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ABSTRACT 

Colon cancer is the second deadliest cancer, affecting the quality of life in older patients. 

Prognosis is useful in developing an informed disease management strategy, which can improve 

mortality as well as patient comfort. The morphometric assessment provides diagnosis, grade, 

and stage information. However, it is subjective, requires multi-step sample processing, and 

annotations by pathologists. In addition, morphometric techniques offer minimal molecular 

information that can be crucial in determining prognosis. 

The interaction of the tumor with its surrounding stroma, comprised of several biomolecular 

factors and cells is a critical determinant of the behavior of the disease. To evaluate this interaction 

objectively, we need biomolecular profiling in a spatially specific context. In this work, we achieved 

this by analyzing tissue microarrays using infrared spectroscopic imaging. We developed 

supervised classification algorithms that were used to reliably segment colon tissue into 

histological components, including differentiation of normal and desmoplastic stroma. Thus, 

infrared spectroscopic imaging enabled us to map the stromal changes around the tumor. This 

supervised classification achieved >0.90 area under the curve of the receiver operating 

characteristic curve for pixel level classification.  

Using these maps, we sought to define evaluation criteria to assess the segmented colon images 

to determine prognosis. We measured the interaction of tumor with the surrounding stroma 

containing activated fibroblast in the form of mathematical functions that took into account the 

structure of tumor and the prevalence of reactive stroma. Using these functions, we found that 

the interaction effect of large tumor size in the presence of a high density of activated fibroblasts 

provided patients with worse outcome. The overall 6-year probability of survival in patient groups 

that were classified as “low-risk” was 0.73 whereas in patients that were “high-risk” was 0.54 at 

p-value <0.0003. Remarkably, the risk score defined in this work was independent of patient risk 

assessed by stage and grade of the tumor. Thus, objective evaluation of prognosis, which adds 

to the current clinical regimen, was achieved by a completely automated analysis of unstained 

patient tissue to determine the risk of 6-year death.   

In this work, we demonstrate that quantitative chemical imaging using infrared spectroscopic 

imaging is an effective method to measure tumor-tumor microenvironment interactions. As a top-

down systems pathology approach, our work integrated morphometry based spatial constraints 

and biochemistry based stromal changes to identify markers that gave us mechanistic insights 
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into the tumor behavior. Our work shows that while the tumor microenvironment changes are 

prognostic, an interaction model that takes into account both the extent of microenvironment 

modifications, as well as the tumor morphology, is a better predictor of prognosis. Finally, we also 

developed automated tumor grade determination using deep learning based infrared image 

analysis. Thus, the computational models developed in this work provide an objective, 

processing-free and automated way to predict tumor behavior. 
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CHAPTER 1: INTRODUCTION  

Motivation and impact 

Colon and rectal cancer are the second in estimated deaths due to cancer after lung and bronchus 

cancer[1]. Approximately 4.2 percent of men and women will be diagnosed with this disease at 

some point during their lifetime, and only about 65% will survive five years after detection[1]. The 

current clinical needs in colon carcinoma diagnosis and management can be summarized as 

follows: 

(1) Need for objective evaluation: Although histopathology is the current gold standard for 

colon cancer diagnosis and prognosis, it suffers from numerous drawbacks such as 

experimental variations, limited information content and inter-observer variability[2,3] 

resulting in up to 11.8% errors in cancer diagnosis[4]. In addition, several studies have 

reported a lack of concordance in determining tumor grade[5,6] and interobserver 

variability in the assessment of dysplasia[2,3]. Therefore, methods that can perform 

objective evaluation without intensive tissue processing are needed.   

(2) Quantification of tumor-microenvironment associated prognosis: Unlike breast cancer 

where hormone receptor status stratifies outcome and determines therapy options[7], 

reliable prognostic and response predictive markers are not in clinical use in colon cancer. 

Carcinoembryonic antigen (CEA) is used to monitor patients post-surgery but is only 

useful for the early detection of metastasis in stage II and stage III cancers[8,9]. It has 

been demonstrated that the tumor microenvironment plays a vital role in determining 

tumor behavior[10]. Specifically, in colon cancer, studies have shown that the 

desmoplastic reaction around the tumor has prognostic significance[11,12]. Despite the 

reports, using the desmoplastic response as a prognostic marker is not clinically feasible 

because the evaluation criteria are subjective, and varies with pathologists. In addition, 

this model does not take into account the spatial interaction of the tumor with its 

microenvironment. Therefore, there is a need to develop robust models to quantify tumor-

tumor microenvironment interaction and assess their utility in determining prognosis.  

(3) Protocols for automation: Automation is possible using deep learning based machine 

vision applications in the assessment of patient tissue. In a large number of samples, 

determining the presence or absence of tumor is straightforward but still requires 

pathologists’ time and effort. Thus, there is a need to develop automated tools which can 

cut down on the workload of pathologists by removing apparent cases.  
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(4) Improving speed of assessment and in-surgery assistance: At the time of the surgery, if 

histopathological aid is needed, the tissue is snap frozen, sectioned, stained and a 

pathologist assesses the sample. There is potential to improve this pipeline by performing 

rapid tissue assessment right on the surgery bench without the need for tissue processing. 

Thus, there is a need to develop and evaluate high-speed imaging modalities capable of 

performing the stainless assessment.  

Colorectal cancer prevalence and clinical assessment 

Colorectal cancer is the cancer of the colon or rectum. Adenocarcinoma is the most common 

colorectal cancer subtype, accounting for about 90% of the colorectal cancer cases, although 

other types of cancers such as lymphoma and squamous cell carcinoma can also originate from 

the colon. Adenocarcinoma originates from epithelial tissue that has a glandular origin (adeno- 

meaning gland). In colon cancer, the disease arises from the epithelial cells lining the colon or 

rectum (colon crypts), invades the thin layer of muscle in the gastrointestinal tract known as 

muscularis mucosae, followed by invasion in the submucosa and eventually muscularis propria 

(figure 1.1). In cases of colorectal cancer, when submucosal invasion takes place, the tumor is 

rendered invasive (pT1)[13]. 

The initial diagnosis of colon cancer is made by colonoscopy, following which surgical excision or 

biopsy can be performed.  Colonoscopy is a versatile method to determine the tumor location. 

Once a suspicious mass is sampled, pathological diagnosis can be made by examining the tissue 

after histological stains. The most common stain used for tissue examination is hematoxylin and 

eosin (H&E). Using the stained tissue, pathologists confirm if a malignant tumor is present, and 

the depth of invasion. In the case of surgical resection, multiple regional lymph nodes are 

examined to determine if cancer has spread to the lymph nodes. Based on the structure and 

organization of the tumor and the nuclei, a tumor grade can also be assigned, which has been 

shown to be a stage-independent prognostic factor[14] (figure 1.2).  

While anatomic pathology utilizes morphometric information to perform diagnosis, it is limited by 

molecular information content, and often does not provide a functional basis for the 

abnormality[15] (figure 1.3a). Molecular information can be supplemented by the use of 

proteomics and genomic tools, which have limited spatial information (figure 1.3b).   
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Chemical imaging as a tool for colon cancer assessment  

Chemical imaging using Fourier transform infrared (FT-IR) spectroscopic imaging offers spatially 

specific molecular analysis of samples, without the need for stains or dyes (figure 1.3c). Infrared 

imaging can be used for comprehensive molecular assessment of the tissue and for determining 

prognosis. This approach is timely to use given the recent advancements in high definition IR 

spectroscopic imaging coupled with machine learning to perform image analysis and prediction. 

In the following sections, we review the prior works that have studied colon tissues using chemical 

imaging.  

Biological basis of FT-IR spectra 

Prior works have demonstrated that there is a functional difference between a healthy colon and 

colon cancer that can be measured using chemical imaging. Early studies using FT-IR 

spectroscopic imaging have shown that the levels of cell metabolites decrease in polyp and colon 

cancer relative to normal tissue[16]. Further work on the analysis of adenomatous crypts showed 

that abnormal crypt proliferation could be identified by using FT-IR spectroscopic imaging. The 

abnormal crypts showed a lower absorbance of glycogens, phosphates and lipids at the bottom 

and middle portion of the crypt as compared to the top, whereas normal crypts had a higher overall 

absorbance at the middle[17,18].  In normal crypt, the cells had lower carbohydrate levels at the 

apex of the crypt, the levels of carbohydrates did not change much between middle and apex in 

abnormal crypts, showing that the cells in abnormal crypts retained their metabolism activity even 

at the top of the crypt. Metabolite levels have also been observed by collecting samples from 

intestinal mucosa as we move away from the tumor and it was found that there is a decrease of 

lipid and increase of proteins and nucleic acids in the regions close to tumors[19]. A similar 

increase in protein and nucleic acids has been observed elsewhere[20]. Several studies have 

attempted to utilize these differences to segment colon tissue using unsupervised clustering 

approaches (figure 1.4a). The unsupervised classification algorithms perform well on individual 

samples, and demonstrate the power of infrared spectroscopic imaging in distinguishing colon 

tissue histological components[21–25]. However, they fail when multiple patient samples are 

used, given that patient heterogeneity can have strong effects on the signal[26].  

FT-IR spectroscopic imaging to analyze features not observable through traditional techniques 

Besides conventional FT-IR spectroscopic imaging studies investigating the biochemical signal 

distribution and attempting to reproduce classical histology[27], FT-IR spectroscopic imaging has 
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also been employed successfully to identify features that are not detectable with conventional 

H&E staining. For example, tumor budding and tumor stroma association can be studied using 

FT-IR spectroscopic imaging;  both of these features are either unidentifiable through traditional 

histological staining or require high power magnification[28].  

Colonic carcinogenesis has known variations in mucin-type glycoproteins.  MUC1 mucin is 

increased in colon cancer, and correlates with a worse prognosis, whereas the expression of 

MUC2  is generally decreased in adenocarcinoma[29].  Multiple studies have attempted to 

analyze this variation using infrared spectroscopy[30–34].  One study in particular identified that 

the mucin spectral features did not vary in normal and adenocarcinoma tissues but there was a 

difference in the surface percentages of mucin which can allow us to differentiate between these 

two tissue types (figure 1.4b).[34]  

Tumor heterogeneity is studied widely in terms of cell surface receptors, proliferation capabilities 

and angiogenic potential[35,36]. These biological variations are not observable using H&E stain. 

In work on xenograft colon carcinoma models, IR spectroscopic imaging was shown to be useful 

in identifying three distinct spectral clusters, one of which was associated with mucin-producing 

cells[37]. Thus, it is likely that IR imaging is more effective in documenting the tumor heterogeneity 

as compared to the H&E staining.  

Clinical applications of FT-IR 

When colon tissue is examined under visible light, specialists look for raised lesions called polyps. 

These can be either benign or malignant, but this distinction can only be made by looking at the 

biopsy. Argov et al.[38] attempted to characterize premalignant polyps using IR spectroscopic 

imaging and compare them with normal and colon cancer cases. The authors used multilayer 

perception artificial neural networks to classify the tissue and noted that spectral differences 

between polyp and malignant cases were not significant. Phosphate stretching bands were able 

to differentiate normal from both polyp and malignant cases but failed to separate pre-malignant 

polyp from cancerous cells. Instead, it was shown that the glycogen peaks at 1026 cm-1 and 1154 

cm-1 performed better as features to distinguish hyperplasia from dysplasia [39].  

Identifying dysplastic polyps through histopathology is a tedious process, involving patient 

sedation and additional costs. Keeping this in mind, Mackanos et al.[39] developed FT-IR 

spectroscopy to assist endoscopy using silver halide optical fiber in ATR configuration. The 

authors used freshly excised specimens to evaluate the potential of infrared spectroscopy to 
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identify dysplastic mucosa. The samples were blown with cold air for five minutes to remove water 

interference.  Using this model, the authors found subtle differences in the absorption spectra 

among normal, hyperplasia and dysplasia in the fingerprint region using partial least squares 

discriminant analysis, reporting a specificity of 92% at 96% sensitivity and an AUC value of 0.953. 

The authors pointed out that using a classification algorithm that is more efficient regarding 

calibration transfer between the optical fiber instruments is needed, and can be combined with an 

endoscope-compatible optical fiber to distinguish premalignant colonic mucosa; producing a 

significant leap in in situ infrared imaging. Other groups have reported a series of experiments 

starting from in vitro studies to using ATR based fiber optic probe for in vivo FT-IR spectroscopy 

and have reported agreements between in vivo and in vitro data and the observations being 

consistent with biopsy results[40].  ATR-FTIR based study, other works have reported 

identification of colonic inflammation[41] as well as differentiation of colon cancer from colitis using 

[42]. One such setup is shown in figure 1.4c.   

Together, these studies show that FT-IR spectroscopy can produce results equivalent and 

superior to traditional staining techniques, giving additional biomolecular information and has 

potential to capture metastasis and prognosis associated features. Clinical implementation of this 

technique is possible with faster imaging systems such as quantum cascade lasers[43–45] while 

optimized classification algorithms can produce results at clinically relevant time scales. This is 

specially needed for colon cancer analysis, which does not have clinically prevalent prognostic 

markers. In addition, colon tissue is accessible with probe based instruments, and demonstrations 

that infrared spectroscopic imaging in situ is compatible with endoscope further strengthen the 

motivation to develop advanced analysis techniques using chemical imaging to probe colon 

tissue.  

In chapter 2, we describe methods to optimize IR data collection and analysis for cancer 

applications. In chapter 3, we discuss the importance of tumor-microenvironment based analysis 

in the systems pathology context. Chapters 4 describes our work in probing tumor-tumor 

microenvironment interactions by utilizing chemical imaging to determine patient prognosis. 

Finally in chapter 5, we describe approaches to speed up and automate colon cancer tissue 

imaging and analysis using chemical imaging.  
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Figures 

 

Figure 1.1: A section of colon showing colon histology. The colon crypts consist of mature 

epithelium that produces mucin, along with stroma surrounding the cells known as lamina 

propria. A thin muscle layer called as muscularis mucosae is followed by submucosa 

comprised of large number of blood vessels, lose stroma and neural cells. A thicker 

muscle layer called as muscularis propria follows submucosa.  
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Figure 1.2: Hematoxylin and eosin stained biopsy tissue can be used for diagnosis and 

determining tumor grade. The figure shows an H&E stained benign colon tissue in 

comparison to malignant tissues of different tumor grades. The low grade, or “well-

differentiated” colon cancer is the closest to normal colon tissue, with well defined glands 

and polar nuclei. Moderate grade tumors show some degree of gland formation, and the 

nuclei can be seen as losing polarity. In high grade or “poorly differentiated” carcinomas, 

the cancer is seen to be growing in sheets with enlarged nuclei that have lost their polarity.  
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Figure 1.3: Current methods to analyze colon tissue. (a) After surgical resection or biopsy, 

anatomic pathology can be used to determine the presence of tumor and tumor grade and 

stage. However, it has limited molecular information. (b) Molecular analysis using tools 

such as proteomics and genomics provide a wealth of molecular information, but do not 

provide a spatial context. (c) Chemical imaging using infrared spectroscopic imaging 

provides higher molecular resolution compared to anatomic pathology in a spatially 

specific context. Bands in the IR spectrum correspond to specific functional groups, and 

thus indicate the distribution of macromolecules that contain them.   
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Figure 1.4: Development of computational tools and instrumentation using chemical 

imaging to diagnose and analyze colon tissue samples. (a)1 Multiple unsupervised 

clustering approaches have segmented colon tissues using infrared spectroscopic 

imaging signals. (b) The surface percentage of spectroscopically distinct mucin can be 

used as a feature to separate normal colon tissues from adenocarcinoma samples (c) 2A 

flexible silver halide fiber can be used to collect infrared absorption spectra from freshly 

excised tissue, eliminating the need of extensive sample processing. 

