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ABSTRACT

This thesis consists of two parts. Each of them deals with problems in the

design of linear time-invariant systems with certain prescribed properties,

such as stability and cost optimality.

The first part addresses theoretical questions arising in the design of au-

tonomous decentralized systems. The network topology of such a system

describes which agents are able to interact with each other.

We study the following problem: For a specified network topology, can one

find a set of interaction laws that yield stable dynamics for the ensemble of

agents? We restrict our analysis to systems with strictly linear dynamics.

This problem can also be referred to as the structural stability problem, seen

as the counterpart to the structural controllability problem.

In mathematical terms, we consider vector spaces of real square matrices

for which every entry is either fixed at zero, or an arbitrary real number.

We call them sparse matrix spaces, abbreviated SMS, and examine under

what conditions they contain matrices for which all eigenvalues have strictly

negative real parts. We call an SMS with this property stable.

We estimate the proportion of stable SMS when their size approaches

infinity and when the locations of the free variables are chosen independently

at random. Using graph theory techniques, we also develop polynomial-time

algorithms for extension of a given stable SMS to a stable SMS with up to

two additional nodes.

In the second part, we consider linear time-invariant systems with con-

trol. The well-known linear quadratic regulator (LQR) provides feedback

controller that stabilizes the system while minimizing a quadratic cost func-

tion in the state of the system and the magnitude of the control. The optimal

actuator design problem then consists of choosing an actuator that minimizes

the cost incurred by an LQR.

While this procedure guarantees a low overall cost incurred, it only takes
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into account the magnitude of the control signals the regulator sends to the

actuator. Physical actuators are, however, also limited in their ability to

follow rapid change in control signals. We show in this thesis how to design

actuators so that the high-frequency content of the control signals is limited,

while insuring stability and optimality of the resulting closed-loop system.

We also address optimal actuator design for linear systems with process

noise. It is well-known that the control that minimizes a quadratic cost in

the state and control for a system with linear dynamics corrupted by additive

Gaussian noise is of feedback type and its design depends on the solution of

an associated Riccati equation. We consider here the case where the noise

is multiplicative, by which we mean that its intensity is dependent on the

state. We show how to derive the actuator that minimizes a linear quadratic

cost.
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PART I

SPARSE MATRIX SPACES
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CHAPTER 1

INTRODUCTION

Decentralized control deals with the design of controllers achieving a given

task, e.g. stabilization of the system or optimal control, under constraints

on what information about the system is available to the controller. By

information available to a controller, we shall mean a subset of the variables

used to describe the system. The study of decentralized control systems is

motivated by the many problems that are characterized by an underlying

network topology describing which interactions within a system are allowed:

see e.g. [1, 2, 3, 4, 5, 6, 7, 8] and the references therein. Such problems include

information transmission and distributed computation.

Despite its relatively long history, decentralized control remains a challeng-

ing area of control theory. In fact, some basic issues that underlie the subject

are still mostly open. For example, consider the following: We call a vector

space of matrices with entries that are either arbitrary real numbers or zeros

a sparse matrix space (or SMS, a formal definition is given below). These

vector spaces arise naturally in the study of linear, decentralized systems. In

fact, we can associate to a such vector space a directed graph that describes

the allowed interactions between the various parts of the system. With these

considerations in mind, whether a matrix space contains a stable matrix is a

natural property to study: indeed, the corresponding graphs can be thought

of as describing the interactions that can sustain stable dynamics. In [9] are

given necessary conditions and sufficient conditions for a SMS to be stable,

as well as structural properties of a stable SMS. Since finding both necessary

and sufficient conditions seems excessively hard to deal with, some restricted

problems are considered instead. The case of SMS with symmetric structure

is examined in [10], where necessary and sufficient conditions for stability are

given. Creation of 1-node extensions from stable SMS is examined in [9].

Questions similar to the ones examined in this thesis also appear when

studying the so called signed patterns. A signed pattern, as defined in [11],
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is a set of all matrices for which the elements have some predefined signs.

A signed pattern is called stable if it contains at least one Hurwitz matrix.

Classifying all stable sign patterns is not yet complete and even though clas-

sifying stable sparse matrix spaces can be considered as only a special case of

this undertaking, it is still a formidable task. Some sufficient and some nec-

essary conditions for stability of signed patterns, as well as their equivalent

counterparts for SMS, have been independently presented in [11, 9].

In this thesis, we estimate the amount of sparse matrix spaces that are

stable, when each element of the SMS is a free variable independently with

some fixed probability. We also build upon the work in [9] by considering

node extensions of higher degrees, along with algorithms which test whether

the extensions are stable.

The part is organized as follows: In Chapter 2, we introduce the required

background material in Control Theory and Graph Theory. This includes ba-

sic notions about stability of a system, Hurwitz polynomials, directed graphs,

cycles and their relations to permutations. In Chapter 3, we provide the

main definitions concerning sparse matrix spaces, and discuss relations be-

tween their associated graphs and characteristic polynomials. In Chapter 4,

we recall some results about stability of SMS from earlier papers, and discuss

stability of random SMS when their size approaches infinity. In Chapter 5

we establish a necessary and sufficient condition for a SMS of (n+1)×(n+1)

matrices to be stable given that it contains a Hurwitz SMS of n × n matri-

ces. We call it a stable 1-extension of a stable SMS. Not every stable SMS

can be obtained as a 1-extension, and we derive a sufficient condition for a

2-extension to be stable as well. We conclude this chapter by showing that

there does not exist a finite set of extension rules that creates all stable SMS.

In Chapter 6, we derive polynomial-time algorithms that implement the re-

sults of Chapter 5 to obtain stable 1- and 2-extensions. The algorithms are

organized around two tasks. The first is to check for the existence of Hamil-

tonian decompositions. While Hamiltonian decompositions include cycles,

which evoke hardness of underlying algorithms, we will see that a reduction

to matching problems in bipartite graphs can be used to obtain fast algo-

rithms. The other task is to check whether multivariable polynomials—in

fact, coefficients of the characteristic polynomial of the symbolic adjacency

matrix of a SMS—have common factors. Again, even though factoring poly-

nomials is a hard task in general, the special form of the polynomials at hand
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allows us to derive fast algorithms. The main new idea introduced is the no-

tion of signature of a polynomial. We conclude and provide some directions

for future work in the last chapter.
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CHAPTER 2

PRELIMINARIES

In this chapter we provide some definitions and results from Linear Dynam-

ical Systems and Graph Theory, which will be needed for the main chapters

later.

2.1 Linear Dynamical Systems

We start with some basic notions from control theory, such as linear systems,

stability, and Hurwitz polynomials. Proofs of the stated theorems can be

found in any introductory control theory textbook and will not be presented

below.

A linear dynamical system is given by a differential equation

ẋ(t) = A(t)x(t), (2.1)

where x(t) - the state - is a vector-valued function. When A is a constant

matrix, the system is called linear time invariant (LTI).

One very important property of dynamical systems is stability.

Definition 2.1 (Stability). The system (2.1) is (globally) asymptotically sta-

ble if for any initial condition x(0) = x0, the state x(t) converges to 0 as the

time t approaches infinity. If there exist constants c < 0 and K > 0, such

that

|x(t)| ≤ Kect|x0|

for all t ≥ 0 and all x0, the system is called (globally) exponentially stable.

In the case of LTI systems (2.1), stability can be determined simply by

examining the characteristic polynomial of the matrix A.
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Definition 2.2. A polynomial is called Hurwitz if all its roots have strictly

negative real parts. A square matrix which has Hurwitz characteristic poly-

nomial is called Hurwitz itself.

Theorem 2.1. The LTI system

ẋ(t) = Ax(t)

is asymptotically stable if and only if the characteristic polynomial of the

matrix A is Hurwitz. Furthermore, stable LTI systems are also exponentially

stable.

There are different ways to check whether a given polynomial is Hurwitz

or not, without explicitly computing its roots. One such way is by using the

Hurwitz stability criterion, [12], presented below.

Theorem 2.2 (Hurwitz stability criterion). Let

p(x) = a0x
n + a1x

n−1 + ...+ an

be a real polynomial. Consider the n× n matrix

H =



a1 a3 a5 . . . . . . . . . 0 0 0

a0 a2 a4
...

...
...

0 a1 a3
...

...
...

... a0 a2
. . . 0

...
...

... 0 a1
. . . an

...
...

...
... a0

. . . an−1 0
...

...
... 0 an−2 an

...
...

...
... an−3 an−1 0

0 0 0 . . . . . . . . . an−4 an−2 an



.

Then the polynomial p(x) is Hurwitz if and only if all leading principal minors

of H are positive.

Even though the criterion above yields a straightforward way to determine

whether given matrix is Hurwitz, it is computationally complex and diffi-

cult to use. In this thesis we will instead use a basic property of Hurwitz

polynomials, given by the following lemma.
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Lemma 2.1. All coefficients of a real Hurwitz polynomial are non-zero and

have identical signs.

Proof. All roots of a real Hurwitz polynomial are either negative numbers

or complex conjugates with negative real parts. Therefore the polynomial

can be expressed as a scaled product of terms x + a and x2 + bx + c, where

a, b, c > 0. �

2.2 Graphs

Definition 2.3 (Undirected Graph). An undirected graph G = (V,E) is a

set of nodes V , along with a set of edges E, where every edge in E is a

2-element subsets of V .

Definition 2.4 (Bipartite Graph). Bipartite graphs are undirected graphs

for which the set of vertices V can be split into two subsets V1 and V2, such

that no two vertices in V1 and no two vertices in V2 are connected with edges.

Bipartite graphs are denoted as G = (V1, V2, E).

Definition 2.5 (Directed Graph). A set of nodes V along with a set of

directed edges between them E ⊂ V × V is called a directed graph or also,

digraph, and is denoted as G = (V,E).

Definition 2.6 (Subgraph). We say that the graph G′ = (V ′, E ′) is a sub-

graph of G = (V,E) if V ′ is a subset of V , and E ′ is a subset of E.

The number of nodes in V is called cardinality of the graph G and is

denoted with ‖G‖.
We recall that path of length k in a digraph G is a sequence of nodes

(u1, u2, ..., uk), such that (ui, ui+1) ∈ E for 1 ≤ i < k. We say that a subgraph

G′ = (V ′, E ′) of G is strongly connected if for every ui, uj ∈ V ′, ui 6= uj there

is a path in G′ from ui to uj and from uj to ui. The maximal subgraphs

which have this property are called ”strongly connected components” of G.

A cycle of length k in G, or a k-cycle, is a closed path in G, that is a

path (u1, ..., uk+1) of length k + 1, for which uk+1 = u1. A simple cycle is

a cycle for which all nodes are distinct, except for u1 and uk+1, i.e. ui 6= uj

for 1 ≤ i 6= j ≤ k. In this thesis, all the cycles considered are simple, and

we refer to them simply as cycles. Self-loops represent cycles of length 1.

7



1

2

3

5

4

Figure 2.1: The graph depicted above admits several complete
decompositions: one into the cycles (12) and (345), one into the cycles
(15), (23), (4) and one into the cycle (12345). The cycle (1) is a
1-decomposition and the cycle (23)(15) is a 4-decomposition of G. Finally,
the cycles (1), (12), (1)(23) are nested 1-, 2- and 3-cycles.

We say that a set of cycles covers G if every node of G appears in at least

one cycle. We say that two cycles are disjoint if they do not have any nodes

in common. We call a k-decomposition of G a set of mutually-disjoint

cycles in G whose union covers exactly k nodes. If k = n, i.e. the cycles

cover the entire set V , we call it a Hamiltonian decomposition. We use

the notation (l1l2 . . . Fk) to refer to the cycle (vl1 , vl2 , . . . , vFk , vl1) and write a

k-decomposition as the formal product of its constituent cycles. For example

(12)(3) refers to the 3-decomposition containing the cycle (1, 2, 1) and the

self-loop (3, 3). In Fig. 2.1, the cycles (12) and (34) are disjoint, but the

cycles (12) and (23) are not. We call a sequence of k-decompositions for

1 ≤ k ≤ n nested if the k-decomposition covers all nodes covered by the

k − 1-decomposition plus one additional node. We illustrate some of these

notions in Figure 2.1.

There is a simple construction which associates a bipartite graph G′ to

every pair (G, f) consisting of a directed graph G on a set of nodes V and

a bijection f : V → V ′ with V ∩ V ′ = ∅. Namely, the bipartite graph is

defined as G′ = (V, V ′, E ′), where E ′ =
{
{v, f(w)} | (v, w) ∈ E

}
.

2.3 Matchings

Finally, we recall few basic definitions related to matchings in bipartite

graphs:
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Definition 2.7 (Matchings and perfect matchings). Let B = (V1, V2, E) be

a bipartite graph.

1. A matching M of the bipartite graph B is a subset of E such that no

edges in M are incident to the same node.

2. A matching M is said to be perfect matching if every node is adjacent

to one edge in M .

3. A matching M is said to be maximal matching if no other matching

contains M .

4. A matching M is said to be maximum matching if no other matching

has higher cardinality than M .

For example, the set of edges (1, 3′), (2, 1′), (3, 2′) constitutes a perfect

matching in the bipartite graph depicted in Fig. 3.1-right.

In the classic theorem, [13], below, N(X) = {v ∈ G | ∃u ∈ X : (u, v) ∈ E}
will denote all neighbors of nodes in a subset X ⊂ V .

Theorem 2.3 (Hall’s Marriage Theorem). Let B = (V1, V2, E) be a bipartite

graph. The graph B contains a perfect matching if and only if |N(U1)| ≥ |U1|
for every U1 ⊂ V1 and |N(U2)| ≥ |U2| for every U2 ⊂ V2.

Finding a maximal/maximum matching in a given graph is important and

has many applications, most notably in computer science. There are various

algorithms for doing this task.

We will make use of bipartite graphs in Chapter 4 and Chapter 6.
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CHAPTER 3

SPARSE MATRIX SPACES

We start by introducing some vocabulary.

Definition 3.1. We call a (real) sparse matrix space, abbreviated SMS,

a vector space of matrices with entries either arbitrary (real) or zero.

Specifically, let n > 0 be an integer and let α be a set of pairs of integers

between 1 and n, that is α ⊂ {1, . . . , n}×{1, . . . , n} and denote by Eij the n×
n matrix with zero entries except for the ijth entry, which is equal to one. We

define Σα to be the vector space of matrices of the form A =
∑

(i,j)∈α aijEij,

aij ∈ R. For example, if n = 3 and α = {(1, 2), (1, 3), (2, 1), (2, 2), (3, 2)},
then Σα is the subspace of matrices of the form

A =

0 ∗ ∗
∗ ∗ 0

0 ∗ 0

 (3.1)

where ∗ are arbitrary real values.

A sparse matrix space Σα can be uniquely represented as a directed graph

G with node set V = {1, 2, . . . , n} and edge set E = α; we refer to G as

the graph associated with Σ and vice-versa. For example, the graph

associated to the SMS of Eq. (3.1) is depicted in Fig. 3.1-left.

Alternatively, Σα can be represented using a bipartite graphB = {V1, V2, E}
with node subsets V1 = {1, 2, . . . , n}, V2 = {1′, 2′, . . . , n′} and edge set E = α.

The bipartite graph associated to the SMS of Eq. (3.1) is depicted in Fig. 3.1-

right.

Given an SMS Σ, we refer to the matrix coefficients corresponding to

indices in α (considered as functions on Σα) as the free variables of the

SMS, or equivalently of the graph G associated with Σ. To emphasize that

the free variables correspond to edges in the associated graph, we also refer
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1

2 3

1

2 3

1 2 3

1’ 2’ 3’

Figure 3.1: The graph on the left corresponds to the SMS of Eq. (3.1). It is
Hurwitz, whereas the graph in the middle is not, even though both are
strongly connected and have a node with a self-loop. Theorem 4.1 below
allows to decide the stability of these graphs. The bipartite graph on the
right gives another representation of the SMS given in Eq. (3.1).

to them as edge-variables. For example, the edge-variables of the SMS Σ

in Fig.3.1-left are (1, 2), (1, 3), (2, 1), (2, 2), (3, 2). We call an edge-product

a subset of edges of the graph or, with a slight abuse of notation, the product

of the corresponding edge-variables. For example, α = {(1, 2), (2, 1)} is an

edge-product, and so is α = a12a21. This terminology, which allows to refer to

the aij as entries of a matrix in Σ or edges in the corresponding graph G will

prove useful below in proofs relying on both algebraic and graph theoretic

concepts.

3.1 Permutations and digraph decompositions

We can establish a one-to-one correspondence between permutations of the

set {1, . . . , k} and k-decompositions of digraphs— we explain this here and re-

fer the reader to [9] for a more detailed exposition. Consider the set Sn of per-

mutations (or equivalently, re-orderings) of the elements ofN = {1, 2, . . . , n}.
We denote by (l1, l2, . . . , ln) the permutation that sends i to li. There are

n! such permutations. Under the operation of composition of reorderings,

the set of permutations can be made into a group, called the permutation

group. A permutation cycle is a permutation that maps the elements of

some subset N1 ⊂ N to each other in a cyclic fashion, while leaving the

other elements fixed. For example, (3, 1, 2, 4) is a permutation cycle since

it leaves 4 fixed, and maps the elements of S = {1, 2, 3} to each other in a

cyclic fashion, but the permutation (2, 1, 4, 3) is not a cycle.

We adopt the widely used convention of denoting a permutation cycle

by i = (i1i2 . . . ik), where the ik are pairwise different, to indicate that the

element in position i1 is replaced by the element in position i2, the element

11



in i2 by the one in i3 all the way to ik by i1 while the other elements are fixed.

With this notation, the cycle (3, 1, 2, 4) is written as (132) = (321) = (231).

We say that two permutation cycles i and j are disjoint if il 6= jm for all

l,m. We call k the order of a cycle and we refer to cycles of order k as

k-cycles. It is a fact from group theory that any permutation can be written

as the composition of disjoint permutation cycles [14]. For example, the

permutation (2, 1, 4, 3) is the composition of (12) and (34) and is written as

(12)(34). It is easy to see that disjoint cycles commute (e.g. permuting 3, 4

and then 1, 2 produces the same result as permuting 1, 2 first and then 3, 4).

Now, the key observation is the following:

Lemma 3.1. There is a one-to-one correspondence between permutations in

Sn and n-decompositions in a complete graph with n nodes.

For example, consider the complete decomposition (12)(345) of the graph

in Figure 2.1. It corresponds to the permutation (2, 1, 4, 5, 3).

