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ABSTRACT 

 
“‘You'll live longer and you'll be healthier too,’ he answered. ‘Because as we were saying today, 
there's nothing in the world like eating moderately to live a long life.’ ‘If that's the way things are,’ 
I thought to myself, ‘I never will die.’ Because I've always been forced to keep that rule, and with 
my luck I'll probably keep it all my life.”—Anonymous, The Life of Lazarillo de Tormes and of 
His Fortunes and Adversities 1554. 
 
 

Adaptive mechanisms in response to calorie restriction are evolutionarily conserved and necessary 

to promote longevity and increase health span. Caloric restriction (CR) without malnutrition, 

constitutes an effective strategy for weight reduction and ameliorates the chronic inflammatory 

burden of many chronic metabolic diseases. CR is known to impact nutrient sensing and immuno-

metabolic processes in immune cells, but not much is known about skeletal muscle, the largest 

tissue in the body. We first delve into the literature that describes the interaction of CR and 

epigenetic mechanisms: DNA methylation, histone modifications, and microRNAs. We explore 

the impact of CR on nutrient sensing and immuno-metabolic processes and provide a 

comprehensive view of the adaptive and epigenetic machinery coordinated by CR. In our first 

study, we aimed to uncover the long-term effect of CR following early-life high fat-diet exposure. 

We analyzed physiological, biochemical, and transcriptional changes in muscle following chronic 

CR. Our results indicate that CR activates nutrient sensing pathways, promotes protein recycling, 

and stimulates myogenesis, possibly due to inhibition of cachexia-inducing inflammatory 

pathways. Then, our second experiment was designed to titrate the effects of CR by using a novel 

approach with clinical translatability. We used alternate-day CR (ADCR) in 1-3 days a week and 

25-75 % energy restriction to delineate the physiological, biochemical, and transcriptional changes 

in muscle following chronic ADCR. Effective strategies with high translatable potential, such as 

50% CR more than 2 days a week or 75% CR more than 1 day a week, produced similar effects to 
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the gold standard of 25% chronic CR. Finally, on our third experiment we dissected the series of 

adaptive, epigenetic mechanisms employed by CR to decrease muscle inflammation. Chronic CR 

activates a series of inhibitors of inflammatory factor NF-kB, while increasing promoter DNA 

methylation and decreasing transcription factor binding of cytokine Tnf, as well as fine-tuning 

miRNA expression to prevent inflammation. Here we describe that CR orchestrates a series of 

adaptive nutrient sensing and anti-inflammatory checkpoints to inhibit inflammation and promote 

skeletal muscle maintenance. 
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CHAPTER 1: INTRODUCTION 

1.1. MUSCLE PHYSIOLOGY, METABOLISM AND INFLAMMATION 

Skeletal muscle is one of the largest and most metabolically relevant tissues in the body, and its 

correct function and balance is required for maintenance of health. Skeletal muscle can respond to 

insulin, as it accounts for 85% of the insulin-mediated glucose uptake and lipid metabolism (F. Li 

et al., 2016; Peppa, Koliaki, Nikolopoulos, & Raptis, 2010). Remarkably, this tissue can respond 

to different environmental conditions, such as pollutants, and lifestyle factors (i.e. nutrition and 

exercise), mounting a specific adaptation mechanism that responds to the metabolic needs of the 

body. Thus, the importance of skeletal muscle as an endocrine organ has gained notoriety in the 

past decade (F. Li et al., 2016).  

Obesity can regulate the metabolic function of skeletal muscle and thus impair its ability 

to respond to the metabolic needs of the body. Insulin resistance, a pathology commonly observed 

in obese patients, is mainly driven by skeletal muscle’s inability to respond, possibly through lower 

IRS-1 content and phosphorylation, or failure to activate PI3K (Peppa et al., 2010; Saltiel & Kahn, 

2001). Therefore, metabolic stress and over nutrition impact the ability of muscle to uptake 

nutrients, which in turn stimulates a sustained stress response that worsens the obese state. 

Muscle mass is dynamically regulated by two opposite actors: on one side protein synthesis 

in an anabolic state allows for nutrient and energy conversion into structural proteins through the 

Insulin/IGF-1 pathway and mTOR (Mercken, Crosby, et al., 2013), on the other proteolysis 

through the Ubiquitin proteasome, autophagy (Bowen, Schuler, & Adams, 2015) and activation of 

cysteine proteases (Teixeira Vde, Filippin, & Xavier, 2012) dictate the amount and specific 

degradation protein targets that will supply an amino acid pool during catabolic conditions. 

Recently it has been suggested that even during hypertrophy, a certain degree of degradation of 
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cytosolic proteins occurs through the ubiquitin proteasomal proteins Atrogin1 and MuRF1(Baehr, 

Tunzi, & Bodine, 2014). Muscle fibers can increase in size and number through the activation of 

the adjacent stem cell niche, which contains not only stem cells, but also fibroblasts and immune 

cells. Satellite cell functions include but are not restricted to maintenance of preexistent muscle 

fibers, which in response to stress or mechanical strain, form myoblasts that can regenerate lost 

tissue or stimulate myofiber repair (Garg & Boppart, 2016). Muscle stem cells are able to regulate 

fiber regeneration and repair through the active expression of myogenic regulatory factors Myf5 

(Myogenic Factor 5) and MyoD1 (Myogenic Differentiation 1) (Garg & Boppart, 2016), Mrf4 

(Muscle-Specific Regulatory Factor 4), MyoG (Myogenin), Pax3 and Pax7 (Paired Box 3 and 7) 

(Bentzinger, Wang, & Rudnicki, 2012).  

The impact of obesity on skeletal muscle is known as sarcopenic obesity, and it entails the 

impairment of not only metabolic functions, but also the ability of skeletal muscle to regenerate 

and repair (Bowen et al., 2015). Therefore, it is important to develop strategies that prevent 

sarcopenia in obese patients. 

1.2. HIGH FAT DIET EFFECT ON SKELETAL MUSCLE 

Skeletal muscle can adapt to different nutritional and environmental queues. In an obese state, 

those queues prompt muscle to induce changes in energy expenditure and fat accumulation, 

leading to the development of insulin resistance. Insulin resistance in skeletal muscle has often 

been observed with increased circulating fatty acids and triglycerides, as well as the intra- and 

intercellular deposition of fat intermediates, together with the marked reduction in fatty acid 

oxidation (Latouche et al., 2014; Turcotte & Fisher, 2008). Moreover, maternal high fat diet has 

been shown to prime muscle mitochondrial catalytic activity in the offspring (S. M. Kwon, Park, 

Jun, & Lee, 2014; Pileggi, Hedges, et al., 2016), resulting in atrophy and inflammation, resulting 
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in fetal wasting (Pileggi, Segovia, et al., 2016). Acute exposure to a high-fat and high-sucrose diet 

alters muscle integrity and promotes inflammation (Collins et al., 2016), and high fat diet alone 

induces muscle inflammation and endoplasmic reticulum stress (Dai et al., 2016) 

Myokines, or muscle-specific cytokines, are inflammatory mediators capable of regulating 

both muscle hypertrophy and wasting. Recently the role of proinflammatory cytokines TNFα and 

the novel TNF superfamily member, TNF-Related Weak Inducer of Apoptosis (TWEAK), have 

been implicated in muscle wasting and cachexia, given their strong contribution to degradation 

and myogenesis (Yadava et al., 2015). TNF or cachexin is known to induce muscle breakdown 

(Bach et al., 2013), and its inhibition is known to increase muscle strength (Subramaniam et al., 

2015). Downstream targets of TNF include apoptosis mediator Caspase-8 and the transcription 

factor NF-κB, which activates proteasomal degradation (MuRF-1), while inhibiting proliferation 

of muscle fibers (MYOD1) (J. Zhou, Liu, Liang, Li, & Song, 2016). In turn, the role of TWEAK 

on muscle degradation/regeneration is less clear; Low intracellular concentration can inhibit 

myogenesis through the activation of NIK/IKKα, whereas high concentrations of TWEAK activate 

the canonical IKKβ that inhibits differentiation (Enwere et al., 2012). Therefore, the regulation of 

both TNF and TWEAK is vital for the regulation of muscle mass accretion and metabolism. 

1.3. CALORIC RESTRICTION AND MUSCLE NUTRIENT SENSING AND 

INFLAMMATION 

Caloric restriction (CR), without malnutrition, is considered an effective dietary intervention to 

extend lifespan and quality of life in different organisms (Fontana & Partridge, 2015). The 

reduction of calories by 25% (Weindruch, Walford, Fligiel, & Guthrie, 1986) is thought to act 

through energy sensing mechanisms which allow the cell to adapt to the energy restricted state 

without causing significant strain. Caloric restriction is known to impact the growth and 
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development of tissues. Studies on old human skeletal muscle have demonstrated the effects CR, 

restoring the phenotype similarly to that of a young muscle (Mercken, Crosby, et al., 2013). Thus, 

during prolonged caloric restriction, muscle hypertrophy is spared and in turn the low synthetic 

rate is efficiently used to perform basic processes. As a dietary intervention to prevent aging, CR 

is able to stimulate hematopoietic stem cells (Ertl, Chen, Astle, Duffy, & Harrison, 2008) and 

satellite cells (Cerletti, Jang, Finley, Haigis, & Wagers, 2012). Stimulation of satellite cells by CR 

appears to be sufficient to initiate new fiber formation and muscle repair in a stem cell 

transplantation mouse model (Cerletti et al., 2012). The activation of satellite cells from their 

quiescent state will ultimately lead to proliferation and differentiation into mature myocytes 

(Buckingham & Rigby, 2014). Chronic caloric restriction (CR) is known to impact the dynamic 

balance of protein recycling. CR can induce systems that sense amino acid input as well as the 

ones implicated in the replenishment of the amino acid pool, thus improving muscle health of aged 

muscles (Mercken, Crosby, et al., 2013). In muscle, chronic CR induces a differential expression 

of heat shock proteins and associated transcription factors, as well as autophagic mediators that 

indicate enhanced protein quality assessment (L. Yang et al., 2016a). Under normal conditions, 

protein anabolism and catabolism can be regulated by different hormonal or inflammatory 

pathways, with inflammation being the major contributor in metabolic diseases (Hotamisligil, 

2006; Hotamisligil & Davis, 2016). Therefore, the reduction of inflammation could prevent 

skeletal muscle wasting and improve metabolic function. 

Aside from weight loss, physiological effects of chronic CR include the reduction of 

systemic inflammation, as observed in different animal models (Mercken, Crosby, et al., 2013; 

Robertson & Mitchell, 2013; L. Yang et al., 2016a) and human subjects (Mercken, Crosby, et al., 

2013; H. Wang & Ye, 2015; L. Yang et al., 2016a), thus conferring beneficial effects to muscle 
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metabolism. While CR is a potent inhibitor of inflammation (Fontana, 2009; Holloszy & Fontana, 

2007), no information is available regarding the effect of chronic CR on muscle TNFα and 

TWEAK signaling. The TNF superfamily are a canonical type of inflammatory cytokines that are 

able to regulate intracellular signaling in different tissues, and whose function is related to insulin 

resistance (Hotamisligil, 2006), tissue inflammation and cell death (Ting & Bertrand, 2016). The 

canonical inflammatory marker TNF is able to down-regulate muscle hypertrophy and induce 

wasting (J. Zhou et al., 2016), however the epigenetic mechanisms elicited by CR that act on Tnf 

gene regulation remain largely unknown.  

Caloric restriction and other weight loss protocols have proven to be effective at altering 

the methylation pattern of several inflammatory cytokines, especially TNF (Phillips & 

Leeuwenburgh, 2005). Studies assessing weight loss through a low calorie diet or Roux-en Y 

gastric bypass in overweight and obese patients, have found an altered promoter methylation 

pattern of the TNF gene in whole blood (Campion, Milagro, Goyenechea, & Martinez, 2009; 

Kirchner et al., 2014), subcutaneous adipose tissue (Cordero et al., 2011). 

1.4. EPIGENETIC REGULATION OF INFLAMMATION 

Tnf gene transcription is known to be regulated by epigenetic mechanisms such as DNA 

methylation and histone modifications. Studies using immune cells constitute the larger body of 

evidence that demonstrate the regulation of the TNF gene (Falvo, Jasenosky, Kruidenier, & 

Goldfeld, 2013). Regarding histone modifications (Fig. 1.1.), TNF regulation by LPS is thought to 

act downstream of the promoter by increasing H3S10 phosphorylation independent of NF-κB 

(Thorne, Ouboussad, & Lefevre, 2012). Moreover, H3S10p displaces HP1 from the chromatin 

(Fischle et al., 2005), thus creating a conformational change towards a euchromatic landscape. 

Activating histone modifications include those mediated by histone deacetylase CBP/p300 
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(Barthel & Goldfeld, 2003; Falvo et al., 2013), ATF2 (Kawasaki et al., 2000), CRE, PCAF and 

GCN5 (Ranjbar, Rajsbaum, & Goldfeld, 2006), as well as histone deacetylases HDAC1 and 

HDAC3 (Falvo et al., 2013) within the proximal promoter of TNF. This new landscape could 

facilitate the binding of transcription factors or insulators such as CCCTC-binding factor (CTCF) 

and others that can stabilize long-range interactions, as seen in the TNF/LT locus for the mRNA 

transcription (Tsytsykova et al., 2007). Likewise, other histone marks that are able to activate TNF 

are H3K4me1, H3K4me2, and H3K4me3 in stimulated cells (Sullivan et al., 2007), as well as 

H3K4me3 an H3Ac in unstimulated cells (Hargreaves, Horng, & Medzhitov, 2009) within the 

promoter. Following histone changes, the binding of the transcription machinery is observed in 

unstimulated cells (RNA Pol II, TBP, and CBP/p300) (Hargreaves et al., 2009), as well as poised 

state chromatin changes such as H3Ac and H4Ac (Garrett, Dietzmann-Maurer, Song, & Sullivan, 

2008). Interestingly, most regulatory epigenetic mechanisms known for TNF are known to be 

tissue and stimulus specific (Fig. 1.1.). Although the TNF locus has been extensively characterized 

in immune cells, little is known about it regulation in skeletal muscle. 

 
Figure 1.1. Summary of Histone modifications and Transcription factors that regulate TNF gene 
expression in immune cells. Top half of the diagram depicts modifiers (colored boxes) and corresponding 
modifications (letters without outline) onto the histones, as well as the relative location within the TNF 
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Figure 1.1. (cont.) promoter. Bottom half of the diagram shows the transcription factors involved in the 
regulation of gene transcription. 
 

Epigenetic regulation occurs through covalent modifications exerted by a myriad of 

chromatin and DNA modifiers. As previously discussed, epigenetic modifiers such as HDAC3 are 

known to regulate the expression of the TNF gene; however, other modifiers are known to act 

within proximal or distal regions to modulate its expression. A novel NAD+-dependent 

deacetylase, SIRT6, has emerged as a possible candidate that extends lifespan (Kanfi et al., 2012; 

Michishita et al., 2008) and inhibits the activity of NF-kB in different cellular models (N. Zhang 

et al., 2016). Interestingly, no information is available regarding the modulation of cytokine 

signaling in muscle during CR, less so on the regulation of TNF by the epigenetic modifiers SIRT6. 

