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ABSTRACT 

 

Falls are the most common cause of injury in older adults with two-thirds of individuals over the 

age of 65 falling at least once a year. It is well known that falls represent a significant challenge 

to preserving quality of life as we age, but current clinical methods of screening for fall risk 

remain insufficient to prevent falls. This thesis summarizes the development of a modern 

approach to fall risk analysis and fall prevention through the use of hip-mounted triaxial 

accelerometers to passively monitor gait quality in free-living environments and predict risk of 

future falls. 

 

Data from over 4000 individuals enrolled in the Women Health Initiative’s Objective Physical 

Activity and Cardiovascular Health study were used for the development of an activity 

recognition pipeline for extraction of free-living walking bouts measured by accelerometers. A 

variety of measures of gait were computed from walking bout data and used as input to train 

statistical models which analyze gait to predict fall risk and future falls. 

 

Results suggest that hip-mounted accelerometers are able to capture free-living gait patterns 

which can be used to predict measures of fall risk and physical function such as the Short 

Physical Performance Battery. However, these same measures of gait prove to be insufficient for 

direct prediction future falls. 
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“Our greatest glory is not in never falling, 

but in rising every time we fall.” 

- Confucius 
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CHAPTER 1: INTRODUCTION 

Falls are the most common cause of injury in older adults with two-thirds of individuals over the 

age of 65 falling at least once a year [1]. During 2014, approximately 2.8 million adults were 

treated for fall-related injuries in emergency departments, and about 27,000 older adults died due 

to falls or fall-related injuries [1]. The impact of falls on morbidity and mortality have made falls 

a top health concern in the nation. Accordingly, the U.S. Preventive Services Task Force 

recommends screening older adults for fall risk and implementing prevention strategies in high-

risk adults, such as exercise programs [2].  

 

There exists several methods of screening for fall risk. For example, the Centers for Disease 

Control and Prevention (CDC) has developed the STEADI toolkit, which includes a screening 

approach that combines questions about falls and functional limitations with simple physical 

performance tests such as the Timed Up & Go (TUG) [3]. Overall, the sensitivity and specificity 

of existing screening methods is modest and are performed infrequently. Additionally, the 

majority of tools and devices that are currently in use to address falls are reactive in nature and 

do little to prevent falls in the first place. 

 

One potential approach for screening fall risk that may better reflect risk during daily life is the 

use of wearable devices during walking tasks to characterize gait and detect instability related to 

greater risk of falls. The use of triaxial accelerometers has several desirable characteristics for 

screening purposes as these sensors are becoming more affordable and are available in consumer 

devices such as smart phones, which are nearly ubiquitous. The development of automated 

systems for acquisition and analysis of free-living gait using these sensors present several 
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challenges including accurate recognition of walking activity, extraction of meaningful features 

to characterize gait, and the development of models that can accurately map between these 

features and a meaningful measure of fall risk. Ideally, this measure of risk must be clinically 

interpretable and timely to provide guidance in selecting proactive measures to reduce the risk of 

falls. As such, systems for continuous and passive monitoring of fall risk would provide the 

greatest opportunity to combat falls and reduce their impact on both our population and 

healthcare systems. 

 

In this work I aim to develop, in conjunction with colleagues, an automated pipeline for gait 

analysis and fall risk prediction. First, walk test data from a small pilot study—measured via 

triaxial accelerometer—are used to develop preliminary methods for feature extraction and fall 

risk prediction models; the results from this pilot study were used to inform a larger investigation 

which uses free-living accelerometer data. For this more complicated project, a set of algorithms 

and filters were designed to analyze free-living activity data and extract bouts of smooth, clean 

walking which resemble those generated during a walk test. Due to the use of unlabeled data, 

walking bouts were confirmed via visual inspection to ensure high specificity of the filters. 

Finally, features extracted from these walking bouts were used to train statistical models on 

prospective falls data to predict measures of fall risk and future falls. Model performance was 

analyzed using appropriate summary measures and more detailed assessments through inspection 

of confusion matrices. 
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CHAPTER 2: BACKGROUND 

As stated previously, falls represent a significant challenge for older adults; however, falls also 

place substantial burdens on the general population and our healthcare system. This concern is 

exacerbated by the aging US population of which older adults are projected to represent 20% by 

2050 [4]. The physical consequences of falls such as long-term injury, disability, or diminished 

quality of life combined with psychological changes associated with fear of falling and 

confidence in mobility can lead to a negative cycle which may actually increase future fall risk 

[5]. Furthermore, annual costs for treatment of fall-related injuries are roughly $20 billion in the 

United States with costs projected to reach $32.4 billion by the year 2020 [5]. 

 

Given the prevalence and seriousness of falls in older adults, two general approaches toward falls 

management have emerged [5]. The first is a reactive approach which uses devices to detect fall 

events. These devices, called personal emergency response systems (PERS), provide older adults 

with immediate access to emergency services and have been shown to improve the general 

quality of life of individuals living alone [6]. These devices have substantially shortened the time 

between fall incidents and treatment which is an important factor in determining successful 

recovery. The second approach is focused on fall prevention through interventions including 

exercise, strength and balance training, assistive devices, and modifications to the home 

environment [5]. While multifaceted intervention programs including exercise and balance 

training have been shown to reduce falls, identification of at-risk individuals for placement into 

these programs remains a challenge [7]. In addition to managing the effects of falls, assessment 

of fall risk is needed to reduce future complications and truly improve fall prevention. 
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The majority of fall risk assessments take place in the clinic and use a combination of 

questionnaires, physical activity measurements, and gait assessments to determine fall risk. 

Questionnaires cover a variety of behaviors associated with risk of falls such as confidence in 

completing activities of daily living and engagement in outdoor activities [8]. Physical 

assessments, such as the Short Physical Performance Battery (SPPB) evaluate fall risk by 

measuring balance, gait, and muscular strength [9], [10]. While more comprehensive 

assessments of fall risk have been developed, their feasibility for mass screenings is 

questionable. For example, Lord et al. have developed a comprehensive fall risk assessment tool 

which measures physiologic capacity in each organ system related to falls, but the short version 

of this tool requires equipment that is not readily available, 10-15 minutes for administration, and 

a trained assessor [11]. Existing methods of screening for fall risk typically involve assessments 

in a clinic or laboratory, and therefore may not reflect fall risk during everyday life activity (i.e., 

real-world monitoring). Likewise, such assessments are highly subjective, depend upon observer 

expertise, and tend to oversimplify risk [5]. 

 

More recently, researchers have been investigating the use of instrumented fall-risk assessment 

and predictive tools through the use of data collected from inertial sensors worn on the body 

[12]. While a variety of devices exist, the use of triaxial accelerometers has several desirable 

characteristics for screening purposes. In addition to increasing prevalence in pervasive 

technologies such as smart phones, accelerometers present a cheap means of assessing gait. 

When sensor data are collected at 30 hertz or greater, raw data can provide precise measures of 

gait such as variability among gait cycles during walking tasks [13], [14]. While many other 

devices can be used for brief clinical gait assessments, accelerometers offer the option of basing 
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fall risk assessments on data collected during actual activities of daily living, including frequent 

longitudinal measurements from worn or carried devices. 

 

Assessment of gait quality and fall risk prediction through the use of inertial sensors has been a 

popular topic over the past two decades with a substantial number of publications using 

accelerometer-type sensors [12]. The utility of accelerometers assumes that fall risk is 

consistently correlated with characteristics of body movement and gait, and that these 

characteristics can be accurately detected using sensors measuring body motions. Instability 

during movement and walking is a primary cause of actual falls, as emphasized in studies 

analyzing senior falls in nursing homes [15]. Several studies have demonstrated the potential of 

using raw data from wearable devices to predict fall risk by identifying gait-related risk factors. 

Some use multiple sensors across the body (head, torso, pressure insoles, etc.) [5], [16]–[19]. 

Other studies use specialty sensors developed in the lab (not commercially available, requiring 

hardware development to collect data) which limits applicability. A recent literature review by 

Montesinos et al. confirms this heterogeneity in accelerometer-based gait analysis studies and 

notes that differences in sensor placement, extracted features, and the type of motions or tasks 

performed for analysis remain a major challenge in the development of real-world tools [12]. 

Additionally, the majority of studies make use of retrospective fall history as their prediction 

target which calls into question whether these models will be able to predict future fall risk [12]. 

The absence of converging results and protocols illustrates the challenges associated with 

automated gait analysis and the conflicting nature of performance versus scalability with the use 

of low-cost wearable sensors. 
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Ultimately, gait analysis and fall risk prediction in free-living environments necessitates 

algorithms for activity recognition to extract proper inputs for predictive models. Activity 

recognition using body-worn accelerometers has been extensively studied with the majority of 

existing models using data gathered from young, healthy individuals (e.g. college students) [20]. 

Models trained on this population typically do not generalize well to older adults or even 

individuals who may be of very similar, but slightly different, demographics to those in the 

training set [20]. Furthermore, activity recognition models are generally trained on laboratory 

data using prescribed tasks which, ultimately, may not be representative of the tasks performed 

without observation in the real world [20]. Generalizable activity recognition models trained on 

older adults are necessary for automated analysis of free-living gait and must be established 

before models of fall risk are of any practical use. 

  



7 

 

CHAPTER 3: OBJECTIVES 

The primary objective of this investigation is to develop a system for predicting fall risk (and 

potentially future falls) in older adults from walking data gathered in their natural free-living 

environment using a hip-mounted accelerometer. This larger goal requires the isolation of free-

living walking data which represents the individual’s typical gait characteristics and, in theory, 

contains information about their risk of falling. These walking data must then be converted into 

an appropriate format via extraction of features which summarize the signal without loss of 

information relevant to fall risk. Next, these features are used to train statistical models to map 

between the walking signal and a measure of fall risk. Finally, these three processes must be 

integrated into an automated pipeline for passive monitoring of risk; this was ultimately 

accomplished through three subsequent investigations which built upon both previous findings in 

the fields of activity recognition and fall prediction using inertial sensors, and the outcomes of 

previous investigations. In brief, a preliminary study was conducted using walk test data to verify 

the predictive capability of accelerometer gait measurements. The results of which informed the 

development of a walking activity recognition pipeline which was used to study free-living gait 

in relation to future falls. 
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CHAPTER 4: DATA SETS 

The physical activity, falls, and accelerometer data used in this project were obtained from a 

subset of individuals initially recruited in the 1990s for the Women’s Health Initiative (WHI). 

Individuals who consented to participate in the second extension study of WHI (2010 - 2015) 

and an ancillary study titled OPACH (Objective Physical Activity and Cardiovascular Health in 

Older Women, R01 HL105065; PI: A LaCroix) received an in-home visit for data collection and 

completed a physical activity questionnaire between March 2012 and May 2013. 

 

Of the women in the OPACH study, a subset of individuals consented to participate in a 

calibration substudy which calibrated the accelerometers used in the OPACH in-home visits. A 

notable exclusion criterion for the calibration substudy was a significant change in health status 

affecting ability to walk or risk of walking-related injury between OPACH data collection and 

recruitment for the substudy. Of the N=7058 women enrolled in OPACH, N=142 participated in 

the calibration substudy. 

 

The methods of both OPACH and the calibration substudy are described in detail elsewhere [21], 

[22]. Thus, this study is a secondary analysis of OPACH data for the purpose of exploring 

predictive models of fall risk. Consent to participate in OPACH was obtained by either phone or 

mail.  After a screening phone interview, participants in the calibration substudy provided 

written consent at the study’s clinic visit. The OPACH study and the calibration substudy were 

approved by the Institutional Review Boards at each clinical site and by the WHI Clinical 

Coordinating Center. 
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Both the calibration and OPACH studies utilized hip-mounted ActiGraph GT3X+ triaxial 

accelerometers to measure motion in laboratory and free-living environments, respectively. The 

axes of measurement on each accelerometer were aligned with the major directions of bodily 

motion as depicted below. 

 

 

Figure 4.1: Diagram of the ActiGraph accelerometer showing alignment of the axes of measurement with the 

main directions of human motion. 

 

Accelerometers were set to a sampling rate of 30 Hz and possess a dynamic range of +/- 6 G’s 

(units of gravity). Accelerometer data in the form of RData files were converted to CSVs for 

subsequent processing and analysis.  Structured data in the form of CSVs provided information 

related to demographics, physical activity, and falls for each individual. Common to both studies, 

demographics information including age, height, and weight were used in conjunction with the 

accelerometer data for the purpose of predicting measures of fall risk (i.e. physical function) and 

falls. For the calibration substudy, outcome measures included the composite SPPB scores and a 

history of falls during the prior year. While the full OPACH study also provided composite 

SPPB scores, a one-year prospective falls log with fall numbers and rates was available in 

addition to the past fall history. More detailed information concerning each of these variables can 

be found in the data dictionary of Appendices A and B. 
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CHAPTER 5: EXPERIMENTAL DESIGNS AND TOOLS 

Three main projects were carried out to develop an automated system for fall risk prediction 

given the available sensor data detailed in Chapter 4. The first of these was a pilot study which 

used accelerometer data gathered during a walk test to predict past fall history. Moving toward 

real-world monitoring, a pipeline was developed for the identification of free-living walking 

bouts similar to those observed during the calibration substudy walk test. Finally, combining the 

outcomes of the previous two analyses, an attempt was made at automated prediction of fall risk 

and future falls from free-living walk data. A brief summary of the methodologies and tools used 

in each of these experiments are detailed here. 

 

Fall Risk Prediction from Walk Test Bouts 

A total of 142 individuals participated in the calibration substudy which generated the walk test 

data used in this investigation. Of this group, 69 individuals remained after exclusion for missing 

or inapplicable data. Accelerometer time series were segmented using preexisting timestamps 

and activity labels to separate walking bouts from other motion. These bouts were subsequently 

processed into smaller segments using a sliding window from which features were extracted for 

input into predictive models. Random forests were then trained via 10-fold cross validation to 

predict past fall history in the form of high and low risk categories. 

 

Isolation of Good Walking Bouts from Free-living Data 

Real-world use of fall risk prediction models based on gait analysis require the identification of 

walking activity present among the other activities of daily living. Given that good walking 

bouts--those which resemble walking during a walk test--are better suited for gait analysis than 
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the potentially chaotic bouts seen during most daily activities, care must be taken to isolate only 

good walking. A pipeline was developed using multiple statistical filters to separate good 

walking bouts from all other accelerometer activity. 

 

Fall Risk Prediction from Free-living Walking Bouts 

Unlike scripted walk tests, free-living walking bouts have greater variation in duration and 

quality. As such, different methodologies are required to prepare these data for gait analysis and 

feature extraction. Features were extracted from the full free-living bouts of each individual and 

averaged if multiple bouts were present for a single participant to generate a single, flat feature 

vector per participant. Random forest models were trained using a more robust 50/50 train-test 

split to predict both future falls and fall risk. 

 

Random Forests 

The random forest implementation in the scikit-learn library was chosen for model development 

[23]. As an ensemble modeling approach, random forests reduce the bias of their predictions 

through the construction of a large number (usually ≥ 500) of individual decision trees. A 

reduction in variance is obtained through the bootstrapping process which, assuming the original 

data set is a representative sample of the population, draws a new sample of individuals from the 

original set with each tree constructed. This helps guard against overfitting which is commonly 

seen in the real-world application of decision trees. 

 

Going one step further, a random subset of features is selected at each split in the tree with the 

best split chosen as the one which maximizes entropy reduction (i.e. best improves local class 

separation). This additional variance would typically be expected to reduce prediction 
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performance. However, the effect of this additional variance is averaged across all of the trees in 

the forest and, in practice, usually produces a more accurate, stable, and generalizable model. 

 

Another benefit of random forests over other modeling techniques is that they can handle 

categorical predictors with minimal changes to encoding. This allows for the use of continuous, 

ordinal, and nominal data within the same model as is often encountered in biological and 

epidemiologic analyses [24]. 

 

Short Physical Performance Battery 

The Short Physical Performance Battery (SPPB) is a tool for evaluating lower extremity function 

in older adults and has been used to measure physical function status [25]. Weakness in lower 

limbs (measured via SPPB) has been shown to be associated with recurrent falls in older adults 

[9]. In addition to falls, SPPB is predictive of a variety of health measures including loss of 

independence, general decline in health, re-hospitalization, increase duration of hospital stay, and 

even mortality [26]. Moreover, the simplicity of the SPPB combined with the ability to perform 

the evaluation in-home without complicated equipment makes it an ideal exam for assigning fall 

risk to the population. 

 

In 2010, the WHI Steering Committee selected the use of the “Look Ahead” SPPB scoring 

system which produces an overall SPPB score through the summation of three ratios: the 

“Standing Balance Ratio,” “Chair Stand Ratio,” and “Usual Walk Ratio”; these three values sum 

to a final score between 0 and 3 [27]. In more detail, Standing Balance Ratio is defined as the 

summation of three standing balance tests where the feet are placed (1) side-by side (2) semi-
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tandem, and (3) tandem, and are evaluated based upon an individual’s ability to maintain these 

positions for up to 10 seconds. The “Chair Stand Ratio” is obtained from the time required for 

the participant to rise up and sit down in a chair five times whereas the “Usual Walk Ratio” is 

computed from the participant’s pace during a 3-4 meter walk test [27]. 