3.2 Characteristic polynomial and digraph

decompositions

The proofs below will rely on the correspondence we establish here be-

tween terms of the characteristic polynomials of matrices in a SMS Σ and

k-decompositions of its associated graph. Given the graph G on n nodes

corresponding to Σ, we define its symbolic adjacency matrix A to be the

n × n matrix with entries aij in position i, j if (vi, vj) ∈ E, and zero other-

wise, where the symbols aij are formal variables. The matrix A is thought

of as a generic matrix in the associated SMS Σ. Let pA(s) = det(Is− A) =

sn + p1s
n−1 + . . .+ pn be the characteristic polynomial of A. The coefficients

pk are polynomials in the aij variables.

We denote by I an arbitrary subset of {1, 2, . . . , n} and write |I| for its

cardinality. We denote by AI the principal submatrix of A containing the

rows and columns of A indexed by I. It is well-known [15] that the coefficients
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of pA(s) are given by

p1 = −
n∑
i=1

aii,

pk = (−1)k
∑
|I|=k

det(AI), (3.2)

pn = (−1)n det(A),

where the sums
∑
|I|=k are taken over the

(
n
k

)
k-subsets of {1, 2, . . . , n}. Thus,

from the previous chapter and the expansion of the determinant as

det(AI) =
∑
σ∈Sk

(−1)σ
∏
l∈I

alσ(l), (3.3)

where (−1)σ is the sign of the permutation σ [9], we conclude that we can

assign to each term in pk a k-decomposition of G. For example, for the graph

G depicted in Figure 2.1, it is easy to see that p1 = −a11− a44. Because this

graph contains five 2-decompositions, namely (12), (23), (34), (45), (15) and

(1)(4), we have that p2 is the sum of five terms of degree 2: a12a21, a23a32, . . . ,

a11a44. As a further example, the term corresponding to the 4-decomposition

(1)(345) is a11a34a45a53 and appears in p4. We record here a few simple facts

about the polynomials pk (seen as polynomials in the free variables):

1. The pk’s are homogeneous polynomials.

2. The pk’s are linear in each of their variables (the entries aij of A).

3. The pk’s have coefficients only ±1.

We now show that the polynomials satisfying the two items above enjoy

the property that they have unique factorization over the reals and that there

is no term cancellation when expanding the product of factors. We make this

precise as follows: given p a polynomial in the variables a1, . . . , an, we denote

by #p the number of terms with non-zero coefficients in p. We have the

following result:

Lemma 3.2. Let p be a polynomial in the variables a1, . . . , an which satisfies

properties 1 and 2 above. Then p can be factorized uniquely (up to constant
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factors) into a product of real homogeneous irreducible polynomials ql, each

of which is linear in the variables ai. Furthermore,

#p =
∏
l

#ql. (3.4)

Proof. The ring R = R [a1, . . . , an] of all polynomials in the variables ai is

a unique factorization domain, and moreover, the irreducible factors of any

homogeneous element p of R are themselves homogeneous, of degrees whose

sum is deg p [14].

We prove the remaining claims by induction on the number m ≤ n of

variables ai on which p depends non-trivially. For the case m = 1, p is a

linear function which can not be factorized further and in this case Eq. (3.4)

holds trivially.

Assume that Eq. (3.4) holds for polynomials satisfying property 2 above

and depending non-trivially on at most m − 1 variables ai. We show that

it holds for polynomials p with m terms. Let ql, l = 1, . . . , k be factors of p

with

p =
k∏
l=1

ql.

We can assume, perhaps after reordering the ai, that p does not depend

trivially on a1. Indeed, if p were to depend trivially on every variable ai,

then p ≡ 0 and there is nothing to prove. We can express every factor ql as

ql = anl1 q̄l + rl, where for every l we have nl ≥ 0, a1 does not divide q̄l and rl

is not divisible by anl1 unless it is zero. We thus obtain for p:

p =
k∏
l=1

(anl1 q̄l + rl) = a
∑
nl

1 q + r, (3.5)

where q =
∏

l q̄l and r is not divisible by a
∑
nl

1 , unless it is zero.

We conclude that, because p is linear in a1,
∑
nl = 1. Assume without

loss of generality that n1 = 1, nl = 0 for l 6= 1 and rl = 0 for l 6= 1. Thus,

we have

p = (a1q̄1 + r1)(
k∏
l=2

q̄l). (3.6)

where we recall that the q̄l’s and r1 are not divisible by a1. Since the variable

a1 was randomly chosen (and relabeled), the same arguments apply to any
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other variable on which p does not trivially depend. This implies that all

polynomials ql, as well as q̄1 and r1 are linear in the variables a1, a2, ..., an.

For the last statement, we notice that from Eq. (3.6) we can conclude that

#p = #(
k∏
l=1

q̄l) + #(r1

k∏
l=2

q̄l). (3.7)

Furthermore, the numbers of variables ai on which
∏k

l=1 q̄l and r1

∏k
l=2 q̄l

depend non-trivially are both less than m. We use the induction hypothesis

to obtain

#(
k∏
l=1

q̄l) =
k∏
l=1

#(q̄l) and #(r1

k∏
l=2

q̄l) = #(r1)
k∏
l=2

#(q̄l). (3.8)

Putting Eq. (3.7) and Eq. (3.8) together, we conclude that cancellations in

the expansion of the product indeed do not occur. This also implies that all

resulting monomials in the expansion have the same degree, which is possible

only if the factors ql of p are homogeneous. �

Finally, we recall a result relating complete decompositions to sparse ma-

trix spaces:

Lemma 3.3 ([9]). The sparse matrix space Σ associated to a graph admitting

a n-decomposition contains matrices that are generically non-singular.

We recall that by generic is meant everywhere except possibly on a subset

of codimension at least one.
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CHAPTER 4

STABILITY OF SPARSE MATRIX SPACES

In this chapter we will examine under what conditions Sparse Matrix Spaces

contain Hurwitz matrices. We will call such SMS ”stable”. We will also

estimate the proportion of stable SMS when the free variables are randomly

chosen.

Definition 4.1. A Sparse Matrix Space is called ”stable” if it contains a

Hurwitz matrix. A graph corresponding to a stable SMS is called Hurwitz.

4.1 Main Stability Conditions

A natural question to ask is how to determine whether given SMS Σ is stable

or not. Some necessary and sufficient conditions for stability are given in [9]

and presented below:

Theorem 4.1. A Sparse Matrix Space Σ ∈ Rn×n with corresponding directed

graph G is stable:

(a) if and only if each of the (strongly) connected components of G is stable;

(b) only if for every k ∈ {1, 2, ..., n} there exists a k-decomposition of G.

(c) if G has a sequence of nested k-decompositions G1 ⊂ G2 ⊂ ... ⊂ Gn,

k = 1, 2, ..., n;

4.2 Symmetric Sparse Matrix Spaces

In this section we briefly review some results on Symmetric Sparse Matrix

Spaces, that is SMS for which the locations of the free variables are symmetric

with respect to the main diagonal.
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Definition 4.2. A Sparse Matrix Space Σ is called ”symmetric”, if the ele-

ment aij is a free variable if and only if the element aji is a free variable, for

every 1 ≤ i, j ≤ n.

We note that in the case of symmetric SMS, for every edge (u, v) in its

corresponding graph G, the graph G also contains the opposite edge (v, u).

Therefore, to every symmetric SMS, we can attach an undirected graph, pos-

sibly containing self-loops. The notions of k-decomposition and Hamiltonian

decomposition are naturally carried over to undirected graphs.

Using Theorem 4.1, we can completely classify stability of Symmetric SMS

based on their graph structure.

Theorem 4.2 ([10], Theorem 6). Let G be a graph corresponding to a sym-

metric sparse matrix space. Then G is stable if and only if:

1. Every node in G is connected to a self-loop.

2. The graph G contains a Hamiltonian decomposition.

In the case of symmetric Sparse Matrix Spaces, we are also able to estimate

the proportion of stable spaces when the locations of the free variables are

randomly chosen.

4.3 Random Symmetric Sparse Matrix Spaces

Let p and q be real numbers in the interval [0, 1].

Definition 4.3. A random symmetric SMSMn
p,q is a random variable which

takes values in the set of symmetric SMS of size n, such that every element on

the main diagonal of the SMS is a free variable with probability q, and every

element strictly below the main diagonal is a free variable with probability p.

Definition 4.4. A random undirected graph Gnp,q is a random variable which

takes values in the set of undirected graphs on vertices V = {1, 2, ..., n}, such

that for every u, v ∈ V, u > v, the edge (u, v) belongs to E with probability p,

and for every u ∈ V , the self-loop (u, u) belongs to E with probability q.

Similarly to sparse matrix spaces and graphs, we have a natural correspon-

dence between random SMS and random graphs.
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Definition 4.5. A property H of an undirected graph G is called monotone,

if adding new edges to the graph preserves the property.

Connectivity and existence of perfect matching are examples of monotone

properties of graphs. Being a tree is an example of a non-monotone property.

As usual, with P(F ) we will denote the probability of an event F .

Definition 4.6. Let X = {Xn}∞n=1 be a sequence of random variables. We

say that almost every Xn exhibits a property H if and only if

lim
n→∞

P(Xn exhibits H) = 1.

The following theorem is a trivial generalization of [16], Theorem 2.1.

Theorem 4.3. If H is a monotone property of a random graph Gnp,q and

0 ≤ p1 ≤ p2 ≤ 1, 0 ≤ q1 ≤ q2 ≤ 1, then

P(Gnp1,q1 exhibits H) ≤ P(Gnp2,q2 exhibits H).

We will be interested in the asymptotic properties of Mn
p,q when the size

n grows to infinity.

Definition 4.7. By Snp,q, H
n
p,q, L

n
p,q we denote the following events:

Snp,q a random symmetric sparse matrix space Mn
p,q is stable;

Hn
p,q a random graph Gnp,q contains a Hamiltonian decomposition;

Lnp,q a random graph Gnp,q contains a self-loop.

By S̄np,q, H̄
n
p,q, L̄

n
p,q we denote the complements of these events.

Clearly, the properties corresponding to the events Snp,q, H
n
p,q, L

n
p,q are mono-

tone.

4.4 Stability of Random Symmetric Sparse Matrix

Spaces

In this section, we will estimate the magnitudes of p and q for which most

random symmetric SMS Mn
p,q are stable. Let

p = p(n) =
ln(n) + ω1

n
, q = q(n) =

ω2

n
,

18



where ω1 and ω2 are functions of n. We will assume that q is bounded away

from 1, i.e. q < 1− ε for some ε > 0.

The following Lemma is a direct corollary of Hall’s Marriage Theorem

(Theorem 2.3).

Lemma 4.1. Let G be an undirected graph without self-loops. Then G does

not contain a Hamiltonian decomposition if and only if it contains an inde-

pendent set I = {u1, u2, ..., uk}, I ⊂ V , such that |N(I)| = k − 1 for some

k.

Proof. Along with the graph G = (V,E), V = {1, 2, ..., n}, we consider the

corresponding bipartite graph B = (V ′, V ′′, E∗), where V ′ = {1′, 2′, ..., n′},
V ′′ = {1′′, 2′′, ..., n′′}, and (i, j) ∈ E if and only if (i′, j′) ∈ E∗.

First, assume that there exists an independent set I = {u1, u2, ..., uk} ⊂ G

such that |N(I)| < k. Then the same is true for the corresponding set

I ′ = {u′1, u′2, ..., u′k} ⊂ V1 in the bipirtatite graph. Therefore, applying Hall’s

Theorem, we conclude that B does not contain a perfect matching, and

therefore G does not contain a Hamiltonian decomposition.

Now assume that G does not contain a Hamiltonian decomposition, and

thus B does not contain a perfect matching. Applying Hall’s Theorem again,

we conclude that there exists a subset I ′ = {u′1, u′2, ..., u′k} ⊂ V1, such that

N(I ′) < k. Let I ′ = I ′1∪I ′2, I ′1∩I ′2 = ∅, where I ′1 = {u′i ∈ I ′|u′′i ∈ N(I ′)}, I ′2 =

{u′i ∈ I ′|u′′i /∈ N(I ′)}. The set I ′2 is non-empty, because otherwise N(I ′) ≥ k,

which is a contradiction. Since N(I ′2)∩I ′′1 = ∅, where I ′′1 = {u′′i ∈ V ′′|u′i ∈ I ′1},
we have

|N(I ′2)| ≤ |N(I ′)| − |I ′′1 | < k − |I ′1| = |I ′2|.

Therefore the corresponding set I2 ∈ V is independent and satisfies |N(I2)| <
|I2|.

Now, choose the smallest independent set I, such that |N(I)| < |I|. If

|N(I)| < |I| − 1, then we can remove any vertex v from I and get an inde-

pendent set J = I \ v for which |N(J)| < |J |. This is a contradiction, and

therefore |N(I)| = |I| − 1. �

The following theorem is given as Exercise 3.2 in [16].

Theorem 4.4 (Bollobás). Let ω1 = c + o(1). Then the probability that the

graph Gnp,0 contains an isolated vertex is equal to 1− e−e−c + o(1).
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The proof of the next proposition follows ideas from [17].

Proposition 4.1. Let ω1 = c+ o(1). Then the probability that Gnp,0 does not

contain a Hamiltonian decomposition is equal to 1− e−e−c + o(1).

Proof. According to Lemma 4.1, Gnp,0 does not contain a Hamiltonian decom-

position if and only if it does not contain an independent set of size k ≥ 1

which is incident with exactly k − 1 vertices.

Let Fk be the event that there exists an independent set I with k vertices,

such that |N(I)| = k−1, and for every independent set J with l < k vertices,

|N(J)| 6= l. We have that H̄n
p,q = ∪[(n+1)/2]

k=1 Fk. Then, the probability that

Gnp,q does not contain a Hamiltonian decomposition is equal to

P(H̄n
p,q) =

[(n+1)/2]∑
k=1

P(Fk) = P(F1) +

[(n+1)/2]∑
k=2

P(Fk).

Theorem 4.4 gives P(F1) = 1 − e−e−c + o(1), so it remains to prove that∑[(n+1)/2]
k=2 P(Fk) = o(1).

Now we evaluate Fk. We can choose the k vertices of the independent set

I ⊂ V in
(
n
k

)
ways. Then, we can choose their k − 1 neighbors in

(
n−k
k−1

)
ways. If any vertex v ∈ N(I) is adjacent with only one vertex u ∈ I, then

J = I \ v will be such that |J | = k − 1 and |N(J)| = k − 2, which is a

contradiction. Therefore every vertex v ∈ N(I) is adjacent to at least two

vertices u1, u2 ∈ I. We have

P(Fk) ≤
(
n

k

)
(1− p)(

k
2)
(
n− k
k − 1

)
(1− p)(n−2k+1)k

((
k

2

)
p2

)k−1

.

First, we consider the terms Fk for which n 6= 2k − 1. Using Stirling’s

approximation, we get

P(Fk) ≤
n!

k!(n− k)!

(n− k)!

(k − 1)!(n− 2k + 1)!

kk−1(k − 1)k−1

2k−1
p2(k−1)(1− p)(n−1.5k+0.5)k

� nn+0.5kk−1(k − 1)k−1

kk+0.5(k − 1)k−0.5(n− 2k + 1)n−2k+1.52k−1
p2(k−1)(1− p)(n−1.5k+0.5)k.
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Therefore,

P(Fk)�
nn+0.5

k2(n− 2k + 1)n−2k+1.52k−1

Ck(lnn)2(k−1)

n2(k−1)
(1− p)(n−1.5k+0.5)k

�
(

1 +
2k − 1

n− 2k + 1

)n−2k+1.5
Ckn(lnn)2(k−1)

k22k−1
(1− p)(n−1.5k+0.5)k

�

((
1 +

2k − 1

n− 2k + 1

) 10(n−2k+1)
2k−1

Cn
1
k (lnn)2(1− p)n−1.5k+0.5

)k

,

�
(
Cn

1
k (lnn)2(1− p)n−1.5k+0.5

)k
,

where with C we denote any constant which depends only on c. The last

inequality follows from the fact that the function f(x) = (1+ 1
x
)x takes values

between 1 and e.

Expanding ln(1− p) in Taylor series, we get

1− p = exp(ln(1− p)) = exp

(
− ln(n)(1 + o(1))

n

)
= n−

1+o(1)
n . (4.1)

Therefore, for 2 ≤ k < 5 we have

(1− p)(n−1.5k+0.5) = n−(1− 1.5k−0.5
n

)(1+o(1)) = n−1+o(1),

and thus

P(Fk)�

(
C
n

1
2 (lnn)2

n1+o(1)

)k

�
(
C

(lnn)2

n0.01

)k
. (4.2)

For k ≥ 5, (4.1) implies

(1− p)(n−1.5k+0.5) = n−(1− 1.5k−0.5
n

)(1+o(1)) � n−0.25+o(1),

and once again

P(Fk)�

(
C
n

1
5 (lnn)2

n0.25+o(1)

)k

�
(
C

(lnn)2

n0.01

)k
. (4.3)

Finally, we consider Fk, such that n is odd and n = 2k − 1. If n is a
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sufficiently large, we have

P(Fk) ≤
n!(

n+1
2

)
!
(
n−1

2

)
!
(1− p)(

(n+1)/2
2 )

(
n+1

2

2

)n−1
2

pn−1

� nn+ 1
2

(n2 − 1)
1
2 (n+ 1)2

n−5
2

n−
n2−1
8n

(1+o(1))

(
C

1
2 lnn

n

)n−1

�

n2− 1
n+1n−

1
4(1− 1

n)(1+o(1))

(
C

1
2 lnn

n

)2− 4
n+1


n+1
2

�
(
C

(lnn)2

n0.25+o(1)

)k
�
(
C

(lnn)2

n0.01

)k
, (4.4)

where C =
(
1 + 1+c

ln 2

)2
.

Combining (4.2), (4.3), and (4.4), we see that
∑[(n+1)/2]

k=2 P(Fk) = o(1),

which concludes the proof. �

Corollary 4.1. Almost every Gnp,0 contains a Hamiltonian decomposition if

and only if ω1 → ∞. Almost every Gn0,q contains a self-loop if and only if

ω2 →∞.