The Histone-Lysine N-Methyltransferase, suppression of variegation 3-9 homolog 1 (SUV39H1), 

has been regarded as an important regulator of inflammation, where silencing of SUV39H1 in 

vascular smooth muscle cells produces the upregulation of inflammatory genes (T. T. Chen et al., 

2017; Villeneuve et al., 2008). Similarly, the Polycomb group protein Enhancer of Zeste Homolog 

2 (EZH2), is silenced in hepatocytes from animals with NAFLD and causes the upregulation of 

inflammatory genes (Tnf and Tgf-β), and pharmacological silencing of Ezh2 generates enhanced 

fat accumulation and inflammation (Vella et al., 2013). Interestingly, TNF itself can interact with 

Ezh2 (within the PRC2), to produce the silencing of the myogenic transcription factor Pax7 that 

stimulates satellite cell differentiation (Palacios et al., 2010). Moreover, aside from its important 

role in cell development and differentiation (J. E. Lee et al., 2013), Lysine N-methyltransferase 2b 

(Kmt2b) is able to methylate H3K4 at the promoter of inflammatory marker IL-20 (Su, Lin, Tzeng, 

Hsieh, & Hsu, 2016), and when interacting with the lysine demethylase KDM6A (KDM6A-

KMT2B complex) induces the full action of the enhancer of IFN-β, an acute response 

inflammatory cytokine (X. Li et al., 2017). Finally, both DNA methyltransferases, Dnmt1 and 
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Dnmt3a, are known to impact inflammation and specifically TNF production upon stimulation 

with different stimuli (Cheng et al., 2014; Falvo, Tsytsykova, & Goldfeld, 2010; J. Yu et al., 2016).  
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CHAPTER 2: SIGNIFICANCE 

The dissection of nutrient-sensing epigenetic mechanisms that respond to caloric restriction and 

prevent inflammation in peripheral tissues remain poorly understood. Therefore, the study of 

conserved epigenetic mechanisms will help us understand the signals that participate in cytokine 

repression. In particular, Tnf as a major myokine, regulates myogenesis and metabolic processes, 

but the epigenetic silencing that occurs during calorie limitation remains unknown (Fig. 2.1.).  

 
Figure 2.1. Summary of the effects of chronic caloric restriction on nutrient sensing and long-lasting 
epigenetic effects across different species. 
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CHAPTER 3: EPIGENETIC REGULATION OF NUTRIENT SENSING AND IMMUNE-
METABOLISM BY CALORIE RESTRICTION 

 
 

3.1. ABSTRACT 

Chronic caloric restriction (CR) without malnutrition is known to impact different cellular 

processes such as stem cell function, nutrient sensing, cell senescence, inflammation and 

metabolism. In spite of the differences in CR implementation, the reduction of calories produces 

a widespread beneficial effect in non-communicable chronic diseases, which can be explained by 

improvements in immuno-metabolic adaptation. Cellular adaptation that occur in response to 

dietary patterns can be explained by alterations in epigenetic mechanisms such as DNA 

methylation, histone modifications, and microRNA (miRNA). In this review, we define these 

modifications and systematically summarized the current evidence related to CR and the 

epigenome. We then explain the significance of genome-wide epigenetic modifications in the 

context of disease development. Although substantial evidence exists for the widespread effect of 

CR on longevity, no consensus exists epigenetic regulation of the underlying cellular mechanisms 

that lead to improved health. We provide compelling evidence of the long-lasting epigenetic effect 

of CR on genes related to immuno-metabolic processes. Epigenetic reprogramming of nutrient-

sensing pathways by CR can lead to immuno-metabolic adaptations that will enhance quality of 

life, extend life and delay chronic disease onset. 
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3.2. INTRODUCTION 

Caloric restriction (CR) without malnutrition is constitutes a safe and effective way to promote 

weight loss, decrease metabolic complications, increase lifespan, and improve quality of life. 

Caloric restriction refers to a reduction in the intake of net calories, with no limitation in specific 

macronutrients, while meeting the necessary micronutrient requirements. Caloric intake can be 

restricted to an individual through a variety of ways: percent CR, macronutrient limitation, or 

exercise-induced restriction. Restriction percentage of total calories span from mild (15% energy 

restriction) to a severe restriction of calories (60% restriction), and can be achieved in a variety of 

way, either with calorie or amount of food provided (Anton et al., 2009; Civitarese et al., 2007; 

Heilbronn & Ravussin, 2003; Parra, Gonzalez, Martinez, Labayen, & Diez, 2003), or with 

supplementation of physical activity (Anton et al., 2009; Civitarese et al., 2007; Lefevre et al., 

2009). Other alternatives for calorie restriction have proposed changes in the proportion of 

macronutrients, such as hyperproteic vs. hypoproteic diets (Larsen et al., 2010), or ketogenic diets 

with a high lipid, low carbohydrate content (Goday et al., 2016; Lv, Zhu, Wang, Wang, & Guan, 

2014; Rogovik & Goldman, 2010). In animal studies, CR can also be achieved by increasing the 

litter size or access to food, and while this approach provides a natural method of energy limitation, 

often the amount of food cannot be measured (Branquinho et al., 2017; N. Li et al., 2016).  

Different dietary approaches have been used to treat and prevent chronic disease 

development, among which chronic CR has provided widespread beneficial effects. In obese 

patients, CR is able to provide additional health benefits to weight loss, such as decreasing visceral 

adipose tissue(Verheggen et al., 2016) and inflammation (Meydani et al., 2016) while improving 

kidney function (Giordani et al., 2014; Ruggenenti et al., 2017), and cellular quality control (L. 

Yang et al., 2016a). Moreover, such effects have also been documented for type 2 diabetic animals 
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(Kanda et al., 2015) and patients (Bhatt et al., 2017; Ghalandari, Kamalpour, Alimadadi, & 

Nasrollahzadeh, 2018; C. Li et al., 2017; Oshakbayev et al., 2017; Urbanova et al., 2017), where 

insulin sensitivity is improved. Additionally, 12-week CR treatment (30% restriction) reduced the 

circulating levels of the risk marker fetuin-A, improved blood pressure in patients and hepatic 

steatosis in rats (K. M. Choi et al., 2013). Lastly in cancer patients, CR or fasting can effectively 

prevent malignancies through a variety of cellular responses and can improve the efficacy of 

therapeutic agents (Brandhorst & Longo, 2016). Different forms of CR are able to reduce 

progression of cancer types with the highest morbidity rates, including colorectal, pancreas, breast, 

liver, prostate, esophagus, and kidney malignancies. In monkeys from the Wisconsin National 

Primate Research Center (WNPRC), 30% lifelong restriction was sufficient to cause a 50% 

decrease in neoplasic events, gastrointestinal adenocarcinoma being the most common (Simpson, 

Le Couteur, Raubenheimer, et al., 2017). Similarly, young-onset CR (30% restriction) improved 

the incidence of cancer in monkeys from the National Institute on Aging (NIA), despite the great 

genetic differences with the WNPRC monkeys.  

3.2.1. Nutrient Sensing and Protein Quality Control 

The way cellular energetics are partitioned in the cell is the result of active and passive mechanisms 

that respond to the needs of the cell and the tissue it resides in. Depending on the energy availability 

and requirements, the cell must decide whether to expend or to save energy, this in turn will 

guarantee its long-term survival. During the feeding period, the cell is exposed to a rapid surge of 

nutrients that must be utilized or stored for times for times of scarcity; however, during the fasting 

period, it must be resourceful and effectively communicate its needs to produce adequate amounts 

of nutrients and energy. In this section, we will try to define what is known about the nutrient 
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sensing mechanisms during fasting periods, as they closely mimic the conditions during times of 

starvation and chronic CR. 

 Macronutrient sensing and energy sensing pathways are highly conserved among 

different species and are used to adapt to limited nutrient availability. Lipid sensing pathways 

encompass fatty acid and cholesterol/sterol recognition, which are released from energy stores 

during starvation and CR. Fatty acid sensing is enabled by membrane-bound and intracellular 

receptors that are able to bind fatty acids within their ligand binding domains, thus activating signal 

transduction or activate transcription of target genes. Among the fatty acid sensors, there are 

membrane bound receptors such as Fatty acid transporter proteins (FATPs, SLC27A1-

6)(Kazantzis & Stahl, 2012; Luiken, Miskovic, Arumugam, Glatz, & Bonen, 2001) (Gimeno, 

2007), G-protein coupled receptors (FFARs) (Nakamura, Yudell, & Loor, 2014), and co-receptors 

(CD36)(Hotamisligil & Bernlohr, 2015; Nakamura et al., 2014), as well as intracellular binding 

proteins (FABPs)(Hotamisligil & Bernlohr, 2015; Syamsunarno et al., 2013), and intracellular 

receptors with transcriptional activity (PPARs, HNF4, RXR/LXP, etc.) (Nakamura et al., 2014), 

altogether will sense the extra- and intracellular compartments and activate fasting-specific 

signaling pathways. During CR, adipose tissue synthesizes a greater amount of fatty acids (Bruss, 

Khambatta, Ruby, Aggarwal, & Hellerstein, 2010) and decreases serum long-chain saturated fatty 

acids (Hardy, Meckling-Gill, Williford, Desmond, & Wei, 2002), the former will be in turn 

oxidized to meet the energy requirements (Bruss et al., 2010). Fatty acid uptake appears to be 

decreased in myocardiac tissue following CR, with the concomitant reduction of myocardial mass 

and cardiac work (Viljanen et al., 2009). Regarding lipid trafficking, FABP4 and 5 share 

immunometabolic functions, and whole-body depletion protects against high-fat diet consumption, 

steatosis, and improves insulin sensitivity (Hotamisligil & Bernlohr, 2015; Maeda et al., 2005). 
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Short term CR (40% restriction) decreases circulating FABP4, possibly originated from non-

adipose tissues, as CR does not affect subcutaneous adipose expression, but increased adipose 

FABP5 expression (Charles et al., 2017). Additionally, deletion of FABP4/5 recapitulates the 

lipidomic changes seen in CR, but without lifespan extension, which suggests that CR improves 

metabolic health by fine tuning lipid trafficking proteins. Although evidence exists for the effect 

of short term fasting on fatty acid receptors, limited data is available on the long-term adaptation 

of FATPs, FFARs, and FABPs during chronic CR. 

PPARs appear to be vital for metabolic adaptation to short- and long-term fasting, this is 

evidenced by knockout experiments with PPARa mice, which display hypoglycemia, impaired 

ketosis, increased steatosis, impaired lipolysis, hypothermic, leading to death within 24hrs 

(Hashimoto et al., 2000; Kersten et al., 1999; Le May et al., 2000; G. Y. Lee, Kim, Zhao, Cha, & 

Kim, 2004; S. S. Lee et al., 2004; Leone, Weinheimer, & Kelly, 1999; Nakamura et al., 2014). 

Moreover, the effects of CR in the liver appear to be solely dependent on PPARa, given that 30% 

CR activates its transcription and translation, while PPARg remains unchanged and PPARb/d 

decreases (Masternak et al., 2004; Masternak et al., 2005), which is responsible for the adaptive 

response to prolonged food restriction while preventing hypoglycemia (Kersten et al., 1999; Leone 

et al., 1999). In skeletal muscle, the expression of PPARs appears to be reduced (Masternak et al., 

2005), perhaps to allow for protein recycling and fiber maintenance, whereas in cardiac muscle 

and adipose tissue the expression of PPARs remains unchanged by CR (Jones et al., 2005; 

Masternak & Bartke, 2007; Y. X. Wang et al., 2003; Z. Wang, Al-Regaiey, Masternak, & Bartke, 

2006). Lastly, Peroxisome proliferator-activated receptor gamma coactivator 1a (PGC-1a), a 

well-known and extensively studied coactivator is responsible for the short- and long-term 

adaptations to fasting and CR in some metabolic tissues (R. Anderson & Prolla, 2009). As 
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discussed later, CR is able to stimulate SIRT1 activation in different tissues, thus stimulating the 

deacetylation of PGC-1a and in turn contributes to mitochondrial biogenesis and function 

(Fernandez-Marcos & Auwerx, 2011; Guarente, 2006). Nevertheless, skeletal muscle PGC-1a 

activation is dispensable for the CR-induced whole-body adaptations (Finley et al., 2012), hence 

highlighting the redundant and robust response following CR. 

Regarding amino acid sensing, the mechanistic Target of rapamycin complex 1 (mTORC1) 

pathway is the master regulator of cell growth and is known to be modulated in response to growth 

factors, cell stress, energy and amino acids supply. mTORC1 is at the crossroad of catabolism and 

anabolism, as it modulates both mRNA translation into proteins and protein recycling through 

autophagy. Both the vacuolar H+-Adenosine triphosphatase ATPase (V-ATPase) that interacts 

with the Ragulator and the Sodium-coupled neutral amino acid transporter 9 (SLC38A9) sense 

lysosomal amino acid signals and stimulate in turn the lysosome-residing complexes Rheb and 

Rag GTPases, leading to their interaction and activation of mTORC1 complex (Wolfson & 

Sabatini, 2017). In the cytosol, the presence of amino acids such as leucine and arginine can 

prevent the inhibitory actions of Sestrin2, CASTOR1, and GATOR1, thus promoting enhancement 

of the mTORC1 complex, leading to mRNA translation activation (Wolfson & Sabatini, 2017). 

These amino acid sensing mechanisms appear to be conserved in nematodes (C. elegans), flies (D. 

melanogaster), mice (M. musculus), and humans (H. sapiens) (Chantranupong, Wolfson, & 

Sabatini, 2015; Wolfson & Sabatini, 2017), which highlights the great degree of specialization of 

amino acid sensing through evolution. Theories surrounding the aging process have pointed out 

that activation of nutrient-sensing mTORC1 leads to cell senescence and age-related disease 

development, and that CR is capable of preventing age-related decline, at least in part, by slowing 

down the activity of the mTORC1 pathway (Blagosklonny, 2010). During CR, energy and nutrient 
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availability are scarce and the mTORC1 complex is inhibited, giving rise to the activation of other 

nutrient sensors such as SIRT1; both processes cannot occur in the same cell as they are activated 

by opposing signals. Interestingly, in the intestine of CR mice, both SIRT1 and mTORC1 appear 

to cooperate to promote the self-renewal of the adult stem cell pool (Igarashi & Guarente, 2016). 

Briefly, anti-microbial peptide secreting Paneth cells produce cyclic ADP-ribose promotes SIRT1-

mediated deacetylation of S6K1 in neighboring intestinal stem cells (ISCs), this in turn facilitates 

its phosphorylation by the mTORC1 complex within ISCs, leading to mTORC1-directed cell 

division and SIRT1-mediated self-renewal (Igarashi & Guarente, 2016). Extension of lifespan and 

health span by CR appear to be intricately related to mTORC1 inhibition, as low protein diets seem 

to have more robust effects (Cummings & Lamming, 2017; Lamming et al., 2015; Solon-Biet et 

al., 2014). Whether directly mediated though mTORC1 inactivation or downstream effector 

molecules, CR nutrient-sensing adaptations are vital for the survival and function of the cell. 