 

The “Look Ahead” SPPB scores were converted to the scoring system used in the “Established 

Populations for Epidemiologic Studies of the Elderly (EPESE)” project for comparison between 

studies. We selected the EPESE SPPB score for use in all of our SPPB-related analyses for its 

discrete, ordinal scale and established performance; the details of score conversion can be found 

elsewhere [27]. 
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CHAPTER 6: PREDICTION OF FALL RISK FROM WALK 

TEST 

Subject Exclusion 

Several exclusion criteria were established to remove individuals with missing information and 

ensure that both an adequate number of participants and amount of accelerometer data were 

available for analysis. Individuals in the calibration substudy were somewhat self-selected 

against these potential pitfalls in that individuals unable to walk without an assistive device (i.e. 

cane or walker) were unable to participate in the substudy. This resulted in a patient population 

able to complete at least part of the 400 meter walk test and generate a sufficient amount of walk 

data for analysis. However, a number of individuals were excluded from analysis on the basis of 

SPPB scores and past fall histories. These criteria are described in greater detail under subsection 

titled “Definition of Fall Risk.” 

 

Definition of Walk Test Bouts 

Good walking refers to a steady pattern of walking similar to walking along a straight path or 

walking that is observed during a walk test [28], [29]. It is important to note that this does not 

include walking that is performed on a treadmill which fixes walking speed and is not equivalent 

to natural walking. Previous research effectively utilized good walking data as part of a pipeline 

for gait analysis and highly accurate prediction of pulmonary function in both laboratory and 

free-living environments [28], [29]. However, isolation of good walking bouts from these two 

environments necessitates different standards of bout quality as well as automated methods 

capable of handling changes in environment. 
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Walking data gathered in a laboratory environment is typically in the form of labeled data 

restricted to a set number of activities; this was the case for the calibration substudy which had 

individuals perform a 400 meter walk test. Specifically, participants were instructed to walk a 

total distance of 400 meters at their natural pace while staff monitored performance and recorded 

start and end times. As such, separation of the data into different categories of tasks is trivial and 

allowed for quick reorganization of the data into different groups or sets. 

 

Walk Test Bout Extraction 

Extraction of calibration substudy bouts was accomplished through the simple process of 

segmenting the data according to timestamps and activity labels already present in the data set. 

These resulting data were passed to a final “good walking” filter developed by Cheng et al. 

which examines the consistency of variation in a potential “good walking” sample to remove 

bouts which display a great amount of interruption such as frequent starting and stopping [28]. 

The vector magnitude of the raw accelerometer data is computed and segmented using a one-

second sliding window. The standard deviation of each one-second segment is computed and 

compared to the dynamic threshold set by the algorithm. The resulting system generates a binary 

good/bad walking decision for each data point and returns a good walking example if 70% of the 

data are considered to be good walking [28]. Two example walking bouts which highlight the 

sensitivity and accuracy of the good walking filter are displayed in Figure 6.1, below. 
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Figure 6.1: Example accelerometer vector magnitude from a single individual during the 400 meter walk test. 

Figure 6.1.A: A ten-second period of smooth walking without any turns. The “good walking” algorithm identifies 

the full segment as good walking (high green line). Figure 6.1.B: A ten-second period of smooth walking which 

contains a turn. The “good walking” algorithm identifies the substantial reduction in acceleration magnitude and 

eliminates this portion of the walk tracing (green line drops down). Note, the first and last 15 data points in any 

segment are always identified as “non-walking” due to insufficient information. 

 

 

Definition of Fall Risk 

The fall risk of calibration substudy participants was determined using two well-known 

predictors of fall risk: history of falls in the past year and SPPB score. The CDC also uses these 

predictors to classify fall risk in the STEADI Toolkit [3]. In a study of 66,134 postmenopausal 

women, the strongest predictor of future falls was any fall in the past 12 months [30]. A study of 

the SPPB and fall risk concluded that, in older women, SPPB scores of 9 or less are associated 

with higher fall risk in women [9]. Hence, women were classified as “high fall risk” (N=19) 

based on SPPB scores of < 9 and reporting of at least one fall in the past year. Women were 

classified as “low fall risk” (N=47) based on SPPB scores of 10-12 and no reported falls in the 

past year. For the purposes of the calibration substudy which has a small number of subjects 

from the larger study, an attempt was not made at the more difficult classification task of 

distinguishing between women of high fall risk versus intermediate fall risk (i.e. women with 

past falls but SPPB scores of 10-12, or women with SPPB scores of 9 or less, but no past falls). 
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This more complicated task was reserved for exploration in the larger OPACH study and remains 

a significant challenge. 

 

Feature Extraction 

Using the calibration substudy walking bouts which passed the “good walking” filter, features 

were extracted from ten-second samples segmented using a sliding window with 50% overlap. 

Signal-based features in the time and frequency domains were computed for each of the 

individual accelerometer axes and the vector magnitude. The features selected for extraction 

were chosen based upon both knowledge of how gait affects fall risk and findings of research on 

assessing fall risk using inertial, wearable sensors [5]. Features were organized into groups to 

assess the relative predictive ability of traditional measures of gait (i.e. those based upon limb 

movement such as cadence or time between steps and strides) and signal-based features of the 

accelerometer data (e.g. simple statistics: mean, standard deviation, or power). The specific 

features in each feature group can be found in Appendix A. 

 

Predictive Modeling 

In addition to direct prediction, certain machine learning models can be used to identify a subset 

of features that capture the most useful content for a larger classification problem—a process 

called feature selection. Some models available for this purpose include Decision Trees, Random 

Forests, and Support Vector Machines. To determine the model likely best suited for this study’s 

classification task, a simple spot-checking approach was used. This approach involved training 

each classifier with default parameters on the full feature set and evaluating performance via 10-

fold cross validation. With 10-fold cross validation, the data were divided into 10 equally-sized 

partitions with nine partitions used for model training and one for testing. This process was 



18 

 

repeated such that each partition was used once for testing. Metrics averaged across all ten folds 

were used to compare model performance and included accuracy, precision (positive predictive 

value), recall (true positive rate or sensitivity), F1-score (harmonic mean of precision and recall), 

and area under the ROC curve (AUC). Based upon the results, it was deemed that random forests 

were likely the most appropriate classifier to use for the study task; this is not too surprising 

given the adaptability of random forests and the complex nature of the given classification task. 

Support vector machines, while very popular and effective in modern approaches to machine 

learning, require careful tuning of cost parameters and selection of kernels for projecting the data 

into higher dimensions before high accuracies can be achieved. By comparison, random forests 

demonstrate more flexibility “out-of-the-box” and require minimal parameter tuning. 

 

Random forests of 1000 trees were trained and evaluated using 10-fold cross validation 

implemented in the scikit-learn library [23]. In practice, 500 trees is usually more than sufficient 

to maximize the benefits of averaging predictions in the forest. More modern approaches use 

cross-validation to select an “optimal” number of trees based upon model performance on a 

validation data set. This approach was not used in this investigation, however, due to the small 

number of participants which inhibits the creation of a reliable validation set for parameter 

tuning. Again, metrics including accuracy, precision, recall, F1-score, and AUC were used to 

assess performance. Separate forests were trained on each of eleven feature sets to obtain further 

insight into the usefulness of certain feature types and the combined effects of certain feature 

groups. These eleven feature sets were selected to obtain insight into the contribution of each 

accelerometer axis toward risk prediction and test possible interactions. Traditional measures of 
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gait were included in the feature sets to compare the utility of measures of limb movement (e.g. 

step and stride) with that of the hip (i.e. motion of the accelerometer). 

 

Assessing Feature Importance 

Relative feature importance in random forests was characterized by mean decrease impurity [31]. 

Impurity is computed by summing the weighted reduction of sample entropy for all splits that 

utilize the feature of interest; the resulting values are then averaged across all trees in the forest. 

Formally, importance for a single variable 𝑋𝑚 is computed as the weighted sum of impurity 

decreases 𝑝(𝑡)∆𝑖(𝑠𝑡, 𝑡) for all nodes 𝑡 averaged over all 𝑁𝑇 trees [31]: 

 

𝐼𝑚𝑝(𝑋𝑚) =
1

𝑁𝑇
∑

𝑇

∑ 𝑝(𝑡)∆𝑖(

𝑡∈𝑇:𝑣(𝑠𝑡)=𝑋𝑚

𝑠𝑡, 𝑡) 

 

Where 𝑝(𝑡) is the proportion of instances reaching split 𝑠𝑡 [31]. Feature importance was 

calculated independently for forests trained on each of the eleven feature sets. The top-ten 

features were identified for each forest and used to gauge feature applicability to fall risk 

prediction. 

 

Results 

Table 6.1 reports characteristics of the calibration substudy participants by fall risk category. 

Women in the high and low fall risk groups were not significantly different in age, ethnicity, and 

education. By design, because SPPB scores were used to define fall risk groups, the overall 

SPPB score and each of the three SPPB subscores differed significantly between groups. 

Interestingly, although the means for each subscore are different between the two risk groups, 
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only the “Chair Stand” subscore shows separate numeric ranges which do not overlap within one 

standard deviation. This is significant given that the accelerometer can directly measure gait and 

balance during a walk test, but not the unique motions of a chair stand. This highlights the effect 

of calibration substudy exclusion criteria in selecting a generally healthy sample and the possible 

challenges introduced by use of a walking task rather than chair stand. Average cadence during 

good walking was about 124 steps/min. Average values for most variables differed significantly 

by risk group. 

 

Table 6.1: Calibration substudy participant characteristics by fall risk category. 

Characteristic Total High fall risk 

(≤9 SPPB and 

>0 falls) 

Low fall risk 

(>9 SPPB and 0 

falls) 

p-

value 

N (%) 67 19 (28.4%) 48 (71.6%)  

Age, years, mean (SD) 77.5 (6.1) 77.3 (5.9) 77.6 (6.2) 0.829 

Height, inches, mean (SD) 62.9 (2.3) 63.0 (2.1) 62.9 (2.40 0.815 

Weight, pounds, mean (SD) 152.3 (30.0) 156.9 (33.5) 150.5 (28.7) 0.434 

Race/Ethnicity, n (%)    0.582 

  Non-Hispanic White 20 (29.9%) 5 (26.3%) 15 (31.3%)  

  Non-Hispanic Black 19 (28.4%) 5 (26.3%) 14 (29.2%)  

  Hispanic/Latina 28 (41.8%) 9 (47.4%) 19 (39.5%)  

Highest Education Level    0.793 

  High school diploma/GED or   

lower 

12 (17.9%) 4 (21.0%) 8 (16.7%)  

  Vocational or training school 4 (6.0%) 1 (5.3%) 3 (6.3%)  

  Some college or Associate 

Degree 

19 (28.4%) 6 (31.6%) 13 (27.1%)  

  College graduate or more 32 (47.8%) 8 (42.1%) 24 (50.0%)  

EPESE SPPB Score, mean (SD) 10.1 (1.5) 8.3 (1.1) 10.8 (0.8) <0.001 

   Balance Subscore , mean (SD) 3.9 (0.4) 3.7 (0.7) 4.0 (0.0) 0.004 

   Chair stand Subscore , mean 

(SD) 

2.7 (1.1) 1.4 (0.8) 3.2 (0.8) <0.001 

   Gait Subscore, mean (SD) 3.5 (0.7) 3.2 (0.9) 3.6 (0.6) 0.016 

Number of falls in the past year     
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Table 6.1: Continued. 

  0 Falls 48 (71.6%) 0 48 (100%)  

  1 Fall 13 (19.4%) 13 (68.4%) 0  

  2-3 Falls 6 (9.0%) 6 (31.6%) 0  

Cadence (steps/minute), mean 

(SD) 

123.5 (16.5) 120.5 (15.5) 124.6 (16.7) <0.001 

Vector magnitude CoV, mean (SD) 0.216 (0.049) 0.205 (0.047) 0.220 (0.050) <0.001 

Vector magnitude ACC, mean 

(SD) 

0.476 (0.202) 0.500 (0.228) 0.458 (0.191) <0.001 

Vector magnitude, mean (SD) 0.998 (0.014) 0.995 (0.012) 0.998 (0.014) <0.001 

X acceleration, mean (SD) -0.137 

(0.114) 

-0.103 (0.115) -0.149 (0.112) <0.001 

Y acceleration, mean (SD) -0.889 

(0.088) 

-0.910 (0.080) -0.881 (0.089) <0.001 

Z acceleration, mean (SD) -0.124 

(0.323) 

-0.044 (0.293) -0.153 (0.328) <0.001 

X CoV, mean (SD) -1.0 (27.8) -1.6 (18.2) -0.8 (30.4) 0.221 

Y CoV, mean (SD) -0.225 

(0.053) 

-0.206 (0.041) -0.231 (0.055) <0.001 

Z CoV, mean (SD) 0.0 (78.9) 0.1 (153.6) -0.1 (13.2) 0.924 

X ACC, mean (SD) 0.397 (0.193) 0.392 (0.197) 0.399 (0.191) 0.109 

Y ACC, mean (SD) 0.394 (0.216) 0.415 (0.239) 0.386 (0.206) <0.001 

Z ACC, mean (SD) 0.352 (0.254) 0.374 (0.270) 0.344 (0.248) <0.001 

 

 

The results of providing various feature sets to random forest classification models are available 

in Table 6.2. Classifiers were trained using 10-fold cross validation to ensure proper separation 

of training and testing data and limit overfit. The models performed with an average accuracy of 

73.7%, precision of 81.1%, and AUC of 0.706 and could discriminate between high and low fall 

risk classes. The best performing feature set was feature set #10 (accuracy = 79.3%, precision = 

84.6%, and AUC = 0.834), and it included: data from each axis, cross-correlations between axes, 

and traditional measures of gait. Combining individual axes data into a vector magnitude (feature 

set #9) reduced the performance of the model slightly compared to the mean (accuracy = 71.4%, 
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precision = 78.5%, and AUC = 0.616). Traditional measures of gait alone performed the worst 

(accuracy = 69.0%, precision = 75.0%, and AUC = 0.545). Models including single axis data 

performed better though not as well as the models including data from all three axes. Of the 

single axis models, the model containing vertical data outperformed mediolateral and 

anteroposterior models. Adding traditional measures of gait to models with signal-based features 

had little effect in most cases. On average, accuracy and precision differed by 0.8% and AUC 

differed by 0.006 compared to models containing only signal-based features. In all models 

containing signal-based and traditional measures of gait, signal-based measures were 

consistently ranked above traditional measures of gait. In the top performing models, 4 out of the 

top 5 features were derived from the mediolateral dimension (z-axis). It is interesting to note that 

the use of traditional measures of gait in combination with all signal-based features (i.e. 

transitioning from feature set 10 to feature set 11) leads to worse performance. While it is 

generally the case that more information is better, it may be that the traditional measures of gait 

are injecting more noise than signal into the model and reducing predictive accuracy. 

 

Table 6.2: Performance metrics from 10-fold cross validation for random forest classification of 

high and low function women on each of eleven feature sets. 

Set Accuracy Precision Recall F1-Score AUC Feature Groups 

1 69.0% 75.0% 0.873 0.807 0.545 Gait 

2 71.9% 79.0% 0.845 0.817 0.665 X-axis 

3 72.7% 79.1% 0.858 0.823 0.661 X-axis, Gait 

4 75.9% 82.6% 0.855 0.840 0.730 Y-axis 

5 76.2% 82.5% 0.862 0.843 0.727 Y-axis, Gait 

6 70.9% 83.3% 0.760 0.795 0.759 Z-axis 

7 73.1% 84.1% 0.785 0.812 0.771 Z-axis, Gait 

8 70.9% 79.3% 0.822 0.807 0.616 Vector Magnitude 

9 71.4% 78.5% 0.846 0.814 0.616 Vector Magnitude, Gait 
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Table 6.2: Continued. 

. 

10 79.3% 84.6% 0.881 0.863 0.834 XYZ, Cross-correlations 

11 78.9% 84.4% 0.877 0.860 0.846 XYZ, Cross-correlations, Gait 

AVG 73.7% 81.1% 0.842 0.826 0.706 N/A 

 

The top ten features used by classifiers were identified for feature set #10 and for feature set #11.  

With feature set #10 (all feature groups eligible), the most important features were mediolateral 

signal-based measures followed by anteroposterior signal-based measures (Figure 6.2.A). With 

feature set #11 which included traditional measures of gait, the most important features were still 

mediolateral and anteroposterior signal-based features (Figure 6.2.B). In both models, the top 

three features included mediolateral coefficient of variance, correlation coefficient between 

anteroposterior and mediolateral accelerations, and mean mediolateral acceleration. These 

statistics are measures of side-to-side sway, unsteadiness, and asymmetry, respectively, which 

collectively describe core instability during walking. Traditional measures of gait were of lesser 

importance and did not rank amongst the top ten features; again highlighting the greater value of 

direct, signal-based features of instability compared to the measures of variation in step patterns 

provide by traditional measures of gait. 
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Figure 6.2: Top-ten features for two of the feature sets used in prediction of high and low function. Average 

importance of each feature for model prediction was computed as mean decrease impurity (see text) and is indicated by 

the blue bar. Black error bars represent standard deviation of importance across all trees in the forest. Figure 6.2.A. 