  

                                                
1 Parts of figure 1.4 (a) and (b) adapted with permissions from Travo, Adrian, Olivier Piot, Rolf Wolthuis, Cyril Gobinet, Michel 

Manfait, Jacques Bara, Marie‐Elisabeth Forgue‐Lafitte, and Pierre Jeannesson. "IR spectral imaging of secreted mucus: a promising 
new tool for the histopathological recognition of human colonic adenocarcinomas." Histopathology 56, no. 7 (2010): 921-931. 
2 Parts of figure 1.4 (c) obtained with permission from Vinay K. Katukuri, John Hargrove, Sharon J. Miller, Kinan Rahal, John Y. Kao, 
Rolf Wolters, Ellen M. Zimmermann, and Thomas D. Wang, "Detection of colonic inflammation with Fourier transform infrared 
spectroscopy using a flexible silver halide fiber," Biomed. Opt. Express 1, 1014-1025 (2010). 
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CHAPTER 2: METHODS: CHEMICAL IMAGING AND DATA ANALYSIS FOR DIGITAL 

CANCER DIAGNOSIS3 

Abstract 

Fourier transform infrared (FTIR) spectroscopic imaging is an emerging microscopy modality for 

clinical histopathologic diagnoses as well as for biomedical research. Spectral data recorded in 

this modality are indicative of the underlying, spatially-resolved biochemical composition but need 

computerized algorithms to digitally recognize and transform this information to a diagnostic tool 

to identify cancer or other physiologic conditions. Statistical pattern recognition forms the 

backbone of these recognition protocols and can be used for highly accurate in results. Aided by 

biochemical correlations with normal and diseased states and the power of modern computer-

aided pattern recognition, this approach is capable of combating many standing questions of 

traditional histology based diagnosis models. For example, a simple diagnostic test can be 

developed to determine cell types in tissue. As a more advanced application, IR spectral data can 

be integrated with patient information to predict risk of cancer, providing a potential road to 

precision medicine and personalized care in cancer. The IR imaging approach can be 

implemented to complement conventional diagnoses, as the samples remain unperturbed and 

are not destroyed. Despite high potential and utility of this approach clinical implementation has 

not yet been achieved due to practical hurdles like speed of data acquisition and lack of optimized 

computational procedures for extracting clinically actionable information rapidly. The latter 

problem has been addressed by developing highly efficient ways to process IR imaging data but 

remains one that has considerable scope for progress. Here we summarize the major issues and 

provide practical considerations in implementing a modified Bayesian classification protocol for 

digital molecular pathology. We hope to familiarize readers with analysis methods in IR imaging 

data and enable researchers to develop methods that can lead to the use of this promising 

technique for digital diagnosis of cancer.  

Introduction 

Infrared (IR) spectroscopic imaging is a promising avenue for computerized disease 

diagnosis,[46–52] especially for cancer[18,46,47,53–62] and a multitude of other diseases[63]. It 

is of particular relevance for recognizing features within solid tissues in which a variety of cell 

types and disease states may be present. Utilizing the tandem spatial and molecular information 

                                                
3 Reprinted with permission, from Tiwari, Saumya, and Rohit Bhargava. "Extracting knowledge from chemical imaging data using 

computational algorithms for digital cancer diagnosis." The Yale journal of biology and medicine 88.2 (2015): 131-143. 
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acquired using a combination of IR spectroscopy and optical microscopy, this technique relies on 

using the biochemical composition as a means to automate disease identification. In IR imaging, 

no stains are used. Instead, the chemical composition of the material is recorded via a local 

spectrum and computer algorithms are used to relate the data to underlying physiologic 

conditions. Since only light is used to record the necessary data, the technology is entirely non-

perturbing to a prepared sample. The overall idea of using IR imaging for biological applications 

is shown in figure 2.1. This approach is orthogonal to the current practice in histopathology, which 

requires staining to visualize tissue morphology as well as requires intensive human involvement 

to recognize and categorize morphological features that are indicative of disease. The IR-based 

approach strongly relies on sophistication and utility of the numerical methods used. The focus of 

this article is to describe and highlight the salient features of numerical methods used in IR 

imaging. 

IR imaging to address current cancer pathology needs 

At present, the gold standard to identify many types of cancers is to perform a biopsy. The poorly 

quantitative procedures following the biopsy and staining are semi-automated at best, and still 

suffer from user introduced variability[64,65]. This not only introduces subjectivity in 

examination[66], but also increases load on pathologist which they could otherwise devote to 

more complicated cases. Misclassification of biopsies during screening and diagnosis may lead 

to overtreatment or undertreatment, posing significant concerns for patients. A recently published 

report, for example,[67] evaluated the agreement among 115 pathologists who interpreted a total 

of 240 cases of breast biopsy samples which was compared with the consensus derived reference 

diagnoses from three expert pathologists. The researchers found out that the overall agreement 

between the participating pathologists’ interpretations with the reference was 75.3%.  Alarming 

underinterpretations were found in Ductal Carcinoma in situ (DCIS) cases (13%) and atypia cases 

(35%). Considering that DCIS accounts for 15% to 25% of the newly diagnosed breast cancer 

cases currently in the USA[68] and identification of atypical cells often requires further rounds of 

biopsy to establish aggressiveness of possible tumor, large numbers of patients could be affected 

every year based on whether or not second opinion is obtained. In another recent study[69], the 

researchers consulted 252 pathologists to assess the policy of obtaining second opinion on a 

variety of specimens. Their response indicated that mandatory second opinion was only required 

in 56% of the laboratories when DCIS was diagnosed and in 36% laboratories when atypical 

ductal hyperplasia was observed. In many cases, a third opinion was required to resolve the 

differences between the first and second opinions. Studies like these and others[70–72] clearly 
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go on to show that there are a lot of cases in breast cancer that are affected by confusions in 

classification of type and aggressiveness of tumor, and that current pathology practice is in need 

of better tools to aid diagnoses.  

Multiple computer aided detection systems have been used in past to assist the pathologists and 

help them reduce occurrences of false positives and false negatives[73]. In current practice, the 

computer aided detection systems that rely on pattern recognition software used by radiologists 

can be considered semi-automated in that some degree of human interaction is still needed 

before final decision is given. In that sense, detection systems are different from diagnosis 

systems which are capable of rendering a decision based on a consideration of variety of factors 

like mass of tumor, biochemical data from biopsy and patient characteristics like breast density 

and age. These systems thus require integration of two major fields; computation and imaging. In 

terms of imaging for diagnostic cancer pathology, the foremost requirement is the ability to 

generate contrast between diseased regions and healthy regions. Traditionally, chemical and 

immunohistochemical stains have been used to produce this contrast that is, in a second step, 

referred to pathologist for evaluation. The second step is now increasingly involving the use of 

computers to manage images and assist with decisions using numerical indices or other image 

analysis techniques. However, there are emerging alternatives to this long standing 

instrumentation. For example, microscopic contrast can also be produced optically using Raman 

imaging or IR spectroscopy – two strongly emerging modalities, which also place new 

requirements and provide new opportunities for the associated computational methods. IR 

spectroscopic imaging has some distinct advantages over other contrast producing modalities. 

First, it requires minimal sample preparation. Freshly taken tissue can be snap frozen and imaged 

without further aids. This greatly reduces variations during experimental stages making the 

procedure standardized and efficient. It can as easily be applied to archival samples. Second, IR 

imaging does not require contrast agents but utilizes the inherent biochemical contrast in the 

tissues for differentiation of diseased state. Third, the chemical changes recorded by infrared 

spectroscopy across the tissue are capable of giving the same information as achieved by 

histological stains[74]. In addition to it, since the information is computer generated, they provide 

greater contrast and statistical confidence, in turn enabling identification of problematic areas 

easier. A recently published report[27] showed that a single IR spectral image could reproduce 

staining patterns of multiple stains such as Hematoxylin and Eosin (H&E), Masson’s trichrome 

stain, cytokeratin stain, smooth muscle alpha actin, and vimentin (figure 2.2). This could allow the 

researchers to analyze the samples through multiple stains, without putting in additional time, 

effort or resources to develop the stains.  
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Along with reproducing classical stains with great accuracy, data generated by IR imaging is 

highly amenable to computational analysis and pattern recognition algorithms are easily 

integrated for obtaining decisive reports. Currently, a major goal of the typical studies performed 

using IR imaging on tissue samples is to build classification systems that color code IR images to 

differentiate between different types of cellular and acellular components, much like H&E and IHC 

stains. Classes such as epithelium, endothelium, stroma and muscle have been identified[75,76] 

and more cellular and acellular components are being added through current research. Although 

this approach provides high contrast images with minimal sample preparation for the use of 

trained pathologists, in order to truly utilize the potential of IR imaging for cancer diagnosis, further 

computational prediction needs to be implemented. A recent report,[77] for example, attempted 

to precisely predict recurrence of prostate cancer using IR imaging data and showed that this 

approach outperformed both Kattan nomogram and CAPRA-S scores for outcome predictions. 

Together, emerging studies are opening new avenues for utilization of IR based models for cancer 

diagnosis and therapy by combining imaging, molecular detection and computational cancer 

prediction to augment human decision-making. Owing to the practical requirements of speed of 

imaging and data acquisition and processing, no automated diagnosis systems have been 

clinically implemented till now; nevertheless, fast progress is being made to achieve this goal and 

will be discussed briefly in later sections. We first provide an overview of the methods, highlighting 

special considerations and challenges that use this data and lead to decision-making in cancer 

research and care. 

Classification models 

A biological sample characteristically consists of many cell populations and extracellular matrix 

elements. All of these elements serve a function in the sample, and imbalance in the chemical 

composition and morphology of these can be a cause or an effect of a disease. Thus, these 

cellular and acellular components of tissue are carefully scrutinized by pathologists to obtain 

information about the ailment. We refer to all such functional elements as histological classes or 

simply classes. The idea underlying the use of IR spectroscopy for disease detection is that each 

such class will have a different biochemical composition and therefore unique spectral signature 

in IR absorbance spectra. Since digital spectral data is available for each pixel from the sample, 

we can employ pattern recognition algorithms to utilize these differences for recognition of 

classes. Various classification approaches have been used in past to identify classes, termed as 

classification. Multiple studies have been performed for the analysis of data using various 
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classification algorithms, and are summarized here. For an in-depth theory on classification 

methods pertaining to biomedical imaging, the readers are directed to these references[76,78,79]. 

Typically, all methods can be classified into supervised or unsupervised methods – both of which 

are described briefly below. Subsequently, we focus here on describing the typical process of 

obtaining data, computational pipeline and typical results obtained. We illustrate the entire 

process with representative examples to enable the reader to grasp the essential steps of 

extracting information from IR images.  

(a) Unsupervised Classification 

The premise of unsupervised classification is that no prior information (for example, spectral 

characteristics of the classes) is fed to the method for classification. Hence, distinction between 

classes is often a problem of finding clusters in which intra-cluster variation is smaller than inter-

cluster variation. Unsupervised clustering approach has been applied previously to investigate 

tissue samples[80–82]. Since nothing is assumed known about the data classes, unsupervised 

processes can involve data reduction using the variance before applying a classification 

procedure. Such a methodology has been applied to classify IR imaging data from cervical cancer 

[83];  Principal Component Analysis (PCA) for data reduction followed by K means clustering was 

used elsewhere for classification of IR data[57]. Although unsupervised approaches work for 

exploratory analysis, they have been found to be computationally taxing and unable to 

differentiate between inter-class and intra-class variations, often necessitating the use of 

supervised classification algorithms[30,31]. In our opinion, the utility of these methods for IR 

imaging lies more in discovery rather than consistent knowledge extraction. 

(b) Supervised classification 

In supervised classification, prior information about the location and spectral properties of the 

classes is given to the classifier. Supervised algorithms such as discriminant analysis[47,84–86], 

neural network analysis[30,38,61,87,88] and Bayesian methods-based classification[42,75] have 

been used to classify tissue into various cellular and disease states. Underlying all these methods 

is the fundamental property of Bayes’ theorem, indicating that known patterns provide a statistical 

probability for identification of each class. Methods based on this property and its application for 

biological specimens has been discussed elsewhere[75]. Here we discuss the practical 

considerations for its implementation; in order to facilitate understanding and ease of use among 

spectroscopists and medical researchers alike. 
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Image collection and pre-processing 

Collecting a good quality image is the first step of any IR classification experiment. Often, this 

facet is overlooked. Good quality data reduces complexity of the methods and can provide faster 

as well as more accurate results. Multiple factors such as choice of substrate signal to noise ratio 

(SNR), spatial and spectral resolutions, and presence of contaminants like paraffin residue can 

affect the overall classification accuracy. In this section we will discuss methods employed to 

collect good quality data and prepare the data for classification. 

Substrates 

IR spectroscopic imaging data can be collected in both transmission and reflection mode. IR 

transparent substrates, such as calcium fluoride (CaF2) and barium fluoride (BaF2) salt crystals 

are excellent substrates since they achieve greater than 95% transmission in mid IR region. An 

overview of properties and uses of CaF2 and BaF2 crystals can be found in reference [89]. 

Specifically for imaging biological samples, BaF2 is preferable since transmittance of CaF2 cuts 

off at about 1000cm-1 and analysis at lower wavenumber (longer wavelengths) is not possible. 

BaF2 is more prone to damage, however, due to higher water solubility compared to that of 

CaF2[90], making its handling and maintenance slightly more difficult but not substantially different 

compared to standard glass slides. Once a sample is placed on these crystals, imaging is rather 

simple. Using a microscope objective-condenser setup, light simply passes through the substrate 

and the sample in a “transmission” mode. The major problem with either substrate is cost –which 

can run from tens to hundreds of dollars. Due to high cost of these substrates and higher 

maintenance requirements compared to standard glass slides, many IR studies now utilize IR 

reflective substrates such as gold coated slides and Low-E slides (MirrIR, Kevley Technologies). 

Low-E slides, in particular have been very useful for IR imaging owing to their ability to transmit 

visible light and reflect infrared light. Thus, imaging is often conducted in the transflection mode 

with these substrates. In the transflection mode, light is incident upon the sample, passes through 

it, is reflected from the sample-substrate interface and re-transmitted through the sample. Due to 

the sample typically being of a thickness that is the same order as the wavelength of light, passing 

through the sample twice results in distortions in the spectrum[91,92] compared to the 

transmission case. However, some pre-processing steps have been reported that can effectively 

encounter most of the side-effects of transflection mode and are discussed in section 2.5. With 

emerging methods and more flexibility in terms of cost and maintenance[93] Low-E slides are 

attractive options to carry forward IR based detection technologies to everyday use in clinics.  



16 
 

Signal to noise ratio 

In IR imaging, the spectral signal to noise ratio (SNR) is the primary measure of the quality of 

data. It has been shown that high levels of noise in data negatively impact the classification 

accuracy[94]. Hence, SNR should be carefully considered in the design and use of any protocol. 

Modern infrared imaging instruments have combated the problem of low SNR quite well, and one 

can routinely obtain an SNR of greater than 200 on commercial instruments. There are multiple 

factors that can determine the SNR for data collected. For commonly used Focal Plane Array 

(FPA) detectors in IR imaging instruments, each element in detector records the spectrum from 

one pixel in the sample. As the number of co-additions is increased, the signal is recorded multiple 

number of times and averaged. This improves the SNR by the square root of the number of co-

additions. However, this also increases the time required for data acquisition almost linearly with 

the number of co-additions. Another option is to reduce spatial resolution (increase the size of the 

pixel at the sample plane) which can provide a higher SNR in smaller time due to a larger angle 

of light collected, but this may compromise identification of small sized cells in biological samples. 

An additional key factor while image collection is background spectrum. Every IR imaging 

experiment requires collection of background spectra that are used as a reference to obtain 

absorbance measurements. The number of co-additions for background spectrum should be 

much larger than the number of co-additions for the image in order to have minimal introduction 

of noise in signal from background[95]. Some limits on SNR are also imposed by the 

interferometer and other hardware, as well as multiple other factors such as spectral and spatial 

resolution, which is a result of complexities in the acquisition process. Some of the factors that 

affect SNR have been discussed in previous works[94–96]. Here we want to emphasize that the 

data quality in IR imaging is a balance between optimum SNR, optical configuration needed and 

the time required to achieve the desired SNR. One method we have not discussed thus far is the 

use of post-acquisition numerical processing techniques that can use statistical or other measures 

of noise reduction and lead to reduced noise in the images. The basic principle underlying these 

methods is to transform the data into a space that collapses all information into a minimum number 

of factors, for example, using principal components transform[97]. Fortunately, due to these 

computational noise reduction techniques (discussed in section 2.5) SNR is not a limiting factor 

for classification accuracy for many of the common tasks in spectroscopic imaging[94].  

Spatial and spectral resolution 

The main constituents of biological samples are the different types of cells that comprise the tissue 
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as well as the extracellular matrix (ECM) that holds tissue structures together. The size of 

eukaryotic cells can vary from about 5 to 30 microns. Sufficient spatial resolution is necessary to 

identify each cell type[98] and thus the instrumentation and experimental parameters must be 

carefully selected. Insufficient spatial resolution leads to the problem of mixed pixels, whereby, if 

the pixel is too large, it can have contribution from multiple cells, leading to greater confusion and 

low accuracy of classification[76]. Typically, pixel size used for IR microscopy had been 

approximately 5 µm x 5 µm. Pixel size in attenuated total reflectance (ATR) mode can be higher 

due to the use of a solid immersion lens[99–101]. A microscope equipped with transmission optics 

and ATR lenses can provide higher resolution depending on the solid immersion lens or ATR 

crystal material. For example, one commercial instrument provides a pixel size of 6.25 µm x 6.25 

µm in the transmission mode and 1.56 µm x 1.56 µm sized pixels in ATR mode using a 

Germanium lens (refractive index ~ 4). High definition IR imaging instruments typically seek to 

provide 1 µm x 1 µm. It should be noted that the pixel size is not the same as resolution. Resolution 

is still determined by the Rayleigh Criterion; for example, it is ~5 m for transmission mode 

imaging and 1 m for ATR imaging. A comparison of IR images taken at various pixel sizes for 

mammalian cells is shown in figure 2.3. As can be seen, high amide absorbance region of nucleus 

is much better resolved with high spatial resolution as compared to the low resolution transmission 

image. Effect of varying pixel size on classification is shown in figure 2.4(ii, iii) where 6.25 µm x 

6.25 µm pixel size data is compared to 25 µm x 25 µm pixel size data. H&E image with marked 

classes is shown for comparison (figure 2.4(i)). Higher pixel density via smaller pixel sizes 

provides IR images that are closer to histologic stain image, whereas more averaging to increase 

SNR and larger scanning time to acquire more pixels is required. The large pixel sizes result in 

overlapping of signals from different cell types and the ECM, reducing confidence in classification. 