Proof. Notice that if ω2 = c + o(1), then the probability that Gn0,q does not

contain a self-loop is equal to

P(L̄n0,q) = lim
n→∞

(
1− c+ o(1)

n

)n
= lim

n→∞
exp

(
n ln

(
1− c+ o(1)

n

))
= lim

n→∞
exp(−c+ o(1))

= e−c + o(1). (4.5)

Now the corollary follows from Proposition 4.1, (4.5), and from the fact

that existence of a Hamiltonian decomposition, resp. of self-loops, are mono-

tone graph properties. �

The next Theorem gives a sharp threshold for p and q at which almost

every random symmetric sparse matrix space Mn
p,q is stable.

Theorem 4.5. Almost every Mn
p,q is stable if and only if ω1, ω2 →∞.
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Proof. If ω2 does not tend to infinity, then Corollary 4.1 implies that there

exists P > 0, such that for infinitely many n, P(S̄np,q) ≥ P(L̄np,q) > P .

Let F1 be the event that Gnp,q contains an isolated vertex. If ω1 does not

tend to infinity, then Theorem 7.3 in [16] states that there exists P > 0, such

that for infinitely many n, P(F1) > P . Therefore, for infinitely many n,

P(S̄np,q) ≥ P(F1)(1− q) > εP.

If ω1, ω2 → ∞, then from Corollary 4.1 follows that a.e. Gnp,q contains a

Hamiltonian decomposition and a self-loop. Furthermore, from Theorem 7.3

in [16] follows that a.e. Gnp,q is connected. Therefore, using Theorem 4.2, we

conclude that a.e. Mn
p,q is stable. �
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CHAPTER 5

SPARSE MATRIX SPACE EXTENSIONS

In this chapter, we will examine extensions of stable SMS, and determine

under what conditions they are stable.

Definition 5.1. Let G and G′ are directed graphs, such that G ⊂ G′. We

call G′ a k-extension of G if ‖G′‖ = ‖G‖+ k.

We will be interested in determining whether given k-extension of a stable

graph is also stable. This question is a natural generalization of the problem

of determining stability of arbitrary graphs and therefore is hard to solve

completely. However, the 1- and 2-extension cases are manageable and here

we give an almost complete analysis of them.

5.1 1-node Extensions

Proposition 5.1. Let G and G′ be graphs with n and n+ 1 vertices respec-

tively, such that G is stable and G′ is 1-extension of G. Then G′ is stable if

and only if it contains an n+ 1-decomposition.

Proof. The necessity follows directly from Theorem 4.1 (b). The sufficiency

can be deduced using the inductive step in Theorem 4.1 (c). �

Now we can use Proposition 5.1 to create larger stable graphs from given

smaller ones.

Corollary 5.1. Let G = (V,E) be a stable graph with n vertices. If the

edge (v1, v2) ∈ E belongs to some n-decomposition of G, then the 1-extension

G′ = (V ∪ {v}, E ∪ {(v1, v)} ∪ {(v, v2)}) is also stable.

Proof. Let the edge (v1, v2) belongs to the n-decomposition Γ of G. Then

Γ \ {(v1, v2)} ∪ {(v1, v)} ∪ {(v, v2)} is an n+ 1-decomposition of G′. �
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5.2 2-node Extensions

G1

1

2 3

G′1

G2

1 2

3 4

G′2

Figure 5.1: The graph G′1 (resp. G′2) is a Hurwitz two-node extension of the
graph G1 (resp. G2). This cannot be deduced from Theorem 4.2.

We now address the design of Hurwitz graphs with n + 2 nodes given a

Hurwtiz graph with n nodes. One could of course use Proposition 5.1 twice

for this task, but the resulting graph will necessarily contain a Hurwitz n+ 1

subgraph. As we will see in the following section, not all Hurwitz graphs can

be obtained in this fashion. Hence, the method we provide adds two nodes

in a way that does not necessarily reduce to repeated uses of Proposition 5.1.

Let us fix an SMS Σ ⊂ Rn×n with corresponding graph G = (V,E). Let

Σ′ be an SMS such that Σ ⊂ Σ′ ⊂ R(n+2)×(n+2) with corresponding graph

G′ = (V ∪{vn+1, vn+2}, E ∪E ′), where the edges E ′ are incident to either, or

both of vn+1 and vn+2. A generic matrix in Σ′ is of the form

A′ =


aij

a′1,n+1 a′1,n+2
...

...
a′n−2,n+1a

′
n−2,n+2

a′n−1,n+1a
′
n−1,n+2

a′n,n+1 a′n,n+2

a′n+1,1 · · · a′n+1,n

a′n+2,1 · · · a′n+2,n

a′n+1,n+1a
′
n+1,n+2

a′n+2,n+1a
′
n+2,n+2


(5.1)

where the a′ij’s represent the newly added variables, which are either free or

zeros. Recall that the characteristic polynomial of a matrix A′ as above can

be written as sn+2 + p1s
n+1 + . . . + pn+2, where pn+2 is the determinant of

A′ (up to a sign). The polynomial pn+2 is the sum of terms of degree n+ 2,

each of which corresponds to a n + 2-decomposition of G′ by Section 3.2.

Similarly, pn+1 is a polynomial in the variables aij, a
′
kl, in which each term
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corresponds to a n+ 1-decomposition of G′.

We can naturally decompose pn+1 into the sum of two terms by noticing

that n+1-decompositions of G′ need to cover at least one of the newly added

nodes, vn+1 and vn+2. Hence we write

pn+1 = p1
n+1 + p2

n+1, (5.2)

where

• p1
n+1 contains the terms corresponding to an (n+1)-decomposition that

only cover vn+1 or vn+2, but not both.

• p2
n+1 contains the terms corresponding to (n+ 1)-decompositions in G′

that cover both the nodes vn+1 and vn+2.

We have the following result:

Proposition 5.2. Let G′ be a two-node extension of the Hurwitz graph G

which satisfies the necessary condition for stability (see Theorem 4.1). If p1
n+1

as defined above is not the zero polynomial, then G′ is Hurwitz.

Proof. As usual, we denote by Σ and Σ′ the SMS associated to G and G′

respectively. If p1
n+1 is non-zero, there are (n + 1)-decompositions in Σ′

that contain only vn+1 or vn+2. We show that in that case, we can use

Proposition 5.1 twice to prove the stability of Σ′. To wit, if there is an (n+1)-

decomposition that only uses say node vn+1, then the graph G1 obtained

by adding node vn+1 (and incident edges) to G satisfies the conditions of

Theorem 4.2 and is thus Hurwitz. Now adding vn+2 to G1 to obtain G′, we

see that G′ satisfies the conditions of Theorem 4.2 and is thus Hurwitz. �

We show in Prop. 6.1 below that we can check whether p1
n+1 6≡0 in polyno-

mial time. We thus focus on the case p1
n+1 ≡ 0, which implies that p2

n+1 6≡ 0,

since otherwise the extension fails to meet the necessary condition for stabil-

ity. We cannot hope for a result akin to Theorem 4.2 in this case, as such

a result would imply that conditioned on G being Hurwitz, any 2-node ex-

tensions G′ that satisfies the necessary conditions is Hurwitz—a statement

to which there are counter-examples. Therefore we need to make sure that

the newly added edges are distributed in a way that allows us to have suffi-

cient control over the roots of the characteristic polynomials of the matrices
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in the corresponding G′. We introduce here a simple test to check that the

edges are well-distributed (see Eqs. (5.1) and (5.2) for Definitions of a′ij and

pn+1, pn+2)

Definition 5.2 (Edge distribution test). We say that a 2-node extension G′

of a graph G passes the edge distribution test if pn+1 6≡ 0, pn+2 6≡ 0 and the

rational function pn+1/pn+2 is not a function of the aij only (that is, not all

the a′kl variables simplify in the ratio).

We can now state the main result of this section:

Theorem 5.1. If a 2-node extension G′ of a Hurwitz graph G passes the

edge distribution test, then G′ is Hurwitz.

We show in the second part of the thesis that we can check in polynomial

time whether a two-node extension passes the edge-distribution test.

The following Lemma will be needed in the proof of Theorem 5.1.

Lemma 5.1. Let G′ be a 2-extension, passing the edge distribution test, of

a Hurwitz graph G. With the notation of Definition 5.2, the ratio pn+1/pn+2

is not a polynomial in the a′kl variables.

The above Lemma says that if a 2-extension passes the edge distribution

test, the ratio pn+1/pn+2 is a rational function of the variables a′kl with coef-

ficients in the field R({aij}i,j≤n) and a non-constant denominator.

Proof. We denote by ā′ (resp. ā) the vector containing all a′kl variables (resp.

aij variables). Assume, by contradiction, that pn+1/pn+2 is a polynomial in

the a′kl variables, that is there exist polynomials s(ā, ā′) and r(ā) such that

pn+1/pn+2 = s(ā, ā′)/r(ā).

In general, we can thus write pn+2 = q(ā, ā′)r(ā) and pn+1 = q(ā, ā′)s(ā, ā′),

where q is a polynomial in ā and ā′ with coefficients in R. By the correspon-

dence between determinants and k-decompositions, every n+2-decomposition

of G′ is obtained by multiplying a term of q with a term of r. Similarly, every

n + 1-decomposition is obtained by multiplying a term of q with a term of

s. Notice that the a′kl variables correspond to edges incident to either node

vn+1 or vn+2. Furthermore, in any k-decomposition covering vn+1 and vn+2,

both of these nodes are incident to 2 edges each - one incoming and one
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outgoing. Let us choose an arbitrary n + 2-decomposition D1 of G′ and let

a′kl be the edge-variables used in the decomposition. Because of the remark

above, all of these variables appear in one of the terms of q—call it α. If we

assume that s does not have a trivial dependence on ā′, then it contains a

term which depends on some a′kl’s. Call that term β. Now we consider the

edge-product αβ and notice that it corresponds to a n+ 1-decomposition D2

of G′. By construction, D2 uses all edges in D1 incident to the nodes vn+1

and vn+2 and at least one additional edge also incident to vn+1 or vn+2. This

implies that either node vn+1 or vn+2 has degree more than 2, which is a

contradiction. �

We now give the proof of the main theorem of this section.

Proof. (Theorem 5.1) For the sake of convenience, we shall consider the

equivalent problem of proving that in the SMS corresponding to G′, there

exist matrices, all of whose eigenvalues have positive real parts (the negative

of every such matrix is a stable matrix). Because of Proposition 5.2, it is suf-

ficient to only consider the case p1
n+1 ≡ 0. Because G′ satisfies the necessary

condition for stability, we can conclude that pn+1 = p2
n+1 6= 0.

Let −A ∈ Σ be a Hurwitz matrix and define the matrix

A′0 =


A

0 0
...

...
0 0
0 0
0 0

0 · · · 0 0

0 · · · 0 0
0 0
0 0


. (5.3)

We will show that there exists A∗ in Σ′ with n eigenvalues close to the

eigenvalues of A, and hence with positive real parts, and such that the two

other eigenvalues have positive real parts as well. The eigenvalues of A′0 are

λ1, . . . , λn, λn+1, λn+2 where λi, 1 ≤ i ≤ n are the eigenvalues of A, and

λn+1 = λn+2 = 0. We use the notation

n∑
j=1

∏̂
λj :=

n∑
j=1

n∏
i=1,i 6=j

λi.

In particular, pn+1 =
∑∏̂

λi(A
′) for A′ ∈ Σ′.
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Because the eigenvalues λi of a matrix depend continuously on its entries,

there exists ε > 0 such that for all A′ in an ε-neighborhood of A′0 in Σ′ (for,

say, the ∞-norm), the following three items hold:

1. min1≤i≤n |λi(A′)| > max(|λn+1(A′)|, |λn+2(A′)|).

2.
∏n

i=1 λi(A
′) is bounded away from zero.

3.
∑n

i=1

∏̂
λi(A

′) is bounded.

Indeed, property 1 follows from λn+1(A′0) = λn+2(A′0) = 0, λi(A
′
0) > 0 for

i = 1, . . . , n and continuity of the λi. Property 2 follows from
∏n

i=1 λi(A
′
0) 6= 0

and Property 3 from the fact that
∑n

i=1

∏̂
λi(A

′
0) is bounded. Let A′ be

a matrix in the ε-neighborhood of A′0. Recall that the coefficients of the

characteristic polynomial det(Is− A′) of A′ are given by formula 3.2. Since

the roots of the characteristic polynomial are λi, we also have det(Is−A′) =∏n+2
i=1 (s− λi). Equating the coefficients of the terms in s0 and s1, we obtain

det(A′) = pn+2 = λn+1λn+2

n∏
i=1

λi

n+2∑
i=1

det(A′[i,i]) = pn+1 = (λn+1 + λn+2)
n∏
i=1

λi + λn+1λn+2

∑∏̂
λi

where det(A′[i,i]) is the principal minor obtained by removing the i-th row and

the i-th column from A′. Since p1
n+1 ≡ 0, there are no n+ 1-decompositions

in G′ that contain only one of the nodes n+ 1 and n+ 2. From the relation

between k-decompositions and principal minors from Section 3.2, we know

that these n + 1-decompositions correspond to principal minors of entries

(n+ 1, n+ 1) and (n+ 2, n+ 2). Thus

n+2∑
i=1

det(A′[i,i]) =
n∑
i=1

det(A′[i,i]).

From the above two relations, we obtain

λn+1λn+2 = det(A′)/
∏n

i=1 λi

λn+1 + λn+2 = det(A′)∏n
i=1 λi

[∑n
i=1 det(A′

[i,i]
)

det(A′)
−

∑∏̂
λi∏
λi

] (5.4)
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We first show that the eigenvalues λn+1, λn+2 of A′ are either real or com-

plex conjugate. Because conjugate numbers have the same norm, λn+1 and

λn+2 cannot be complex conjugates of λi, i = 1 . . . n by item 1. This implies,

in turn, that det(A′)/
∏n

i=1 λi(A
′) = λn+1λn+2 is real, and the same is true

for λn+1 + λn+2.

From here on, we focus on showing that there existsA∗ in the ε-neighborhood

of A′0 such that λn+1λn+2 and (λn+1 + λn+2) are both strictly positive, and

hence so are the real parts of λn+1 and λn+2. We will do so by showing that

a) we can make the term
∑n
i=1 det(A′

[i,i]
)

det(A′)
arbitrarily large

b) we can control the sign of det(A′)/
∏n

i=1 λi without affecting
∑n
i=1 det(A′

[i,i]
)

det(A′)
.

The above two requirements, in view of (5.4) and properties 2 and 3 above,

allow us to control the signs of λn+1 and λn+2. We first focus on a). We

will make the ratio arbitrarily large by making its denominator arbitrarily

close to zero and controlling the numerator. Because G′ passes the edge-

distribution test by Lemma 5.1, there is an edge e∗ ∈ E ′, with corresponding

entry a∗kl in A′, such that
∑n
i=1 det(A′

[i,i]
)

det(A′)
is a non-constant rational function of

a∗kl. Without loss of generality, we can assume that a∗kl is in one of the last

two rows of A′. We expand det(A′) along the row containing a∗kl to obtain

the relation

det(A′) = a∗klq(A
′) + r(A′),

where q(A′) and r(A′) are polynomials in the other free variables (viz, besides

a∗kl) of degrees n + 1 and n + 2 respectively. Note that the root of det(A′),

seen as a linear function of a∗kl, is at − r(A′)
q(A′)

. Similarly,
∑n

i=1 det(A′[i,i]) can be

expressed as
n∑
i=1

det(A′[i,i]) = a∗klq̄(A
′) + r̄(A′)

for appropriately defined polynomials q̄ and r̄. We claim that the following

holds

q̄(A′)
r(A′)

q(A′)
6≡ r̄(A′). (5.5)

Indeed, assuming by contradiction that the previous relation is an identity,

then

det(A′)/
n∑
i=1

det(A′[i,i]) = q(A′)/q̄(A′)
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does not depend on a∗kl—a contradiction with the definition of a∗kl.

Now choose A′1 in the ε neighborhood of A′0 such that q̄(A′1)
r(A′1)

q(A′1)
6= r̄(A′1)

and µ > 0 small enough so that∣∣∣∣µr(A′1)

q(A′1)

∣∣∣∣ < ε (5.6)

holds. Furthermore, set A′2 = A′1Iµ where Iµ is the identity matrix with its

last entry replaced by µ:

Iµ =


1 0 · · · 0

0 1 · · · 0
... 0

. . .
...

0 · · · µ

 .

By choosing a∗kl close to − r(A′2)

q(A′2)
= µ

r(A′1)

q(A′1)
, the ratio

∑n
i=1 det([A′2][i,i])

det(A′2)
can be

made arbitrarily large. We thus fix a∗kl so that the previous ratio is larger

than sup
∑∏̂

λi∏
λi

, which is bounded by item 2 and 3. We denote by A′3 the

matrix obtained for that choice of a∗kl.

For b) observe that on the one hand,

det(A′3I−1)/
n∏
i=1

λi(A
′
3I−1) = − det(A′3)/

n∏
i=1

λi(A
′
3)

since the numerator changes its sign if we invert the sign of the last row of

A′3, but the product
∏n

i=1 λi(A
′
3) does not as a consequence of item 2. On

the other hand, we have that∑n
i=1 det((A′3I−1)[i,i])

det(A′3I−1)
=

∑n
i=1 det([A′3][i,i])

det(A′3)

because every minor in the summation depends on the last row of A′3I−1.

This ends the proof of points a) and b). Putting the above together, we take

A∗ to be A′3Iδ where δ = 1 if det(A′3I−1)/
∏n

i=1 λi(A
′
3I−1) is positive and −1

otherwise. This concludes the proof. �

We summarize the steps of the proof as it provides a method to obtain a

Hurwitz matrix in the 2-extension Σ′:

1. Pick a Hurwitz matrix A ∈ Σ and create A′0 as in (5.3).
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2. Set ε > 0 such that items 1, 2 and 3 above hold.

3. Find an edge in G′ (with corresponding variable a∗kl) which meets meets

Definition 5.2.

4. Find A′1 in the ε neighborhood of A′0 such that (5.5) holds (the relation

holds for almost all matrices A′ in the neighborhood).

5. Choose µ small enough so that (5.6) holds and set A′2 = A′1Iµ.

6. Obtain A′3 by updating the entry of A′2 corresponding to the edge a∗kl
to a value close enough to

r(A′2)

q(A′2)
so that

∑n
i=1 det([A′3][i,i])

det(A′3)
> sup

∑∏̂
λi(A

′
3)∏

λi(A′3)
.

7. Set A∗ to be A′3Iδ where δ = 1 if det(A′3I−1)/
∏n

i=1 λi(A
′
3I−1) is positive

and −1 otherwise.

