
c© 2018 Apollo Isaac Orion Ellis

A HIGH PERFORMANCE VECTOR RENDERING PIPELINE

BY

APOLLO ISAAC ORION ELLIS

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2018

Urbana, Illinois

Doctoral Committee:

Professor John C. Hart, Chair
Professor Steven M. Lavalle
Professor Sanjay J. Patel
Dr. Warren A. Hunt

ABSTRACT

Vector images are images which encode visible surfaces of a 3D scene, in a resolution

independent format. Prior to this work generation of such an image was not real time. As

such the benefits of using them in the graphics pipeline were not fully expressed.

In this thesis we propose methods for addressing the following questions. How can we

introduce vector images into the graphics pipeline, namingly, how can we produce them in

real time. How can we take advantage of resolution independence, and how can we render

vector images to a pixel display as efficiently as possible and with the highest quality.

There are three main contributions of this work. We have designed a real time vector

rendering system. That is, we present a GPU accelerated pipeline which takes as an input a

scene with 3D geometry, and outputs a vector image. We call this system SVGPU: Scalable

Vector Graphics on the GPU.

As mentioned vector images are resolution independent. We have designed a cloud pipeline

for streaming vector images. That is, we present system design and optimizations for stream-

ing vector images across interconnection networks, which reduces the bandwidth required

for transporting real time 3D content from server to client.

Lastly, in this thesis we introduce another added benefit of vector images. We have created

a method for rendering them with the highest possible quality. That is, we have designed a

new set of operations on vector images, which allows us to anti-alias them during rendering

to a canonical 2D image.

Our contributions provide the system design, optimizations, and algorithms required to

bring vector image utilization and benefits much closer to the real time graphics pipeline.

Together they form an end to end pipeline to this purpose, i.e. ”A High Performance Vector

Rendering Pipeline.”

ii

To Mom, Dad, and Tenaya

iii

ACKNOWLEDGMENTS

I wish to thank my family: my mother and stepfather Linda and Tony Tiritilli, my father

and stepmother Gilbert and Janice Ellis, my sister Tenaya, my brothers Noah and Tymonn,

and all my wonderful nieces and nephews. I love you all.

Sylvia Du, thank you for being part of my journey this last year, and for your love and

support including, getting engaged to me, and moving with me to a small town in the

midwest to watch me suffer through the last stretch of my doctorate degree.

My friends have been integral to my success. They have set bright examples, showed me

acceptance and patience, always been encouraging, and have been the best of companions.

I was blessed to find them. In order of appearance I wish to thank Evan Battaglia, David

Miller, Justin Bledin, Stephen Butler and his wife Kayla Wesley, Vladimir Zyuzin, Sean

Keely, Warren Hunt, and last but in no conceivable way least, my best friend, Cameron

Alston and his wife Karen Chu.

To Rastislav Bodik, thank you for supporting my decision to attend graduate school, and

writing what was apparently a glowing letter of recommendation, which I don’t know about,

obviously. And to James F. O’brien, thank you for continued support and encouragement

over the course of my educational career.

For support, positive influences, and friendship both in and out of the lab, I wish to

acknowledge Donald Fussell, Sean Keely, Sarah Abraham, Peter Djeu, and everyone in the

high performance graphics and parallel systems lab at UT Austin, not to forget Peter Shirley.

I could not have done this without you guys.

My experiences at Sony, Intel, AMD, Apple, Facebook, and Nvidia were guided by great

leaders and teammates. Thank you all for the patience, challenges, and encouragement.

I would not be here now if not for my incredible committee. To John and Warren, I am

forever grateful for you guiding me through this journey from start to finish, and to Steve

and Sanjay thank you for coming along just in time, to provide mentorship, and more than

fair quarter.

To Ashwin Vijay, Eric Huber, and Chris Widdowson, thank you for being inspiring, honest,

so very helpful all this time, you are my graphics lab.

To the many different members of the graphics community, whom I have interacted with,

and been mentored by over the years, thank you for setting directions and examples, and

for paving the road ahead.

To the congregation at University Baptist Church, Pastor Brett and Tammi Smith, Marc

iv

Taylor, Matt Robertson, Jessica Boakye, Michael and Amy Agapito and everyone else, thank

you for support and fellowship, and may God bless you all.

To everyone else, I have in fact been writing a memoirs lately, and I remember you all.

Thank you.

v

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Working with Vector Images . 1
1.2 Summary . 4

CHAPTER 2 SVGPU: REAL TIME 3D RENDERING TO VECTOR GRAPH-
ICS FORMATS . 6
2.1 Introduction . 6
2.2 Previous Work . 9
2.3 The SVGPU Pipeline . 10
2.4 Results . 17

CHAPTER 3 PLANAR MAP STREAMING . 23
3.1 Introduction . 23
3.2 Related Work . 25
3.3 Rendering Pipeline of Planar Map . 26
3.4 Using a Planar Map in Cloud Gaming . 26
3.5 Compressing Planar Maps . 28
3.6 Evaluations . 31

CHAPTER 4 SHAPES ON A PLANE . 35
4.1 Introduction . 35
4.2 Previous work . 36
4.3 Pixel math . 38
4.4 Integration Kernels . 42
4.5 Implementation . 49
4.6 Evaluation . 50
4.7 Additional Pseudocode . 56

CHAPTER 5 CONCLUSION . 60

REFERENCES . 62

vi

CHAPTER 1: INTRODUCTION

Rendering is a field concerned with making images. Images in computer graphics are

typically stored and displayed as grids of pixels, or some other discretized element of color.

Vector images are an alternative format for storing images. They are continuous signals of

color as opposed to discrete ones. Avoiding discretization avoids loss of useful information,

and also keeps images in a more compact form.

In order to achieve the task of displaying 3D geometry on most any device currently in

use, we must settle on pixels. However, vector images can play a valuable role in rendering

systems. They provide a compact resolution independent format for an image of a 3D scene,

which can be used to reduce bandwidth usage for many applications, and can be rendered

with optimal anti-aliasing. We explore these ideas in the coming sections.

1.1 WORKING WITH VECTOR IMAGES

Vector image formats such as planar maps provide several interesting benefits to graphics

systems and in particular to real time renderers and computer games. The value stems from

their resolution independence.

In the common case, a vector image representing a 3D scene, i.e. its planar map represen-

tation, is much smaller than it’s raster image. This is beneficial in rendering applications,

including deferred shading, and cloud gaming. In deferred shading, visibility information is

stored in memory for later processing so it’s important to maintain it in a compact form

[1] [2]. In cloud gaming images are transferred across the internet, and transferring com-

pressed vector images is cheaper in terms of bandwidth and compression loss, than video

streaming [3].

In a real time graphics pipeline, resolution independence i.e. being able to access the image

of the scene continuously, yields the ability, among other things, to render and analytically

anti-alias an image at an arbitrary resolution. In the current landscape of growing display

resolutions this is extremely valuable.

1.1.1 Generating Vector Images with SVGPU

The above gives the motivation and driving forces behind putting vector images into the

real time graphics pipeline. In the applications above, when exploiting the benefits of vector

images, they needed to be generated in real time in both cases, cloud gaming, and dynamic

1

content with anti-aliasing. Indeed except in the case of vector textures, vector images need

to be generated in real time in order to be consumed by the real time graphics pipeline.

Currently there is no way to do this efficiently. There is no real time system. Thus the

design of a real time vector renderer is important.

Our implementation of a vector renderer is GPU based. SVGPU, or Scalable Vector

Graphics on the GPU, is a novel real time system for rendering 3D scenes to vector images

e.g. planar maps. Our system provides the first real time results for vector rendering [4].

The core of SVGPU is a three stage visibility pipeline which runs entirely on the GPU.

After tiling and binning, the first stage in our visibility system implements 2D spatial hashing

for silhouette edge extraction. The second stage of the pipeline is a general purpose parallel

triangle-edge clipper, based on a 2D version of Bernstein and Fussell [5] [6]. The third

stage of the pipeline is an occlusion determination phase, which has been vastly simplified

by relying on the notion that visibility ambiguities have been resolved by clipping.

SVGPU relies on many sources of efficiency and tuning. First, clipping only needs to occur

between silhouette edges and other geometry, this is why we extract silhouettes using spatial

hashing. Second we perform a trivial rejection step, i.e. we stream through the triangle

and edge data, checking if pairs actually need to be processed. Third, clipping is tuned for

parallel efficiency, using double buffering, and dynamic work distribution. We also change

our tile/bin resolution mid pipeline to tune the performance for occlusion calculations, which

benefit more from having more bins than clipping does. This is due to the brute force n2

nature of those calculations. Lastly, a trivial point in polygon test from the centroid of a

triangle against all triangles in a bin suffices to resolve all occlusions correctly.

We validate SVGPU over several common scenes including some pathological situations

designed to tank performance. Our results show roughly a 5x improvement over state of the

art. We range from being real time for low complexity scenes, on the order of 50k to 200k

polygons, to running on the order of 500ms for million plus triangle scenes with huge arrays

of silhouettes.

The key contributions necessary for such a real time vector rendering system are elimi-

nation of excess clipping work by hashing silhouettes and clipping/rejecting valid triangle

silhouette edge candidate pairs, bin tuning, high performance clipping parallelization, and

efficient occlusion tests.

1.1.2 Planar Map Streaming

Cloud gaming systems offer numerous benefits to both users and developers of game

content, and they also suffer from numerous road blocks.

2

Developer benefits include increased security for game assets, lower distribution costs,

and decoupling of game content from console hardware. Users also benefit from device

agnostic gaming, leaving them untethered from OS or hardware. There is no need for game

asset or software updates and patches, downloads of the games themselves, or installations.

Furthermore users retain instant access to games at home or on the go.

Cloud gaming systems still have some serious bottlenecks. Network delay is most promi-

nent, but systems must also consider resource allocation, response time management, graph-

ics and video streaming, adapting to network conditions, and managing perceived quality by

user. Some of these may seem related, but can effectively be treated separately since clever

ideas have arisen to optimize different components by sacrificing performance, or quality in

others. For an extensive treatment of cloud gaming services refer to the survey on cloud

gaming by Cai et al. [7].

What we have done is proposed and evaluated a 3D content streaming system that relies on

the rendering, compression, and distribution of planar maps.. In the simplest case, visibility

calculations are done on the server producing a planar map for shading on the client. The

planar maps compactly encode what is being rendered for transport. If the system is allowed

to be a bit less transparent we can store a data base on the client of geometry per level or

scene. In this way we can send primitive ids and compressed barycentric coordinates only.

Once a compressed planar map (ids and barycentrics) reaches the client, we decompress and

walk through the id list pulling the primitives out of the data base, and reconstruct each

primitive that is visible in the planar map, using barycentric interpolation.

We experiment with a pipeline of compression techniques to further encode the planar

maps efficiently. We have experimented with various flavors of each stage but leave that to

the interested reader [3]. We perform uniform quantization, we show that delta prediction

is not effective, and we settle on LZMA entropy encoding. We built an end to end test

platform for measuring quality and comparing against state of the art video compression.

We yield exciting results in perceptual video quality for fixed bandwidth and less bandwidth

for fixed video quality including findings that x265 codes fall behind us in SSIM by up to

0.14, and of course being a fixed size moving to 2K to 4k resolution widens the performance

gap. Future experiments will include work on client render time, and testing how thin we

can allow user hardware to be.

1.1.3 Rendering and Sampling Vector Images

Vector graphics images are resolution independent, and can produce crisp raster images if

sampled and anti-aliased cleverly. Seeking to anti-alias them has recieved a lot of attention.

3

Anti-aliasing of text and vector primitives embedded in 3D environments in the form of

vector based textures or text fonts is hard and has been pursued avidly.

The problem with the approximations to date, is new platforms. In VR and especially AR,

in-environment GUI clarity and text readability is harder to manage. A user in either VR or

AR can orient GUI surfaces and text objects at arbitrary degrees of isotropy. Coupled with

low relative pixel density, anti-aliasing quality in these environments becomes much more

important. However, more accurate techniques such as super sampling are prohibitively

expensive.

We propose a technique that adopts analytic anti-aliasing, using direct pixel-primitive-

integrals. This is a hard problem, we are clipping an arbitrary primitive against an arbitrary

pixel footprint. It is typically slow to compute, which is why this approach is not usually

taken. The novelty in our work lies in our approach. We present clever math operations that

drastically simplify integral calculation for any primitive, making the computation extremely

rapid.

We also produce optimized kernels that compute coverage for shapes often found in font

encodings, and vector images as well. These utilize the simplifying assumptions produced

by the math we introduce, to compute pixel-primitive integrals extremely rapidly.

1.2 SUMMARY

This dissertation is divided into four chapters, fast vector rendering, applications of vector

images in client-server rendering, and fast high quality rendering of vector primitives.

In chapter 2 , we ground our work in the literature by looking at previous techniques

that produce vector images as outputs. We then introduce our pipeline for rendering 3D

scenes to vector images in real time SVGPU, Scalable Vector on the GPU. We discuss it’s

implementation on GPUs, performance, and quality results.

In chapter 3 we ground our application of vector rendering to cloud gaming in it’s field of

competing applications. We then delve into the design evaluation and decisions, and results

for our new system using SVGPU rendered vector images for transmission in a cloud gaming

infrastructure which reduces bandwidth and improves scores on various image quality and

network performance metrics.

Finally, in chapter 4 we survey literature on fast high quality rendering of vector graphics,

grounding our work on fast rendering of high quality anti-aliased vector images. We present

our method for integration of pixel differentials over vector font glyphs and provide real time

results for analytic anti aliasing using our new math for graphics and optimized covergae

computation kernels.

4

We conclude this thesis with a summary of vector rendering, streaming vector images for

cloud gaming, and high quality rendering of vector graphics.

5

CHAPTER 2: SVGPU: REAL TIME 3D RENDERING TO VECTOR
GRAPHICS FORMATS

We focus on the real-time realistic rendering of a 3-D scene to a 2-D vector image. There

are several application domains which could benefit substantially from the compact and

resolution independent intermediate format that vector graphics provides. In particular,

cloud streaming services, which transmit large amounts of video data and notoriously suffer

from low resolution and/or high latency. In addition, display resolutions are growing rapidly,

exacerbating the issue. Raster images for large displays prove a significant bottleneck when

being transported over communication networks. However the alternative of sending a full

3D scene worth of geometry is even more prohibitive. We implement a real time rendering

pipeline that utilizes analytic visibility algorithms on the GPU to output a vector graphics

representation of a 3D scene. Our system SVGPU (Scalable Vector on the GPU) is fast and

efficient on modern hardware, and simple in design. As such we are making a much needed

step towards enabling the benefits of vector graphics representations to be reaped by the

real time community.

2.1 INTRODUCTION

In the earliest days of computer graphics, the VRAM needed for a raster framebuffer was

prohibitively expensive, and graphics was output in a vector format. Hidden line algorithms

were needed to convert 3-D scene geometry into a planar map of view projected regions with

depth a complexity of one, so their outlines could be displayed on the vector display devices

available then. While today’s platforms have ample VRAM, we nevertheless find many

modern reasons to explore vector rendering of 3-D meshes into a planar map consisting only

of the visible portions of its triangles.

We propose SVGPU, a GPU-optimized real-time vector image rendering system that ren-

ders a 3-D scene into a resolution independent vector image, a planar map consisting only

of visible polygons. This intermediate-stage output with its proper visibility determination

has several advantages over the typical final-stage raster image of visible pixels that relies

on the z-buffer. Vector images provide a resolution independent representation that can be

efficiently rasterized at any resolution onto an arbitrarily sized display, ranging from watches

to videowalls to head-mounted displays, and as shown in Fig. 2.2 can include per-pixel tex-

turing and shading. The rasterization of a planar map consists of only point-in-polygon tests

(which modern GPU’s can efficiently compute) and avoids the need to sort depth, and so

does not suffer the pathological issues of depth buffering, c.f. [8].

6

Figure 2.1: A toon shaded Stanford bunny
of 70K triangles rendered as a resolution-
independent planar map of visible triangle
portions (depth complexity is no greater
than one) in about 15 ms (67 Hz) by the
SVGPU vector renderer, representing more
than a four-fold improvement over previous
GPU vector renderers.

There are several specific modern computer graphics applications that would benefit from

a modern real-time GPU version of a vector image renderer that generates a planar map of

unit depth complexity triangles.

