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Abstract 

 

In this thesis, we propose a novel approach to achieve simultaneous acquisition of high resolution 

MRSI and fMRI in a fast scan. The proposed acquisition scheme adds an EVI-based sequence 

module into a subspace-based imaging technique called SPICE (SPectroscopic Imaging by 

exploiting spatiospectral CorrElation). With the features of ultrashort TE/short TR, no water and 

lipid suppression, extended k-space coverage by prolonged EPSI readout and highly sparse 

sampling, the data acquisition captures both the spatiospectral information of brain metabolites 

and the dynamic information of brain functional activation. The data processing and reconstruction 

are based on the subspace modeling and involve pre-trained basis functions and spatial prior 

information. Moreover, the complementary information between fMRI and MRSI is utilized to 

further improve the quality of both fMRI and metabolic imaging. The in vivo experimental results 

demonstrate that the proposed method can achieve whole brain covered, simultaneous fMRI at 

spatial resolution of 3.0 × 3.0 × 1.8 mm, temporal resolution 3 seconds, along with metabolic 

imaging at nominal spatial resolution of 1.9 × 2.3 × 3.0 mm in a single 6-minute scan. The high-

quality metabolic maps, spatially resolved spectra, resting-state functional networks and task time 

courses corresponding to the task events can all be obtained in the in vivo scans. This technique, 

when fully developed, will become a powerful tool to study the brain metabolism and function 

activities.   
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1.  Introduction 

1.1   Motivation 

Functional magnetic resonance imaging (fMRI) has been employed in a huge number of 

studies in cognitive neuroscience, clinical psychiatry, phycology, presurgical planning and 

therapy monitoring. It depicts the changes of blood oxygen level dependent (BOLD) signal 

modulated by brain activation and thus provides a powerful tool for noninvasively 

investigating the functional connection of the human brain. Magnetic resonance 

spectroscopic imaging (MRSI) is a complementary technique that provides the 

spatiospectral function of specific molecules. With the capability to map the distribution 

of biologically important molecules like NAA, creatine and glutamate, it promises to make 

a significant contribution in brain metabolism study, disease early detection, and 

characterization and evaluation of clinical therapeutic efficacy.   

fMRI and MRSI provide rich complementary biological information about the brain 

metabolism, related to cognitive and chemical dynamic processes. Both techniques reflect 

the health status of the brain in different respects. Currently, fMRI and MRSI experiments 

are performed in two separate scans using different data acquisition schemes. More 

specifically, the most widely used fMRI protocols employ the gradient-echo based, multi-

slice, echo planar imaging (EPI) sequence to collect a sequence of T2*-weighted images 

[1]–[6]. The spatial resolution is about 3 mm, temporal resolution is about 3 seconds and 

the entire scan usually lasts about 8-10 minutes. But such an acquisition scheme is 

vulnerable to the chemical shift effect, field inhomogeneity, field fluctuation and 

susceptibility effect [5]–[6]. To obtain the spatiospectral functions of different molecules, 

MRSI techniques need to acquire both spatial and spectral encoding, thus resulting in low 

spatiotemporal resolution [7]–[10]. Most of the current MRSI techniques are based on 

chemical shift imaging (CSI) or echo planar spectroscopic imaging (EPSI) trajectory which 

usually result in spatial resolution of centimeters and total scan time on the order of half an 

hour [8], [9], [11]–[13]. Furthermore, the low signal-to-noise ratio (SNR), large 



2 

 

overwhelming tissue water and lipid signals along with the poor spatial resolution and long 

acquisition time have made the MRSI applications very challenging and limited. Given 

these technical limitations, there have been few studies linking brain metabolism and 

functional activities using fMRI and MRSI. But the connection or combination of 

metabolic imaging and functional imaging has been the dream of MR scientists for a long 

time. The current attempts to combine fMRI and MRSI are largely limited in the studies 

using single voxel spectroscopy (SVS) and called functional MR spectroscopy (fMRS) 

[14]–[17]. In these studies, the investigations are limited in a single voxel with size of 

centimeters, which suffers from severe partial volume effect and limited brain coverage 

[14]–[23]. Moreover, the fMRI scans are performed separately with the fMRS scans, which 

can introduce bias in the observation of subject functional process during the fMRS scans.  

Over the past decades, significant efforts have been made to overcome these difficulties. 

For example, the parallel imaging technique [24], [25] which utilizes the multi-coil 

encoding information, the simultaneous multi-slice technique which excites multi-slice in 

one TR [26], the more efficient sampling trajectory like echo-planer trajectory, spiral 

trajectory and concentric ring trajectory and various advanced reconstruction methods have 

been proposed [11], [27]. Especially, a subspace model proposed by Professor Zhi-Pei 

Liang [28], [29] broke the limitation of traditional Fourier imaging framework and makes 

fast, high resolution imaging possible. This subspace modeling has been developed into a 

fast imaging scheme by incorporation with fast data acquisition, constrained 

reconstruction, and physical and learning based spectral prior information, which is able to 

achieve ultra-fast MR spectroscopic imaging by the name of SPICE (SPectroscopic 

Imaging by exploiting spatiospectral CorrElations). With the SPICE technique, one can 

achieve high-resolution MRSI data at around 3×3×3 mm3 in a single 5 minute scan. Also, 

the unsuppressed water spatiospectral signals can provide various information, e.g. field 

drift, field inhomogeneity map, relaxation map (T2*), susceptibility distribution (QSM) 

[30] and so on.  

This thesis work aims at extending the technical progress of SPICE and developing a new 

data acquisition and reconstruction scheme for high-resolution simultaneous mapping of 

brain metabolism and function through simultaneous fMRI and MRSI.  
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1.2   Main Results 

In this work, we propose a new data acquisition and processing framework by extending 

the subspace-based imaging framework to simultaneously acquire high resolution fMRI 

and MRSI signals with high speed. The main results of this work are summarized as 

follows:  

First, we propose a novel data acquisition scheme which enables the acquisition of both 

fMRI and MRSI in the same time scale. This acquisition can achieve MRSI of nominal 

spatial resolution at 2.0×2.4×3 mm3 and fMRI of spatial resolution at 3 mm3 and 3 second 

temporal resolutions in a 6-minute scan, covering the whole brain with FOV as 

230×230×72 mm3.  

Second, with the proposed data acquisition scheme, we used the subspace modeling and 

optimization algorithms to effectively reconstruct the metabolite spatiospectral functions 

from the water-unsuppressed MRSI signals and the fMRI images from the highly sparse 

sampled EVI data.  

Finally, the proposed approach has been evaluated using in vivo experimental data, which 

shows that the high quality, high resolution metabolic mapping as well as both the resting-

state functional networks and the task based functional activities can be obtained 

successfully. This unprecedented imaging capability to simultaneously map brain 

metabolism and brain function will become a powerful tool in both scientific and clinical 

settings.  

1.3   Organization of the Thesis  

This thesis is organized as follows:  

Chapter 2 reviews the literature related to the development of magnetic resonance 

spectroscopic imaging (MRSI), functional magnetic resonance imaging (fMRI) and 

functional magnetic resonance spectroscopy (fMRS) which are the primary tools in the MR 

field to study the brain metabolism and functional activities. Also, the basic mathematical 
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tools for subspace modeling we used in this work, known as partial separability (PS) model 

and low tensor model, are introduced. Then, the recently proposed fast high-resolution 

magnetic resonance spectroscopic imaging technique, known as SPICE, is presented.  