Top-ten features for a random forest model trained on features extracted from individual X, Y, and Z-axes and cross-

correlations between axes. Figure 6.2.B. Top-ten features for a random forest model trained on features extracted from 

the individual X, Y, Z-axes, cross-correlations between axes, and traditional measures of gait. 

 

Significance of Core Unsteadiness 

The performance of predictive models developed on data from the calibration substudy suggest 

accelerometer-based measures of gait are potentially useful in screening older women for fall 

risk. Further, features derived from the accelerometer data extracted by the good walking 

algorithm were predictive of fall risk. Specifically, sideways (mediolateral) hip motion detected 

by the z-axis of a triaxial accelerometer may be a useful predictor of risk, such as the top three 

features in our analyses:  coefficient of variance, correlation coefficient between two axes, and 

mean acceleration. The importance of features derived from z-axis data is plausible as excessive 

or variable sideways movement during walking, as measured by coefficient of variation, may 

increase fall risk [32], [33]. The sideways movement is consistent with age-related 

neuromuscular weakness due to slower motor unit recruitment with age [34]. That is, when 

motor control is diminished, gait variability increases, as older adults lack the ability of younger 

adults to respond to perturbations in gait by increasing neuromuscular control [35]. This may 
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present as chaotic accelerometer tracings since erratic muscular control can cause inconsistent 

accelerations. The perturbation in mediolateral movement may predispose older adults to higher 

risk of falling sideways by exceeding the bounds of stability and may portend greater odds of a 

hip fracture [36].   

 

With the additional data, it was of little surprise that the triaxial models outperformed the single-

axis models. Following the top ten features of the triaxial model, it would be expected that the 

mediolateral model would outperform both the anteroposterior and vertical models. However, 

the vertical model performed the best (accuracy = 76.2%, precision = 82.5%, and AUC=0.727). 

This may be explained by certain feature pairs being more predictive than any individual feature. 

That is, an x-axis feature may consistently adjust the instances that end up in a node further down 

in the tree such that the z-axis features are much better at separating the two classes. One 

possible biomechanical explanation is that vertical acceleration may be a correlate of primarily 

force production whereas anteroposterior and mediolateral acceleration are correlates of a 

combination of balance and force production. Therefore, the vertical model uses data that is more 

telling of an adult’s physiologic capacity to walk safely than either the anteroposterior or 

mediolateral models. This is supported by the significantly lower SPPB chair stand subscore of 

the high fall risk group (SPPB chair stand subscore = 1.4) compared to the low fall risk group 

(SPPB chair stand subscore = 3.2). It is difficult to assess balance in a single plane and thus 

requires two axes (anteroposterior and mediolateral) to completely analyze the data. 

Furthermore, since musculature is a component of balance, this may explain why the 

mediolateral and anteroposterior features are more important than vertical features in the triaxial 

models. 
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Random Forests identified features that were reasonably predictive of fall risk, with an average 

accuracy of almost 73.7% and AUC of 0.706.  While this level of accuracy and AUC are low 

compared to machine learning models that predict stable characteristics, the task of fall 

prediction is more challenging and the fall risk classification models met accuracy expectations. 

Furthermore, this average includes models that were not expected to perform well such as only 

traditional measures of gait and vector magnitude data. The performance of these models 

surpasses previous models that utilize only a single hip accelerometer during walking [37]. 

Multiple features of this study could explain the increased performance such as the longer one-

year falls history, combination of falls history and SPPB for fall risk classification, and selection 

of random forests over neural networks which often suffer when provided small data sets (< 

2000 instances). In-house solutions may acquire better accuracy by building higher resolution 

sensors or combining multiple sensors [21], [22]. Though gait quality is a strong predictor of fall 

risk, it is not the only risk factor. There are environmental risk factors and other host risk factors 

that are relatively independent of gait such as poor vision, postural hypotension, and ability of 

shoes to oppose slipping.   

 

Using theoretical probabilistic models, one study estimated the maximum AUC when predicting 

falls within one year ranges from 0.80 to 0.89, with accuracies exceeding 80% challenging to 

achieve [21].  Our models are the first to nearly meet these predicted maximums with an 

accuracy of 79.3% and AUC of 0.834 (feature set #10). Of course, it is of interest to empirically 

test these theoretical maximums. 
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The potential of signal-based measures of acceleration as predictors of fall risk is also suggested 

by the fact that random forest classifiers, using only signal-based features (feature set #2, #4, #6, 

#8, and #10), performed similarly as classifiers including traditional measures of gait (feature set 

#3, #5, #7, #9, and #11). This may indicate the potential of machine learning to identify 

interactions among signal-based features that increase their predictive ability. Reduced feature-

sets have also been shown to outperform full feature-sets [21]. 

 

The results of this study are consistent with the general finding of other studies that raw data 

from wearable accelerometers are potentially useful in fall prediction. Accelerometer-derived 

measures, including gait variability, can predict time to first fall in patients with Parkinson’s 

disease [32]. The results are further consistent with other research that mediolateral and 

anteroposterior measures of sway and velocity are indicators of fall risk and that relatively brief 

gait assessments provide information on fall risk [21]. Some studies have attained greater 

predictive accuracy (up to 90.4%) by using a Timed Up & Go Test, rather than a simple walk 

test, which may better assess other risk factors including muscular strength and physiology [33], 

[34]. Furthermore, the models predicted fall risk based on assessments rather than actual falls 

history [34]. When using past falls history, reasonable accuracy, sensitivity, and specificity 

(80%, 74%, 96%, respectively) was achieved using accelerometer data from only a TUG test and 

a 20 m walk [35].  However, these studies utilized a homebrew accelerometer solution which 

may contain better sensors than commercial offerings but require expertise to implement [33]–

[35]. Greater accuracy, sensitivity, and specificity can be achieved with multiple sensors on body 

parts other than the waist [21]. This finding suggests the use of accelerometers to assess 

characteristics of movement beyond only gait characteristics may improve predictive ability. 
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CHAPTER 7: EXTRACTION OF FREE-LIVING WALKING 

BOUTS 

Definition of Free-living Walking Bouts 

In free-living environments, accurate activity recognition has proven to be a substantial 

challenge plagued by poor performance and generalization—especially in older adults [38]. 

These shortcomings are further amplified in that the single activity of “walking” can vary in 

duration, frequency, and quality. Moreover, the inconsistency of free-living activities 

necessitates a specific and focused definition of free-living walking bouts for the purpose of 

isolating only good walking similar to that observed during scripted walk tests. In developing 

this definition, walking bouts were required to be at least one minute in duration for the purposes 

of eliminating possible shuffling performed during household tasks. This “longer” bout 

requirement allows sufficient time for individuals to reach their typical walking speed which 

eliminates transient acceleration and deceleration associated with starting and stopping motion. 

For bouts greater than one minute in duration, at least 70% of the bout must be “good walking” 

content. This constraint allows for longer walking bouts which contain short pauses during 

movement (e.g. pausing at a crosswalk). To guard against the unreasonable chaining together of 

several separate walking bouts, a cap on pauses between walking periods was defined such that a 

segment of continuous, non-good walking must not exceed 30 seconds.  

 

Admittedly, these criteria are quite strict and the majority of real-world walking activity is far 

less than a minute in duration; indeed, the walk test used for the SPPB is only four meters in 

length or roughly four seconds of walking. However, it is not our goal to identify all bouts of 
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walking activity nor to characterize the walking profiles of individuals (which requires the 

capture of different types of bouts). Rather, we simply wish to identify real-world walking bouts 

that best mimic those seen during a walk test, but without the influence of observation during a 

laboratory activity or task. It is possible that shorter walking bouts may be of value for activity 

profiles or risk assessment, but the current focus is on long-duration, sustained walking activity. 

 

Bout Extraction Pipeline 

Unlike the calibration substudy, the bout extraction process for free-living data consists of 

multiple, progressive filters which extract segments of accelerometer data that meet our previous 

definition of a free-living good walking bout. First, a filtering process based upon the raw y-axis 

output from the accelerometer is used to identify segments of data that contain y-axis values 

between 0 and -2 which are related to the upright, vertical motion seen during walking. 

Depending upon sensor orientation and intensity of motion, not all periods of non-walking 

activity will be excluded by this initial filter as a variety of motions can generate vertical 

accelerations (e.g. bouncing or rocking in a chair). 

 

Next, a cleaning process using the Activity Index (AI) developed by Bai et al. is applied to the 

sections of accelerometer data which passed through the y-axis filter [39]. AI values are 

computed for each one-second epoch of the vector magnitude of the raw triaxial accelerometer 

data according to the following formula: 

𝐴𝐼𝑖
𝑟𝑒𝑙(𝑡; 𝐻) = √max(
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Formula for computing the Activity Index of accelerometer data over 

time period t. 𝜎𝑖𝑚
2  is the variance of axis m at data point i. 𝜎𝑖

2 is the 
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natural variance (device noise) of the measurement when the device is 

left sitting still (e.g. on a table). 

 

A sliding window is used to identify continuous segments of “valid” AI values within the range 

of 18 – 106. This AI range acts as a secondary filter to eliminate periods of inactivity where the 

accelerometer is not moving (i.e. AI of 0) while also limiting AI values to those previously 

observed during good walking activity [39]. AI values beyond the upper limit of this range were 

often found to be impulse-like behavior in the accelerometer signal or motion above the 

frequency range of walking activity. Accelerometer tracings with AI values below 18 were 

typically low-level motion or noise that may be generated by, for example, unconscious 

bouncing of the leg. 

 

When AI values outside of the acceptable range are encountered, a decision is made about 

whether to continue extending the bout based upon the percentage of valid AI content and the 

current length of the out-of-AI-range segment. If either the 30 second invalid AI limit or 70% 

minimum walking activity are violated, the bout is truncated and either discarded or returned 

depending upon the total duration of the bout. As a final step, the previously-described “good 

walking” filter used in the calibration substudy is applied to all returned bouts and those with 

70% or more good walking content are retained. 

 

Validation 

Without labeled data for validation, manual inspection of accelerometer tracings was necessary 

to confirm the accuracy of the bout extraction process; a test sample of 100 individuals were 

randomly selected from the larger data set for this purpose. The previously-described pipeline 

was applied to each individual and the vector magnitude of the returned bout tracings were 
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visualized first as a full plot of the bout to confirm length and then as consecutive ten-second 

windows for inspecting finer details such as repetition and shape. Tracings were inspected by eye 

to confirm the characteristic pattern produced during walking. Each bout was assigned a 

designation of either “good walking” or “noise” and the final percentage of valid good walking 

bouts was tallied.  

 

At least one “bout” was returned for 94 of the 100 individuals. Out of a total 1637 “bouts” 

returned by the algorithm, 1616 were confirmed to be true good walking bouts which gives the 

algorithm a false positive rate of 1.28%. This is an impressively low rate given that no intelligent 

systems (e.g. machine learning or human input) are involved in the bout extraction process; only 

simple statistics and direct value comparisons and are used to identify walking bouts. It should 

be noted that we cannot account for false negatives or guard against them given the lack of a 

ground truth label for the walking bouts. As such, expert knowledge is heavily weighted in the 

validation process which could introduce unintentional bias. 

 

Examples of correct and incorrect bouts can be seen in Figure 7.1 below. Of those incorrectly 

identified as good walking bouts, further inspection revealed that these signals do in fact meet all 

of the criteria defined in the bout extraction process. The y-axis values indicate upright 

movement while the AI of the signal falls within the acceptable range. Additionally, the signal is 

consistent enough to pass the final good walking filter. It is possible that these signals might be a 

composite of walking and other activities which overpower the “walking” portion of the signal. 

However, it is more likely that these signals are non-descript motion that happens to fall within 

the boundaries laid out for isolating walking bouts given that the intensity of walking typically 
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overshadows other types of motion. It is interesting to note the vertical acceleration (y-axis) 

appears to be the strongest contributing factor to the overall signal in both the correct and 

incorrect bouts. 

 

Figure 7.1: Example correctly and incorrectly identified good walking “bouts.” The top row shows a true good 

walking bout with the characteristic repetitive shape and strong y-axis acceleration. The bottom row shows noisy 

motion incorrectly identified as a good walking bout. Interestingly, the y-axis component of the signal (green) 

appears to be the dominant motion even when compressing the signal into its vector magnitude (red). 

 

In an effort to improve the bout extraction process and filter out these incorrectly identified 

bouts, an exploratory analysis of the signals was conducted. Comparison of various descriptive 

statistics pulled from both the correct and incorrect bouts did not reveal any properties useful for 

differentiating between the two signals (Figure 7.2). The feature distributions do not show a 

substantial mean shift which would be the easiest approach for filtering out the misidentified 

walking bouts. Ignoring the mean, the similar shapes across the majority of the distributions 
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further suggests that aggregated metrics such as descriptive statistics computed from the signal 

are insufficient for differentiation. 

 

 

Figure 7.2: Distributions of features computed from the correctly identified good walking bouts and 

accelerometer tracings mistakenly identified walking bouts. All features do not show a substantial mean shift and 

the majority of distributions have similar shapes suggesting that these statistical measures would not be sufficient 

to filter out the incorrectly identified bouts. 
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Additional Considerations 

The automated bout extraction processes exhibits strong performance with high accuracy and a 

low false positive rate. The similarity between the true walking bouts and the handful of 

incorrectly identified bouts suggests high specificity in bout identification by the pipeline. While 

simple statistical features did not provide a means of eliminating the incorrectly identified 

signals and improving the accuracy, shape-matching techniques such as discrete time warping 

[40] or shapelets [41] might be more effective at differentiating walking from noisy motion (not 

attempted). However, it is unlikely that meaningful improvement can be obtained without 

intelligent statistical methods (i.e. classification models) which would require exhaustive visual 

inspection and labeling of all data tracings. Alternatively, transfer learning may be especially 

useful in this setting if a reliable walking classification model can be found and adapted to this 

specific application.  

 

Instead of changing the method of bout classification, the definition of a walking bout could be 

altered to change pipeline output. As previously mentioned, the one minute bout length 

requirement restricts walking bouts to those that best mimic walking observed during a walk test. 

However, this may not necessarily be the optimal approach. Individuals who remain in their 

home will rarely generate bouts of this duration, and as such would not be able to use any 

devices which incorporate the bout extraction pipeline. Lowering the minimum bout duration 

from one minute to 30 seconds could greatly increase the number of bouts for each individual. 

Indeed, reducing the minimum bout length to 30 seconds and the maximum pause between bouts 

to 10 seconds resulted in a 227% increase in number of walking bouts (from 1723 to 5653) when 

tested on 100 individuals; visual inspection of these bouts revealed a false positive rate of only 
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2.7%. A summary of the walking bouts obtained with each approach can be seen in Table C.2 

and Figure C.21. Considerations must be made concerning the quality of these shorter bouts and 

the effect that they could have on model performance. It may be that these shorter bouts better-

represent the typical walking behavior for an individual; they may also better capture variation in 

walking quality. However, this approach requires more robust validation than was performed in 

this modest spot test before comments on feasibility and effectiveness can be made. 

 

One final consideration is the amount of pausing or stopping that is allowed during a walking 

bout. While walk test data should show minimal stopping during walking, we currently allow for 

30% of a free-living walking bout to consist of non-walking activity considering that these 

individuals are likely not walking around a track. However, the physical restrictions of residing 

in-home challenge the reasonability of this assumption. It is probable that long-duration, in-home 

walking bouts consist of short periods of smooth walking punctuated by turns or pauses 

potentially due to the organization of the home or completion of some task. As such, placing 

such a strict requirement on the continuity of walking may not be possible for a large portion of 

the population. While reducing this requirement would lead to more noisy bouts overall, the 

“good walking” content of these bouts may contain a stronger signal for fall risk assessment, 

making this possibility an ideal investigation for future study. 
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CHAPTER 8: PREDICTION OF FALL RISK FROM FREE-

LIVING WALKING 

The full OPACH data set was used for the development and testing of free-living fall risk 

prediction models. Methodologies were adjusted to account for the additional variance 

introduced by the free-living environment and lack of scripted activities. This chapter details the 

complex process of curating and transforming walking bouts into the format required for proper 

statistical modeling. 

 

Exclusion Criteria 

Unlike individuals in the calibration substudy who were specifically instructed to perform a walk 

test, data gathered in the free-living environment is uncontrolled and depends upon the behavior 

of each individual. To maximize the likelihood of extracting good walking from free-living data 

and ensure reliable recording of prospective fall outcomes, a set of exclusion criteria for 

participants were defined as follows: 

 

1. A minimum of six months of fall calendars were returned by the subject. 

 

This ensures that at least half of the available fall calendars were returned to the study 

and provide an accurate picture of prospective falls. This decision was informed by input 

from physicians and scientists familiar with this method of data collection. It should be 

noted that the majority of individuals (86%) returned at least 12 months of fall calendars, 

which is a strong return rate for survey methods of this type. 
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2. A minimum of 5 days of accelerometer data are available. 

 

Depending upon patterns of device wear, participants could have up to seven days of 

accelerometer data if the device was worn for the full duration of the data collection 

period. Given the age of the population under investigation and the suspected scarcity of 

good walking bouts, a minimum of 5 days of accelerometer data were required in an 

effort to improve the return rate of good walking bouts and hopefully guarantee a sizable 

sample of walking from each individual. 