Some modern GPU’s, in particular the PowerVR GPU’s found in mobile devices, utilize

tile-based deferred rendering (TBDR) [9, 10]. The TBDR pipeline decomposes primitives

after the per-vertex transform-and-lighting stages of the graphics pipeline into screen tile

elements. On a per-tile bases, an early visibility test becomes feasible either through prim-

itive sorting or ray casting, to eliminate unnecessary texture fetches and fragment shading

calls for occluded fragments. Our SVGPU approach employs Robert’s algorithm [11] and

silhouette clipping efficiently on a per-tile basis to offer an alternative approach for the early

visibility test in TBDR to reduce rasterization pipeline work.

In an era where network bandwidth is a critically valuable commodity, vector images are

compact, reducing both network consumption and latency. Cloud gaming is an emerging

trend of the video gaming industry, where the display image of a video game is rendered by

a server and transmitted over the internet to the client. Current gaming-as-a-service (GaaS)

systems render raster images that are transmitted as MPEG streams, but these streams

consist of full resolution I-frames because the computation of block motion on these raw

images needed for more efficient MPEG transmission creates too much latency and would

require prediction since the streams are not static. In fact a server rendering 3-D game

scenes directly to a planar map could also yield correspondences that would better support

7

Figure 2.2: A vector image of an environment-mapped Utah teapot. The SVGPU renderer outputs
a resolution-independent vector image as a planar map consisting only of visible screen triangles.
The vertices of these screen triangles include properly interpolated attribute data including texture
coordinates, such that a rasterizer can texture and shade its primitives at whatever raster resolution
is desired, even variable resolutions for a foveated display.

motion for more efficient game video transmission.

With the advent of lower power mobile VR, such as Samsung Gear VR and Google Card-

board, VR is becoming a more available, mainstream technology. However, these low power

devices lack the capability to render complex scenes with lots of geometry, and benefit from

the same advantages of SVGPU as do other cloud gaming clients. More advanced VR

head-mounted displays can utilize eye tracking [12] to support foveated rendering [13] which

renders the portion of the screen an observer is looking at, at a significantly higher resolu-

tion than the remainder of the screen. The vector image output by the SVGPU renderer is

resolution independent such that a variable-resolution rasterizer could then scan convert its

foveated primitives (or tiles) at a higher resolution than its peripheral primitives/tiles.

We present a real-time triangle-based vector renderer that converts a 3-D meshed scene

into a planar map of 2-D triangles. This result can be directly converted into a vector

graphics representation (e.g. SVG). Or it can shipped across a network interface and quickly

rasterized on a client system without need for a depth buffer and with display-resolution-

dependence.

8

transform
binning
clipping

silhouette
edge

extraction

triangle
sil. edge
clipping

triangle
triangle

occlusion
display

line
art

world
space
mesh

window
mesh
bins

ordinary
vertex processing

analytic
visibility

planar
map

AA
pixels

Figure 2.3: The stages of our binned vector graphics rendering system.

Our pipeline consists of five stages described in Section 2.3. The first stage performs

transform, clipping, and binning operations, which is borrowed directly from the rasterization

pipeline, and we make no noteworthy additions to these operations. The next three stages

form the main contribution of the analytic visibility pipeline. The second stage, described

in Section 2.3.1 performs silhouette extraction using GPU spatial hashing to quickly find

neighboring frontfacing-backfacing triangle pairs with a linear sweep through the mesh. The

third stage described in Section 2.3.2 clips triangles to the extracted silhouette edges, limited

to the geometry in each bin, using GPU dynamic parallelism to better balance load across

bins representing different amounts of geometry. This silhouette clipping of triangles allows

the fourth stage described in Section 2.3.3 to simply cull triangles if any occlusion is detected,

which is a quadratic-time comparison between all-pairs of triangles in a bin. The fifth stage

of our system outputs the result, either as a vector representation or the planar map of

triangular regions.

The design of our vector renderer is based on the idea that we use the same spatial

coherence and streamed processing tricks as those developed for fast rasterization graphics

pipelines, replacing the rasterization phase with anaylitic visibility. We evaluate performance

in Section 2.4.

2.2 PREVIOUS WORK

The hidden line problem was well studied decades ago [14]. Most modern approaches have

been based on Appel’s algorithm [15] which extracts continuous silhouette components to

display, computing the quantitative invisibility as these components cross each other. The

main benefit of Appel’s algorithm is that once the silhouette is extracted (after a linear pass

through the scene polygons), the polygons no longer need to be processed, and comparisons

only need to occur along the silhouette edges, significantly reducing computation. The

9

main drawback is that the mesh silhouette is plagued with special cases, including cusps,

switchbacks and non-transverse intersections that can affect robustness. Our approach clips

triangles instead of the silhouette to the silhouette edges, and does not require the silhouette

edges to be connected into a continuous curve for fragile incremental visibility computation.

Robert’s algorithm is an even older approach that simply compares all pairs of scene poly-

gons, clipping and culling occluded portions of polygons [11]. These all-pairs comparisons

were slightly reduced using bounding boxes, but still resulted in a quadratic time complexity,

but also a significantly more robust output than Appel’s algorithm. Our SVGPU approach

leverages this robustness, and further reduces the impact of quadratic all-pairs triangle oc-

clusion comparisons through binning and clipping only against silhouette edges. It also maps

better to the brute force streaming parallelism offered by modern GPU’s than does Appel’s

algorithm.

A large number of non-photorealistic rendering systems have included renderers that con-

vert a 3-D scene into 2-D planar map [16, 17, 18, 19, 20, 21, 22], but these have largely

been offline CPU programs that focused on the quality of the output. Some have looked at

the real-time non-photorealistic rendering (NPR), e.g. by fast (sublinear) statistical global

searches for seed segments of the silhouette [23], instead of our linear-time spatial hash ap-

proach to silhouette extraction. A variety of other techniques have also been employed to

accelerate NPR rendering based on actual silhouette edges [24, 25] or their approximation

[26]. Some have also developed hardware solutions for real-time NPR contour extraction

[27, 28, 29].

The GPU has been used to compute the high-quality visibility of stylized lines by using a

texture atlas as an intermediate frame buffer for compositing [30], but the actual visibility

is based here on the depth buffer. The GPU was also used for analytic visibility of poly-

gons, using an edge-based approach [31], whereas our approach is triangle based, using the

silhouette edges only for clipping to yield better performance results.

2.3 THE SVGPU PIPELINE

The input to our pipeline is a 3-D scene of triangles. While our implementation uses

an indexed face set representation, we do not require any particular organization, and our

approach will work well with triangle soup. We do not require the meshes to be manifold,

but any non-manifold or boundary edges will be classified as silhouette edges which are

more expensive than manifold edges. In order to streamline our clipping and occlusion

processes, we do require non-penetrating geometry, such that the only intersections between

two triangles can occur along a shared edge, so scenes such as the Utah teapot would require

10

re-tessellation.

The first stage of our pipeline performs the ordinary vertex processing pipeline found in

common rasterization systems, such as OpenGL. This stage transforms world-space triangles

into a perspective viewed “window” coordinate system. The triangles are then organized and

rectangle-clipped into a 2-D grid of silhouette clipping bins organized across the window. As

detailed in the following subsections, we extract the silhouette edges from the mesh, and clip

the mesh triangles to these silhouette edges. Then an occlusion test can determine on a per-

triangle basis, which triangles are visible, yielding a planar map containing only completely

visible triangles. All stages are implemented as Cuda kernels using compute capability 5.2.

2.3.1 Silhouette Extraction

SVGPU detects “silhouette” edges with a spatial hash table, which can be efficiently

constructed and accessed on the GPU [32]. (We use the term silhouette loosely, to refer to

the visual contour of edges shared by both frontfacing and backfacing triangles.) We compute

the hash index of each edge as a bit interleaved mixing of the sorted 3-D coordinates of the

edge’s two vertices. The triangle is inserted into the hash table at three places corresponding

to the hash keys of its three edges.

Once all triangles have been entered into the hash table, the silhouette edges are extracted

as entries whose corresponding face normals (in projected viewing coordinates) have oppo-

sitely signed z values. We also include as silhouettes any edges where the hash table lists

any number of triangles besides two. Since this approach is based on vertex geometry and

not mesh topology, it robustly handles triangle soup inputs so long as the shared vertices

between neighboring triangles are sufficiently close enough to hash to the same table entry.

Other hash collisions also occur, so during extraction each key bucket is traversed to produce

only appropriate silhouette edge pairs. When each silhouette edge is identified, the edge is

then binned at the same resolution as the clipping bins used for geometry, but in a separate

set of bins. This kernel uses one thread per bucket.

2.3.2 Silhouette Clipping

The silhouette clipping stage clips every triangle to every silhouette edge in the current

silhouette clipping bin. Since we expect the number of triangles that overlap each silhouette

edge to be small, we segment this stage into two steps to retain GPU instruction coherence:

a culling step (based on a trivial reject test) and a clipping step that performs the actual

clipping operation. In the following subsections we will refer to variables and functions in

11

1

2

window coords.
(including depth)

A

C

D

B

3
4
5

projection plane

Figure 2.4: Geometric configuration for clipping ∆123 to silhouette edge AB.

our pseudocode, and we will italicize their names.

Silhouette Clipping: Culling and Setup

The culling phase is used to remove most of the non-overlapping triangle-edge pairings

from consideration for clipping. Let (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3) be the window co-

ordinates of a triangle ∆123, and let (xA, yA, zA) and (xB, yB, zB) be the window coordinates

of the silhouette edge AB, as shown in Figure 2.4. Then this culling step consist of three

tests.

1. If (x1, y1), (x2, y2) and (x3, y3) lie on one side of the line passing through (xA, yA) and

(xB, yB), then cull.

2. If (xA, yA) and (xB, yB) lie on the outside of a line passing through any combination

of (x1, y1), (x2, y2) and (x3, y3), then cull.

3. Let C and D be the points on the line passing through A and B, and let 4 and

5 be the points on the edges of ∆123, such that (xC , yC) = (x4, y4) and (xD, yD) =

(x5, y5) indicate where the window projection of the silhouette edge crosses the window

projection of the triangle. If zC and zD are behind (less than) z4 and z5, then cull.

We also cull if (4) the silhouette edge is an edge of the triangle, (5) if the triangle is back

facing, and (6) if the triangle is obviously in front of the silhouette edge: min z1, z2, z3 >

max zA, zB.

The culling segment is implemented as an m × n kernel that considers the coverage of

m triangles by n silhouette edges, in each bin. We use dynamic parallelism to retain GPU

utilization, see Section 2.3.2. We launch a single kernel from the CPU, with BinCount

12

threads, where each thread retrieves m and n (TriCount and EdgeCount) for its bin, and

launches the culling kernel as a child kernel. Each top level thread also launches the follow

up kernels to create the data structures need for clipping. In fact these top level threads are

additionally responsible for launching the clipping kernels described later.

In the culling kernel, TrivialReject, each thread considers whether one specific triangle

is covered by one specific silhouette edge. If the thread survives all culling tests, it outputs

a candidate pair consisting of the triangle id and the silhouette edge id. We use atomics

to increment a per triangle edge counter for each pair (EdgeCounts), and to build a list of

triangle ids that are going to be clipped, TriangleList.

The clipper requires an adjacency list (EdgeList) that, for each triangle id, holds a list of

silhouette edge ids. These edge ids index into the silhouette bins created during silhouette

extraction. To allocate and populate EdgeList, two kernels are launched directly follow-

ing the culling kernel. The allocation kernel, AllocateAdjacency, runs first and reserves

row space for each triangle. With CandidateTriangles # threads, the kernel indexes into

TriangleList by thread id to retrieve the triangle id which each thread uses to read the

triangle’s edge count from EdgeCounts. Each thread then adds the edge count to an atomic

counter, and stores the old count to a buffer. This old count will be used later as the row

offset to a triangle’s edges in EdgeList. The second kernel populates the EdgeList. Using

CandidatePairs # threads, we read the candidate pair buffer and use each pair’s triangle id

to index into the buffer of row offsets we just created in the previous kernel. We then store

the pair’s edge id in EdgeList at the row offset plus a count which is incremented atomically

with each edge.

Clipper also requires a data structure that holds position data for all polygons being

clipped at any time. Luckily we can initialize this PolygonData structure in the culling

kernel. We must only write the triangle’s positions once, not for every triangle-edge pair.

We check if the per triangle edge counter in EdgeCounts was zero before it’s increment, and

if so, we use this thread to write the triangle into PolygonData. We index into EdgeCounts

using the triangle id i.e. the index of the triangle in its bin. Naturally a single per bin atomic

is used to keep track of the write offset for a triangle into the polygon buffer.

Silhouette Clipping: Clipping

Clipping proceeds in rounds operating off of the EdgeList, the PolygonData buffer, and

some indexing structures described below. Each round, each thread will clip one triangle by

one of its corresponding silhouette edge candidates, so the thread count in each kernel launch

is the count of participating triangles, ActivePolygons. After a single triangle is clipped, a

13

function ClippingKernel(ClipStructures)
T=TriCount ∗ EdgeCount
TrivialReject<<<T>>>(Bins, ClipStructures)
T=ClipStructures.CandidateTriangles
AllocateAdjacency<<<T>>>(ClipStructures)
T=ClipStructures.CandidatePairs
BuildAdjacency<<<T>>>(ClipStructures)
while ClipStructures.ActivePolygons do

T=ClipStructures.ActivePolygons
Clip<<<T>>>(Bins, ClipStructures)
ClipStructures.swapBuffers

function TrivialReject(Bins, ClipStructures)
Tri = ThreadId/SilhouetteCount
Edge = ThreadId%SilhouetteCount
if !CullingTests(Tri, Edge) then

CLoc = INC(CandidatePairs)
Candidates[CLoc]=(Edge.Id, Tri.Id)
EdgeCount = INC(EdgeCounts[Tri.Id])
if EdgeCount == 0 then

PLoc = INC(PolygonCount)
PolygonData[PLoc]=(V ertices, Edges)

function Clip(Bins, ClipStructures, Round)
PInfo=PolygonInfo[ThreadId]
EInfo=EdgeInfo[PInfo.TriId]
ClipEdge=EdgeList[EInfo.rowoffset + Round]
PData=PolygonData[PInfo.offset]
NextPosition=ADD(PositionCounter, PInfo.Sides)
RecheckTrivialReject(PData, CEdge)
for I in PInfo.Sides do

(Last, Curr,Next)=PData.GetV ertices(I)
(p0, p1, p2)=Predicate(Last, Curr,Next, Edge)
COND=LUT (p0, p1, p2))
if COND... then

V ertexOut=Curr.V ertex
if COND... then

V ertexOut=Isect(Curr.Edge, ClipEdge)

if COND... then
EdgeOut=Curr.Edge

if COND... then
EdgeOut=ClipEdge

OutputV ertex(EdgeOut, V ertexOut)

OutputInfo(NextPosition, ...)

14

polygon may be produced. As such we will refer to polygons as opposed to triangles from

this point forward. Our clipping algorithm follows Bernstein’s work with fast exact booleans

[33].

The reason we use this clipper is to maintain a single level of clipping error throughout

the pipeline. We store a list of edges for each polygon and always regenerate clip intersec-

tions from these original input edges. We do store the intersection points temporarily for

evaluating point-on-edge-side predicates. Otherwise it would be necessary to re-derive the

exact same point every time a polygon is considered, so this saves some computation.

A clip occurs as follows. We iterate through each neighboring triple of vertices on the

polygon starting with the last vertex, first vertex, and second vertex in the polygon’s vertex

list. Bernstein showed this is necessary and sufficient to sort out all ambiguous clipping

cases. The points are categorized as “on,” “in,” or “out” of the clipping edge using a simple

point-edge-side predicate. The algorithm uses a lookup table to decide at each step whether

to output the current edge, or to generate a new vertex via edge-edge intersection, and

output the associated clip edge with it. Our lookup table differs slightly from Bernstein’s,

in that we use the convention of storing a vertex with the edge leaving the vertex. The LUT

derivation however is quite simple following the boolean work, and we omit it here.