A large pixel can reduce the scanning time greatly and provide high SNR. For most biological 

problems involving complex tissues, however, a high spatial resolution is oftentimes needed. An 

equally important factor for good classification is spectral resolution. For very coarse spectral 

resolution, the peaks begin to overlap, causing significant reduction in classification 

accuracy[102]. Typical IR imaging experiments utilize a spectral resolution of 2 cm-1 to 16 cm-1. 

For biological specimens, spectral resolution of 4 cm-1 to 8 cm-1 is able to differentiate most of the 

significant peaks and has been found to give good classification results in our experience.   

Paraffin removal 

Since most samples are typically paraffin embedded and sectioned before IR imaging, the 

sections need to be deparaffinised in order to remove spectral contributions from paraffin, typically 
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occurring as a set of peaks from 2800 cm-1 to 3000 cm-1 due to C-H stretching vibrational modes 

and a strong peak at 1462 cm-1 due to C-H bending modes[103].  Deparaffinization carried out 

either in Xylene[85],  Hexane washes of 16-24 hours with mild stirring or with octane for 4 

hours[104] have all shown to remove paraffin features from spectrum. Figure 2.4 compares 

classification results from a paraffinized sample (figure 2.4(iv)) and same sample after paraffin 

removal (figure 2.4(iii)) for same spatial resolution. A spectrum from sample before and after de-

paraffinization is shown in figure 2.5.  Even though we avoided using parts of the spectrum from 

paraffin affected regions from 2800 cm-1 to 3000 cm-1 and around 1462 cm-1, the classification 

was more accurate for deparaffinized sample than the paraffinized sample for same spatial and 

spectral resolution. Classification of samples imaged without deparaffinization can also work if 

appropriate corrections are performed[22]. Nevertheless, if paraffin retention is known or 

suspected, care should be taken to address any signals arising from paraffin while performing 

classification. 

Preprocessing 

Once IR images are acquired, minimal data processing is needed for performing classification. 

Based on the SNR, computational noise reduction methods such as those based on the Minimum 

Noise Fraction (MNF)[94] may be needed before classification can begin. This is a modification 

of principal components analysis whereby the ordering of eigenimages is performed in decreasing 

order of SNR, and high SNR eigneimages are chosen for analysis. Noise statistics are calculated 

form the image data. MNF transform creates three files, covariance statistics of the noise file, 

MNF statistics file and forward MNF transformed file which contains bands with descending 

eigenvalues. Based on the eigenvalues, the user can determine which bands contain data, and 

which bands have predominant noise. Typically, top 20-30 bands contain good quality data. 

Inverse MNF transformation is then applied on the forward MNF transformed file by taking high 

eigenvalue bands. Most commonly, this type of noise reduction is needed for ATR and high 

definition imaging data. Baseline correction of data is needed for comparing spectral features 

attributable to absorbance across classes and gives a good estimate of the differences before 

training can begin. A variety of baseline correction options are known but all essentially 

approximate the known non-absorbing regions to zero. In one approach, all points where 

theoretically zero absorption is expected are first identified. Then, a linear two point correction 

algorithm across peaks of interest is used. It should be noted that, in imaging, the baseline points 

are often held to the same for all spectra in the sample. To account for thickness variations in the 

sample or between samples, normalization with amide I peak (1650 cm-1-1656 cm-1 based on 
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location of peak) is often required. For biological tissues, this is the peak of highest absorbance 

and introduces the least decrease in SNR after normalization. 

Classification protocol 

The classification protocol followed here is based on modified Bayesian classification. The 

complex multistep method is explained through the flowchart shown in figure 2.6. We describe 

the major steps in the workflow and discuss possible pitfalls while building and deploying a 

classification protocol. 

Selection of training and validation set 

The goal of the classification protocol discussed here is to identify different types of cells and ECM 

elements called histological classes. The ultimate goal is to develop a computational algorithm 

that provides accurate recognition of classes in an unknown data set that can be encountered in 

practice. In the first step, the protocol needs to be developed and tested to perform optimally. To 

initiate this process, two separate data sets are selected – one is used for training and the other 

for independent validation. In some cases, the validation may come from the calibration data set 

itself. In such cases, one fraction of the data is selected for validation and the protocol is trained 

on the remainder. The fraction left off is changed and a number of iterations of the process are 

averaged to train and validate. This “leave-one-out” procedure can be used when the numbers of 

samples or diversity of the data set is limited but it is always ideal to have completely independent 

training and validation sets. It must be ensured that there is sufficient representation of all classes 

for getting satisfactory classification, and to retain sufficient diversity for assessment of accuracy 

in validation dataset. In this approach, study design is critical as the method cannot predict 

conditions it has not been trained on. The measures of success should also be carefully defined. 

We favor the use of the receiver operating characteristic (ROC) curve which includes an 

assessment of both sensitivity and specificity of the method. Other approaches may be to 

maximize detection of any class or disease state (e.g. cancer) at a specified error rate or to 

evaluate errors in a holistic manner such as with confusion matrices. Finally, a statistically 

significant number of samples must be used to validate the protocol. While the numbers of 

samples needed for a diagnostic test is well understood, the sample size needed for satisfactory 

calibration in the IR is an ongoing subject of study[76,105]. In the absence of other guidance, the 

standard approach is to calibrate, validate and calculate the ROC curves for the classifier in order 

to assess the accuracy. The errors in classification must additionally be carefully assessed. Based 

on these results, the investigator may need more data for accurate classification.  
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Metric definition 

Depending on the size of the sample, an FTIR imaging data set can be very massive, ranging 

from a few hundred megabytes to hundreds of gigabytes. Each pixel in an IR image carries 

spectrum, which is usually recorded in the FT configuration across the entire bandwidth of the 

spectrometer but is usually truncated to reduce the size of the stored data to a smaller range, e.g. 

750 cm-1 to 4000 cm-1. However, not all spectral elements are useful for classification. For 

example, a region between 1900 cm-1 to 2500 cm-1 is biologically inactive and can be further 

removed if spectral corrections that depend on extensive refractive index measurements are not 

to be performed[106]. One approach to dealing with imaging data is the emergence of the so-

called discrete frequency IR imaging in which, using filters[107,108] or a tunable laser[43,109–

113], only a few frequencies of interest are collected. This approach will likely prove useful only 

after the calibration process. Hence, in general, the entire spectrum is acquired and needs to be 

handled for the calibration step. Data reduction discussed here simply suggests using data that 

gives qualitative and quantitative information about the sample and removing redundant data. 

While it is not necessary for single cell studies which do not require large computational power, 

biopsy sections and tumor micro arrays (of the order greater than 1 mm X 1mm in size) would 

need much computing time if raw spectrum is used without data reduction. Further, confounding 

information may become included unless a careful selection of informative spectral regions is 

used. We can utilize spectral features such as peak height ratios, peak area to height ratio, peak 

area to area ratio and peak center of gravity to differentiate among classes. These parameters 

are known as spectral metrics. Metrics are defined by an expert spectroscopist by observing the 

spectrum in tissue to identify exact peak locations. Many metrics have biological relevance, for 

example glycogen to phosphate ratio (1030 cm-1/1080 cm-1), but sometimes the physiological 

relevance is not intuitive. Even then, at this point all possible metrics that show differentiation 

among classes based on class spectrum should be considered. For every new imaging 

experiment, it is necessary to define the metric definitions anew, in order to account for spectral 

differences among classes and small differences in peak locations.   

Identification of classes 

Identification of classes is the major factor that can determine accuracy of classification. To feed 

class characteristics as prior information for supervised classification, one needs an accurate 

identification of pixels used for training. This is typically performed with the help of an expert 

pathologist, often guided by H&E stained images or immunohistochemical images of 
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corresponding sections. Typically, the practitioner marks regions corresponding to different 

classes by microscopic examination of H&E stained section. Correspondingly, regions in IR image 

are marked as regions of interest (ROI). H&E stained section can be a serial section or 

neighboring section to the section utilized for IR spectroscopy. A much preferable approach is to 

first obtain infrared images from the sample and then perform H&E staining on the same sample 

so that an exact match can be obtained. Once the classes are marked, non-biological pixels from 

class layers should be removed by setting an intensity threshold value for biologically active band 

such as amide I band (~1652cm-1) to a high enough value to remove both tissue-less regions as 

well as those with excessive distortions due to edge effects[114–117]. Subjectivity is the biggest 

issue in identification of classes and there have been multiple studies in past that show that the 

interpretation of H&E stain suffers from inter-observer variability, and can have a role in false 

positive and false negative results[64,65,118]. In absence of any absolute identification criteria at 

present, we rely on the opinion of pathologist for identification of classes. This adds a human error 

to the classification, and care is taken to mark the regions on IR image exactly same as the 

regions identified by the pathologist on the H&E image (considered “gold standard” [76]). This 

prevents addition of further error in prior information for classifier training which relies on manual 

identification and marking of classes in IR data. An alternative is to use immunohistochemical 

stains to identify cell types and overlay the IHC images with the IR images. However, IHC stains 

are not known to be reliable all the time and staining intensity may be open to interpretation 

requiring the use of sophisticated methods[119]. 

Evaluating metric distributions 

The distribution of values of metrics forms the basis on which the classifier identifies and learns 

the differences among classes. An example of histogram is shown in figure 2.7 that is the type of 

data to evaluate the use of metrics. Here, the number of pixels versus the value of metric 

parameter for each class is plotted. For large enough number of pixels for each class, the 

histograms are expected to follow a Normal distribution unless there are sub-classes within the 

data. Hence, the first check is to determine whether there may be more than one distribution in 

the pixels, which may cause an examination of the model used in turn. For N metric parameters, 

we obtain N histograms. This step is important in identifying metrics which can potentially be 

useful in differentiating between classes. When comparing between two classes, the overlap 

between the distributions is the critical parameter to evaluate. A small overlap in distributions 

implies that the values of metric parameters are sufficiently different and can be used to 

differentiate between the classes. The actual efficacy of metric parameter depends on the fraction 
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of overlap that the probability distribution functions of different classes have with each other (figure 

2.7). It must be noted that abundance also comes into consideration here. For a given pixel, the 

overlap in normalized histograms can be considered. However, the probability of the selected 

pixel belonging to any particular class also needs to be considered. This depends not only on the 

native distribution of classes in normal and diseased conditions but also on the sampling process 

(e.g. biopsy). For example, it is well known that there is significantly more epithelium in cancer 

and in the peripheral zone of the prostate. Hence, simple abundance probability can be 

augmented significantly by known characteristics of the disease, patients and procedures 

performed. Caution must be exercised, however, in making models that are too specific. While 

such models may perform at high accuracy, their robustness is likely to be compromised. The 

metric distribution, hence, must be evaluated in light of the model, the classification methods and 

on the desired accuracy. A metric parameter which can differentiate at least between two classes 

is considered useful for the purpose of classification. Since multiple such parameters can 

eventually be used in conjugation to separate all classes from each other, the set of metrics to be 

used and the order of their usage will be evaluated next.  Following this step, with appropriate 

user input in determining histogram limits, a probability distribution file is created that contains the 

prior information of the classes.  

Determination of metric order 

After determination of probability distribution for every class in our case, a Bayesian classifier, 

each metric can be considered as a rule that determines which class the pixel belongs to. 

Therefore, the classifier goes through a series of rules to come to a decision about the class, 

assigning a class value to the pixel after each step is executed. In this perspective, it becomes 

important to determine the most optimum order of metrics so that the end result is closest to the 

true histology. For this average errors for metrics are calculated and pairwise errors are arranged 

in increasing order. This order is optimized by classifying with reordered metric, calculating the 

area under the receiver operating characteristic (ROC) curve, and recalculating pairwise error if 

there is an increase in area under the ROC curve. It has been shown before that only a fraction 

of metrics are actually needed to achieve the highest accuracy in classification[75]. Thus, after 

the optimum metric order has been defined, metrics coming at the bottom of the order can be 

removed from classifier. Typically, this set of 15-25 metrics is identified based on the metric order 

and area under the ROC curve but an additional step in optimization can be performed by 

manually removing one metric at a time and assessing whether any increase in accuracy is 

achieved[75].  
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Validation 

Validation of the classifier is performed on an independent data set by comparing the classifier 

with pathologist annotated IR data in the manner similar to calibration. ROC curves and confusion 

matrices are commonly used to assess the accuracy of classification. The ROC curve leads to 

two measures – the area under the curve (AUC) of the ROC curve and the [sensitivity, specificity] 

operating point of the classifier. The AUC is a “global” measure of the how accurate the designed 

protocol can be on an average. Comparisons of AUCs, statistical limits and ordering of different 

models based on the AUC are all operations that can be used to refine the classifier and gain 

further insight[120–122]. The operating point, i.e. [sensitivity, specificity] can be considered to be 

a local condition that determines a particular operation of a diagnostic test. For any selected 

protocol there will always be an operating point, which trades-off the specificity and sensitivity, 

but is implemented for the test. This is often determined by the problem and the tolerable error in 

the test. Sensitivity of greater than 70% at high specificity (90%) are generally considered 

satisfactory for biomedical detection systems, although a much higher sensitivity and specificity 

is often desirable for tasks such as disease diagnoses or recognition of particular cells. For 

example, in one study, among multiple breast cancer surveillance methods such as MRI, 

mammography, ultrasound and clinical breast examinations; the sensitivity ranged from 9.1% to 

77% and specificity ranged from 95.4% to 99.8%[123].  When using IR based staining for digital 

cancer diagnosis, it is desirable to have sensitivity and specificity reach close to 100%. This has 

been shown to be possible by various recent studies[124,125]. While ROC curves determine the 

specificity and sensitivity of classification, the confusion matrices give the investigator an idea of 

confusion between classes in classification and both should be used to evaluate the performance 

of the classifier. In validation studies, these matrices often point to systematic errors in the 

development of the classification protocol and must be examined carefully.  

Conclusions 

Automated computational classification is a very powerful technique to utilize IR spectroscopic 

imaging data. We emphasize that due to multiple steps required in image acquisition and 

classification protocols, careful considerations throughout are needed to assure successful 

development of assays. Often, the process of development of a classifier is not linear and careful 

analysis and examination at each step is needed to ensure that the protocol is both accurate and 

robust. The theory and practice of Bayesian classification is well developed for infrared imaging 

data[75,76]. The protocols for image acquisition have also been described in detail in the 

past[102,126–128]. However, practical considerations while performing classification that can 
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greatly affect the classification accuracy have not been recorded in infrared imaging literature. 

Through this chapter, with illustrative examples, we have attempted to provide an introduction 

and a practical guide to considerations in the development of a specific classification protocol. 

Many of these considerations can be adapted for similar classification procedures, and we do 

hope that this article would enable and encourage the readers to familiarize themselves with 

infrared spectroscopy and utilize the avenues it offers for cancer diagnosis.  
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Figures 

 

 

 

Figure 2.1: Overview of the use of IR imaging for biological analyses.4  

                                                
4 Adapted with permission from Bhargava R. Towards a practical Fourier transform infrared chemical imaging protocol for cancer 

histopathology. Anal Bioanal Chem 2007;389:1155–69. doi:10.1007/s00216-007-1511-9. 
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Figure 2.2: Molecular imaging (three sample panel on the left) can be reproduced by 

chemical imaging (right panel). In addition to H&E stained images (a), we extend the 

concept of stainless staining to molecularly specific stains, including (b) Masson’s 

trichrome stain (collagen and keratin fibers) (b) high molecular weight (HMW) cytokeratin 

(epithelial-type cell), (c) smooth muscle alpha actin (myo-like cell) and (d) vimentin 

(fibroblast-like cell). Each spot is 1.4 mm in diameter.5  

 

                                                
5 Adapted with permission from Mayerich D, Walsh MJ, Kadjacsy-Balla A, Ray PS, Hewitt SM, Bhargava R. Stain-less staining for 

computed histopathology. TECHNOLOGY 2015:1–5. doi:10.1142/S2339547815200010.World Scientific Publishing Co./Imperial 

College Press   
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Figure 2.3: Images of eukaryotic cell at varying resolutions; (a) ATR mode, pixel size 

1.56µm x 1.56µm; (b) Transflection mode 74X, pixel size 1.1µm x 1.1µm; (c) Transmission 

mode 14X, pixel size 6.25µm x 6.25µm. All images are at amide I band (1652 cm-1) 

 

 

Figure 2.4: Factors affecting classification; (i) H&E image with marked regions, I: Infiltrate, 

F: Fibrosis, N: Normal tissue; (ii) Classified image pixel size 6.25µm x 6.25µm 

(deparaffinized); (iii) Classified image pixel size 25µm x 25µm (deparaffinized); (iv) 

Classified image pixel size 25µm x 25µm (paraffinized) 

 

Figure 2.5: Difference in spectrum for tissue with and without paraffin 
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Figure 2.6: Flowchart of building classifier 
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Figure 2.7: Histograms for metric evaluation; (a) An example of good metric (b) An example 

of metric that will have errors in classification when the metric value lies in the overlapping 

area of the two curves
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CHAPTER 3: QUANTITATIVE CHEMICAL IMAGING AS A TOP-DOWN SYSTEMS 

PATHOLOGY APPROACH6 

Abstract 

Cancer is a complex set of diseases, presently characterized by the primary site of origin and 

expression of biomarkers. The diagnostic gold standard, and for much of research, is the tissue 

structure and organization in microscopy images. Although histopathology of tumors provides 

necessary information for diagnosis, it is not predictive of therapy response. As a top-down 

systems pathology approach, the goal of quantitative chemical imaging is to develop 

computational models to observe, quantify, and validate our understanding of cancer progression. 

