flow of immiscible fluids, the two-liquid interface is tracked by a 

signed distance field that acts as a marker for the location of the discontinuity. For this class of 

problems the fine-scale enrichment function is developed via embedding in it the location of the 

interface that is facilitated by the signed distance field.  The composition of the enrichment 
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function with the underlying bubble functions results in modified fine-scale interpolations 

functions that vanish along element boundaries. These functions when employed to model the fine-

scale problem result in fine-scale models with embedded discontinuity. Due to the structure of the 

fine-scale sub-problems we are able to variationally embed the fine-scale models without the need 

to solve for the fine degrees of freedom explicitly at the global level. This feature is in sharp 

contrast to global enrichment methods employed in XFEM/GFEM methods that necessitate a 

modification of the interpolation functions even in the elements that may not be traversed by the 

discontinuity, thus increasing the size of the discrete problem. VMDC method also bypasses the 

issues observed in IFEM where the mismatch of functions across adjacent elements results in 

suboptimal convergence of the method. Numerical integration of the discontinuous functions is 

carried out via adaptive quadrature technique. VMDC method is applied to advection equation to 

explore the structure of the stabilization tensor and an analysis with respect to the classical DC 

operator is presented. Method is tested on three mixed-field problems. First problem is a steady 

state multiphase flow governed by the Stokes flow equations and involves discontinuous pressure 

fields that arise due to surface tension effects. The second test case is that of a rising bubble with 

surface tension effects where the motion is induced by buoyancy. The third test case is a transient 

nonlinear Rayleigh-Taylor instability problem of immiscible flow of incompressible fluids that is 

governed by the incompressible Navier-Stokes equations. In all the cases stable response of the 

unknown fields is observed that highlights the stability and accuracy features of the method and 

its range of applicability for problems of engineering interest.   

In chapters 3 and 4 we have presented a variational DC capturing method coupled with a 

unified compressible-incompressible flow formulation that allows for modeling two-phase flows, 

where each phase is modeled separately as compressible or incompressible. The VMDC method 
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presented accommodates sharp discontinuities in both material properties and state equation 

coefficients such as the isothermal compressibility coefficient. The resulting flow formulation 

along with a consistent div-stabilization is shown to allow for volume change within the 

compressible region while still maintaining quasi-incompressibility with near zero divergence of 

the velocity in the incompressible region. Problems modeling air bubble shrinkage and 

compression within water cavities are presented along with comparison of the proposed method 

with other methods showing the advantage of the VMDC method in allowing for the use of coarser 

time steps while achieving better engineering convergence to the analytical solutions of these 

problems. Furthermore, the method is extended to model 2D and 3D problems involving 

incompressible flows of merging and rising bubbles with varying surface tension coefficients. 

These problems are used to validate the scalability of the method to higher dimensions and its 

capability to accommodate complex interfaces. An industrially relevant problems is then presented 

which has significant applications in multiple disciplines. This problem is abundantly used for 

modeling ocean wave formation, astrophysical hydrodynamics and even metrological flow of 

clouds, namely the Kelvin-Helmholtz instability. Employing an ideal gas law and with varying 

surface tension coefficients we study the effects of surface tension on the formation of turbulent 

flow at the interface between the two phases. Hence, we are able to apply surface tension effects 

within the unified compressible-incompressible formulation to control the turbulence initiation at 

the interface. 

Finally in chapter 5 we have presented B-splines and NURBS based finite element method 

for self-consistent solution of the complex-valued generalized eigenvalue problem arising from 

SWE. Under increasing mechanical strains, the mechano-electronic coupling yields the new 

equilibrium positions of the atoms as a function of evolving stretching of the underlying primitive 
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lattice vectors. This results in evolving electronic charge density employed in the Poisson problem 

that yields evolving effective potential for the SWE. The method is validated on problems with 

analytical potential to establish the variational convergence properties of the formulation. Newly 

proposed optimal and reduced integration rules are employed for numerical integration and they 

result in substantial reduction in computational cost while maintaining optimal convergence in the 

norms considered. The self consistent solution procedure is applied to strained bulk Germanium 

and to material system comprised of Si on SiGe buffer with various compositions. The proposed 

finite element method produces band splitting in the band gap diagrams that agree well with the 

values reported in the literature, thereby making it a viable method for the modeling of mechano 

electronic properties of materials used in the burgeoning field of flexible electronics. 