Protein quality assessment must be conducted within the cell in order to guarantee the 

safeguarding of the cell’s functions. During times of starvation or energy deprivation (CR), the 

cell initiates a recycling process in an effort to ensure that the nutrient pool is used effectively, 

such recycling processes include cysteine proteases, autophagy, and proteasomal degradation. 

While autophagy is regarded as a non-specific, widespread protein turnover event, degradation 

through the ubiquitin-proteasome pathway utilizes E3-ligase enzymes to tag specific protein 

targets, thus ensuing protein turnover (Bento et al., 2016). Consumption of high-fat, calorically 

dense diets decreases autophagy (van Niekerk, du Toit, Loos, & Engelbrecht, 2018) as well as 

degradation of ubiquitinated proteins (Otoda et al., 2013), leading to the cellular stress and insulin 

resistance. Remarkably, CR is able to significantly activate protein turnover by increasing 

autophagy to promote muscle quality control in humans (L. Yang et al., 2016a) and prevent 
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sarcopenia (Fan et al., 2016). Likewise, CR with resveratrol supplementation has been found to be 

protective against oxidative stressor doxorubicin, which promotes cardioprotection by inducing 

autophagy in aged rats (Dutta, Xu, Dirain, & Leeuwenburgh, 2014). Moreover, similar strategies 

to CR such as intermittent fasting or alternate-day CR (ADCR) are able to elicit protein quality 

control (autophagy and proteasome) in the context of peripheral nerve damage (S. Lee & 

Notterpek, 2013). Therefore, CR-based strategies should be able to stimulate protein quality 

control and cell renewal, both hallmarks of CR-mediated lifespan and health span extension. 

CR-based strategies that are able to increase patient compliance, while conferring all the 

benefits associated with CR remain a poorly studied area of CR research. Alternate-day or 

intermittent CR (ADCR) has demonstrated, despite the limited literature, to be as effective as 

chronic CR protocols and maximizes the amenability of the restriction protocols in a clinical 

setting. ADCR has a potent and robust effects on a variety of animal and human experiments: it’s 

capable of ameliorating inflammation due to sepsis (Hasegawa et al., 2012), decrease hepatic 

inflammation in obese mice (W. Yang, M. Cao, et al., 2016), decrease oxidative stress and 

inflammation in obese, asthmatic subjects (Johnson et al., 2007), increase fat-free mass and 

decrease leptin secretion in overweight and obese individuals (Trepanowski et al., 2017), etc. 

Furthermore, a meta-analysis identified this form of restriction to be effective and possibly 

superior to CR given the improvement of patient compliance, while increasing the lean-to-fat mass 

ratio (Alhamdan et al., 2016). In the coming years, research that focuses on the comparison of CR 

vs. ADCR will determine the great benefit of such modified strategies on health- and lifespan 

extension. 

Overall, chronic CR has been demonstrated to be an effective dietary intervention for the 

treatment of many non-communicable chronic diseases. Given the impact that CR has on the 
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prevention, development, and treatment of chronic diseases, we sought to review three epigenetic 

mechanisms that might be related to the long-term programming of cellular functions. Epigenetic 

mechanisms are at the forefront of cellular changes that can be modulated by CR, which can lead 

to long-lasting cellular adaptations and improved health outcomes. In our review, we will provide 

an overview of different epigenetic mechanism that can be targeted (DNA methylation, histone 

modifications, and miRNAs). We will then explore the effect of CR and fasting patterns on such 

mechanisms. Lastly, we will delineate the epigenetic regulation of immunometabolic processes 

that leads to improvements for many non-communicable chronic diseases.  

3.3. CALORIC RESTRICTION AND DNA METHYLATION  

3.3.1. Dynamic regulation of DNA Methylation  

DNA methylation or the modification of a cytosine nucleotide to 5-methyl cytosine (5mC) is an 

epigenetic process intricately associated with the regulation of gene expression. DNA methylation 

has been associated with the control of gene expression at all stages of development, genomic 

imprinting and X-chromosome inactivation (Jurkowska, Jurkowski, & Jeltsch, 2011; Klose & 

Bird, 2006). DNA methyltransferases (DNMTs) are the proteins involved in de novo and 

maintenance methylation state of cytosine residues. This protein family has been studied 

extensively, from its physiology and biochemistry, to its evolution and pervasiveness across 

species (Jurkowska et al., 2011; Zemach, McDaniel, Silva, & Zilberman, 2010). Broadly, DNMT1, 

DNMT3A and 3B, are the enzymes in charge of regulating the addition of a methyl group to the 

cytosines, yet they carry out specific functions during development and adaptation to the 

environment. For instance, DNMT1 is responsible for the establishment of methylation patterns 

that define different tissues, whereas DNMT3A and 3B oversee the dynamic turnover of novel 

methylation marks, or de novo methylation. Other DNMTs include DNMT2, which is involved in 
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the methylation of tRNA (methylation of aspartic acid transfer RNA onto the cytosine-38 residue 

in the anticodon loop), and DNMT3L, which activates DNMT3A and 3B. Transcriptionally related 

DNMTs are required for the silencing and transcription of target genes. 

The mechanisms and enzymes involved in the process of DNA demethylation are poorly 

understood. In eukaryotes, the recently described Ten Eleven Translocation (TET) family of 

proteins has been found to play an important role on DNA demethylation (Kinney et al., 2011). 

The TET family of proteins consists of TET1, TET2 and TET3; and genomic analysis across 

species has found them to be conserved across vertebrates. Structural analysis of TETs reveals a 

catalytic domain similar to an 2-oxoglutarate oxygenase (Loenarz & Schofield, 2009). TET1 has 

a Zn-chelating domain, CXXC region and a nuclear localization signal that is missing from both 

TET2 and TET3 (Kinney et al., 2011). Nevertheless, the whole protein family shares a DNA 

sequence homology of 70% and a double-stranded B-helix (DSBH), which has been proposed as 

being sufficient and necessary for the catalytic activity. Various isoforms have been described, but 

many of them appear to be missing the DBSH and iron binding sites. The proposed mechanism 

for DNA demethylation involves TET-mediated oxidation, starting with the conversion of 5mC to 

5-hydroxymethyl cytosine (5hmC), followed by oxidation to 5-formyl cytosine (5fC), and finally 

to 5-carboxyl cytosine (5caC) (Wu & Zhang, 2011). Both 5caC and/or 5fC DNA residues can be 

recognized by other proteins that will restore the nucleotide to the demethylated cytosine (R. M. 

Kohli & Zhang, 2013).  

Zemach et al. (Zemach et al., 2010) proposed that the process of gene methylation 

originated before the divergence of plants and animals and that both groups use DNA methylation 

to repress transposable elements. Additionally, the phylogenetic analysis of DNMTs found that 

eukaryotic DNMTs are most likely to descend from prokaryotic DNMTs, and not from RNA 
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methyltransferases as it was previously thought (Jurkowska et al., 2011). This indicates a 

conserved, yet divergent mechanism for DNA methylation across domains of life. On the other 

hand, TET proteins in fungi have been evolutionarily associated with transposons, which could 

explain the lineage specific expansion or loss in various eukaryotes (Iyer et al., 2014).  

3.3.2. Early-Onset Caloric restriction and DNA Methylation 

CR has been found to impact the methylation pattern of certain genes, and thus alter biological 

processes such as metabolism, oxidative stress, senescence, and aging (Maegawa et al., 2017; 

Mendelsohn & Larrick, 2017; Unnikrishnan et al., 2017) (Fig. 3.1). Specific macronutrient 

limitation, or CR without accounting for malnutrition, can have deleterious effects. A form of 

dietary restriction by limiting protein (not CR) to pregnant rat dams was found to induce 

transcriptional changes across 3 subsequent generations (F1 through F3), and the changes observed 

in fasting glucose could be explained by alterations in the methylation pattern of gluconeogenic 

enzyme phosphoenol pyruvate carboxykinase (PEPCK) (Hoile, Lillycrop, Thomas, Hanson, & 

Burdge, 2011). Transgenerational changes induced by protein restriction alone do not seem 

consistent between generations, but accumulation of genetic alterations might be conducive to a 

hyperglycemic state. Low birth weight (LBW) is a predictor of suboptimal outcomes in humans 

and non-human primates, having altered expression and methylation of the inflammatory marker 

CXCL14 in cord blood, which is thought to be responsible for the metabolic abnormalities 

(Cheong et al., 2014). Late-gestation CR has been observed to alter global placental DNA 

methylation (P. Y. Chen et al., 2013), specifically of the glucose transporter GLUT-3 and decrease 

its expression through a mechanism involving the binding of Methyl-CpG Binding Protein 2 

(MeCP2) in mice (Ganguly, Chen, Shin, & Devaskar, 2014). This in turn limits the supply of 

nutrients and specifically glucose to the fetus. In utero undernutrition (50% calories) produced 
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significant changes in the methylation pattern of adult sperm, having that lower methylation 

(hypomethylation) in differentially methylated regions (DMR, compared to control) are low in 

coding and repetitive regions and hypomethylation was found in intergenic regions and CpG 

islands in mice(Radford et al., 2014). Although methylation patterns were not consistent between 

generations, accumulation of the effects related to differential epigenome alterations at early 

developmental stages could lead to long-lasting alterations in chromatin, transcriptional changes, 

and ultimately affect their differentiation potential or the supramolecular tissue organization 

(Radford et al., 2014). However, despite the detrimental effects observed in IUGR, LBW 

populations and CR animals with malnutrition, CR protocols that compensate for malnutrition can 

combat chronic disease development by shaping the epigenome during early developmental stages. 

Most importantly, the timing of the restriction onset as well as the diet formulation (Mattison et 

al., 2017) are the most important factor that can predict the positive outcomes related to CR (Fig. 

3.1A).  

3.3.3. Late-Onset Caloric Restriction and DNA Methylation 

CR without malnutrition in adults appears to provide protection against chronic illness, produces 

weight loss, and helps prevent the development of metabolic abnormalities (Fig. 3.1B). 

Comparison of two non-human primate longitudinal CR studies from the National Institute of 

Aging (NIA) and the Wisconsin National Primate Research Center (WNPRC), revealed 

differences in CR onset and diet formulation (Mattison et al., 2017). Early CR onset appears to be 

linked to lower life-expectancy and reduced quality of life, whereas mid- to late-CR onset 

produced significant health benefits (Mattison et al., 2017) (Fig. 3.1B). Hence, we sought to review 

the effects of mid- and late-onset CR and diet specifications associated with longevity and better 

quality of life, with an epigenetic focus. In a clinical population, 8 weeks of CR-induced weight 
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loss significantly reduced DNA methylation of inflammatory cytokine Tumor Necrosis Factor 

(TNF), and provided a striking biomarker differences for prediction of the degree of weight 

reduction (Campion et al., 2009). Moreover, similar methylation patterns for TNF and Leptin were 

observed for obese women who were prescribed an 8-week long low-calorie diet protocol (Cordero 

et al., 2011), thus lessening the inflammatory burden of obese patients. Other genes that are known 

to be modified by CR-induced weight loss are ATPase phospholipid transporting 10A (ATP10A) 

and CD 44 molecule (CD44) in overweight and obese men (Milagro et al., 2011). Similarly, in 

overweight and obese postmenopausal women, CR differentially affected the methylation pattern 

of genomic loci involved in weight control and insulin secretion analyzed in adipose tissue biopsies 

(Bouchard et al., 2010). Maintenance of weight following weight loss, can alter the methylation 

pattern similar to that of normal weight individuals, rather than the obese counterparts who did not 

lose weight (Y. T. Huang et al., 2015).  

Interestingly, the weight loss method, CR or bariatric surgery, impact the methylation status in 

different directions (Nicoletti et al., 2016). 

3.3.4. CR-Induced DNA Methylation Changes and Nutrient Sensing 

Cellular nutrient sensors represent the first line of detection of a cell and its environment. Nutrient 

intake is “sensed” by numerous different receptor proteins or “sensors” that are capable of relaying 

the message to downstream pathways, and it turn, these downstream actors compose a specific 

adaptive response in accordance to the sensed metabolite. Nutrients, primarily macronutrients are 

sensed in two different ways, either through the direct binding to the macronutrient (fatty acid, 

amino acid, carbohydrate), or by indirect detection of the energy levels following anabolism. 

Nutrient-sensing actors are thus referred to hereafter as nutrient sensors and not energy sensors. 

Among the nutrient sensors, fatty acids are one of the best characterized molecules that can be 
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sensed; from membrane receptors such as Free fatty acid receptor 1 (FFAR1), FFAR4, CD36 

(Efeyan, Comb, & Sabatini, 2015), and the well-known Peroxisome proliferator activated 

receptors (PPAR-a,d,g) (Contreras, Torres, & Tovar, 2013; Poulsen, Siersbaek, & Mandrup, 

2012). In overweight women, energy restriction resulted in reduced coding region methylation 

(CpG +477) within CD36 (do Amaral, Milagro, Curi, & Martinez, 2014), and a promoter 

polymorphism of CD36 is associated with differential effect on LDL-c (Goyenechea et al., 2008). 

Moreover, CR is known to activate FOXO-1 and in turn, FOXO-1 can modulate prime C2C12 

muscle cells to rely on fatty acid metabolism by inducing CD36 membrane enrichment (Bastie et 

al., 2005). However, no information is available regarding the effect of CR on DNA methylation 

other fatty acid membrane-sensors in animals or humans (FFARs). As for PPARs, limited 

information exists regarding their direct modulation by CR. As discussed later, activation of SIRT1 

by CR leads PGC-1a-mediated enhanced activity of PPARa, but no direct changes in DNA 

methylation of PPARa have been documented in postnatal- and adult-onset CR. Prenatal protein 

restriction are able to alter promoter DNA methylation of PPARa in the liver of offspring 

(Lillycrop et al., 2008), and the methylation status of PPARa appears to be related to NAFLD 

pathogenesis, which can be ameliorated by DNA methylation inhibitors (5-Aza-2'-deoxycytidine 

or curcumin) (Ju et al., 2018; Y. Y. Li et al., 2018). Moreover, very long chain fatty acids are 

positively associated with maternal methylation level of PPARa during pregnancy in serum of 40 

mother-infant dyads (Marchlewicz et al., 2016). Similarly, the adipogenic function of pre-

adipocytes from obese subjects appears to be epigenetically reprogrammed at PPAR-related 

pathways (Andersen et al., 2018), which highlights the possible use of CR to prevent lipid and 

adipogenic reprogramming. PPARg is regarded as the master regulator of adipogenesis. Effective 

weight loss strategies such as CR and intermittent fasting (IF) are able to decrease PPARγ 
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expression in visceral adipose (Yang et al., 2017) and liver (Mulligan, Stewart, & Saupe, 2008). 