Chapter 3 introduces the details of the data acquisition scheme used for simultaneous 

acquisition of both MRSI and fMRI signals, which include the pulse sequence design, 

timing arrangement, key parameter and features, k-space sampling and trajectories for both 

MRSI and fMRI signals collection. Moreover, the detailed experimental setup and 

protocols for both resting-state and task functional experiments are presented.  

Chapter 4 describes the image reconstruction algorithms and processing methods. It 

includes the basic subspace signal model that most of the processing steps are based on, 

the detailed problem formulation and solutions for the signal reconstruction for both fMRI 

and MRSI datasets, and also a brief description of the potential of this technique to utilize 

the complementary information between fMRI and MRSI to enable improvement of 

reconstruction quality and removal of signal artifacts.  

Chapter 5 shows the results can be obtained using the proposed approach. The high quality 

MRSI results including the reconstructed metabolite spatial distribution and spatially 

resolved spectra, as well as the fMRI results including resting-state functional networks 

and the time course with corresponding network structures, are all presented.  

Chapter 6 concludes this thesis.  
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2.  Background 

2.1   MRSI, fMRI and fMRS 

MRSI is the technique to acquire the spatiospectral functions of the imaging objects. 

Different from the traditional magnetic resonance imaging (MRI) which aims at acquiring 

spatial distribution, MRSI needs to encode both spatial and spectral information. The extra 

dimension leads to longer scan time and lower resolution. The MRSI signals can be 

modelled as:  

𝑠(𝒌𝒏, 𝑡𝑚) = ∫ ∫ 𝜌(𝒓, 𝑓)𝑒−𝑖2𝜋𝑓∙𝑡𝑚𝑒−𝑖2𝜋𝒌𝒏∙𝒓𝑒−𝑖2𝜋𝛻𝑓(𝒓)∙𝑡𝑚𝑑𝑓𝑑𝒓
𝑊𝑉

+ 𝜉 (2.1) 

Most of the interest in the 1H-MRSI community focuses on investigating the spatiospectral 

functions of specific molecules in the brain like N-acetyl-aspartate (NAA), creatine (Cr), 

choline (Cho), glutamine (Glu) and so on. The concentrations of these molecules are 

usually several orders of magnitude lower than that of tissue water and lipid, so the signal-

to-noise ratio (SNR) is low in traditional scans. The low SNR, low resolution, long scan 

time and large nuisance signals from tissue water and lipid have greatly limited the 

development and application of MRSI technique. Great efforts have been made by the 

research community to push this field forward. For example, the following approaches 

have been proposed to overcome those difficulties: fast scanning techniques like echo-

planar spectroscopic imaging (EPSI) [11] and spiral spectroscopic imaging [27]; sparse 

sampling methods including SLIM (spectral localization by imaging) [31], parallel 

imaging using information from multi-coil encoding [24], [25], compressed sensing [32], 

low rank modeling [33] and super-resolution [34]; and advanced excitation and localization 

methods like PRESS, STREM, LASER and semi-LASER [35]–[38]. However, the 

resolution of the state-of-the-art methods is still around a centimeter and the scan time is 

about half an hour.  
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fMRI is another complementary imaging technique used to study the brain function non-

invasively. It has been employed in a huge number of studies in cognitive neuroscience, 

clinical psychiatry, phycology, presurgical planning and therapy monitoring. It depicts the 

changes of blood oxygen level dependent (BOLD) signal modulated by brain activation 

and thus provides a powerful tool for investigating the functional connection of the human 

brain. Current fMRI techniques are mostly based on the multi-slice EPI technique, which 

can collect one image of the brain in 1-3 seconds. But the EPI sequence suffers from 

chemical shift, geometric distortion, and signal loss. In the past 30 years, many techniques 

have been developed to increase the spatiotemporal resolution, remove the artifacts and 

analyze brain functions. These include fast imaging acquisition such as simultaneous multi-

slice acquisition and spiral trajectory, reconstruction approaches such as parallel imaging, 

compressed sensing, and low-rank modeling [24], [25], [32], and analysis methods such as 

the seed-based method, ICA-based method and graph-based method [39]–[41]. Taking the 

ICA method as an example, the fMRI image series can be expressed as:  

𝑠(𝒙, 𝑇) = ∑ 𝑊𝑖(𝒙)𝑋𝑖(𝑇)

𝐼

𝑖=1

 (2.2) 

where 𝐼 is the total number of independent components, the temporal components {𝑋𝑖(𝑇)} 

are statistically independent with each other and the {𝑊𝑖(𝑥)} are the spatial coefficients of 

each independent component and thus can represent the functional networks. 

Functional MR spectroscopy (fMRS) is the technique currently used for studying the 

neurochemical changes in response to the brain functions. It repeats acquisition of single 

voxel spectroscopy (SVS) of the human brain when the subjects are instructed to perform 

specific tasks or receive stimulation. Thus, it can detect the dynamic changes of metabolites 

or neurochemicals when the brain goes through functional changes. Many studies of 

metabolism and brain function coupling using fMRS have achieved exciting results [14]–

[19], [21]–[23], [42]–[45]. However, the current fMRS technique is limited by its low 

spatial resolution (around 2 centimeters), small brain coverage (only single voxel 

measurements) and low SNR. Therefore, the studies usually involve a group of subjects to 

achieve enough statistical power. Also, to localize the functional region and detect brain 
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functional process, fMRI scans are performed separately, which may cause bias between 

the detected functional process by fMRI and the actual one during fMRS.  

2.2   Partial Separability and Subspace Model 

In this section, we review the theoretical foundation for the subspace-based imaging 

framework, specifically, the partial separable function (PSF). Partial separability, proposed 

by Professor Zhi-Pei Liang in 2007, leads to the development of the subspace-based 

imaging technique and its applications in dynamic imaging and spectroscopic imaging 

[29].  

Consider a multivariate image function 𝑓(𝑥1, 𝑥2, … . , 𝑥𝑑), which is common in current MR 

imaging techniques like dynamic imaging and spectroscopic imaging. The dimensions can 

include 3 spatial dimensions, 1 or 2 temporal dimensions, 1 or 2 spectral dimensions, multi-

channel and even multi-contrast, depending on the applications. Under these problem 

settings, the encoding number needed for imaging increases exponentially when the 

dimension increases, which will lead to extremely long scan time and low resolution. To 

overcome the difficulties, how to represent the image functions in a most efficient way and 

how many true degrees of freedom are needed to represent the signals become critical 

issues. The partial separability model is one of the most influential models. It represents 

the multi-dimensional functions as:  

𝑓(𝑥1, 𝑥2, … , 𝑥𝑑) = ∑ 𝜙𝑙,1(𝑥1)𝜙𝑙,2(𝑥2) ∙ ∙ ∙ 𝜙𝑙,1(𝑥1)

𝐿

𝑙=1

 (2.3) 

which is called 𝐿-th separable. The model always holds when the order 𝐿 goes to infinity. 