 

6.2    Future Work 

A significantly important technical issue in processing of fibrous composites is the 

appearance and evolution of the gaseous bubbles that form regions of stress concentration as the 

gelling process is completed. Chemical reactions that accompany curing, together with the ambient 

temperature at which the composite is manufactured, has a profound impact on the properties of 

the final product. Specifically, spatial variation of temperature field gives rise to differential 

curing, and due to variable mechanical material properties of the finished product, cooling down 

to room temperature gives rise to residual stresses. In addition, chemical reactions give rise to a 

gaseous phase wherein bubbles grow or collapse depending on the availability of the contaminant, 

the local pressure and temperature fields. Besides, mean velocity of the resin under hydrodynamic 

loads together with gradients induced by the concentration field result in migration of the voids, 

causing merger of multiple bubbles into one larger bubble, or breaking of larger bubbles into 
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smaller bubbles, and this process is again a function of interplay between the surface tension effects 

and the hydrodynamic forces induced by bubble convection. 

Current engineering practice is to assume the mechanical and thermal coefficients and 

carry out linear of nonlinear analysis of the produced part. In case of difference in the computed 

response, the mechanical material properties are invariably statistically distributed for subsequent 

runs, and a general response is attained. 

Keeping in view that even under carefully controlled environments, the process modeling 

phase of manufacturing is subject to various processing parameter, namely, applied temperature, 

pressure, humidity, radiation conditions, the resulting material properties has local heterogeneity. 

In addition, a critical issue is that if one of the products of the chemo-thermal reactions has a 

gaseous phase, and this is invariably the case, the resulting product has an inherent porosity 

distribution that should not be neglected because of its effect on the performance of the component 

under service loads. 

Two situations arise: (i) the pores are large and visible which means the molar production 

of the gaseous phase is much high and the options are to either use different ingredients that can 

suppress the gaseous phase, or (ii) adjust the processing parameters that can help reduce the size 

of the pores. In either case, if one looks under the microscope, one can again see the same 

phenomena of dispersed or interconnected pores. So, the question to ask is if it is possible to 

develop a method that can be used to optimize the material together with the controlling processing 

parameters for producing a part with an end objectivity in terms of its performance under service 

conditions. This section presents another aspect of practical application of the method presented 

in chapters 2, 3 and 4. 
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6.2.1 Proposed Time Dependent model for Viscosity 

 We propose the following time dependent model for viscosity evolution developed in [1] 

in the following format: 

  
( )

exp
A B

g

g

E
RT

α

µ α
µ µ

α α

+

∞

 ∆ 
=    −    

 (6.1) 

where µ is the viscosity, µ∞  is the viscosity at saturation temperature, Eµ∆  is the activation energy 

of flow, R  is the universal gas constant and T  is the temperature. α  is the degree of cure varying 

from 0 to 1, gα  is the level of cure at the time gelation when the material may no longer be 

considered as a fluid and A and B are fitting parameters for the material of choice. Likewise, the 

degree of cure is assumed to change with time according to a first order reaction such that 

 /(1 )tA e τα −= −   (6.2) 

where oH∆  is the reaction heat and /dH dτ  is the heat flow. 

6.2.2 Creating a Temperature Dependent model for Viscosity evolution 

 To develop time and temperature dependent model, we employ the Kamal-Sourour [2] 

format of the Arrhenius equations. The curing process has a kinetic process of the form. 

  

 ( , )d f T
d
α α
τ
=   (6.3) 

The temperature dependent function, ( ),f T α  has been used in different contexts in the literature. 

In our earlier work [2] we employed these ideas to develop evolution of elastic modulus as a 

function of time and temperature. In this work we employ this framework to extend the viscosity 

evolution model (6.1) to have temperature dependence as well:  
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 1 2( , ) ( ( ) ( ) )(1 )m nf T k T k Tα α α= + −   (6.4) 

 1
1 1( ) exp Ek T A

TR
∆ = − 

 
  (6.5) 

 2
2 2(T) exp Ek A

TR
∆ = − 

 
  (6.6) 

where m and n are power constants, R is the gas constant, A1 and A2 are frequency like constants, 

and 1E∆  and 2E∆  are the activation energies. 