Weight loss induced through roux-en-y gastric bypass (RYGB) decreases the ability of 

subcutaneous adipose tissue to store lipids, while increasing lipolysis, this by directly targeting the 

activities of PPARγ/δ (Jahansouz et al., 2018). Both RYGB and CR are able to reduce the 

adipogenic potential of adipose stromal progenitor cells, but protect these cells from DNA damage 

and extends their lifespan (Mitterberger, Mattesich, & Zwerschke, 2014), possibly due to the 

hallmark activation of SIRT1 by CR (Picard et al., 2004). Although promoter hypermethylation of 

PPARγ is associated with hepatic inflammation and fibrosis in chronic hepatitis B (Zhao et al., 

2013), the effect of CR on PPARγ methylation status has not been defined. Altogether, CR appears 

to affect PPAR activity by directing SIRT1 and PGC-1a, but future research should focus on the 

DNA demethylation potential of CR on adipogenesis and lipid metabolism. 

Other factors that are known to be involved in disease development, particularly non-

alcoholic fatty liver disease (NAFLD), are susceptible to DNA methylation changes following 

bariatric surgery-induced weight loss. NAFLD-specific expression and DNA methylation were 

partially reversed by bariatric surgery, and it produced a differential methylation pattern within 

transcription factor binding sites of ZNF274 (zinc finger protein 274), PGC1A (Peroxisome 

proliferator-activated receptor  g coactivator 1 alpha), SREBF2 (Sterol regulatory element binding 

factor 2), GRP20 (Glycine-rich protein 20), ZEB1 (Zinc finger E-box binding homeobox 1), and 

FOXA1 (Forkhead box A1), FOXA2 (Forkhead box A1). Moreover, the epigenetic remodeling 

effect in liver following bariatric surgery was possibly due to the changes observed in transcription 

factors NRF1 (nuclear respiratory factor 1), HSF1 (heat shock factor 1), ESRRA (estrogen-related 

receptor alpha), SRF (serum response factor), TR4 (testicular receptor 4), CEBPZ 
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(CCAAT/enhancer binding protein zeta), and SREBP1(sterol regulatory element binding protein 

1) (Ahrens et al., 2013). 

The intricate regulation of energy-sensing sirtuins (SIRTs) will be discussed later; 

however, their DNA methylation patterns can be modulated by CR. In adipose tissue of obese 

individuals (BMI>40 kg/m2), DNA methylation status to the promoter of SIRT1 or 7 was not 

correlated with the expression, but rather to the miRNAs targeting their degradation (miR-22-3p, 

miR-34a-5p, miR-181a-3p for SIRT1 and miR-125a-5p, miR-125b-5p with SIRT7), compared to 

normal-weight individuals (BMI 20-24.9 kg/m2) (Kurylowicz et al., 2016). SIRT6 promoter DNA 

methylation can be modified by age in humans. Aging is known to increase SIRT6 promoter DNA 

methylation from 43.21% at a young age (9-19 years old), to an average methylation of 65.63% in 

the after 19-years-of-age (20-79 years old) in whole blood (Sahin, Yilmaz, & Gozukirmizi, 2014). 

Therefore, whether it is through direct activation of gene transcription or indirect enhancement 

with NAD+ production, CR facilitates the robust activation of SIRTs. 

3.3.5. CR-Induced DNA Methylation Changes and Immunometabolism 

In human studies, weight loss via CR has been shown to alter DNA methylation in blood, adipose 

tissue, and skeletal muscle (Fig. 3.1C). In one study, obese and overweight men were subjected to 

30% energy restriction for 8 weeks (Milagro et al., 2011). Greater weight loss was associated with 

hypermethylation of Wilms tumor 1 (WT1) and ATP10A in peripheral blood mononuclear cells 

(PBMCs). In a similar study involving overweight women, an 8-week intervention involving 30% 

CR resulted in decreased methylation of CD 36 molecule (CD36), CD 14 molecule (CD14), 

pyruvate dehydrogenase kinase 4 (PDK4) and fatty acid desaturase 1 (FADS1) in PBMCs (do 

Amaral et al., 2014). Examination of subcutaneous adipose tissue from these women revealed no 

change in DNA methylation within the leptin (LEP) promoter (Cordero et al., 2011). Another study 
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focused on overweight and obese postmenopausal women who underwent a 6-month calorie 

restriction weight loss program. Subcutaneous adipose tissue was biopsied after an additional 4-

week weight stability period. Those participants that had a greater than 3%  

Figure 3.1. Age-related changes in DNA methylation drift and the effect of caloric restriction. A) 
DNA methylation is a dynamic process that is regulated during development and throughout life. Early life 
DNA methylation patterns are established through genetic and epigenetic imprinting of differentially 
methylated regions (DMR). Early- (green solid line) vs. late-onset of CR (blue solid line) are able to extend 
lifespan with differences in health span. Both early (green dotted line) and late onsets (green dotted line) 
are able to ameliorate age-related methylation drifts, thus producing significant changes in the B) DNA 
methylation dysregulation with age. C) Weight loss strategies such as CR and roux en y gastric bypass 
(RYGB) are able to produce distinct patterns of either hyper- or hypomethylation in many metabolic tissues, 
compared to their obese counterparts. 
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reduction in body fat percentage were found to have hypermethylated loci associated with 

phospholipase C eta 2 (PLCH2) and PR/SET domain 8 (PRDM8) (Bouchard et al., 2010). Thus, it 

appears that weight loss strategies, regardless of the form or severity, are able, to some extent, to 

alter DNA methylation patterns of metabolism- or immune-related genes but a significant 

variability in the response is expected. 

In extreme cases of obesity, bariatric surgery may be used as a weight loss strategy to 

reduce the capacity of the stomach and reduce food intake, thus providing some form of artificial 

calorie restriction. One study found that gastric bypass patients had higher methylation of PDK4 

in whole blood at 12 months post-surgery (Kirchner et al., 2014). In skeletal muscle biopsies 6 

months after surgery, gastric bypass patients had normalized DNA methylation in 11 metabolic 

gene promoters, including PDK4, PPARG coactivator 1 alpha (PPARGC1A), pyruvate 

dehydrogenase E1 alpha 1 subunit (PDHA1), myosin heavy chain 2 (MYH2), acyl-CoA oxidase 1 

(ACOX1), and others (Barres et al., 2013). Another study found reduced methylation in skeletal 

muscle at 30 CpGs associated with sorbin and SH3 domain containing 3 (SORBS3) following 

Roux-en-Y gastric bypass surgery (Day et al., 2017). In addition to muscle, DNA methylation 

profiles of omentum and subcutaneous adipose tissue were altered by gastric bypass surgery 

(Benton et al., 2015). Results found 3,601 differentially methylation CpGs in subcutaneous and 15 

in omentum. CpGs were associated with genes involved in obesity and epigenetic regulation, such 

as cholesteryl ester transfer protein (CETP), forkhead box P2 (FOXP2), histone deacetylase 4 

(HDAC4), and DNA methyltrasferase 3B (DNMT3B). Overall, CR resulting from bariatric surgery 
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is able to mediate DNA methylation of metabolic genes from metabolic tissues such as muscle and 

adipose tissue in humans. 

In addition to weight loss intervention for overweight and obesity, CR is also observed in 

normal and underweight patients with eating disorders (Fig. 3.1C). Previous literature highlights 

the role of DNA methylation in endocrine and psychiatric pathways. One study found increased 

global methylation in lymphocytes of anorexia patients (Booij et al., 2015; Kesselmeier et al., 

2018). In particular, 14 hypermethylated probes were associated with genes involved in histone 

acetylation (HDAC4), RNA modification, cholesterol storage and lipid transport, and dopamine 

and glutamate signaling. In other studies, these findings were not reproduced in whole blood 

samples, as a global hypomethylation was observed in anorexic patients (Frieling et al., 2007; 

Tremolizzo et al., 2014); nor were the findings reproduced in saliva samples, as HDAC4 was 

hypomethylated in anorexic and bulimic patients (Subramanian, Braun, Han, & Potash, 2018). 

Other studies have suggested that CR impacts fluid regulation and neuronal function, as 

hypermethylation of atrial natriuretic peptide (ANP) promoter was observed in bulimic patients, 

while hypermethylation of alpha synuclein (SNCA), dopamine transporter (DAT), dopamine 

receptor D2 (DRD2), and oxytocin receptor (OXTR) was seen in anorexics (Frieling et al., 2008; 

Frieling et al., 2007; Frieling et al., 2010; Y. R. Kim, Kim, Kim, & Treasure, 2014). Thus, 

voluntary CR is able to directly modulate DNA methylation to perpetuate the long-term cellular 

program. 

While human studies have primarily focused on CR as a means of weight loss, animal 

models have examined CR in the context of longevity and cancer. Studies in Drosophila found 

dietary restriction to extend the lifespan without changing methylation patterns (Lian, Gaur 2018), 

while several others have shown that CR mitigates age-associated DNA methylation in a range of 



	 29	

tissues (Cole et al., 2017; C. H. Kim et al., 2016; Maegawa et al., 2017; T. Wang et al., 2017). In 

WI-38 lung fibroblasts, glucose restriction extended the lifespan and downregulated p16 gene 

expression (Y. Y. Li, Liu, & Tollefsbol, 2010). Such effect might be due to elevated DNMT 

activity and hypermethylation of the promoter of p16 in the restricted cells. A study in mice used 

60% energy restriction starting at 12 weeks of age and examined genome-wide methylation in the 

liver (Hahn et al., 2017). Not only did restricted animals have longer lifespans, but dietary 

restriction was also shown to ameliorate age-related hepatic DNA methylation changes. Additional 

analysis revealed hypermethylation of gene bodies. CR-induced methylation was enriched for fatty 

acid, triglyceride, and ketone body metabolism related genes, including ATP-citrate lyase (Acly), 

Malic enzyme 1 (Me1), acetoacetyl-CoA synthetase (Aacs2), pyruvate kinase (Pklr), glycerol-3-

phosphate acyltransferase (Gpam), fatty acid elongase 6 (Elovl6), and acetyl-CoA carboxylase 1 

(Acaca). In addition to metabolic pathways, CR also impacts hepatic methylation of proto-

oncogene, Myc. One study showed that aging mice steadily decreased methylation in the promoter 

and increased methylation in the gene body of Myc (Miyamura et al., 1993). After both 11 months 

and 21 months of 42% CR, age-related methylation changes surrounding Myc were significantly 

diminished. In hippocampal tissue of mice exposed to 40% CR, over 30% of age-related 

differentially methylated CpGs were prevented by CR (Hadad et al., 2018). Furthermore, CR 

produced changes in DNA methylation that were independent of aging. Genes affected by CR 

were enriched for pathways related to energy regulation, inflammation, and phagocytosis. DNA 

methylation in other brain regions also depends on age and diet. In mouse cerebellum, aging 

induced a significant increase in 5-mC immunoreactivity (Lardenoije et al., 2015). A 15% calorie 

reduction had no effect on Purkinje cell methylation in 12-month old mice. However, the same CR 

regimen decreased global DNA methylation in Purkinje cells of 24-month old mice. Thus, the 
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importance of CR in a variety of tissues is not only able to improve lifespan-associated 

mechanisms, but also improve health span. 

The duration of CR appears to be critical in producing methylation changes. Female mice 

were 30% calorie restricted starting at 6-8 weeks of age, and genome-wide DNA methylation in 

mammary tissue was measured at 5 months and 22 months (Rossi et al., 2017). After 5 months of 

dietary treatment, there were 759 differentially methylated CpGs between CR and control mice. 

After prolonged treatment, the number of differentially methylated loci substantially increased to 

7,552 with the majority (6,901) being hypermethylated in the CR group. Closer investigation of 

Estrogen receptor 1 and 2 (Esr1 and Esr2) uncovered minimal methylation differences at 5 months. 

However, in aged animals, CR resulted in greater methylation at three loci within the first intron. 

Aged CR mice also showed hypermethylation upstream and downstream of the Esr2 gene body. 

Another study in mice found that 40% restriction for 4 months was sufficient to observe an increase 

in neurotensin (Nts) expression in the colon as well as lower promoter DNA methylation in 

restricted mice. Interestingly, this DNA methylation change persisted even when mice were 

switched back to an ad libitum diet for 5 months (Unnikrishnan et al., 2017).  

While CR is known to regulate systemic inflammation, it remains unclear how DNA 

methylation contributes to altered cytokine levels. In humans, weight loss studies have revealed 

various changes across adipose tissue and blood. One report found that after an 8-week 30% energy 

restricted intervention there was no change in promoter DNA methylation of TNF subcutaneous 

adipose tissue of obese women (Cordero et al., 2011). However, results in whole blood were 

contradictory, as gastric bypass patients had elevated methylation of interleukin 1B (IL1B), 

interleukin 6 (IL6), and TNF 12 months after surgery (Kirchner et al., 2014). Findings regarding 

IL6 were reproduced in white blood cells, as women subjected to 6 months of 30% energy 
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restriction had increased IL6 methylation (Nicoletti et al., 2016). However, IL6 methylation in 

bariatric surgery patients decreased. Interestingly, these changes were not correlated with 

circulating levels of the cytokines. In another study, obese and overweight men were subjected to 

30% energy restriction for 8 weeks. Analysis revealed hypomethylation of TNF receptor 

superfamily member 9 (TNFRSF9) and hypermethylation of interferon gamma (IFNG) in PBMCs 

(Milagro et al., 2011). Overall, investigation of CR-mediated DNA methylation of inflammatory 

genes has yielded inconsistent results in humans. 

In animal models, CR and DNA methylation in inflammatory pathways has only been 

examined in a limited number of studies. One study showed that age-related DNA methylation 

drift is accelerated under conditions of chronic inflammation (Issa, Ahuja, Toyota, Bronner, & 

Brentnall, 2001). In ulcerative colitis patients, there was hypermethylation in age-related CpG 

islands in colon epithelial cells. Because CR also impacts DNA methylation in aging, it is 

reasonable to hypothesize that CR could be affecting systemic inflammation via DNA methylation. 