Aside from the polygon position buffer PolygonData, there are two more structures used

to keep track of information during clipping. For each active polygon being clipped, the

PolygonInfo buffer holds the triangle id, side count, and an offset into PolygonData where

its vertices live. For every original polygon, the EdgeInfo buffer holds the row offset into

EdgeList, and an edge count. Since we launch one thread per active polygon during clipping

rounds, we index into PolygonInfo by thread id. We then use its triangle id member to

index into EdgeInfo. The row offset member of EdgeInfo is used to retrieve this actual

clipping edge by indexing into EdgeList at the row offset with the current round number

added to it. Finally we read PolygonData at the offset stored in PolygonInfo and proceed

to clip. The PolygonData structure includes edges, vertices, and barycentric coordinates.

Note that barycentric coordinates are clipped along with the polygon’s edges in order to

provide interpolation for the original triangle’s vertex attributes.

Once all clipping rounds have occurred for all triangles and their respective child polygons,

the clipping phase retires and we tessellate the polygons back into triangles with a final

kernel. Tessellation is straightforward since all the polygons are convex. We launch one

tessellation thread per polygon.

It is important to note a few things about the clipper. First, a single clip must retain both

sides of the clipped polygon, because the portion of an edge clipped away by one silhouette

edge may be reintroduced by a subsequent silhouette edge. Hence we run the clipping step

15

twice, reversing the predicates the second time to obtain the polygonal region clipped by the

first clipping run. The reason we use two separate runs is to improve thread coherence, since

not all threads will clip, they do not need to participate in the second pass. Second, one

should recheck trivial rejection of candidate silhouette edges against clipped (child) polygons.

This mitigates the case in which there is a large polygon, behind a complex object, and it is

repeatedly clipped by all edges in the complex object, when in fact those edges do not overlap

the polygon. This must be done because the clipper itself is otherwise oblivious to whether

or not an edge actually overlaps a polygon, since the edge equation extends to infinity. The

trivial reject test can be implemented in the prologue of the clipping kernel or in a separate

kernel. We experimented with both approaches and ended up with the prologue approach

to reduce complexity.

Dynamic Parallelism

Dynamic Parallelism, available in Cuda on compute capability 3.5+ GPUs, is a natural

fit to this kind of problem. It allows a kernel to launch another kernel. With clipping we

have work items that can produce more work items in non uniform distributions, i.e. we

have dynamically changing amounts of parallelism. So we need to be able to redistribute

work between compute resources to keep the GPU busy. Otherwise load balance is lost.

There is more than one way to achieve this, but a simple solution is to restart the kernel

every time a generation of work items has finished computing the next generation of work

items. This however, causes a CPU synchronization bottleneck, and was the main motivation

for turning to dynamic parallelism. With kernels that launch kernels we can avoid the CPU

bottleneck and adjust to the changing workload as needed.

Dynamic parallelism is also a natural fit because it encapsulates the binned structure of

our algorithm. Running a single kernel to compute different numbers of work items for

different bins can be complicated to manage, likely requiring prefix sums to compute bin

delimitations. We avoid this altogether with dynamic parallelism.

2.3.3 Triangle Occlusion

After clipping we are left with possibly overlapping but non-crossing triangles. No triangle

is partially occluded, so if any part of a triangle is occluded, then it is completely occluded.

The triangle occlusion step removes any occluded triangles, leaving a planar map of depth

complexity one consisting only of the visible triangles of the scene.

We first re-bin the triangles output from silhouette clipping at a finer bin resolution

16

Figure 2.5: Benchmark scenes (l-r, t-b: Armadillo, Dragon, Buddha, Armadillo Box, Dragon
Bunnies, Sponza) with various shaders applied using interpolated view space positions and normals,
in addition to the Bunny and Teapot.

to reduce occlusion’s all-to-all time complexity, as detailed in Section 2.4.1. This step is

straightforward and fast. We then run the triangle-to-triangle occlusion kernel, one thread

per pair, in each of these occlusion bins.

Since each triangle is either fully occluded or fully visible, a simple centroid test suffices

to determine visibility. We calculate the centroid of the potentially occluded triangle, and

derive the barycentric coordinates of that point on the potentially occluding triangle. When

we have the barycentric coordinates, we can interpolate the z value at the occluder’s vertices

and test it against the centroid z value. We discard any triangle whose centroid is overlapped

by any other triangle. We only test the original triangles as occluders. This reduces the

occlusion test to fewer triangles and is still valid since the original triangles are a superset

of the many triangles that have been refined by silhouette clipping.

2.4 RESULTS

Our prototype implementation is demonstrated on a variety of well known models, specif-

ically the bunny, teapot, armadillo, dragon and buddha, as well as on some larger scenes

constructed to exhibit pathological cases: armadillo in the Cornell box, a dragon behind

several bunnies, and the Sponza, as shown in Figure 2.5. The armadillo in the Cornell box

17

Stage Bun. Arm. Drag. Bud. Box D+B Sza. Tea.

Sil. Hash 1.2 3.8 24 35 3 66 .4 .19
Sil. Clip 12 30 42 64 175 249 177 22

Occlusion 2.3 18 38 78 39 179 8 2

Total 15.5 51.8 105 205 217 527 185.4 24.19

Table 2.1: Profile of SVGPU run time performance (ms) per stage, using 1,024 silhouette clipping
bins.

Bins Bun. Arm. Drag. Bud. Box D+B Sza. Tea.

∆ in 69K 212K 900K 1M 212K 1.4M 60K 8.3K

64 32K 126K 303K 452K 121K 365K 40K 5.8K
256 37K 137K 322K 470K 128K 378K 48K 7.1K
1K 48K 158K 360K 504K 139K 423K 89K 10K
4K 71K 200K 391K 544K 114K 21K

Figure 2.6: Output size growth measured as the number of triangles output v. input, for different
choices of number of silhouette clipping bins. (Dragon and Buddha examples reported for 4,096
bins actually only used 2,500 bins.)

exhibits a situation in which many tiny silhouette edges are candidates for clipping a few

large polygons in the background. The dragon with bunnies on the other hand showcases a

scenario in which a very large number of silhouettes are clipping against many small trian-

gles. Each of these models was represented as an indexed face set, and for these examples

our silhouette extraction used a hash on the vertex indices instead of the vertex coordinates.

Table 2.1 reports our profile performance measurements for the various stages of the

SVGPU rendering process. Our measurements of silhouette hashing show it ranging from

less than 1% of the total run time to almost 20%. While this run time is tied to the silhouette

count, our experiments show it is also largely influenced by the number of hash collisions.

Collisions affect the run time of a single thread’s bucket traversal, so some threads will run

long and diverge from the other threads in their warp, causing load imbalance. As expected,

our profile performance measurements of the silhouette clipping process was greatly influ-

enced by the number of silhouette clipping bins, and clipping was the major contributor to

the bin variance shown later in the performance charts. Our profile of occlusion showed it to

vary similarly to the silhouette hashing performance, suggesting that the same features that

create silhouettes are also creating additional occlusions. Overall, clipping used about two-

thirds of the time, occlusion about one-third, and silhouette hashing was either negligible or

at most about one-fifth of the run time.

Fig. 2.6 shows the number of output triangles that SVGPU generates in the output planar

map is quite low for individual models but grows for scenes. As the silhouette clipping

18

Bins Bun. Arm. Drag. Bud. Box D+B Sza. Tea.

64 48 15 5.6 3.1 1.8 .97 2.7 27
256 59 19 8.6 4.8 2.4 1.3 4.7 37

1,024 65 19 9.5 4.9 4.6 1.9 5.4 41
4,096 42 14 9.6 3.8 5.3 24

Figure 2.7: Performance measured in frames per second (Hz.), for different choices of number of
silhouette clipping bins. (Dragon and Buddha examples reported for 4,096 bins actually only used
2,500 bins.)

Bins Bun. Arm. Drag. Bud. Box D+B Sza. Tea.

64 3.3 3.1 5.1 3.1 .39 1.4 .16 .23
256 4.1 4.1 7.8 4.8 .51 1.8 .28 .31

1,024 4.5 4.1 8.6 4.9 .98 2.7 .32 .34
4,096 2.9 3.0 8.7 3.8 .32 .20

Figure 2.8: The triangle rate, measured in million triangles per second, for different choices of
number of silhouette clipping bins. (Dragon and Buddha examples reported for 4,096 bins actually
only used 2,500 bins.)

bin resolution increases the output triangle count grows. This is attributed to clipping to

bin edges, but utilizing more, smaller bins to help increase load balance and reduce the

number of all-pairs silhouette-triangle clipping cases. We clip to bin edges to maintain

correctness during the clipping stage, and more bins generate more clipping on bin borders,

which produces more triangles. The armadillo-in-the-box scene produces fewer polygons

than what might be expected from the excessive clipping in that scene. The largest growths

comes from the high depth complexity of Sponza and the low initial polygon count of the

Utah teapot.

Fig. 2.7 shows that the number of silhouette clipping bins affects the performance. Larger

numbers of smaller bins helps the clipping phase to better balance its load, subdividing the

scene more aggressively to avoid teapot-in-a-stadium situations. However, at some point, in

most cases separating the screen into 4,096 bins, the increase in the number of bins begins to

have negative affects. The increases triangle clipping to the smaller rectangular boundaries of

the more plentiful bins begins to affect both clipping time and occlusion time by generating

more work for the clipper and more triangles for occlusion. The overall optimum appears to

be at 1, 024 = 32× 32 silhouette clipping bins.

Fig. 2.8 reveals the SVGPU triangle rate, ranging from a peak of 8.65M triangles per

second for the 900K element mesh of the dragon down to about 200K triangles per second

for the teapot, whose meager 8.3K element mesh does not generate enough parallelism in

SVGPU’s thread configuration. Most of the models (bunny, armadillo, buddha) achieve a

19

Bins 64 256 1,204 4,096 64 256 1,204 4,096
Ave. Max Ave. Max Ave. Max Ave. Max Ave. Max Ave. Max Ave. Max Ave. Max

Model (tris.) Bunny (69K) Armadillo (212K)

Clip Bin Usage 1K 8K 497 6K 191 3K 75 2K 6K 26K 2K 12K 729 7K 243 2K
Occlude Bin Usage 31 3K 43 3K 58 3K 75 2K 110 3K 154 3K 204 3K 243 2K
Candidates 333 2K 153 2K 76 1K 39 1K 2K 9K 705 4K 284 3K 113 2K
Clip Polygons 214 1K 108 1K 54 854 26 713 685 3K 322 2K 149 1K 66 585
Vertex Buffer Out 981 7K 470 7K 228 4K 109 3K 4K 17K 3K 9K 1K 7K 723 4K

Model (tris.) Dragon (900K) Buddha (1M)

Clip Bin Usage 7K 31K 4K 13K 1K 8K 798 5K 23K 49K 8K 19K 3K 10K 1K 6K
Occlude Bin Usage 215 3K 284 3K 356 3K 490 2K 118 2K 155 2K 190 2K 338 3K
Candidates 3K 10K 1K 5K 392 4K 253 2K 5K 13K 2K 8K 696 7K 378 4K
Clip Polygons 1K 4K 552 2K 243 2K 163 798 3K 5K 1K 3K 413 2K 240 1K
Vertex Buffer Out 7K 18K 3K 9K 1K 7K 723 4K 13K 28K 5K 15K 2K 9K 1K 7K

Table 2.2: The size of the various structure buffers used during clipping along with bin sizes and
output triangle counts. The memory consumption of each data structure both at it’s max across
bins and on average can be approximated from these counts.

typical 4M ∆/s triangle rate. It is interesting to note that the bunny and Sponza are both

similarly sized in the 60-70K range, but Sponza’s triangle rate is significantly lower, likely

from its depth complexity and the resulting increased impact in the per-bin all-pairs steps

of clipping and occlusion.

Table 2.2 reveals the size of the various data structures and buffers used throughout

the pipeline. It shows the max number of elements of a particular type that were in flight

during run time and their averages over all non empty bins. Bin populations are also listed

along with total output triangles. These numbers reflect the items not bytes. The scaling

of storage requirements with bin size can be observed moving across each row. The trends

behave as we would expect with all values shrinking with the increase in bin resolution. The

main problem exhibited here is scaling. Bin resolutions are growing by powers of two, and

what we would want to see is that the item counts also move down in powers of two (or

more). This would keep the system stable/linear in terms of memory consumption. This is

not the case however, the item counts are moving down just about linearly, so the increase

in bin resolution is costly in terms of storage requirements.

2.4.1 Occlusion Binning

For the occlusion stage, as discussed earlier, we used more, smaller bins than we do in

the silhouette clipping stage. Smaller silhouette clipping bin sizes reduce the number of

triangles for that stage’s all-pairs quadratic comparison of triangles to silhouette edges, but

20

setting them too fine (as was the case of 4,096 silhouette clipping bins) requires too much

bin rectangle clipping and outputs too much geometry to the occlusion stage. Thus we use

a separate finer bin sizing for the occlusion stage.

In our examples, we used 4,096 bins for all of the models except the dragon and the

Buddha, regardless of the number of silhouette clipping bins (64, 265, 1,024 or 4,096). Due

to the heavy feature-driven occlusion of the Buddha and dragon models, we used 16,384 bins

for their occlusion computation. These models eventually overflowed our available memory,

when using 4096 silhouette clipping bins and 16384 occlusion bins, and so we were only able

to generate them with a maximum of 2,500 silhouette clipping bins and 10,000 occlusion

bins.

2.4.2 Comparison with Previous Work

Previous results from analytical visibility on the GPU [31] render the 70K-triangle bunny

at a variety of raster resolutions in a time ranging from 99 to 128 ms (visibility only),

on an NVidia GeForce GTX 680, which has 1,536 cores running at 1GHz. Our results

were computed on an NVidia GeForce GTX 980, which has 2,048 cores running at 1.1GHz.

Comparing results from different GPUs is a complex process, but we can estimate that

since GTX 980 represents 33% more cores running 10% faster, we should see about a 47%

improvement in speed over the 680 used for analytical visibility’s results (ignoring many

other differences, including e.g. memory bandwidth).

This is a trivial comparison but nonetheless one of the only apples to apples comparisons

available. SVGPU renders the bunny into a planar map in about 15ms (visibility only),

whereas the analytic system running 47% faster would compute visibility for the bunny in

about 70 ms, leading us to believe SVGPU is about 4.5 times faster. However SVGPU

scales well as is demonstrated by the fact that it finishes the visibility computations of the

armadillo roughly two times faster than the analytic system can compute the bunny, and

further the close to one million polygon dragon is only 30 percent slower than their bunny.

2.4.3 Failure Cases

There are several shortcomings in our prototype implementation that should be addressed

in future work. The primary issues are that memory usage is high and GPU utilization is

fairly low.

At higher bin resolutions the system requires a significant amount of memory and this

inhibits the rendering of our more complex scenes, e.g. armadillo in the Cornell box and

21

the dragon behind the bunnies. We could not load the required buffers onto the GPU at a

64× 64 bin resolution. Further, we are not using our memory budget effectively in teapot in

a stadium scenarios. We cannot render scenes like Fairy Forest, because some bins generate

a huge amount of clipping and our current strategy of allocating memory uniformly doesn’t

handle this case well. A solution to this memory budget issue could be to use adaptive

binning structures such as quad trees, as well as more adaptive memory allocation strategies.

Another drawback associated with memory usage is the forced tweaking of the size pa-

rameters for various memory buffers. It is a cumbersome and manual process. We would

like to both automatically size regions based on bin resolution, and further cut down on the

flatness of our buffer layouts. Again, essentially we need more adaptive memory allocation.

In the best case we could pack everything, as opposed to using pre-defined offsets between

bin allowances as we currently do.

We do however feel there is no reason this algorithm and implementation cannot be heavily

optimized in future work to support a much wider variety of scene structure.

The kernels in our system have many execution dependencies on memory. This causes

GPU threads to idle often waiting on requests. While GPU occupancy is reasonable around

50% to 75%, instruction issue efficiency is lower, around 20% to 25%. The kernels for clipping

and occlusion spend a lot of time in setup reading indices and offsets into various buffers.

The current implementation essentially suffers from excessive indirection, which would be

addressed via more strategic GPU streaming techniques.

22

CHAPTER 3: PLANAR MAP STREAMING

We propose a new cloud gaming platform to address the limitations of the existing ones.