5.3 Higher k-extensions

We have demonstrated in the previous sections that one can obtain simple

conditions which guarantee that 1- and 2-node extensions of Hurwitz graphs

are Hurwitz. This begs the question of whether there exists a finite set

of extension rules that would allow to create all Hurwitz graphs via node

extensions. We show here that such hope is unfortunately vain. To wit, if

the above conjecture was true, there would exists a finite k∗ such that every

Hurwitz graph on n > k∗ nodes admits a Hurwitz subgraph on n − l nodes

for some 0 < l ≤ k∗. We show in this section that, on the contrary, there

exist Hurwitz graphs of arbitrary cardinality whose sole Hurwitz subgraph

is the trivial Hurwitz graph (that is, the graph on one node with one self-

loop). In order to characterize these graphs, we require a sufficient condition

for a graph to be Hurwitz that does not follow from the conditions given in

Th. 4.1. We give it in the next Proposition.

Proposition 5.3. Let G be a digraph with n nodes. If there exists a sequence

e1, . . . , en of edges, and a permutation (σ(1), σ(2), . . . , σ(n)) of {1, 2, . . . , n}

32



such that the edge ei appears in at least one σ(i)-decomposition of G but not

in any σ(l)-decompositions, 1 ≤ l < i, then G is Hurwitz.

Proof. Let Σ be the SMS associated to G, let A ∈ Σ and denote by ei the

entry in A corresponding to the edge ei, 1 ≤ i ≤ n, and aj, 1 ≤ j ≤ n2 − n
the other entries. Let sn + p1s

n−1 + ... + pn−1s + pn be the characteristic

polynomial of A. We think of pk as polynomials in ei, aj. We show that for

arbitrary real numbers b1, b2, . . . , bn and ε > 0, we can find values for the ei’s

and the aj’s such that |pi − bi| < ε, i = 1, . . . , n. This previous statement

clearly implies the claim of the proposition.

We set ei = (e1, . . . , ei), pσ(i) = (pσ(1), . . . , pσ(i)) and a = (a1, a2, ..., an(n−1)).

Start with the first edge in the sequence: we know that the edge e1 appears

in at least one σ(1)-decomposition and no σ(1)-decomposition contains ej for

j > 1. Therefore, by (3.2) we can write pσ(1) = e1q1(a) + r1(a), where q1 6= 0

and r1 are polynomials in the variables aj. Next, we consider ei for i = 2. By

the same argument, we see that pσ(2) = e2q2(e1, a) + r2(e1, a), where q2 6= 0

and r2 are polynomials in aj and e1. In general, we have

pσ(i) = eiqi(ei−1, a) + ri(ei−1, a).

Since the polynomials qi are not zero, we can express ei in terms of pσ(i), qi

and ri as

ei =
pσ(i) − ri(ei−1, a)

qi(ei−1, a)
.

On the set where all qi(ei−1, a) are non-zero, we can regard pσ(i), 1 ≤ i ≤ n,

and ak, 1 ≤ k ≤ n2− n, as independent variables. We replace e1, . . . , ei−1 by

their expressions in the equation of ei.

We first see that we can express

e1(pσ(1), a) =
pσ(1) − r1(a)

q1(a)
=:

f1(pσ(1), a)

g1(pσ(1), a)

for some relatively prime polynomials f1(x, y) and g1(x, y). We plug that

expression into the one for e2 to get

e2(pσ(2), a) =
pσ(2) − r2(e1(pσ(1), a), a)

q2(e1(pσ(1), a), a)
=:

f2(pσ(2), a)

g2(pσ(2), a)
.
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In general, we have

ei(pσ(i), a) =
pσ(i) − ri(ei−1, a)

qi(ei−1, a)
=:

fi(pσ(i), a)

gi(pσ(i), a)
.

Going step by step over the process of substitution, we can see that all ei are

well-defined, i.e. the polynomials gi(x, y) are non-zero for all i.

Recall that our objective is to find values for ei and ak such that pj are

close to given numbers bj. In order to do this, we will find appropriate values

for akl and pj ≈ bj, such that after making a substitution in the equations

above, we will get proper (finite) values for ei. Then the chosen ak and the

found ei when plugged in the initial equations for pσ(i) will give pj ≈ bj,

which will solve the problem.

To find suitable ak, first we consider the polynomials gi(x, y). Since none

of them is identically zero, we can find some value α = (α1, α2, ..., αn2−n)

for the vector variable y, such that gi(x, α) 6= 0 for i = 1, ..., n. De-

note ḡi(x) = gi(x, α) and consider the zero set of
∏
ḡi(x). It is of codi-

mension at least one, so we conclude that there exist values βj such that

|bj − βj| < ε and ḡi(βσ(1), ..., βσ(i)) 6= 0 for all i. Thus we find ak = αk and

ei =
fi(βσ(1),...,βσ(i),α1,...,αn2−n)

gi(βσ(1),...,βσ(i),α1,...,αn2−n)
, where all ei are well defined. Clearly, these val-

ues satisfy the conditions and if we plug them in equations for pσ(i), we will

get pj = βj. This concludes the proof. �

We now show how to construct graphs which satisfy the conditions of

Prop. 5.3 but so that none of their subgraphs satisfy the necessary conditions

from Th. 4.1.

Theorem 5.2. For any n ≥ 3, there exists a Hurwitz graph Gn on n nodes

such that all subgraphs of Gn with k nodes, 1 < k < n, are not Hurwitz.

Proof. We define the following sequence of graphs: Gn is a graph on n nodes,

labeled 1, 2, . . . , n, with edges

1. (1, k) for k < n,

2. (k, k + 1) for k < n,

3. (3, 2) and (n, 1).
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Figure 5.2: A Hurwitz graph on n = 8 nodes with the property that none of
its subgraphs are Hurwitz, save for the trivial graph.

We depict G8 in Fig. 5.2. Let n be fixed and consider the following sequence

of edges in Gn:

e1 = (1), e2 = (2, 3), e3 = (1, n−1), e4 = (1, n−2), . . . , en−1 = (1, 3), en = (1, 2).

We claim that edge ei appears in at least one i-decomposition of Gn, but not

in any l-decompositions for l < i and thus Gn is Hurwitz by Prop. 5.3. To see

that the claim holds, it is easier to start with edge en, which connects node

1 to node 2. From node 2, the only accessible node is 3, and from node 3

we can go to 4 or back to 2. The latter option yields the sequence (1, 2, 3, 2)

which can not be a part of a cycle. The former option yields (1, 2, 3, 4). From

any node i > 3, the only accessible node is 1 + (i mod n). Hence the only

cycle to which en belongs is (123 · · ·n) — an n-decomposition. We now take

en−1 = (1, 3). Using the same reasoning as above, the only cycle to which

en−1 belongs is (1345 · · ·n). The situation for en−j, n−1 ≥ j > 2 is simpler to

handle as the only cycle to which this edge belongs is (1, j + 1, j + 2, · · · , n)

(this is again a consequence of the fact that from node i > 3, the only

accessible node is i+ 1). Hence the only decompositions to which ej belongs

are (1(j + 1) · · ·n) and (23)(1(j + 1) · · ·n). Finally, e2 = (2, 3) clearly can

not belong a 1-decomposition (self-loop), which proves the claim.

We now show that every Hurwitz subgraph of Gn has either 1 or n nodes.

To prove the claim, assume that Gk is a subgraph of Gn with 1 < k < n

nodes and that Gk is Hurwitz. From the necessary conditions of Th. 4.1, we

know that, first, there is an l-decomposition in Gk for 1 ≤ l ≤ k and, second,

every node in Gk is strongly connected to node 1 (the only node with a self-

loop). Notice that there is a unique 1-decompostion—the self-loop (1)—and

a unique 2-decomposition— the cycle (23). Therefore, any Hurwitz subgraph
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with k ≥ 2 nodes must contain nodes 1, 2 and 3 by the first point above.

Now observe that the only path from 3 to 1 is 345 · · ·n. Hence, if any of

the nodes 4, 5, · · · , n is missing, 3 is not connected to 1. Thus we cannot

spare any nodes in Gn and still satisfy the necessary conditions for stability

as claimed. �
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CHAPTER 6

POLYNOMIAL TIME ALGORITHMS FOR
NODE-EXTENSIONS

In this final chapter, we show that there exist deterministic, polynomial-time

algorithms to verify whether the extensions of Hurwitz graphs discussed in

the first part are Hurwitz. The main results are the following two Theorems,

dealing with one-extensions and two-extensions respectively:

Theorem 6.1. Let G′ be a 1-node extension of a Hurwitz graph G. There is

a polynomial time algorithm to decide whether G′ is Hurwitz.

and

Theorem 6.2. Let G′ be a 2-node extension of a Hurwitz graph G. There is

a polynomial time algorithm to check whether G′ passes the edge-distribution

test and hence is Hurwitz.

The remaining sections are devoted to proving Theorem 6.1 and Theo-

rem 6.2. A basic tool is the relationship between n-decompositions of graphs

and perfect matchings in an associated bipartite graph, which we present

next.

6.1 Hamiltonian decompositions and bipartite

matchings

Given a digraph G = (V,E), we introduce the bipartite graph G2 = (V 2, E2)

with V 2 and E2 defined as follows: if V = {1, 2, . . . , n}, we set

V 2 = {1, 2, . . . , n, 1′, 2′, . . . , n′} (6.1)

and

E2 = {(i, j′) for (i, j) ∈ E}. (6.2)
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It is clear from its definition that the graph G2 is a bipartite graph, with

edges going from V = {v1, . . . , vn} to V ′ = {v1′ , . . . , vn′}. We have the

following correspondence:

Lemma 6.1. Hamiltonian decompositions of the directed graph G = (V,E)

are in one-to-one correspondence with perfect bipartite matchings of G2.

Proof. We first show that to a Hamiltonian decomposition of G corresponds

a perfect matching in G2. Denote by C1, . . . , Cl disjoint cycles whose union

covers V . Consider the list (aj, bj) of edges that appear in the cycles Ci.

There are exactly n such edges and every node in G appears exactly twice

in the list: once as the origin node of an edge (viz as a aj) and once as the

destination node of an edge (viz as a bj). By definition of G2, the edge (aj, bj)

corresponds to the edge (aj, b
′
j) of E2; let M = {(aj, b′j)}. By construction,

every node in V and every node in V ′ is incident to exactly one edge of M

and thus M is a perfect matching of G2.

Now assume that M = {(aj, b′j)} is a complete matching of G2. Consider

the set of edges M ′ = {(aj, bj) | (aj, b
′
j) ∈ M} ⊂ E. We claim that edges

in M ′ yield a Hamiltonian decomposition of G. To see this, observe that

because M is a complete matching, every node in G is the origin node of

exactly one edge of M ′ and the destination node of exactly one edge of M ′.

Hence one can uniquely assign every node of G to a path made of edges

in M ′—namely the path obtained by following the unique edge leaving the

node and iterating. Because every node has an incoming and outgoing edge,

this path does not have any terminal or starting node and is thus a cycle. In

addition, the fact every node has a unique incoming edge ensures the fact that

every node is visited exactly once by a cycle. Hence M ′ yields disjoint cycles

that visit every node of G exactly once, that is a Hamiltonian decomposition

of G. �

It has been known, at least since the time of Jacobi, that maximum match-

ings can be found in polynomial time, a common algorithm for this task being

the Hopcroft-Karp algorithm [18]. Putting these facts together, we obtain

the following algorithm:

Algorithm 1: finding an n-decomposition containing a specified

edge.

Input: a digraph G = (V,E) and an edge e∗ ∈ E.
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Figure 6.1: The bipartite graph to the right has two nodes for each node i
of the graph on the left, labelled i and i′. A directed edge (k, l) of G
correspond to an edge (k, l′) in G2. The plain edges show a 4-decomposition
of G and the corresponding perfect matching of G2.

Output: an n-decomposition of G containing the edge e if one exists, the

empty set otherwise.

1. Construct the bipartite graph G2 as described in Eq. (6.1) and (6.2).

Set b∗ ∈ E2 to be the edge corresponding to e.

2. Discard all edges in G2 adjacent to b∗ and call the new graph G2(b∗).

3. Check whether the graph G2(b∗) contains a perfect matching using the

Hopcroft-Karp algorithm. If it does not, then output the empty set. If

G2 contains a perfect matching, return the edges of E corresponding

to it.

We prove the correctness of the above algorithm in the proposition below:

Proposition 6.1 (Polynomial-time algorithm for finding Hamiltonian de-

compositions).

1. Algorithm 1 determines in polynomial time whether a digraph G with

n nodes contains an n-decomposition containing a specified edge e.

2. There is a polynomial time algorithm to decide whether a directed graph

admits an n-decomposition.

3. There is a polynomial time algorithm to decide whether a directed graph

admits an n− 1-decomposition that contains a specified edge.

Proof. Let G = (V,E) be a directed graph with n nodes. For the first part,

we first construct the bipartite graph G2 = ((V, V ′), E2) as described in (6.1)
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and (6.2)—this can be done in polynomial time. We call b∗ the edge in

G2 corresponding to e∗ and set G2(b∗) be the subgraph of G2 induced by all

edges of G2 that are not adjacent to b∗. We then run the maximum matching

algorithm on G2(b∗) and denote its output by M . If M contains n edges, it

is a perfect matching. Moreover, from Lemma 6.1 and the fact that b∗ is the

only edge in G2(b∗) incident with its vertices, it follows that M produces an

n-decomposition containing the edge e. Reciprocally, if the graph G admits

an n-decomposition containing e, then we can easily see that all of its edges

have corresponding ones in the graph G2 which form a perfect matching.

The second part can be proved by directly applying the Hopcroft-Karp

algorithm to G2.

Finally, for the last part, it suffices to run Algorithm 1 on all graphs

obtained from G by removing a node which is not incident with e∗. �

6.2 Signatures and factorization

Verifying whether a 2-extension passes the edge distribution test requires

to check whether two multi-variable polynomials have factors in common.

It is a well-known fact that such problems are hard to solve (in fact, of

exponential complexity in the general case) and mostly intractable when the

number of variables is large. Since a Hurwitz graph on n nodes has at least n

edges [9], off-the-shelf methods of computational algebra [19] are unlikely to

yield tractable algorithms. We show in this section that the relation between

coefficients of the characteristic polynomials and k-decompositions can be

brought to yield a polynomial-time algorithm.

Recall that we refer to aij, the ijth entry of a matrix A ∈ Σ, which

corresponds to the edge (i, j) of the graph G, as an edge-variable and that we

call an edge-product a monomial in the edge-variables, that is an expression

of the form α =
∏
aij; we also treat α as a set of edges, and thus we can take

intersections and unions of edge-products.

The in-degree of node vl with respect to an edge-product α is the

number of edges in α entering node vl, i.e. it is the number of edge-variables

a·l in α. We define the out-degree similarly as the number edge-variables al· ∈
α. We denote in- and out-degree by deg−(vl, α) and deg+(vl, α) respectively.

For example, the out-degree of node v1 with respect to the edge-product
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a12a23a13 is two and the in-degree of node two is one.

We collect the in- and out-degrees of every node with respect to a given

edge-product α in the vector S(α), which we call the signature of α and

explicitly define as

S(α) :=


(deg−(v1, α), deg+(v1, α))

(deg−(v2, α), deg+(v2, α))
...

(deg−(vn, α), deg+(vn, α))

 =:


S1(α)

S2(α)
...

Sn(α)

 . (6.3)

Note that the map α→ S(α) is many-to-one in general. We can partially

order signatures via component-wise comparisons: we say that S � T if

Sij ≤ Tij for 1 ≤ i ≤ n and 1 ≤ j ≤ 2. The following property of signatures

is easily verified: for α and β edge-products we have

S(αβ) = S(α) + S(β). (6.4)

Lemma 6.2 (Signatures of k-decompositions). Let G be a digraph and α an

edge-product in G. Then α is a k-decomposition in G if and only if S(α)

contains exactly k rows equal to (1, 1) and n− k rows equal to (0, 0).

Proof. The result is a consequence of the fact that every node in a k-decompo-

sition has in- and out-degree one. �

In the next results, we relate signatures and factorization of the coefficients

of the characteristic polynomial of a SMS.

Lemma 6.3. Suppose that a polynomial q divides pn = (−1)ndet(A), and let

q = α1 ± α2 . . .± αk be the expansion of q into a sum of edge-product. Then

all edge-products αi have the same signature.

We illustrate this fact below in Fig. 6.2.

Proof. The polynomial pn =
∑
±γi is a signed sum of edge-products γi of

degree n, each corresponding to an n-decomposition. Since every node is

visited exactly once in a Hamiltonian decomposition, all edge-products γi

have a signature with all entries one.

Let q = α1 ± α2 . . . ± αk and r = β1 ± . . . + ±βl be such that pn = qr.

Because pn is homogeneous, so is q (resp. r) and thus all the αi (resp. βi)
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1

5 2

34

Figure 6.2: For the graph G above, we can factor p5 as
p5 = (−a11a52 + a51a12).(a23a34a45 + a24a35a43). The edge products a11a52

and a51a12 in the first factor have the same signature, and so do the
edge-products a23a34a45 and a24a43a35 appearing in the second factor.

have the same degree as polynomials. After expanding the product qr, we

get edge-products of the type αiβj that have to correspond to Hamiltonian

decompositions. We thus obtain using (6.4) and the fact that Hamiltonian

decompositions have associated signatures of all ones, that

S(αiβj) = S(αi) + S(βj) = 1

for all pairs i = 1, . . . , k, j = 1, . . . , l. We conclude that S(αi) is the same for

all αi. �

From Lemma 6.3, we conclude that we can associate a signature to a factor

q of pn. In other words, the Lemma shows that we can make the following

definition:

S(q) := S(α) for α any term in the factor q of pn.

Definition 6.1 (Signatures of the determinant pn.). We call a signature

of pn any n-dimensional Q = (Q1, Q2, ..., Qn) such that there exists an ir-

reducible factor of pn with Q as signature. We denote by S(pn), the set of

signatures of pn.

We also refer to signatures of pn as signatures of the graph. The following

result relates common factors of the polynomials pk. We let (−1)γ denote

the sign of a permutation γ.

Proposition 6.2. Let G be a digraph and Q a given integer vector. Denote

by pk the kth coefficient of the characteristic polynomial of G . The following

statements are equivalent:
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1. All k-decompositions of G contain a subgraph with corresponding sig-

nature Q.