 For the case of chemical reactions affecting cure, equation (6.4) can be simplified to depend 

on a single reaction coefficient by setting 2 ( )k T  to zero. This simplification is justified under the 

assumption that 2 ( )k T  contributes weakly to the behavior of the overall model. Furthermore, we 

employ a first order reaction equation that corresponds to the case when there is no time-lag 

between curing and chemical reactions in the resin. Consequently, the power constant n=1, and 

this helps introducing temperature dependency to the time dependent curing model given in 

equation (6.2). It is shown in the following form: 

 1( )(1 )k Tα α= −   (6.7) 

 1
1 1( ) exp Ek T A

TR
∆ = − 

 
  (6.8) 

By taking the derivative of equation (6.2) and introducing time dependent curing models into 

equation (6.7), the following equivalence is shown: 

 1exp ( ) 1 expA t tk T A A
     − = − − −     τ τ τ     

  (6.9) 
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Equation (6.9) has a simple solution when the curing constant A=1 and this corresponds to a 

maximum degree of cure is 1.0. Solving equation (6.9) yields: 

 1
1( )k T =
τ

  (6.10) 

Equating equations (6.8) and (6.10) provides a solution set for calculating ΔE1 and A1. 

 1
1

1exp EA
TR
∆ − =  τ 

  (6.11) 

 1 1ln( )E TR A∆ = τ   (6.12) 

Accordingly, for the simplified model, any combination of ΔE1 and A1 that satisfies equation (6.12) 

will have a solution for the curing evolution equation. The presented values obtained for ΔE1 and 

A1, are adopted from [1] and are material dependent, specifically obtained through a fitting to 

experimental generated cure and viscosity plots. 

6.2.3 Evolution of Cure  

Within a time dependent loop the degree of cure is updated via a time integration method for the 

first-order systems. 

  

 1  n n tα α α+ = + ∆   (6.13) 

where α  is the change in the degree of cure with respect to time as calculated in equation (6.7) 

and t∆  is the change in time from nα   to 1nα +  . By combining equations (6.1) and (6.13) an 

equation for the viscosity parameter can be developed that has dependency on the degree of cure, 

which in turn is a function of time and of temperature. Thus, embedding the results from (6.13) 
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into (6.1) yields an evolution of the viscosity as a function of temperature and degree of cure 

employing the chemo-rheological kinetic model above. In the following section we show 

preliminary results for a bracket problem with bubble evolution during an initial curing process. 

6.2.4 Preliminary results 

In this section we present a case of an angle bracket with embedded fibers represented by wholes 

in the mesh. This preliminary problem employs the model of chemo-rheological viscosity 

evolution with thermal dependence. Fig. 6.1 shows the mesh and initial void locations and fibers. 

 

Fig. 6.1. The mesh of the angle bracket problem with mesh and fibers excluded from the mesh 
along with initial void location. 

 
This problem is modeled to show the pressure jumps, as surface tension is active, with the mesh 

motion and how surface tension induced jumps are captured sharply. Moreover, the evolution of 

the bubbles is slowly hindered as the viscosity increases leading to a cured bracket piece. Fig. 6.2 

shows the shape and location of the bubbles at different time levels.  
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Fig. 6.2. The mesh of the angle bracket problem with mesh and fibers excluded from the mesh 
along with initial void location. 

As the temperature increases the degree of cure and viscosity increase from the initial low viscosity 

point from which the numerical problem is run. This would model the curing process during the 

resin infusion process and the vacuum sealed autoclaving of the fibrous bracket. The thermal field 

evolution is shown in Fig. 6.3 with clear difference in the thermal diffusivity visible in the first 

time step. Fig. 6.4 shows the pressure profile evolution through the same time steps in Fig. 6.2 

with the pressure jumps captured as the interface is evolving and the bubble are changing shape 

and position. These preliminary results show the potential of the methods developed in this 

desecration to tackle one possible area of application where predictive models are needed to better 

understand the processing parameters that would lead to better porosity distributions within 

composite materials. 
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Fig. 6.3. Temperature evolution for different time levels. 
 

 

Fig. 6.4. Pressure evolution for different time levels. 
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