We study the rendering pipeline of 2D planar maps, and convert it into the server and client

pipelines. While doing so naturally gives us a distributed rendering platform, compressing

2D planar maps for transmission has never been studied in the literature. We propose a

compression component for 2D planar maps with several parametrized modules, where the

optimal parameters are identified through real experiments. The resulting cloud gaming

platform is evaluated through extensive experiments with diverse game scenes. The evalu-

ation results are promising, compared to the state-of-the-art x265 codec, our platform: (i)

achieves better perceptual video quality, by up to 0.14 in SSIM, (ii) runs fast, where the

client pipeline takes ≤ 0.83 ms to render each frame, and (iii) scales well for ultra-high-

resolution displays, as we observe no bitrate increase when moving from 720p to 1080p, 2K,

and 4K displays. The study can be extended in several directions, e.g., we plan to leverage

the temporal redundancy of the 2D planar maps, for even better performance.

3.1 INTRODUCTION

Cloud gaming refers to: (i) running complex computer games on powerful servers in

data centers, (ii) capturing, compressing, and streaming game scenes over the Internet,

and (iii) interacting with gamers using thin clients on inexpensive computing devices [34].

In the past few years, we have witnessed strong interests in cloud gaming from both the

industrial [35] and academic [36] sides. Existing commercial cloud gaming platforms are

video streaming based, where the cloud servers perform all the rendering tasks, and the

thin clients are merely video decoders. Such a design decision treats computer games as

black boxes and allows cloud gaming service providers to trade gaming experience for time-

to-market. Video streaming based cloud gaming, however, comes with several limitations,

including high bandwidth consumption, limited scalability, and little room for optimization,

and thus calls for next-generation cloud gaming platforms [37].

We make some observations on these three limitations:

• High bandwidth consumption. Although video streaming based cloud gaming im-

poses low computation requirements on thin clients, it incurs high networking band-

width requirements. This is partially caused by under-utilizing the computing power of

thin clients. Nowadays, even low-cost smartphones, come with GPUs (Graphics Pro-

cessing Units), which are certainly more capable than video decoders. Moving some

23

rendering tasks from cloud servers to thin clients may reduce the network bandwidth

consumption.

• Limited scalability. Since all the rendering tasks are done on cloud servers, support-

ing more gamers not only leads to higher bandwidth cost, but also results in higher

computational cost on cloud gaming service providers. This in turn makes the cloud

gaming less profitable and not scalable to many gamers. Distributing rendering tasks

between cloud servers and thin clients may improve the scalability.

• Little room for optimization. Treating computer games as black boxes prevents

cloud gaming platforms from leveraging in-game context for performance optimization.

Extracting simplified forms of 3D scenes from computer games may open up a large

room for optimization.

We believe the crucial step of building next-generation cloud gaming platforms is to study

the rendering pipelines of games for deeper integration between games and platforms.

Figure 3.1: Traditional 3D mesh rendering vs. planar map rendering.

We study the rendering pipeline of planar maps [38, 39, 40], to understand its potential for

addressing the three limitations. The planar map is a vector image consisting of points and

edges in the plane, in our case, representing the visible triangles of a 3D scene. Planar maps

were first proposed by Baudelaire and Gangnet [39] for graphic design. They define planar

maps as 2D graphical objects of arbitrary complexity levels. Planar map tools were then

implemented and optimized by Asente et al. [40] for interactive illustration systems. There

was however no real-time solution to visibility computation for generation of planar maps

until Ellis et al. [38] designed and implemented a planar map pipeline, which is around five

times faster than previous work. Fig. 3.1 illustrates that (i) the 3D mesh rendering pipeline

(on the left) renders everything, removing hidden surfaces on the fly via z-buffering, and (ii)

the 2D planar map rendering pipeline (on the right) only renders visible triangles, where

the depth complexity is reduced to one. Therefore, planar maps are concise and suitable for

efficient rendering and streaming. Moreover, because planar maps are vector images, they

scale for especially ultra-high-definition displays. Hence, planar map is an enabler for next-

generation cloud gaming platforms because it may: (i) reduce the bandwidth consumption,

24

(ii) increase the scalability, and (iii) better optimize gaming experience.

We apply planar maps in cloud gaming platforms. This is achieved in two major steps.

As the first step, we propose a distributed pipeline for planar map rendering. The crux

of the new pipeline is the compressor, as the compression of planar maps has never been

investigated in the literature. In the second step, we design a compressor for planar maps,

consisting of several parameterized modules. Using real game scenes, we systematically

derive the optimal parameters for a compressor that is specifically designed for planar map

streaming. Our experiment results are quite promising. Compared to video streaming based

platforms, our planar map based platform: (i) achieves higher perceptual video quality at the

same bitrate, (ii) supports complex scenes when considering perceptual video quality, (iii)

runs fast, especially at the client side, and (iv) scales well to ultra-high-resolution displays.

3.2 RELATED WORK

Cloud gaming platforms [36, 41, 42] can be roughly divided into three groups [43]: (i)

video, (ii) graphics, and (iii) hybrid streaming. Video streaming refers to gaming platforms

in which each frame is rendered completely on the server, and the frames are compressed

into video streams for transmission to the client. Graphics streaming describes transmission

of game scene data and/or rendering commands of each frame from server to client. Hybrid

streaming as implied by the name refers to some clever combination of the above technologies.

We explore a new graphics streaming approach using planar maps for cloud gaming.

There are several compression algorithms proposed for graphics streaming. For example,

Meilander et al. [44] propose: (i) a caching mechanism for rendering commands, (ii) a

compression algorithm for rendering instructions, and (iii) multi-layer representations of 3D

objects. Nan et al. [45] introduce a hybrid delivery approach, where the server progressively

streams the encoded frames and the graphics information. Similarly, Chuah et al. [46] aim

to fully leverage the computational power on the client by rendering the low-quality base

layer locally, while the server transmits a high-quality enhancement layer. Compared to the

existing cloud gaming platforms, our platform: (i) naturally achieves distributed rendering

and brings cloud gaming to inexpensive computing devices with weak GPUs, (ii) produces

and compresses concise data representations for clients with limited network bandwidth, and

(iii) scales to high-resolution game scenes for large displays.

25

3.3 RENDERING PIPELINE OF PLANAR MAP

Planar map rendering pipelines, such as the one proposed in Ellis et al. [38], have not been

customized for distributed rendering in the literature. The input of the whole rendering

pipeline is the gaming 3D scene and gamer’s viewing information. The planar maps are

generated in the following components: (i) silhouette detection, (ii) silhouette clipping, (iii)

triangle-triangle occlusion, and (iv) vector rendering.

Silhouette detection. The term silhouette is used loosely here to refer to the visual edge

or convex contour edge shared by both a frontfacing and backfacing triangle. We leverage

the vertex geometry properties instead of mesh topologies to efficiently detect silhouette.

In particular, we use a hash table to record all the edges in the 3D scene as entries. Once

the hash table is constructed, we detect the silhouette edges by checking whether the cor-

responding face normals have opposite signs in the z component. Lastly, we mark an edge

shared by more than two triangles as a silhouette.

Silhouette clipping. We clip each triangle according to those detected silhouettes. First,

we remove the non-overlapping triangle-silhouette pairs using their geometric information.

Secondly, we clip each triangle against its list of overlapping edges. We apply a version of

Bernstein and Fussells’ clipping algorithm [47] to handle clipping with reduced error. Lastly,

we tessellate all output polygons from this phase back into triangles.

Triangle-triangle occlusion. The important property we use to remove occluded tri-

angles is that no triangle is partially occluded. That is, we adopt a lightweight centroid test

to determine visibility. We discard the triangles whose centroid is overlapped by any other

triangle.

Vector rendering. The vector renderer works as follows. First, the vector renderer

generates the vertex attribute information including 2D position coordinates, texture coor-

dinates, and normal vectors by barycentric interpolation. Barycentric coordinates are the

input and output of the compressor/decompressor discussed later, and they are the main

primitives of transmission. We thus interpolate vertex attributes from their original positions

in the quasi-static database to the clipped positions. We pass the vertex data, as well as the

scene information, such as viewing matrix, to the GPU to render the scenes for gamers.

3.4 USING A PLANAR MAP IN CLOUD GAMING

To leverage planar maps in cloud games, we divide the ordinary planar map rendering

pipeline into the server and client sides. The first three components are put at the server

side, and the vector renderer is put on the client side. The design rationale is to have the

26

Figure 3.2: The revised planar map rendering pipeline for our cloud gaming platform. The shaded
boxes are from the ordinary planar map rendering pipeline.

light weight vector renderer on the client, so that the thin client can render frames merely

with per-pixel texturing and shading. To connect the server and client pipelines, three

additional components are added to our platform: (i) compressing, (ii) decompressing, and

(iii) streaming sending/receiving. We also include two quasi-static databases of 3D models

(including vertices, texture, and shaders) at the server and the client. The database at the

server contains 3D models for all game scenes, while the one at the client stores a subset of

3D models in the current and nearby scenes.

Fig. 3.2 shows the distributed planar map rendering pipeline, which works as follows.

Starting from the server side, game scenes can be viewed as a set of 3D models from the

quasi-static database in the model space. More specifically, scenes are represented in 3D

models in files, such as obj files. With the typical 3D rendering transformations, we can take

3D models from model space, to world space, to view space, and finally into screen space using

vertex processing. Then through the silhouette detection, clipping, and occlusion processes

(see Sec. 3.3), we obtain 2D planar maps. The 2D planar maps are then compressed to further

reduce the required network bandwidth and streamed to client side through the networks.

At the client side, we decode the received data stream into coordinates in the decompression

component. The quasi-static database at the client side is pre-populated offline, like most

computer games. Note that all the quasi-static data are independent of the viewpoints and

control inputs from gamers. Instead, they only depend on the game scenes determined by

game states. With barycentric coordinate interpolation and the corresponding quasi-static

data, we can render the game frames and display them to the gamer by GPU rendering.

The presented rendering pipelines have the heavier components at the resourceful cloud

servers, and the lighter component at the thin clients with weak GPUs. Our key optimization

problem is the compression of planar maps for mitigating high bandwidth consumption,

which, to our best knowledge, has not been rigorously studied in the literature.

27

1 Bunny 4 Bunnies8 Bunnies
Scene

0

10

20

30

40

Q
u
a
li
ty

in
P
S
N
R

(d
B
)

Without Delta
With Delta

(a) Delta

1 Bunny 4 Bunnies8 Bunnies
Scene

0

10

20

30

40

Q
u
a
li
ty

in
P
S
N
R

(d
B
)

Huffman
LZMA
Arithmetic

(b) Entropy

1 Bunny 4 Bunnies8 Bunnies
Scene

0

10

20

30

40

Q
u
a
li
ty

in
P
S
N
R

(d
B
)

Uniform
Scale
Vector

(c) Quantized

Figure 3.3: Average video quality with different compression approaches
of: (a) delta prediction, (b) entropy coding, and (c) quantization.

3.5 COMPRESSING PLANAR MAPS

3.5.1 Coordinate Systems and Data Format

While the planar maps in the ordinary rendering pipeline [38] are in barycentric coordinate

system, the streamed planar maps can be represented using Cartesian or barycentric coor-

dinate systems. Cartesian coordinates are relative to a single origin, and thus preserve the

spatial property across vertices and among video frames. However, Cartesian coordinates

do not leverage the (triangles of the) 3D models in the quasi-static database, which may

result in unexploited redundancy. In contrast, barycentric coordinates describe each vertex

information, including position, normal, and texture, within a triangle (in the quasi-static

database) using three floating numbers in [0, 1], say u, v, and 1 − u − v. The merits of

barycentric coordinates include: (i) shorter indexes for triangles, and (ii) common triangle

patterns on unclipped triangles. However, barycentric coordinates are related to individual

triangles, making the correlation among vertices harder to be leveraged. Since the Cartesian

and barycentric coordinates both have pros and cons, we consider both coordinate systems

for now.

Next we explain the format of the planar map data sent from the server to the client.

Figures of detailed formats are omitted due to the space limitations. For each video frame,

there are three headers: (i) model view matrix, (ii) draw call number, and (iii) draw call

size. In particular, the model view matrix transforms the world space vertices into model

space vertices; the draw call number and size facilitate multi-texture mapping. Moreover,

each frame contains a set of triangles. With the Cartesian coordinates, each triangle is

represented using vertex positions, vertex normals, world space coordinates, and texture

coordinates. The vertex positions refer to the 2D positions in the screen space; the vertex

numbers and world space coordinates are used for shading; and the texture coordinates are

required by adding textures. With the barycentric coordinates, each triangle is represented

by a triangle ID (in the quasi-static database), followed by 3 pairs of u, v of individual

28

vertices.

3.5.2 Compression Modules

Although the compression of planar maps has not been investigated, compression of 3D

meshes is traditionally done in three steps: quantization, delta prediction, and entropy

coding [48]. These common compression modules are described below.

Quantization. Quantization could be classified into uniform and non-uniform quan-

tization. Non-uniform quantization, including scalar and vector quantization, is the foun-

dation of floating-point number compression. For scalar quantization, we apply Lloyd’s

algorithm [49] on individual dimensions sequentially. For vector quantization, all dimen-

sions are jointly quantized using K-means algorithm [50], in which all inputs are clustered

in several groups, and the centroid of each group is determined.

Delta prediction. To leverage the properties that close-by vertices share similar

information, a prediction algorithm may use previous coordinates to predict current coordi-

nates [48], thus we adopt the delta prediction [51] approach. Only the first input is encoded

into a symbol, as a 32 bit float. Others are represented in the deltas compared to the previous

input.

Entropy coding. Entropy coding further exploits the different symbol frequency to

reduce transmission bandwidth. We choose two widely used entropy codecs: Huffman and

arithmetic coding [52]. The Huffman coding builds a Huffman tree with the more frequent

elements at lower levels of the tree. We then assign shorter codes to the symbols closer to

the root. For arithmetic coding, it converts the whole symbol sequence into a floating point

between 1 and 0. The procedure loops through the symbols and shrinks the interval based

on the symbol probability. In addition, we also consider the Lempel Ziv Markov Chain

Algorithm (LZMA) and use 7-zip as its implementation. LZMA is a lossless dictionary

compressor, which encodes a stream with an adaptive binary range coder. We notice that

the coordinates may not be byte-aligned, which may be difficult for the entropy coders to

handle. We therefore expand the symbols to the next byte boundary before entropy coding,

e.g., 7-bit symbols are padded with one extra highest zero bit. Some sanity checks show that

the padding strategy reduces the bitrate with no penalty on video quality.

3.5.3 Module Parameter Selection

We record three game scenes in 720p resolution, in which we vary the number of the

popular Bunny model, among 1, 2, and 8. In every scene, bunnies with different textures and

29

standing positions are placed on a plane, and the viewing position and orientation changes

according to the gamer’s speed. Each scene lasts for 10 secs at 30 Hz frame rate. We consider

the following performance metrics to quantitatively compare module parameters.

• Video quality. The rendered quality in PSNR, SSIM, and Perceptual Evaluation

of Video Quality (PEVQ). PEVQ is a video quality metric described in ITU-T J.247

Annex B [53], and implemented in Skarseth et al. [54].

• Compression ratio. The compressed stream size over the uncompressed stream size.

We send the game scenes through a compressor with different quantization, delta prediction,

and entropy coding algorithms. We report four most important findings on the experiment

results below.

Quantization with Cartesian coordinates causes huge distortion. Quantized

Cartesian coordinates severely damage the video quality. A closer look indicates that this is

because Cartesian coordinates have a very wide range: all real numbers are possible, mak-

ing them more challenging to compress. On the other hand, all barycentric coordinates are

between 0 and 1. Furthermore, Cartesian coordinates contain 30-dimension vectors, which

dictate more bits to quantize.

Delta prediction negatively impacts compression ratio as well as video quality.

We measure the PSNR and compressed stream size with and without delta prediction.

Fig. 3.3a plots the achieved average video quality of different scenes with and without the

delta prediction at a bitrate of 2.3 Mbps. We find that the delta prediction makes more

variance on the resulting symbols, which then leads to lower compression ratio. Moreover,

because barycentric coordinates are all positive numbers, applying delta prediction requires

one extra sign bit, which worsens the performance.

LZMA outperforms other entropy coding algorithms. We compress each scene

multiple times with different entropy coders and plot the average PSNR at the same com-

pression ratio using these entropy coders in Fig. 3.3b. It is clear that LZMA outperforms

the other two entropy coders.