Mathematical models, as well as machine learning approaches, have previously been utilized to 

predict the tumor response, but comprehensive spatial and biochemical characterization of the 

tumor is lacking. This gap can be filled by a spatially specific biochemical analysis of tissue using 

chemical imaging. Here we discuss some fundamental concepts of systems pathology in the 

context of model developments involving chemical imaging.   

Background 

Pathology refers to the study of diseases. As an essential element of patient care, pathology is 

used to diagnose as well as prevent diseases. There are two sub-disciplines within pathology, 

clinical pathology, which is the analysis of fluid samples such as blood and urine targeting specific 

analytes and pathogens; and anatomic pathology, pertaining to the microscopic examination of 

solid samples such as tissue sections for diagnosis of diseases[129]. Histopathology is the gold 

standard for clinical diagnosis of cancer where morphology based information such as the cell 

shapes, nuclei shapes, and tissue structure is used to determine the presence of disease and 

grade (figure 3.1). Few such important morphometry based features have been summarized 

previously[130].  

Cancer is a complex and dynamic disease, and in some cases can quickly proliferate while 

evading growth suppressors, resisting cell death, developing resistance to drugs and metastasize 

to different parts of the body[131]. Due to the intricate processes taking place during cancer 

development and progression, the molecular snapshot of the disease at a specific stage could be 

descriptive of the future behavior of the tumor. With the developments in precision medicine, 

                                                
6 In preparation for publication as Tiwari, Saumya et al. “Quantitative Chemical Imaging as a Top-Down Systems Pathology 

Approach.”  
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targeted therapies, imaging, computational and data visualization tools, we have a surge of data, 

which does not add to our understanding of disease when used in isolation. Therefore, it is timely 

to develop models that can integrate information obtained at various systems levels.  The idea 

that the response of cancer can be quantified in the form of mathematical or computational models 

using systems biology has been proposed before[132]. Quantitative chemical imaging (QCI) is a 

top-down approach of  systems pathology that seeks to address the current challenges in 

predicting response to therapy and outcome of the disease, as well as to develop a mechanistic 

understanding of disease development and progression, fulfilling the need to quantify tumor-tumor 

microenvironment interaction at the patient level. By providing quantitative assessment, QCI can 

play an integral part in evidence-based pathology, which seeks to aid clinical instinct by using 

evidence derived from large-scale data[133]. Using artificial intelligence models that are capable 

of combining multi-platform approaches, QCI can be used to place the information in the clinical 

and biological context, enabling patient specific interpretation.   

Biochemical characterization of tissue for developing systems pathology models is a vital 

component of any tumor prediction model. Conventionally used techniques such as genomics 

and proteomics provide a wealth of molecular information but are significantly limited in spatial 

details (figure 3.2). Many changes in tumor environment are spatially specific, for example, 

extracellular matrix remodeling [134], activation of cancer-associated fibroblasts[135] and 

angiogenesis[136].  Immunohistochemistry is useful in visualizing molecularly specific changes in 

tissue but the target needs to be known in advance and multiplexing is often not possible. The 

limitations of currently used modalities present an informational gap in current systems pathology 

models that can be filled by chemical imaging such as infrared imaging and Raman imaging 

(figure 3.2). Specifically, infrared spectroscopic imaging utilizes the interaction of light waves with 

tissue to measure the biochemical changes occurring in the tissue. Molecular bonds present in a 

material give it a characteristic chemical spectrum. This spectrum is unique for every chemical 

and therefore, can be used as a ‘fingerprint’ to identify the molecular content. When there is a 

change in the biochemistry of the tissue, the chemical constitution changes, causing changes in 

the chemical spectrum which can be measured using optical spectroscopy[137]. Optical 

spectroscopic imaging can be used ex vivo in conjugation with histology to bring together tissue 

biochemical and morphometric profiling (figure 3.3) and to enhance our prediction capabilities for 

tumor behavior. In this chapter, we will review the recent developments in the field of systems 

pathology. 
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Motivation for improving current pathology 

Inclusion of molecular information 

While morphometry works well for diagnosis, it does not have sufficient features to enable 

prognosis prediction. Developing an understanding of underlying biological mechanisms of 

disease development and progression has allowed better prediction of outcome and optimal 

therapeutic routes. For example, gene expression-based data, in conjugation with clinical data 

was shown to substantially correlate with survival in lung cancer patients[138]. The inclusion of 

molecular information has aided the clinical decision-making process[139] and has enabled 

physicians to assess risk and develop strategies for personalized care.  Few such markers are 

now extensively used in prostate cancer[140], breast cancer[7,139,141], and colon cancer[142]; 

and a comprehensive review can be found here[143].  

In addition to gene-based markers, molecular information is also available through probe-based 

techniques. Recent advances have enabled multiplexed imaging of antibodies using multiplexed 

ion beam imaging (MIBI) that utilizes antibodies tagged with isotopically pure elemental reporters, 

increasing the range of targets analyzed to up to 100[144]. In the case of small biomolecules 

where traditional antibodies can be too bulky and change functionality of the biomolecule, highly 

sensitive imaging has been achieved using stimulated Raman scattering (SRS) active vibrational 

tags[145,146], allowing for real-time imaging of live cells to study molecular dynamics.  

Determining response to therapy 

The traditional approach towards cancer therapy has been to target specific metabolic pathways 

active in proliferating cancer cells using drugs. The reductionist approach uses isolated molecules 

to target a complex disease that often does not work in treating cancer because complete 

mechanistic understanding is lacking. Many drugs developed by in vitro screening process fail at 

the clinical stage by failing to account for complex interactions in biological systems[147]. The 

animal models used as the pre-clinical testers have poor clinical significance. For example, 

angiogenesis inhibitors such as the antibodies targeting vascular endothelial growth factor failed 

in phase 3 clinical trials despite an impressive performance in animal models[148]. Anti-

angiogenesis medication such as bevacizumab was later shown to work well in a combination 

therapy regime[149,150].  This case highlights the need to develop the complete understanding 

of the mechanisms of disease and to account for patient-specific factors while designing a therapy 

regime. Because cancer can activate alternate pathways to overcome resistance, the trial and 
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error approaches of testing drug therapies have been shown to have high failure rate[151], in part 

due to inadequate knowledge of the critical interacting pathways[152]. 

The advantage of developing a systems pathology model to determine therapy response is 

twofold. First, the drug interactions can be better understood using a human disease systems 

model, which can account for biological complexity. Second, this opens up ways to tailor treatment 

to the patient, known as “personalized medicine”. This approach can enable identification of 

patients who could potentially have an adverse response to a specific therapy and outcome 

prediction while combining therapies.                                                    

Need of new ideas for prognosis  

So far, clinicians use a combination of anatomical, clinical and molecular pathology to determine 

the best course of action for a patient. Cancer outcome is typically determined by the use of stage 

and grade information. The American Joint Committee on Cancer’s (AJCC) TNM staging system, 

coding for the extent of primary tumor (T), regional lymph nodes (N) and distant metastasis (M) 

is widely used for predicting the survival in cancer.  With about 31% of all patients getting 

laboratory tests[153], an accurate interpretation of diagnostic tests is critical. Far from being 

negligible, studies have identified that clinically significant diagnostic errors occurred in about 

0.26%-1.2% cases when reviewed by a second reviewer[154,155].  In another study, about 12% 

of all examined cytologic-histologic specimen pairs were found to have errors in cancer 

diagnosis[4]. There are opportunities to improve diagnostic testing by developing tools and 

techniques to aid physicians and pathologists. The AJCC’s current edition noted the increasing 

use of nonanatomic prognostic markers and developments in personalized analytics models for 

cancer care[156], underlining the application of new concepts to address prognosis as well as 

determining the disease at an early stage. Chemical imaging-based markers are a good candidate 

for such an approach since they are independent of anatomy and enhance morphometry based 

prediction models by adding a biochemical description of the cells and tissues (figure 3.2).  

How can chemical imaging aid systems pathology? 

Chemical imaging can be used to study cancer-associated biochemical changes in the tissue 

biopsy. This approach is particularly relevant in developing systems model where both molecular 

and spatial information is necessary. There are several key pieces of information about a patient’s 

bio-physiolocial system which can be obtained with previously established methods, such as 

genomics, and proteomics. While the role of tumor microenvironment in the development and 
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progression of cancer clear, we do not yet have efficient means to profile microenvironment 

changes in the native tumor. In this section, we review the effect of tumor microenvironment in 

disease development and progression and how it has been measured using chemical imaging, 

starting with two disease-specific examples. Given the strengths and limitations of current 

technologies, optical spectroscopy proves to be a timely tool to probe the microenvironment that 

could provide high molecular and spatial detail (figure 3.2).  

Chemical imaging for biomolecular characterization at the cellular level: Breast cancer example 

Computational modeling at the cellular level is often called as systems biology. This definition 

includes the use of bioinformatics databases of gene expression, proteomics data and available 

literature related to metabolic pathways to describe cellular networks[157]. Multiple optical 

spectroscopy studies have followed this approach by studying tumor cells grown in culture and 

observing their interactions with other cell types and the extracellular matrix. For example, 

fibroblast transition when grown in a co-culture with cancerous breast epithelium cell line was 

characterized using IR spectroscopic imaging[158]. In this paper, the authors correlated α-smooth 

muscle actin expression with infrared spectra to measure fibroblast transformation in response to 

the tumor. Fibroblast transformation was induced by either treatment with transforming growth 

factor-β1 (TGF-β1) or by co-culturing them with tumor cells. The authors found spectral changes 

in the C-H stretching region (3000-2800cm-1), symmetric phosphate stretching peak (1080 cm-1) 

and asymmetric phosphate stretching peak (1224 cm-1) using which they were able to differentiate 

between normal and cancer-activated fibroblasts.  

In the follow-up study, infrared spectroscopic imaging was used to characterize the effect of 

fibroblasts in promoting cancer growth[159]. In this study, the authors developed and applied a 

3D cell co-culture system where the tumor cells interacted with fibroblasts in a controlled manner. 

Different configurations of co-cultures were studied, which altered the means of interaction 

between the tumor cells and fibroblast. The ‘mixed’ culture allowed direct cell contact between 

the fibroblasts and tumor cells, while the ‘sandwich’ co-culture allowed interaction via soluble 

factors. Using gene expression data, the authors established that the fibroblast-tumor cell co-

culture altered the estrogen receptor levels and lead to epithelial to mesenchymal transition. Post 

the molecular analysis; the authors examined the FT-IR spectra of the same 3D culture samples. 

The decrease in the C-H vibrational spectrum (3000-2800 cm-1), associated with lipids was found 

with the loss of estrogen receptor signaling. The peak associated with phosphate stretching at 

1080 cm-1 majorly contributed by nucleic acids, was found to be a marker to assess proliferation 
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in cells. This peak was shown to reduce in response to the anti-proliferative endocrine drug 

tamoxifen in hormone-responsive cells but not in hormone therapy-resistant cells. The spectral 

observations made at the cellular scale were also translatable to human breast tissue samples. 

Spectroscopic differences between patients with different estrogen receptor status could be 

observed in the epithelium specifically in the C-H region which showed similar profile to the 3D 

cultured model[159].  

In addition to observing cancer-associated changes, many other studies have sought to study the 

spectral changes in the cells as they go through various phases of the cell cycle[160–163] which 

could provide useful cell proliferation markers. These studies show that measuring the chemical 

response of cancer cells using optical spectroscopy is feasible without the loss of spatial 

information, and can be used as an in situ alternative to immunohistochemistry for tissues 

accessible with a probe such as skin, colon and the oral cavity. Using IR spectroscopy also 

automates the identification of cell types[164], thus enabling cell-type specific spectral analysis.  

Chemical imaging for tissue level characterization: Prostate cancer example 

Prostate cancer is perhaps the most frequently modeled disease using systems pathology 

approach. The currently prevalent predictive models for outcome determination in prostate cancer 

stratify risk of patients based on the biopsy Gleason score, prostate-specific antigen(PSA) levels 

and clinical stage, and have been reviewed in detail here[165]. The most critical concern while 

using approaches that heavily rely on the Gleason score is that the Gleason scoring is subjective 

since it is based on the pathologists’ interpretation[165]. In recent years, quantifying the nucleic 

localization of androgen receptor protein has improved prognosis prediction. The application of 

systems pathology in determining recurrence based risk groups has been demonstrated with the 

use of morphological, immunohistochemical and clinicopathologic data[166–168] and an 

improvement in accuracy of prediction is reported by using multimodal data. In a study to 

automate classification of cancer versus non-cancer prostate tissue samples, it was shown that 

conventional histology based diagnosis benefits from multimodal image analysis that integrates 

IR spectroscopic images with H&E images and improvement is seen in the accuracy of 

determining cancer within biopsy samples[169].  In this study, the authors first classified the IR 

spectroscopic images into epithelial, stromal and other components using supervised 

classification. Next, morphometric information from the H&E images was obtained for segmented 

epithelial cell regions by fusing classified IR image with the H&E image. Lumen and nuclei related 

features were then extracted from these images, which were useful in differentiating between 
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cancerous and non-cancerous samples, much like the procedure a trained pathologist would 

follow. This automated IR spectroscopic feature based segmentation resulted in AUC value 

greater than 0.95 on the test dataset when both IR and H&E image data was used which dropped 

to about 0.92 when only H&E data was used. 

In addition to being useful for cell-specific morphometric feature extraction, spectroscopic data 

has been demonstrated to predict the risk of prostate cancer recurrence more accurately than 

Kattan nomogram and CAPRA-S score[77]. In this study, the authors first identified a set of IR 

spectral features that had a discriminating power to differentiate between recurrent and non-

recurrent cancer cases using frequent pattern mining. By testing both epithelium IR features and 

stromal IR features, the authors found that stroma, but not epithelium had predictive capability, 

and the stromal features were spatially associated with reactive stroma. Using clinical variables 

of age at prostatectomy, Gleason sum, and pathologic stage, the authors built matched recurrent 

and non-recurrent patient pair sets. The test sample was compared with training pairs in the 

dataset to quantify whether the test sample was closer to the recurrent patient or the non-recurrent 

patient via Ranking support vector machine algorithm. Using the ranks obtained from this 

algorithm, the authors calculated the predicted probability of recurrence of the test patient, called 

the IR score. Since the IR score is an independent predictor of recurrence, it can be combined 

with other clinical variables to fit a logistic regression model given by[77] 

  (eq. 1) 

Where Y represents the binary outcome of recurrence (1) and non-recurrence (0), I represents IR 

score, A represents age at surgery, G represents Gleason grade, S represents pathologic stage 

and P represents PSA level. β1-β5 estimate conditional odds ratios for the corresponding 

variables. When used as standalone, the IR score achieved an area under the curve (AUC) of the 

receiver operating characteristic (ROC) curve of 0.73, highlighting the importance of IR spectra 

based probing of the microenvironment. This is an improvement over the previously proposed 

CAPRA-N and Kattan classifiers which performed at an AUC of 0.47 and 0.45, nearing almost 

random classification.   