2. We can factor pk as pk = qr with S(q) = Q.

3. We can factor pk as pk = qr with q =
∑

α:S(α)=Q(−1)s(α)α.

The function s(α) ∈ {0, 1} and depends on neither k nor Q.

Proof. We prove that 1⇒ 3⇒ 2⇒ 1. That 3⇒ 2 follows trivially from the

definition of S(q). To prove that 2⇒ 1, we recall that every k-decomposition

corresponds to a term in pk. Since we assumed that pk = qr with S(q) = Q,

all terms of pk can be obtained by multiplying a term in q with corresponding

signature Q with a term in r; this proves the statement.

We now show that 1 ⇒ 3. Consider a term γ1 of pk. By assumption, we

have γ1 = α1δ1 for some edge-products δ1 and α1 where S(α1) = Q. We

claim that if α2 is another edge-product of G with signature Q, then the

product γ2 := α2δ1 is again a term of pk. To see this, note that S(γ2) =

S(α2) + S(δ1) = S(γ1) and γ2 is a term of pk by Lemma 6.2. We can thus

write

pk =
∑
i

∑
αj :S(αj)=Q

(−1)s(δi,αj)δiαj (6.5)

where s(δi, αj) ∈ {0, 1} are functions indicating the sign with which the term

δiαj appears in pk.

Finally, we show that there exists functions s1(δ), s2(α), both with values

in {0, 1}, such that the following holds:

(−1)s(δi,αj) = (−1)s1(δi)+s2(αj). (6.6)

Note that it is sufficient to show that (−1)s(δi,α1)−s(δi,α2) only depends on

α1 and α2; i.e. whether the signs of δiα1 and δiα2 in pk are the same only

depends on α1 and α2. In order to see this, recall that a term in pk defines a

permutation on k nodes of G—the nodes incident to the edges in the term.

This permutation can be naturally extended to a permutation on {1, 2, ..., n}
by mapping the non-incident nodes to themselves via the identity. Moreover,

the sign of a term in pk is given by the sign of the permutation it defines,

see Eq. (3.3). Therefore, two terms in the expansion of pk, thinking of these

terms as permutations, have the same sign if and only if they are related by
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an even permutation. Since whether the parities of the permutations α1δi

and α2δi are the same or not can be deduced by only examining α1 and α2,

Eq. (6.6) is proven.

Putting Eqs. (6.5) and (6.6) together, we obtain that pk can be factorized

as

pk =

 ∑
αj :S(αj)=Q

(−1)s2(αj)αj

[∑
i

(−1)s1(δi)δi

]
,

which concludes the proof. �

Corollary 6.1. Let G be a digraph with determinant pn. Let q be a factor

of pn with signature S(q). If every n− 1-decomposition contains a subgraph

with signature equal to S(q), then q is also a factor of pn−1.

Proof. Notice that since q is a factor of pn, every n-decomposition of G

contains a subgraph with corresponding signature equal to Q. Applying

Prop. 6.2, we can write that

pn−1 =

 ∑
α:S(α)=Q

(−1)s(α)α

 r1

and pn =
(∑

α:S(α)=Q(−1)s(α)
)
r2 for some edge-products r1 and r2. Thus

q = ±
∑

α:S(α)=Q(−1)s(α) is a factor of pn−1 as well. �

The previous Proposition and its Corollary show that signatures can be

used to determine whether pn−1 and pn have factors in common. The follow-

ing result shows that by looking at a single n-decomposition of G, we have

access to all the signatures of pn. Recall that S(pn) is the set of all signatures

corresponding to factors of the determinant pn of a graph G.

Proposition 6.3. Let G be a digraph on n nodes which has at least one n-

decomposition. Let Eh be the set of edges of an arbitrary n-decomposition of

G. Let aij ∈ Eh and S(aij) be its corresponding signature. Then there exists

a unique signature S̄(aij) ∈ S(pn) satisfying S̄(aij) � S(aij). Moreover, the

map

S̄ : Eh → S(pn) : aij → S̄(aij)

is surjective.
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Proof. First, recall that to each irreducible factor of pn corresponds a signa-

ture. In fact, these irreducible factors are the sum of edge-products that each

have the same signature by Lemma 6.3. Second, recall that pn can be seen

as a signed sum of n-decompositions. Now if we are given an arbitrary n-

decomposition of G, with edge set Eh, putting the above two points together,

we conclude that every edge-variable in Eh can be assigned to a unique sig-

nature, the one of the factor in which it appears. We now show that S̄ is

surjective. Choose an arbitrary signature Q ∈ S(pn) and denote by q its

corresponding factor. We claim that there is an edge-variable aij ∈ Eh such

that S̄(aij) = Q. To see this, note that all n-decompositions of G are ob-

tained by expanding the factorization of pn. Therefore, any n-decomposition,

incluing Eh, contains at least one edge-variable of q. By the first part of the

Proposition, S̄(aij) = Q, which shows that the map is surjective. �

By the above proposition, we can assign to each edge of Eh a unique

signature (and hence factor of pn) and, moreover, every signature of pn will

appear in this assignment. Thus we can obtain from the edges of an arbitrary

n-decomposition of G all signatures of pn. This fact is very important in

this context, as it is well-known that enumerating, let alone exhibiting, all

possible n-decompositions of a graph is a hard problem, related to permanent

computations [20].

6.3 Polynomial time algorithm for the signatures of

the determinant of G

The main ingredient of our method to check whether a 2-extension is stable

is the following algorithm, which computes in polynomial time the signatures

of all the factors of pn. As mentioned earlier, factorizing pn is in general

hard, and we cannot deduce a factor from its signature. But since we only

care about common factors of pn and pn−1, regardless of the actual value of

these factors, knowing the signature of factors is sufficient for our purpose.

We now state the algorithm:

Algorithm 2: finding signatures of pn

Input: a digraph G on n nodes with at least one n-decomposition.
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Output: the signatures of pn.

1. Pick an arbitrary n-decomposition using Proposition 6.1. Denote by

Eh its set of edges. Proceed to step 2.

2. If Eh is empty: terminate the algorithm—all signatures of G have been

found.

Otherwise: pick an edge (i, j) ∈ Eh. Set Q := (Q1, Q2, ..., Qn) = S(aij)

as defined in (6.3). Proceed to step 3.

3. For every edge (k, l) in the graph such that

Qk = (·, 0) and Ql = (1, ·) or Qk = (·, 1) and Ql = (0, ·),

where the · denotes an arbitrary value, check if there exists a n-decompo-

sition containing that edge using Proposition 6.1.

(a) If such decomposition exists, then Q is not a signature and we

update it as follows:

• Qk ← Qk + (1, 0) if Qk = (·, 0), Ql = (1, ·).

• Ql ← Ql + (0, 1) if Qk = (·, 1), Ql = (0, ·).

Repeat step 3.

(b) If such decomposition does not exist, then Q is a signature. Pro-

ceed to step 4.

4. Find the set α of edges in Eh for which S(α) = Q. The set α can be

found by running through all edges in Eh. Set Eh = Eh − α and go to

step 2.

Proposition 6.4. Algorithm 2 computes all the signatures of pn in polyno-

mial time.

Proof. We first address the complexity of the algorithm. The first step is of

polynomial complexity as shown in Proposition 6.1. Next, a single run of

step 3 requires going through edges of the graph (at most n2) and checking

whether any of them satisfies the conditions listed. Since every iteration

increases the number of non-zero entries of Q by 1, and this can be done at

most 2n times for G, the number of such iterations is in O(n). Therefore,
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the complexity of finding a signature Q of pn using step 3 is O(n3). The next

step, namely finding all edges corresponding to Q as in step 4 has complexity

O(n2). The number of signatures of pn is at most n2, so the algorithm runs

step 2 at most this many times. Collecting all these observations, we see that

the algorithm terminates after O(n5) time steps.

We now show that Algorithm 2 indeed produces all signatures of pn, that

is all elements of the set S(pn). Let Eh be the edge set of an arbitrary n-

decomposition of G and aij ∈ Eh. Let S̄(aij) be the signature corresponding

to aij as in Prop. 6.3. Starting with S(aij), the algorithm uses a greedy

approach to build a sequence of increasing signatures, the variable Q in the

algorithm, which upon completion of step 3, will hold the value of S̄(aij), as

will be shown below.

We denote by Q(m) the value of Q at the mth update of this variable

in step 3. The variable Q(0) is initialized at S(aij). We first observe that

according to the update rule of step 3, Q(m+ 1) � Q(m).

Next, we show that if Q(m) � S̄(aij) and the algorithm does not proceed

to step 4, then Q(m + 1) � S̄(aij). To see this, denote by q the irreducible

factor of pn in which aij appears and let (k, l) be the edge selected in the

m+1 iteration of step 3. If akl and aij appear in different irreducible factors

of pn, then there is an edge-product α = qaklr in pn. From Eq. (6.4), we

obtain S(α) = S(q) + S(akl) + S(r) and, because S(q) = S̄(aij), it follows

that S(α) either has kth coordinate equal to (·, 2) or lth coordinate equal

to (2, ·). This implies that α can not correspond to a n-decomposition and

we get a contradiction. Therefore the variable akl has to appear in the same

term as aij. We conclude that the signature Q(m + 1) = Q(m) + S(akl)

satisfies the inequalities S(aij) ≺ Q(m) ≺ Q(m + 1) � S̄(aij). Since the

sequence Q(m) increases with every iteration of step 3, the argument above

also show that if Q(m) becomes equal to S̄(aij), then the algorithm proceeds

to step 4.

Finally, we prove that if Q(m) is such that the condition of step 3b holds,

then Q(m) = S̄(aij). To see this, assume that there are no edges satisfying

either

Qk(m) = (·, 0) and Ql(m) = (1, ·) or Qk(m) = (·, 1) and Ql(m) = (0, ·)

and which are contained in a n-decomposition. Note that this statement is
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equivalent to saying that every n-decomposition contains a set of edges with

a corresponding signature equal to Q(m). Applying Proposition 6.2, we see

that pn = qr, where q =
∑

α:S(α)=Q(m)±α. Since q is a factor of pn and

contains aij, its corresponding signature Q(m) satisfies Q(m) � S̄(aij). By

virtue of the inequality Q(m) ≺ S̄(aij) established in the previous paragraph,

this shows that Q(m+ 1) = S̄(aij).

Once we have S̄(aij), we can find the subset of edges α in Eh, which

contains aij and has signature S̄(aij) — these are the edges akl for which

S̄(aij)l1 = 1 and S̄(aij)k2 = 1. We then update Eh ← Eh−α and iterate. By

Prop. 6.3, we obtain all signatures of pn. �

6.3.1 Polynomial time algorithm for checking common factors
of pn+2 and pn+1

Now we consider a 2-node extension G′ of the graph G which contains

both n + 2 and n + 1-decompositions. The last step of the proof of The-

orem 6.2 is the following algorithm, which verifies whether G′ passes the

edge-distribution test.

Algorithm 3: checking common factors of pn+2 and pn+1

Input: a digraph G on n nodes; a 2-extension G′ of G with at least one

n + 2-decomposition and one n + 1-decomposition; the set of signatures of

G′.

Output: True if G′ passes the edge-distribution test, False otherwise.

1. Denote by Eext the set of edges in G′ appearing in at least one n + 2-

decomposition and incident with node vn+1 or vn+2.

2. If Eext is empty: terminate the algorithm and return False. Otherwise:

pick an edge (i, j) ∈ Eext, find the signature S̄(aij) in G′ and denote

by q the factor in pn+2 corresponding to it.

3. For every edge kl in the graph such that

S̄(aij)k = (·, 0) and S̄(aij)l = (1, ·) or S̄(aij)k = (·, 1) and S̄(aij)l = (0, ·),

where the · denotes an arbitrary value, check if there exists an n + 1-

decomposition containing that edge using Theorem 6.1.
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(a) If such decompositions exist for all considered edges (k, l), then q

is not a factor of pn+1. Terminate the algorithm and return True.

(b) If such decomposition does not exist for at least one considered

edge (k, l), proceed to step 4.

4. Find the set α of edges (k, l) in Eext for which S(kl) � S̄(aij). The set α

can be found by running through all edges in Eext. Set Eext = Eext−α
and go to step 2.

Proposition 6.5. Algorithm 3 checks whether a 2-extension G′ of a digraph

G passes the edge-distribution test in polynomial time.

Proof. The proof is similar to the one of Proposition 6.4, so we just provide a

sketch. First, it follows from the fact that the number of edges in G′ is O(n2)

and from Proposition 6.1 that the complexity of Algorithm 3 is polynomial.

Second, we prove correctness of the algorithm. Assume that the algorithm

returns False for a given extension G′ of G. We claim that every factor of

pn+2 containing an edge of E ′ is a factor of pn+1. To see this, let q be a factor

of pn+2 containing an edge-variable that is in Eext.

Let aij be an edge-variable appearing in q as selected in step 2. Because

the algorithm returned False, by step 3 all n+1-decompositions contain sub-

graphs with corresponding signatures equal to S(q). Using Proposition 6.2

we see pn+1 = qr for some r.

Reciprocally, assume that the extension does not pass the edge distribu-

tion test. This means that every factor of pn+2 containing an edge-variable

corresponding to an element of Eext also appears in the factorization of pn+1.

Choose an arbitrary edge (i, j) ∈ Eext and let pn+2 = qr, with aij appearing in

q. We apply again Proposition 6.2 with Q = S̄(aij) = S(q) and conclude that

every n+1-decomposition contains a subgraph with corresponding signature

Q. This implies that for every iteration of the algorithm through step 3, the

outcome is (b). Thus the number of edges in Eext decreases monotonically

until it reaches zero and the algorithm then returns False. �

6.4 Proofs of Theorem 6.1 and Theorem 6.2

We now have all the ingredients necessary to prove Theorems 6.1 and 6.2.
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Proof of Th. 6.1. Knowing that G is Hurwitz, Proposition 4.2 states that

in order to determine whether G′ is Hurwitz or not, we have to check only

whether the latter contains a Hamiltonian decomposition. Proposition 6.1

offers a polynomial time algorithm to do this, which completes the proof. �

Proof of Th. 6.2. First, using Theorem 6.1, we can check in polynomial time

whether G′ has n + 2 and n + 1 decompositions. If it is the case, then both

pn+1 and pn+2 are non-zero polynomials. Applying Algorithm 2 we can find

all signatures of pn+2. Then using Algorithm 3 we can check whether the

extension passes the edge-distribution test. �
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PART II

ACTUATOR DESIGN
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CHAPTER 7

INTRODUCTION

In recent years there has been a resurgence of interest in the design of optimal

actuators and sensors for linear systems. Driven by the rise of distributed

control systems as models for large scale social or biological networks, or

novel manufacturing and sensing methods that allow for more flexibility in

the design/choice of actuators/sensors, there is an increased need for a better

understanding of the way in which the performance of a system depends on

the placement of its actuators.

Amongst the relevant recent work in the area, we mention [21], where it is

shown that the optimal actuator/sensor design problem admits an essentially

(up to symmetries) unique optimum when the magnitude of the actuator is

small to moderate, and a provably convergent algorithm to find the optimal

actuator is proposed. For related work when dealing only with control en-

ergy [22] (in contrast to linear-quadratic cost), we refer to [23]. In this case,

the set of allowed actuators is a continuous set, corresponding physically to

the placement of an actuator or sensor in the system (e.g., the placement of

a camera in physical space). In this regard, we also mention [24, 25, 26].

Other types of problems require choosing a set of sensors ci out of a finite

family of available sensors. These have been investigated in various forms

by several authors. In [27], the authors assign a cost to each sensor and

show that optimally choosing a subset of sensors meeting cost constraints is

an NP-hard problem, and furthermore exhibit a class of dynamics for which

greedy algorithms yield a provably good approximation to the optimal selec-

tion. In [28], the authors look at a “relaxed” selection problem, where sensors

are selected with a weight wi to be optimized and propose a convex optimiza-

tion algorithm. A different type of methods, based on L1 optimization as a

proxy for sensor selection has been investigated in [29]. Similar scenarios

have also been investigated in the statistics literature in the field of exper-

iment design, see [30] for a start to the relevant literature. Methods based
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on greedy selection are also popular in the area, see [31] for an evaluation of

the performance of such methods, and for an algorithmic approach to sen-

sor/actuator selection in the structural setting (i.e., to guarantee structural

controllability/observability).

In this part of the thesis we address two separate problems of optimal

actuator design. Their solutions are obtained using the techniques employed

in [21], which involve the minimization of a certain non-convex function on

a compact manifold.

In Chapter 8 we examine the problem of designing a (dynamic) actua-

tor/controller that minimizes a combination of linear-quadratic cost and the

variations in the applied controls, as well.

Specifically, consider the linear time-invariant system

ẋ = Ax+Bu, x(0) = x0, (7.1)

with the quadratic cost function

C =

∫ ∞
0

(x(t)>Qx(t) + u(t)>u(t)) dt. (7.2)

It is well-known that the optimal control (i.e. the one minimizing the above

cost) uopt can be expressed in a feedback form [32]. The optimal actuator

design problem is to design the system’s actuator B to minimize the optimal

cost.

In many practical situations, however, the physical actuators driven by u(t)

cannot vary their effort very fast (a DC motor, for example, may not be able

to change its rotations per minute very fast due to physical constraints), or a

sensor that cannot update its reading very quickly. To address this concern,

we add the assumption that u is continuously differentiable and introduce

the extra term u̇(t)>u̇(t) in the integrand of the cost function (7.2). We allow

the use of dynamic controls, i.e. u̇(t) is a function of u(t) and x(t).

We consider actuators B which satisfy B>B = γ2I, where γ 6= 0 and I is

the identity matrix, and seek to find the ones that minimize the cost

min
u

∫ ∞
0

(x>Qx+ cu>u+ u̇>u̇)dt, (7.3)

which depends implicitly on B. Note that bounding the norm of B is neces-
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sary as otherwise one can exchange control effort (measured as the magnitude

of u) for actuator gain (measured as the norm of B), and artificially decrease

the value of the cost. We show that generically for A, Q, and x0, when B is

small, there exists an essentially (up to symmetries) unique actuator which

is locally optimal, and it is also globally optimal. Furthermore, this actua-

tor can be found using a gradient algorithm over a suitable manifold. We

illustrate the performance of the design in the last section of Chapter 8.