Uniform quantization outperforms other quantization approaches. On the 2D

plane, the vector quantization divides the space into quadrilaterals, and the scale quantiza-

tion divides the space into variable-size rectangles. In contrast, uniform quantization crops

the space into equal size blocks. We plot the average PSNR from the three quantization

approaches at the same compression ratio in Fig. 3.3c. This figure reveals that the uni-

form quantization outperforms others by far. We believe this is because the barycentric

coordinates are between 0 and 1, and have weak clustering property.

Based on the above findings, we adopt barycentric coordinates, uniform quantization, and

30

LZMA coder to compress the 2D planar maps. We note that while we report sample results

in PSNR, results in SSIM and PEVQ (not shown due to the space limitations), also support

the same findings.

3.6 EVALUATIONS

0 2000 4000 6000 8000

15

20

25

30

35

(a) R-D curve

1 Bunny 4 Bunnies8 Bunnies
0

1

2

3

4

5

(b) Bitrate

1 bunny 4 bunnies 8 bunnies
-10

-5

0

5

10

(c) Quality

Figure 3.4: Performance of our proposed solution in PSNR with basic bunnies: (a) sample R-D
curves from slow scene with 8 bunnies, (b) bitrate of our proposed solution at a bit-depth of 8-bits,
and (c) quality improvement of our proposed solution.

3.6.1 Implementation and Setup

We have implemented the proposed server and client pipelines using a combination of

C++ and Matlab. We compare our solution against the current cloud gaming platforms, in

which all the rendering tasks are done at cloud servers. The rendered videos are compressed

by the state-of-the-art video codec, such as x265 [55], and streamed to the clients. We do not

compare against pure graphic streaming platforms, where all the rendering tasks are done

31

1 Bunny 4 Bunnies8 Bunnies
0

0.05

0.1

0.15

(a) SSIM

1 Bunny 4 Bunnies8 Bunnies
-0.1

-0.05

0

0.05

0.1

(b) SSIM Fine
Figure 3.5: Performance improvement of our proposed solu-
tion in SSIM, with: (a) basic bunnies and (b) fine-grained
bunnies.

Figure 3.6: Rendered video
frames with holes.

at the clients. This is because for the (not-so-thin) clients that have enough horsepower to

render game scenes, the benefits of cloud gaming are limited. We expand the game scenes

used in the last section. In addition to the number of bunnies, we also consider diverse :

(i) model complexity, basic or fine-grained bunnies, and (ii) moving speed, slow or fast. In

particular, we adopt 12 game scenes in our experiments. We consider three performance

metrics: video quality in PSNR, SSIM, and PEVQ, bitrate in kbps, and component-wise

running time in ms. We run the experiments on an i7 3.4 GHz PC with an NVidia Quadro

M4000 card.

3.6.2 Results

Potential of our proposed solution. We first present the results from the basic bunnies

at the low speed. We configure x265 with ultra-fast preset and compress each scene with

6 different Quantization Parameter (QPs) to get its Rate-Distortion (R-D) curve. For our

proposed solution, we exercise the tradeoff between bitrate and quality using the bit-depth of

the uniform quantizer. By varying the bit-depth between 5- and 9-bit, the resulting streams

have different bitrates and video quality, which lead to the R-D curves. We first plot sample

R-D curves from the scene with 8 bunnies in Fig. 3.4a. This figure shows that when bitrate

is higher, the proposed solution outperforms x265 in terms of video quality in PSNR. The

same observation holds in other scenes, although we cannot present all R-D curves due to

the space limitations.

Video quality improvement of our proposed solution. We next compare the video

quality in PSNR of our solution against that of x265. Fig. 3.4b presents the bitrate of our

solution under different bit-depths. Upon having the bitrate of each game scene, we derive

the expected video quality of x265 by performing linear interpolation on its R-D curve.

Fig. 3.4c plots the quality improvement of our proposed solution over x265. This figure

32

shows that up to 5 dB improvement is possible, and as long as the bit-depth is ≥ 7 bits, our

proposed solution results in higher PSNR.

Implications of complex game scenes. Our proposed solution may be more vulnerable

to complex game scenes, in comparison to existing cloud gaming platforms that stream videos

at a fixed resolution. Our game scenes contain either basic bunnies, each with 37,677 vertices

on average, or fine-grained bunnies, each with 200,700 vertices. We find that our proposed

solution leads to worse PSNR and SSIM when the scenes contain fine-grained bunnies. This

is not a huge concern, because in cloud gaming graphics design, we can use simple 3D models

with pre-rendered textures to achieve the same visual result as fine grained models.

Perceptual video quality metrics. Figs. 3.5a and 3.5b plot the video quality improve-

ment of our proposed solution in SSIM with basic bunnies and fine-grained bunnies. The

gap is as high as 0.14 in SSIM. However, when using PEVQ as the quality metric, x265

scores up to 4 and our solution scores up to 1.5. The reason of the inferior PEVQ scores of

our solution may be due to some holes in the resulting videos, which is shown in Fig. 3.6.

These holes may negatively affect the PEVQ scores; mitigating these holes is among our

future tasks.

Per-component running time. We report the average running time per video frame in

Table 3.1. We only consider the computationally intensive components, and more complex

game scenes (8 bunnies). This table shows that the running time of the client side component

is much smaller compared to those of the server side components. Although the rendering

time is measured on a workstation in our experiments, the negligible values of rendering

component (≤ 0.83 ms on average) reveal that porting it to resource-constrained clients is

possible.

Server Client
Detection Clipping Occlusion Rendering

Basic 0.27/0.28 25.56/33.41 1.94/2.68 0.22/0.48
F.G. 3.66/4.73 60.55/88.14 17.43/24.02 0.83/3.13

Table 3.1: Running Time (ms), Average/Maximum, 8 Bunnies

Implications of diverse speed and resolution. We observe virtually no difference in

terms of bitrate of slow and fast game scenes. At a bit-depth of 8, the rate increase due to

the speed is merely 0.04% on average. This can be attributed to the fact that we haven’t

leveraged the temporal redundancy, which is among our future tasks. We also compare

the bitrate of our proposed solution and x265 at higher resolutions of 1080p, 2K, and 4K.

We encode the game scenes using our proposed solution at 720p and 8-bit bit-depth, and

get an average video quality of 31.66 dB in PSNR. We then increase the resolution, and

compute the rate increases of achieving 31.66 dB. We find that, for our proposed algorithm,

33

higher resolutions lead to lower bitrates (at the same video quality). More specifically,

reductions of 15% (1080p), 13% (2K), and 12% (4K) are observed. A closer look indicates

that most artifacts due to quantization happen at the corners of triangles. Such negative

impacts are diluted under higher resolutions. If we perform the same analysis on x265,

higher resolutions lead to higher bitrate; increases of 18% (1080p), 22% (2K), and 30% (4K)

are observed. This shows that our proposed solution has more potential in the future, where

ultra-high-resolution displays become more popular.

34

CHAPTER 4: SHAPES ON A PLANE

When embedded in 3D environments, UI clarity and text legibility are important to get

right. The user can orient surfaces at various isotropic degrees, and in VR and AR, the pixel

densities are low relative to user’s eye distance. In fact text legibility is currently one of

the biggest problems in VR and AR. It is known to influence and sometimes drives display

resolution choices. It is hard to get these features right because of aliasing.

We propose a purely analytic anti-aliasing technique, which computes the coverage of

vector primitives over pixel footprints directly. This is a hard problem, and typically slow

to compute. However, using new methods we are able to solve it efficiently. We present here

techniques that make the computation extremely rapid.

4.1 INTRODUCTION

Anti-aliasing of text and vector primitives embedded in 3D environments has been pursued

avidly. The problem remains, how does a system provide an efficient coverage value for a

pixel foot print and a vector primitive? It has been approached with a variety of methods.

These include mainly approximating primitives with signed distance fields, embedding a fixed

number of primitive features into textures, or employing various flavors and combinations of

these approaches. These methods all rely on some form of approximation due to the nature

of the problem, it is difficult to efficiently compute the integral of a vector primitive over a

pixel footprint directly. More accurate techniques such as super sampling are generally too

expensive, and require many samples to approach high quality images.

We propose an analytic approach with extremely high quality and performance. Our

contribution lies in providing new usage of linear algebra operations before shape over pixel

integral calculations that drastically simplify the integration operation for any primitive.

The operations transform the problem from shape integration with an arbitrary footprint,

into shape integration with a unit square. The second contribution of this work is a set

of highly optimized shape integration kernels which take full advantage of our problem

transformation.

In this work we consider only text glyphs. We pre-process true-type font glyphs into

trapezoidal and curved shapes which can be used to exactly represent any true-type font and

a number of other vector primitives and formats. With the benefits of our math operations

we can render text glyphs embedded in 3D for an incredibly low cost. Our current results

place us on the performance spectrum between 1x and 4x super sampling with effectively

35

optimal anti-aliasing.

We present work to date on vector graphics and text anti-aliasing in 3D environments in

Section 4.2. Many of these works amount to data structures and sampling algorithms for

vector textures, or utilize some form of signed distance field. We present our methodology

for changing the integration space, and transforming primitives into this space for rapid

integration in Section 4.3. Section 4.4 details the integration kernels. We present trape-

zoid and curve kernels, with algorithm walkthroughs to provide intuition into our methods.

Section 4.5 briefly discusses our system implementation, and section 4.6 presents quantita-

tive results and quantitative results. Section 4.7 provides additional pseudo code for our

optimized integration kernels.

4.2 PREVIOUS WORK

4.2.1 SDFs and ADFs

Signed distance fields (SDFs), have been used for anti-aliasing by several authors. One of

the most notable uses of SDF is for anti-aliasing text and vector graphics embedded in 3D

environments. Green conducted anti-aliasing by storing distance values in the alpha channel

of a texture, using smoothstep to transition towards the underlying surface. [56] Qin, et al.

also anti-alias text by evaluating the SDFs on the GPU .

Most SDFs discretize surfaces by storing a representation of the distance to the closest

primitive of an underlying surface in a spatial data structure. The most common method for

propagating distances through a grid is Danielsson’s 8SED method, or more accurately, the

signed variant SSED8. The grid structure can then be used to quickly access information

about the underlying surface, albeit with some error due to discretization. Aside from pixel

error, when sharp or thin features with multiple edges are present in the SDF the evaluation

of distance breaks down. Approximations then yield over-rounding at corners and artifacts

on complex and thin features. These artifacts are exacerbated at higher resolutions. [57]

Using multiple channels for averting these issues was studied by Chlumsky, but they were

not completely eliminated. [58]

4.2.2 Vector Graphics

Nehab and Hoppe implement a Vector Graphics rendering scheme for the GPU pipeline.

The approach works in a pixel shader in which they both anti-alias and super sample. They

use a lattice data structure storing a list of vector primitives at each cell. They pre-filter

36

each cell, with a ray cast from left side of pixel to determine closest segment distance. This

is an approximation, as the ray may miss, since the segment may be sharp. They resort to

mipmapping when minification causes the pixel foot print to extend outside of a lattice cell,

and handle cubics by converting to quadratics pieces, and linear segments. In comparison

to our work this technique is heavy handed and still approximate.

Qin et al. presented a fast method for computing distance to a curve for SVG strokes [59].

It is based on binary search; they store the curve in an acceleration structure using 3 tex-

tures with indirection. The curve is split in half at the parametric center, and a plane is

constructed about the normal. They test hit points against this plane and continue on the

point containing side until an error tolerance is reached or for a fixed number of iterations.

4.2.3 Features

One of the earliest feature based techniques was developed by Bala et al. who used features

for reducing sample interpolation error across frames during rendering. Shading interpolation

was previously employed in GI schemes such as irradiance caching, and render caches [60],

whereas samples are interpolated within and across frames because shading is expensive.

Bala et al. improved on these techniques by testing interpolations against a discontinuity

invariant referred to as reachability. This ensures a shaded sample is not interpolated across

a discontinuity which causes unnatural blurring and error. [61].

Feature based textures and feature curves follow Bala et al. in incorporating features

into raster image lookup. [62] [63] They incorporate similar techniques, but with the goal

of implementing feature aware bi-linear interpolation for textures. FBTs support Bezier

primitives up to the cubic Bezier. They segment a texel into regions with one feature

per region. Bi-linear interpolation then only samples other textures which are aligned in

terms of region. They do not sample in directions that are not reachable from the current

sample. [62] Feature curves augment the feature texture with SDF information and provide

an implementation better adapted to the GPU. [63] While both of these techniques improve

on bi-linear filtering during texturing, coverage was not considered.

Shadow silhouette maps augmented shadow maps with silhouette information to remove

the jagged artifacts produced by magnifying the shadow map when viewing a sparsely sam-

pled region up close. [64] Silhouette maps for textures extends the work to the texture

magnification problem, and shows how to extend the shadow work to implement bi-linear

filtering that respects silhouette boundaries, in textures. [65]

Vector texture maps, Pinchmaps, Bixels and Infinite resolution textures, each store curves

or boundaries in quickly accessible structures for texture mapping with IRT being state of

37

the art. However vector texture maps and pinch maps don’t handle multi-facet features and

intersections elegantly, and bixels are limited. [66] While IRT averts most these issues, the

application to analytic anti-aliasing of arbitrary primitives, i.e. computing coverage, was not

studied. [67] [68] [69] [66].

4.2.4 Ray casting curves

Recently authors have approached anti-aliasing for vector primitives by storing the primi-

tives directly in texture format. Shape outlines are then sampled using fast winding number

calculation and 2D sub pixel ray casting [70] [71]. However these implementations suffer from

rounding error and produce artifacts. Most recently, these techniques have been improved

upon by the Slug Library implementation by Eric Lengyel [72]. The approach eliminates

precision issues, and is state of the art w.r.t. speed and quality. The library is not openly

available, however we compare directly against a scene from a demo release.

4.3 PIXEL MATH

Our system, given a hit point on a surface generated with any visibility algorithm, uses

the pixel differential on the surface to compute an inverse pixel transform. This transform

changes the space of the integration calculation used for computing analytic coverage of a

primitive into a unit square. In this section we provide the derivations and algorithms used

to compute and apply this transform. We assume here, that the surface has been hit, or

a sample on a surface has been taken, and that the pixel differentials at that hit point are

available in UV space.

4.3.1 Pre-process

We discuss text rendering, though these approaches can be leveraged for vector images as

well. We use true-type fonts for all experiments. Our system is built around integrating the

vector primitives found in, or derived from true-type glyphs.

We break the glyphs down into two types of shapes by pre-processing them with the thorax

true-type library. [73] Thorax computes a breakdown of a glyph into trapezoid for large

non curved convex areas, and into bi-quadratic curves for convex curved areas. Concave

curved areas e.g. the inside of an ”O” are also represented by bi-quadratics. These curve

representations are inverted which yields areas which are opposite in sign of convex areas.

This causes canceling in the integration kernels which we discuss in the next section.

38

To enable the system to process shape over pixel integrals as rapid as possible, we maintain

an invariant for shapes in true-type font glyphs. We clip curves such that the apex is never

aligned with the horizontal axis, and we ensure all trapezoids also have x axis alignment in

their parallel edges. The other edges of the trapezoid can be at arbitrary orientations, and

the curves can otherwise, be arbitrary bi-quadratics.

4.3.2 Computing the transform

We compute a transform from pixel differential space to unit square space. Pixel dif-

ferentials represent the transformation of a pixels image-space shape into the shape of it’s

projection onto a surface in 3D. A differential in UV space, is represent by two vectors,

dUV dx and dUV dy, which represent the difference in UV space along the horizontal axis

and vertical axis of the original image space pixel respectively. We place these differentials

into a 2x2 matrix of the following form.[
dUV dxx dUV dxy

dUV dyx dUV dyy

]

For example a normalized pixel differential on the image plane would form the following

matrix. [
1 0

0 1

]
In general this matrix can represent a 2D affine transform, which may be decomposed into

a non-uniform scale, a sheer, and a rotation. The matrix transforms a unit square, centered

at the origin, (the pixel), into the shape of it’s projection onto the UV plane.

A pixel for all practical purposes can be represented by a Gaussian. A Gaussian is radially

symmetric. This means if possible, we can safely remove the rotation from the differential

matrix. As it turns out this is quite possible. Using QR factorization, we can decompose

the differential matrix into none other than a rotation and a shear. Upon inspection the

bounding volume of a square transformed by the factored out shear will tightly bound the

Gaussian representing the pixel area. See Figure 4.1.