Indeed, in mouse hippocampus, CR resulted in hypermethylation of CpGs that fell within genes 

that were enriched for inflammatory pathways, including FC epsilon receptor signaling, signaling 

by the B cell receptor (BCR), antigen activation of BCR leading to generation of second 

messengers, FC gamma receptor dependent phagocytosis, and interleukin-2 signaling (Hadad et 

al., 2018). Similarly, in monkey liver, CR reduced age-related DNA methylation drift associated 

with several genes including the neutrophil chemoattractant C-X-C motif chemokine ligand 3 

(CXCL3) (Maegawa et al., 2017). Collectively, evidence suggests an association between CR and 

inflammation as well as CR and DNA methylation; however more work is necessary to uncover 

the role of DNA methylation in mediating inflammatory outcomes in CR. 
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3.4. HISTONE MODIFICATIONS AND CALORIC RESTRICTION 
3.4.1. The Basis of Histone Remodeling 

The chromatin landscape determines the availability of the genome, whether it is found in an open 

and accessible conformation (euchromatin), or a tightly packed in a closed arrangement 

(heterochromatin). Chromatin changes are mainly driven by covalent modifications to the 

nucleosomal histones, hence producing a change in the availability of genes; specific amino acid 

residues (lysine, serine, arginine, glutamine, etc.) within the histone globular core and tails can be 

modified covalently, thus altering the interaction with the DNA that is wound around the histone 

octamer (Lawrence, Daujat, & Schneider, 2016). Modifications to the histones, such as acetylation, 

methylation, phosphorylation, SUMOylation, among others, can interact with each other and other 

factors (Lawrence et al., 2016) to control the rate of transcription in of several genes in a variety 

of tissues, which in turn dictates tissue-specific gene expression. One such modification, histone 

acetylation is a post-transcriptional addition of and acetyl group facilitated by the enzymes histone 

acetyltransferases (HATs), and removed by histone deacetylases (HDACs). HATs act by 

transferring acetyl groups from acetyl CoA (Coenzyme A) onto the histone tails (lysine residues), 

neutralizing their positive charge and causing the DNA to decondense to allow transcription, 

mainly driven by an increased frequency of transcription factor binding within the target genes. 

For instance, the addition of acetyl groups to Histone 4 (H4K16ac) increases transcription in vivo 

and in vitro (Akhtar & Becker, 2000; Shogren-Knaak et al., 2006). Conversely, HDACs remove 

acetyl groups from the histones and restore the positive charge on the histone, restoring the 

heterochromatic state (Ng & Bird, 2000; Taunton, Hassig, & Schreiber, 1996). Both HAT and 

HDAC appear to be evolutionarily conserved across species (Smith, 2003; Akhtar, 2000). Other 

histone modifications have been described and their activating/repressive mechanisms have been 

reviewed previously (Lawrence et al., 2016; Y. Zhang & Reinberg, 2001).  
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Given the potent effect of CR on health and lifespan, several authors have described the 

relationship between nutrient sensing and chromatin modifications and the modifiers (H. C. Chang 

& Guarente, 2014).  

3.4.2. Caloric Restriction as Regulator of Protein Modifications 

During CR, energy depletion in the cell is evidenced by the increased catabolic state, alteration of 

nutrient sensing pathways (Fontana & Partridge, 2015), and increased NAD+ production 

(Mouchiroud, Houtkooper, & Auwerx, 2013), but the production of the latter seems to only 

improve health span, but not lifespan in mice (S. J. Mitchell et al., 2018). Alteration of the nutrient 

pool and its sensors, will in turn be able to influence nuclear gene transcription, which can be 

mediated by protein, and specifically histone modifiers susceptible to CR (Vaquero & Reinberg, 

2009; Wood et al., 2015). CR is known to impact Sirtuins, a family of nutrient sensing HDACs 

(Guarente, 2000) (Fig. 3.2). Sirtuins are NAD+-dependent protein deacetylases and HDACs (F. 

Wang, Nguyen, Qin, & Tong, 2007) and exert their function on lysine residues, some of them 

found in the nucleosomal histone tails. The first identified Sirtuin in Saccharomyces cerevisiae, 

Sir2, has been well studied in the context of lifespan extension that is thought to occur by silencing 

ribosomal DNA, thus decreasing the frequency of ribosomal DNA circles that cause aging in yeast 

(Sinclair & Guarente, 1997). Furthermore, deletion of Sir2 results in a shorter lifespan (Kennedy, 

Austriaco, & Guarente, 1994), whereas deletion of  DNA replication fork-blocking protein 1 

(FOB1) (required for generation of rDNA circles) (Defossez et al., 1999) or overexpression of Sir2 

increases lifespan (Kaeberlein, 2004), providing evidence that a decrease in cellular stress could 

impact longevity. In addition, telomeres, the genomic regions that protect the ends of each 

chromosome from deterioration, are shortened when Sir2 expression is low (Dang et al., 2009). 

Conversely, when Sir2 is overexpressed, the longevity phenotype is restored. Increased cellular 
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stress coming from increased ribosomal circles, shorter telomeres, or epigenomic insults could 

lead to cell senescence and long-term exposure could impact aging, and Sir2 appears to be a strong 

regulator of this process.  

Sirtuins are at the crossroads of metabolism and the epigenome. The SIRT family is 

comprised of 7 mammalian isoforms (SIRT1-7), that localize either in the nucleus (SIRT1, SIRT2, 

SIRT6) where they influence histones and other trans-activating factors, in the mitochondria 

(SIRT3-5) where they can participate in metabolic-related processes and modulate oxidative stress 

(H. C. Chang & Guarente, 2014), or in the nucleolus (SIRT7) where they aid in cell division. Their 

role as nutrient sensors allows them to identify the cell’s energy status, as it is the case in CR where 

the energy status is lower. Then, they couple  the signal with both deacetylation (DAC) of target 

proteins (such as histones within target genes), as well as mono [ADP-ribosyl] transferase 

(mADPRT) in the cytosol (Tanny, Dowd, Huang, Hilz, & Moazed, 1999) or deacylation 

(malonylation, succinylation, glutarylation, etc.) of mitochondrial matrix proteins (Carrico, Meyer, 

He, Gibson, & Verdin, 2018). Mono ADP-ribosylation (MARylation) was first observed in yeast 

Sir2 (Frye, 1999; Tanny et al., 1999) and later confirmed (Haigis et al., 2006; Liszt, Ford, Kurtev, 

& Guarente, 2005) with the transfer of ADP-ribose from NAD+ to diverse substrates by SIRT4 

and 6. Although the function of SIRTs as MARylation mediators has been established, the 

identification of sensitive and reliable detection methods as well as the lack of a consensus 

sequence for MARylation complicate the study of such function of SIRTs (Butepage, Eckei, 

Verheugd, & Luscher, 2015). Future experiments that are able to identify MARylation targets of 

SIRTs will shed light of the implications of CR on the MAR code. Moreover, the functions of 

SIRTs beyond DAC, i.e. demyristoylation, desuccinylation, demalonylation, deglutarylation,  
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Figure 3.2. Epigenetic and genetic regulation of sirtuins by caloric restriction. A) High energy levels 
following a feeding period contribute directly to the elevated levels of NAM and NADH originated from 
catabolic pathways. Diverse cells and cellular processes deplete the concentration of NADH, and together 
with the biosynthetic transformation by NAMPT and NMNAT, high intracellular levels of NAD+ are 
produced. B) Intracellular NAD+ is sensed by NAD+-dependent enzymes, such as sirtuins that add or 
remove posttranslational protein modifications from nuclear (blue), cytosolic, nucleolar (grey), and 
mitochondrial (red) proteins. Seven sirtuins, or SIRTs, have been defined in mammals, and participate in 
deacetylation, mono ADP-ribosylation, and defattyacylation (demyristoylation, desuccinylation, 
demalonylation, deglutarylation, demethyglutarylation, and de-3-hydroxy-3-methylglutaryl(HMG)-ation) 
of nuclear transcription factors, nucleosomal histones and various nuclear, nucleolar, and mitochondrial 
proteins. 
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demethyglutarylation, and de-3-hydroxy-3-methylglutaryl(HMG)-ation (HMGylation), provide a 

broader perspective of the role of SIRTs in fine-tuning metabolism according to cellular energetics. 

Nutrient and energy sensing within the cells can be achieved through the monitoring of 

cellular energetics during feeding and fasting periods. Among the determinants of cellular 

energetics, the ratio of NAD+:NADH is an adequate indicator of the energy status, in that the  

NAD+:NADH ratio is high when energy levels are low, while the  NAD+:NADH decreases when 

nutrient and energy availability is high. Large concentrations of NADH can be utilized as reducing 

agents for oxidized substrates (Redox reactions), and together with biosynthetic pathways that use 

a Nicotinamide phosphoribosyl transferase and Nicotinamide nucleotide adenylyl transferase 

(NAMPT and NMNAT, respectively) to convert nicotinamide (NAM), both can yield high levels 

of oxidized NAD+ (Fig. 3.2A), and these reactions are catalyzed by. During fasting or CR, the 

levels of NAD+ increase and catalyze reactions mediated by all SIRTs (Fig. 3.2B), given that 

during each round of DAC SIRTs consume one NAD+ molecule (Imai, Armstrong, Kaeberlein, & 

Guarente, 2000). Following activation of the SIRTs, a variety of posttranslational modifications 

are removed (acetyl, acyl, myristoyl, succinyl, etc.) or added (ADP-ribosylation) to proteins and 

histones within the nucleus, mitochondria, and nucleolus. We have subdivided the functions of 

SIRTs according to their subcellular localization (Fig. 3.2B), and we will give a brief overview of 

their role on metabolism and immunity.  

3.4.3. Sirtuin 1  

Sirtuin 1 (SIRT1) is the mammalian homologue of yeast Sir2 (F. Wang et al., 2007), and it 

is thought to have a major role at extending lifespan with CR in mammals. It localizes within the 

nucleus and cytosol and is involved in DAC reactions of different substrates such as cytosolic 

proteins, and nuclear histones and transcription factors (Fig. 3.2B). In the cytosol, SIRT1 
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deacetylates and activates transcription factors such as nuclear receptor liver X receptor (LXR), 

glucocorticoid receptor (GR), and androgen receptor (AR), which then translocate to the nucleus 

and bind to target genes to promote transcription. Likewise, SIRT1 activates peroxisome 

proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), the master regulator of 

mitochondrial biogenesis and muscle fiber type determination. Additionally, it is able to activate 

serine/threonine kinase 11 (or liver kinase B1, LKB1), which in turn activates AMP-activated 

protein kinase (AMPK) to mediate metabolism, apoptosis, and DNA damage responses. Similar 

to other sirtuins, SIRT1 requires NAD+ to perform a round of DAC. In pathological conditions 

such as obesity, a miRNA (miR-34a) inhibits the rate limiting step of NAD+ formation 

(NAMPT)(Fig. 3.2B) and contributes to the downregulation of SIRT1 activity (S. E. Choi et al., 

2013). Thus, both energy availability and disease state have a great impact on SIRT expression 

and function. 

On the other hand, SIRT1 deacetylates and inactivates multiple factors associated with 

anabolic processes including mammalian target of rapamycin (mTOR), a master regulator of 

protein synthesis, and insulin-like growth factor-1 (IGF-1). SIRT1 has a role in stress resilience 

where it binds stress-dependent factors forkhead box O1 (FOXO-1), FOXO-3, and FOXO-4, p53, 

and Nuclear factor kappa B(NF-kB), and promotes transcription of stress protection genes while 

inhibiting those that increase cell cycle arrest, senescence, or apoptosis(Vaquero & Reinberg, 

2009). Moreover, SIRT1 deacetylates Ku70 (X-ray repair cross complementing 6) (Ku70-

dependent apoptosis and DNA repair), indicating that it plays a role in non-homologous end 

joining (NHEJ) and double strand break (DSB) repair pathways (Vaquero & Reinberg, 2009). 

Finally, SIRT1 counteracts the effect of circadian machinery protein Clock by deacetylating its 
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target histones and BMAL1, the other major component of the machinery. This function is tightly 

related to the circadian fluctuations of NAD+.  

Although SIRT1 has many targets within the cytosol, long-lasting effects of CR that are 

known to be mediated by SIRT1 are thought to be linked to its HDAC role in the nucleus (Fig. 

3.2B). SIRT1 maintains a heterochromatic environment by removing the active transcription mark 

H3K79me2 (Vaquero et al., 2004). Additionally, SIRT1 interacts with histone methyltransferase 

(HMT) SUV39H1 (Suppressor of Variegation 3-9 Homolog 1) to allow the methylation of H3K9 

(H3K9me3) and H4K20 (H4K20me), both hallmark histone modifications of heterochromatin 

(Peters et al., 2001; Trojer & Reinberg, 2007). Although heterochromatin is known to be located 

within virtually inactive regions of the genome such as centromeres, telomeres, and 

retrotransposons (LINEs and SINEs), transcription from certain heterochromatic regions called 

facultative heterochromatin is known to occur. Interestingly, the state of constitutive and 

facultative chromatin is responsive to both micronutrient and macronutrient availability, as we 

have previously reviewed (Hernandez-Saavedra, Strakovsky, Ostrosky-Wegman, & Pan, 2017).  

SIRT1 provides stability to facultative heterochromatin, as it deacetylates H3K9Ac and H4K16Ac 

marks, and is able to interact with linker histone modification H1bK26Ac and recruit it to promote 

higher order organization (Vaquero et al., 2004), which in turn is modified by EZH2 to generate 

H1bK26me (Vaquero & Reinberg, 2009). Thus, it seems that SIRT1 can respond to nutrient 

availability in CR and induce several changes within the acetylation landscape of cytosolic and 

nuclear proteins and histones to mount an adaptive response to the low energy status. 

3.4.4. Sirtuin 2 

SIRT2 is regarded as the most conserved SIRT across species, and due to this feature, it is thought 

to regulate important cellular processed that are shared by multiple organisms. SIRT2 localizes 
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within the nucleus and cytosol where it can act on cell cycle control and cell division as well as 

metabolism of fatty acids, which is thought to be mediated through its control on acetylation and 

myristoylation. This sirtuin deacetylates and activates transcription factors FOXO-3, PGC-1α, 

p53, and NF-kB, key regulatory kinases JNK and GSK3β, and histone deacetylase HDAC6. The 

main function of SIRT2 is to localize to microtubules where it deacetylates the stable acetylated 

α-tubulin, thus promoting their polymerization/depolymerization cycle. This process is sensitive 

to the levels of NAD+ (Skoge, Dolle, & Ziegler, 2014),which is of particular importance given that 

during CR the levels of NAD+ rise and can directly regulate the SIRT2-mediated DAC of α-

tubulin. Moreover, the deletion of SIRT2 in mouse oocytes results in higher rates of spindle 

defects, chromosome disorganization, and impaired kinetochore interaction with the centromere  

(L. Zhang et al., 2014). This function appears to be intricately related to the direct acetylation of a 

component of the spindle assembly checkpoint complex BubR1 (BubR1-K243) (D. Qiu et al., 

2018) and DAC of nucleosomal H4K16Ac (L. Zhang et al., 2014). CR may prevent genomic 

instability by regulating mitotic and spindle control, inspecting cell division checkpoints (i.e. 

spindle assembly checkpoint), and promoting the fidelity of the chromosomal distribution (Fig. 

3.2B). 