In Chapter 9, we focus on linear stochastic systems. Such models are

widely used in engineering, biology and physics, due to the breadth of the

situations they can describe [33, 34]. The most commonly used among them

is the linear dynamics with additive Gaussian noise model, which can be

described by the stochastic differential equation (SDE)

dxt = Axtdt+ budt+Gdwt,

where x ∈ Rn, A ∈ Rn×n, b ∈ Rn×m and G ∈ Rn×p and wt is a standard vector-

valued Wiener process [35]. It is well known that the control minimizing the

expected cost

lim
T→∞

E

(
1

T

∫ T

0

(x>Qx+ u>u)dt

)
is of feedback type, and its explicit form is known. Now it is clear that

the value of the optimal (with respect to u) cost will be dependent on the

actuator b. The problem of finding the b that minimizes this cost is called the

optimal actuator placement. This problem is in general difficult, and easily

seen to be non-convex. We provide in this paper a solution to the related

problem of optimal actuator placement problem for dynamics corrupted with

multiplicative noise

dxt = Axt dt+ bu dt+G1x dwt, (7.4)

where G1 ∈ Rn×n and wt is a Wiener process.
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CHAPTER 8

ON THE OPTIMAL DESIGN OF LOW
FREQUENCY ACTUATORS

8.1 Preliminaries

We now state the problem we are addressing precisely. Consider the control

system

ẋ = Ax+ γBu, x(0) = x0, u(0) = 0, (8.1)

where A ∈ Rn×n, B ∈ Rn×m is such that B>B = Im, and γ > 0. We consider

also the associated cost functional

V (x0) =

∫ ∞
0

(x>Qx+ cu>u+ u̇>u̇)dt,

where Q ∈ Rn×n is a symmetric positive definite (spd) matrix and c is a

positive constant. We denote by

B = {B ∈ Rn×m | B>B = Im},

where Im is the identity (m×m)-matrix, be the Stiefel manifold of orthonor-

mal m-frames in Rn. Roughly speaking, our goal is to find the actuator

B ∈ B which minimizes the cost functional V , for either a specific x0 or in

average (over x0). To make this more precise, we first rewrite the problem

by introducing the extended variable

x̄ =

(
x

u

)
,

for which we can write
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˙̄x = Mx̄+ B̄v, M =

(
A γB

0 0

)
, B̄ =

(
0

I

)
, (8.2)

V̄ (x̄0) =

∫ ∞
0

(x̄>T x̄+ v>v)dt, T =

(
Q 0

0 cI

)
, (8.3)

where v = u̇ is a continuous control. The optimal control vopt which mini-

mizes the cost V̄ in the LQR problem (8.2), (8.3) is given by

vopt = −B̄>Px̄opt, (8.4)

where P is the unique positive definite solution of the Riccati equation

M>P + PM − PEP + T = 0, (8.5)

with E = B̄B̄> (see Theorem 8.1 below), and x̄opt is the solution to the

system

˙̄xopt = (M − EP )x̄opt, x̄opt(0) =

(
x0

0

)
. (8.6)

The corresponding minimum cost is equal to

Vmin(x0) = tr(PL̄),

where

L̄ = x̄0x̄
>
0 =

(
x0x

>
0 0

0 0

)
=:

(
L 0

0 0

)
(8.7)

is a positive semi-definite matrix.

If we write the matrix P in the form

P =

(
P1 P2

P>2 P3

)
,

we can represent the system using Figure 8.1.

Our goal is the following: solve the minimization problem
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Figure 8.1: In this problem, the matrix A is fixed, and we design the blocks
B, P3 and P>2 so as to minimize the cost (8.3).

B∗ = arg min
B∈B

tr(L̄P ),

where L̄ and P are as defined above. It is well-known that if x0 is sampled

from an isotropic distribution centered at zero, then Ex0V (x0) ∝ trP [21].

Hence taking L = In provides the minimum in the average sense discussed

above. In words, we find the actuator that minimizes the control effort V

when paired with an optimal control.

For fixed A,Q, c, x0, the value of the optimal cost as a function of B will

be denoted by Fγ(B), i.e.,

Fγ(B) := tr(L̄P ).

It is useful to work in the space of matrices BB>, as B enters in the

definition of P in this form through the Riccati equation (8.5). Hence, we

introduce the set

G = {G ∈ Rn×n | G2 = G = G>, rkG = m},

and the map

H : B → G : B 7→ BB>.

Each G ∈ G is a positive semi-definite matrix, representing the orthogonal

projection operator onto the m-dimensional subspace of Rn spanned by the

columns of G. The set G is an analytic submanifold of Rn×n ([36], p. 275).

Moreover, the analytic map H is surjective and its level sets are precisely

the orbits of the action of the orthogonal group O(m) = {Θ ∈ Rm×m |
Θ>Θ = Im} in B given by (B,Θ) 7→ BΘ for B ∈ B, Θ ∈ O(m). Thus, H
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induces an analytic diffeomorphism of the Grassmann manifold B/O(m) of

all m-dimensional subspaces of Rn onto G.

In Section 8.2, it is shown that there exists a unique analytic function

J : G × R → R, such that J(H(B), γ) = Fγ(B) for all B ∈ B. For fixed

γ ∈ R, we also use the notation Jγ : G → R : G 7→ J(G, γ).

The main result of this chapter is the following theorem.

Theorem 8.1. For A Hurwitz, and generically for Q positive definite, for

γ > 0 small enough, the function Jγ : G → R has
(
n
m

)
critical points, exactly

one of which is a local minimum.

As a consequence of the Theorem, we have

Corollary 8.1. Under the assumptions of Theorem 8.1, the gradient flow

of Fγ(B) converges from a generic initial condition B0 ∈ B to an optimal

actuator B∗ ∈ B.

We provide the gradient flow and illustrate its performance in simulations.

8.2 Gradient of the function Fγ

We are to optimize the function Fγ (or, equivalently, Jγ) over the manifolds

B (resp. G) using a gradient flow. To this end, we need to characterize the

tangent spaces of said manifolds and introduce inner products. We do so in

the next few paragraphs.

Tangent space and inner product Recall that so(n) = {Ω ∈ Rn×n |
Ω = −Ω>} is the vector space of skew-symmetric matrices. We introduce

the following operators:

Definition 8.1. The linear operators ρB : so(n)→ Rn×m and adG : so(n)→
Rn×n are defined for every B ∈ B and G ∈ G as:

ρB(Ω) = ΩB

adG(Ω) = [G,Ω],

where [G,Ω] := GΩ−ΩG. The operator Πso(n)(V ) = 1
2
(V − V >) denotes the

projection of the matrix V ∈ Rn×n onto so(n).
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It is well-known that the tangent spaces of B and G at B and G respectively

are given by [37]

TBB = {ρB(Ω) | Ω ∈ so(n)},

TGG = {adG(Ω) | Ω ∈ so(n)}.

In order to compute the gradient of Fγ over B, we will use the inner product

τ(·, ·) : TBB × TBB → R which is defined as follows. Let

ρ̄ : ker (ρB)⊥ → TBB

where ker (ρB)⊥ is the orthogonal complement of ker (ρB) inside so(n) taken

with respect to the Frobenius inner product (Ω1,Ω2) := − tr(Ω1Ω2). Now

for Ḃi := ρB(Ωi), i = 1, 2, tangent vectors, the inner product τ(Ḃ1, Ḃ2) is

defined as:

τ(Ḃ1, Ḃ2) = − tr(ρ̄−1
B (Ḃ1)ρ̄−1

B (Ḃ2)).

On the manifold G, we will use the metric κ(·, ·) which is defined similarly.

Let

ādG : ker (adG)⊥ → TGG,

where ker (adG)⊥ is the orthogonal complement of ker (adG) inside so(n)

taken with respect to the Frobenius inner product. The inner product κ is

defined for Ġi := adG Ωi as:

κ(Ġ1, Ġ2) = − tr(ād
−1
G (Ġ1)ād

−1
G (Ġ2)).

The inner products τ and κ have often been used in optimization on manifold

problems [38, 39].

We will need the following definition:

Definition 8.2 (First variation). Let P : B → Rn×n be differentiable and

Ḃ ∈ TBB. We call the first variation of P at B the map

ṖB : TBB → Rn×n : Ḃ → lim
ε→0

P (B + εḂ)− P (B)

ε
.
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Note that the first variation of a real-valued function is exactly the differen-

tial of this function. Finally, we recall that the gradient gradF of a function

F on B with inner product τ(·, ·) is defined as the unique solution of

τ(gradF (B), Ḃ) = ḞB(Ḃ), for all Ḃ ∈ TBB,

where Ḟ is the first variation of F .

On the generalized Riccati equation The following result, which says

that the cost function F depends nicely on B, is needed to obtain the gradient

of F .

Proposition 8.1. The Riccati equation (8.5) has a unique positive definite

solution P for every B ∈ B, γ ∈ R and A Hurwitz. Furthermore, the solution

P (B, γ) : B × R → Rn×n is analytic, and, for fixed γ ∈ R its first variation

Ṗ at B is given by the convergent integral

ṖB(Ḃ) =

∫ ∞
0

e(M−EP )>t(N>P + PN)e(M−EP )dt, (8.8)

where

N =

(
0 γḂ

0 0

)
.

Proof. The statement is standard, we thus only sketch the proof. Since A

is Hurwitz, the uncontrollable modes of the pair (M,E) are stable and thus

(M,E) is stabilizable for all B ∈ B, γ ∈ R. Since Q is positive definite and

c > 0, the pair (M,T ) is similarly shown to be detectable. Hence, (8.5) has

a unique positive definite solution P and moreover the matrix M − EP is

Hurwitz ([32], Theorem 3.7). Furthermore, this solution depends analytically

on (B, γ) ∈ B × R ([40], Lemma 1.1).

For the second part, we compute the first variation of Eq. (8.5) in an

arbitrary direction Ḃ and get (we omit writing Ḃ as an argument of Ṗ , Ṁ

for clarity)

Ṁ>P + ṖM + PṀ − ṖEP − PEṖ = 0,

⇔ (M − EP )>Ṗ + Ṗ (M − EP ) +N>P + PN = 0.
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This is a Lyapunov equation with unknown Ṗ , so its solution can be written

in the form (8.8). �

Using the above Proposition, we can evaluate the differential of F at B as

follows:

Proposition 8.2. The differential of Fγ acts on a tangent vector Ḃ = ΩB

in TBB according to

(Ḟγ)B(Ḃ) = 2 tr(KPN),

where the matrix K is the unique positive semi-definite solution of the Lya-

punov equation

(M − EP )K +K(M − EP )> + L̄ = 0. (8.9)

Proof. We compute the directional derivative of Fγ(B) for fixed γ with re-

spect to Ḃ = ΩB. Multiplying both sides of (8.8) by L̄ and applying the

trace operator on both sides, we get

Ḟγ = tr

(∫ ∞
0

e(M−EP )>t(N>P + PN)e(M−EP )tL̄dt

)
.

Using the relations tr(X) = tr(X>) and tr(Y Z) = tr(ZY ), we get

Ḟγ = 2 tr(KPN),

where

K =

∫ ∞
0

e(M−EP )tL̄e(M−EP )>tdt.

�

The next two results show that we can set-up the optimization problem

on the manifold G as well, the advantage of that formulation being that

the critical points of the corresponding function on G (defined below) are

isolated—in contrast, since Fγ(B) = Fγ(ΘB) for any matrix Θ such that

ΘΘ> = I, the critical points of F are not isolated.
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Lemma 8.1. There exists a unique analytic function J : G × R → R, such

that J(BB>, γ) = Fγ(B) for every B ∈ B, γ ∈ R.

Proof. We construct the function J explicitly. Suppose that Θ ∈ O(m),

and set Θ̄ =
(
In 0
0 Θ

)
∈ O(n + m), where In the n × n identity matrix. The

substitution B  BΘ transforms (8.5) into the equation

(Θ̄>MΘ̄)>P + P (Θ̄>MΘ̄)− PEP + T = 0. (8.10)

Since Θ̄>EΘ̄ = E and Θ̄>T Θ̄ = T , it follows that the solutions P (B, γ) of

(8.5) and P (BΘ, γ) of (8.10) satisfy the relation

P (BΘ, γ) = Θ̄>P (B, γ)Θ̄.

Note that we have Θ̄>L̄Θ̄ = L̄. Hence, tr(P (BΘ, γ)L̄) = tr(P (B, γ)L̄), and

thus, the function F : B×R→ R, defined as F (B, γ) = Fγ(B) = tr(P (B, γ)L̄)

is invariant under the right action of the group O(m) on B × R given by

(B, γ) ·Θ = (BΘ, γ) for B ∈ B, γ ∈ R, Θ ∈ O(m). Since F is constant on the

level sets of the surjective map G : B×R→ G×R, where G(B, γ) = (H(B), γ),

it induces a well defined function J : G × R → R such that J ◦ G = F . The

analyticity of J follows from the facts that F , as well as the action of O(m)

on B×R, are analytic, and that G induces an analytic diffeomorphism of the

orbit manifold (B × R)/O(m) onto G × R ([41], (16.10.4)). �

Next, we will compute the gradients of Fγ and Jγ over B and G with respect

to the natural inner products on these manifolds introduced above. We set

P =

(
P1 P2

P>2 P3

)
, K =

(
K1 K2

K>2 K3

)
,

and get, from Prop. 8.2,

Ḟγ(Ḃ) = 2γ tr((K>2 P1 +K3P
>
2 )Ḃ), (8.11)

where Ḃ = ΩB,Ω ∈ so(n).

The following lemma relates the gradients of a function f : G → R to the

gradient of the function f ◦ H : B → R
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Lemma 8.2. Let f : G → R be differentiable and B ∈ B. Let f̄ : B → R :

B → f(H(B)). If Ω∗ ∈ so(n) is such that

grad f̄(B) = Ω∗B,

then

grad f(H(B)) = −[H(B),Ω∗].

Proof. We show that the differential dH : TBB → TH(B)G sends the gradient

grad(f ◦H) of f ◦H to the gradient (grad f) of f .

Given B ∈ B, let HB = {Ḃ ∈ TBB | Ḃ′ ∈ ker (TBH) ⇒ τ(Ḃ, Ḃ′) = ′}
be the horizontal subspace of TBB with respect to H. One can verify that

for each Ḃ ∈ HB, we have τ(Ḃ, Ḃ) = κ(dH(Ḃ), dH(Ḃ)), i.e. that H is a

Riemannian submersion. Hence, grad(f ◦H) is a horizontal lifting of grad f ,

i.e. grad(f ◦ H)B ∈ HB and dH(grad(f ◦ H)(B)) = (grad f)(H(B)) for all

B ∈ B, ([42], § 4). The second claim follows from the relation dH(ΩB) =

[Ω, H(B)] for Ω ∈ so(n). �

We now evaluate the gradient of Fγ:

Proposition 8.3. The gradient of the function Fγ over B with respect to the

metric τ is given by

gradFγ(B) = −2γΠso(n)(B(K>2 P1 +K3P
>
2 ))B,

where K is given in Eq. (8.9), and P is given in Eq. (8.5).

Proof. For every B ∈ B and Ω ∈ so(n), we have

τ(gradFγ,ΩB) = − tr(ρ̄−1
B (gradFγ)ρ̄

−1(ΩB))

= − tr(ρ̄−1
B (gradFγ)Ω)

= 2γ tr((K>2 P1 +K3P
>
2 )ΩB),

where the last row comes from the definition of the gradient and Eq. (8.11).

Since the equality above holds true for arbitrary skew symmetric matrices Ω,

we conclude that

ρ̄B
−1(gradFγ) = −2γΠso(n)(B(K>2 P1 +K3P

>
2 )).
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Applying ρB on both sides, we obtain

gradFγ = −2γΠso(n)(B(K>2 P1 +K3P
>
2 ))B

as announced. �

Using Lemma 8.2, we obtain the gradient of J :

Proposition 8.4. The gradient of the function Jγ over G with respect to the

metric κ is given by

grad Jγ(G) = 2γ[G,Πso(n)(B(K>2 P1 +K3P
>
2 ))],

where B ∈ B is any matrix for which G = BB>.

8.3 Analysis of Jγ.

In the case of a general γ, the analysis of the critical point of Jγ is difficult, and

simulations show that the function can have many local minima. However,

for γ small, the function is quite well-behaved, and we analyze it here. We

quantify in the last section how small γ needs to be for the analysis to go

through in practice.

When γ is small, the gradient of Jγ can be well-approximated by a well-

behaved vector field (see Theorem 8.2 below), and the critical points of the

original gradient and its approximation can be shown to be the same (we do

so below). In order to obtain this approximation, we start with computing

the first order expansion of the matrices M , P and K with respect to γ.

First, we have

M = M (0) + γM (1),

where

M (0) =

(
A 0

0 0

)
, M (1) =

(
0 B

0 0

)
.
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Lemma 8.3. The matrix P in a neighborhood of γ = 0 satisfies:

P =

(
X γS

γS>
√
cI

)
+O(γ2), (8.12)

where X is the unique positive definite solution of the Lyapunov equation

A>X +XA+Q = 0 (8.13)

and

S = −(A> −
√
cI)−1XB. (8.14)

Proof. Let P = P (0) + γP (1) +O(γ2), where P (0) is a positive definite matrix

and P (1) is a symmetric matrix.

First, we substitute the expansion of P in equation (8.5), and after group-

ing together the terms of degrees zero and one in γ, we get, respectively,

M (0)>P (0) + P (0)M (0) − P (0)EP (0) + T = 0, (8.15)

and

M (1)>P (0) + P (0)M (1) +M (0)>P (1) + P (1)M (0)

− P (1)EP (0) − P (0)EP (1) = 0. (8.16)

Now we write

P (0) =

(
X1 X2

X>2 X3

)
,

and plugging it in equation (8.15), we get the system of equations

0 = A>X1 +X1A−X2X
>
2 +Q,

0 = A>X2 −X2X3,

0 = −X2
3 + cI.

Since P (0) is positive definite, X3 =
√
cI. Then, (A> −

√
cI)X2 = 0, and

since A−
√
cI has full rank, we get X2 = 0. Finally, we conclude that X1 is

the unique positive definite solution of the Lyapunov equaion

A>X1 +X1A+Q = 0.
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We thus have

P (0) =

(
X1 0

0
√
cI

)
,

we plug it in equation (8.16) and get:

W> +W +M (0)>P (1) + P (1)M (0)

−
√
cP (1)E −

√
cEP (1) = 0,

where

W =

(
0 X1B

0 0

)
.