Taking advantage of the rotational invariant property of the Gaussian, we can safely

discard the rotation. Our choice of factorization operations is Givens rotations. Givens

rotations compute the QR decomposition of a matrix, by zeroing out elements one at a

time. The resulting matrix Q is an ortho-normal matrix, i.e. a rotation, and the matrix R

is upper triangular i.e. an x-shear. In 2D, we only need to zero out one element, the y-shear

39

Figure 4.1: A rotation and scale,= (left), and the shear factored out of that matrix (right), both
tightly bound the pixel Gaussian.

component. The code for our implementation of QR is shown in Figure 4.2.

matrix2x2 QRDecomp(matrix2x2 A)

float a00 = A[0][0];

float a01 = A[0][1];

float a10 = A[1][0];

float a11 = A[1][1];

float csn = a00 / sqrt(a00*a00 + a11*a11);

float sn = a11 / sqrt(a00*a00 + a11*a11);

matrix3x3 Q = matrix3x3::identity();

Q[0][0] = csn;

Q[0][1] = sn;

Q[1][0] = -sn;

Q[1][1] = csn;

#QR = A

#R = Q^t*A

return transpose(Q)*A;

Figure 4.2: Code for computing the QR decomposition of the 2D differential matrix.

We use only the shear going forward. It should be clear that, inverting the shear transform

yields the transform which takes the pixel foot print in UV space into the a unit square. The

inversion contains only an x shear, and thus maintains x axis alignment with the square.

As mentioned we pre-process glyphs into trapezoids and bi-quadratic curves which we force

to have x axis alignment. However, other vector primitives such as triangles, quads, and

curves, can be decomposed such that they have x axis alignment. We ensure this in our

pre-process. Thus we have achieved an important goal. Integrating an x axis aligned shape

with a unit square is a much simpler process in comparison to the original problem.

40

Figure 4.3: Two glyphs laid out in a text box.

Figure 4.4: Transform Pipeline from glyph space to integration space at the unit square.

Taking full advantage of this math, integration kernels can now rely solely on trivial

primitive operations and use factored down versions of most equations. The factoring is

possible in the special case where primitive elements are being clipped against the unit

square from (0, 0) to (1, 1). We discuss this in the next section.

4.3.3 Layout to Integrate

Now that the QR decomposition has been computed and we have the effective inverse of

the differential transform, we can move shapes into the integration space at the square. This

requires 5 transforms, although this is for clarity, some transforms can be concatenated.

Refer to figure 4.4 for the following discussion. Consider a glyph in glyph space bounded

by the coordinates (0, 0) and (1024, 1024). Note, in true-type speak, this could be referred

41

to as em space, or the em grid, see ”TrueType Fundamentals”. [74] Along with this we

have defined a text box with two of these glyphs aligned horizontally, without spacing for

simplicity. See Figure 4.3. The text box is also in em space in terms of units, but we refer

to it as layout space. It encompasses the glyphs’ local em grids. It is a block of space

in which glyphs are laid out with em size units. The example text box ranges from (0, 0)

to (2048, 1024). If we are to move the right side glyph into layout space, we only need to

translate from the origin of our layout space, (0, 0), to the origin of the glyph in layout space,

(1024, 0). Next we divide the by the total number of units in layout space (2048, 1024). So

this first step requires only a translation and a squash, which can be computed before hand

during glyph layout.

Once the glyph is in UV space, we move it to the origin, and transform it using the

inverted shear. The first step involves, for each shape, subtracting the UV sample point

from the UV coordinates of the shape. Lastly we transform the shape into integration space,

and translate it to the unit square, where we will perform our integration calculations. As

mentioned the shape remains axis aligned in x.

The full transformation pipeline is displayed in figure 4.4.

4.4 INTEGRATION KERNELS

Here we introduce two rapid integration kernels which integrate a shape against the unit

square. The kernels compute areas as opposed to clipping. We walk through each kernel’s

pseudo code, one instruction at a time to ensure clarity in reproduction. Luckily the kernels

are short, and also branch free, which leads to a straight forward discussion. We refer to

diagrams in each kernel discussion, to yield intuition into the general correctness of the

operations.

4.4.1 Trapezoid Integration

Trapezoid integration pseudo code is displayed in figure 4.6. To begin, we’ll consider the

class containing linear equation abstractions, also in figure 4.6. We use three linear equation

structures for each trapezoid x0, x1, and y0. The inputs A and B are depicted for each

equation in figure 4.5.

Lines 4 and 5 construct the parametric offset t of the linear equations at 0 and 1. The

idea is to be able to clip the lines against sides, and top and bottom of the unit square.

The code uses interval variables called ranges. Ranges automatically keep the upper and

lower t values for a line’s upper and lower intercepts, sorted as (min,max) in, range.lower,

42

Figure 4.5: Depiction of the variables in the linear equation for trapezoid integration

range.upper, respectively. Note however that while the t values are sorted in the range, we

also construct ranges for the actual coordinates at those t values without resorting those by

min and max. So for a range storing x coordinates lower may not be the lower x coordinate,

rather the x coordinate corresponding to the lower t value.

Moving into the trapezoid integration kernel, line 12 finds the vertical intercept t values as

a range variable from the trapezoid equation y0, and clamps it to 0 and 1. This produces t of

y0, ty0. Line 13 computes the y values themselves. This is done by adding the y coordinate

y0.B to the parametric distance t, multiplied by the difference in y, y0.A. See Figure 4.5.

This will generate the y coordinate range of y0, yy0. The result of the yy0 computation is

depicted in figures 4.7 and 4.8 as yy0.upper and yy0.lower.

Lines 15 and 16 are symmetric operations on the x0 line equation (left line) with the

exception that the range tx0 is first clamped to ty0, this will clip the left line to the top and

to the bottom of the square. yx0 is the y coordinate range of tx0, and xx0 is the x range at

tx0. Line 17 is used in the area calculation to find the height of a point of mid way between

the lower and upper y intercepts of the, potentially clipped, left line.

We’ll look now to computing the areas, and the areas we compute have been overlaid in

colored boxes on the reference figures. madd is a multiply add instruction, nmadd is multiply

negate and add, msub is multiply subtract. Line 19 computes ymid01, which is the distance

between the midpoint of yx0 upper and lower, and the bottom of the trapezoid yy0.lower.

Line 20 computes the area of the rectangle of height ymid01 and width xx0.lower, the

left most x coordinate. In figure 4.8 this area is zero. In figure 4.7 this is the light blue

rectangular area.

Line 21 computes ymid02, which is the distance between the midpoint of yx0 upper and

43

1 LinearEqn {
2 LinearEqn (A, B) : a (A) , b(B){
3 i a = −1.0 f / a ;
4 i b = i a ∗ b ;
5 t r = Range (i b , i b − i a) ;
6 }
7 Apply (t) { r e turn Range (madd(a , t . low , b) , madd(a , t . up , b)) ; }
8 Get (){ r e turn tRange ; }
9 a , b , tRange ;

10 } ;
11 IntegrateTrap (x0 , x1 , y0) {
12 ty0 = Clamp(y0 . GetT ()) ;
13 yy0 = y0 . ApplyT(ty0) ;
14

15 tx0 = Clamp(x0 . GetT () , ty0) ;
16 yx0 = y0 . ApplyT(tx0) ;
17 yx0 mid = yx0 . lower + yx0 . upper ;
18 xx0 = Clamp(x0 . ApplyT(tx0)) ;
19 ymid01 = msub (0 . 5 f , yx0 mid , yy0 . lower) ;
20 area = xx0 . lower ∗ ymid01 ;
21 ymid02 = nmadd (0 . 5 f , yx0 mid , yy0 . upper) ;
22 area = madd(xx0 . upper , ymid02 , area) ;
23

24 tx1 = Clamp(x1 . GetT () , ty0) ;
25 yx1 = y0 . ApplyT(tx1) ;
26 yx1 mid = yx1 . lower + yx1 . upper ;
27 xx1 = Clamp(x1 . ApplyT(tx1)) ;
28 ymid11 = msub (0 . 5 f , yx1 mid , yy0 . lower) ;
29 area = nmadd(xx1 . lower , ymid11 , area) ;
30 ymid12 = nmadd (0 . 5 f , yx1 mid , yy0 . upper) ;
31 area = nmadd(xx1 . upper , ymid12 , area) ;
32 r e turn area ;
33 }

Figure 4.6: Trapezoid integration pseudo code

lower, and the top of the trapezoid yy0.upper. This is best seen in figure 4.8, because it differs

from ymid01 in that image. In the simple image, figure 4.7, ymid01 and ymid02, and in fact

all ymid calculations are identical, as such we have labeled that height as ymidall. However,

as mentioned, in figure 4.8 the reason for difference in their computation is apparent. Line

22 computes the area of the rectangle of height ymid02 and width xx0.upper, this area is

dark blue. The dark blue box in figure 4.8 shows the nature of this calculation when the

44

Figure 4.7: Trapezoid reference for pseudo code walk through, a simple case

Figure 4.8: Trapezoid reference for pseudo code walk through, a more complex case

trapezoid is clipped. Note these are both positive areas.

Subtracting the light blue box from the dark blue box would yield an area equal to the

left triangular region of the trapezoid, this can be seen by flipping the triangle formed by the

region above the dark blue box down, forming the rectangular area that would be left if we

subtracted light blue from dark blue. This subtraction happens in the next area calculation.

As it stands we have double counted the light blue area.

Lines 24 through 27 are symmetric. We compute everything from the left side of the

square at x = 0. Line 28 computes ymid11, which is the distance between the midpoint of

yx1 upper and lower, and the bottom of the trapezoid yy0.lower. Line 29 computes the area

of the rectangle with height ymid11 and width xx1.lower, this is shown in orange. Line 30

constructs ymid12, which is the distance between the midpoint of yx1 upper and lower, and

45

the top of the trapezoid yy0.upper. Line 31 computes the area of the rectangle with height

ymid12 and width xx1.upper, shown in dark red. Both of these areas are negative. The first

areas, light and dark blue, are added in.

The double counted area under light blue cancels with both orange and red, leaving zero

area. The dark blue area cancels with one of the overlapping regions leaving one negative

accounting for the blue area. The large orange region accounts for the right triangular region,

again seen by flipping the triangle down. It also accounts for the lower part of the body of

the trapezoid. The dark red region then accounts for the upper body of the trapezoid.

The reader should note the regions are overlaid in the simple figure, where as in the more

complex example, they are depicted in such a way as to invite intuition into their purpose

in the calculations. Although these calculations seem unorthodox, they are symmetric, and

were designed to optimize the area calculations to be simple rectangular area calculations in

all cases. The design has lead to an incredibly rapid and efficient integrator.

4.4.2 Curve Integration

Curve integration pseudo code is displayed in figure 4.9. Note, while our quadratic equa-

tion evaluation and structure is optimized we have moved it to section 4.7. For following

the code, it should suffice to note, a curve is defined by two linear equations x0 and y0, and

two quadratics as they are bi-quadratic curves, x1 and y1.

We use figure 4.10 as a reference for this discussion. Lines 2 calculates the area of the

trapezoidal region beneath the curve, a simplified version of the trapezoid clipper for a one

sided region. This area cancels with the area calculations discussed shortly. Line 5 and 6

solve for t of the y apex of the curve and the delta in t to the y intercepts of the curve with

the box i.e. at 0 and 1. −b/2a of the quadratic equation y = at2 + bt + c can be thought of

as the apex in t of the quadratic equation, this follows from that fact that the x coordinate

of the vertex of a quadratic is defined as −b/2a, and plugging it into y = at2 + bt + c yields

that y coordinate of the vertex. In this way
√
b2 − 4ac / 2a and (

√
b2 − 4a(c + 1) / 2a) can

be viewed as the offsets or deltas from the apex to the intercepts at 0 and 1, since they yield

t values which when plugged into y = at2 + bt + c give the y values of those intercepts.

T of y1, i.e, t along the curve to the hit points, must be selected carefully based on the sign

of the apex to ensure correctness. If the curve opens to the right t = 0 is at the bottom of the

curve, it’s the opposite for left opening. If the apex is negative, then either the bi-quadratic

opens to the right and the apex is near the bottom, in which case we add the ty1 deltas to

the apex to find the box hits, or it opens to the left and the apex is near the top in which

case we also add the deltas. Otherwise we subtract them.

46

1 IntegrateCurve (x0 , y0 , x1 , y1) {
2 area = Calcu lateTrapezo ida lArea (x0 , y0) ;
3

4 y1 = eqns . y1 ;
5 ty1 apex = y1 . SolveApex () ;
6 t y 1 d e l t a = y1 . So lveDel ta () ;
7 ty1 apex s i gn = ty1 apex & SignMask () ;
8 ty1 = ApexToTSelect (ty1 apex , ty1 de l t a , t y1 apex s i gn) ;
9

10 x1 = eqns . x1 ;
11 tx1 apex = x1 . SolveApex () ;
12 t x 1 d e l t a = x1 . So lveDel ta () ;
13 tx1 lower = tx1 apex−t x 1 d e l t a . upper , tx1 apex−t x 1 d e l t a . lower ;
14 tx1 upper = tx1 apex+t x 1 d e l t a . lower , tx1 apex+t x 1 d e l t a . upper ;
15

16 yx1 lower = y1 . Apply (tx1 lower) ;
17 ymid lower = yx1 lower . lower + yx1 lower . upper ;
18 xx1 lower = Clamp(x1 . Apply (tx1 lower)) ;
19 ymid01 = msub (0 . 5 f , ymid lower , yy0 . upper) ;
20 area = madd(xx1 lower . lower , ymid01 , area) ;
21 ymid02 = nmadd (0 . 5 f , ymid lower , yx1 lower . upper) ;
22 area = madd(xx1 lower . upper , ymid02 , area) ;
23

24 yx1 upper = y1 . Apply (tx1 upper) ;
25 ymid upper = yx1 upper . lower + yx1 upper . upper ;
26 xx1 upper = Clamp(x1 . Apply (tx1 upper)) ;
27 ymid11 = msub (0 . 5 f , ymid upper , yx1 lower . upper) ;
28 area = madd(xx1 upper . lower , ymid11 , area) ;
29 ymid12 = nmadd (0 . 5 f , ymid upper , yy0 . lower) ;
30 area = madd(xx1 upper . upper , ymid12 , area) ;
31 r e turn area ;
32 }

Figure 4.9: Curve integration pseudo code

Lines 10 through 14 solve for the x apex and deltas. Since our bi-quadratics may indeed

face left or right we have four intercepts. Otherwise the logic is similar to the y curve. In

figure 4.10 tx1 lower.lower and tx1 lower.upper are the t values at the intercepts at the top

of the curve. This is because we subtracted them from tx1 apex moving them towards the

top. yx1 lower and xx1 lower are the coordinates at these t values. tx1 upper.lower and

tx1 upper.upper are the t intercepts at the bottom of the curve. Similarly yx1 upper and

xx1 upper are the coordinates there. We have shown only the t values to reduce clutter in

47

Figure 4.10: Curve reference for pseudo code walk through

figure 4.10.

The area calculations mirror those in the trapezoid clipper, this because we are approx-

imating the curves with the trapezoid rule. While Simpsons rule could also be used for

reducing error, we feel the resultant error reduction is negligible. Line 19 computes ymid01,

the distance between the midpoint of the yx1 lower intercepts and yy0.upper. Line 20 com-

putes the area of a rectangle of height ymid01 and width xx1 lower.lower, shown in light

blue. Line 21 computes ymid02, the distance between the midpoint of the yx1 lower inter-

cepts and yx1 lower.upper. Line 22 computes the area of a rectangle of height ymid02 and

width xx1 lower.upper, shown in dark blue. Line 27 computes ymid11 shown in the figure

and 28 computes the area of the rectangle of height ymid11 and width xx1 upper.lower,

shown in turquoise. The purple area calculation is symmetric to the light blue. All of the

areas are negative in this example.

Again, these calculations, may seem less intuitive, but are arguably the least amount

of work that can be done with simple rectangular areas to compute the correct result.