 

3. Subjects were adherent (i.e. the accelerometer was worn on the body for at least 8 hours 

during each of the available days). 

 

Subjects were able to remove the accelerometer when needed (e.g. taking a bath) and as 

such may not have worn the device for the full day. ActiGraph accelerometers monitor 

movement of the device and report whether the device was worn (i.e. recorded a 

sufficient amount of motion) across an eight hour time period. Accelerometers which met 

this criteria are assumed to have been worn during a large portion of waking hours and 

are labeled “adherent.” 

 

A full diagram detailing the drop-out of individuals from the study following each exclusion 

criteria can be seen below: 
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Figure 8.1: Flow chart illustrating the exclusion of individuals from the pool of data used in model development 

and testing. Note that 504 individuals dropped out of the participant pool for not returning a single walking bout. 

This does not imply that these individuals did not walk, but rather that the “good walking” bout criteria may be 

too strict in requiring one minute bouts. 

 

Definition of Fall Risk 

The main objective of the free-living study was to develop predictive models of future falls in 

older adults. Multiple fall risk groups were defined using fall rates calculated from the 

prospective fall calendars for the purpose of developing two-way and three-way classifiers. 

Cutoffs were applied to the fall rate variable to generate class groupings that represent the 

following fall risk categories: 
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Table 8.1: Two-way fall classification. 

Fall Risk Category Number of Future Falls 

Low 0 – 1 

High 2+ 

 

Table 8.2: Three-way fall classification. 

Fall Risk Category Number of Future Falls 

Low 0 – 1 

Medium 2 – 3 

High 4+ 

 

Limitations were encountered when following the previous classification scheme and, as such, 

the definition of fall risk was redefined to more resemble that of the calibration substudy which 

better-captures the physical function component associated with fall risk. A combination of falls 

and SPPB scores were used to define the following new risk categories: 

Table 8.3: Two-way fall risk classification. 

Fall Risk Category Future Falls SPPB Range Fall Rate 

Low 0 10 – 12 > 0 

High > 0 0 – 6 0 

 

Table 8.4: Three-way fall risk classification. 

Fall Risk Category Future Falls SPPB Range Fall Rate 

Low 0 10 – 12 0 

Medium > 0 7 – 9 > 0 

High > 0 0 – 6 > 0 

 

Bout Extraction 

Good walking bouts were extracted using the pipeline detailed previously in Chapter 7. 

 

Feature Extraction 

Due to the substantial variation in bout duration and number, features extracted from the free-

living walking bouts were computed across the full bout without the use of a sliding window. If 

individuals had multiple bouts, features were computed for each walking bout and then averaged 
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to generate the final feature vector. It should be noted that this process loses information about 

the variation of walking for individuals who returned multiple bouts and instead provides 

summarized measures of walking. A full list of computed features can be found in Appendix A. 

 

Predictive Modeling 

Random forests of 1000 trees were trained to classify individuals according to each of the 

classification schemes defined above using a 50/50 train-test split. Splits were stratified by class 

to ensure equal representation of each category in the training and testing sets. Confusion 

matrices were used for evaluating predictive performance since most of the metrics previously 

used for model evaluation in the calibration do not generalize well to the multiclass case. 

Moreover, confusion matrices provide additional insight into the specific weaknesses in 

prediction that can be easily missed or misunderstood when looking at summary measures such 

as accuracy. 

 

Results 

Out of the original 4520 individuals in the data set, 4016 returned at least one good walking bout. 

To ensure a representative walking sample from each individual, a minimum of three walking 

bouts per individual was required to remain in the analysis; this reduced the sample size to 3583. 

The class distributions and confusion matrices for individuals in each classification scheme (fall 

risk, future falls, and SPPB) are presented and discussed in the subsections below. Demographics 

are presented in Table 8.5 at the end of this chapter. 
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Falls Prediction (two-way) 
 

  

Figure 8.2.A: Falls class distribution for the full 

sample. The low-risk category (n=2828) corresponding 

to 0-1 falls has representation roughly four times that 

of the minority class of 2+ falls (n=754).  

Figure 8.2.B: Falls class distribution for a balanced 

sample generated by under sampling the majority class. 

Both the low-risk category (n=754) and high-risk 

categories (n=754) have an equal representation of 

roughly 700 instances. 
 

  

Figure 8.3.A: Confusion matrix for prediction of fall 

rate categories in the unbalanced testing set. All 

individuals were predicted as being in the low-risk 

category of zero or one falls. 

Figure 8.3.B: Confusion matrix for prediction of fall 

rate categories in the balanced testing set. 

 

The results of the binary classifications of “0 – 1” falls and 2+ falls are in Figure 8.3. The binary 

classifier of prospective falls seemed to have high accuracy (78.76%). However, the classifier 

predicted every participant as “0 – 1” falls. Accordingly, the precision and sensitivity of 2+ falls 

were both zero. The confusion matrix shows that this bias remained even when testing on unseen 

individuals with all “2+ falls” cases being incorrectly classified. It is known that class imbalance 
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can prejudice data-driven models toward predicting the majority class. For ensemble models that 

utilize sampling approaches—such as bootstrapping—to train a set of smaller learners, excessive 

sampling of the majority class will produce a set of highly similar learners which favor 

prediction of the majority. This effectively negates the sought-after benefits offered by ensemble 

approaches. 

 

 Using a balanced data set improved the overall performance of the classifier, but the 

performance was still poor. Random forests trained on the balanced training set displayed a more 

even prediction accuracy across both classes. Figure 8.3B shows 50% test accuracy for “0 – 1” 

falls and 56% accuracy for 2+ falls which suggests that balancing class frequency allows for not 

only prediction of both classes, but actually leads to better identification of the minority class. 

However, this improvement in recall of 2+ falls (from 0.00 to 0.53) came at the cost of reducing 

overall accuracy to near random chance (only 53.00%). 

 

Falls Prediction (three-way) 
 

  

Figure 8.4.A: Falls class distribution for the full 

sample. The low-risk category corresponding to “0-1 

falls” (n=2828) has representation roughly four times 

that of the middle class of “2-3 falls” (n=564) and 

eleven times that of the minority group with “4+ falls” 

(n=190). 

Figure 8.4.B: Falls class distribution for a balanced 

sample generated by under sampling the majority 

classes. As a result, all three classes have equal 

representation with 190 individuals. 
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Figure 8.5.A: Confusion matrix for prediction of fall 

rate categories in the unbalanced testing set. Nearly all 

individuals were predicted as being in the low-risk 

category of “0 – 1 falls” with no individuals assigned 

to the “4+ falls” category and only a single individual 

predicted as having “2 – 3 falls.” 

Figure 8.5.B: Confusion matrix for prediction of fall 

rate categories in the balanced testing set. We see 

individuals assigned to all classes with the greatest 

percentage of individuals assigned to the “0 – 1 falls” 

and “4+ falls” groups. 

 

The results of the ternary classifications of “0 – 1”, “2 – 3”, and 4+ falls are in Figure 8.5 above. 

Like the binary classifier, the accuracy was deceptively high at 79.39%. However, nearly all 

participants were predicted to have had “0 – 1” falls with a small portion predicted to have had 

“2 – 3” falls. The precision and sensitivity of the were both 0.00 for the 4+ falls group and were 

marginally greater for the “2 – 3” falls group (0.15 and 0.02, respectively). Balancing the data set 

improved precision and sensitivity of the “2 – 3” (0.34 and 0.33, respectively) and 4+ falls (0.42 

and 0.4, respectively) group, but classification accuracy was drastically reduced to 35.9%. 
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Fall Risk Prediction (two-way) 
 

  

Figure 8.6.A: Fall risk class distribution for the full 

sample. The low-risk category (n=726) has a 

representation more than two times that of the high risk 

class (n=274). 

Figure 8.6.B: Fall risk class distribution for a balanced 

sample generated by under sampling the majority 

classes. As a result, both classes have equal 

representation with 274 individuals. 
 

  

Figure 8.7.A: Confusion matrix for prediction of fall 

risk categories in the unbalanced testing set. The 

majority of individuals were predicted as having 

membership in the “low risk” category. 

Figure 8.7.B: Confusion matrix for prediction of fall 

risk in the balanced testing set. We see a fairly 

balanced prediction accuracy for both classes with 69% 

of individuals correctly classified as “low risk” and 

75% of individuals correctly classified as “high risk.” 
 

The results of the binary classifications of “Low” and “High” fall risk are in Figure 8.7. The 

binary classifier of fall risk seemed to have decent accuracy (78.80%). However, the classifier 

predicted the majority of participant as low risk. Like prediction of falls, the use of a balanced 

data set improved the overall performance of the classifier, but performance was still poor. The 

overall accuracy of the classifier was reduced to 72.26% with a reduction in sensitivity to the 
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“low” risk category (0.8 to 0.74). Interestingly, the sensitivity to the “high” risk category 

remained at the same value (0.71) suggesting that, in this case, the balanced data set did not 

improve minority class prediction, but did hurt “low” risk classification. 

 

Fall Risk Prediction (three-way) 
 

  

Figure 8.8.A: Fall risk class distribution for the full 

sample using a three-way grouping scheme. The low-

risk category (n=726) has a representation pretty much 

equivalent to that of the middle category (n=648). 

However, the high risk category (n=274) is represented 

less than half as much as the other two classes. 

Figure 8.8.B: Fall risk class distribution for a balanced 

sample generated by under sampling the majority 

classes. As a result, all three classes have equal 

representation with 274 individuals. 

 

  

Figure 8.9.A: Confusion matrix for prediction of fall 

risk categories in the unbalanced testing set. The 

majority of individuals were predicted as having 

membership in the “low risk” category with some 

predictions in each of the three classes. 

Figure 8.9.B: Confusion matrix for prediction of fall 

risk in the balanced testing set. We see a fairly 

balanced, but poor, prediction accuracy in the extreme 

classes of “low” and “high” risk. The middle category 

shows poor prediction accuracy with individuals placed 

in all three categories. 
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The results of the three-way classifications of “Low,” “Medium,” and “High” fall risk are in 

Figure 8.9. Unlike the binary case, the ternary classifier of fall risk exhibited very poor accuracy 

(50%). The balanced data set substantially improved prediction of the high risk individuals (55% 

correct) with only a small reduction in correct classification of low risk individuals (dropped 

from 66% to 55%). Medium risk individuals saw a 50% reduction in accurate classification with 

the majority of individuals being incorrectly classified in the extremes of low or high risk. 

 

SPPB Prediction (two-way) 
 

 

  

Figure 8.10.A: SPPB class distribution for the full 

sample using a two-way grouping scheme. The low-

risk category of 10 – 12 (n=1290) has a representation 

more than double that of the high-risk class with SPPB 

scores of 1 – 6 (n=544). 

Figure 8.10.B: Fall risk class distribution for a 

balanced sample generated by under sampling the 

majority class. As a result, both SPPB categories have 

an equal representation of 544 individuals. 
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Figure 8.11.A: Confusion matrix for prediction of 

SPPB categories in the unbalanced testing set. The 

majority of individuals were predicted as having 

membership in the low-risk category of “10 – 12” with 

some correct predictions in the high-risk group. 

Figure 8.11.B: Confusion matrix for prediction of 

SPPB categories in the balanced testing set. We see a 

fairly balanced prediction accuracy across both classes 

with roughly 70% accuracy in both categories. 

 

The results of the binary classifications of low and high physical function (SPPB) are in Figure 

8.11. Performance of the binary classification of the unbalanced (complete) data set was poor in 

comparison to the balanced data set. The overall accuracy of the unbalanced classifier was 

greater (77.20%) in comparison to the balanced classifier (69.49%). However, this was 

accomplished by predicting most participants as high physical function (10-12 SPPB) which 

made up most of the sample (70.3%). After balancing the groups, sensitivity of the high physical 

function group improved from 0.68 to 0.70 while the sensitivity of the low physical function 

group decreased from 0.79 to 0.69. 
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SPPB Prediction (three-way) 
 

  

Figure 8.12.A: SPPB class distribution for the full 

sample using a three-way grouping scheme. The low-

risk category of “10 – 12” (n=1290) has a 

representation fairly even with the middle category of 

“7 – 0” (n=1434) but is much more represented than 

the high-risk category of “1 – 6” (n=544). 

Figure 8.12.B: Fall risk class distribution for a 

balanced sample generated by under sampling the 

majority classes. As a result, all three SPPB categories 

have an equal representation of 544 individuals. 

 

  

Figure 8.13.A: Confusion matrix for prediction of 

SPPB categories in the unbalanced testing set. The 

majority of individuals were predicted as having 

membership in the middle category of “7 – 9” with 

some predictions in each of the three classes. 

Figure 8.13.B: Confusion matrix for prediction of 

SPPB categories in the balanced testing set. We see a 

fairly balanced, but poor, prediction accuracy in the 

extreme classes of “1 – 6” and “10 – 12” risk. The 

middle category shows poor prediction accuracy with 

individuals placed in all three categories. 
 

The results of the ternary classifications of low, medium, and high physical function (SPPB) are 

in Figure 8.13.  The overall accuracies were poor (51.17% for the unbalanced data set and 

43.30% for the balanced data set). Balancing the data set did not improve overall performance 
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with no clear improvement in precision or recall. Sensitivity for low physical function increased 

slightly (0.51 to 0.55) with the balanced data set while the recall for medium physical function 

decreased (0.48 to 0.38) and the recall for high physical function increased (0.55 to 0.49). 

 

Table 8.5: Participant characteristics by SPPB category. 

Characteristic Total High Risk 
(SPPB 1 – 6) 

Medium Risk 
(SPPB 7 – 9) 

Low Risk 
(SPPB 10 – 

12) 

N (%) 1632 (100) 544 (33.33) 544 (33.33) 544 (33.33) 

Age, years, mean (SD) 78.60 (6.62) 80.89 (6.21) 78.28 (6.39) 76.76 (6.35) 

BMI, mean (SD) 27.71 (5.36) 28.25 (5.81) 27.83 (5.34) 27.09 (5.14) 

EPESE SPPB Score, mean (SD) 7.98 (2.60) 4.97 (1.24) 8.09 (0.81) 10.86 (0.81) 

Balance Subscore, mean (SD) 3.30 (1.18) 2.28 (1.37) 3.67 (0.80) 3.96 (0.26) 

Chair stand Subscore, mean 
(SD) 

2.12 (1.21) 1.19 (0.87) 1.95 (0.97) 3.25 (0.75) 

Gait Subscore, mean (SD) 2.56 (1.21) 1.50 (0.84) 2.48 (1.02) 3.66 (0.60) 

Fall rate, mean (SD) 0.08 (0.21) 0.11 (0.30) 0.08 (0.17) 0.06 (0.11) 

Fall count, mean (SD) 1.01 (2.35) 1.37 (3.48) 0.94 (2.01) 0.80 (1.36) 

Amount of Activity     

Percent Activity 0.09 (0.03) 0.09 (0.03) 0.09 (0.03) 0.09 (0.03) 

Ethnicity     

White (%) 796 (48.77) 304 (18.63) 240 (14.71) 252 (15.44) 

Black (%) 551 (33.76) 165 (10.11) 212 (12.99) 174 (10.66) 

Hispanic (%) 285 (17.46) 75 (4.60) 92 (5.64) 118 (7.23) 

Education     

No School (%) 0 (0) 0 (0) 0 (0) 0 (0) 

1-4 Years (%) 3 (0.18) 2 (0.12) 1 (0.06) 0 (0.00) 

4-8 Years (%) 13 (0.80) 6 (0.37) 5 (0.31) 2 (0.12) 

9-12 Years (%) 53 (3.25) 20 (1.23) 22 (1.35) 11 (0.67) 

High School (%) 236 (14.46) 86 (5.27) 70 (4.29) 80 (4.90) 

Vocational School (%) 166 (10.17) 63 (3.86) 58 (3.55) 45 (2.76) 

Some College or Associates (%) 449 (27.51) 156 (9.56) 143 (8.76) 150 (9.19) 

College Graduate (%) 169 (10.36) 43 (2.63) 68 (4.17) 58 (3.55) 

Some Postgraduate or 
Professional School (%) 

196 (12.01) 62 (3.80) 58 (3.55) 76 (4.66) 

Masters (%) 303 (18.57) 91 (5.58) 106 (6.50) 106 (6.50) 

Doctoral (%) 38 (2.33) 13 (0.80) 11 (0.67) 14 (0.86) 

Use of Assistive Device     

Never (%) 1195 (73.22) 293 (17.95) 418 (25.61) 484 (29.66) 

Occasionally (%) 261 (15.99) 124 (7.60) 89 (5.45) 48 (2.94) 

Frequently or All the Time (%) 149 (9.13) 114 (6.99) 29 (1.78) 6 (0.37) 

Difficulty Walking at Baseline ??? ??? ??? ??? 

CHAMPS     

Expenditure All, mean (SD) 1819.36 
(1494.78) 

1525.52 
(1294.89) 

1875.79 (1695.84) 2181.40 
(1652.68) 
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Table 8.5: Continued. 