In the imaging problem, the order 𝐿 is usually smaller than the 𝑥1 × 𝑥2 × ∙∙∙ × 𝑥𝑑, which 

means that the underlying degrees of freedom to represent the imaging functions are fewer 

and the encoding number needed can be reduced. Usually, the 𝑥1, 𝑥2, … , 𝑥𝑑  can represent 

the variables for different physical meaning. For example, in spectroscopic imaging, 𝑥1 

can represent the spatial location (including 3 dimensions 𝑥, 𝑦 and 𝑧) and 𝑥2 can represent 
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the specific frequency. In this case, we usually present the spatiospectral function in (𝒌, 𝑡) 

space. Then, the partial separability of the signal can be expressed as:  

𝑠(𝒌, 𝑡) = ∑ 𝑐𝑙(𝒌)𝜑𝑙(𝑡)

𝐿

𝑙=1

 (2.4) 

which is true if and only if the following conditions hold:  

Assume that 𝑠(𝒌, 𝑡)  is defined over space 𝒦 × 𝒯  and 𝒦 = {𝑘1, 𝑘2, … , 𝑘𝑛}  and 𝒯 =

{𝑡1, 𝑡2, … , 𝑡𝑛}, denote:  

𝐂 = [

𝑠(𝒌𝟏, 𝑡1) 𝑠(𝒌𝟏, 𝑡2) ⋯ 𝑠(𝒌𝟏, 𝑡𝑚)
𝑠(𝒌𝟐, 𝑡1) 𝑠(𝒌𝟐, 𝑡2) ⋯ 𝑠(𝒌𝟐, 𝑡𝑚)

⋮ ⋱ ⋮
𝑠(𝒌𝒏, 𝑡1) 𝑠(𝒌𝒏, 𝑡2) ⋯ 𝑠(𝒌𝒏, 𝑡𝑚)

] (2.5) 

If and only if 𝐂 is rank 𝐿 and 𝐿 < min {𝑚, 𝑛}, then equation (2.4) holds.  

This model implies that if the imaging function is partial separable with a small order 𝐿, 

then the parameters we need to represent the spatiospectral functions will significantly 

reduce, which enables a subspace-based fast imaging scheme for MRSI, which is known 

as SPICE [28], [46].  

2.3   SPICE  

The SPICE framework includes several key features to enable rapid, high resolution 

spectroscopic imaging: 1) Extended (k,t) space coverage using sparse sampling to achieve 

high spatial resolution; 2) Pre-determined spectral basis functions; 3) Constrained 

reconstruction on sparsely sampled data by involving bases functions and spatial prior 

information.  

As shown in Fig. 2.1, the imaging data are acquired with fast EPSI sequence to achieve 

large k-space coverage but temporally under-sampled. The training data to derive basis 

functions can be obtained with various acquisition schemes. The example shown in Fig. 

2.1 is a CSI sequence which acquires MRSI signals in high temporal resolution but low 



9 

 

spatial resolution. The estimation of the basis functions can be done by SVD based method 

[28] or machine learning. The reconstruction from the sparse data is done by estimating 

spatial coefficients in the subspace modeling:  

�̂� = arg min
𝑪

||𝒅 − Ωℱ𝐵(𝑪𝚽)||
2

2
+ 𝜆𝑅(𝑪) (2.6) 

where 𝒅, 𝑪, 𝚽 are matrix representations of measured sparse data, spatial coefficients to 

be estimated and pre-determined bases functions, respectively. The R is a regularization 

function to impose any valid prior information. Then the metabolite spatiotemporal 

functions can be composed as equation (2.4).  

 

 

Figure 2.1: An example of the acquisition scheme for SPICE. Left figure: a CSI sequence 

to acquire the MRSI signal with high temporal resolution but low spatial resolution, which 

is used for estimating the spectral bases functions. Right figure: an EPSI sequence to 

achieve the MRSI signals with large k-space coverage but sparse sampling in the temporal 

direction.  
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3.  Data Acquisition 

In this chapter, we present the proposed data acquisition scheme to enable the simultaneous 

acquisition of fMRI and MRSI signals of the human brain in high resolution. The details 

about fMRI-MRSI interleaving, sparse sampling for fMRI and MRSI, and the 

implementation for in vivo studies are included.  

3.1   Interleaved Scheme for fMRI and MRSI Acquisition  

In the proposed data acquisition scheme, the fMRI and MRSI signals are acquired in an 

interleaving fashion (as shown in Fig. 3.1). Interleaving means that the fMRI and MRSI 

signals are collected in different TRs. We first collect 𝑁1 TRs for MRSI, then 𝑁2 TRs for 

fMRI, then 𝑁1 TRs for MRSI and so on. This cycle repeats until the end of the scan. With 

this hybrid fMRI/MRSI acquisition strategy, the fMRI and MRSI signals are acquired in 

the same time scale, which achieves simultaneity. The key points for designing this hybrid 

fMRI/MRSI scheme include: 1) No water suppression for both fMRI and MRSI; 2) length 

of TR; 3) choice of 𝑁1 and 𝑁2; 4) choice of sequence type for collecting fMRI and MRSI 

signals.  

1) As we know, the intensity of metabolite signals like NAA, creatine are several orders of 

magnitude lower than that of water due to the low concentrations of these molecules. So, 

in typical MRSI experiments, water suppression is usually required. However, the fMRI 

signals originate from the BOLD effect, which is the changes of water signals due to 

functional modulation. Suppression of the water signals in MRSI will also suppress the 

fMRI signals. Therefore, in this sequence, no water suppression is employed, which makes 

it possible to acquire the fMRI and MRSI signals simultaneously. Instead of using a long 

spectral selective pulse chain to suppress water signals physically [47], the removal of 

water signals is done using a signal processing tool [48]. The elimination of water 

suppression also enables us to achieve a very short TR for both fMRI and MRSI.  
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Figure 3.1: The proposed data acquisition scheme for collecting fMRI and MRSI signals 

in an interleaving fashion. A set of 𝑁1 TRs is for sampling MRSI signals and then a set of 

𝑁2 TRs for fMRI signals. The cycle of fMRI and MRSI is repeated until the end of the 

scan. The sequence for MRSI acquisition is based on EPSI trajectory and the sequence for 

fMRI is based on EVI trajectory.  

 

2) The choice of TR is not a trivial issue. For MRSI, different TRs have different SNR 

efficiency. As mentioned above, the SNR of metabolite signals is usually very low, so the 

choice of TR must take the SNR efficiency into account. The calculated result of SNR 

efficiency of an FID-based MRSI sequence is shown in Fig. 3.2. The TR larger than 100 

ms can guarantee a good SNR efficiency and the peak point appears at around 300 ms. For 

fMRI, the TR values in the typical EPI-based sequence are usually less than 100 ms. It 

should be noted that the TR here is mentioned as time between two neighboring excitations 

but not neighboring excitations on the same volume as is its typical definition. The 

advantages of short TR include higher temporal resolution and weaker geometric distortion 

and susceptibility effect. However, in this interleaved sampling scheme, the values of TR 

for MRSI and fMRI need to be the same. Otherwise, it will destroy the steady state built 

for both fMRI and MRSI. Designing the sequence requires finding a good tradeoff.  
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Figure 3.2: The SNR efficiency curve (for NAA signal) calculated based on the setting of 

FID-based MRSI sequence: T1 = 1400 ms, T2 = 240 ms, TE = 4 ms, BW = 167 kHz, dt = 

1.76 ms, FA = Ernst angle.  

 

3) The choice of 𝑁1 and 𝑁2 mainly depends on the temporal resolution desired for fMRI. 