48

Using simple rapid rectangular area calculations is our motivation for using an unorthodox

sequence. They are also a bit tricky, since they must ensure correctness in all cases, and

we have tested them extensively. We believe, while complex, this discussion will serve as a

guide for reproduction of our highly optimized kernels.

4.5 IMPLEMENTATION

We briefly discuss our data structure, but call attention to the notion that our data

structure was chosen to be simple to implement and reasonably efficient. For fair evaluation,

we use the same structure between super sampling (SSAA) and our shapes on a plane

system (SOP). More efficient data structures surely exist and are encouraged in future efforts.

While these may increase performance, they should not affect the relative performance of

our integration vs super sampling. This is because the data structures are used store and

retrieve glyph shapes overlapping pixel foot prints, any foot print based renderer is expected

to return the same shapes. The efficiency with which this is done is what varies between

data structures.

As discussed we utilize the thorax true-type font rendering library by Warren Hunt for

loading and pre-processing all fonts [73]. We have augmented thorax with our data structure

builder. Thorax uses a custom 2D bounding volume hierarchy implementation. We have

chosen to employ a two level uniform grid.

The lowest level grid is built over each glyph, and the resolution is calculated from the

number of shapes in each dimension while taking into account average overlap. For example if

a square glyph contains five rows of rectangles, which span an entire row each, the horizontal

overlap is quite high and the horizontal resolution can thus reduced to 1. Where as the

overlap in the vertical dimension is zero and thus the vertical dimension should simply be

the number of shapes which in this case is five.

The upper level grid is built over the text box, and it’s resolution is set based on the

glyph count in each dimension, i.e. the longest sentence (horizontal) and the number of

new lines vertical. Again, we do not expect to achieve optimal performance with this data

structure, but since both methods of computing coverage use it, our comparisons are fair. If

anything it hurts our performance comparison with Slug, which uses tuned production level

data structures. However, we will show this result is also quite promising.

Our system is running on a Intel i7 7700K CPU running at 4.2GHz, and an Nvidia Titan

X Maxwell GPU. We have integrated SOP and SSAA into the HVVR ray casting system

from Facebook Reality Labs [75].

49

4.6 EVALUATION

We evaluate our system for quality and performance in four scenarios. Our scenes provide

examples of multiple degrees of isotropic integration. We have over laid text on multiple

objects within each scene, and we provide zoom images of particularly interesting sections.

We hope this will provide an easier comparison of quality with respect to reference images.

All SSAA images are super sampled using point in shape tests. We utilize Loop-Blinn

to sample curves, and a point in trapezoid test based on edge testing, and testing points

for being above the bottom and below the top. We feel these are fair comparisons, but for

clarity we have provided the pseudo code for our point in shape tests in section 4.7.

Figure 4.11: Cornell Box Scene

4.6.1 Quality and Performance

Figure 4.11 shows our first scene, We have pasted text on every vertical surface in the

Cornell Box, displaying varying degrees of isotropic angles. We draw attention to the zoom

images in figures 4.12 and 4.13.

In figure 4.12 for 1x sampling (a), the sentence fragment, ”Timber Valley where the

largest employer” is all but illegible. This is to be expected with no anti-aliasing. The

quality improves up to (c) 16X super sampling and even to 1024 which we use a reference

here, (d) and (e). We repeat the SSAAx1024 ref on the bottom row at (e) to make side by

side comparison easier with SOP. In our SOP result, (f), we arguably improve readability of

this fragment, even past 1024 sampling, consider the word, ”the”, in the fragment, and the

phrase ”MGL Corporation”. These arguably improve from reference to SOP.

In figure 4.13 aliasing is still visible with 4x super sampling, and improves greatly with

16x. See the right side of the ”u” in the word ”ground” between 4x and 16x. One could

50

(a) SSAAx1 (b) SSAAx4 (c) SSAAx16

(d) SSAAx1024 REF (f) SOP

Figure 4.12: Cornell box zoom. 1x, 4x, 16x, and Ref (1024x) super sampling, vs SOP integration
kernels.

(a) SSAAx1 (b) SSAAx4 (c) SSAAx16

(d) SSAAx1024 REF (f) SOP

Figure 4.13: Second cornell box zoom. 1x, 4x, 16x, and Ref (1024x) super sampling, vs SOP
integration kernels.

argue text at this scale, is more important than the text in figure 4.12. So it would appear

16x is reasonable quality. In fact even in figure 4.12, text becomes legible with 4 samples in

each dimension. In figure 4.13 however, there is a noticeable difference in quality of jaggies

on rounded edges, see ”b” in ”but”, between 16x and reference. SOP does much better.

Figure 4.14 displays our books scene. We again draw attention the zoom images in fig-

51

Figure 4.14: Books Scene

(a) SSAAx1 (b) SSAAx4

(c) SSAAx16 (d) SSAAx1024 REF

(e)SSAAx1024 REF Repeated (f) SOP

Figure 4.15: Books scene zoom.

(a) SSAAx1024 REF (b) SOP

(c) SSAAx1024 REF Repeated (d) SOP

Figure 4.16: Another books scene zoom, comparison between only SOP and Ref

ures 4.15 and 4.16. Figure 4.15 shows SSAA is actually effective at only 4x, but clearly

shows aliasing on the ”e” in cube. Again SOP comes closer to the ref than 16x, this can be

seen by observing the ”C”, 16x is aliasing. Figure 4.16 shows only SOP and Ref, again they

are very close.

52

Figure 4.17: Sponza Scene

(a) SSAAx1024 REF (b) SOP

(c) SSAAx1024 REF (d) SOP

Figure 4.18: Sponza zoom, comparison between only SOP and Ref

Figure 4.17 displays our modified Sponza scene, which was mostly included for perfor-

mance results on a realistic scene. It containing panels of text, with a few verses of Hamlet.

The zoom sections in figure 4.18 again match the ref very closely, and are arguably pixel

identical, or better looking in SOP.

4.6.2 Performance

Figure 4.19 shows the total frame time in milliseconds for five scenarios for each scene. We

show the time taken by HVVR to render the scene without text, with text using SSAA 1x,

using SSAA 4x, 16x, and our shapes on a plane implementation. Shapes on a plane is faster

than or competitive with all SSAA levels, which was mostly expected, but we are sometimes

even faster the 1x SSAA. This is surprising. Again refer to section 4.7 for fair comparison

evaluation of our SSAA implementation. Figure 4.20 shows total GPU time which is the

overhead caused by rendering text in the scene as opposed to rendering the scene for the

Slug demo scene.

53

Figure 4.19: Performance of SSAA vs SOP

Figure 4.20: Performance of SOP vs SSAA and Slug Library

We are always ahead of SSAA, but are slightly behind the Slug library in it’s default mode,

as opposed to it’s adaptive super sampling mode. The Slug demo contains a story’s text

roughly two paragraphs, and fills most of an HD window. We don’t have a pure 2D mode,

but we rendered a plane in 3D and matched the resolution and story text in the slug demo.

For this evaluation, we simply draw it on a full screen quad. While the text is identical in

size we have not included quality comparisons, since our renderer is 3D without kerning and

other effects utilized by Slug to enhance text layout quality. So a qualitative comparison

would be apples to oranges. Slug renders faster than us in default mode, we are within 2X,

no doubt due to optimization and better layout of data structures. However, the adaptive

sampling mode of Slug which is required to produce their highest quality text is behind our

54

implementation by roughly 25%. See figure 4.20. One could assume based on our qualitative

results vs SSAA at 1024 samples, that we are ahead of Slug, unless of course Slug default

is better the 1024x SSAA quality. Which is not likely, based on their implementation [72].

This concludes our discussion.

55

4.7 ADDITIONAL PSEUDOCODE

1 s t r u c t QuadraticEqn{
2 QuadraticEqn (A, B, C) {
3 //same f o r an x curve
4 //(y2 − y0) − 2 ∗ (y1 − y0)
5 a = f l o a t (A) ;
6 //2 ∗ (y1 − y0)
7 b = f l o a t (B) ;
8 //y0
9 c = f l o a t (C) ;

10 i a = f l o a t (−1.0 / A) ;
11 i b = 0 .5 ∗ B ∗ i a ;
12 apex s ign = B == 0.0 | | i b < 0 .0 ? −1.0 : 1 . 0 ;
13 auto i c = i b ∗ i b + i a ∗ C;
14 s o l v e = Range (i c , i c − i a) ;
15 }
16 ApplyT () (t) { r e turn (a ∗ t + b) ∗ t + c ; }
17 Range ApplyToRange () (Range& t) {
18 r e turn Range (ApplyT () (t . lower) , ApplyT () (t . upper)) ;
19 }
20 SolveApex () { r e turn i b ; }
21 GetApexSign () { r e turn apex s ign ; }
22 Range So lveDel ta () const {
23 r e turn Range (s q r t f (max(0 . 0 f , s o l v e . lower)) ,
24 s q r t f (max(0 . 0 f , s o l v e . upper))) ;
25 }
26 a , b , c ;
27 i a , i b ;
28 apex s ign ;
29 s o l v e ;
30 } ;
31 }

Figure 4.21: Quadratic Equations

56

1 // Cal led one per shape
2 CurvePreSampling (x0 , y0 , v0X , v0Y , v2X , v2Y , &e0 , &e1 , &e2)
3 {
4 // de r i v e the two end po in t s
5 f l o a t x1 = x0 + v0X ;
6 f l o a t y1 = y0 + v0Y ;
7 f l o a t x2 = x0 + v2X ;
8 f l o a t y2 = y0 + v2Y ;
9 // edge 0 cons tant s

10 e0 . x = (y2 − y1) ;
11 e0 . y = (x1 − x2) ;
12 e0 . z = (x2∗y1 − x1∗y2) ;
13 // edge 1
14 e1 . x = (y0 − y2) ;
15 e1 . y = (x2 − x0) ;
16 e1 . z = (x0∗y2 − x2∗y0) ;
17 // edge 2
18 e2 . x = (y1 − y0) ;
19 e2 . y = (x0 − x1) ;
20 e2 . z = (x1∗y0 − x0∗y1) ;
21 }

Figure 4.22: Curve sampling

57

1 // Cal led once per sample
2 HitCurveLoopBlinn (sampleX , sampleY , e0 , e1 , e2 , ins ideCurve)
3 {
4 // eva l edge equat ions
5 inL ine0 = (w = e2 . x∗sampleX + e2 . y∗sampleY + e2 . z) >= 0 ;
6 inL ine1 = (u = e0 . x∗sampleX + e0 . y∗sampleY + e0 . z) >=0;
7 inL ine2 = (v = e1 . x∗sampleX + e1 . y∗sampleY + e1 . z) >= 0 ;
8

9 mag i = 1 / (u + v + w) ;
10 u ∗= mag i ;
11 v ∗= mag i ;
12 w ∗= mag i ;
13

14 // i n t e r p o l a t e t ex tu re coo rd ina t e s
15 s = v ∗0 .5 + w;
16 t = w;
17 // c a l c u l a t e i n v e r s e s t
18 s2 = v ∗0 .5 + u ;
19 t2 = u ;
20

21 i n s ideEdges = inLine2 ? inLine2 : ! inLine0 && inLine1 ;
22 h i t = ins ideCurve ? (s2∗ s2 − t2) < 0 : (s∗ s − t) < 0 ;
23 none = (ins ideCurve && h i t && ins ideEdges) ;
24 one = (! ins ideCurve && h i t && ins ideEdges) ;
25 r e turn none ? −1 : one ? 1 : 0 ;
26 }

Figure 4.23: Curve sampling

58

1 // Cal led once per shape
2 TrapPreSampling (leftBottom , le ftTop , rightTop ,
3 rightBottom , bottom , top , &l , &r)
4 {
5 f l o a t l e f t = max(leftBottom , l e f tTop) ;
6 f l o a t r i g h t = min (rightBottom , rightTop) ;
7 // edge cons tant s
8 l . x = (top − bottom) ;
9 l . y = (le f tBottom − l e f tTop) ;

10 l . z = (l e f tTop ∗bottom − top∗ l e f tBottom) ;
11 r . x = (bottom − top) ;
12 r . y = (rightTop − rightBottom) ;
13 r . z = (rightBottom∗ top − bottom∗ r ightTop) ;
14 }
15 // Cal led once per sample
16 HitTrapOptimized (sampleX , sampleY , bottom , top , l , r)
17 {
18 // top bottom t e s t
19 vin = sampleY >= bottom && sampleY <= top ;
20 // edge e v a l s
21 i n r = (r . x∗sampleX + r . y∗sampleY + r . z > 0) ;
22 i n l = (l . x∗sampleX + l . y∗sampleY + l . z > 0) ;
23 r e turn (vin && i n r && i n l) ? 1 .0 f : 0 . 0 f ;
24 }

Figure 4.24: Trapezoid sampling

59

CHAPTER 5: CONCLUSION

We have demonstrated that the GPU can implement a vector rendering system, which with

some additional work, could be suitable for small scale client server 3D content streaming

applications and in VR systems. By binning geometry into small screen tiles, about 1/322

of the screen size, we achieve an optimal domain decomposition that distributes a parallel

clipping workload evenly while limiting the impact of an all-pairs quadratic triangle occlusion

test. The result yields about a 4.5× improvement over the state of the art.

We have analyzed several performance factors which may be useful in future implemen-

tations. In particular we have sought to understand the impact of bin resolution on per-

formance, worst case memory budget requirements, and optimization such a rebinning for

increased performance.

While the system is far from complete and has it’s share of drawbacks, we believe most

of these to be implementation specific, not algorithmic. The core algorithm will likely prove

useful in future analytic visibility efforts, whether they be in hardware or in software. In

fact we expect a hardware implementation to be feasible, and potentially required for real

world rendering workloads.

We also studied the feasibility of leveraging the 2D planar map streaming and distributed

rendering in cloud gaming. We first presented the server and client pipelines, based on the

standalone 2D planar map rendering pipeline with additions of several components for com-

pression and transmission. We then dived into the core challenge of the platform: the design

of the compressor/decompresser of 2D planar maps, which has not been studied before.

We designed a parameterized compression component, and derived the optimal parameters

through real experiments. We then compared our rendering platform against the state-of-

the-art x265. Our results are quite promising. Although our platform is outperformed by

x265 in PSNR at low bitrate, we significantly outperform it at high bitrates. In addition,

our platform outperforms x265 in terms of video quality, e.g., by up to 0.14 in SSIM. Other

merits of the proposed platform include: (i) fast running time, especially at the client side

and (ii) high scalability to ultra-high resolutions without bitrate penalty.

Lastly, we have proposed a technique that adopts analytic anti-aliasing, using direct pixel-

primitive integrals. This is a hard problem. The novelty in our work lies in our approach.

We provide new math operations that drastically simplify integration/clipping operations

for any primitive. The first contribution of this work lies in a new transform for shapes on a

plane, which maintains horizontal alignment of shapes while changing the integration space

from arbitrary into a unit square. The second contribution is a set of shape integrators

60

with very few instructions and no branches, thus very GPU friendly, which exemplify the

simplicity achieved by using our novel transform operation.

We implemented our techniques in the HVVR GPU raycasting system for VR with a

simple data structure, and still our results show competitive speed with state of the art,

while achieving effectively optimal AA. We have compared with production level systems,

and come out ahead in some cases, while falling slightly behind in others, no doubt due to

our system structure being largely unoptimized with the exception of our fast integration

kernels. This a very necessary future improvement for our system, a better data structure

and data layout. Regardless, we have shown stark improvement over super sampling with

respect to quality and speed. In fact our system meets closer to reference quality than 16x

super sampling, for the price of taking a single point in shape sample. Shapes on a plane

is fast and accurate, and we believe a large contribution to improving state of the art in

primitive anti-aliasing.

In all, we have presented three contributions which form an end to end pipeline for enabling

and exploiting vector images, or vector graphics, for use in real time graphics systems i.e. a

”High Performance Vector Rendering Pipeline.”

61

REFERENCES

[1] C. A. Burns and W. A. Hunt, “The visibility buffer: A cache-friendly approach to
deferred shading,” Journal of Computer Graphics Techniques (JCGT), vol. 2, no. 2,
pp. 55–69, August 2013. [Online]. Available: http://jcgt.org/published/0002/02/04/

[2] W. Engel, “Triangle visibility buffer,” 2018. [Online]. Available: http:
//diaryofagraphicsprogrammer.blogspot.com/2018/03/triangle-visibility-buffer.html

[3] P.-C. Wang, A. I. Ellis, J. C. Hart, and C.-H. Hsu, “Optimizing next-generation
cloud gaming platforms with planar map streaming and distributed rendering,” in
Proceedings of the 15th Annual Workshop on Network and Systems Support for Games,
ser. NetGames ’17. Piscataway, NJ, USA: IEEE Press, 2017. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3167906.3167911 pp. 25–30.