Given that systems pathology models which use the currently prevalent molecular and 

morphologic markers do not perform better than postoperative biochemical disease recurrence 

nomogram and Cox regression clinical failure model[170]; these results highlight the importance 

of using optical spectroscopy based features in the systems pathology models.  
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Chemical imaging to characterize the extracellular matrix 

The extracellular matrix (ECM) is an essential component of an organ or tissue that provides it 

structure as well as chemical and mechanical signaling cues to maintain healthy structure and 

function. It has been shown that the changes in ECM are related to carcinogenesis and has been 

reviewed extensively[134,171–174]. Prolonged inflammation resulting in the activated stroma, 

changes in extracellular matrix stiffness[175,176], deregulation of specific ECM proteins[177] and 

extracellular matrix remodeling [178,179] are a few examples of changes that are associated with 

the development of cancer. Extracellular matrix close to the tumor is modified and represents a 

potential marker for risk stratification, but it is difficult to recognize changes occurring in the 

extracellular matrix using conventional histology. Remarkably, IR spectroscopy can differentiate 

between type I, III, IV, V and VI collagens, making it useful for molecular histology[180]. It has 

been shown that using infrared spectroscopy, the stromal response to developing tumor has a 

distinct spectral signature[181]. As an example, in figure 3.4, normal stroma and reactive stroma 

is identified in colorectal biopsy samples post a supervised learning step described 

previously[127,164,182]. In a malignant biopsy, the stroma neighboring the cancerous epithelium 

is identified as reactive whereas, in a normal biopsy section, the stroma neighboring the 

epithelium is morphometrically and biochemically normal. Degradation of the extracellular matrix 

via proteolysis can be localized with micrometer resolution[183]. This stromal change is significant 

in differentiating between normal, benign and malignant breast tissue[184]. Raman 

spectroscopy[185] can also be used as a tool to probe the extracellular matrix state in situ, 

achieving distinction between healthy and damaged collagen, and discrete frequency infrared 

spectroscopic imaging is emerging as a high-speed tool for rapid detection of fibrosis and tissue 

damage[186,187].  

Chemical imaging based angiogenesis identification  

Tumor angiogenesis, a hallmark of cancer[131] presents yet another avenue of information that 

can be useful in predicting the trajectory of the tumor. Tumor sustenance and growth are 

dependent on the access to blood vessels and often the tumors, and their interaction with other 

components in the tumor microenvironment create conditions that can induce angiogenic 

signaling pathway[188–192]. Imaging angiogenesis in-vivo and ex-vivo has been made possible 

by microcomputed tomography (micro CT)[193], magnetic resonance imaging (MRI), and 

optoacoustic tomographic imaging[194]. Angiogenesis can also be determined by assaying 

angiogenic growth factors such as VEGF which is amenable to multiplex molecular profiling 
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systems, while hypoxia-specific conditions, which are the key regulators of angiogenesis[195–

197] can be measured in vivo using near-infrared optical imaging probes[198]. Variations in tissue 

biochemistry due to hypoxia and low pH conditions can be measured by assaying glucose and 

lactic acid levels in FT-IR spectroscopy. Glucose content is found to decrease linearly with 

distance while lactic acid content increases as we move away from the blood vessel[199], making 

FT-IR a candidate to perform microscale molecular imaging to visualize angiogenesis. In addition 

to imaging metabolites for assessing angiogenesis, triple helix and β-turn content of the 

secondary structure of blood vessel proteins has been shown to be a potential FT-IR based 

marker for imaging angiogenic tumors[200].  

New and emerging concepts  

In addition to the currently available literature on the mechanism of cancer initiation, growth and 

spread, new and emerging concepts provide an opportunity to enhance diagnosis and prognosis 

prediction. With research still underway on the clinical impact of these factors, this section outlines 

potential areas where developing optical spectroscopy based analysis methods can be useful.   

Self-seeding 

Metastasis to distant sites requires colonization of circulating tumor cells in unfavorable 

conditions. In contrast, the primary site of the tumor has more welcoming conditions[201]. Re-

infiltration of circulating tumor cells(CTC) to the primary site, known as self-seeding, is facilitated 

by tumor-derived cytokines that act as CTC attractants[202]. Because self-seeding enriches the 

tumor with aggressive cells, it is likely that self-seeding can worsen prognosis. A large-scale 

study[203] published recently reported that the overall survival of patients with metastatic cancer 

who underwent local therapy was improved as compared to patients that did not receive local 

therapy. This distinction could be due to reducing tumor burden and interrupting self-seeding 

when local treatment is given[203]. There is limited clinical evidence with regards to the effects of 

tumor self-seeding, and it is not possible to directly evaluate self-seeding extent in patients. CTCs, 

which are vital in the self-seeding process can be monitored with microfluidic devices[204] using 

blood[205–207] and through other technologies outlined in these reviews[208–210]. With the 

recent advancements in the CTC capture technologies, it is likely that these devices would soon 

have clinical applications using patient’s blood or biopsy[211] and potentially impact clinical 

course of action[212].  
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Metabolism 

Alterations in metabolism can facilitate uncontrolled tumor growth[131]. Otto Warburg first showed 

that glucose consumption is heightened in tumors when compared to normal tissues[213]. Much 

research has been done in this field since the first observation, and is reviewed in these 

articles[214–217]. The altered metabolism in the tumor has been of interest in developing 

diagnostic techniques as well as in identifying therapeutic targets[218,219]. Positron emission 

tomography (PET) is a routinely used clinical technique that uses 18F-fluorodeoxyglucose (FDG) 

to measure glucose metabolism.  FDG-PET can, therefore, identify biochemical changes at the 

molecular level in vivo. Due to low sensitivity and modest specificity, FDG-PET is not a viable 

diagnosis tool. However, it can be useful in characterizing the disease once a diagnosis has been 

made[220]. FT-IR spectrometry can assist in studying metabolic changes in tissue, associated 

with quantification of metabolic molecules such as glucose and lactic acid. In a study to test this 

approach, the researchers found that FT-IR spectrometry was able to detect nanomolar 

concentrations of metabolites within biological samples[199]. Interestingly, premalignant spectral 

changes in cells are detectable much earlier than morphologic changes in the cells[221,222] 

constituting of significant variations in lipids and proteins and further research in this area could 

shed light on the changes undergone by the tissue temporally as it changes from normal to a 

malignant state. A broad spectrum of small biomolecules such as glucose, choline, fatty acids 

and amino acids can be visualized by using Raman-active probes with high specificity and 

sensitivity, further enhancing our insights to metabolism in the tumor environment[145,146].  

Use of mathematical methods 

The current medical diagnosis has been enhanced by the introduction of ‘-omics’ data. The 

clinicians now consider histopathology based morphometric information in conjugation with 

molecular information and apply their own experience and knowledge to reach a 

diagnosis[223,224]. This behavior of pathologist can be replicated using machine learning 

approaches to develop probabilistic models to determine diagnosis and predict prognosis. One 

way to do this is to use Bayesian parameter estimation to calculate the weight of various response 

variables available through experimental data[225]. This approach produces posterior probability 

distribution that can predict system behavior.  A computational approach to translate metabolic 

networks into mathematical models has also been explored[132]. Briefly, two mathematical 

models can be used to predict the response of a biochemical system. The first is the Systems 

Theory (S-system) approach where differential equations are used to model a non-linear system. 
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The second approach, based on fuzzy logic is based on probabilistic models that output results 

between 0 and 1, accommodating for imprecision in biological systems. When modeling cancer 

through systems pathology approach, we need spatial as well as temporal factors[226]. Beginning 

with the development of the disease due to perturbations in the system: often due to the loss of 

tumor suppressor gene functions, to the growth and progress of cancer to invasive and metastatic 

stages; each stage of cancer presents an altered system. In response to therapy, a system can 

change over time as the disease develops drug resistance. Dynamic modeling or mechanistic 

modeling used in systems pathology employs previously established mathematical models such 

as the law of mass action and equations describing enzyme kinetics[227]. These models can be 

used to predict temporal response[227] albeit at molecular scales. Given the complexity of the 

system and evolving nature of cancer in response to microenvironmental changes, stochastic 

modeling of the systems have gained popularity[228–230].   

In either of these systems, the input should be quantitative, multiscale and multidimensional, 

encompassing several levels of the system, and the prognostic model should include the ability 

to identify and explain factors that were predictive. This requirement makes the development of 

such models tricky, needing a highly complex and interconnected model. One way to handle the 

issue of complexity is by assembling small quantifiable pieces to come up with a single predictive 

model. Imaging provides opportunities to obtain quantifiable chunks of information. One way of 

integrating imaging data to mathematical models was proposed by Atuegwu et al (2010) and Gore 

et al (2010) where imaging data from multiple modalities was integrated as initial conditions to 

determine tumor growth and treatment response. Mathematically, this relationship is written 

as[231,232]  

(eq. 2) 

 

where Ni(t) represents the number of tumor cells in the ith voxel as a function of time, kim term 

represents the net ‘transfer constant’ of cells from the ith voxel to the mth voxel obtained using 18F-

fluoromisonidazole PET, μd,i represents the death rates of tumor cells obtained via 99mTc annexin 

V imaging, and μp,I represents the proliferation rate obtained via fluorodeoxythymidine PET (FLT-

PET)[231]. This model could simulate the tumor characteristics in a rat brain as a function of 

space and time, where the initial parameters were set by imaging data specific to the subject, 
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potentially leading to patient-specific predictions. This example shows the remarkable prediction 

capability that can be achieved by integrating imaging data. The prognosis determination example 

discussed in equation (1) shows that incorporating biomolecular data with clinicopathological data 

and other predictors renders an informed, quantifiable and accurate prediction. Together, models 

that can predict tumor growth, drug response, account for temporally and spatially specific 

microenvironmental changes and patient-specific factors can lead us to precise disease 

management.  

Conclusions 

There has been a rapid development of analytical instruments to detect, diagnose and study 

cancers. CT and MRI can be used to perform anatomic imaging, PET and single photon emission 

tomography (SPECT) are useful in determining biochemical characteristics, and these techniques 

are often used in a combination called as multi-modality imaging to collect a broad spectra of 

information[233,234]. Complementing the conventional tools of biopsies and histopathology, 

clinicians can now utilize several of these tools to reach a decision. In addition to the macro-level 

data provided by these imaging modalities that help in determining the existence of tumor and 

basic biochemistry, a systems pathology approach requires information at the molecular level, 

such as that provided by proteomics and genomics data. In addition to the ability to probe the 

tumor microenvironment by delivering spatially specific biochemical data, chemical imaging can 

provide information independent of histopathology and clinicopathological data which has been 

shown to improve recurrence prediction[77].        

Perhaps the most challenging step in systems pathology approach for disease analysis is the 

modeling of the system. Many mathematical methods have been developed to explain specific 

components of the cancer development process such as self-seeding[235], angiogenesis[236–

238] and cancer metabolism[239–241]. At the systems pathology level, the model needs to 

encompass multiscale, multimodality quantitative data (figure 3.5). The availability of data is no 

more a challenge, rather, identifying useful data and eliminating redundant information is 

necessary before model implementation. Mathematical models are useful at unimodal stages, 

where we have an understanding of the process. When many modalities are combined, the effect 

of such combinations become hard to interpret manually and would require machine learning. 

Deep learning techniques can be used to consolidate the data and form meaningful conclusions 

in instances where the bottom up equation driven models fail; through the combination of 

modalities on space, time and molecular axis in a top-down approach. The next driving 
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developments in this field should be focused on the precise quantification of the microenvironment 

using patient biopsies, and a large-scale collaborative effort to realize focused data collection and 

computational modeling goals.  
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Figure 3.1: Features useful for diagnosis and analysis of cancer  
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Figure 3.2: Imaging and molecular analysis methods compared against the molecular and spatial 

details offered by them. Spatial detail is associated with the spatial resolution offered by the 

techniques in the biological context.  
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Figure 3.3: IR spectroscopy brings together morphometry and biochemical profiling of the 

tissue. Each pixel of the image has a spectrum. Different cell types such as myofibroblasts 

and epithelium have different IR spectra, which are useful in assessing chemical 

differences and changes undergone by them. 

 

Figure 3.4: Morphometric and biochemical differences exist between normal and cancer-

activated (reactive) stroma. These differences can be used to identify normal stroma and reactive 

stroma in infrared spectroscopic images. In figure, normal stroma is identified in a normal biopsy 

core (left) and reactive stroma is mapped on a malignant biopsy core (right). Note the 

morphometric differences between the organization of epithelium in normal and malignant core. 
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Figure 3.5: Several anatomic and non-anatomic assessment techniques provide useful 

pieces of response information. When used in isolation, these techniques cannot predict 

the complete systemic response. Therefore, there is a need to integrate data obtained 

through various measurement methods into a unified systems pathology model. 
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CHAPTER 4: MICROENVIRONMENT AND TUMOR SPATIAL INTERACTION MODEL USING 

QUANTITATIVE CHEMICAL IMAGING PREDICTS COLORECTAL CANCER PATIENT 

OUTCOME7 

Abstract 

The tumor microenvironment and its interaction with the tumor is indicative of disease progression 

but has not been clinically applied due to lack of objective assessment criteria. The proximity 

associated effects of the tumor to its microenvironment which can explain the long-term behavior 

of tumor remain to be developed. In this work, we utilized the biochemical sensitivity of infrared 

spectroscopic imaging to segment colon tumor biopsies into major tumor microenvironment 

components in a 320 patient cohort. A risk score defined by the extent of stromal reaction and its 

interaction with the tumor stratified overall survival in patients (p-value 0.0003), and disease free 

survival (p-value 0.0274). The risk score performed independent of stage and grade information 

of the patient with the hazard ratio of 1.88 at p-value of 0.011, almost doubling the risk of death if 

the patient had risk score higher than 3.53. Our results objectively quantify and model the spatial 

interaction of tumor with its microenvironment, which is predictive of the patient outcome.  

Introduction 

With the developments in precision medicine, targeted therapies, imaging, computational and 

data visualization tools, we have a surge of clinical data, which is often under-utilized when treated 

in isolation. Due to the intricate processes taking place during the development and progression 

of cancer, the tumor microenvironment is continuously interacting with the tumor and changing 

dynamically[242–244]. Several key changes in the tumor microenvironment, such as cancer-

associated fibroblasts, stromal remodeling as well as immune cell infiltration play a role in 

promoting or resisting tumor growth[131]. Specifically in colon cancer, the fibrotic stromal 

response known as the desmoplastic reaction  has been linked to survival, cancer aggressiveness 

and degree of invasion [12,245–247]. Although such survival stratification is of high utility in 

determining the outcome, it is clear that the stromal remodeling in the tumor microenvironment 

does not act alone in promoting aggressive tumor behavior. The biomolecular snapshot of the 

tumor in its native microenvironment captured in conjugation with the spatial distribution could be 

descriptive of the patient outcome but has not been explored to date. 

                                                
7 In preparation for publication as Tiwari, Saumya et al. “Microenvironment and Tumor Spatial Interaction Model Using Quantitative 

Chemical Imaging Predicts Colorectal Cancer Patient Outcome.” 
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Traditionally, after surgical resection/biopsy and molecular staining, pathological interpretation is 

used to determine patient outcome in terms of grade and stage (figure 4.1a,b). In contrast, 

quantitative image analysis seeks to evaluate the tissue biopsy images in the form of quantifiable 

variables. Such investigations can help us develop an understanding of tumor-microenvironment 

interaction[248] and give us insights into the spatio-specific tumor progression mechanisms. 

Previous quantitative image analyses predicted patient survival by merging information from 

biopsy images with molecular data[249] and demonstrated capturing heterogeneity in cell 

populations[250]. Despite recent advances, the rich biochemical details present in the tumor 

cannot be utilized to predict patient outcome without a priori knowledge of molecular targets. 

Other studies have also identified the link between desmoplastic response in biopsy specimens 

and the depth of invasion in early colon cancers[12,247]. Although such stratification is of high 

utility in determining the outcome, the intra- and inter-observer agreement in deciding the 

desmoplastic reaction is low[251]; varying between 0.30 to 0.71. This lack of concordance found 

in colon cancer underlines the need to develop objective methods to evaluate the stromal 

reaction. In addition, current models of quantitative image analysis techniques rely on tissue 

staining, and suffer from roadblocks such as low contrast, need for annotations by pathologists, 

as well as multiplexing limitations.  

Quantitative chemical imaging (QCI) seeks to address the current challenges in predicting patient 

outcomes without a priori information about the molecular targets, and fulfill the need to quantify 

tumor-tumor microenvironment interactions. In particular, chemical imaging using Fourier 

transform infrared (FT-IR) spectroscopic imaging allows spatially specific multiplexed chemical 

profiling of samples  without the need for stains (figure 4.1c). Cell populations and micro-

environmental features show differences in their infrared absorbance spectra[44,74,75,127] 

owing to the inherent biochemical differences between them. Spectral profiles collected from IR 

imaging enable sensitive and specific identification of tumor and tumor microenvironment 

components[164], which can be mapped onto the tissue using artificial intelligence(AI) for robust 

image quantification (figure 4.1d).   