The temporal resolution of fMRI depends on two major factors: frequency of BOLD 

signals and enough frames for statistical power. As we know, the frequency of BOLD 

signals is around 0.01~0.1Hz, so according to the Nyquist principle, the smallest temporal 

resolution of fMRI should be 5 seconds. In a typical fMRI sequence, the temporal 

resolution is around 3 seconds. Moreover, to have enough statistical power to separate the 

BOLD signals from physiological signals and also draw conclusions, typical fMRI 

experiments last for around 8 minutes and result in more than 150 frames. So the 

requirement of 𝑁1 and 𝑁2 should be:  

 (𝑁1 + 𝑁2) × 𝑇𝑅 ≤ 3 𝑠𝑒𝑐 

4) The sequences used for MRSI and fMRI are discussed in the following sections. 

Basically, they should both be volume excitation so that the steady state can be kept. And 
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from the consideration of scanning speed and efficiency, the sampling of MRSI is based 

on EPSI trajectory and the sampling of fMRI is based on EVI trajectory.   

3.2   SPICE-Based Sequence for MRSI Acquisition  

As shown in Fig. 3.1, the sequence for acquisition of the MRSI signals is based on the 

SPICE sequence [28], [46] which uses an EPSI trajectory. However, the sequence is 

distinguished from the typical EPSI sequence for MRSI in the following aspects:  

1) No water and the lipid suppression. As mentioned in section 3.1, the MRSI acquisition 

eliminates the suppression pulses, which enables the simultaneous acquisition of both 

MRSI and fMRI. Maintaining the water signals also provides lots of advantages. For 

example, the water signal can work as a reference for metabolite signals to perform 

absolute spectral quantification. Moreover, the spatiospectral functions of water and lipid 

signals can provide the high-resolution field map and lipid distribution to help fMRI signals 

to overcome chemical shift effect and geometric distortion due to the field variation. There 

are also potentials in extracting more information in water signals without any additional 

acquisition effort [30].  

2) EPSI readout on FID signals. EPSI readout simultaneously encodes both spatial and 

spectral dimension, thus it can achieve a higher efficiency and speed than traditional CSI 

based readout, which only encodes the spectral dimension for each TR. One potential 

problem with EPSI readout is the inconsistency between odd and even echoes due to the 

eddy current. One alternative is using fly-back EPSI which uses only half of the EPSI data. 

The strategy used in our design is to utilize both odd and even echoes and correct the 

inconsistency in post-processing steps. The readout is sampled on free induction decay 

(FID) signals instead of the typical spin echo signals. FID-type acquisition is usually more 

sensitive to field inhomogeneity than spin echo because its decay follows T2* decay 

instead of T2 decay for spin echo. However, it can achieve much shorter TE and TR, which 

is important for reducing the acquisition time.  

3) Ultra-shorter TE and short TR. The TE of the acquisition scheme can be pushed to lower 

than 4 ms. Short TE has several advantages. First, short TE can preserve the SNR because 
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the shorter the TE, the less decay. Second, short TE can preserve some signal components 

like macromolecule. As we know, some molecules have short T2 which means it will decay 

out and the sequence with long TE will not have the capability to detect. The direct benefit 

of short TR is shorter scan time. However, the short TR limits the spectral resolution which 

will affect the capability to separate different spectral peaks. In our scheme, this is 

overcome by subspace modeling, which is described in next chapter.  

4) Extended readout with larger echo space. The comparison between the extended readout 

and standard EPSI is displayed in Fig. 3.3. The length of typical EPSI is usually limited to 

keep a small echo space (time interval between neighboring echoes) for satisfying Nyquist 

rate of metabolite signals. The proposed prolonged readout can result in a larger k-space 

coverage (kx direction) but with larger echo space which may violate the Nyquist rate. This 

sparse sampling in the spectral direction is also overcome by the subspace modeling. The 

resolution improvement brought by the extended readout can lead to better water and lipid 

removal results.  

 

 

Figure 3.3: Comparison of extended EPSI readout and standard EPSI readout. The 

proposed EPSI readout has larger k-space coverage but larger echo space.  



15 

 

 

Figure 3.4: The sampling pattern in phase encoding for MRSI acquisition and its 

corresponding temporal sampling. The central region (blue) is fully sampled in both spatial 

and temporal direction. The outer region (green) is spatially under-sampled but the outside 

region (red) is sparsely sampled both spatially and temporally using blip gradient.  

 

5) Sparse sampling in phase encoding. To further extend the k-space coverage and achieve 

higher resolution, the sparse sampling is employed in phase encoding directions (ky and 

kz). As shown in Fig. 3.4, a variable density is used in sparse sampling. The whole ky-kz 

space is divided by 3 regions. The central region where most of the energy resides is fully 

sampled both spatially and temporally to preserve enough SNR. Then, the neighbor region 

in ky is under-sampled by a factor of 2. The missing data in this region can be interpolated 

using parallel imaging technique [24], [25] where the interpolation kernel can be estimated 
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from the k-space center. The outer k-space is sparsely sampled both spatially and 

temporally using blipped gradient (Fig. 3.4). This acquisition strategy can effectively 

extend the k-space coverage. The aliasing caused by under-sampling in both spatial and 

spectral direction can be fixed by parallel imaging and subspace modeling.   

In summary, the proposed sequence for MRSI acquisition keeps the basic features of 

SPICE sequences which include 1) no water and lipid suppression; 2) EPSI readout on 

FID-signals; 3) ultra-short TE and short TR; 4) extended EPSI readout with larger echo 

space; 5) extended k-space sampling using variable density.  

3.3   EVI-Based Trajectory for fMRI Acquisition  

As shown in Fig. 3.1, an EVI-based trajectory is used for fMRI signals acquisition. There 

are also several key features in designing the sequence: 1) embedded field drift navigator; 

2) multi-shot EVI encoding; 3) sparsely sampling in both spatial and temporal directions.  

1) Embedded field drift navigator: during each TR of the fMRI data acquisition, we first 

turn on the ADC to collect an FID signal for a very short period (around 1 ms) immediately 

after the pulse excitation. This FID signal will be used for tracking B0 field drift and this 

information can be used to correct the inconsistency in both MRSI and fMRI data caused 

by field drift.  

2) Multi-shot EVI encodings: after collection of the field drift navigator, we turn on echo-

planar encoding gradients to collect imaging data in echo-volume-imaging trajectories (see 

Fig. 3.5). To compose a complete k-space for fMRI images, the encodings from multiple 

TRs are combined. For example, in the current implementation, within a single TR, 5 slices 

of k-space are collected so 8 TRs are needed to form a complete 40 slices of the k-space. 

To minimize the inconsistency and achieve a good point spread function, all 8 TRs start 

the sampling from central k-space and then proceed to outside slices of k-space. Due to the 

signal relaxation decay, this strategy can preserve the good SNR in central k-space slices 

and remove the effect of noise and field inhomogeneity in outside k-space slices. Note that 

in implementing our EVI sampling trajectories, ramp sampling is used along the readout 

direction (kx) to further increase the spatial resolution.  
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Figure 3.5: The k-space trajectory of multi-shot EVI sequence. 5 slices of k-space are 

sampled in each TR. The sampling from one slice to another slice is done using blipped 

gradient.   