Additionally, recent reports have highlighted the effect of SIRT2 on fatty acid metabolism and 

adipocyte differentiation. In rapidly growing cells, the need for lipid synthesis increases and in a 

condition of nutrient excess, ATP-citrate lyase is acetylated on three different sites by p300/PCAF 

(K540, K546, K554), which results in its stabilization followed by rapid lipid synthesis, 

proliferation, and tumor growth. On the other hand, SIRT2 acts on these lysine residues to promote 

the ubiquitination and degradation of ACLY (R. Lin et al., 2013). Lastly, in adipocytes, SIRT2 is 

capable of inhibiting adipogenesis by deacetylating FOXO-1 and thus strengthening its inhibitory 
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action on adipogenic transcription factor PPARγ (Jing, Gesta, & Kahn, 2007; F. Wang & Tong, 

2009). On the other hand, SIRT2 is known to alter glucose metabolism by deacetylating PEPCK1 

and increase gluconeogenesis (Q. Wang et al., 2010; M. Zhang et al., 2017), or by activating the 

pentose phosphate pathway (PPP) and glycolysis by deacetylating Glucose-6-Phosphate 

Dehydrogenase (G6PD) and Phosphoglycerate Mutase 2 (PGAM2), respectively, under oxidative 

stress conditions (Y. P. Wang et al., 2014). Lastly, SIRT2 can also have insulin sensitizing effects, 

which occurs through the direct DAC of TUG (Tethering protein containing a UBX domain for 

GLUT4), thus establishing a stable link for the uptake of glucose (Belman et al., 2015; Bogan, 

Hendon, McKee, Tsao, & Lodish, 2003; Xu et al., 2011). Altogether, activation of SIRT2 due to 

increased NAD+ availability directs the cell cycle checkpoints and inhibits the rapid growth of 

tumor cells, thus rendering SIRT2 as an important anti-cancer agent. 

3.4.5. Sirtuin 6  

Similar to other nuclear sirtuins, SIRT6 is known to localize to the cytosol but primarily remains 

in the nuclear compartment where it is involved in DAC, ADP-ribosylation, and defatty-acylation 

(myristoyl residues) of numerous proteins related to cell cycle and metabolism. Interestingly, 

unlike other sirtuins, SIRT6 appears to add O-acetyl-ADP-ribose residues �1,000X slower and is 

capable of binding NAD+ in the absence of acetylated substrate, implying that this sirtuin might 

act as an NAD+ metabolite sensor (Pan et al., 2011). NAD+ sensing constitutes a key function of 

SIRT6 in health and disease (Fig. 3.2B). Conflicting evidence exists on the role of SIRT6 in cancer 

progression. Evidence suggests that SIRT6 is sufficient to upregulate the expression of the tumor 

suppressor PTEN and prevent its ubiquitination and subsequent degradation, whilst reducing the 

levels of AKT1, PIP3, mTOR, c-Myc, and CCND1, and decreasing colon cancer progression (Tian 

& Yuan, 2018). This deacetylase is also known to inhibit Hypoxia inducible factor 1 α (HIF-1α) 
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binding to its target genes (Kuang et al., 2018; Zhong et al., 2010). This downregulates glycolysis 

and accelerates metastasis, angiogenesis, and resistance to therapy (Masoud & Li, 2015). In 

addition, this sirtuin binds to and deacetylates nuclear pyruvate kinase M2 (PKM2), which directs 

its expulsion from the nucleus by exportin 4 and contributes to decreased cell proliferation, 

migration, and invasiveness (Bhardwaj & Das, 2016). In addition, SIRT6 is known to regulate 

pluripotency of stem cells and their differentiation through Tet-mediated production of 5hmC 

(Etchegaray et al., 2015). SIRT6 has also been shown to inhibit glioma cell growth (X. Chen, Li, 

Gao, Cao, & Hao, 2018), growth of colorectal cancer stem cells (W. Liu et al., 2018), 

hepatocellular carcinoma aided by FOXA-2 (J. Liu et al., 2018), gastric cancer (J. Zhou, Wu, Yu, 

Zhu, & Dai, 2017), non-small cell lung cancer (Zhu, Yan, Shao, Tian, & Zhou, 2018), breast 

carcinoma (Bae et al., 2016), and its downregulation by miR-34c-5p is associated with promotion 

of colon cancer and poor prognosis (N. Li et al., 2018). Conversely, evidence exists to demonstrate 

the oncogenic role of SIRT6 in esophageal cancer (N. Huang et al., 2017), hepatocellular 

carcinoma (S. Kohli, Bhardwaj, Kumari, & Das, 2018; N. Lee et al., 2016), neuroblastoma (Song 

et al., 2018), melanoma (Garcia-Peterson et al., 2017; L. Wang et al., 2018), malignant colon 

cancer (Geng et al., 2018), osteosarcoma (H. Lin, Hao, Zhao, & Tong, 2017). Therefore, it appears 

that the role of SIRT6 as a tumor suppressor or oncogene is dependent on the tissue type and 

severity of the disease, pointing to the possible epigenetic regulation of SIRT6 in cancer 

progression. 

Cancer and other normal cellular functions are both dependent on the correct division of 

chromosomes and preservation of the genetic information following each cell division step. To 

that end, SIRT6 is known to interact with the DNA damage machinery both at breakage sites and 

highly susceptible telomeric regions. SIRT6 deacetylates and activates the C-terminal-binding 
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protein interacting protein (CtIP) and recruits Sucrose non-fermenting protein 2 homolog (SNF2H) 

to promote double strand break and resection, which in turn facilitates homologous recombination 

of chromosomes in collaboration with BRCA1 (Kugel & Mostoslavsky, 2014; Toiber et al., 2013). 

In addition to chromosomal stability, SIRT6 also cooperates with different telomeric maintenance 

systems to protect these important regions. In the nucleus, SIRT6 is able to deacetylate H3K9Ac 

and H3K56Ac within telomeric regions, and facilitates the recruitment of Werner syndrome recQ 

like helicase (WRN) to aid in telomere capping during cell division (Michishita et al., 2008; 

Vaquero & Reinberg, 2009). Moreover, upon oxidative damage, SIRT6 promotes directional 

telomeric movement, which grants protection and is related to telomeric length conservation (Y. 

Gao et al., 2018). In a similar way, SIRT6 can act on equally important genomic regions such as 

enhancers; SIRT6 deacetylates H3K27ac and thus activates cis-regulatory loci (Tasselli, Zheng, & 

Chua, 2017; W. W. Wang, Zeng, Wu, Deiters, & Liu, 2016). Altogether, SIRT6 and other members 

(SIRT1) can prevent genomic instability by ensuring proper cell division and protecting or 

activating important genomic loci. 

 Another function that has been described for SIRT6 is related to energy and nutrient 

metabolism in liver, muscle, and brain (Cui et al., 2017). As an NAD+-dependent deacetylase, 

SIRT6 can activate the Liver Kinase B1 or LKB1 (also called STK11), which can in turn activate 

AMPK and improve insulin sensitivity (Cui et al., 2017; Kuang et al., 2018). Moreover, SIRT6 is 

known to impact insulin secretion in response to glucose by deacetylating H3K56Ac within the 

Thioredoxin interacting protein (Txnip) promoter in pancreatic b-cells to enhance insulin secretion 

(Qin et al., 2018). SIRT6 can also participate in lipid metabolism regulation, from adipogenesis 

and lipid synthesis to fatty acid oxidation. SIRT6 inhibits SREBP1/2, master lipogenic 

transcription factors. Conversely, miRNA contained in intronic regions of SREBP1 and 2 (miR-
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33a and miR-33b) are known to downregulate SIRT6 expression (Elhanati et al., 2013). Similarly, 

SIRT6 downregulates miR-122 in the liver by deacetylating H3K56Ac within the promoter and 

thus increase fatty acid b-oxidation (Elhanati et al., 2016). Lastly, SIRT6 inhibits adipogenesis by 

blocking mitotic clonal expansion through the inactivation of kinesin KIF5C, thus preventing 

hyperplasia in adipose tissue (Q. Chen et al., 2017) (Fig. 3.2B).  

Other functions of this sirtuin include the removal of fatty acids from diverse proteins, in 

particular the removal of myristoyl residues from lysine residues. This process appears to be 

dependent on NAD+. If NAD+ is present, SIRT6 deacetylates rather than removes myristoyl 

residues, and this process mediates the secretion of various proteins (X. Zhang et al., 2016). 

Interestingly, SIRT6 is known to regulate TNF-a secretion, a potent inflammatory and signaling 

cytokine, through removal of fattyacyl modifications on K19 and K20, thus stimulating its cellular 

export in macrophages (Jiang et al., 2013), other immune cells (Van Gool et al., 2009), and 

pancreatic cancer cells (Bauer et al., 2012). Nevertheless, in pathological conditions SIRT6 is 

sufficient to inhibit inflammation (Y. He et al., 2017) by decreasing NF-kB binding to its target 

genes (Kawahara et al., 2009; N. Zhang et al., 2016). SIRT6 deacetylates H3K9Ac tails within p65 

(NF-kB)-responsive regions thus impeding binding of this transcription factor and inhibiting 

aging-associated inflammation (Kawahara et al., 2009). Finally, given the potent inhibition of 

inflammation by CR in aged animals (Phillips & Leeuwenburgh, 2005) and humans (L. Yang et 

al., 2016a), SIRT6-mediated inactivation of cytokines might be related to the dual action of the 

enzyme (deacetylase vs. defattyacylase) (Fig. 3.2B), which is sensitive to cellular NAD+ levels.. 

3.4.6. Sirtuin 3 

Of all the members of the sirtuin family, SIRT3 is one of the most studied proteins in relation to 

stress and longevity due to its subcellular localization within the mitochondria (Albani et al., 2014; 
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Dhillon & Denu, 2017). Mitochondria are the powerhouse of the cell and are intimately related to 

nutrient and energy metabolism. As such, mitochondrial protein decetylases that respond to the 

cell’s energy status are primordial for the coupling of metabolic reactions and preservation of the 

mitochondrial integrity. SIRT3 exists in two forms, the full-length form (40kD) and the 

mitochondrial-exclusive short length form (28kD). The full-length form of SIRT3 is cleaved by a 

Matrix processing peptidase (MPP) upon entering the mitochondrial matrix, yielding a short form 

SIRT3 with deacetylase activity (Schwer, North, Frye, Ott, & Verdin, 2002). The full-length (FL) 

SIRT3 is known to act as a histone deacetylase given that it localizes within the nucleus and 

cytosol. Nuclear FL SIRT3 is able to regulate transcription of PGC-1α, SOD2, and stress related 

genes (BAZ2A, OTOG, GAL3ST1, and BRIP), and deacetylate FOXO3A and Ku70 (Iwahara, 

Bonasio, Narendra, & Reinberg, 2012; Sundaresan, Samant, Pillai, Rajamohan, & Gupta, 2008). 

Under conditions of cellular stress FL SIRT3 is targeted for ubiquitin-proteasome degradation by 

E3-ligase SKP2, and this process is thought to initiate its translocation to the mitochondria and 

processing to the short-length form (Iwahara et al., 2012). Lastly, FL SIRT3 might be responsible 

for the changes to chromatin observed in stress-induced DNA damage. For instance, SIRT3 is 

capable of deacetylating H4K16Ac and H3K56Ac upon DNA damage induction (Scher, Vaquero, 

& Reinberg, 2007; Vempati et al., 2010), but translocates to the mitochondria following a rapid 

remodeling of the nuclear chromatin. While the regulation of stress-response genes is important in 

the context of disease, limited information is available on the genome-wide binding targets of the 

FL SIRT3 form and its regulation during CR. 

On the other hand, the short-length, mitochondrial form of SIRT3 has been well-characterized 

in relation to the mitochondrial acetylome (mitochondria-wide acetylation/DAC) and its 

regulation. From here on, we will refer to the short-length, mitochondrial form of SIRT3 as plainly 
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“SIRT3”. In the mitochondrial matrix, SIRT3 is able to interact with a myriad of factors that are 

involved in energy metabolism, such as the electron transport chain, tricarboxylic acid cycle, β-

oxidation and ketogenesis, as well as stress resilience and reactive oxygen species quenching 

(Giralt & Villarroya, 2012; Hallows et al., 2011; Hirschey et al., 2010; Jing et al., 2011; X. Qiu, 

Brown, Hirschey, Verdin, & Chen, 2010; Shimazu et al., 2010). Altogether, it appears that the 

effect of SIRT3 revolve around mitochondrial-performance enhancement and increasing 

resistance to stress. Interestingly, higher NAD+ availability as in the case of CR, is able to activate 

SIRT3 that in turn directs the DAC of two lysine residues within SOD2 (K53 and K89), thus 

improving the response to oxidative stress (X. Qiu et al., 2010). Similarly, fasting or CR could 

increase fatty acid b-oxidation by reversibly deacetylating long-chain acyl co-enzyme A 

dehydrogenase (LCAD) at lysine 42 (K42) (Hirschey et al., 2010). Moreover, in addition to LCAD, 

SIRT3 is known to directly deacetylate Acetyl-CoA synthetase 2 (ACSS2),  Ornithine 

carbamoyltransferase (OTC), and Isocitrate dehydrogenase 2 (IDH2) (Hallows et al., 2011; W. 

Yu, Dittenhafer-Reed, & Denu, 2012), to promote acetate and urea metabolism, and antioxidant 

defenses, respectively. Finally, SIRT3 is able to direct the DAC of 3-Hydroxy-3-methylglutaryl 

CoA synthase 2 (HMGCS2) within lysine residues 310, 447, and 473, thus increasing its activity 

and enabling the generation of ketone bodies during fasting and CR (Shimazu et al., 2010). As it 

is readily apparent, SIRT3 modifies mitochondrial enzymes that participate in the hallmark 

processes of CR (Hirschey, Shimazu, Huang, Schwer, & Verdin, 2011), thus making SIRT3 an 

attractive target for therapeutic strategies. 

 SIRT3, like SIRT1, is highly responsive to CR and is involved in the age-related benefits 

of this dietary therapeutic strategy. SIRT3, is able to reshape the entire acetylome of the liver in 

response to CR, and experiments that have defined the acetyl-proteome have identified three 
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different types of acetyl residues: those that are responsive to CR and are acted on by SIRT3 (class 

I), those that are responsive to CR and are unresponsive to SIRT3 (class II), and those that are 

unresponsive to CR or SIRT3 (class III)(Hebert et al., 2013). Class I acetylated proteins are 

involved in amino acid and branched chain amino acid catabolism, transamination and ammonia 

detoxification, mitochondrial integrity, mitochondrial DNA (mtDNA) transcription and 

translation, iron homeostasis, antioxidant response, TCA cycle, acetyl CoA metabolism, fatty acid 

oxidation and one-carbon metabolism (Hebert et al., 2013) (Fig. 3.2B). Thus, other mitochondrial 

sirtuins like SIRT4 or other deacetylases can be responsible for those acetyl marks that are not 

removed by SIRT3, and might be related to the aging-dependent mitochondrial decline.  Evidence 

points to the inactivation of SIRT3 activity by other SIRTs. In obese and aged mice, SIRT1 levels 

are reduced and SIRT3 becomes hyperacetylated due to the inability of SIRT1 to remove SIRT3-

K57Ac (S. Kwon et al., 2017). Consequently, SIRT3 deacetylase activity is by nature, highly 

dynamic and can be modulated by other deacetylases and disease conditions.  