Similarly to the computation for P (0) above, we find that

P (1) =

(
0 S

S> 0

)
,

where

S = −(A> −
√
cI)−1X1B.

We conclude that P (0) + γP (1) is given by the matrix in the right hand side

of (8.12), with X = X1.

�

We can similarly obtain the expansion of K in a neighborhood of γ = 0:

Lemma 8.4. The matrix K in a neighborhood of γ = 0 satisfies:

K =

(
Y γU

γU> 0

)
+O(γ2), (8.17)

where

U = −(A−
√
cI)−1Y (A> −

√
cI)−1XB, (8.18)

X is defined by (8.13), and Y is the unique positive semi-definite solution of

the Lyapunov equation

AY + Y A> + L = 0 (8.19)
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Proof. Now we perform similar computations for the matrix K. Let

K = K(0) + γK(1) +O(γ2),

where K(0) is a positive semi-definite matrix, and K(1) is a symmetric matrix.

Using Lemma 8.3 and equation (8.9)

(M − EP )K +K(M − EP )> + L̄ = 0,

we get:

(M (0) −
√
cE)K(0) +K(0)(M (0) −

√
cE)> + L̄ = 0,

(M (0) −
√
cE)K(1) +K(1)(M (0) −

√
cE)>

+

(
0 B

−S> 0

)
K(0) +K(0)

(
0 −S
B> 0

)
= 0,

where S is given by (8.14).

We set

K(0) =

(
Y1 Y2

Y >2 Y3

)
and plug it in the first equation to get the following system of equations:

AY1 + Y1A
> + L = 0,

(A−
√
cI)Y2 = 0,

−2
√
cY3 = 0.

Therefore,

K(0) =

(
Y1 0

0 0

)
,

where Y1 is the unique positive semi-definite solution of the Lyapunov equa-

tions

AY1 + Y1A
> + L = 0.
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Subsequently, we find

K(1) =

(
0 (A−

√
cI)−1Y1S

S>Y1(A> −
√
cI)−1 0

)
.

Finally, we conclude that K(0) + γK(1) is given by the matrix in the right

hand side of (8.17), with Y = Y1. �

Now, for γ 6= 0 let us define the function

J∗γ (G) =
1

γ2
(Jγ(G)− J0(G)),

and

J∗0 (G) = lim
γ→0

J∗γ (G).

From Lemma. 8.1, J∗γ (G) is analytic. Since Fγ(B) = Fγ(−B) for γ ∈
R, B ∈ B, the function Jγ(G)−J0(G) is even, analytic, and vanishes at γ = 0.

Therefore, it can be written as the product of γ2 and an analytic function.

Furthermore, since J0 : G → R is constant, we have grad J∗γ = 1
γ2

grad J∗γ , and

therefore, for γ 6= 0, the functions Jγ and J∗γ have the same critical points in

G.

Theorem 8.2. In a neighborhood of γ = 0 we have

grad Jγ(G) = γ2[G, [G,Z]] +O(γ3), (8.20)

where

Z = −X(A−
√
cI)−1Y (A> −

√
cI)−1X, (8.21)

and X and Y are defined by (8.13) and (8.19), respectively.

Proof. Using Lemma 8.3 and Lemma 8.4, we find

tr(KPN) = γ2 tr(U>XḂ) +O(γ3)

= γ2 tr(−B>X(A−
√
cI)−1Y (A> −

√
cI)−1XḂ) +O(γ3)

= γ2 tr(GZΩ) +O(γ3), (8.22)

where G = BB> and Z is given by (8.21). Similarly to the computations
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we made in Section 8.2, we find that the gradient of Jγ with respect to the

metric κ on G satisfies

grad Jγ(G) = 2γ2[G,Πso(n)(GZ)] +O(γ3). (8.23)

Since G and Z are symmetric matrices, we have

Πso(n)(GZ) =
1

2
[G,Z],

which concludes the proof. �

We can now characterize the critical points of J as follows:

Corollary 8.2. The critical points of J∗0 satisfy the equation

[G,Z] = 0.

Proof. Using Theorem 8.2, we see that the critical points of J∗0 satisfy the

equation [G, [G,Z]] = 0. Let G = ΘḠΘ>, where Ḡ = diag(d1, d2, . . . , dn) is a

diagonal matrix. If Z = ΘZ̄Θ>, where Z̄ = (zi,j) is a symmetric matrix, we

get [Ḡ, [Ḡ, Z̄]] = 0. After expanding the commutators, we see that the entry

of the matrix [Ḡ, Z̄] at position (i, j) is equal to (di − dj)zi,j, and the entry

of the matrix [Ḡ, [Ḡ, Z̄]] at position (i, j) is equal to (di− dj)2zi,j. Therefore,

[Ḡ, [Ḡ, Z̄]] = 0 implies that [Ḡ, Z̄] = 0, which is equivalent to [G,Z] = 0. �

8.4 Signature of the critical points of J∗0

Recall that the signature of a symmetric bilinear form represented as a matrix

Q is the triple (p+, p−, p0), where p+ (resp. p−, resp. p0) is the number of

positive (resp. negative, resp. zero) eigenvalues of Q. We evaluate in this

section the signature of the Hessian of J at its critical points. From this

information, we can derive the number of local minima of J , since a local

minima has signature (n, 0, 0).

We first determine the number of critical points for J . Since symmetric

matrices commute if and only if they have the same eigenspaces, Corollary 8.2

implies that the critical points G of J∗0 have the same eigenspace as the matrix

Z.

69



Proposition 8.5. Generically for A,Q, the matrix Z of Eq. (8.21) has n

distinct eigenvectors.

Proof. Let Symn denote the vector space of all symmetric matrices in Rn×n

and Posn denote its open subset consisting of all positive definite matrices.

Given a matrix G ∈ Rn×n, let LG : Symn → Symn denote the Lyapunov

operator, defined as LG(X) = G>X+XG for X ∈ Symn. Consider the poly-

nomial map Z : Posn × Rn → Symn, defined as Z(Q, x) = −XVX, where

X = −L−1
A (Q), V = (A −

√
cIn)−1Y (A> −

√
cIn)−1, and Y = −L−1

A>
(xx>)

(cf. (8.7), (8.13), (8.19) and (8.21)). If x0 ∈ Rn is such that the pair (A, x0)

is controllable, then Y0 = −L−1
A>

(x0x
>
0 ) is a positive definite matrix ([43],

Theorem 4), whence V0 = (A −
√
cIn)−1Y0(A> −

√
cIn)−1 is positive defi-

nite, as well. Then, for the partial differential of Z with respect to Q at

point of the form (Q0, x0), where Q0 is any positive definite matrix, we

have dZ(Q0,x0)(Q̇, 0) = −ẊV0X0 − X0V0Ẋ = L−V0X0(Ẋ), where Q̇ ∈ Symn,

X0 = −L−1
A (Q0), and Ẋ = −L−1

A (Q̇). Since the matrix R = V
1
2

0 X0V
1
2

0 is pos-

itive definite, the matrix −V0X0 = V
1
2

0 (−R)V
− 1

2
0 is Hurwitz, and hence the

linear operator Q̇ 7→ dZ(Q0,x0)(Q̇, 0) = L−V0X0(−L−1
A (Q̇)) is an isomorphism

of Symn onto itself. Now, a corollary of the inverse function theorem implies

that there exists a neighborhood U of (Q0, x0) in Posn × Rn, such that Z(U)

is open in Symn. Hence, there exists (Q1, x1) ∈ U, such that Z(Q1, x1) has

distinct eigenvalues. Therefore, the discriminant of the characteristic poly-

nomial of the matrix Z(Q, x) is a non-zero polynomial function on Posn×Rn,

whence we conclude that the set of all (Q, x), for which Z(Q, x) has distinct

eigenvalues, i.e. the set where this function does not vanish, is open and

dense in Posn × Rn, and its complement has Lebesgue measure 0. Similarly,

the set of all Hurwitz matrices A, for which there exists x0 ∈ Rn such that

the pair (A, x0) is controllable, i.e. det(x0, Ax0, . . . , A
n−1x0) 6= 0, is open

and dense in the set of all Hurwitz matrices in Rn×n and its complement has

Lebesgue measure 0. �

Theorem 8.3. Generically for A,Q, the function J∗0 has
(
n
m

)
critical points.

Proof. Proposition 8.5 states that generically Z has n different eigenvectors.

Since Z and G commute, they must have the same eigenspaces. There are

exactly
(
n
m

)
matrices G on the Grassmannian G which satisfy this property.

If Θ ∈ O(n) is such that Z = ΘZ̄Θ> for some diagonal matrix Z̄, they have
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the form Gi = ΘḠiΘ
>, where Ḡi is any diagonal matrix, m of whose diagonal

entries are equal to 1, the remaining diagonal entries being equal to 0. �

The Hessian HJ∗0 of J∗0 is the bilinear form

HJ∗0 (X, Y ) := X(Y (J∗0 ))− dJ∗0 (∇XY ), (8.24)

where X, Y are arbitrary vector fields [44].

Let ΩX and ΩY be fixed matrices in so(n), and consider the vector fields

X and Y on G, defined as XG = [G,ΩX ] and YG = [G,ΩY ] for G ∈ G. From

(8.22) we obtain

YG(J∗0 ) = tr(GZΩY ),

and therefore,

XG(Y (J∗0 )) = tr([G,ΩX ]ZΩY ). (8.25)

At the critical points G of J∗0 , the second term in equation (8.24) vanishes,

and we have

(HJ∗0 )G(XG, YG) = XG(Y (J∗0 )).

Now suppose that the matrices A, Q and L are such that the matrix Z,

defined in (8.21), has distinct eigenvalues (Proposition 8.5), and let G be a

critical point of J∗0 . Since G and Z are symmetric matrices, with G2 = G

and [G,Z] = 0 (Corollary 8.2), there exists a matrix Θ ∈ O(n) such that

G = ΘḠΘ> and Z = ΘZ̄Θ>, where

Ḡ = diag(d1, d2, . . . , dn), Z̄ = diag(z1, z2, . . . , zn),

so that di ∈ {0, 1} for i = 1, . . . , n, and z1 > z2 > · · · > zn.

Theorem 8.4. Suppose that the matrix Z of Eq. (8.21) has distinct eigen-

values, and let G be a critical point of J∗0 . Let α =
∑n

i=1 idi, where Ḡ =

diag(d1, . . . , dn) is the diagonal matrix defined in the preceding paragraph.

Then the signature of the Hessian of J∗0 at G is (p+, p−, 0), where

p+ = α− 1
2
m(m+ 1), (8.26)

p− = nm− 1
2
m(m− 1)− α. (8.27)
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In particular, J∗0 has a unique local minimum, attained at the matrix for

which di = 1 if and only if i > n−m.

Proof. Let Θ ∈ O(n) and Z̄ be defined as in the preceding paragraph. For

ΩX ,ΩY ∈ so(n), and the vector fields X, Y , defined as above, we can rewrite

(8.25) as:

XG(Y (J∗0 )) = tr([ΘḠΘ>,ΩX ]ΘZ̄Θ>ΩY )

= tr([Ḡ,Θ>ΩXΘ]Z̄Θ>ΩY Θ).

Let Ei,j = (ek,l)k,l≤n, i 6= j, where ei,j = 1, ej,i = −1, and ek,l = 0 otherwise.

Also, let Π = Π(G) be the set of all pairs of indices (i, j) such that di = 1

and dj = 0. The matrices [G,ΘEi,jΘ
>], for which (i, j) ∈ Π form a basis for

TGG, ([21], Lemma 3.3). If we choose ΩX = ΘEi,jΘ
> and ΩY = ΘEk,lΘ

>,

where (i, j), (k, l) ∈ Π, simple calculations show that the Hessian of J∗0 at

the critical point G satisfies

(HJ∗0 )G(XG, YG) = tr([Ḡ, Ei,j]Z̄Ek,l) = (zk − zl)δi,kδj,l,

where δi,j is the Kronecker symbol. Thus, we see that the Hessian (HJ∗0 )G

is in diagonal form with respect to that basis. In particular, (HJ∗0 )G is non-

degenerate. The same argument as in the proof of Lemma 3.12 in [21] shows

that its signature is given by (8.26) and (8.27). �

Combining Theorems 8.3 and 8.4 with the results from Sections 8.2 and

8.3, next we prove Theorem 8.1.

Proof of Theorem 8.1. Suppose the matrices A, Q, and L are such that the

matrix Z has distinct eigenvalues. This is satisfied generically, as per Propo-

sition 8.5. Then, according to Theorem 8.3, the function J∗0 has
(
n
m

)
critical

points. Furthermore, Theorem 8.4 states that all the critical points are non-

degenerate, and exactly one of them is a local minimum. Since the manifold

G is compact, and the function J∗γ is analytic on G × R, there exists ε > 0,

such that if |γ| < ε, then J∗γ also has
(
n
m

)
critical points which have the same

signatures as the critical points of J∗0 . Finally, since the functions Jγ and J∗γ

have identical critical points, the statement of the theorem follows. �
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Figure 8.2: Empirical proportion of systems for which there is a unique
optimal actuator as a function of γ.

8.5 Simulations and discussion

We implemented in Matlab the gradient flow of Prop. 8.3 to verify its con-

vergence. For the simulation results presented here, we set n = 4 and m = 1.

We choose Q = I4/
√

4, c = 1, and sample random Hurwitz matrices (via

rejection sampling) A ∈ R4×4. For each A, we run the gradient flow several

(100) times from randomly chosen initial states and verify whether the flow

converges to the same actuator, thus verifying empirically that Fγ has an

essentially unique local minimum. We plot in Fig 8.2, as a function of γ, the

percentage of systems (i.e., matrices A) for which there is a unique locally

optimal actuator. Of course, when Fγ has more than one local minimum, the

gradient will still converge to a local minimum, but it may not be the global

minimum.

We conjecture that the number of local minima is always upper bounded

by n, irrespective of the parameter γ. Another open problem of interest is

to study the large γ asymptotic, i.e. systems with very high gain actuators.
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CHAPTER 9

OPTIMAL ACTUATOR DESIGN FOR
LINEAR SYSTEMS WITH
MULTIPLICATIVE NOISE.

9.1 Preliminaries

9.1.1 Terminology and notation

First we will recall some basic definitions and results that are needed in the

paper. A matrix M is called Hurwitz, if all of its eigenvalues have negative

real parts. It is not hard to see that a matrix M is Hurwitz if and only

if exp(Mt) approaches 0 as t approaches infinity. Hence Hurwitz matrices

describe stable linear dynamics in continuous time. We denote by [A,B] :=

AB −BA the commutator of matrices A and B. We also write

[B,Ω] =: adB Ω = BΩ− ΩB.

We let Symn the set of real symmetric n× n matrices. For A,G ∈ Rn×n, we

set

LA,G : Symn → Symn : X 7→ A>X +XA+G>XG.

9.1.2 Problem statement and background

Background and preliminary results. We consider the LTI control system

ẋ = Ax+ bu, (9.1)

where A ∈ Rn×n, b ∈ Rn×m, and introduce the quadratic cost

C(u, x0) =

∫ ∞
0

(x>(t)Qx(t) + u>(t, x)u(t, x))dt, (9.2)

where Q > 0 is given positive definite matrix. We recall that the pair (A, b)
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is called stabilizable if the uncontrollable modes of (A, b) are stable. It is

known that if (A, b) is stabilizable [45], then the control u that minimizes

the above cost, which we denote as umin(x0), is given by umin(x) = −b>Px,
where the matrix P is the unique positive-definite solution of the algebraic

Riccati equation

A>P + PA− Pbb>P +Q = 0.

Furthermore, we can show that C(umin(x0), x0) = tr(PL) with L = x0x
>
0 .

We care in this paper about actuator design, and hence b is considered

to be a free parameter. Note that if the matrix A is stable, then for any

b ∈ Rn×m, the pair (A, b) is stabilizable, and hence the optimal cost is well-

defined over Rn×m. Thus, for a stable matrix A, a positive-definite matrix

Q, and an initial state x0 given, we can ask the question:

How should we design the matrix b, such that the optimal cost C(umin(x0), x0)

is as small as possible?

First, we must place restriction on the matrices b. Indeed, it is not too

difficult to see intuitively that if ‖b‖ increases, all other things equal, then

C(umin(x0), x0) decreases. A proof of this fact is essentially reduced to results

about the monotonicity of the Ricatti equation such as the ones in [46]. We

thus constraint the norm of b by considering the set so that

b>b = γ2I.

This also adds the requirement that the actuators are orthogonal to each

other, an assumption we will discuss below. Now noting that the cost C

depends on the product bb>, we can rephrase the problem as follows. Let γ

be a real parameter, and A,Q,L be such that A is Hurwitz, and Q,L are

positive-definite. Minimize the function Jγ(B) = tr(LP ), where P = P (B)

is the solution of

A>P + PA− γ2PBP +Q = 0,

over the set

Γ := {B = bb>|b>b = I}. (9.3)

We can furthermore remove the dependence of the optimal design from

the initial state x0 by averaging over an “isotropic“ initial state as follows:

assuming the initial state is distributed according to a rotationally invariant
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distribution (about the origin), such as a multivariate normal distribution

center at the origin, then

EC(umin(x0)x0)) = k trP,

for some positive constant k and where E is the expectation operator. This

is the deterministic actuator placement problem.

9.1.3 Statement of the results

We explore in this paper the actuator placement problem for control sys-

tems which are corrupted by additive and multiplicative noise. To be more

precise, consider the control system described by the stochastic differential

equation (7.4). We introduce the cost

C = lim
T→∞

E

(
1

T

∫ >
0

(x>Qx+ u>u)dt

)
, (9.4)

where Q > 0 is given positive-definite matrix. It can be shown that when

G2 = 0, the optimal control umin in steady state is given again by the equa-

tions (9.2). Hence the addition of additive noise does not change the methods

to solve the problem, nor the properties of the solution set in a meaningful

way.

We will hence focus on the multiplicative noise case

dx = Axdt+ bu dt+Gxdw, (9.5)

with associated cost as in Eq. (9.4).