 

3) Sparse sampling in both spatial and temporal directions. To utilize the multi-channel 

acquisition and obtain enough spatial resolution, we collect 76 frequency-encodings along 

kx, 38 phase encodings along ky, and 5 phase encodings in kz in each TR. Thus, in one 

fMRI frame, 8 TRs can compose a complete fMRI data frame with 76×76×40 k-space 

coverage (a factor of 2 under-sampling along both ky). To improve temporal resolution 

and also take advantage of the partial separability [29] of fMRI signals, temporal under-

sampling is applied. More specifically, we collect one “full” 8-TR fMRI data frame every 

3 frames which takes about 9 seconds. In between two 8-TR fMRI frames, we collect two 

under-sampled 2-TR fMRI data frames (it is equivalent to a factor of 4 under-sampling 

along kz). So, the effective temporal resolution of the fMRI data can reach 3 seconds as 

shown in Fig. 3.6.  

In summary, the fMRI acquisition is based on multi-shot EVI sampling trajectory. 

Involving both multi-coil acquisition and subspace modeling, it can achieve both high 

spatial resolution and high temporal resolution.  
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Figure 3.6: The (k,T) sampling of fMRI signals. The “full” 8-TR fMRI frames are acquired 

every 9 seconds. In between two 8-TR fMRI frames, two 2-TR fMRI data frames (with a 

factor of 4 under-sampling along kz) are collected. This scheme results in 3 seconds 

effective temporal resolution of the fMRI images.  

3.4   Implementation for Experimental Studies  

Proton MRSI experiments with the proposed data acquisition scheme were conducted on 

healthy volunteers on a 3T scanner (Siemens Prisma) with a 20-channel head array coil. 

Our implementation of the sequence used a 27° excitation, TR = 160 ms, TE = 1.6 ms, 

readout bandwidth = 167 kHz, and field of view (FOV) = 230 × 230 × 72 mm with two 

outer volume suppression (OVS) bands over the top and bottom slices to eliminate aliased 

signals from outside the excitation volume. The MRSI encoding has 120 × 96 × 24 k-space 

points, which results in the resolution of 1.9 × 2.3 × 3.0 mm while the fMRI encoding has 

76 × 76 × 40 k-space points to achieve a 3.0 × 3.0 × 1.8 mm resolution. The echo-space of 

MRSI encoding is 1760 μs and the frame rate of fMRI series is 3 seconds. The whole scan 

for this sequence took 6 minutes with dummy pulses to approach steady state and 

calibration scans for bipolar correction.  

To validate the capability of the proposed scheme to detect functional activation, both 

resting-state and task-based functional experiments are performed. In the resting-state 

section, the subjects are instructed to rest with eyes open and fixate on a cross-hair. In the 

motor task section, the subjects are instructed to perform finger tapping with the right hand. 
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In the visual task section, the periodic visual stimulation was projected on screen in the 

task period while a cross-hair was displayed in the rest period. In both motor and visual 

task scans, the rest-task cycle is 40s – 20s from start to the end of the sequence.  

The experimental protocol also included a T1-weight anatomical scan using MPRAGE 

sequence at 1 mm isotropic resolution (TR/TE/TI = 1900/2.29/900 ms, flip angle 9°). To 

provide a reference point of the functional network, a conventional BOLD EPI sequence 

was also run covering the same brain region (TR/TE = 2.5 s/30 ms, flip angle = 80°, Matrix 

size = 96 × 96 × 36, 160 frames were acquired in 6.8 minutes scan). 
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4.  Image Reconstruction 

In this chapter, we introduce signal processing algorithms to facilitate the high-quality 

reconstructions of both fMRI and MRSI signals. These reconstructions and processing are 

based on subspace modeling, which has been widely used in dynamic imaging and 

spectroscopic imaging. This chapter will also include the advantages of using the 

complementary information from both fMRI and MRSI to improve each other’s image 

quality and stability.  

4.1   Signal Model  

Given the data acquisition scheme as described in chapter 3, it will generate two data sets 

simultaneously, 𝑑1(𝒌, 𝑇)  and 𝑑2(𝒌, 𝑡) , from which fMRI images and metabolic 

spatiospectral functions are reconstructed, respectively. Note that different variables 

related to time, 𝑡 and 𝑇, are used to represent signal changes at different time scales. More 

specifically, for the fMRI data set, d1(𝐤, T), 𝑇 = 𝑛1TR, which means the time along the 

TRs, while for the MRSI data set, d2(𝐤, t), t = nδt, with δt = 1.76 ms, which means the 

time along echo space in one TR. In other words, the MRSI data are collected with high 

temporal resolution around milliseconds to provide enough spectral bandwidth to cover the 

spectral distributions of different molecules and the collection along the TRs are summed 

together to form a complete 4D MRSI dataset. The fMRI data are acquired at lower 

temporal resolution of seconds to capture BOLD signal changes. These two datasets can 

be expressed as:  

𝑑1(𝒌, 𝑇) = ∫ (Ω1(𝒌, 𝑡, 𝑇)ℱ𝒙−𝒌 (ℱ𝑓−𝑡(𝜌(𝒙, 𝑓, 𝑇))) + 𝜂(𝒌, 𝑡, 𝑇)) 𝑑𝑡
𝑡𝑓

0

              (4.1) 

𝑑2(𝒌, 𝑡) = ∫ (Ω2(𝒌, 𝑡, 𝑇)ℱ𝒙−𝒌 (ℱ𝑓−𝑡(𝜌(𝒙, 𝑓, 𝑇))) + 𝜂(𝒌, 𝑡, 𝑇)) 𝑑𝑇
𝑇𝐴

0

             (4.2) 

where 𝜌(𝒙, 𝑓, 𝑇) denotes the spatio-spectral distribution of the signals of all the molecular 

components including water, lipids, metabolites, etc., along the scan period. 𝜂(𝒌, 𝑡, 𝑇) is 
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the measurement noise which is assumed to be complex white Gaussian noise. ℱ𝑓−𝑡 and 

ℱ𝒙−𝒌 are 1-D and 3-D Fourier transform along frequency-time direction and k-space-image 

directions, respectively. Ω1(𝒌, 𝑡, 𝑇) and Ω2(𝒌, 𝑡, 𝑇) are the sampling operator in k-space 

for fMRI and MRSI measurement as described in data acquisition. Since the sampling of 

both data sets in (𝑘, 𝑇)-space and (𝑘, 𝑡)-space is sparse, we need special algorithms for 

data processing and image reconstruction. 