This close relationship between SIRT3 and other acetylated proteins and deacetylases (SIRT4 

and 5) becomes obvious in light of the efforts to map the mitochondrial sirtuin network (W. Yang, 

K. Nagasawa, et al., 2016) (Fig. 3.2B). Yang et al. (W. Yang, K. Nagasawa, et al., 2016) performed 

a systematic interaction proteomic analysis to identify specific SIRT3-5-interacting proteins, as 

well as define SIRT3-5-associated subnetworks, to provide a complete map of the SIRT3-5 

interactome. They found that upon loss mitochondrial membrane potential, SIRT3 dissociates from 

the ATP5O subunit of the Complex V embedded within the inner mitochondrial membrane and 

initiates the rapid remodeling of the matrix acetylome. Conversely, during the extraction of energy 

from nutrients (high membrane potential) SIRT3 is anchored to ATP5O through a histidine residue 

(H135), where it remains inert. Just like ATP5O, SIRT3 might interact with other proteins to 
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modulate its action. Exploration of the partners and regulators of SIRT3 might provide a complete 

view of the dynamic remodeling of the mitochondrial acetylome and acylome (Carrico et al., 

2018). 

3.4.7. Sirtuin 4  

Among the other mitochondrial sirtuins, SIRT4 is strictly localized within the matrix and its 

primary function does not involve the DAC of target proteins, but rather entails ADP-ribosylation 

and deacylation, mainly removing glutaryl, methylglutaryl and HMGyl residues from 

mitochondrial proteins. Unlike other sirtuins, SIRT4 is negatively regulated by CR and its crystal 

structure hints at a higher inhibitory potential of NADH due to its higher preference over NAD+ 

(Pannek et al., 2017). The role of SIRT4 in energy metabolism is not as well studied as other 

mitochondrial sirtuins(Chalkiadaki & Guarente, 2012), but studies indicate that it participates in 

crucial steps of glycolysis by controlling the pyruvate dehydrogenase (PDH) complex by removing 

lipoyl and biotinyl residues from the complex(Mathias et al., 2014) (Fig. 3.2B). Moreover, SIRT4 

is known to regulate fatty acid b-oxidation in the liver by controlling PPARa, the master regulator 

of fatty acid oxidation, which controls CPT1a, PDK4, and ACOX1(Laurent et al., 2013), as well 

as AMPK (Nasrin et al., 2010). During fasting conditions or prolonged nutrient limitation, SIRT4 

is suppressed and SIRT1 is upregulated to initiate the oxidative program of the mitochondria. The 

effects of SIRT4 oppose that of CR. In pancreatic b-cells, SIRT4 ADP-ribosylates Glutamate 

dehydrogenase (GDH) to inhibit glutamate and glutamine usage and a subunit of the ATP/ADP 

translocase. This decreases ATP production and interacts with insulin degrading enzyme (IDE2) 

that in turn prevents insulin secretion. Such effects can be reversed by CR (Ahuja et al., 2007; 

Haigis et al., 2006). Additionally, SIRT4 knockout mice (SIRT4KO) have dysregulated leucine 

metabolism (Methylcrotonoyl-CoA Carboxylase [MCCC]) and increased insulin secretion, which 
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progressively leads to insulin resistance (K. A. Anderson et al., 2017). Such interaction with biotin-

dependent carboxylases (PC, PCC, and MCCC) has also been observed in yeast (Wirth et al., 

2013). 

3.4.8. Sirtuin 5  

The final “mitochondrial” sirtuin actor is SIRT5, a particularly interesting sirtuin whose function 

spans not mitochondrial protein modifications, but nuclear and cytosolic as well (Fig. 3.2B). 

SIRT5 does not possess deacetylase activity, which set it apart from other SIRTs, but it removes 

glutaryl, malonyl and succinyl residues from its target proteins (Carrico et al., 2018). SIRT5 (and 

SIRT4) is involved in deglutarylation of proteins belonging to oxidation/reduction,	generation of 

precursor metabolites and energy, fatty acids and coenzyme metabolism, as well as aerobic 

respiration (Tan et al., 2014). From all these cellular processes, Tan et al. (Tan et al., 2014) were 

able to identify that SIRT5 targets Carbamoyl phosphate synthase 1 (CPS1), and possibly other 

glutarylation targets such as HADHA (Hydroxyacyl-CoA dehydrogenase trifunctional 

multienzyme complex subunit alpha), GOT2 (Glutamic-oxaloacetic transaminase 2), MDH2 

(Malate Dehydrogenase 2), SDHA (Succinate dehydrogenase complex flavoprotein subunit A), 

ACAA2 (Acetyl-CoA acyltransferase 2), ACAT1 (Acetyl-CoA acetyltransferase 1), HADH 

(Hydroxyacyl-CoA dehydrogenase), SCP2 (Sterol carrier protein 2), and OTC. Regarding energy 

metabolism, SIRT5 is known to impact the lysine (K) malonylation of several glycolytic enzymes 

such as Phosphoglucose isomerase (GPI), Triosephosphate isomerase (TPI1), Glyceraldehyde 3-

phosphate dehydrogenase (GAPDH), Phosphoglycerate kinase (PGK1), Phosphoglycerate Mutase 

2 (PGAM2), Enolase (ENO), and Pyruvate kinase (PK), thus activating glycolytic flux, as well as 

urea cycle and other mitochondrial enzymes (Nishida et al., 2015). Likewise, SIRT5 is also able 

to regulate several mitochondrial proteins related to β-oxidation and ketogenesis; for instance, 
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SIRT5 removes succinyl residues (K83 and K310) from on HMGCS2, thus regulating the critical 

step in ketogenesis (Rardin et al., 2013). Also, protein succinylation networks have revealed that 

several proteins can be acted on by SIRT5, like the PDH complex, Succinate dehydrogenase 

complex (SDH, Complex II), Glutathione S transferases, ribosomes, and the chaperonin-

containing TCP1 complex (Park et al., 2013). SIRT5 not only regulates the mitochondrial acylome, 

but also protects against mitochondrial fragmentation and mitophagy (mitochondrial degradation). 

Thus, it is vital for starvation-induced (or CR) mitochondrial elongation (Guedouari, Daigle, 

Scorrano, & Hebert-Chatelain, 2017). Interestingly, two well-known CR actors have opposing 

regulatory effects on SIRT5 expression: while PGC-1a promotes the transcription of SIRT5, 

AMPK inhibits its expression in the liver, while increasing the other sirtuins (Buler, Aatsinki, Izzi, 

Uusimaa, & Hakkola, 2014). Finally, although the role of SIRT5 in metabolism has been defined, 

several avenues of research indicate the great potential of this sirtuin in health and age-related 

diseases (Bringman-Rodenbarger, Guo, Lyssiotis, & Lombard, 2018; Kumar & Lombard, 2018; 

van de Ven, Santos, & Haigis, 2017; Zou et al., 2018), highlighting the potential benefits of CR 

and SIRT5 activation. 

3.4.9. Sirtuin 7 

The last member of the sirtuin family is one of the least understood and understudied NAD+-

dependent deacetylases. SIRT7 localizes within cytosol and nucleus in its high-molecular weight 

form (47.5 kDa), but unlike other sirtuins, SIRT7 is processed to a lower-molecular weight form 

(45 kDa) that allows for its import into the nucleolus (Kiran et al., 2013)(Fig. 3.2B). This 

subcellular nucleolar SIRT7 is depleted in senescent cells, which indicates that SIRT7 is related to 

replicative senescence (Kiran et al., 2013). Disorganized spindles and disruption of chromosomal 

syzygy is observed in SIRT7 depleted cells and obese mice (M. Gao et al., 2018), but 
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overexpression of SIRT7 is associated with cancer growth (Barber et al., 2012; W. Li et al., 2018). 

The latter, is thought to be regulated through miR-125b-5p and miR-340 (W. Li et al., 2018; X. 

Wang & Song, 2018), or C/EBPα-mediated HDAC3 recruitment (Liu et al., 2016), which 

negatively regulates SIRT7 expression. Moreover, among the proteins known to interact with 

SIRT7 are histone H3K18Ac, p53, GABPb1 (GA Binding Protein Transcription Factor Beta 

Subunit 1), and nucleolar proteins PAF53 (Polymerase associated factor 53), NPM1 

(Nucleophosmin 1), and U3-55k (U3 Small nucleolar ribonucleoprotein-associated 55 KDa 

protein) (Simonet & Vaquero, 2017), but recently the protein interaction network has been 

expanded to ~176 proteins involved in metabolic processes (C. Zhang et al., 2017). DAC of 

H3K18Ac by SIRT7 decreases mRNA transcription mediated by the Pol II machinery, which 

demonstrates its effect on chromatin and ability to promote cell transformation and tumorigenesis 

(Barber et al., 2012). Further, SIRT7 interacts with and represses the RNA pol I and other nucleolar 

chromatin remodeling complexes (MYBBP1a, WSTF, and SNF2H), which emphasizes the role of 

SIRT7 in transcription (Tsai, Greco, Boonmee, Miteva, & Cristea, 2012). Moreover, SIRT7 

increases transcription of rRNA genes and then binds to rRNAto catalyze SIRT7’s deacetylase and 

defattyacylase (myristoyl) activities (Tong et al., 2017). 

 Further important functions related to SIRT7  include mitochondrial gene expression and 

hepatic lipid metabolism (Wronska, Lawniczak, Wierzbicki, & Kmiec, 2016). SIRT7 is known to 

be affected differently by aging and CR, in a tissue-specific manner (Wronska et al., 2016). SIRT7 

and SIRT6 appear to have a shared proportion of protein targets that are related to DNA repair, 

chromatin assembly, and aging (N. Lee et al., 2014). Furthermore, aging-dependent 

Nucleophosmin (NPM1) acetylation is dependent on SIRT6-SIRT7, thus shedding light on the 

anti-aging effects of SIRT7. Finally, SIRT7 is known to play a role in fat uptake, opposing the 
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effects of SIRT1, SIRT3, and SIRT6 in fat utilization (Houtkooper, Pirinen, & Auwerx, 2012). 

SIRT7 enhances fat uptake by upregulating hepatic Cd36 and promotes triglyceride synthesis and 

storage through the elevation of Mogat and Cidea/Cidec (Yoshizawa et al., 2014). Moreover, 

SIRT7 was identified as a direct inhibitor of the E3-Ubiquitin complex CAF1/DDB1/CUL4B, 

which is known to target the nuclear receptor Testicular receptor 4 (TR4 or NR2C2) (J. Lee & 

Zhou, 2007). In turn TR4 activates genes involved in fat uptake and lipid storage in the liver 

(Yoshizawa et al., 2014). SIRT7 regulation therefore, might constitute an attractive target to 

counteract the effects of a high-fat diet to prevent fatty liver disease.  

3.5. SMALL NON-CODING RNA AND CALORIC RESTRICTION 

3.5.1. Epigenetic basis of small ncRNA 

When discussing the epigenetic regulation of genes, one must take into account the ubiquitous and 

silencing/activating nature of the epigenetic small non-coding RNAs. MicroRNAs (miRs) are 

small, non-coding RNA molecules that regulate post-transcriptional stability of genes through base 

pair recognition within the 3’-UTR in the target gene. Technologies such as microarray, q-PCR-

based or sequencing approaches, have allowed for the stabilization and identification of numerous 

miRNA present in vivo (Vasudevan, Tong, & Steitz, 2007). The binding of miRs to the target gene 

recruits the multiprotein complex RNA-induced silencing complex (RISC) which cleaves the 

target gene through one of its components, Argounaute (Carthew & Sontheimer, 2009; Orom et 

al., 2012; Orom, Nielsen, & Lund, 2008). This highly orchestrated process is responsible for the 

post-transcriptional stability of mRNAs in the cytosol. Therefore, environmental stimuli that affect 

the presence of a particular set of miRs will determine the gene expression pattern. During early 

eukaryotic mRNA translation, cytoplasmic poly(A)-binding protein (PABPC) and the poly(A) tail 

of the mature mRNA interact to form a complex that can then associate with the eukaryotic 
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translation-initiation factor 4G (eIF4G) by recognizing the 5’-cap. Formation of the 

mRNA/PABPC/eIF4G complex is necessary to protect the circular mRNA, but miRs hinder the 

interaction of PABPC and eIF4G at the early stages of translation. Binding of miRs to 3’-UTR 

recruits the RISC complex, which activates one of its components, GW182 (Trinucleotide Repeat 

Containing 6A) (Braun, Huntzinger, & Izaurralde, 2013). Following GW182 activation, 

deadenylation of the mRNA occurs by recruiting the CAF1-CCR4-NOT deadenylase complex, 

leading to mRNA degradation together with the decapping enzyme DCP2 and cytoplasmic 5’-3’ 

exonuclease XRN1 (Calvopina, Coleman, Lewindon, & Ramm, 2016). RISC-mediated 

degradation is a fine-tuned degradation machinery, but its specificity is ultimately dependent on 

the presence of the miRs. 

Due to the ubiquitous nature of miRs (Calvopina et al., 2016), research in this area can 

provide valuable knowledge in the exploration of the etiology of human diseases (Nezami et al., 

2014). In time, miRs could be used as a predictive biomarker for different tissues given their 

adaptability to different environmental stimuli (Calin et al., 2004; Negrini, Nicoloso, & Calin, 

2009; Simone et al., 2009). To harness the power of miRs in disease prevention, environmental 

stimuli must be strong enough to alter the expression pattern of these small nucleotide modulators. 

The mechanisms by which CR is able to promote health benefits is thought to be mediated through 

alteration of miR patterns in different tissues. In the following section, we will explore the 

powerful effect of CR on miR regulation in different tissues. 

3.5.2. Caloric Restriction and microRNAs  

CR onset is important when considering the possible short- and long-term effects on health and 

disease. For instance, CR during pregnancy leads to glucose intolerance, fat mass accretion, and 
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hypercholesterolemia in adult offspring (Bhasin et al., 2009; Burton, Jauniaux, & Charnock-Jones, 

2010), and 50% CR at gestational day 10 induces differential expression in the placenta similar to  

 
Figure 3.3. Caloric restriction (CR) conservation of miRNA changes across species and tissues. 
Caloric restriction and starvation are able to upregulate or downregulate miR signatures in A) C. elegans, 
B) D. melanogaster, C) rodents (R. norvegicus and M. musculus), and D) Rhesus macaques (M. mulatta) 
and humans (H. sapiens). miR signatures associated with CR are involved in anti-aging pathways such as 
immunometabolic regulation in different peripheral and central tissues. 
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Intrauterine growth restriction (IUGR), all the while decreasing global methylation level, and 

specific altered methylation pattern of miRs associated with vital homeostatic processes (P. Y. 

Chen et al., 2013). On the other hand, late-onset CR has been associated with beneficial miR 

patterns that are able to prevent or treat chronic diseases (Mico, Berninches, Tapia, & Daimiel, 

2017). Nevertheless, the effects of early- vs. late-onset CR should be studied in the context of 

miRNAs. 