In this work, we hypothesized that by utilizing both molecular as well as morphometric features in 

patient tumor sections, we will capture the state of the tumor-microenvironment interaction, thus 

predicting patient outcome. Our work on quantitative chemical imaging provides a robust 

approach to capture and model the biochemically specific spatial interactions to predict long-term 

tumor behavior.   
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Results  

Infrared spectroscopic signatures identify tumor stromal components 

In this work, we aimed to develop a Fourier transform infrared spectroscopic imaging based 

machine learning model which allowed for the mapping of several biochemical transformations in 

the tumor stroma onto the tissue biopsy image. High definition Fourier transform infrared imaging 

was used to image eight tissue microarrays, collecting the infrared spectrum of every 1µm2 pixel. 

The spectral signatures associated with desmoplastic reaction, normal stroma and lymphocytes 

and seven other tissue components were obtained by matching regions annotated by a 

pathologist on H&E image to the infrared spectroscopic images (Supplementary figure 4.1a). 

Figure 4.2a shows the average absorbance spectra of the ten classes that we identified in colon 

tissue. The most substantial differences between classes were observed in the fingerprint region 

between 982-1480 cm-1. The most prominent differences were seen in mucin and mature 

epithelium vs. all other classes in 980-1182 cm-1. This distinction is arising from mucin, which is 

a glycosylated protein showing strong absorbance at 1038cm-1[252]. Mature epithelium (goblet 

cells) containing cytoplasmic mucin also registered glycoprotein associated absorbance. As seen 

from the spectra, and the images of colon adenocarcinomas in subsequent sections, this 

functional property of mature epithelium was lost in the malignant or proliferative epithelium. 

Another major region of difference was found in the CH,CH2 and CH3 stretching motion peaks 

around 2800-3000 cm-1 which has been previously noted as well.  

While some of the differences shown in figure 4.2a arise due to biochemical differences between 

histologic classes, we also accounted for other sources of variations in the samples. In our study, 

we considered patient, array and histological class labels as factors affecting the infrared 

spectrum and performed ANOVA using the framework described previously[253]. Spectroscopic 

data collected from three training arrays were utilized for this approach (Supplementary figure 

4.1b). From this analysis, using 0.05 as significance level, we removed all spectral metrics where 

array and patient associated variances were statistically significant. Two hundred and fifty-six 

spectral metrics were excluded from the ANOVA analysis. Following analysis of variance, we 

performed an additional step of feature reduction using minimum redundancy maximum relevance 

(mRMR). Feature reduction was required to (a) Reduce computation time (b) Remove redundant 

features (c) Prevent overfitting.   Briefly, this model used the correlation between variables and 

outcomes as a means to identify variables that were the most predictive of the class label, and 

the correlation between variables to identify variables that will cause the least redundancy in the 
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system[254]. Using mRMR, we were able to reduce the number of variables that ensured better 

model fit and mitigated overfitting. Post ANOVA and mRMR, we retained 50 spectral metrics that 

were used for developing histology classifier model. These spectral metrics have been listed in 

Supplementary table 4.1 with accompanying definitions. From this table, we observed that the 

retained spectral metrics were most frequently defined from the fingerprint region between 1053 

-1593 cm-1 and 2939-2987 cm-1; consistent with our observations from fig 4.2a.  

Finally, we looked at the differences between the classes in the 50 spectral metrics that were 

chosen following ANOVA and mRMR (Fig 4.2b). We calculated average spectral metric values 

across each class in the training set, discretized the values in each of the spectral metrics by 

equal depth binning and performed hierarchical clustering. Data were first clustered along the 

classes and then along the metrics using Euclidean distance metric and farthest neighbor 

distance linkage between the clusters. The heat map in figure 4.2b shows the observed clustering 

patterns, where each row corresponds to a spectral metric, each column corresponds to the 

histologic classes, and the intersection indicates the metric discrete value level for the specific 

metric in that class. As expected, mucin and mature epithelium clustered close together, while 

blood had the most distinctive features, owing to the absence of nucleic acids. The two most 

distinct spectral clusters from the hierarchical clustering are labeled C1 and C2 in figure 4.2b. The 

difference between these clusters can be understood in terms of the spectral regions that were 

most frequently involved in defining the metrics for these clusters (Supplementary Table 4.1). A 

similar idea has previously been described as spectral barcoding, where IR spectra are used 

directly to identify discriminative frequencies by unsupervised analysis[255]. From this analysis, 

the majority of fingerprint region between ~982-1580 cm-1 and CH stretching region between 

2800-3000 cm-1 clustered together as C1 while OH-NH region between ~3000-3700 cm-1 and 

amide I region clustered together as C2. From the metric expression patterns of the classes in C1 

and C2, it is clear that further association of spectral metrics exist. While 50 metrics are used to 

develop this classifier, it indicates that there is a possibility of trimming down the dataset further 

to improve the speed of imaging by utilizing discrete frequencies[256].  

Biochemically specific spectral machine learning classifier retains high specificity and sensitivity 

when tested on independent TMAs 

We used Random Forest supervised learning algorithm to develop the histology classifier with 

ten classes, labeled as epithelium (mature), mucin, epithelium (proliferative), necrosis, reactive 

stroma, blood, inflammatory cells, non-reactive stroma, muscle and loose stroma. The leaf size 
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and feature size determined for optimal fit were 500 and seven respectively, with 50 total features 

and an ensemble of 50 decision trees (Supplementary figure 4.1c). We have observed that 

increasing the number of trees beyond this did not give a proportional increase in accuracy and 

followed the law of diminishing returns described before[257,258]. This classifier was trained on 

four arrays (a1,a2,a3,a4) and 126,946 pixels per class, calibrated on two additional arrays (a5,a6) 

and tested on two independent arrays (a7,a8). For both training and testing area under the curve 

(AUC) of the receiver operating characteristic (ROC) curve was evaluated. The results from this 

classifier are shown in figure 4.2c. The performance of the histology classifier was evaluated at 

pixel level using receiver operating characteristic curves, using pathologist annotated regions as 

the ground truth. High specificity and sensitivity were obtained, with the training data classified 

with an average AUC of 0.94, and the validation data classified with an average AUC of 0.93 

(figure 4.2c). We also evaluated the importance of metrics in classification by measuring the 

increase in prediction error in calibration data (a5, a6) when the values of the metric were 

permuted across all data. Interestingly the most important features identified in this manner (figure 

4.2d) were associated with amide I and amide II regions, such as normalized amide II peak height 

at 1545 cm-1, area to height ratio of amide II peak region between 1591-1757 cm-1 and 1645 cm-

1, peak centroid position of amide II peak and the normalized intensity of 1645 cm-1 band. The 

cohort used in this study comprised of paraffin-embedded tumor tissue of the surgical specimens, 

where normal-appearing colorectal mucosa and lymph node metastases were also sampled for 

some patients. Figure 4.2e shows the comparison of H&E images with corresponding IR histology 

classified images for normal colorectal mucosa, invasive tumors, and lymph node metastases.  

The classified images show good correspondence with the H&E images for the three types of 

tissues. Benign colorectal mucosa is a good example of the diverse tissue components present 

in the colon, with well-formed mature epithelium glands and normal appearance of (non-reactive) 

stroma. Mucin can be seen within the glands. In invasive tumors, the glandular structure formed 

by malignant epithelium is distorted or lost, and the stroma around the tumor is modified due to 

desmoplastic reaction (reactive stroma)[12]. All of these histologically important features were 

classified correctly. We were also able to identify the presence of malignant cells in samples from 

lymph node metastases, indicating superior performance compared to H&E based 

benchmarks[259]. 

The extent of desmoplastic reaction, as well as its proximity to tumor cells, is associated with 

survival 

To understand the scope of microenvironment effects on patient survival, we developed the 
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supervised classification models that performed with high specificity and sensitivity to map stromal 

changes onto the tissue biopsy images. We classified stroma as reactive, where the desmoplastic 

reaction was present, non-reactive, where the desmoplastic response was absent and as 

lymphocytes where lymphocyte specific spectral signatures were observed. The desmoplastic 

reaction was identified using previously established criteria, namely enrichment of “plump” 

fibroblast, the organization of stroma and presence of other cell types[260,261]. The pathologist 

making the ground truth categorization was blind to all accompanying clinicopathological data 

including the stage. Next, we used the classified images obtained from the supervised classifier 

to measure quantitative spatial features (Fig 4.3a). Distance feature (d) was defined as the 

distance to the closest microenvironment component from the tumor pixel, averaged over 500 

random tumor pixels in 30% downsampled image. The area feature (N) was defined as the total 

number of pixels classified as a specific microenvironment component in a radius R from 500 

randomly selected tumor pixels as the center. The area was normalized to πR2 to accommodate 

for centers close to the biopsy edge. We set the R for our analysis to be 600µm, based on our 

empirical observation that in comparing invasive and normal cores, any radius above 439µm 

captured the spatial characteristics between the biopsies. Finally, the interaction feature (M) was 

defined as the product of d and N averaged over 500 randomly selected tumor pixels as the 

center. For these tests, we only selected cores with at least 5% malignant epithelium by area. 

Each of these features was dichotomized by splitting at the median value of 3.53; giving us two 

patient groups per variable per microenvironment component tested. Next, we performed the 

univariate log-rank test and multivariate Cox regression analysis to determine if there was a 

significant difference in the survival of the two groups (Table 4.1). From the two tests, only features 

measured with reactive stroma as the microenvironment component showed a significant 

difference in survival. The two features that showed significant differences in the survival were 

NRS and MRS, with p values of 0.006 and <0.0005. From multivariate Cox regression model of time 

to death (Table 4.2), the interaction metric variable MRS showed an independent effect on 

increasing hazard for the patient when modeled with other known covariates such as the stage, 

grade, age, sex, and source, with a p-value of 0.011. The p-values for three overall tests, the 

likelihood ratio test, Wald test, and log-rank test were all less than 4e-11, indicating that the model 

was significant, rejecting the null hypothesis that all of the coefficients() are 0. In the multivariate 

Cox regression analysis, the hazard ratio, evaluated as exp() was in the range 1.15-3.07, 

indicating a strong relationship between the high values of interaction feature MRS and increased 

risk of death. Thus, higher values of interaction feature MRS, calculated from the patient biopsy 

images are associated with adverse prognosis. Other features that showed significant association 
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with risk of death were stage and age, as expected. By contrast, the tumor grade evaluated on 

whole surgical biopsy images by pathologists did not show significant association with increased 

risk when modeled with other covariates.  

Fig 4.3c shows Kaplan-Meier survival curves for overall survival and disease-free survival for all 

three features calculated for tumor’s interaction with reactive stroma. From univariate log-rank 

test, both NRS and MRS showed a statistically significant difference in overall survival, while only 

MRS showed a statistically significant difference in disease-free survival. The role of stromal 

reaction and its interaction with the tumor in predicting disease-free survival indicates an 

association with aggressive tumor behavior. By performing two-sample t-test (Table 4.3) on 

continuous variable MRS grouped by stage, we discovered that the mean value of MRS for reactive 

stroma was significantly different between Stage 2 and Stage 3 at 0.05 significance level (p-

value=0.00142 and power= 0.9) and between Stage 2 and Stage 4 (p-value= 0.00243 and power 

=0.87). Thus, we can reject the null hypothesis that there is no difference between the means of 

the above groups. Several other stage grouped combinations were tested, but statistical 

conclusions could not be drawn due to low power. When stage 1 and stage 2 patients were 

combined (low stage) and tested against stage 3 and stage 4 patients combined (high stage), we 

observed a significant difference in the means. Two sample t-test on combining these groups had 

a p-value of 0.0012 at 0.90 power, confirming the observation. We also tested other histological 

classes following the same procedure and found that there was no difference between the means 

of spatial features with respect to the stage.  In addition to the two-sample t-test, we performed 

Mann-Whitney test, which does not assume normal distributions and tests whether the patients 

are sampled from populations with identical distributions. From this test, we confirmed that the 

distributions of stage 2 and 3, stage 2 and 4, and low stage vs. high stage were significantly 

different.  

Discussion  

The mechanism governing tumor invasion and its interaction with the surrounding stroma and 

stromal cells is complex and not clearly understood. Dedifferentiation at the invasive front of the 

tumor is often the beginning of metastasis[262]. Several spatially specific features of solid tumors, 

such as tumor structure, and proximity related effects cannot be accounted for in traditional 

molecular assays. Quantitative image analysis using histological stains has previously been 

proposed for breast cancer but is limited by the molecular information content of the H&E stain, 

and artifacts introduced at sample preparation, staining and imaging steps[249]. In contrast, 
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infrared spectroscopic imaging provides molecular information in a spatially specific context[263], 

without extensive sample processing or staining, enabling us to identify critical biochemical 

changes in the tissue image. To utilize such a technique for quantitative image analysis, it is 

crucial to ensure that the biochemical changes associated with activation of stroma are accurate 

and reproducible. The purpose of our supervised machine learning approach was to ensure that 

regions of interest in patient biopsy images were identified with high accuracy. Human patient 

samples are heterogeneous and biochemically complex, with diversity arising due to the inter-

patient variations, biological heterogeneity and patient-specific disease development and 

response[35]. There are also effects introduced by the systems used to probe the samples, such 

as noise in signal measurement, differences in sample preparation, and several other factors not 

documented so far[94,264]. When developing a supervised classification model to identify 

histological classes, it becomes especially imperative to analyze sources of variance to identify 

spectral regions where histologically irrelevant variations are present and significant. Following 

ANOVA and mRMR to perform feature reduction, we developed a random forest-based 

supervised classification model, where we achieved high specificity and sensitivity in classifying 

ten histological segments in colon biopsy images. At pixel level, this classifier performed at an 

average AUC of 0.93 when tested on an independent sample set. This is higher and significantly 

more multiplexed than other proposed digital pathology approaches using H&E images where the 

benchmark performance is noted for deep learning classifiers at an AUC of 0.93 in identifying 

metastatic tumor in lymph nodes as the two components[259]. 

While general tissue organization and structure is typically assessed by the pathologist at the time 

of examination, this is largely subjective[251,265,266]. Several outcome associated image 

assessment criteria, such as nuclear to cytoplasmic ratio of molecular markers[267], cellular 

proportions[268], and measuring immune infiltration[269,270] have been proposed. These 

procedures often require additional pathologist and laboratory work and do not provide 

consideration for tumor-stroma interaction. Even established prognostic associated features have 

not found footing in clinics due to lack of objective assessment criteria. For example, previously, 

Ueno et al. [260] categorized stroma in colon biopsies into mature, intermediate and immature 

based on the fibrotic stromal response. Using this stratification, they showed that five-year survival 

rates were significantly lower for patients with high desmoplastic reaction. Despite the 

identification of the link between desmoplastic reaction and the depth of invasion in colon 

cancers[12,247], an objective and reproducible scoring system is undeveloped, largely due to the 

concerns arising from lack of concordance[251].  
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Unlike other predominant cancers where molecular markers have established a role in 

determining the outcome and therapy options[7,271], the criteria to determine the patient 

outcomes in colon cancers is less direct. The goal of this work was to understand how the changes 

in the tumor microenvironment and their interaction with the tumor are linked to the patient 

outcomes by studying the tissue biopsy image. This work draws on the spatially specific molecular 

assessment provided by infrared spectroscopic imaging combined with machine learning 

approaches for robust identification of tissue areas as well as statistical methods to determine the 

underlying mechanisms. We studied multiple tissue-microenvironment components and found a 

significant association between the extent of stromal reaction and patient outcome. The links were 

much more pronounced in our interaction model, which intuitively models tumor structure 

concerning outcome associated microenvironment component. Multivariate Cox regression 

model showed that the risk of a patient presenting with high MRS biopsy images increased 

independent of stage. Univariate log-rank test showed a significant difference in overall as well 

as disease-free survival of patient groups stratified on the basis of the MRS score. From t-test and 

Wald test, we see an association between the patient’s stage and the MRS score, confirming our 

hypothesis that our model is capturing the switch of tumors to a more aggressive behavior by 

monitoring its interaction with its microenvironment. Thus, our work provides an objective and fully 

automated image assessment criteria to assess microenvironment-tumor interaction. We show 

from our work that there is abundant prognostic information available in a single tumor biopsy 

snapshot, which currently remains clinically underutilized. Although our spatial interaction model 

performs very well in stratifying patients, there are many unexplored factors that could potentially 

stratify patients further. For example, IR spectroscopic imaging is limited by spatial resolution that 

can be achieved, as well as the level of molecular detail that can be recorded. Finer molecular 

differences within the reactive stroma as well as cellular heterogeneity in the tumor itself  should 

be probed by combining imaging and molecular assessment modalities. We also anticipate that 

IR imaging-based quantitative image analysis can also provide key insights into several other 

cancer types, especially in cases where outcome associated molecular markers are lacking.  