4.2   Reconstruction of MRSI Spatiotemporal Functions 

MRSI data processing is based on a union-of-subspaces model, with which we can express 

the overall spatiospectral function as:  

𝜌𝑀𝑅𝑆𝐼(𝒙, 𝑡) = 𝜌𝑤(𝒙, 𝑡) + 𝜌𝑓(𝒙, 𝑡) + 𝜌𝑀𝑀(𝒙, 𝑡) + 𝜌𝑚(𝒙, 𝑡) 

= ∑ 𝑈𝑙𝑤
(𝒙)𝑉𝑙𝑤

(𝑡)

𝐿𝑤

𝑙𝑤

+ ∑ 𝑈𝑙𝑓
(𝒙)𝑉𝑙𝑓

(𝑡)

𝐿𝑓

𝑙𝑓

+ ∑ 𝑈𝑙𝑀𝑀
(𝒙)𝑉𝑙𝑀𝑀

(𝑡)

𝐿𝑀𝑀

𝑙𝑀𝑀

+ ∑ 𝑈𝑙𝑚
(𝒙)𝑉𝑙𝑚

(𝑡)

𝐿𝑚

𝑙𝑚

 

(4.3) 

where the 𝜌𝑤(𝒙, 𝑡), 𝜌𝑓(𝒙, 𝑡), 𝜌𝑀𝑀(𝒙, 𝑡), 𝜌𝑚(𝒙, 𝑡) represent the spatiotemporal functions 

of water, lipid, macromolecules and metabolites, respectively. This low rank, subspace 

model assumes that each signal component should reside in a low-dimensional subspace 

spanned by a finite number of basis functions, i.e. {𝑉𝑙𝑤
}, {𝑉𝑙𝑓

}, {𝑉𝑙𝑀𝑀
} and {𝑉𝑙𝑚

} with 

corresponding spatial coefficients {𝑈𝑙𝑤
}, {𝑈𝑙𝑓

}, {𝑈𝑙𝑀𝑀
} and {𝑈𝑙𝑚

}. This comes from the 

physical modeling that each signal component come from specific molecules and the total 

number of types of molecules and tissue types of the human brain should be limited and 

small.  

To reconstruct the MRSI spatiospectral functions 𝜌𝑀𝑅𝑆𝐼(𝒙, 𝑡) from the sparsely sampled 

data 𝑑2(𝒌, 𝑇), the processing pipeline is based on the SPICE imaging framework and 

includes several key steps: a) correction of field drift using the field drift estimated from 

navigator signals, b) interpolation of spatially under-sampled data using parallel imaging, 

c) estimation and correction of field inhomogeneity using the unsuppressed water signals, 

d) removal of the water and lipid signals, and e) reconstruction of the spatiospectral 

functions from the temporally sparsely sampled data.  
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a) Correction of field drift. The field drift is inevitable in MR scanning especially in the 

cases when the gradient is pushed hard and switches quickly. The energy released by RF 

pulse and gradient switching can increase the temperature of the scanning environment, 

which causes the frequency drift of the main field 𝐵0. As described in chapter 3, a short 

field drift navigator is collected in each TR of fMRI signals  𝑑1(𝒌, 𝑇). This short FID can 

be used for estimating field changes over time. We model the field drift changes along time 

as a 4-order polynomial function:   

𝑆(𝑡, 𝑇) = 𝑆0(𝑇)𝑒𝑖2𝜋𝛿𝑓(𝑇)𝑡 

where:    𝛿𝑓(𝑇) = ∑ 𝑎𝑖

4

𝑖=0

𝑇𝑖 
(4.4) 

Therefore, we can calculate 𝛿𝑓(𝑇) easily from the navigators and then apply it back to 

correct the field drift in MRSI data 𝑑2(𝒌, 𝑡).  

b) Interpolation of spatially under-sampled data using parallel imaging. The theory behind 

parallel imaging is Papoulis’ multi-channel sampling theorem [49]. It states that under 

some assumptions and conditions, the under-sampled bandlimited data can be recovered 

from multi-channel acquired data. The most widely used methods for parallel imaging are 

SENSE and GRAPPA [24], [25]. In this problem, the recovery of sparsely sampled k-space 

is done using a hybrid GRAPPA/SENSE method. We first reconstruct the first time point 

of d2(𝐤, t) using GRAPPA. The interpolation kernel is estimated from the fully sampled 

central k-space data of the first several time points. Then the coil sensitivity maps are 

estimated from the GRAPPA reconstruction images in a sum of squares sense. With the 

estimated sensitivity maps, which are assumed to be echo independent, it is applied to 

reconstruct the remaining time points of d2(𝐤, t) using the SENSE algorithm.  

c) Estimation and correction of field inhomogeneity. Due to the elimination of water 

signals, the carried field inhomogeneity can be estimated from the unsuppressed water 

signals. As the model for FID signals:  

𝑆(𝑥, 𝑡) = 𝑆0(𝑥)𝑒
−𝑡

𝑇2(𝑥)𝑒𝑖2𝜋𝑓(𝑥)𝑡𝑒𝑖2𝜋𝑑𝑓(𝑥)𝑡 (4.5) 
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where the 𝑑𝑓(𝑥)  represents the field map. Therefore, the estimation of 𝑑𝑓(𝑥)  can be 

modelled as a linear prediction problem which can be efficiently solved with a HSVD 

algorithm [50]. After the high-resolution field map is obtained, it can be used to remove 

the field inhomogeneity term 𝑒𝑖2𝜋𝑑𝑓(𝑥)𝑡  in the MRSI signals, which is important for 

reducing the rank of the subspaces.  

d) Removal of tissue water and lipid signals. The removal of water and lipid signals is done 

with a model-based approach proposed in [48], and the removal of water sideband is based 

on a reference-based method proposed in [51]. Details can be found in the reference and 

will not be discussed in this thesis.  

e) Reconstruction of the spatiospectral functions from the temporally sparsely sampled 

data.  ρMRSI(𝐱, t)  is reconstructed from the pre-processed, noisy, water-lipid removed 

MRSI data based on subspace modeling as in the SPICE imaging framework. The 

reconstruction can be divided into two steps: estimation of spectral basis and estimation of 

spatial coefficients. The estimation of spectral basis functions is done using quantum 

simulated spectral basis and training data [28], [46]. The estimation of the spatial 

coefficients is done using a constrained optimization formulation:  

�̂�𝑚 = arg min
𝑼𝒎

||𝒅1 − Ω1ℱ𝑥−𝑘(𝑼𝒎𝑽𝒎)||
2

2
+ 𝜆𝑹(𝑼𝒎)  (4.6) 

where 𝑼𝒎, 𝑽𝒎 are the matrix representation of spatial coefficients and estimated basis 

functions. 𝜆 is the regularization parameter and 𝑹 is the chosen regularization function. 

After getting the spatial coefficients, the metabolite spatiotemporal functions can be 

reconstruction as: 

𝜌𝑚(𝒙, 𝑡) = ∑ 𝑈𝑙𝑚
(𝒙)𝑉𝑙𝑚

(𝑡)

𝐿𝑚

𝑙𝑚

  (4.7) 
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In summary, the reconstruction of MRSI signals is based on the subspace modeling and 

enables high quality reconstruction of metabolite signals from the non-water-suppressed 

data.  

4.3   Reconstruction of fMRI Images 

The processing of fMRI signals is also based on the subspace modeling. More specifically, 

we take advantage of the PS property of the fMRI signals 𝑑1(𝒌, 𝑇), which can be expressed 

as: 

𝑑1(𝒌, 𝑇) = ∑ 𝑈𝑙𝑓𝑀𝑅𝐼
(𝒌)𝑉𝑙𝑓𝑀𝑅𝐼

(𝑇)

𝐿𝑓𝑀𝑅𝐼

𝑙𝑓𝑀𝑅𝐼=1

  (4.8) 

where {𝑉𝑙𝑓𝑀𝑅𝐼
(𝑇)}

𝑙𝑓𝑀𝑅𝐼=1

𝐿𝑓𝑀𝑅𝐼

 is the set of temporal basis functions for fMRI signals, 

{𝑈𝑙𝑓𝑀𝑅𝐼
(𝒌)}

𝑙𝑓𝑀𝑅𝐼=1

𝐿𝑓𝑀𝑅𝐼

 are the corresponding coefficients, and 𝐿𝑓𝑀𝑅𝐼 is the rank of the model, 

which indicates the order of separability. In functional imaging, the PS model can be 

justified because the BOLD signals come from finite number of functional networks and 

each of them has a distinct signal variation structure, which means the number of basis 

functions to represent the signals should be finite.  