 
Expenditure Moderate, mean 

(SD) 
891.53 

(1073.81) 
662.52 (890.13) 918.14 (1235.98) 1169.77 

(1237.93) 

Frequency All, mean (SD) 14.36 
(12.94) 

12.44 (12.50) 14.13 (12.48) 15.84 (12.89) 

Frequency Moderate, mean 
(SD) 

4.79 (5.97) 3.69 (5.60) 4.56 (5.63) 5.69 (6.20) 

Characteristic Total High Risk 
(SPPB 1 – 6) 

Medium Risk 
(SPPB 7 – 9) 

Low Risk(SPPB 
10 – 12) 

N (%) 1632 (100) 544 (33.33) 544 (33.33) 544 (33.33) 

Age, years, mean (SD) 78.60 (6.62) 80.89 (6.21) 78.28 (6.39) 76.76 (6.35) 

BMI, mean (SD) 27.71 (5.36) 28.25 (5.81) 27.83 (5.34) 27.09 (5.14) 

EPESE SPPB Score, mean 
(SD) 

7.98 (2.60) 4.97 (1.24) 8.09 (0.81) 10.86 (0.81) 

Balance Subscore, mean (SD) 3.30 (1.18) 2.28 (1.37) 3.67 (0.80) 3.96 (0.26) 

Chair stand Subscore, mean 
(SD) 

2.12 (1.21) 1.19 (0.87) 1.95 (0.97) 3.25 (0.75) 

Gait Subscore, mean (SD) 2.56 (1.21) 1.50 (0.84) 2.48 (1.02) 3.66 (0.60) 

Fall rate, mean (SD) 0.08 (0.21) 0.11 (0.30) 0.08 (0.17) 0.06 (0.11) 

Fall count, mean (SD) 1.01 (2.35) 1.37 (3.48) 0.94 (2.01) 0.80 (1.36) 

Amount of Activity     

Percent Activity 0.09 (0.03) 0.09 (0.03) 0.09 (0.03) 0.09 (0.03) 

Ethnicity     

White (%) 796 (48.77) 304 (18.63) 240 (14.71) 252 (15.44) 

Black (%) 551 (33.76) 165 (10.11) 212 (12.99) 174 (10.66) 

Hispanic (%) 285 (17.46) 75 (4.60) 92 (5.64) 118 (7.23) 

Education     

No School (%) 0 (0) 0 (0) 0 (0) 0 (0) 

1-4 Years (%) 3 (0.18) 2 (0.12) 1 (0.06) 0 (0.00) 

4-8 Years (%) 13 (0.80) 6 (0.37) 5 (0.31) 2 (0.12) 

9-12 Years (%) 53 (3.25) 20 (1.23) 22 (1.35) 11 (0.67) 

High School (%) 236 (14.46) 86 (5.27) 70 (4.29) 80 (4.90) 

Vocational School (%) 166 (10.17) 63 (3.86) 58 (3.55) 45 (2.76) 

Some College or Associates 
(%) 

449 (27.51) 156 (9.56) 143 (8.76) 150 (9.19) 

College Graduate (%) 169 (10.36) 43 (2.63) 68 (4.17) 58 (3.55) 

Some Postgraduate or 
Professional School (%) 

196 (12.01) 62 (3.80) 58 (3.55) 76 (4.66) 

Masters (%) 303 (18.57) 91 (5.58) 106 (6.50) 106 (6.50) 

Doctoral (%) 38 (2.33) 13 (0.80) 11 (0.67) 14 (0.86) 

Use of Assistive Device     

Never (%) 1195 
(73.22) 

293 (17.95) 418 (25.61) 484 (29.66) 

Occasionally (%) 261 (15.99) 124 (7.60) 89 (5.45) 48 (2.94) 

Frequently or All the Time (%) 149 (9.13) 114 (6.99) 29 (1.78) 6 (0.37) 

CHAMPS     

Expenditure All, mean (SD) 1819.36 
(1494.78) 

1525.52 
(1294.89) 

1875.79 
(1695.84) 

2181.40 
(1652.68) 

Expenditure Moderate, mean 
(SD) 

891.53 
(1073.81) 

662.52 (890.13) 918.14 (1235.98) 1169.77 
(1237.93) 
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Table 8.5: Continued. 

 
Freq. All, mean (SD) 14.36 (12.94) 12.44 (12.50) 14.13 (12.48) 15.84 (12.89) 

Freq. Moderate, mean (SD) 4.79 (5.97) 3.69 (5.60) 4.56 (5.63) 5.69 (6.20) 

 

Insights from Analysis of Free-living Gait 

The performance of predictive models developed on the free-living data further support the idea 

that accelerometer-based measures of gait are potentially useful in screening older women for 

fall risk, but that the performance of these models is heavily weighted in the specific details of 

model development. To start, the use of free-living data introduces a substantial amount of 

variation and unpredictability into the pool of available data which must be filtered and reduced 

to only a sample of good walking bouts. This process requires the computation of Activity Index 

values for the full accelerometer tracing followed by segmentation into candidate subsegments 

which must then pass through a series of filters to identify good walking bouts. While this 

process was found to be very computationally intensive using early versions of the data 

processing software, current runtime estimates suggest that a week of data for a single individual 

(typical size ~523 megabytes) can be processed in twenty seconds on average when run on a 64-

bit system with an Intel Core i7-4610M processor at 3.00 GHz and 8 GB of RAM which 

represents a modest laptop by 2018 standards; the full set of 4520 individuals was processed in 

under two days’ time. Estimates of feature extraction runtime are not currently available, but are 

expected to be modest given that the majority of features computed are simple statistics which 

make use of heavily-optimized numpy libraries. 

 

Looking at the overall prediction performance for each of the three target variables (falls, fall 

risk, and SPPB), models trained on unbalanced data show higher accuracies than those trained on 
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balanced data sets. However, this picture was found to be misleading when looking at the 

confusion matrices. The high accuracy of these binary classification models (falls 78%, risk 

78%, and SPPB 77%) are inflated due to the class imbalance present in the data set. Specifically, 

the falls classification model achieves its 78% accuracy by predicting “0 – 1 falls” for all 

individuals (i.e. 100% of the time). Since individuals who fell 0 – 1 times make up nearly 80% of 

the data set, the classifier automatically achieves this high level of accuracy by blindly assigning 

a single class. A similar, albeit less extreme, case can be seen for the prediction of binary SPPB 

categories. The classifier achieved 77% accuracy by predicting the majority of individuals as 

having SPPB scores of 10 – 12. However, individuals with SPPB scores of 10 – 12 make up 

roughly 70% of the data set. While in this scenario the classifier is not completely ignoring the 

minority class, a substantial bias in prediction can be seen. Fall risk predictions follow a trend 

similar to SPPB predictions and provide further evidence of the significant effect class imbalance 

can have in biasing statistical models. As an interesting side note, Table 8.5 shows that the “Gait 

Subscore” has good separation across the three SPPB classes which, in theory, should be visible 

in the accelerometer data. Given the classification accuracy, however, this is clearly not the case. 

It may be that the location of the sensor inhibits acquisition of the aspects of the gait cycle which 

allow for separation across the classes. Alternatively, assuming the accelerometer data are indeed 

capture the appropriate signal, the features extracted may not be capturing these components. 

  

Contrary to the previous discussion, statistical models trained on balanced binary data showed 

lower overall accuracy but displayed an improved sensitivity to the minority class (high risk 

individuals). Models predicting future falls showed the greatest drop in performance when 

switching from unbalanced to balanced data with overall accuracy dropping from 78% to just 
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53%. Being just above random chance, models with this accuracy would usually be ignored. 

However, looking more closely we see that this reduction in overall accuracy has led to a 

substantial increase in sensitivity for predicting individuals in the 2+ falls group (sensitivity 

increased from 0 to 0.53). While this model appears to be less accurate according to summary 

measures, it is in fact a much better model since it actually identifies individuals in the high falls 

group. Fall risk predictions using the balanced data sets showed a much smaller drop in accuracy 

from 78% to 72%, but did not show any increase in sensitivity to the minority class (sensitivity 

0.71). Surprisingly, the balanced model is likely the worse of the two given the decrease in 

accuracy of low-risk predictions (only 69%) for essentially no gain in detecting high-risk 

individuals. 

 

Looking at the performance of the three-way classifiers, we uncover an interesting property of 

multi-class classification. First, like the binary classifiers, training on unbalanced data sets leads 

to strong bias toward predicting the majority class (e.g. solely assigning the majority class 

produces 80% accuracy for the ternary fall prediction model, see Figure 8.5). However, when 

trained on balanced data, we see an interesting shift. Rather than averaging out performance 

across all three classes as we might expect given their equal representation in the data, all of the 

models (falls, fall risk, and SPPB) show biased predictions toward the extreme classes. In greater 

detail, fall prediction models obtained their best accuracies in predicting the extremes “0 – 1 

falls” and “4+ falls” with accuracies of 41% and 44%, respectively; all other predictions showed 

accuracies of 36% or less (see Figure 8.5). A similar pattern is visible in the three-way models 

predicting fall risk and SPPB categories with the extreme cases (risk: “Low” and “High”, SPPB: 

“1 – 6” and “10 – 12”) showing the greatest level of accuracy despite all three classes having 
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equal representation. At the simplest level of explanation, these patterns illustrate that it is easier 

to separate instances the greater they are different. We also see that individuals in the middle 

classes are easily confused as being members of any of the three possible classes. These 

behaviors may highlight the large degree of similarity in the good walking signals and the 

multitude of ways to achieve a mid-level SPPB score (i.e. many combinations of gait, chair 

stand, and balance scores can generate a mid-level total SPPB score). Alternatively, the choices 

made in defining class labels could have selected a set of alike individuals for which the 

differences in accelerometer data are minute and easy to misidentify. However, it may simply be 

the case that the classification problems posed in this investigation are challenging and require 

more advanced approaches to achieve higher degrees of sensitivity and precision. 

 

Focusing solely on the binary classification models trained on balanced data, we can begin to 

infer the effect of class labels on performance and the relative usefulness of model predictions. 

First, we see that the best accuracy is obtained when predicting SPPB or fall risk (70% and 72%, 

respectively) whereas prediction of falls is no more accurate than random chance (i.e. 50% 

accuracy). Looking at the definitions of class labels, both SPPB and fall risk incorporate SPPB 

scores (see Appendix B) whereas prediction of falls is based solely on the number of future falls. 

It may be that the SPPB and fall risk labels are more directly related to the signal in the 

accelerometer data than are individual falls. This makes some intuitive sense since SPPB is a 

measure of physical function which incorporates a walk test and tests of balance; the movement 

of the accelerometer would naturally be more associated with class labels which incorporate 

SPPB in their definition (i.e. SPPB and fall risk) than those that do not (i.e. falls). The lower 

correlations between accelerometer features and fall count (Figure C.9), compared to the higher 
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correlations between SPPB score and these same features, provide additional evidence in support 

of this rationale. Moreover, falls themselves are not necessarily a result of physiologic deficiency 

but also include falls due to environmental effects or random chance. Such falls would have little 

to no association with physical function and, by association, the mediolateral movement of the 

accelerometer which is related to gait and balance. And, of course, individuals who walk more 

often increase their opportunity, but not necessarily their risk, of falling which may further cloud 

the relationship between falls and the accelerometer data. 

 

With this in mind, it is reasonable to believe that accelerometer-based systems for monitoring 

falls will provide a more accurate measure of an individual’s risk for future falls than the 

prediction of the falls themselves. Although this may be less ideal than the reverse case, the 

automated identification of changes in SPPB or fall risk status could allow for the timely 

application of proactive strategies, such as strength and balance training, to prevent falls. 

However, separate longitudinal studies would be required to confirm the performance of such a 

system. The accuracy of the models presented here—while impressive for the complexity of the 

task—will need to be improved before they can be used in any official capacity for population-

level monitoring. Moreover, the models will need to be adjusted to incorporate classification 

across all possible categories (i.e. the full SPPB score range of 1 – 12) instead of just the 

extremes since the real value of these predictions are in identifying individuals who are in the 

middle categories of risk and are beginning to transition into high risk; we need to detect the start 

of this transition and attempt to mitigate the increase in risk to have a meaningful impact in 

reducing the burden of falls. 
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CHAPTER 9: CONCLUSIONS 

The performance of predictive models from the calibration substudy suggests that raw data 

collected from a hip-worn, triaxial accelerometer during walking may be useful in assessing risk 

of falls. Prospective studies of the ability of accelerometer-based measures of walking to predict 

falls are warranted, given the potential of these inexpensive sensors to monitor walking and fall 

risk during activities of daily life, in large numbers of older adults, and over long periods of time. 

In particular, large prospective studies in older adults who vary widely in risk of falls are needed.  

In these studies, accelerometer-based assessments of fall risk should be based upon patterns of 

walking under free-living conditions, rather than only on data collected in laboratory or clinical 

settings. Analysis of data collected in free-living conditions may identify different gait 

characteristics as indicators of fall risk, in part because free-living walking occurs in a variety of 

environments (e.g. hills, uneven sidewalks, and wet surfaces). 

 

Accelerometer-based fall risk models developed from the free-living OPACH data showed 

reduced accuracy compared to those in the calibration substudy, but maintained an accuracy rate 

of 70% for low vs. high fall risk classification (same categories used in the calibration substudy); 

this is impressive given the increased noise in the free-living data compared to the scripted and 

carefully timed walk test used in the calibration substudy. Although more work is required 

before passive screening of large populations for fall risk via smart phones becomes a feasible 

tool, the least expensive low-end smartphones (e.g. the LG Optimus Zone 3 which  now costs 

$30) can measure gait as accurately as the most expensive high-end medical accelerometers 

(which cost $3000), while also being more accurate than fitness devices [37]. Such phones 

contain accelerometers of far better quality than those used in the ActiGraph and are naturally 



57 

 

placed near the waist (e.g. pocket or belt) which facilitates conversion of ActiGraph prediction 

models to work with phone data. Thus, there is a potential path toward screening and prevention 

of falls at population scale for the aging population, by leveraging sensor data from already 

carried personal phones. 
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CHAPTER 10: LIMITATIONS 

Of course, these investigations have several limitations both in a general sense and related to 

specific aspects of the study. First, these investigations assume that fall risk manifests as a 

consistent signal in gait and that it can be measured using a hip-mounted triaxial accelerometer. 

For the calibration substudy, an additional assumption is made that gait was stable between the 

measurement of SPPB in 2012-13 and data collection of the calibration substudy up to many 

months later. Second, as in other laboratory studies of gait and fall risk, women may alter their 

gait in laboratory conditions under investigator observation [36]. Third, the calibration substudy 

has a small sample size with uneven numbers of women in the two risk groups. Furthermore, we 

did not attempt to classify fall risk in all women but only in women at upper and lower ends of 

risk. Fourth, the study used data on past falls rather than prospectively collected information after 

the calibration substudy. Consequently, older adults who have fallen in the past year might 

change due to fear of falling and cautious ambulation. Fifth, machine learning methods are 

susceptible to overfitting prediction models, though the cross-validation method of this study, 

combined with both the tree bagging and feature bagging used in random forests, is less likely to 

have overfit than the base method of using a single decision tree. Finally, because women were 

screened for ability to walk on a treadmill, the sample excluded women at highest fall risk for 

whom treadmill walking is unsafe.  For example, the sample did not include any women with 4+ 

falls in the past year. In a study where the “high risk” group includes frequent fallers, 

classification accuracy might be improved and, possibly, different features or additional features 

could be included in predictive models. 

 



59 

 

Limitations of the free-living gait investigation overlap with those of the calibration substudy, 

but also posit many unique challenges due to a real-world settings. To start, like the calibration 

substudy, the free-living study assumes that fall risk manifests as a regular signal which can be 

detected using a hip-mounted accelerometer. A number of sensor locations have been used in 

studies of wearable sensors and fall risk with many using multiple sensors [12]. The 30 Hz 

sampling rate of the ActiGraph accelerometers used in this study, combined with the placement 

of only a single sensor at the hip, prevented full segmentation of the gait cycle and may have 

limited the quality of the data gathered. While 30 Hz is more than sufficient to capture walking 

motion, increasing the sampling rate to 100 Hz or more would allow for better resolution of the 

stages of motion. The use of an additional sensor placed on the head could provide information 

about stability while a sensor on the foot would enable not only full segmentation of the gait 

cycle but also the extraction of measures of rotation and potentially approximation of impact 

forces [5], [12], [14], [42], [43]. 

 

Unlike the calibration substudy, the use of unscripted and unlabeled activity data injects a 

substantial amount of noise into the bout recognition pipeline. Generalizable models for activity 

recognition are difficult enough to develop with the use of large, labeled data sets which contain 

minimal noise. The use of unlabeled activity data shifts the burden of accuracy from the data and 

onto the expert opinion of the modeler who is required to visually inspect output and make a 

decision about the correct activity label for the given instance. This can introduce bias which 

may limit the pool of walking activity examples to those preferred by the encoder rather than the 

true full sample of walking activity. Furthermore, the use of unlabeled data combined with the 

more casual behavior of participants who are not under observation may reduce the quality and 
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quantity of walking samples obtained. It is well known that, especially in the absence of high 

quality measurements, one of the best ways to create better statistical models is by simply 

obtaining more data. With unlabeled and unstructured data, the challenge lies in properly 

evaluating the effectiveness of preprocessing and modeling approaches. These limitations speak 

to some of the benefits of using mobile phones for monitoring gait as they offer the ability to 

periodically request feedback on user activity and obtain labeled, individual-specific activity data 

to improve monitoring and analysis. 