Conclusions 

The tissue biopsy is a snapshot of the tumor in its native habitat. The complex biochemically 

specific interaction between tumor and tumor-microenvironment is a key determinant of tumor 

aggression. In this study, we identified the infrared spectroscopic signatures of ten unique 

histological segments present in colon biopsies and mapped them onto the tissue image. We 

stratified the overall patient survival independent of stage, grade and age by modeling the extent 
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of desmoplastic reaction and its interaction with the tumor cells. This study demonstrates 

reproducible and objective evaluation of risk-associated features using QCI. This work is 

especially critical for clinical evaluation of tumors that do not have defined patient outcomes 

associated with molecular features. By providing quantitative assessment, QCI can play an 

integral part in evidence-based pathology, which seeks to aid clinical instinct by using evidence 

derived from large-scale data[133]. Using artificial intelligence models that are capable of 

combining multi-platform approaches, QCI makes it possible to place the information in the clinical 

and biological context, which augments the current clinical analysis by harvesting the full potential 

of big data. With recent developments in the field of chemical imaging that enable stainless tissue 

characterization at clinically desirable speeds[43,45,187], we anticipate applying quantitative 

chemical imaging approaches in clinics, allowing automated diagnosis and outcome predictions.  

Methods 

Sample preparation 

The patient cohort used in this study comprised of 320 anonymized patients undergoing elective 

surgery for colorectal carcinoma. Of these, 158 patients were females, and 162 patients were 

males. Cores of 1 mm diameter were sampled for each patient from representative invasive areas 

of paraffin-embedded blocks and were used to construct eight tissue microarrays(TMA). For some 

patients, normal colon mucosa samples were also included. This cohort has been used 

previously[272] and described in detail in the cited reference as Cohort II. For IR spectroscopic 

imaging, a 10 µm thin section of each of the TMAs was obtained on barium fluoride substrate. A 

consecutive section was collected on a glass slide for hematoxylin and eosin (H&E) staining. Due 

to the IR absorbance of paraffin at the 1462 cm-1[44], before scanning, paraffin was removed by 

initially dripping the slide with cold hexane followed by complete submersion in continually stirring 

hexane for 48 hours at 40ºC where the solvent was renewed every 3 hours. The disappearance 

of the representative peak over several locations on the slide confirmed the dissolution of the 

embedding medium. For supervised classification, data was annotated by labeling histologic 

classes on H&E images by collaborating pathologist. These annotations were manually copied 

on the infrared spectroscopic images and served as ground truth.  

Imaging 

High magnification images were taken on Agilent Stingray imaging system in high magnification 

mode. This microscope was equipped with 128x128 focal plane array MCT detector. Each pixel 
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of size 1.1 µm was averaged over four scans, and the background spectrum was acquired at 120 

scans per pixel on a clean area of the slide. IR spectroscopic images were collected at a spectral 

resolution of 4 cm-1 and step size of 2 cm-1 in the spectral range 900-3800 cm-1, providing 1506 

bands in the absorbance spectrum.  

Preprocessing 

After stitching the image tiles, noise reduction was performed using minimum noise fraction (MNF) 

transform[94]. Savitzky Golay 9 point smoothening, baseline correction, and normalization to 

amide I peak at 1650 cm-1 was done for each core in the TMA.  The spectral data were converted 

to spectral metrics using methods described previously[44,75]. Briefly, we calculated spectral 

metrics as ratios of peak heights, peak area and heights, peak areas, and centroid wavenumber 

locations of the peaks. In total, we defined 418 spectral metrics.   

Feature reduction 

In the first stage of feature reduction, we performed analysis of variance(ANOVA) using a nested, 

random effect interaction model on three arrays (a1,a3,a4) using ground truth to label classes, 

patient, TMA and patient core numbers. Since specific patients were only found in particular 

arrays and each patient had multiple cores, the nesting order was Array, Patient, and Patient-

specific core. For this analysis, the classes used were malignant epithelium, necrosis, and 

reactive stroma since these classes were most commonly observed in cores. From ANOVA, we 

determined spectral metrics where inter-array, inter-patient and inter-core variations were 

significant at 0.05 significance level and removed these from the analysis. One hundred and sixty-

two metrics were retained after this stage. In the second stage, we used minimum redundancy 

maximum relevance algorithm (mRMR) in R to further remove redundant and irrelevant features. 

In this model, the feature with maximum mutual information (MI) is selected first following the 

equation[273]: 

𝑥𝑖 = argmax
𝑥𝑖∈𝑋

𝐼(𝑥𝑖, 𝑦) 

where xi represents ith feature in full dataset X, y represents the output variable (class label), 

and I represents mutual information given by: 

𝐼(𝑥, 𝑦) = −
1

2
ln⁡(1 − 𝜌(𝑥, 𝑦)2) 

The next feature is added to feature vector S by finding the feature with minimum mutual 

information with respect to all the prior features in S and maximum mutual information with respect 
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to the class label. This is represented as: 

𝑞𝑗 = 𝐼(𝑥𝑖, 𝑦) −
1

|𝑆|
∑ 𝐼(𝑥𝑗, 𝑥𝑘)

𝑥𝑘∈𝑆

 

Applying this using the mRMRe package[273,274] in R, we found a set of 50 features that were 

relevant to the classification problem while minimizing the redundancy in the data. 

Supervised classification: In the model learning step, we defined pixel labels for each cell type by 

duplicating annotations from H&E stained sections as marked by an expert pathologist onto IR 

spectroscopic images. Four arrays were used for training (a1, a2, a3, a4). We used a random 

forest algorithm for supervised classification in Matlab 2016a. To address fitting issues in the 

classifier such as high bias or high variance, we used two additional arrays (a5, a6) to perform 

optimization of parameters. The parameters that we optimized in the random forest were (a) Leaf 

size: size of the group at which decision tree stops splitting further, and (b) Feature size: number 

of features sampled by the tree randomly for performing the split. The parameters were optimized 

by calculating the error in classification for both training and calibration sets for multiple leaf sizes 

and feature sizes given by:  

e= 
1

∑ 𝑤𝑗
𝑛
𝑗=1

∑ 𝑤𝑗𝐼(𝑦𝑗 ≠ 𝑦̂𝑗)
𝑛
𝑗=1  

Where e represents error, w represents the weight of the class, n is the number of classes, y is 

the true class label, ŷ is predicted label, and I is indicator function. Parameters that minimized 

calibration error and maintained low training error was chosen as optimal. The fully developed 

supervised model with optimal parameters was validated by two independent arrays (a7, a8). 

Progression analysis 

Classified images of invasive carcinoma cores from all eight TMAs were used for studying tumor-

stroma interaction. A total of 220 patients were analyzed using biopsies containing reactive or 

nonreactive stroma and at least 5% proliferative epithelium by area. If multiple cores from the 

same patient were present, means over all available cores were calculated. Three risk-associated 

features were defined to assess the tumor-stroma interaction. The first risk variable was distance 

metric (d) and measured as the closest encounter distance of the malignant epithelium pixel to 

the stromal element being probed. Risk variable area metric (N) was measured as the normalized 

pixel count of the stromal component being probed in a circle of radius R determined 

experimentally. Risk variable interaction metric (M) was measured as the interaction of the two 

features d and N for each pixel. Five hundred random pixels of malignant epithelium were chosen 
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from each of the 30% downsampled classified IR image to calculate the features. Three stromal 

elements, the reactive stroma, lymphocytes and normal stroma were evaluated separately for 

their role in determining outcome. Each risk associated variable was converted to a dichotomous 

categorical variable by splitting at the median and evaluated for significance by univariate log-

rank test and multivariate Cox-regression analysis in R using package ‘survival’[275]. Power 

analysis was performed in R using the package ‘powerSurvEpi’[276]. Two sample t-test was 

performed in OriginPro 2017 to test the hypothesis that the means of groups were equal. Mann-

Whitney test was performed in OriginPro 2017 as a non-parametric test to test if the distributions 

were different.  
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Figures 

 

Figure 4.1: Current clinical pipeline and comparison with chemical imaging pipeline. (a) 

Tissue analysis with anatomic pathology is used for diagnosis but has limited molecular 

details. (b) Surgical resections are used for staging diagnosed cancers in conjugation with 

anatomic pathology. (c) Chemical imaging with infrared spectroscopic imaging uses 

several mid-infrared frequencies of light that capture molecular details in spatially specific 

context. (d) Data acquired from infrared imaging can enable molecular assessment of the 

microenvironment, providing a diagnosis as well as predicting the outcome. 
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Figure 4.2: Spectral differences between histologic classes in the tissue and the histologic  
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(Figure 4.2 (cont.) segmentation of colon biopsy sections using supervised classification. 

(a) Average infrared spectra of the histologic classes. (b) Heat map of cluster analysis 

based on histologic classes and metrics. (c) Receiver operating characteristics (ROC) 

curves for training and validation sets show that high sensitivity (probability of detection) 

and specificity (1-probability of false alarm) for all histological classes. The color key is 

common for ROC curves and classified images. (d) Increase in error when each metric is 

permuted shows the importance of individual metrics in classification. (e) IR classified 

images show good correspondence when compared with H&E images for normal, invasive 

and lymph node biopsies. 
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Figure 4.3: Risk associated features and their association with overall and disease free 

survival. (a) Schematic of feature calculation (b) Montage of high risk and low risk group 

based on interaction metric feature. (c) Kaplan-Meier survival curves 
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Supplementary figure 4.1: Supervised tissue segmentation of infrared spectroscopic 

image. (a) Method pipeline. Tissue microarray is imaged with infrared imaging instrument. 

The data is processed to remove noise, correct baseline and smoothen the spectra. In 

parallel, another tissue microarray section is stained with H&E. This image is annotated 

by an expert pathologist to identify distinct areas. Annotations and infrared imaging data 

is used to train supervised classification algorithm. Here we have used Random forest 

supervised classification, which takes majority vote of a ensemble of decision trees to 

determine class label. (b) Results from analysis of variance. This figure demonstrates the 

percentage contribution of each source in variance of the spectral data, evaluated per 

metric. The metrics are ordered from highest histology contribution to the lowest. (c) 

Classifier optimization. In random forest, the two hyperparameters that are optimized are 

the leaf size and the features fed per tree. The marked circle in the plot shows the most 

optimal operating point based on a combination of hyperparameters.   
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Tables 

Table 4.1: Univariate and multivariate cox-regression analysis of time to death based on 

risk features. The p-value corresponds to the test of null hypothesis that the beta 

coefficient of the risk variable is statistically significantly different from zero  

Microenvironment 
Component 

Risk 
variable 

Overall Survival 

Univariate Multivariate 
 dRS 0.554 0.884 

Reactive Stroma NRS 0.006 0.095 
 MRS 0.000 0.011 
 

   
 dNS 0.843 0.734 

Normal Stroma NNS 0.360 0.474 
 MNS 0.247 0.496 
 

   
 dL 0.580 0.912 

Lymphocytes NL 0.496 0.109 

  ML 0.883 0.547 

 

Table 4.2: Multivariate cox-regression analysis of the reactive stroma risk variable MRS 

 
p Exp() 

95.0% CI for Exp() 

  Lower Upper 

MRS 0.0113 1.88211 1.1538 3.070 

Grade 0.1442 1.46061  0.8784  2.429  

Stage 7.78e-10 2.69039  1.9626  3.688  

Age 9.02e-07 1.06117 1.0363 1.087 

Sex 0.7031 1.09475 0.6874 1.744 

Source 0.9418 0.98241 0.6100 1.582 
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Table 4.3: Results of two sample t-test and Mann-Whitney test to compare values of 

continuous variable MRS across stages  

Group 
Two sample t-test  Mann-Whitney test 

p Power p 

Stage 1 vs Stage 2 0.13 0.32 0.22 

Stage 1 vs Stage 3 0.36 0.15 0.27 

Stage 1 vs Stage 4 0.23 0.22 0.21 

Stage 2 vs Stage 3 0.001 0.9 0.002 

Stage 2 vs Stage 4 0.002 0.87 0.005 

Stage 3 vs Stage 4 0.51 0.1 0.61 

Low Stage vs High 
Stage  

0.001 0.9 9.67E-04 
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Supplementary table 

4.1: Spectral metrics 

used to develop 

supervised histology 

classifier. Definitions: 

1: Amide I normalized 

peak heights, where 

Col1 represents peak 

position. 2: Amide I 

normalized peak area, 

where Col1 and Col 2 

represent peak area 

bounds. 3: Peak height 

ratios, where Col1 and 

Col3 represent 

numerator and 

denominator peak 

heights respectively 

and Col2 and Col4 are 

0. Area to area ratio 

where Col1 and Col2 

represent first area 

bounds, Col3 and Col 4 

represent second area 

bound. 4: Peak centroid 

position, where Col1 

and Col2 represent area 

bounds.    

 

  

Metric Metric Definition key Col1 Col2 Col3 Col4
1 3 3113 3701 1645 0
2 3 1475 1591 1400 0
3 3 1182 1333 1448 0
4 1 1545 0 0 0
5 4 1427 1475 0 0
6 3 1182 1333 3072 0
7 3 1475 1591 1065 1186
8 3 1448 0 1400 0
9 3 1065 1186 3286 0

10 1 1664 0 0 0
11 3 1363 1427 3286 0
12 3 1065 1186 2956 0
13 3 2956 0 1120 0
14 3 1182 1333 980 1065
15 3 2947 2999 1065 1186
16 3 2852 0 1306 0
17 4 1065 1186 0 0
18 3 2947 2999 1306 0
19 3 1065 1186 980 1065
20 3 1363 1427 1448 0
21 1 1306 0 0 0
22 1 1645 0 0 0
23 3 1363 1427 3072 0
24 1 1167 0 0 0
25 3 2999 3113 1475 1591
26 4 1475 1591 0 0
27 3 2999 3113 2956 0
28 1 1448 0 0 0
29 3 1427 1475 1363 1427
30 2 1427 1475 0 0
31 3 1065 1186 1306 0
32 3 1306 0 1043 0
33 2 2947 2999 0 0
34 3 2999 3113 1591 1757
35 3 1363 1427 1545 0
36 3 2947 2999 1182 1333
37 3 1182 1333 1080 0
38 3 2885 2947 1182 1333
39 1 2956 0 0 0
40 1 1240 0 0 0
41 2 2825 2885 0 0
42 3 1363 1427 1645 0
43 3 1080 0 1043 0
44 3 1306 0 1080 0
45 3 1182 1333 1645 0
46 3 3113 3701 2947 2999
47 3 1400 0 1120 0
48 3 1591 1757 1645 0
49 3 1065 1186 1043 0
50 3 3072 0 1645 0
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CHAPTER 5: CLINICAL TRANSLATION: AUTOMATION OF BIOPSY ANALYSIS WITH 

DEEP LEARNING8 

Abstract 

Accurate, objective and automated grade diagnosis of cancer biopsies can reduce the burden on 

pathologists and speed up the clinical cancer detection and diagnosis. Infrared spectroscopic 

imaging has previously been applied for stain free tissue segmentation, but automated tissue 

analysis following tissue segmentation remains unexplored. In this study, using 148 patient 

cohort, we used infrared spectroscopic imaging assisted colon segmentation to determine the 

tumor grade. We achieved high specificity and sensitivity in tissue segmentation and grade 

classification, with 0.93 and 0.82 area under the curve (AUC) of the receiver operating 

characteristic curve (ROC) respectively. This is the first demonstration of infrared spectroscopic 

imaging based automated tissue assessment.  

Introduction 

In the United States, approximately 95,520 new colon cancer cases were estimated in 2017[1]. A 

definitive colon cancer diagnosis requires histopathological evaluation of the biopsy section by a 

pathologist. If malignancy is identified, tumor grade is determined on the basis of the percentage 

of malignant epithelium cells forming glands. Well differentiated tumors exhibit glandular 

structures in more than 95% of the tumor while poorly differentiated tumors form solid mass with 

less than 5% gland formation[277]. Tumor grade assessed in preoperative biopsies has 

prognostic value[14,278,279] and is associated with TNM stage[280,281]. Despite shown 

potential in determining patient prognosis, the clinical application of tumor grade has been limited 

due to lack of objective evaluation criteria[5,6].  

Deep neural networks based tissue segmentation and analysis is gaining traction[282] due to the 

need of automation and objective evaluation[5,6,283,284]. In colon cancer, this has been applied 

to segment colon tissue, identify nuclei from stromal and epithelial cell types[285], to characterize 

polyps[286], and to determine outcome[287]. These approaches typically utilize Hematoxylin and 

eosin (H&E) stained tissue images and the deep learning algorithms are based on morphometric 

criteria such as texture, structure and shape. When morphometry is used as a basis for primary 

tissue segmentation, additional issues are introduced. First, there is a requirement for tissue 

                                                
8 In preparation for publication as Tiwari, Saumya et al. “Clinical Translation: Automation of Biopsy Analysis with Deep Learning” 
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processing and staining. This is time consuming, and is susceptible to staining artifacts, 

experimental variation and location based variation. Second, the contrast generated by H&E 

stains is low and many tissue segments can stain identically. Infrared spectroscopic imaging can 

bypass these issues by utilizing both morphological as well as inherent biochemical differences 

in the tissue for segmentation and analysis.  