To reconstruct the fMRI images from the temporally under-sampled data, first, we need to 

overcome the Nyquist ghost caused by the eddy current-induced inconsistency between 

readouts of different polarity. This correction is done using the information from a five-

second calibration scan that is acquired during the preparation period of the sequence. The 

k-space shift and phase difference between positive and negative readout can be estimated 

from the acquired calibration scan and then applied to correct the inconsistency in 𝑑1(𝒌, 𝑇). 

This correction eliminates the Nyquist ghost in the following reconstruction.  

Then, we can solve the reconstruction problem based on the subspace model. This 

reconstruction is quite similar to the reconstruction in MRSI signal since both the fMRI 

signals and MRSI signals are temporally under-sampled. But the differences are that MRSI 
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is sparsely sample in 𝑡  while fMRI is sparsely sampled in 𝑇 . Also the temporal basis 

function of fMRI can be estimated from the data itself, but this cannot be done for MRSI 

so it depends on the physical prior and training data. Similarly, the reconstruction can also 

be divided into two steps: a) determination of the temporal basis and b) estimation of the 

corresponding spatial coefficients. Under the acquisition scheme shown in Fig. 3.6, there 

are 10 phase encodings in kz (encoded in 2 TRs) that are commonly acquired in both 8TR 

and 2TR frames. It means, in these k-space locations, the fMRI signals are temporally fully 

sampled. Therefore, the temporal basis functions can be estimated from the 𝑑1(𝒌, 𝑇) in 

these k-space locations. More specifically, using the 𝑑1(𝒌, 𝑇) in these k-space locations 

can form a Nk × NT Casorati matrix. Then, SVD is applied on this Casorati matrix and its 

leading 𝐿𝑓𝑀𝑅𝐼 principle right singular vectors can be chosen as {𝑉𝑙𝑓𝑀𝑅𝐼
(𝑇)}

𝑙𝑓𝑀𝑅𝐼=1

𝐿𝑓𝑀𝑅𝐼

 which 

can actually be a set of temporal basis functions. After the temporal basis functions are 

determined, the corresponding coefficients {𝑈𝑙𝑓𝑀𝑅𝐼
(𝒌)}

𝑙𝑓𝑀𝑅𝐼=1

𝐿𝑓𝑀𝑅𝐼

 can be estimated from the 

sparsely sampled d1(𝐤, T) by solving a constrained optimization problem:  

�̂�𝑓𝑀𝑅𝐼 = arg min
𝑼𝑓𝑀𝑅𝐼

||𝒅1 − 𝛺1ℱ𝑼𝑓𝑀𝑅𝐼𝑽𝑓𝑀𝑅𝐼||2
2 + 𝜆||𝑾𝑼𝑓𝑀𝑅𝐼||2

2   (4.9) 

where 𝐔fMRI, 𝐕fMRI and 𝐝𝟏denote the matrix representation of spatial coefficients to be 

estimated, obtained temporal basis functions from the data and the measured data in 

𝑑1(𝒌, 𝑇), respectively. Ω1 is the (𝒌, 𝑇) space sampling operator as shown in Fig. 3.6. 𝐖 is 

a diagonal weighting matrix to impose different penalty weight on 𝐔fMRI . After 

determining the coefficients, the reconstructed dataset �̂�1(𝒌, 𝑇)  can be obtained by 

combining the spatial coefficients and temporal bases functions. 

�̂�1(𝒌, 𝑇) = ∑ �̂�𝑙𝑓𝑀𝑅𝐼
(𝒌)𝑉𝑙𝑓𝑀𝑅𝐼

(𝑇)

𝐿𝑓𝑀𝑅𝐼

𝑙𝑓𝑀𝑅𝐼=1

  (4.10) 

In summary, the reconstruction of fMRI images is also based on the subspace modeling 

and the basis function can estimated from the data itself. The reconstruction method can 

also be extended to lots of dynamic imaging applications.  
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4.4   Optimization using Complementary Information between fMRI and 

MRSI  

As mentioned in data acquisition, one of the advantages of simultaneous acquisition of 

both fMRI and MRSI is that we can utilize the complementary information between fMRI 

and MRSI to enable high quality reconstruction and removal of artifacts.  

On the one hand, using the complementary information from MRSI, we are able to solve 

several data processing problems for fMRI data, which include: 1) correction of chemical 

shift effect of lipid signals, 2) correction of geometric distortion caused by field 

inhomogeneity and 3) signal drop-out caused by large susceptibility effect. 

The chemical shift of lipid signals mainly comes from the low encoding bandwidth in the 

phase encoding direction (ky and kz). In traditional fMRI protocols, the lipid signal is 

suppressed using spectral selective pulses [47]. Using these suppression pulses can 

overcome the chemical shift effect, but also increases the RF power and prolongs the TR 

to increase scanning time. Under the proposed data acquisition scheme, it can be addressed 

by signal processing using complementary information from MRSI. In general, we can 

obtain the lipid distribution from the MRSI dataset 𝑑2(𝒌, 𝑡) , which provides the 

spatiotemporal function of the lipid signals. More specifically, we can first identify the 

lipid region of the subcutaneous layer with a tissue segmentation and then obtain the 

spatiospectral functions of pure lipid signals, denoted as 𝜌𝑓(𝒙, 𝑡). Then, from 𝜌𝑓(𝒙, 𝑡) and 

the known encoding timing and k-space location of the EVI sampling trajectory, the lipid 

signal distribution in fMRI dataset 𝑑1(𝒌, 𝑇)  can be fully calculated. Subtracting the 

calculated fat signal from 𝑑1(𝒌, 𝑇) can remove the shifted fat signals, which may overlap 

with the brain tissue.  

The geometric distortion and signal loss near the sinus region are mostly due to large field 

variation caused by field inhomogeneity or bad susceptibility effect. To solve this problem, 

the key issue is to get the accurate, high resolution field distribution. As described in section 

4.2, we can derive a high-resolution field map from the unsuppressed water signal through 

an HSVD fitting. This field map can be used in correcting the field effect not only in MRSI 
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but also in fMRI. More specifically, the accumulated phase induced by the field can be 

eliminated from the simulated spatiotemporal functions of 𝑑1(𝒌, 𝑡, 𝑇) from 𝑑2(𝒌, 𝑡) for 

each frame. This removal of phase caused by field effect can fix both the geometric 

distortion and large signal-loss near the bad susceptibility region. In typical fMRI 

experiments, to overcome the geometric distortion problem, additional scans are required 

to measure and map the field map or the point spread functions in the same encoding setting 

[52]. And some additional scans, like z-shim [53], are also used for compensating the signal 

drop-out. These methods all require additional scans but none is needed in our proposed 

method, which can save acquisition time and also provide a unique processing routine to 

tackle these problems.  