 

A related, but different, limitation on walking bout extraction is the specific definition of a good 

walking bout used by the pipeline. To ensure the acquisition of walking behavior similar to that 

of a walk test, a very strict definition of walking was developed. Perhaps the strongest criterion 

of this definition is that bouts were required to be at least one minute in duration. This placed a 

considerable limitation on the pool of potential walking bouts given that minute-long bouts are 

unlikely to occur in the home due to spatial restrictions and are most likely to happen outside. 

High-risk individuals who are homebound or who greatly limit their mobility will not generate 

bouts of this length which immediately excludes some of the most important individuals from the 

population. It is also valuable to consider that shorter in-home bouts may provide greater 

predictive value than longer bouts since they may better capture instability and temporal 

inconsistency of walking. However, the use of shorter bouts would introduce their own set of 

challenges since short walking bouts are more likely to resemble other activities such as 

sweeping the floor which are not solely walking. Shorter bouts are also more susceptible to the 

influence of noise as less data are available to smooth out its influence. Still, the combination of 

both long and short walking bouts could provide data not just for better prediction of fall risk but 
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the creation of detailed activity profiles. One possible approach would be to first establish 

criteria for describing “long” and “short” walking bout durations (e.g. 30 second maximum on 

short walking bouts, with a minimum of 3-5 seconds to differentiate between true walking versus 

shuffled motion while in a standing position). Long walking bouts would simply be characterized 

as those greater than the maximum duration of a short bout. With regard to segmenting bouts, 

shorter walking bouts would most likely occur in-home punctuated by short pauses and may 

benefit from a shorter pause limit (e.g. 10 seconds) compared to long-duration walking bouts 

which most likely would be observed outside of the home with fewer reasons for stopping. 

 

Leading from the definition of our input data, it is equally as important—if not more so—to 

think about the definition of class labels. Similar to the calibration study, fall and SPPB data 

were used to define outcome variables. However, the previously-mentioned gap in time between 

accelerometer data collection and SPPB measurement does not apply to the free-living study 

since the SPPB was performed during the accelerometer visit. That aside, the outcome variables 

of SPPB, fall count, and fall rate used to define class labels can have a substantial effect on 

model performance. The simple decision of choosing a binary or multiclass classification scheme 

has an immediate impact on the difficulty of the task since the probability of randomly selecting 

the wrong class for any given individual increases with the number of class labels. Furthermore, 

by segmenting the data space into more regions (i.e. classes), the decision boundaries become 

more strict which reduces the margin of error. One potential solution to this challenge is to train 

multiple classifiers which work on subsets of the larger set of data. In this way, the data are split 

according to some criteria (e.g. age groups) which reduces the overlap across the classes. This 

very approach was attempted with the three-way models but failed since we could not find a 



62 

 

splitting criteria which allowed for sufficient representation of all classes in each subset. On a 

finer level of detail, the fall rate and fall count variables have a low correlation with age (less 

than 5% in the full data set, less than 10% in our subset, see Figure C.5) which goes against 

accepted knowledge that falls occur more often as people get older. This alone suggests that even 

the combined power of strong epidemiological predictors, like age, with walking bout data will 

demonstrate poor ability to predict falls in this data set. Looking at the distribution of SPPB 

scores (Figure C.10), we see a low number of individuals in the 1 - 4 range (roughly 5% of 

individuals) which indicates a largely healthy population that could further bias predictive 

models to classify individuals as low risk. However, fallers make up 46% of the available data. 

This contradiction generates additional questions about the relationship between SPPB and falls. 

 

In the three-way classification models, the middle SPPB category of 7 – 9 showed the highest 

rate of misclassification compared to the extremes of 1 – 6 and 10 – 12. This is somewhat 

expected given the significant overlap of classification categories as seen in the feature plots in 

Appendix C. Looking at Figure C.16 in particular, we can see that instances in the middle SPPB 

category (i.e. Class 1, SPPB 7 – 9) shows a very high degree of overlap with individuals in the 

other classes. Since the extremes of risk (classes 0 and 2) are more easily separable from each 

other than the middle class, it is expected—and indeed we see—reduced ability to accurately 

classify individuals in the middle category; a similar story is seen with future falls and fall risk in 

figures Figure C.10, Figure C.12, and Figure C.14, respectively. All together, these challenges 

demonstrate the limitations of the current set of features at separating individuals into fall and 

SPPB categories as they are currently defined. Assuming that the sensor data contains the 

appropriate signal for predicting falls and SPPB of individuals, new features need to be extracted 
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or developed to improve performance. However, it is more likely that additional data will be 

required to achieve better separation between the classes. 
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CHAPTER 11: FUTURE WORK 

The objective of this study was to develop a pipeline for prediction of future falls and risk of 

falling in older adults through the analysis of passive walking data measured via a single, hip-

worn triaxial accelerometer. Due to the limited effectiveness of this approach, several 

straightforward improvements—and some more complicated—could be implemented in future 

projects. 

 

To begin, the use of a single 30 Hz accelerometer proved to be insufficient for segmentation of 

the full gait cycle which may have missed important information associated with fall risk. If 

clinical accelerometers (such as ActiGraphs) are to be used in subsequent studies, the attachment 

of an additional accelerometer to the ankle may be sufficient to segment the full gait cycle by 

providing much needed information about heel and toe movement; but this will need to be 

confirmed in practice. Alternatively, the use of sensors with a higher sampling rate (100 Hz or 

more) would provide much cleaner data by allowing for the application of appropriate filters 

without falling prey to noise artifacts. This higher rate of sampling may be enough to capture the 

more subtle aspects of the gait cycle if continuing the use of a single sensor mounted to the hip 

or back. The popularity of smart phones offers another avenue for improving sensor quality as 

these devices contain not only accelerometers but other sensors such as gyroscopes which may 

provide even more useful information concerning user motion. However, switching to a device 

of this type introduces new challenges such as detection of phone orientation and new 

preprocessing requirements for activity recognition from a sensor which is no longer in a fixed 

orientation or position (e.g. in pocket vs. hand). One benefit of switching to phones is the ability 

to determine sensor position relative to the earth rather than just the individual. This would allow 
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for the proper removal of gravity from the activity signal and possible projection of the signal to 

a coordinate system that takes into account the position of the subject and terrain (e.g. walking 

on a flat sidewalk vs. an incline). Finally, wrist-worn devices such as smart watches could be 

used in lieu of both ActiGraphs and cell phones given that these watches have the combined 

benefits of fixed orientation (can only be worn in two orientations, which simply invert the 

positive/negative axes) and higher-quality sensors (compared to ActiGraphs). However, wrist 

accelerometer data are even less similar than phone data are in comparison to hip-worn 

ActiGraphs. In addition to eliminating the option of applying the current bout extraction pipeline 

to wrist data (which may not necessarily be true if using phones), there are more complex 

challenges regarding activity recognition since arm and leg movement during walking—which 

are correlated in younger, healthy individuals—may not necessarily be true for older adults at 

increased risk of falls [44]. 

 

The current pipeline for good walking detection makes a number of assumptions about the nature 

of the “good walking” signal and what constitutes a “good walking” bout. The definition of a 

walking bout used in this study restricts good walking samples to those that mimic walking as 

seen during a walk test. While this provides a very specific signal allowing for accurate activity 

recognition, the strictness of this definition limits walking bouts to only those that likely 

occurred outside the home (minimum one minute in duration). In-home walking activity may 

provide a better picture of overall behavior and allow for the temporal analysis of changes in 

walking activity and quality. However, this would require more advanced approaches to walking 

detection that allow for the identification of short bouts of walking (e.g. two seconds or less) 

which, in the current pipeline, were found to be easily confused with noisy motion. Such a 
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system would likely reply upon statistical models trained on labeled sensor data (unlike the 

current pipeline which was developed on unlabeled data and does not make use of any statistical 

models) and may benefit from the use of shape-matching techniques (e.g. discrete time warping) 

or neural networks which are capable of automated feature extraction and have demonstrated 

high accuracy on time series classification problems. It’s important to note that overfitting will 

be of greater concern taking this approach and careful selection of training data will be needed to 

guarantee the generalizability of the model. Alternatively, if using cell phones instead of 

ActiGraphs, individuals could be instructed through an application to initially—even 

periodically—provide example walking data to train a patient-specific activity recognizer.  

 

A smaller—but equally important—question is how much walking data are required for accurate 

prediction? This study found that the majority of individuals had fewer than three good walking 

bouts over a week-long time frame. This may be the true behavior of the population or could be a 

result of the strict bout extraction criteria. Either way, a single bout (and even three bouts) might 

not be providing a sufficient representation of an individual’s walking ability. However, analysis 

of the OPACH data set cannot provide an answer to this question since we lack fully-labeled 

periods of walking. In addition to good walking, other activity types may prove to be valuable in 

assessing fall risk. Activity profiles generated from accelerometer data would provide a better 

picture of activity levels and patterns related not just to fall risk but general health changes with 

age. Profile changes over time could identify fluctuations in health status and act as flags for the 

initiation of proactive clinical therapies to reduce risk and maintain independence. 
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Finally, rest of this chapter summarizes thoughts on applying the walking bout extraction, feature 

computation, and predictive modeling approaches discussed in this thesis for large-scale, online 

(i.e. active and long-term) monitoring of fall risk in older adults. Technical adjustments are 

detailed to address the unique challenges of processing streaming sensor data. For the following 

discussion, we will assume that the accelerometer device has the ability to store and send data to 

a remote destination and is capable of simple computations (e.g. a smartphone). 

 

The speed and linear nature of the bout extraction pipeline suggest that it could be easily adapted 

for online data processing. Raw sensor data could be queried to identify vertical, upright motion 

which is strong and persistent during walking. The current pipeline uses non-overlapping, one-

second windows and checks that sensor data are in the range of (0, -2] G’s (naturally, this will 

have to be tuned to fit the device). For active monitoring, once vertical motion is detected 

consecutively for some amount of time (e.g. two/three seconds to prevent the unwanted storage 

of transient motion), data would be recorded until the vertical motion subsides (e.g. two/three 

seconds of non-vertical motion). Assuming that this recording is of sufficient length (e.g. 30 

seconds or perhaps even shorter if accuracy is maintained), the Activity Index [39] would be 

computed and checked to verify the data are in the acceptable range for walking (i.e. AI values 

of [18, 106] for a one-second window). If this is true, data from the vertical axis would be passed 

to the “good walking” filter [29], [37] for a final decision about retaining or discarding the 

recording. Once a good walking bout has been obtained, the raw data should be sent to an 

external computer/server for long-term storage and subsequent processing and analysis. 
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It is important to note that this pipeline was originally developed for a fixed-position sensor at 

the hip with the three axes of measurement oriented in the major directions of human motion 

(anteroposterior, mediolateral, and vertical). As such, the use of a variable-position sensor (e.g. 

phone) might not be stable enough for use with the existing pipeline. It is difficult to comment 

further on this issue without testing the performance. 

 

As an alternative to using the current bout recognition pipeline, individual-specific activity 

recognition models could be trained through the use of a phone application which allows users to 

provide labeled examples of walking. Ideally, multiple walking examples of varying duration 

should be obtained in the free-living environment (indoors and outdoors) to capture the natural 

variation of walking for the individual. Additionally, these walking examples could be collected 

periodically (e.g. monthly) to maintain an up-to-date library for model training. For active 

monitoring, it may be beneficial to first screen accelerometer data for vertical motion as 

described in the previous section before sending the data for subsequent processing and 

classification. This would not only greatly reduce the volume of data processed but also limit the 

recordings to examples which are more likely to be walking activity. The custom activity 

classification models would then make a final decision about the potential good walking bout. 

 

For cross-sectional analysis of the good walking bouts, it is easiest to simply extract features 

from the full-length bouts for a given time period and take the median to obtain a single measure 

of walking for the individual. This approach, unfortunately, results in substantial loss of 

information and does not facilitate temporal analyses. If, however, a single cross-sectional view 

is desired (or required), bout variation could be captured by computing not only the median of 
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the bout features, but also the standard deviation. The features obtained using this approach are 

more susceptible to outliers since the calculation of standard deviation makes use of the mean. 

Alternatively, features could be extracted from each bout and then weighted by time to give 

greater pull to bouts more recently measured. These features and weights would be summed to 

produce a final feature vector. Ultimately, to best-preserve the unique information afforded by a 

set of walking bouts, features should be extracted from each bout individually. With this 

approach, the effect of any “extreme” bout is minimized and the contribution of each bout can be 

weighted equally or use a more complicated valuing scheme downstream. Moreover, this 

approach shifts the burden of combining the meaning of multiple bouts away from feature 

extraction and onto the modeling process which makes use of intelligent systems. 

 

The prediction of current fall risk or SPPB status could be accomplished through a variety of 

methods. The most direct approach would be to obtain status predictions from the past “N” 

walking bouts and return a final status via majority vote. As previously mentioned, these 

predictions could also be weighted according to some reasonable factor such as recency of the 

bout or perhaps the length where longer bouts are valued more than shorter ones, or vice versa. 

Instead of considering the past “N” bouts, all of the bouts recorded during some specified period 

of time (e.g. one week) could be selected as a representative sample. It is difficult to select one 

approach, or attempt to rank these different analytical methods, without empirical evidence. 

Focusing on predicting fall risk and SPPB scores, it is unlikely that an individual would 

experience frequent fluctuations in these two health measures over the course of a week except 

resulting from directed therapy or acute injury. Over the course of a month, however, the health 

of even young individuals can change to a notable degree. On the other hand, depending upon 
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the patterns of bouts produced by an individual, it may be that condensing bouts with weekly or 

monthly averages produces a more realistic measure of risk over time by averaging out noisy 

fluctuations in status. Ultimately, an exploratory analysis using real-world data is needed before 

an optimal analytical approach can be selected. 
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APPENDIX A: CALIBRATION SUBSTUDY FEATURE 

SETS 

Table A.1: Full list of calibration substudy features and their use in various feature sets. 

Abbreviation Feature Sets 

X_MEAN 2, 3, 10, 11 

X_STD 2, 3, 10, 11 

X_RMS 2, 3, 10, 11 

X_SMA 2, 3, 10, 11 

X_COV 2, 3, 10, 11 

X_PFREQ 2, 3, 10, 11 

X_ENERGY 2, 3, 10, 11 

X_MCR 2, 3, 10, 11 

X_MAD 2, 3, 10, 11 

X_P2P 2, 3, 10, 11 

X_ACC 2, 3, 10, 11 

Y_MEAN 4, 5, 10, 11 

Y_STD 4, 5, 10, 11 

Y_RMS 4, 5, 10, 11 

Y_SMA 4, 5, 10, 11 

Y_COV 4, 5, 10, 11 

Y_PFREQ 4, 5, 10, 11 

Y_ENERGY 4, 5, 10, 11 

Y_MCR 4, 5, 10, 11 

Y_MAD 4, 5, 10, 11 

Y_P2P 4, 5, 10, 11 

Y_ACC 4, 5, 10, 11 

Z_MEAN 6, 7, 10, 11 

Z_STD 6, 7, 10, 11 

Z_RMS 6, 7, 10, 11 

Z_SMA 6, 7, 10, 11 

Z_COV 6, 7, 10, 11 

Z_PFREQ 6, 7, 10, 11 

Z_ENERGY 6, 7, 10, 11 

Z_MCR 6, 7, 10, 11 

Z_MAD 6, 7, 10, 11 

Z_P2P 6, 7, 10, 11 

Z_ACC 6, 7, 10, 11 

MAG_MEAN 8, 9 

MAG_STD 8, 9 

MAG_RMS 8, 9 
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Table A.1: Continued 

 

MAG_SMA 8, 9 

MAG_COV 8, 9 

MAG_PFREQ 8, 9 

MAG_ENERGY 8, 9 

MAG_MCR 8, 9 

MAG_MAD 8, 9 

MAG_P2P 8, 9 

MAG_ACC 8, 9 

XY_CORR 10, 11 

YZ_CORR 10, 11 

XZ_CORR 10, 11 

CADENCE 1, 3, 5, 7, 9, 11 

MEAN_STEP_TIME 1, 3, 5, 7, 9, 11 

STD_STEP_TIME 1, 3, 5, 7, 9, 11 

MEAN_STRIDE_TIME 1, 3, 5, 7, 9, 11 

STD_STRIDE_TIME 1, 3, 5, 7, 9, 11 
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APPENDIX B: FREE-LIVING DATA DICTIONARY 

 

Table B.1: Data dictionary for the traditional measures of gait computed for the free-living 

accelerometer study. The abbreviations for each feature used in the study are listed along with 

their full names and additional details about their units and computation. 