Throughout the paper, we will assume that the matrices A and G satisfy

the following technical condition:

∣∣∣∣∫ ∞
0

etA
>
G>GetAdt

∣∣∣∣ < 1. (9.6)

Equivalently, we require that the unique positive semi-definite solution X of
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the Lyapunov equation

A>X +XA+G>G = 0

is a convergent matrix, i.e. all of its eigenvalues have norm less than 1. Under

these assumptions, the control minimizing the cost in this case can be seen

to be umin = −b>Px, where P is the unique positive-definite solution [47] of

A>P + PA+Q+G>PG− PBP = 0. (9.7)

The minimum expected cost is equal to Cmin = tr(PL), L = x0x
>
0 . Thus, the

problem we will be solving is:

Problem 9.1. Let γ ∈ R and A,Q,L be given matrices, such that A is

Hurwitz, and Q is positive-definite, and L is positive semi-definite of rank 1.

Minimize the function Jγ(B) = tr(LP ), where P (B) is the solution of

A>P + PA+Q+G>PG− γ2Pbb>P = 0,

over the set Γ = {B = bb>|b>b = I}.

We prove the following result:

Theorem 9.1. Generically for A,G,Q, for γ > 0 small enough, the function

Jγ(B) has
(
n
m

)
critical points over the manifold Γ, exactly one of which is local

minimum. Furthermore, the differential equation

Ḃ = −γ2[B, [B,M ]], B(0) = B0 ∈ Γ

where M := PRP , and P , R satisfy

A>P + PA+Q+G>PG− γ2PBP = 0,

(A− γBP )R +R(A− γBP )> +GRG> − L = 0.

converges to the global minimizer of Jγ(B) from almost all initial state B0.

This result in essence extends the results of [21] to the case of multiplicative

noise, and show that one can also obtain an optimal design in this case, since

the gradient flow of J , derived in this paper, will converge to the optimal

design from a generic initial state.

77



We briefly sketch the proof. First, we will compute the gradient ∇Jγ of the

function Jγ, with respect to an appropriately defined metric on the space Γ.

Then we will show that as γ approaches 0, after well-chosen normalization,

the function Jγ has a proper limit J∗0 . We will find the points at which ∇J∗0
vanishes, will show that their number is

(
n
m

)
, and that all of them are non-

degenerate. We will compute the Hessian of J∗0 and thus find the signatures

of the critical points. Since the number of critical points and their signatures

are constant in the vicinity of 0, the theorem will follow.

9.2 Proof of the main result

9.2.1 Preliminary results

We now derive some preliminary results which may be of independent inter-

est, and will be needed to prove the main result. They pertain to positive

definite solutions of Lyapunov equations and the dependence of the Riccati

equation with respect to its defining parameters.

The first result deals with the “generalized” Lyapunov equation

AX +XA> +G>XG+Q = 0,

which is a mix of the “discrete-time” Lyapunov equation AXA>−X+Q = 0

and “continuous-time” Lyapunov equation AX + XA> + Q = 0. It is also

referred to as a Lyapunov Equation of mixed type [48]. In [48], [47], the

following lemma is proved:

Lemma 9.1. Let A ∈ Rn×n, G ∈ Rn×n, where A is a Hurwitz matrix. We

consider the generalized Lyapunov equation

A>X +XA+G>XG+Q = 0. (9.8)

The following statements are equivalent:

• Equation (9.8) has a positive semi-definite solution X ≥ 0 for some

positive definite matrix Q ∈ Rn×n.
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• The eigen-values of LA,G have negative real parts.

If any of the statements above are satisfied, equation (9.8) has has a unique

symmetric (positive definite) solution X for any symmetric (positive definite)

matrix Q. In this case, the solution X can be represented as the converging

sum

X =
∞∑
i=0

T i
(∫ ∞

0

eA
>tQeAtdt

)
,

where

T (X) =

∫ ∞
0

eA
>tG>XGeAtdt.

The second preliminary result is to show that the positive definite solution

of the Riccati equation (9.7) depends analytically on its parameters (under

some assumptions to be listed). This result is an extension of [49], and the

proof follows the same lines. We thus only sketch it.

Lemma 9.2. Let A,G,Q ∈ Rn×n be so that A is Hurwitz, Q is positive

definite, and inequality (9.6) is satisfied. We introduce the function

X : Γ× R→ Rn×n : (B, γ) 7→ X(B, γ)

where X(B, γ) is the unique positive definite solution of the Riccati equation

A>X +XA+Q+G>XG− γ2XBX = 0. (9.9)

Then the map X is analytic.

Proof. As already mentioned, the proof follows Delchamps’ approach and

consists of using the inverse function theorem on an appropriately defined

map. Namely, consider the map

φ(B, γ,X) = A>X +XA+Q+G>XG− γ2XBX.

Its differential with respect to X is given by

dφ = dX(A− γ2BX) + (A> − γ2XB)dX +G>dXG.
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Introduce the map M : Symn → Symn defined as

M(B,γ) : T → T (A− γ2BX) + (A> − γ2XB)T +G>TG.

Note that equation (9.9) can be rewritten, adding and subtracting γ2XBX,

as

X(A− γ2BX) + (A> − γ2XB)X +G>XG

+(Q+ γ2XBX) = 0.

Therefore, X(γ,B)—defined as the unique psd solution of Eq. (9.9)—is also

a solution of the equation

M(B,γ)(T ) + (Q+ γ2XBX) = 0,

i.e., setting T = X solves the above equation. Thus, we can apply Lemma 9.1

and conclude that there exists a unique symmetric solution T to the equa-

tion M(B,γ)(T ) = S for symmetric S. We conclude that M(B,γ)(T ) : Symn →
Symn is surjective. Now, from the implicit function theorem applied to

φ(B, γ,X), we conclude that every solution X of (9.9) for a given (B, γ)

can be extended uniquely in a small enough neighborhood of (B, γ). Since

the Riccati equation has a unique positive definite solution [50] for every

γ ∈ R, B ∈ Σ, the claim of the lemma follows. �

9.2.2 Gradient of Jγ and its critical points

We now evaluate the gradient of the function Jγ defined over Γ. Recall that

on a Riemannian manifold, the gradient ∇J is defined with respect to an

inner product 〈·, ·〉 on Γ—we will introduce an inner product below—as the

unique solution of

D∆J := lim
ε→0

1

ε
J(B + ε∆) = 〈∇J,∆〉,∀∆ ∈ TBΓ, (9.10)

where we also introduce the notation D∆J for the directional derivative of

J along ∆. In words, the variation of the function along the direction ∆ is

equal to the inner product of the gradient ∇J with ∆. Because J is defined

on Γ, we need to first find the set of allowed variations around B, or the
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tangent space of Γ at B. We note that every B ∈ Γ is so that rankB = m and

B2 = B, and thus is an orthogonal projection to the subspace spanned by the

columns of b ∈ Rn×m, where bb> = B. Reciprocally, to each m-dimensional

subspace of Rn, we can assign a unique orthogonal projection matrix B onto

that subspace. Hence elements in Γ are in one-to-one correspondence with

m-dimensional subspaces of Rn, i.e. with elements of the Grassmanian [51]

of m-planes in Rn. It is furthermore well-known that Γ is a differentiable

manifold, and admits a well-defined tangent space at any B ∈ Γ denoted by

TBΓ. It is given by

TBΓ = {[B,Ω]|Ω ∈ skew(n)}, (9.11)

where we recall that [A,B] := AB − BA is the commutator or Lie bracket

of A and B, and skew(n) ⊂ Rn×n is the set of skew-symmetric matrices, i.e.

A ∈ skew(n) if A = −A>.

An inner product on TBΓ: We now introduce the inner product on TΓ

we will work with. We keep the introduction short, since the same inner

product was used in [52, 39, 53]. We emphasize that the choice of inner

product does not change the main results, but makes the analysis simpler.

Since every tangent vector ∆ ∈ TBΓ is of the form ∆ = [B,Ω] for some

Ω ∈ skew(n), a seemingly good choice 〈·, ·〉 would be

〈∆1,∆2〉B = − tr(ad−1
B (∆1) ad−1

B (∆2)) = − tr(Ω1Ω2),

where ∆1 = [B,Ω1] and ∆2 = [B,Ω2].

However, the choice of Ω1 and Ω2 is not unique, i.e., adB : skewn → TBΓ

is not invertible. We thus define ādB(·) as:

ādB : skew(n)/ker (adB)→ TBΓ,

where we regard skew(n)/ker (adB) as the orthogonal of ker adB in skew(n)

for the well-defined inner product in skew(n) given by tr(Ω1Ω>2 ). Now ¯adB

is invertible for every B by construction, and we can define the operator

〈∆1,∆2〉B = − tr( ¯adB
−1

(∆1) ¯adB
−1

(∆2)). (9.12)

One can show that it is a well-defined inner product on Γ.
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We now evaluate the left-hand side of Eq. (9.10), i.e. we compute the

derivative of Jγ(B), denoted by D∆J in the direction ∆. This derivative

is well-defined from Lemma 9.2. From Eq. (9.11), it suffices to consider

∆ = [B,Ω] for Ω ∈ skew(n). We sometimes write DΩJ for D[B,Ω]J . Now

assume Ω fixed and note that from that because the Riccati equation has

a unique positive definite solution for all B ∈ Γ, the function P (B) is well-

defined as the solution of (9.7).

We introduce the short-hand notation Ḃ := [B,Ω] and Ṗ := D∆P , for P

defined as the positive definite of (9.7), and for ∆ = [B,Ω]. Differentiat-

ing (9.7) in the direction ∆, we obtain

A>Ṗ + ṖA+G>ṖG− γ2ṖBP − γ2PḂP − γ2PBṖ = 0.

Gathering the terms multiplying Ṗ and Ḃ, we obtain

(A− γ2BP )>Ṗ + Ṗ (A− γ2BP ) +G>ṖG− γ2PḂP = 0

We can regard the equality above as a generalized Lyapunov equation in Ṗ ,

similar to the one studied in Lemma 9.1.

Lemma 9.3. Under the assumptions of Lemma 9.1, the derivative of J in

the direction ∆ = [B,Ω] is given by

DΩ(J) = −γ2 tr([M,B]Ω)

where M := PRiP and

Ri :=

∫ ∞
0

. . .

∫ ∞
0

e(A−γ2BP )>t1G>e(A−γ2BP )>t2G>

. . . e(A−γ2BP )>tiLe(A−γ2BP )ti . . . Ge(A−γ2BP )t1dt1 . . . dti

with P the positive definite solution of Eq. (9.7).

Proof. Applying Lemma (9.1) and the fact that tr([A,B]) = 0, we get:
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Ṗ = −γ2

∫ ∞
0

e(A−γ2BP )t1KḂPe(A−γ2BP )>t1dt1

− γ2

∫ ∞
0

∫ ∞
0

e(A−γ2BP )t2Ge(A−γ2BP )t1PḂ

Pe(A−γ2BP )>t1G>e(A−γ2BP )>t2dt1dt2 − . . .

Using the above, we obtain

DΩ(J) = tr(LṖ )

= −γ2 tr(

∫ ∞
0

Pe(A−γ2BP )>t1Le(A−γ2BP )t1Pdt1Ḃ)

− γ2 tr(

∫ ∞
0

∫ ∞
0

Pe(A−γ2BL)>t1G>e(A−γ2BP )>t2L

e(A−γ2BP )t2Ge(A−γ2BP )t1dt1dt2Ḃ)− . . .

= −γ2 tr([
∑
i

Mi, B]Ω),

where Mi := PRiP and we set Ri as in the statement of the Lemma. Note

that
∑

iMi converges since it is a linear transformation of a convergent series.

Hence DΩ(J) is well-defined. �

Next, we compute the gradient ∇Jγ of the function Jγ(B).

Theorem 9.2. The gradient ∇Jγ of the function Jγ with respect to the metric

〈·, ·〉 defined above is

∇(Jγ(B)) = γ2[B, [B,M ]],

where M := PRP , and P , R satisfy

A>P + PA+Q+G>PG− γ2PBP = 0,

(A− γ2BP )R +R(A− γ2BP )> +GRG> + L = 0.

Proof. The gradient ∇Jγ of Jγ satisfies

〈∇Jγ,∆〉 = D(Jγ)

for all vector fields ∆ ∈ TΓ,∆ = [B,Ω],Ω ∈ skew(n). Using the definition
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of the inner product given in Eq. (9.12), we obtain

tr( ¯adB
−1

(∇Jγ(B))Ω) = γ2 tr([M,B](Ω + Θ)),

where Θ ∈ ker ¯adB is arbitrary and M is as defined in the statement of the

Theorem. Using the easily verified relation

tr([A,B]C]) = tr(A[B,C]),

we get tr([M,B]Θ) = tr(M [B,Θ]). Since Θ ∈ ker ¯adB,

tr([M,B](Ω + Θ)) = tr([M,B]Ω) + tr(M [B,Θ]) = 0,

and therefore

tr( ¯adB
−1

(∇Jγ(B))Ω) = −γ2 tr([M,B]Ω)

for all Ω ∈ skew(n). Since − tr(Ω1Ω2) is a non-degenerate inner-product on

skew(n), this implies ¯adB
−1

(∇Jγ(B)) = γ2 adB(M) and

∇(Jγ(B)) = γ2 adB adBM = γ2[B, [B,M ]].

as announced. �

We record the immediate Corollary

Corollary 9.1. The critical points of the function Jγ(B) satisfy the equality

[B,M ] = 0,

where M is as defined in Theorem 9.2 .

Proof. The critical points of a function are exactly the points where its

gradient vanishes. Since B is symmetric and [B,M ] is skew symmetric,

γ2[B, [B,M ]] = 0 implies

[B,M ] = 0.

as announced. �
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9.3 Convergence of gradient descent

We aim to find an optimal actuator via a gradient descent

Ḃ = −γ2[B, [B,M ]] (9.13)

with M defined in Theorem 9.2. It is not too difficult to see that the function

Jγ(B) is not convex, and hence we need to argue for the convergence of the

method. We do so by showing that Jγ generically for the parameters A,G,Q

has a unique minimum, and hence gradient descent will converge to that

minimum from almost all initial value B(0).

To this end, define the function

J∗γ :=
1

γ2
(Jγ − J0), with J0 := tr(LP0),

where P0 is the positive definite solution of the equation

A>P0 + P0A+Q+G>P0G = 0.

Furthermore, set

J∗0 := lim
γ→0

J∗γ .

We know from Lemma 9.2 that J∗γ (B) is analytic in both γ and B and it

clearly has the same critical points as Jγ(B) for fixed γ 6= 0, since the two

functions differ by a constant. Therefore, if we show that the critical points

of the function J∗0 are non-degenerate, then it will follow that Jγ has the

same number of critical points and the same corresponding signatures as J∗0

for small γ 6= 0.

In order to do this, first we first establish the following result

Proposition 9.1. Let A and G be so that the assumption (9.6) is satisfied.

Suppose also that there exists x ∈ Rn, such that the pair (A, x) is controllable.

Then, generically for all positive definite Q, and positive semi-definite L of

rank 1, the function J∗0 has
(
n
m

)
critical points.

The derivation uses Theorem 3.6.1 in [47] and follows strictly the proof of

Proposition 1 in [21], and we thus omit it here. We now evaluate the Hessian

of J∗0 , that is the derivative of the gradient of J∗0 , to check that it is indeed
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non-degenerate. Recall that the Hessian is a symmetric bilinear form taking

its argument in TBΓ. We have the following result:

Proposition 9.2. The Hessian HJ∗0
of the function J∗0 satisfies the equality

HJ∗0
(∆1,∆2) = tr([M0,Ω1][B,Ω2])

at critical points B of J∗γ , where ∆1 = [B,Ω1] and ∆2 = [B,Ω2] for Ωi ∈
skew(n) and the matrix M0 := P0R0P0 where P0 positive definite solution of

A>P0 + P0A+Q+G>P0G = 0,

and R0 the positive definite solution of

AR0 +R0A
> +G>R0G+ L = 0.

Proof. Let F : Γ→ R be a twice differentiable function. We have the general

formula for the Hessian [44] HF of F evaluated in the directions ∆1,∆2:

HF (∆1,∆2) = ∆1 ·∆2 · F +D∆1∆2 · F,

where ∆1 and ∆2 are arbitrary vector fields on TΓ and D∆1∆2 is the covariant

derivative of ∆2 along ∆1. It is easy to see that second term on the right side

of the formula above vanishes at the critical points of F , since D∆1∆2 · F =

〈∇F,D∆1∆2〉 = 0 when ∇F = 0. Hence we just need to evaluate

H∗J∗0 (∆1,∆2) = ∆1 ·∆2 · J∗0 .

To proceed, we note that from Theorem 9.2 and the definition of J∗0 (recall

that J0 is constant) we get ∇J∗0 = [B, [B,M0] where M0 := P0R0P0 and

P0, R0 are as in the statement of the Proposition.

From the definition of the gradient and the inner product used, we have

∆2 · J∗0 = 〈∇J∗0 ,∆2〉 = tr(Ω2[B,M0]).

Next we evaluate D1 ·D2 · J0, which is the derivative of tr(Ω2[B,M0]) in the
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direction D1. This is easily seen to be :

D1 ·D2 · J0 = tr([M0, [B,Ω1]]Ω2)

= tr([M0,Ω1][B,Ω2]).

This concludes the proof of the proposition. �

Recall that the signature of a bilinear form is a triplet of integers (n+, n−, n0)

with entries the number of positive, negative and zero eigenvalues of the

bilinear form. The bilinear form is non-degenerate if n0 = 0. The next

step is to compute the signature of the bilinear form H∗ : (Ω1,Ω2) →
tr([M,Ω1][B,Ω2]), which gives us the sign of the eigenvalues of the Hes-

sian of J0
0 at the critical points. We need to introduce the number of distinct

partitions of an integer bounded by an integer: to this end, let n, k and l be

positive integers. We call a partition of l into k parts a set of k (strictly)

positive integers whose sum is l. We call the partition distinct if no integer

in the sum is repeated. Finally, we say that the partition is bounded by n if

not number in the sum is larger than n. We denote by Qn(k, l) the number of

distinct partitions of k into l parts, bounded by n. For example Q4(9, 3) = 3,

since we have 9 = 3 + 3 + 3 = 4 + 4 + 1 = 4 + 3 + 2. We have the following

result:

Proposition 9.3. The function J∗0 has Qn(m,n+ + m(m+1)
2

) critical points

with signatures (n+, n−, 0), where (n+, n−) are all pairs for which n+ +n− =

d, and Qn(k, l) is the number of ways to partition l into k parts no larger

than n. Furthermore, exactly one of these critical points is a minimum.

Furthermore, no critical points is degenerate generically for the parameters

A,G,Q.

The proof of Proposition 9.3 follows the lines of the proof of Theorem 3 in

[21]. This proposition proves Theorem 9.1
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