[4] A. I. Ellis, W. Hunt, and J. C. Hart, “Svgpu: Real time 3d rendering to vector
graphics formats,” in Proceedings of High Performance Graphics, ser. HPG ’16.
Goslar Germany, Germany: Eurographics Association, 2016. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2977336.2977339 pp. 13–21.

[5] I. E. Sutherland and G. W. Hodgman, “Reentrant polygon clipping,” Commun.
ACM, vol. 17, no. 1, pp. 32–42, Jan. 1974. [Online]. Available: http:
//doi.acm.org/10.1145/360767.360802

[6] G. Bernstein and D. Fussell, “Fast, exact, linear booleans,” in Proceedings of
the Symposium on Geometry Processing, ser. SGP ’09. Aire-la-Ville, Switzerland,
Switzerland: Eurographics Association, 2009. [Online]. Available: http://dl.acm.org/
citation.cfm?id=1735603.1735606 pp. 1269–1278.

[7] W. Cai, R. Shea, C. Huang, K. Chen, J. Liu, V. C. M. Leung, and C. Hsu, “A survey on
cloud gaming: Future of computer games,” IEEE Access, vol. 4, pp. 7605–7620, 2016.

[8] E. Lapidous and G. Jiao, “Optimal depth buffer for low-cost graphics hardware,” Proc.
SIGGRAPH/EUROGRAPHICS Hardware Workshop, pp. 67–73, 1999.

[9] A. Lauritzen, “Deferred rendering for current and future rendering pipelines,” SIG-
GRAPH Course Notes: Beyond Programmable Shading, 2010.

[10] R. Sollefeldt, “A look at the PowerVR graphics architecture: Tile-based ren-
dering,” http://blog.imgtec.com/powervr/a-look-at-the-powervr-graphics-architecture-
tile-based-rendering, 2015.

[11] L. Roberts, “Machine perception of three-dimensional solids,” Lincoln Laboratory, MIT,
Tech. Rep. TR 315, 1963.

[12] W. Mason, “Oculus is working on eye tracking technology for the next gener-
ation of VR,” http://uploadvr.com/oculus-is-working-on-eye-tracking-technology-for-
next-generation-of-vr, 2015.

62

[13] B. Guenter, M. Finch, S. Drucker, D. Tan, and J. Snyder, “Foveated 3D graphics,”
Proc. SIGGRAPH Asia, ACM TOG, vol. 31, no. 6, 2012.

[14] I. E. Sutherland, R. F. Sproull, and R. A. Schumacker, “A characterization of ten
hidden-surface algorithms,” ACM Comput. Surv., vol. 6, no. 1, pp. 1–55, 1974.

[15] A. Appel, “The notion of quantitative invisibility and the machine rendering of solids,”
Proc. 22nd ACM Natl. Conf., pp. 387–393, 1967.

[16] G. Winkenbach and D. H. Salesin, “Computer-generated pen-and-ink illustration,”
Proc. SIGGRAPH, pp. 91–100, 1994.

[17] A. Hertzmann and D. Zorin, “Illustrating smooth surfaces,” Proc. SIGGRAPH, pp.
517–526, 2000.

[18] C. Geuzaine, “GL2PS: an OpenGL to PostScript printing library,” www.geuz.org/gl2ps,
2003.

[19] M. Stroila, E. Eisemann, and J. Hart, “Clip art rendering of smooth isosurfaces,” IEEE
TVCG, vol. 14, no. 1, pp. 135–145, 2008.

[20] E. Eisemann, H. Winnemöller, J. C. Hart, and D. Salesin, “Stylized vector art from 3d
models with region support,” Proc. EGSR, pp. 1199–1207, 2008.

[21] E. Eisemann, S. Paris, and F. Durand, “A visibility algorithm for converting 3d meshes
into editable 2d vector graphics,” ACM TOG, vol. 28, no. 3, pp. 83:1–83:8, 2009.

[22] K. Karsch and J. C. Hart, “Snaxels on a plane,” Proc. NPAR, pp. 35–42, 2011.

[23] L. Markosian, M. A. Kowalski, D. Goldstein, S. J. Trychin, J. F. Hughes, and L. D. Bour-
dev, “Real-time nonphotorealistic rendering,” Proc. SIGGRAPH, pp. 415–420, 1997.

[24] J. W. Buchanan and M. C. Sousa, “The edge buffer: A data structure for easy silhouette
rendering,” Proc. NPAR, pp. 39–42, 2000.

[25] K.-J. Kim and N. Baek, “Fast extraction of polyhedral model silhouettes from moving
viewpoint on curved trajectory,” Comput. Graph., vol. 29, no. 3, pp. 393–402, 2005.

[26] R. Raskar and M. Cohen, “Image precision silhouette edges,” Proc. I3D, pp. 135–140,
1999.

[27] R. Raskar, “Hardware support for non-photorealistic rendering,” Proc. SIG-
GRAPH/Eurographics Hardware Workshop, pp. 41–47, 2001.

[28] S. N. Ho and R. Komiya, “Real time loose and sketchy rendering in hardware,” Proc.
Spring Conference on Computer Graphics, pp. 83–88, 2004.

[29] J. Wang, J. Sun, M. Che, Q. Zhai, and W. Nie, “Image space silhouette extraction using
graphics hardware,” Proc. ICCSA, pp. 284–291, 2005.

63

[30] F. Cole and A. Finkelstein, “Fast high-quality line visibility,” Proc. I3D, pp. 115–120,
2009.

[31] T. Auzinger, M. Wimmer, and S. Jeschke, “Analytic visibility on the gpu,” Computer
Graphics Forum (Proc. Eurographics), vol. 32, no. 2, pp. 409–418, May 2013.

[32] S. Lefebvre and H. Hoppe, “Perfect spatial hashing,” Proc. SIGGRAPH, ACM TOG,
vol. 25, no. 3, pp. 579–588, 2006.

[33] G. Bernstein and D. Fussell, “Fast, exact, linear booleans,” in Proceedings of the Sym-
posium on Geometry Processing, ser. SGP ’09. Aire-la-Ville, Switzerland, Switzerland:
Eurographics Association, 2009, pp. 1269–1278.

[34] P. Ross, “Cloud computing’s killer app: gaming,” IEEE Spectrum, vol. 46, no. 3, p. 14,
2009.

[35] “PlayStation Now web page,” January 2015, http://www.playstation.com/en-us/
explore/playstationnow/.

[36] C. Huang, K. Chen, D. Chen, H. Hsu, and C. Hsu, “GamingAnywhere: the first open
source cloud gaming system,” ACM Transactions on Multimedia Computing, Commu-
nications, and Applications, vol. 10, no. 1s, pp. 10:1–10:25, 2014.

[37] W. Cai, R. Shea, C. Huang, K. Chen, J. Liu, V. Leung, and C. Hsu, “The future of
cloud gaming,” Proceedings of the IEEE, vol. 104, no. 4, pp. 687–691, 2016.

[38] A. Ellis, W. Hunt, and J. Hart, “Svgpu: real time 3D rendering to vector graphics
formats,” in Proc. of High Performance Graphics (HPG’16), 2016, pp. 13–21.

[39] P. Baudelaire and M. Gangnet, “Planar maps: an interaction paradigm for graphic
design,” in Proc. of the SIGCHI Conference on Human Factors in Computing Systems
(CHI’89), 1989, pp. 313–318.

[40] P. Asente, M. Schuster, and T. Pettit, “Dynamic planar map illustration,” ACM Trans-
actions on Graphics, vol. 26, no. 3, p. 30, 2007.

[41] M. Hemmati, A. Javadtalab, A. Shirehjini, S. Shirmohammadi, and T. Arici, “Game as
video: bit rate reduction through adaptive object encoding,” in Proc. of ACM Inter-
national Workshop on Network and Operating Systems Support for Digital Audio and
Video (NOSSDAV’13), 2013, pp. 7–12.

[42] A. Jurgelionis, P. Fechteler, P. Eisert, F. Bellotti, H. David, J. Laulajainen,
R. Carmichael, V. Poulopoulos, A. L. P. Perälä, A. Glora, and C. Bouras, “Platform
for distributed 3D gaming,” International Journal of Computer Games Technology, vol.
2009, pp. 1–15, 2009.

[43] W. Cai, R. Shea, C. Huang, K. Chen, J. Liu, V. Leung, and C. Hsu, “A survey on cloud
gaming: future of computer games,” IEEE Access, vol. 4, pp. 7605–7620, 2016.

64

[44] D. Meiländer, F. Glinka, S. Gorlatch, L. Lin, W. Zhang, and X. Liao, “Bringing mo-
bile online games to clouds,” in Proc. of IEEE Computer Communications Workshops
(INFOCOM WKSHPS’14), 2014, pp. 340–345.

[45] X. Nan, X. Guo, Y. Lu, Y. He, L. Guan, S. Li, and B. Guo, “A novel cloud gaming
framework using joint video and graphics streaming,” in Proc. of IEEE International
Conference on Multimedia and Expo (ICME’14), 2014, pp. 1–6.

[46] S. Chuah, N. Cheung, and C. Yuen, “Layered coding for mobile cloud gaming using
scalable blinn-phong lighting,” IEEE Transactions on Image Processing, vol. 25, no. 7,
pp. 3112–3125, 2016.

[47] G. Bernstein and D. Fussell, “Fast, exact, linear booleans,” Computer Graphics Journal,
vol. 28, no. 5, pp. 1269–1278, 2009.

[48] J. Peng, C. Kim, and C. Kuo, “Technologies for 3D mesh compression: a survey,”
Journal of Visual Communication and Image Representation, vol. 16, no. 6, pp. 688–
733, 2005.

[49] S. Lloyd, “Least squares quantization in PCM,” IEEE Transactions on Information
Theory, vol. 28, no. 2, pp. 129–137, 1982.

[50] D. Arthur and S.Vassilvitskii, “k-means++: The advantages of careful seeding,” in Proc.
of the ACM-SIAM Symposium on Discrete algorithms (SODA’07), 2007, pp. 1027–1035.

[51] M. Deering, “Geometry compression,” in Proc. of Conference on Computer Graphics
and Tnteractive Techniques (SIGGRAPH’95), 1995, pp. 13–20.

[52] T. Cover and J. Thomas, Elements of information theory. John Wiley & Sons, 2012.

[53] “Objective perceptual multimedia video quality measurement in the presence of a full
reference,” ITU Telecommunication Standardization Sector, Standard, 2008.

[54] K. Skarseth, H. Bjørlo, P. Halvorsen, M. Riegler, and C. Griwodz, “OpenVQ: a video
quality assessment toolkit,” in Proc. of ACM International Conference on Multimedia
(MM’16), OSSC paper, 2016, pp. 1197–1200.

[55] February 2017, http://x265.org.

[56] C. Green, “Improved alpha-tested magnification for vector textures and special
effects,” in ACM SIGGRAPH 2007 Courses, ser. SIGGRAPH ’07. New York, NY,
USA: ACM, 2007. [Online]. Available: http://doi.acm.org/10.1145/1281500.1281665
pp. 9–18.

[57] N. P. Rougier and B. Esfahbod, “Digital typography: 25 years of text
rendering in computer graphics,” in ACM SIGGRAPH 2018 Courses, ser.
SIGGRAPH ’18. New York, NY, USA: ACM, 2018. [Online]. Available:
http://doi.acm.org/10.1145/3214834.3214837 pp. 12:1–12:29.

65

[58] V. Chlumsky, “Shape decomposition for multi-channel distance fields,” Master’s Thesis,
Czech Technical University in Prague, Faculty of Information Technology, 2015.

[59] Z. Qin, M. D. McCool, and C. Kaplan, “Precise vector textures for real-time
3d rendering,” in Proceedings of the 2008 Symposium on Interactive 3D Graphics
and Games, ser. I3D ’08. New York, NY, USA: ACM, 2008. [Online]. Available:
http://doi.acm.org/10.1145/1342250.1342281 pp. 199–206.

[60] B. Walter, G. Drettakis, and S. Parker, “Interactive rendering using the render cache,”
in Proceedings of the 10th Eurographics Conference on Rendering, ser. EGWR’99.
Aire-la-Ville, Switzerland, Switzerland: Eurographics Association, 1999. [Online].
Available: http://dx.doi.org/10.2312/EGWR/EGWR99/019-030 pp. 19–30.

[61] K. Bala, B. Walter, and D. P. Greenberg, “Combining edges and points for interactive
high-quality rendering,” ACM Trans. Graph., vol. 22, no. 3, pp. 631–640, July 2003.
[Online]. Available: http://doi.acm.org/10.1145/882262.882318

[62] G. Ramanarayanan, K. Bala, and B. Walter, “Feature-based textures,” in Proceedings
of the Fifteenth Eurographics Conference on Rendering Techniques, ser. EGSR’04.
Aire-la-Ville, Switzerland, Switzerland: Eurographics Association, 2004. [Online].
Available: http://dx.doi.org/10.2312/EGWR/EGSR04/265-274 pp. 265–274.

[63] E. Parilov and D. Zorin, “Real-time rendering of textures with feature curves,”
ACM Trans. Graph., vol. 27, no. 1, pp. 3:1–3:15, 2008. [Online]. Available:
http://doi.acm.org/10.1145/1330511.1330514

[64] P. Sen, M. Cammarano, and P. Hanrahan, “Shadow silhouette maps,” in ACM
SIGGRAPH 2003 Papers, ser. SIGGRAPH ’03. New York, NY, USA: ACM, 2003.
[Online]. Available: http://doi.acm.org/10.1145/1201775.882301 pp. 521–526.

[65] P. Sen, “Silhouette maps for improved texture magnification,” in Proceedings
of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware,
ser. HWWS ’04. New York, NY, USA: ACM, 2004. [Online]. Available:
http://doi.acm.org/10.1145/1058129.1058139 pp. 65–73.

[66] A. Reshetov and D. Luebke, “Infinite resolution textures,” in Proceedings of High
Performance Graphics, ser. HPG ’16. Goslar Germany, Germany: Eurographics
Association, 2016. [Online]. Available: https://doi.org/10.2312/hpg.20161200 pp.
139–150.

[67] J. Tumblin and P. Choudhury, “Bixels: Picture samples with sharp embedded
boundaries,” in Proceedings of the Fifteenth Eurographics Conference on Rendering
Techniques, ser. EGSR’04. Aire-la-Ville, Switzerland, Switzerland: Eurographics
Association, 2004. [Online]. Available: http://dx.doi.org/10.2312/EGWR/EGSR04/
255-264 pp. 255–264.

[68] N. Ray, T. Neiger, B. Lévy, and X. Cavin, “Vector texture maps on the gpu,” 2005.

66

[69] M. Tarini and P. Cignoni, “Pinchmaps: Textures with customizable discontinuities,”
pp. 557–568, 2005, (Eurographics 2005 Conf. Proc.). [Online]. Available: http:
//vcg.isti.cnr.it/Publications/2005/TC05

[70] B. Esfahbod, “Glyphy. software library,” 2012. [Online]. Available: https:
//github.com/behdad/glyphy

[71] W. Dobbie, “Gpu text rendering with vector textures,” 2016. [Online]. Available:
http://wdobbie.com/post/gpu-text-rendering-with-vector-textures/

[72] E. Lengyel, “Gpu-centered font rendering directly from glyph outlines,” Journal of
Computer Graphics Techniques (JCGT), vol. 6, no. 2, pp. 31–47, June 2017. [Online].
Available: http://jcgt.org/published/0006/02/02/

[73] W. Hunt, “Thorax truetype. libary,” 2017. [Online]. Available: https://github.com/
spiderofmean/thorax truetype

[74] P. Constable and M. Jacobs, “Truetype fundamentals,” 2018. [Online]. Available:
https://docs.microsoft.com/en-us/typography/opentype/spec/ttch01

[75] W. Hunt, M. Mara, and A. Nankervis, “Hierarchical visibility for virtual reality,” 2018.

67