 

Abbreviation Full Name Description 

CADENCE Cadence Steps per unit time 

(steps/minute) 

STEP_ASYMMETRY Step asymmetry A measure of asymmetry of 

the left and right step times 

STEP_COUNT Step count Number of steps 

STEP_COV Coefficient of variation Coefficient of variation of 

time between steps 

STEP_MEAN Mean step time Mean time between steps 

STEP_MEDIAN Median step time Median time between steps 

STEP_RMS Root mean square of step 

time 

Root mean square of time 

between steps 

STEP_STD Standard deviation of step 

time 

Standard deviation of time 

between steps 

STRIDE_MEAN Mean stride time Mean time between strides 

STRIDE_MEDIAN Median stride time Median time between strides 

STRIDE_RMS Root mean square of stride 

time 

Root mean square of time 

between strides 

STRIDE_STD Standard deviation of stride 

time 

Standard deviation of time 

between strides 

ALPHA_BOUT_LEN Alpha measure of bout length Alpha is a scalar measure 

describing the distribution of 

walking bout lengths 

observed for an individual 

BOUTS_TO_ACTIVE Ratio of good walking bouts 

to all activity/motion 

Ratio of “good walking” bout 

time to the total sum of time 

where the accelerometer was 

in motion 

BOUT_DAYS N/A Number of days with good 

walking bouts 

BOUT_NUMB N/A Number of good walking 

bouts 

MEAN_BOUT_LEN Mean bout length Average good walking bout 

length 

MEAN_START Mean start time Average start time of a good 

walking bout 
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Table B.1: Continued. 

 

MEDIAN_BOUT_LEN Median bout length Median good walking bout 

length 

MEDIAN_START Median start time Median start time of a good 

walking bout 

PERCENT_ACTIVE N/A Percent of accelerometer time 

where the user was actively 

moving (this is not restricted 

to good walking bouts) 

PERCENT_INACTIVE N/A Percent of accelerometer time 

where the user was NOT 

actively moving 

PERCENT_BOUTS N/A Percent of accelerometer 

recording time that is good 

walking bouts 

RMS_BOUT_LEN Root mean square of bout 

length 

Root mean square of good 

walking bout length 

RMS_START Root mean square of start 

time 

Root mean square of good 

walking bout start time 

STD_BOUT_LEN Standard deviation of bout 

length 

Standard deviation of good 

walking bout length 

STD_START Standard deviation of start 

time 

Standard deviation of good 

walking bout start time 

 

Table B.2: Data dictionary for the accelerometer-derived measures of gait computed for the free-

living accelerometer study. The abbreviations for each feature or variable used in the study are 

listed along with their full names and additional details about their units and computation. 

 

VMAG Vector magnitude Vector magnitude of the 

accelerometer data 

XY_CORR XY cross-correlation Cross-correlation between the 

X-axis and Y-axis 

XZ_CORR XZ cross-correlation Cross-correlation between the 

X-axis and Z-axis 

YZ_CORR YZ cross-correlation Cross-correlation between the 

Y-axis and Z-axis 

X_ACC X-axis autocorrelation 

coefficient 

Autocorrelation coefficient of 

the x-axis shifted by a period 

derived from the peak 

frequency of the signal 

X_ENERGY X-axis energy Energy of the x-axis signal 

X_ENTROPY X-axis entropy Entropy of the x-axis signal 

X_SKEW X-axis skew Skewness of the x-axis signal 

X_KURT X-axis kurtosis Kurtosis of the x-axis signal 

https://en.wikipedia.org/wiki/Autocorrelation
https://en.wikipedia.org/wiki/Energy_(signal_processing)
https://en.wikipedia.org/wiki/Entropy_(information_theory)


78 

 

Table B.2: Continued. 

 

X_MAD X-axis mean amplitude 

deviation 

Average change in amplitude 

of the x-axis signal 

X_MCR X-axis mean crossing rate Average rate of the x-axis 

signal crossing its mean 

X_MEAN X-axis mean Average of the x-axis signal 

X_STD X-axis standard deviation Standard deviation of the x-

axis signal 

X_RMS X-axis root mean square Root mean square of the x-

axis signal 

X_COV X-axis coefficient of variation Coefficient of variation of the 

x-axis signal 

X_SMA X-axis signal magnitude area Sum of the magnitude of the 

absolute value of the x-axis 

signal 

X_P2P X-axis peak-to-peak The difference between the 

maximum and minimum 

value of the x-axis signal 

X_PFREQ X-axis peak frequency The peak frequency (most 

dominant frequency) of the x-

axis signal 

X_FFTQ25 X-axis FFT quartile 25 The frequency at which 25% 

of the data are below this 

frequency value 

X_FFT50 X-axis FFT quartile 50 The frequency at which 50% 

of the data are below this 

frequency value 

X_FFT75 X-axis FFT quartile 75 The frequency at which 75% 

of the data are below this 

frequency value 

X_BIN1 X-axis bin 1 The lowest bin of x-axis 

values separated into ten 

partitions 

X_BIN2 X-axis bin 2 The second-lowest bin of x-

axis values separated into ten 

partitions 

X_BIN3 X-axis bin 3 The third-lowest bin of x-axis 

values separated into ten 

partitions 

X_BIN4 X-axis bin 4 The fourth-lowest bin of x-

axis values separated into ten 

partitions 

X_BIN5 X-axis bin 5 The fifth-lowest bin of x-axis 

values separated into ten 

partitions 

https://www.ncbi.nlm.nih.gov/pubmed/26251724
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Table B.2: Continued. 

 

X_BIN6 X-axis bin 6 The fifth-largest bin of x-axis 

values separated into ten 

partitions 

X_BIN7 X-axis bin 7 The forth-largest bin of x-axis 

values separated into ten 

partitions 

X_BIN8 X-axis bin 8 The third-largest bin of x-axis 

values separated into ten 

partitions 

X_BIN9 X-axis bin 9 The second-largest bin of x-

axis values separated into ten 

partitions 

X_BIN10 X-axis bin 10 The largest bin of x-axis 

values separated into ten 

partitions 

X_TOPN1 X-axis top frequency 1 Second-largest dominant 

frequency in the x-axis signal 

X_TOPN2 X-axis top frequency 2 Third-largest dominant 

frequency in the x-axis signal 

X_TOPN3 X-axis top frequency 3 Fourth-largest dominant 

frequency in the x-axis signal 

X_TOPN4 X-axis top frequency 4 Fifth-largest dominant 

frequency in the x-axis signal 

X_TOPN5 X-axis top frequency 5 Sixth-largest dominant 

frequency in the x-axis signal 

X_TOPN6 X-axis top frequency 6 Seventh-largest dominant 

frequency in the x-axis signal 

X_TOPN7 X-axis top frequency 7 Eight-largest dominant 

frequency in the x-axis signal 

Y_ACC Y-axis autocorrelation 

coefficient 

Autocorrelation coefficient of 

the y-axis shifted by a period 

derived from the peak 

frequency of the signal 

Y_ENERGY Y-axis energy Energy of the y-axis signal 

Y_ENTROPY Y-axis entropy Entropy of the y-axis signal 

Y_SKEW Y-axis skew Skewness of the y-axis signal 

Y_KURT Y-axis kurtosis Kurtosis of the y-axis signal 

Y_MAD Y-axis mean amplitude 

deviation 

Average change in amplitude 

of the y-axis signal 

Y_MCR Y-axis mean crossing rate Average rate of the y-axis 

signal crossing its mean 

Y_MEAN Y-axis mean Average of the y-axis signal 

Y_STD Y-axis standard deviation Standard deviation of the y-

axis signal 

https://en.wikipedia.org/wiki/Autocorrelation
https://en.wikipedia.org/wiki/Energy_(signal_processing)
https://en.wikipedia.org/wiki/Entropy_(information_theory)
https://www.ncbi.nlm.nih.gov/pubmed/26251724
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Table B.2: Continued. 

 

Y_RMS Y-axis root mean square Root mean square of the y-

axis signal 

Y_COV Y-axis coefficient of variation Coefficient of variation of the 

y-axis signal 

Y_SMA Y-axis signal magnitude area Sum of the magnitude of the 

absolute value of the y-axis 

signal 

Y_P2P Y-axis peak-to-peak The difference between the 

maximum and minimum 

value of the y-axis signal 

Y_PFREQ Y-axis peak frequency The peak frequency (most 

dominant frequency) of the y-

axis signal 

Y_FFTQ25 Y-axis FFT quartile 25 The frequency at which 25% 

of the data are below this 

frequency value 

Y_FFT50 Y-axis FFT quartile 50 The frequency at which 50% 

of the data are below this 

frequency value 

Y_FFT75 Y-axis FFT quartile 75 The frequency at which 75% 

of the data are below this 

frequency value 

Y_BIN1 Y-axis bin 1 The lowest bin of y-axis 

values separated into ten 

partitions 

Y_BIN2 Y-axis bin 2 The second-lowest bin of y-

axis values separated into ten 

partitions 

Y_BIN3 Y-axis bin 3 The third-lowest bin of y-axis 

values separated into ten 

partitions 

Y_BIN4 Y-axis bin 4 The fourth-lowest bin of y-

axis values separated into ten 

partitions 

Y_BIN5 Y-axis bin 5 The fifth-lowest bin of y-axis 

values separated into ten 

partitions 

Y_BIN6 Y-axis bin 6 The fifth-largest bin of y-axis 

values separated into ten 

partitions 

Y_BIN7 Y-axis bin 7 The forth-largest bin of y-axis 

values separated into ten 

partitions 
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Table B.2: Continued. 

 

Y_BIN8 Y-axis bin 8 The third-largest bin of y-axis 

values separated into ten 

partitions 

Y_BIN9 Y-axis bin 9 The second-largest bin of y-

axis values separated into ten 

partitions 

Y_BIN10 Y-axis bin 10 The largest bin of y-axis 

values separated into ten 

partitions 

Y_TOPN1 Y-axis top frequency 1 Second-largest dominant 

frequency in the y-axis signal 

Y_TOPN2 Y-axis top frequency 2 Third-largest dominant 

frequency in the y-axis signal 

Y_TOPN3 Y-axis top frequency 3 Fourth-largest dominant 

frequency in the y-axis signal 

Y_TOPN4 Y-axis top frequency 4 Fifth-largest dominant 

frequency in the y-axis signal 

Y_TOPN5 Y-axis top frequency 5 Sixth-largest dominant 

frequency in the y-axis signal 

Y_TOPN6 Y-axis top frequency 6 Seventh-largest dominant 

frequency in the y-axis signal 

Y_TOPN7 Y-axis top frequency 7 Eight-largest dominant 

frequency in the y-axis signal 

Z_ACC Z-axis autocorrelation 

coefficient 

Autocorrelation coefficient of 

the z-axis shifted by a period 

derived from the peak 

frequency of the signal 

Z_ENERGY Z-axis energy Energy of the z-axis signal 

Z_ENTROPY Z-axis entropy Entropy of the z-axis signal 

Z_SKEW Z-axis skew Skewness of the z-axis signal 

Z_KURT Z-axis kurtosis Kurtosis of the z-axis signal 

Z_MAD Z-axis mean amplitude 

deviation 

Average change in amplitude 

of the z-axis signal 

Z_MCR Z-axis mean crossing rate Average rate of the z-axis 

signal crossing its mean 

Z_MEAN Z-axis mean Average of the z-axis signal 

Z_STD Z-axis standard deviation Standard deviation of the z-

axis signal 

Z_RMS Z-axis root mean square Root mean square of the z-

axis signal 

Z_COV Z-axis coefficient of variation Coefficient of variation of the 

z-axis signal 

 

 

https://en.wikipedia.org/wiki/Autocorrelation
https://en.wikipedia.org/wiki/Energy_(signal_processing)
https://en.wikipedia.org/wiki/Entropy_(information_theory)
https://www.ncbi.nlm.nih.gov/pubmed/26251724
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Table B.2: Continued. 

 

Z_SMA Z-axis signal magnitude area Sum of the magnitude of the 

absolute value of the z-axis 

signal 

Z_P2P Z-axis peak-to-peak The difference between the 

maximum and minimum 

value of the z-axis signal 

Z_PFREQ Z-axis peak frequency The peak frequency (most 

dominant frequency) of the z-

axis signal 

Z_FFTQ25 Z-axis FFT quartile 25 The frequency at which 25% 

of the data are below this 

frequency value 

Z_FFT50 Z-axis FFT quartile 50 The frequency at which 50% 

of the data are below this 

frequency value 

Z_FFT75 Z-axis FFT quartile 75 The frequency at which 75% 

of the data are below this 

frequency value 

Z_BIN1 Z-axis bin 1 The lowest bin of z-axis 

values separated into ten 

partitions 

Z_BIN2 Z-axis bin 2 The second-lowest bin of z-

axis values separated into ten 

partitions 

Z_BIN3 Z-axis bin 3 The third-lowest bin of z-axis 

values separated into ten 

partitions 

Z_BIN4 Z-axis bin 4 The fourth-lowest bin of z-

axis values separated into ten 

partitions 

Z_BIN5 Z-axis bin 5 The fifth-lowest bin of z-axis 

values separated into ten 

partitions 

Z_BIN6 Z-axis bin 6 The fifth-largest bin of z-axis 

values separated into ten 

partitions 

Z_BIN7 Z-axis bin 7 The forth-largest bin of z-axis 

values separated into ten 

partitions 

Z_BIN8 Z-axis bin 8 The third-largest bin of z-axis 

values separated into ten 

partitions 
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Table B.2: Continued. 

 

Z_BIN9 Z-axis bin 9 The second-largest bin of z-

axis values separated into ten 

partitions 

Z_BIN10 Z-axis bin 10 The largest bin of z-axis 

values separated into ten 

partitions 

Z_TOPN1 Z-axis top frequency 1 Second-largest dominant 

frequency in the z-axis signal 

Z_TOPN2 Z-axis top frequency 2 Third-largest dominant 

frequency in the z-axis signal 

Z_TOPN3 Z-axis top frequency 3 Fourth-largest dominant 

frequency in the z-axis signal 

Z_TOPN4 Z-axis top frequency 4 Fifth-largest dominant 

frequency in the z-axis signal 

Z_TOPN5 Z-axis top frequency 5 Sixth-largest dominant 

frequency in the z-axis signal 

Z_TOPN6 Z-axis top frequency 6 Seventh-largest dominant 

frequency in the z-axis signal 

Z_TOPN7 Z-axis top frequency 7 Eight-largest dominant 

frequency in the z-axis signal 

 

Table B.3: Data dictionary for the demographic variables used in the free-living accelerometer 

study. The abbreviations for each variable are listed along with their full names and additional 

details about their units and computation. 

 

age Age Age in years 

eth2 Ethnicity 0: White 

1: Black 

2: Hispanic 

EDUC Level of education 0: No School 

1: 1 – 4 Years 

2: 5 – 8 Years 

3: 9 – 12 Years 

4: High School 

5: Vocational School 

6: Some College or 

Associates 

7: College Graduate 

8: Some Postgraduate or 

Professional School 

9: Masters 

10: Doctoral 

bmills Body Mass Index Body mass index (kg/m) 



84 

 

 

Table B.4: Data dictionary for the target variables used in the free-living accelerometer study. 

The abbreviations for each variable are listed along with their full names and additional details 

about their units and computation. 

 

EPESESPPB Total EPESE short physical 

performance battery score 

Score ranges from 0 – 12; 

scoring details can be found 

here 

balance_epese Balance score for the EPESE 

SPPB 

Score ranges of 0 – 4; scoring 

details can be found here 

gait_epese Gait subscore for the EPESE 

SPPB 

Score ranges of 0 – 4; scoring 

details can be found here 

chairstand_epese Chairstand subscore for the 

EPESE SPPB 

Score ranges of 0 – 4; scoring 

details can be found here 

fallcount Fall count Number of falls that occurred 

during the prospective year 

fallrate Fall rate Rate of falls that occurred 

during the prospective year 

(number of falls / number of 

calendar months) 

risk_binary Binary measure of fall risk 0: No falls AND SPPB 10 – 

12 

 

1: One or more falls AND 

SPPB 0 – 6 

risk_ternary Ternary measure of fall risk  0: No falls AND SPPB 10 – 

12 

 

1: One or more falls AND 

SPPB 7 – 9 

 

2: One or more falls AND 

SPPB 0 - 6 

fall_binary Binary measure of future falls 0: Zero or one falls 

 

1: Two or more falls 

fall_ternary Ternary measure of future 

falls 

0: Zero or one falls 

 

1: Two or three falls 

 

2: Four or more falls 

sppb_binary Binary measure of SPPB 

categories 

0: SPPB 10 – 12 

 

1: SPPB 0 – 6 

https://www.whi.org/researchers/data/Documents/Long%20Life%20Study%20SPPB%20Scoring.pdf
https://www.whi.org/researchers/data/Documents/Long%20Life%20Study%20SPPB%20Scoring.pdf
https://www.whi.org/researchers/data/Documents/Long%20Life%20Study%20SPPB%20Scoring.pdf
https://www.whi.org/researchers/data/Documents/Long%20Life%20Study%20SPPB%20Scoring.pdf
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Table B.4: Continued. 