On the other hand, the complementary information from fMRI can also help improve the 

image quality of MRSI. The first one is the correction of field drift, as described in section 

4.2. Another advantage of this simultaneous acquisition is that the fMRI data 𝑑1(𝒌, 𝑇) can 

play the role of motion navigators for the MRSI data. The fMRI data are collected in high 

temporal resolution (3 seconds), and in true 3D volume, so the bulk head motion during 

the scan can be captured very well by the fMRI signals. Determining the head motion 

parameters from the reconstructed fMRI images, we are able to correct motion effects in 

the MRSI data and thus remove the motion artifacts. This capability to correct the motion 

effect will greatly increase the robustness of MRSI acquisition and reconstruction.  
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5.  Results and Discussion 

In this chapter, the representative results are presented to demonstrate the unprecedented 

imaging capability to enable simultaneous acquisition of high-resolution fMRI and MRSI 

signals and the high-quality reconstruction of functional networks and metabolite 

spatiospectral functions.   

5.1   1H-MRSI Results  

Figure 5.1 shows a set of representative MRSI results from the 6-minute simultaneous 

fMRI-MRSI scan. As described in the section 3.4, the 1H-MRSI experiment uses the 

sequence with: Flip angle = 27°, TR = 160 ms, TE = 1.6 ms, readout bandwidth = 167 kHz, 

FOV = 230 × 230 × 72 mm3 with two outer volume suppression (OVS) bands. The resulting 

nominal spatial resolution is 1.9 × 2.3 × 3.0 mm. Both the reconstructed high-resolution 

metabolic maps and spatially resolved spectra are displayed. The metabolite maps obtained 

include N-acetylaspartate (NAA), creatine (Cre), choline (Cho) and myo-inositol (mI). It 

can be observed that high resolution, high quality metabolite maps, as well as the high SNR 

spectra, can be obtained from a 6-minute scan. The representative spectra from three 

different spatial positions also show the spatial variation, and we can easily distinguish the 

several most dominant metabolite peaks from the spectra.   

Figure 5.2 presents a set of results using the complementary information from fMRI to 

improve the quality and robustness of MRSI. The frequency drift curve is estimated from 

the field drift navigator embedded in the fMRI acquisition. The motion curves include 

rotation, and translation parameters are estimated from the reconstructed fMRI images 

using image registration method. Then both the field drift and motion information are 

applied in MRSI processing to correct the effects. We can see that the motion curves 

capture the subject motion in high temporal resolution (around 3 seconds). Without motion 

correction, there exist obvious artifacts on the metabolite maps. These artifacts are largely 

reduced after motion correction and it results in much more reasonable metabolite maps 

(the NAA and Cre maps are shown). In a clinical setting, the patient motion is usually 
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inevitable. The capability to correct the motion artifacts in MRSI data can significantly 

improve the robustness of MRSI reconstruction quality.  

 

 

Figure 5.1: The reconstructed high-resolution metabolic maps and spatially resolved 

spectra in selected spatial location. The metabolite maps obtained include but are not 

limited to N-acetylaspartate (NAA), creatine (Cre), choline (Cho) and myo-inositol (mI). 

The high-quality spatiospectral functions of metabolites are reconstructed from a 6-minute 

simultaneous fMRI-MRSI scan. Each metabolite map is normalized individually and 

displayed as the colormap overlaid on anatomical images.  
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Figure 5.2: The effect of field drift correction and motion correction. The left column 

shows the estimated frequency drift curve from the field drift navigator, and the 6-paramter 

rigid body motion curves estimated from the fMRI images. The right column shows the 

reconstructed metabolite maps including NAA and Cre before and after the motion 

correction. It is obvious that the motion artifacts are significantly reduced after the motion 

correction using the motion information from fMRI images.  

5.2   fMRI Results  

The functional imaging results for both resting-state and task-based experiments are shown 

in Figs. 5.3-5.5. These scans are also the simultaneous fMRI-MRSI scans which took 6 

minutes. The resting-state networks are displayed in Fig. 5.3. These functional networks 

are extracted from the fMRI images using ICA based methods [39], [40] and the network 

components are manually sorted out. The spatial resolution of these functional network 

maps is 3.0 × 3.0 × 1.8 mm3 and temporal resolution of the image series is 3 seconds.  The 

displayed functional networks include: default mode network (DWN), visual cortex 

network (VCN), somato-motor network (SMN) and auditory cortex network (ACN). The 

network structures are consistent with previous studies using typical multi-slice EPI 

sequence.  
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Figure 5.3: IC maps representing resting-state functional networks from the simultaneous 

fMRI and MRSI scan. IC maps are displayed with threshold |𝑧| > 2. From top to bottom: 

default mode network (DWN), visual cortex network (VCN), somato-motor network 

(SMN), auditory cortex network (ACN). The spatial structure of the functional networks 

is consistent with the previously reported studies [54], [55].  

 

 

Figure 5.4: The visual cortex network and its corresponding time course obtained from a 

simultaneous fMRI-MRSI scan. The subject was visually stimulated during the task frames 

and at rest during the resting frames. The obtained time course shows a high correlation 

with the reference function generated from the designed event blocks.  
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Figure 5.5: The motor cortex network and its corresponding time course obtained from a 

simultaneous fMRI-MRSI scan. The subject was instructed to perform finger tapping task 

using right hand only during the scan. The obtained time course shows a high correlation 

with the reference function generated from the designed event blocks.  

The results of task-based experiments are shown in Fig. 5.4 and Fig. 5.5. Figure 5.4 shows 

the visual cortex network and its corresponding time course. In this visual stimulation 

experiment, the subject was stimulated by visual figures during the stimulation block and 

kept eyes open and fixated on a cross during the resting blocks. The obtained time course 

shows a high correlation with the reference function generated from the designed event 

blocks, which demonstrates the sensitivity of our method to capture the functional activities 

due to visual stimulation. Figure 5.5 shows another motor task experiment. The obtained 

time course and the motor cortex network are within the expectation and match the 

literature [54], [55].  

Figure 5.6 presents the processing results using the complementary information from 

MRSI signals. As mentioned in section 4.3, using MRSI information helps to remove the 

chemical shift of lipid signals and correct the geometric distortion and susceptibility-

induced signal loss due to large field variations. These corrections were done with no 

additional cost instead of the typical routines involving suppression pulses or additional 

calibration scans. The functional networks are usually extracted from the artifact-corrected 

data.  
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Figure 5.6: The results of processing using complementary information from MRSI, which 

contains the lipid removal and correction of geometric distortion and signal drop-off caused 

by the field variation.  

 

In summary, this chapter presents some representative MRSI and fMRI results to 

demonstrate the imaging capability of the proposed method and also show the advantages 

of using the complementary information between MRSI and fMRI to improve the quality 

of each.  
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6.  Conclusions  

This thesis has proposed a new method to enable simultaneous fMRI and MRSI of the 

brain. In contrast to the current acquisition scheme for fMRI and MRSI, which acquires 

images in separate scans, our proposed method integrates SPICE-based MRSI with EVI-

based fMRI in an interleaved fashion. The acquisition also incorporates ramp sampling, 

sparse sampling, ultra-short TE and short TR strategy to enable high spatiotemporal 

resolution for both fMRI and MRSI. The signal processing and image reconstruction are 

mostly based on the subspace and partial separability modeling. The complementary 

information between fMRI and MRSI is also utilized to enable high quality reconstruction 

and improvement of robustness. The preliminary experimental results have demonstrated 

an unprecedented capability of our proposed method in simultaneous functional and 

metabolic imaging of the brain at high resolution. The technique, when fully developed, 

may provide a powerful tool to study brain function and metabolism under both normal 

and diseased conditions.   
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