The infrared absorbance spectrum of a tissue captures the biochemical profile based on the 

absorbance of IR light by the functional groups present in the sample. In Fourier transform infrared 

(FT-IR) spectroscopic imaging, mid-infrared absorbance spectrum of each pixel of the tissue 

image is collected, thus enabling analysis of biochemical content in spatially specific manner[51]. 

Applications of FT-IR spectroscopic imaging have demonstrated high accuracy in supervised 

classification based segmentation of various tissue types, such as prostate[74], breast[288] and 

heart[186,289] and detailed reviews on the procedure, applications and methods can be found in 

the references cited herein[28,51,76,79,127,182,290].  

Following the tissue segmentation by IR spectroscopic imaging, the potential for automation of 

tissue analysis exists but has not been demonstrated so far. In this work, we aimed to enable 

automation in tissue analysis by determining the tumor grade. Using FT-IR spectroscopic imaging, 

we utilized inherent biochemical differences between tissue segments to accurately and 

reproducibly identify malignant and benign epithelium. Further, using the labelled tissue image, 

we achieved high accuracy in determining the grade of the tumor. For this, we extracted 

features[291,292] from a previously trained deep neural network AlexNet[293] to develop tumor 

grade classifier on IR histologically segmented images. With this approach, we show that a thin, 

unstained tissue slice can be imaged using infrared spectroscopic imaging and the resulting 

images can be processed through a completely automoated manner to render a final tumor grade 

assessment.  

Methods 

Data collection and segmentation 

The patient cohort used in this study to collect infrared imaging data comprised of 320 anonymous 

patients undergoing elective surgery for colorectal carcinoma. This cohort has been used 

previously[272] and described in detail in the cited reference as Cohort II. Sample preparation 

and infrared imaging of this cohort is described in the methods section in Chapter 4.  Briefly, 

paraffin embedded tissue microarrays were sectioned onto barium fluoride (BaF2) plates. These 
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sections were deparaffinized by hexane baths for 48 hours. Infrared images were collected on 

Agilent Stingray imaging system in high magnification mode with 1.1 µm pixel size at 4cm-1 

resolution. The noise in data was cleaned and baseline correction and normalization was 

performed based on previously described protocols[44,127]. The histological segmentation of the 

images annotated by our pathologist collaborator was performed with random forest supervised 

classification models and described in details in Chapter 4.  

Tumor grade determination with deep learning neural net transfer 

For training the tumor grade classifier, 20 poor grade and 50 moderate-well grade patient images 

were used. These images were stored in .jpg format and rotated 0, 90, 180 and 270 , flipped 

vertically and finally rotated 30 to expand the training set. This resulted in 16-fold expansion of 

the training set. The number of training examples corresponding to poor grade and moderate-well 

grade cases were equalized such that 320 randomly chosen moderate-well and 320 poor grade 

images were used to train the classifier. AlexNet[293], which is a deep convolutional neural 

network was used for the feature extraction task (figure 5.1a). The architecture of the network is 

described in the cited literature[293]. Since the network requires 227x227x3 images, full core IR 

based histology classified images were resized to 227x 227 pixels and saved in .jpg format.  

Network activations of second fully connected layer were used along with differentiation grade 

label (figure 5.1b) to develop support vector machine (SVM) classifier (figure 5.1c). Differentiation 

grade classifier was calibrated on an independent set from 78 patient images of which 18 were 

poor grade and 60 were moderate-well grade.  Calibration dataset was prepared in the same 

manner as the train set resulting in 288 images of poor and moderate-well categories each. 

Hyperparameters associated with SVM classifier, namely box constraint and kernel scale were 

optimized to minimize loss and prevent overfitting. Finally, for independent set, all patient images 

were used but rotated 45 to generate independent images.  

Results and discussion 

Identification of spectral regions of importance 

In developing a supervised classification model to segment colon tissue, the spectral regions 

cluster on the basis of functional differences between tissue segments.  The difference between 

these clusters can be understood in terms of the spectral regions that were most frequently 

involved in defining the metrics for these clusters (figure 5.2). A similar idea has previously been 

described as spectral barcoading, where IR spectra is used directly to identify discriminative 
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frequencies by unsupervised analysis[255]. From this analysis, the majority of fingerprint region 

between ~982-1580 cm-1 and CH stretching region between 2800-3000 cm-1 clustered together 

as C1 while OH-NH region between ~3000-3700 cm-1 and amide I region clustered together as 

C2. From the metric expression patterns of the classes in C1 and C2, it is clear that further 

association of spectral metrics exist. While 50 metrics is a good size of features to develop the 

classifier, it indicates that there is possibility of trimming down the dataset further. This can be 

done by identifying the features that are of least importance in supervised classification and 

retraining the algorithm with trimmed dataset and is demonstrated in the following section.  

Differentiation grade classifier achieves high specificity and sensitivity on independent validation 

set 

Following highly specific and sensitive tissue segment identification in infrared spectroscopic 

images of the colon, we aimed to automate diagnosis of tumor grade (figure 5.3a). For this, we 

used a machine vision based approach where a set of images is presented to the computer with 

labels, and training is performed by using specific features extracted from the image. With more 

than a million images used for training by some networks[293], deep learning based approaches 

eliminate the need to “hand draw” or manually design the features while improving classifier 

performance[294]. The features determined by deep convolutional neural networks to be optimum 

for image classification tasks are oftentimes transferable to image recognition of new objects, 

known as feature extraction[291,292]. For tumor grade classification, we utilized previously 

trained deep convolutional neural network known as AlexNet[293]. The architecture of this 

network is described in detail in the cited reference. Briefly, the deeper end of this network 

contains three fully connected layers from where features of a 3D image (227x227x3) can be 

extracted in the shape of 4096x1, 4096x1 and 1000x1 respectively. For developing the tumor 

grade classifier, we tested all three layers, and found that the second fully connected layer 

resulted in the least classification loss, leading to a feature vector of size 4096. Using these 

features, a support vector machine classifier was developed. Hyperparameters were optimized to 

determine the kernel scale value of 2.5 and box constraint value of 1e-6 (supplementary figure 

5.1). With this classifier, we achieved 0.83 training ROC AUC, 0.86 calibration ROC AUC and 

0.82 ROC AUC on an independent patient validation set comprising of 148 patient biopsy images 

(figure 5.3b). It is interesting to note that we have used full tissue microarray core images to 

perform classification instead of image patching (figure 5.3b). Upon randomizing the labels, the 

training AUC dropped to 0.43 which indicated that the performance of the classifier was label 

specific. We note that there are other permutations of classification algorithms and 
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hyperparameters that can achieve similar results.  

Finally, we predicted the tumor grade at the optimum operating point identified from the training 

ROC curve. The confusion matrices from this prediction are shown in table 5.1. For the validation 

set, we obtained 69% and 84% accuracy in classifying moderate/well grade and poor grade 

tumors respectively. There is an opportunity to improve this classification further by using a larger 

dataset and increasing the diversity of images. To adapt previously developed networks, we also 

downsampled IR classified images by approximately a factor of 5. It is possible that this 

suppresses some of the discriminatory features, and this can be tested by using image patch 

based approaches that do not require downsampling of image, but is much more computationally 

expensive. We have shown that using previously defined features can give us accurate image 

classification, and developing deep neural networks with large number of histology images could 

tailor the features further to identify histologically relevant features.  

Conclusions 

Histopathology based diagnosis is a gold standard for several diseases including cancer. There 

is an increasing burden on pathologists to perform histologic assessment, with need to perform 

time-constrained accurate assessments during surgeries. In one of the earliest work in this area, 

2047 sample set cohort was classified by 22 histopathology departments and showed statistically 

significant differences between observers, possibly arising from systematic differences in the 

techniques of assessment[5]. A recent study compared both inter and intra observer agreement 

in tumor grade determination[6]. While intra-observer agreement was substantial with Cohen’s κ 

0.704, lower inter-observer agreement was found with Fleiss’ κ 0.351. Most inter-observer 

agreement was found in classifying well differentiated cases and least inter-observer agreement 

was found in classifying moderately differentiated cases. There is a significant interobserver 

variability in assessing tumor grade. Inter-observer agreement in determining tumor grade can be 

improved by using two grade system instead of three[6], and by establishing standardized 

objective evaluation criteria[283,284]. Computational approaches could assist such assessments, 

and reduce pathologist burden by identifying areas of interest within whole slide images. 

Additionally, computational approaches can provide a means towards histopathologic 

assessment in resource-poor settings[295]. 

In this work, we showed tumor grade assessment of colon biopsy samples using infrared 

spectroscopic imaging based machine learning models. Using a large patient cohort, we 
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demonstrated the reproducibility and generalizability of our models. The use of infrared 

spectroscopic imaging offers three fold advantages in comparison to conventional approaches. 

First, due to the biochemical sensitivity of infrared spectroscopy, highly accurate tissue 

segmentation into a large number of classes can be achieved. Second, IR classified images 

provide an objective and biochemically relevant evaluation criteria for determining tumor grade. 

Third, using IR spectroscopic imaging to analyze biopsies, we eliminate the need of staining the 

tissue, staining associated errors, and preserve the tissue sample for further analysis. With the 

development of discrete frequency infrared imaging instruments[256,289], we are closer to the 

goal of translating this technology to clinics, enabling rapid imaging and tissue assessment.  
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Figures 

 

Figure 5.1: Schematic of developing deep learning based tumor grade classifier. (a) A 

pretrained ImageNet convolutional neural network, which was trained on more than a 

million images and is able to identify more than a thousand image categories was used for 

this work. Specifically, the second fully connected layer, Fc7 was used to calculate 

features from the input images. (b) Input images were obtained from supervised 

classification of colon infrared spectroscopic images. (c) Tumor grade classifier was 

developed using IR segmented images and features from ImageNet classifier.   
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Figure 5.2: Frequently used areas from the IR spectrum for histologic segmentation 

classifiers.  
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Figure 5.3: Deep learning based tumor grade classification. (a) Examples of normal, well 

differentiated, moderately differentiated and poorly differentiated cases. The epithelial 

organization is increasingly disordered in higher grades. (b) Receiver operating 

characteristic curves of deep learning based tumor grade classifier show high specificity 

and sensitivity in classification. (c) Examples of IR histology classified images used to 

develop tumor grade classifier. 
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Supplementary Figure 5.1: SVM classifier optimization  
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Table 

Table 5.1:  Confusion matrix of differentiation grade classifier. The training set had equal 

number of Moderate/Well and Poor differentiation grades. The classification decisions 

were based on the optimum operating point on the receiver operating characteristic curve, 

considering poor differentiation grade as the positive class. 

 

 

 

  

Classified →

Ground truth ↓

Moderate/Well 237/320 (74%) 83/320 (26%)

Poor 61/320 (19%) 259/320 (81%)

Classified →

Ground truth ↓

Moderate/Well 76/110 (69%) 34/110 (31%)

Poor 6/38 (16%) 32/38 (84%)

Training

Moderate/Well Poor

Validation

Moderate/Well Poor
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CHAPTER 6: CONCLUSIONS 

Summary 

Prognosis specific features are essential in the management of colorectal carcinoma. 

Morphometry based pathology is used for detection and diagnosis, but performs weakly in terms 

of prognosis, owing to large interobserver variability and lack of molecular information. In this 

work, we have developed a quantitative chemical imaging-based approach to determine patient 

prognosis. Our work presented here has three significant implications: 

• First, using infrared chemical staining, we demonstrate that patient-independent colon 

tissue segmentation can be performed without labels or dyes, providing images rapidly 

and opening the potential for in situ pathology within a human. The advancement 

presented in this work is the use of high magnification infrared imaging systems that 

provide near single cell resolution. This high spatial resolution data is coupled with 

sophisticated statistical and computational methods that ensure that patient 

heterogeneity, as well as experimental variations, are not considered while segmenting 

the tissue image. This approach consistently gave us high specificity and sensitivity when 

tested on independent samples.  

• Second, we have developed a reliable and objective method to evaluate tumor-tumor 

microenvironment interaction using quantification of infrared spectroscopic images. The 

innovation in this project is that we have developed computational models to analyze 

chemical imaging data and provide precise patient prognostic information via simple color-

coded maps without the need for human analysis. The morphometric patterns of cellular 

invasion obtained through digital histology, combined with biochemical characteristics of 

stroma in the microenvironment gives a robust prognostic marker. While we have focused 

on colorectal carcinoma in this project, this approach is widely applicable to other types of 

cancers and has the potential to provide prognostic information in cancers where 

prognosis markers are not currently available.  

• The third implication is that we have developed a novel deep learning based automation 

of the tumor grade. Using infrared chemical imaging based machine learning eliminates 

the need for tissue processing and manual examination, thus enabling rapid analysis of a 

large number of images. This development can allow early translation of infrared 

spectroscopic imaging as an advanced histopathology tool, opening up avenues for better 

outcome prediction and personalized tissue analysis. 
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Future directions 

Subtyping stromal cell populations 

Immune cells and stromal cells are the major cellular constituents of the tumor microenvironment, 

and each exerts an effect on the growth of the tumor. The role of lymphocytes, macrophages, 

dendritic cells, fibroblasts and endothelial cells in the modulation of biochemical and mechanical 

signals that can initiate, and help in growth and proliferation of tumor has been reviewed and 

explored before in the noted references and references therein[10,296–303]. While the biological 

effect of the cells in the tumor microenvironment is well understood, it is challenging to profile the 

changes undergone by this great variety of cells without the use of multiple probes in tissues. For 

ex-vivo tissue analysis, such as the excision biopsies, previously established analysis systems 

using genomics[304–306], proteomics[307,308], microfluidics[211] and spectroscopy[74] are 

adapted to study the cellular response in the tumor microenvironment. Chemical imaging can 

fulfill the requirement of technology for obtaining spatially specific biomolecular changes. Infrared 

spectroscopy can be used to measure early changes in fibroblasts in response to stimulation with 

cancer mimicking cellular co-culture system[158,309] which are discussed previously in chapter 

3.  Recently, proliferative and senescent fibroblast subgroups were differentiated using Raman 

and infrared spectroscopy, with changes majorly associated with degradation and storage of 

proteins and lipids, and only a small fraction of variation attributed to nucleic acids and 

carbohydrates[310]. Although many established techniques provide data without spatial 

information, our work presented here can comprehensively capture molecular changes and could 

be a critical piece in improving the systems pathology model further.   

Deep neural networks to analyze infrared spectroscopic imaging data 

Deep neural networks are characterized by a large number of hidden layers that are especially 

useful to capture complex high-level interactions between the input features[293]. Landmark 

works in analyzing infrared spectroscopic imaging data towards disease analysis have used 

simpler supervised classification models[45,74], relying on hand designing features which were 

then used for classification tasks. Such approaches are limited by spectral interpretation of the 

differences between classes and often only capture linear relationships in data. With a “large-

enough” sample size, deep neural networks could work as “end-to-end,” taking in raw data and 

learning inherent connections between the variates to perform prediction. We anticipate that with 
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the surge of high-speed infrared imaging instruments[43,45], end to end deep learning models 

will be able to take into account complex spatio-spectral features to determine prognosis.  

Multi-scale systems pathology  

Genomic revolution has provided molecular data, but we are still far from being precise in 

determining the best therapy and response of the disease. Molecular probing such as 

fluorescence in situ hybridization (FISH), immunohistochemistry (IHC), polymerase chain reaction 

(PCR) add vital pieces of information but fail to provide the full picture. Cancer development is a 

function of genetic and microenvironmental changes. The interaction of tumor cells with its 

surrounding environment comprising of stromal cells, immune cells and stroma is continually 

evolving and adapting in response to therapies.  While most systems pathology concepts 

presented in the past have suggested integration of available data at many scales to develop a 

computational model for modeling diseases, they do not typically include tumor microenvironment 

factors in the analysis. This omission could be because our understanding of the impact of the 

tumor microenvironment on cancer progression as well as the technology to probe 

microenvironment has only developed in the past few years, much after systems pathology 

models were first explored. From the perspective of systems pathology, it is necessary to identify 

the sources of perturbations, as well as ways of quantifying these changes to be able to feed the 

data in computational models. From our work, we demonstrate that infrared spectroscopic 

imaging accurately profiles tumor microenvironment changes in the biopsies. We anticipate that 

when integrated with data obtained from genomics and proteomics, we will be able to provide a 

comprehensive systems pathology analysis of the patient.  

Personalized analysis 

Our current work enables complete automation of tissue analysis by using IR spectroscopic 

imaging to determine patient prognosis. The final step is an integration of engineering and 

medicine, opening up avenues for rapid digital histopathology and personalized tissue analysis. 

It is likely that each patient is uniquely characterized by their bio-physiological system. Thus, 

personalized prediction can be enabled by capturing complex interactions between several 

components of the system, and combining them to   perform comprehensive systems pathology. 

By incorporating patient information with spatially relevant biochemical information, there is 

potential to enable personalized disease analysis.  
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