 

sppb_ternary Ternary measure of SPPB 

categories 

0: SPPB 10 – 12 

 

1: SPPB 7 – 9 

 

2: SPPB 0 – 6 
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APPENDIX C: EXPLORATORY DATA ANALYSIS 

 

Figure C.1: Distribution of number of walking bouts returned for each individual. The distribution is dominated 

by individuals who had a low number of walking bouts; 10% of individuals returned fewer than three walking 

bouts. This substantial right-skew may be indicative of the mainly sedentary activity of the population or could 

perhaps be an artifact of the good walking bout definition which restricts “good walking” bouts to one minute or 

more in duration (this is difficult to achieve without leaving the home). 
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Figure C.2: Distribution of average length of walking bouts returned for each individual. For individuals who 

had more than one bout, the average length was computed and used in the creation of this plot. The majority of 

individuals have walking bouts slightly longer than one minute in duration. 
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Figure C.3: Joint plot showing the relationship between bout length and falls. The very low correlation with an 

insignificant p-value might suggest that walking bout duration has little effect on falls. This may be related to the 

U-shaped curve often cited when discussing fall risk which highlights (1) individuals who walk a lot, are more 

stable, but have greater opportunities to fall compared to (2) individuals who walk very little but may be less 

stable and hence, at greater risk of falling when they do walk. This explanation somewhat fits the “corner-

shaped” cloud of data points. 
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Figure C.4: Jointplot showing the relationship between bout length and SPPB score. We see an insignificant 

relationship between walking bout duration and physical function as measured by the SPPB. Qualitatively, there 

appears to be fewer individuals in the low-sppb categories who walk long distances compared to those in the 

high-sppb categories. 
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Figure C.5: Jointplot showing the relationship between falls and age. We see a very weak correlation (10%) 

between age and falls which goes against the general in gerontology that individuals who are older fall more 

often. It is unclear why this relationship is not seen in this data set. 
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Figure C.6: Jointplot showing the relationship between age and EPESE SPPB score. A weak and negative 

correlation between SPPB and age (-23%) suggests that as individual’s age, physical function decreases. This 

correlation is much stronger than that seen in age vs. falls (10%) suggesting that SPPB may be a stronger 

predictor of fall risk and future falls than age. This is somewhat expected given that SPPB directly measures an 

individual’s current level of physical function, balance, and walking ability whereas age prescribes a general level 

of ability that may not be true for a particular individual. 
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Figure C.7: Jointplot showing the relationship between age and number of good walking bouts. The weak 

correlation suggests that as individuals age, they generate fewer good walking bouts. 
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Figure C.8: Jointplot showing the relationship between age and good walking bout duration. There does not 

appear to be any relationship between age and the duration of good walking bouts. 
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Figure C.9: Heatmap showing the pair-wise correlations between features and outcome measures. Overall, the 

majority of features show very weak correlations (near zero) with both other features and the outcome measures. 

The entire set of variables appear to have more negative correlations amongst each other than positive 

correlations. Blocks of variables (such as the Z-axis TOPN features) all show very similar levels of correlation 

with each other, but these correlations are never close to 1 suggesting that, while they contain some similar 

information, these variables are not really the same. The binary and ternary outcome measures show strong 

correlation with SPPB, fallcount, and fallrate variables as expected given that these outcome measures are 

derived from combinations of these three variables. To view individual variable names, zoom-in on the figure. 
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Figure C.10: Distribution of EPESE SPPB scores in the data set. The majority of individuals have scores in the 

“high-function” range of 8 – 12 with the fewest individuals (only 100) scoring in a “very low functioning” range 

of 0 – 6. This left-skewed distribution suggests that the population is largely healthy which could bias models 

toward predicting individuals as low risk or low falls. 
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Figure C.11: Pairplot showing the distributions of a subset of features grouped by the binary future fall indicator. 

Each individual plot shows instances plotted along two axes which show the values of two features. The class of 

each instance is indicated by the color of the marker. The two risk groups show a high degree of overlap in the 

subset of displayed features which suggests that these variables may not be useful for separating classes; although, 

small regions of separation can be seen in a subset of instances (e.g. the blue individuals in the Z_RMS vs. 

X_PFREQ plot). To view individual variable names, zoom-in on the figure. 

 

Groups: 

0 (Blue) = Zero or one falls 

1 (Orange) = Two or more falls 
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Figure C.12: Pairplot showing the distributions of a subset of features grouped by the ternary future fall indicator.  

Each individual plot shows instances plotted along two axes which show the values of two features. The class of 

each instance is indicated by the color of the marker. The three risk groups show a high degree of overlap in the 

subset of displayed features which suggests that these variables may not be useful for separating classes; although, 

small regions of separation can be seen in a subset of instances (e.g. the blue individuals in the Z_RMS vs. 

X_PFREQ plot). A small degree of mean-shift can be seen in the X_PFREQ variable which could be useful for 

class separation when projected to higher dimensions. To view individual variable names, zoom-in on the figure. 

 

Groups: 

0 (Blue) = Zero or one falls 

1 (Orange) = Two or three falls 

2 (Green) = Four or more falls 
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Figure C.13: Pairplot showing the distributions of a subset of features grouped by the binary fall risk indicator. 

Each individual plot shows instances plotted along two axes which show the values of two features. The class of 

each instance is indicated by the color of the marker. The two risk groups show a high degree of overlap in the 

subset of displayed features which suggests that these variables may not be useful for separating classes. A small 

degree of mean-shift can be seen in the X_ENTROPY variable which could be useful for class separation when 

projected to higher dimensions. To view individual variable names, zoom-in on the figure. 

 

Groups: 

0 (Blue) = Zero falls and SPPB 10 – 12 

1 (Orange) = One or more falls and SPPB 0 – 6 
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Figure C.14: Pairplot showing the distributions of a subset of features grouped by the ternary fall risk indicator. 

Each individual plot shows instances plotted along two axes which show the values of two features. The class of 

each instance is indicated by the color of the marker. The three risk groups show a high degree of overlap in the 

subset of displayed features which suggests that these variables may not be useful for separating classes. A small 

degree of mean-shift can be seen in the X_ENTROPY variable which could be useful for class separation when 

projected to higher dimensions. To view individual variable names, zoom-in on the figure. 

 

Groups: 

0 (Blue) = Zero falls and SPPB 10 – 12 

1 (Orange) = One or more falls and SPPB 7 – 9 

2 (Green) = One or more falls and SPPB 0 – 6 
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Figure C.15: Pairplot showing the distributions of a subset of features grouped by the binary SPPB indicator. 

Each individual plot shows instances plotted along two axes which show the values of two features. The class of 

each instance is indicated by the color of the marker. The two risk groups show a high degree of overlap in the 

subset of displayed features which suggests that these variables may not be useful for separating classes. Ignoring 

two outliers, a small degree of mean-shift can be seen in the X_PFREQ variable which could be useful for class 

separation when projected to higher dimensions. To view individual variable names, zoom-in on the figure. 

 

Groups: 

0 (Blue) = SPPB 10 – 12 

1 (Orange) = SPPB 0 – 6 
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Figure C.16: Pairplot showing the distributions of a subset of features grouped by the ternary SPPB indicator. 

Each individual plot shows instances plotted along two axes which show the values of two features. The class of 

each instance is indicated by the color of the marker. The three risk groups show a high degree of overlap in the 

subset of displayed features which suggests that these variables may not be useful for separating classes. To view 

individual variable names, zoom-in on the figure. 

 

Groups: 

0 (Blue) = SPPB 10 – 12 

1 (Orange) = SPPB 7 – 9 

2 (Green)= SPPB 0 – 6 

 

  



102 

 

The following figures (C.17 and C.18) illustrate classification performance for three-way “falls” 

and “SPPB” categories using a modified definition for assigning class labels to each individual. 

 

Falls class 0: 

a) Individuals with 0 – 1 falls 

b) Individuals with 2 – 3 falls who are in the lower third of individuals by number of good 

walking bouts 

 

Falls class 1:  

a) Individuals with 2 – 3 falls who are in the middle third of individuals by number of good 

walking bouts 

 

Falls class 2:  

b) Individuals with 4+ falls 

c) Individuals with 2 – 3 falls who are in the upper third of individuals by number of good 

walking bouts 

 

SPPB class 0: 

c) Individuals with  SPPB scores of 10 – 12 

d) Individuals with  SPPB scores of 7 – 9 who are in the lower third of individuals by 

number of good walking bouts 

 

SPPB class 1:  

a) Individuals with  SPPB scores of 7 – 9 who are in the middle third of individuals by 

number of good walking bouts 

 

SPPB class 2:  

d) Individuals with  SPPB scores of 1 – 6 

e) Individuals with  SPPB scores of 7 – 9 who are in the upper third of individuals by 

number of good walking bouts 
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Figure C.17.A: Falls class distribution for a balanced 

sample generated by under sampling the majority 

classes. All three classes have equal representation with 

188 individuals. 

Figure C.17.B: Confusion matrix for prediction of fall 

categories in the balanced testing set. Very strong bias 

for predicting the middle class with slightly better than 

random chance for predicting the extremes. 
 

 

 
Figure C.18.A:  SPPB class distribution for a balanced 

sample generated by under sampling the majority 

classes. All three classes have equal representation with 

538 individuals. 

Figure C.18.B: Confusion matrix for prediction of 

SPPB categories in the balanced testing set. Middle class 

prediction remains very close to random chance with 

bias toward predicting the extreme classes. 
 

The figures above summarize the results of predicting falls and SPPB using a modified approach 

to placing individuals in each category (see text above figures for more information). Looking at 

fall prediction, we find that distributing middle-falls individuals into the extremes based upon 

number of good walking bouts results in heavily biased prediction of the “middle” falls category 

even with the use of a balanced data set; compare this to the original three-way fall prediction 
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models (Figure 10B) which favored classifying individuals into the “low” and “high” categories. 

Prediction of SPPB categories using the modified labeling scheme shows bias toward predicting 

the extreme “10 - 12” and “1 - 6” categories which is nearly identical to the previous 

performance seen in Figure 18B. Ultimately, using walking bouts to adjust fall prediction does 

not improve accuracy but rather heavily biases the model toward classifying everyone as “2 – 3” 

fallers. This same adjustment does not change prediction of SPPB categories. 
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The following figures (C.19 and C.20) illustrate classification performance for three-way “falls” 

and “SPPB” categories using a modified definition for assigning class labels to each individual. 

 

Falls class 0: 

e) Individuals with 0 – 1 falls 

f) Individuals with 2 – 3 falls who are in the upper third of individuals by number of good 

walking bouts 

 

Falls class 1:  

f) Individuals with 2 – 3 falls who are in the middle third of individuals by number of good 

walking bouts 

 

Falls class 2:  

g) Individuals with 4+ falls 

h) Individuals with 2 – 3 falls who are in the lower third of individuals by number of good 

walking bouts 

 

SPPB class 0: 

g) Individuals with  SPPB scores of 10 – 12 

h) Individuals with  SPPB scores of 7 – 9 who are in the upper third of individuals by 

number of good walking bouts 

 

SPPB class 1:  

b) Individuals with  SPPB scores of 7 – 9 who are in the middle third of individuals by 

number of good walking bouts 

 

SPPB class 2:  

i) Individuals with  SPPB scores of 1 – 6 

j) Individuals with  SPPB scores of 7 – 9 who are in the lower third of individuals by 

number of good walking bouts 
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Figure C.19.A: Falls class distribution for a balanced 

sample generated by under sampling the majority 

classes. All three classes have equal representation with 

188 individuals. 

Figure C.19.B: Confusion matrix for prediction of fall 

categories in the balanced testing set. Very strong bias 

for predicting the middle class with slightly better than 

random chance for predicting the extremes. 
 

 

 
Figure C.20.A: SPPB class distribution for a balanced 

sample generated by under sampling the majority 

classes. All three classes have equal representation with 

538 individuals. 

Figure C.20.B: Confusion matrix for prediction of 

SPPB categories in the balanced testing set. Middle class 

prediction remains very close to random chance with 

bias toward predicting the extreme classes. 
 

The figures above summarize the results of predicting falls and SPPB using a modified approach 

to placing individuals in each category (see text above figures for more information). Looking at 

fall prediction, we find that distributing middle-falls individuals into the extremes based upon 

number of good walking bouts results in heavily biased prediction of the “middle” falls category 

even with the use of a balanced data set; compare this to the original three-way fall prediction 
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models (Figure 10B) which favored classifying individuals into the “low” and “high” categories. 

Prediction of SPPB categories using the modified labeling scheme shows bias toward predicting 

the extreme “10 - 12” and “1 - 6” categories which is nearly identical to the previous 

performance seen in Figure 18B. Ultimately, using walking bouts to adjust fall prediction does 

not improve accuracy but rather heavily biases the model toward classifying everyone as “2 – 3” 

fallers. This same adjustment does not change prediction of SPPB categories.  
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Table C.1: Number of individuals with N free-living “good walking” bouts. 

 

Number of Good Walking Bouts Number of Individuals 

0 504 

1 201 

2 211 

3 200 

4 172 

5 185 

6 153 

7 181 

8 122 

9 125 

10 141 

11 108 

12 108 

13 131 

14 107 

15 93 

16 99 

17 101 

18 76 

19 83 

20 76 

21 68 

22 71 

23 57 

24 57 

25 58 

26 55 

27 50 

28 48 

29 46 

30 41 

31 44 

32 35 

33 42 

34 35 

35 25 

36 29 

37 33 
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Table C.1: Continued. 

 

38 22 

39 31 

40 25 

41 26 

42 19 

43 19 

44 11 

45 13 

46 13 

47 19 

48 21 

49 17 

50 16 

51 14 

52 17 

53 13 

54 12 

55 9 

56 8 

57 13 

58 8 

59 6 

60 10 

61 6 

62 8 

63 7 

64 5 

65 5 

66 7 

67 7 

68 10 

69 3 

70 4 

71 9 

72 2 

73 3 

74 6 

75 6 

76 4 
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Table C.1: Continued. 

 

77 3 

78 2 

79 7 

80 3 

81 5 

82 4 

83 3 

84 1 

85 1 

86 3 

88 1 

90 1 

91 3 

92 1 

94 1 

95 1 

97 4 

98 1 

99 2 

100 2 

101 2 

103 1 

104 2 

105 3 

106 2 

107 1 

112 2 

116 1 

118 1 

119 1 

127 1 

128 1 

140 1 

144 1 

155 1 

162 1 

172 1 

199 1 

207 1 
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Table C.2: The number of bouts extracted for a set of 100 individuals using two different 

definitions of “good walking” bouts. The modified definition of walking bouts produced a false 

positive rate of 2.7%. 

 

Original: Minimum bout length of one minute and a 30 second maximum pause between bouts. 

Modified: Minimum bout length of 30 seconds and a 10 second maximum pause between bouts. 

 
PID Number of Bouts (Original) Number of Bouts (Modified) 

P10001 40 102 

P10002 7 37 

P10003 16 27 

P10004 0 9 

P10005 1 21 

P10006 9 21 

P10007 5 77 

P10008 25 46 

P10009 68 187 

P10010 1 17 

P10011 20 77 

P10012 8 30 

P10014 82 216 

P10015 38 109 

P10016 0 8 

P10017 18 72 

P10018 12 33 

P10020 13 55 

P10022 5 35 

P10023 26 99 

P10024 26 95 

P10026 4 24 

P10027 22 74 

P10028 5 35 

P10029 19 52 

P10030 0 11 

P10031 11 42 

P10032 4 16 

P10033 17 53 

P10034 0 8 

P10035 0 12 

P10036 27 88 

P10037 19 87 

P10039 5 13 

P10040 16 41 



112 

 

Table C.2: Continued. 

 
P10043 10 44 

P10045 17 43 

P10046 14 33 

P10047 14 75 

P10049 2 26 

P10050 37 91 

P10052 1 14 

P10053 34 152 

P10054 75 237 

P10055 22 63 

P10057 0 2 

P10058 7 29 

P10059 12 37 

P10060 7 34 

P10061 6 38 

P10062 24 64 

P10063 105 183 

P10064 32 83 

P10065 3 23 

P10066 6 29 

P10067 16 68 

P10068 7 50 

P10069 58 87 

P10070 5 58 

P10071 9 61 

P10072 73 155 

P10073 11 61 

P10074 34 94 

P10075 0 11 

P10076 14 101 

P10077 17 52 

P10078 7 34 

P10079 11 24 

P10080 3 18 

P10081 36 147 

P10082 3 28 

P10083 12 35 

P10084 3 17 

P10085 30 85 

P10086 22 67 

P10087 31 71 
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Table C.2: Continued. 

 
P10088 22 69 

P10091 21 61 

P10092 4 25 

P10093 0 20 

P10094 39 86 

P10095 27 72 

P10098 9 37 

P10099 24 90 

P10100 0 19 

P10101 21 68 

P10102 8 44 

P10103 27 60 

P10104 41 82 

P10105 16 43 

P10106 3 55 

P10108 3 15 

P10109 3 22 

P10110 14 64 

P10112 7 36 

P10113 11 29 

P10115 10 58 

P10116 14 45 

   

Total 1723 5653 

Mean 17.58163265 57.6837 

Median 12 45.5 

Standard 
Deviation 

19.05549328 44.4236 

Average 
Increase 
in Bouts 

Per 
Individual 

 
 

40.1020400 
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Figure C.21: Distribution of good walking bouts extracted from the 100 individuals outlined in Table C.2 using two 

definitions of a “good walking” bout. Original (blue): Minimum bout length of one minute and a 30 second 

maximum pause between bouts. Modified (orange): Minimum bout length of 30 seconds and a 10 second maximum 

pause between bouts. A substantial increase in the number of good walking bouts is seen when using the modified 

definition which places less aggressive restrictions on the duration and continuity of a good walking bout. 

 