The effects of CR on miR expression patterns appear to be conserved in different species, 

from Caenorhabditis elegans and Drosophila, to rodents (R. norvegicus and M. musculus), Rhesus 

macaques (Macaca mulatta) and humans (Homo sapiens). Different CR levels and protocols have 

been investigated for their miR-modulating effect in many tissue types (Fig. 3.3). In the following 

section, we will revisit all the evidence surrounding CR using a systematic review algorithm in 

PubMed (Appendix A Suppl. Table 3.1). In C. elegans, 12-hr or 2-day starvation is sufficient to 

produce significant changes in miR whose target genes are related to metabolism, development, 

and oogenesis processes (Garcia-Segura et al., 2015) (Fig. 3.3A; Appendix A Suppl. Table 3.1). 

Further, 2-day fasting produced whole body miR changes that were related to longevity, and such 

changes were dependent on DRSH-1 (Drosha ortholog) (Kogure, Uno, Ikeda, & Nishida, 2017). 

Additionally, 12-hr fasting induced physiological changes seen in higher organisms such as 

decreased lipid accumulation, reduced reproductive function, and increased lifespan (Garcia-

Segura et al., 2015)(Fig. 3.3A; Appendix A Suppl. Table 3.1). Limited evidence exists for miR 

regulation by CR in fruit flies (D. melanogaster), but studies point to metabolic improvements and 

an increased lifespan. Comparing high- versus low-nutrient diets (CR mimic), CR flies had altered 

expression of miR-184, let-7, miR-125, and miR-100, but it was let-7 overexpression in female 

nervous tissue the one responsible for ~22% increase in lifespan (Gendron & Pletcher, 2017). In a 
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model of muscular dystrophy in flies, Marrone et al. (Marrone, Edeleva, Kucherenko, Hsiao, & 

Shcherbata, 2012) elucidated a circuit that involves miR in the Dystrophin glycoprotein complex 

and is responsible for cellular adaptations during stress. Finally, starvation-induced miR-305 

downregulation was capable of activating Dp53 (p53) in the fat body and thus produce metabolic 

adaptations through nutrient sensing pathways (Barrio, Dekanty, & Milan, 2014). Altogether, the 

use of CR in lower organisms highlights the great contribution of nutrient sensing pathways to 

lifespan and healthspan. 

In rodents, different tissue types with varied restriction protocols have demonstrated the 

effectiveness of CR at controlling miR production and exocytosis (Fig. 3.3C; Appendix A Suppl. 

Table 3.1). In long-lived B6C3F1 mice, ~40% CR for 27 months was able to produce a miR pattern 

in serum that is related to longevity (Dhahbi et al., 2013). Certain miR appear to be genotype-

specific and age-specific in long-lived Ames dwarf mice. Additionally, the pathways these miR 

impact are related to tumor suppression, inflammation, WNT-, insulin-, mTOR-, and MAPK-

signaling pathways (Victoria et al., 2015). Similarly, miR that are commonly observed in serum 

(Dhahbi et al., 2013) were upregulated in liver in C57B6J mice following increasing CR from 10-

30% for two years, and miR-125a-5p was identified as a direct contributor to age-related CR 

effects (Makwana et al., 2017). When compared to metformin, another life-extending intervention, 

CR was able to produce a distinguishable signature in liver of mice leading to the alteration of 

miR-20a, miR-34a, miR-130a, miR-106b, miR-125, and let-7 expression (Noren Hooten et al., 

2016) (Fig. 3.3C; Appendix A Suppl. Table 3.1).  

In colon and colon mucosa CR seems to be related to anti-inflammatory and anti-

carcinogenic effects. In a murine colon cancer model, ten miRs were found to be significantly 

differentially expressed between three treatment groups (CR, diet-induced obese, and control): 
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miR-425, miR-196a, miR-155, miR-150, miR-351, miR-16, let-7f, miR-34c, miR-138a and miR-

21 (Olivo-Marston et al., 2014). Interestingly, another study showed that one of the functions of 

miR-150 is increasing cell susceptibility to apoptosis and reducing cell proliferation through 

decreasing cell cycle progression via initiator of eukaryotic translation protein, eIF5A (Watanabe 

et al., 2011). A previous study indicated a potential mechanism by which eIF5a used to regulate 

apoptosis by upregulating p53 protein expression, which in turn increases Bax expression (pre-

apoptotic member from Bcl-2 family) while decreasing expression of Blc2 (A. L. Li et al., 2004). 

Consequently, p53-dependent apoptosis is promoted by the activation of Bax, while cell survival 

signals are repressed (Basu & Haldar, 1998). A balance between these BCL2/BAX and BAX/BAX 

homodimer formation in mammalian cells is necessary to regulate survival and death signals (Mo, 

Yu, Theodosiou, Ee, & Beck, 2005). Thus, the upregulation of miR-150 by CR might be linked to 

the modulation of apoptosis and alteration of cell proliferation. CR is able to significantly 

downregulate the expression of miR-155 in colon, which is linked to cell apoptosis (Shibuya, 

Iinuma, Shimada, Horiuchi, & Watanabe, 2010) and proliferation (B. He et al., 2015). 

Interestingly, miR-155 targets TP53INP1, which is a pro-apoptotic stress-induced gene that 

activates p53 (Fig. 3.3C; Appendix A Suppl. Table 3.1).  

In breast tissue, CR is sufficient to produce miR patterns associated to longevity and aging 

(Orom et al., 2012). This study demonstrated several miR that were altered after CR treatment, 

among which the most significantly increased were miR-29c, miR-203, miR-150 and miR-30. Co-

transfection assays suggested that miR-203 can downregulate the translation of Caveolin-1 (Cav-

1). Cav-1 is a scaffolding protein that functionally interacts and regulates signaling molecules such 

as Protein Kinase A (PKA), Protein Kinase C (PKC), H-Ras, Epidermal Growth Factor Receptor 

(EGFR), and G-protein α subunit, and its interaction with such proteins is related to Ku70-
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mediated apoptosis regulation (Martinez-Outschoorn, Sotgia, & Lisanti, 2015). In a similar way, 

other miR such as miR-10a, miR-10b, miR-21, miR-124, miR-125b, miR-126, miR-145 and miR-

200a (Devlin et al., 2016). In particular, miR-100a has been useful for the detection of stage-

specific breast cancer, and might constitute a beneficial CR target for breast cancer patients. 

Besides the beneficial effects of CR in peripheral tissues, it also has shown a 

neuroprotective role by inducing the loss of age-dependent miRs, thus establishing a balance 

between pro-apoptotic and survival signals in the brain. Data has shown age-dependent miRs, miR-

181a-1, miR-30e and miR-34a, to be downregulated by CR in brain tissue, which correspond with 

the upregulation of Bcl-2 and downregulation of Bax, leading to apoptosome inhibition (Khanna, 

Muthusamy, Liang, Sarojini, & Wang, 2011) (Fig. 3.3C; Appendix A Suppl. Table 3.1). In primary 

cerebromicrovascular endothelial cells (CMVECs), CR also reduced oxidative stress, enhanced of 

Nrf2 function, and increased miRs related to angiogenic, proliferative, adhesive, anti-apoptotic and 

anti-inflammatory processes (Csiszar et al., 2014). Collectively, evidence from rodent models 

shows that CR modulates the expression of several immunometablic and oncogenic miR across 

tissue types.  

Although the evidence in distinct animal models is strong, clinical trials that aim to identify 

markers relevant to human populations are needed to provide efficacious and sensitive miR 

biomarkers (Fig. 3.3D; Appendix A Suppl. Table 3.1). Relevant studies have been conducted in 

Rhesus monkeys to assess the CR miR signature, showing a conserved miR pattern related to 

growth and insulin signaling as well as regulation of ribosomal, mitochondrial, and spliceosomal 

pathways (Schneider et al., 2017). Similarly, a study analyzing old monkeys revealed an age-

dependent decline in muscle-specific miRs, but CR improved health span and rescued the 

expression of miR-181b and chr1:205580546, while decreasing miR-451 and miR-144 levels 
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(Mercken, Majounie, et al., 2013). Finally, one of the only interventions in humans revealed that 

whole body protein synthesis was inversely related with circulating levels of muscle-specific miRs 

(myomiRs) (miR-1-3p, miR-133a-3p, miR-133b, and miR-206) in energy restricted (35 days) 

overweight men (Margolis et al., 2017). Altogether, the evidence suggests that CR-based therapies 

could target muscle miR and muscle immunometabolism to prevent age-related comorbidities. 

 

3.6. CONCLUSION 
Modulation of age-related decline by CR is robust and is related to genetic and epigenetic 

adaptations to nutrient availability. Short- and long-term CR are able to produce significant 

changes in different tissues and across species, thus indicating that CR acts through conserved 

mechanisms, such as immunometabolic pathways. Lastly, CR directly modifies the dynamic DNA 

methylation/demethylation cycle, as well as histone and protein modifiers like sirtuins, and 

miRNA to orchestrate the adaptive and long-lasting response, leading to increased lifespan and 

health span. 
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CHAPTER 4: CHRONIC CALORIC RESTRICTION FOLLOWING A HIGH FAT-DIET 
ACTIVATES SKELETAL MUSCLE NUTRIENT SENSING AND PROTEIN 

RECYCLING IN RATS 
 

 
4.1. ABSTRACT 

Background: Caloric restriction (CR) is an effective strategy for weight loss and risk reduction 

of chronic diseases. However, the reduction on body weight induces both lean and fat mass loss, 

and the cellular implications of the loss of muscle mass remains largely unknown. Objective: To 

explore the CR-induced effect on skeletal muscle homeostasis following early life high-fat feeding. 

Method: 5-week old male Sprague-Dawley rats were fed a high-fat diet (45% Kcal fat) ad libitum 

for 3 months, thereafter maintenance energy required was calculated and were randomized into: 

HF group ad libitum (HFD), maintenance group fed a control diet (MTN, 100% energy 

requirement), or the CR group (25% energy restriction) for 6 months. Food intake, body weight 

(BW), and body composition were regularly monitored and recorded. Six months after the dietary 

intervention, rats were sacrificed, serum metabolic profile was measured (IGF-1, Insulin, lipid 

profile), and gene expression analysis was performed in muscle. Results: The HFD group showed 

a 30.5% increase of BW (83.0% of which was from fat), whereas MTN showed a steady weight 

gain (8.4%). The CR group showed a marked decrease in BW (16.9%), and a significant lean mass 

reduction of 12.4%. Serum IGF-1 together with peripheral gene expression of Igf1 and Igf1r, and 

fasting TAG were decreased by CR. Muscle gene expression analysis showed differences in 

nutrient sensing (Cpt1a, Pgc1a, Pon1, Pon2, mTor), autophagy markers (Atf4, Atg2a, Chop, Gcn2, 

Lc3a), protein degradation (Atrogin1, Capn1, Capn2, Fst, Inha, Murf1), myogenic markers 

(Mapk14, Myod1, Pax3, Pax7), and Inflammatory markers (Ifng, Il-1b, Il-6, Nfatc4, Nfkb, Tnf) in 

CR compared to HFD, and such changes might be related to DNA and histone modifiers (Dnmt1, 

Sirt1, Sirt6, Suv39h1). Conclusion: chronic CR in rats resulted in the activation of nutrient sensing 
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and protein degradation pathways, which explain the lean mass loss in response to the reduced 

energy, while preserving the myogenic signals. 

4.2. INTRODUCTION 

Caloric restriction (CR), without malnutrition, is considered an effective dietary intervention to 

extend lifespan and quality of life in different organisms (Fontana & Partridge, 2015; Mercken, 

Crosby, et al., 2013; L. Yang et al., 2016b).  The reduction of calories by 25% in CR is thought to 

act through energy sensing mechanisms that allow the cell to adapt to energy restriction without 

causing significant stress (Weindruch et al., 1986). However, several studies suggest that the 

relative ratio of macronutrients, rather than the total energy intake is what drives the increase in 

lifespan, improvements in metabolic health, and ultimately healthy aging (Solon-Biet, Walters, et 

al., 2015) (Solon-Biet et al., 2014).  

Skeletal muscle is the largest and most metabolically active tissue in the body.  It accounts 

for 85% of the insulin-mediated glucose uptake and lipid metabolism (Esposito, Petrizzo, 

Maiorino, Bellastella, & Giugliano, 2016; Peppa et al., 2010), and can adaptively respond to a 

variety of different environmental conditions, nutrition and exercise (Bohnert, McMillan, & 

Kumar, 2018; Kitessa & Abeywardena, 2016; Meng et al., 2017; Mercken et al., 2017; Sharples, 

Stewart, & Seaborne, 2016).  For example, skeletal muscle function is impaired in obese patients, 

decreasing its capacity to respond to the metabolic needs of the body. Insulin resistance, a 

pathology commonly observed in obese patients, is mainly driven by skeletal muscle’s inability to 

respond to insulin-mediated glucose uptake, possibly through lower IRS-1 content and 

phosphorylation, or failure to activate PI3K (Peppa et al., 2010; Saltiel & Kahn, 2001). Therefore, 

metabolic stress and over nutrition ultimately impact the ability of muscle to uptake glucose, which 

in turn activates a sustained stress response that exacerbates the obese state (Meng et al., 2017). 
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Muscle mass is dynamically regulated by two opposing metabolic pathways; the first is 

protein synthesis occurring in the anabolic state (Insulin/IGF-1/mTOR pathway), while the second 

is proteolysis which dictates the amount and specific degradation of protein targets (Ubiquitin 

proteasome, autophagy and cysteine proteases), which contributes to the amino acid pool during 

the catabolic condition (Bowen et al., 2015; Mercken, Crosby, et al., 2013; Teixeira Vde et al., 

2012). Caloric restriction is a potent stimulator of metabolic homeostasis and maintenance of 

myofibers. A study in older individuals showed that CR can induce a transcriptional profile in 

skeletal muscle similar to that of younger individuals (Mercken, Crosby, et al., 2013), and is able 

to maintain myofiber number and decrease inflammation (Phillips & Leeuwenburgh, 2005). 

During prolonged caloric restriction, muscle hypertrophy is spared while the low rate of protein 

synthesis is efficiently used to contribute to basal cellular needs (R. M. Anderson, 

Shanmuganayagam, & Weindruch, 2009).  In humans, chronic CR (15 years) was shown to induce 

autophagy, oxidative stress and DNA repair systems, mainly mediated through heat shock proteins 

leading to higher protein-quality control, compared to a population consuming a Western diet (L. 

Yang et al., 2016b). Therefore, while CR has been shown to induce beneficial cellular adaptation, 

it is unclear whether the degradation pathways can lead to positive effects in skeletal muscle. 

As a dietary mean to prevent aging, CR is shown to stimulate hematopoietic stem cells 

(Ertl et al., 2008) and satellite cells (Cerletti et al., 2012).  Stimulation of satellite cells by CR 

appears to initiate new fiber formation and muscle repair in a stem cell transplantation mice model 

(Cerletti et al., 2012). The activation of adjacent stem cells increases the size and number of muscle 

fibers, which fuse to preexisting muscle fibers in response to stress. The activation of satellite cells 

from their quiescent state will ultimately lead to proliferation and differentiation into mature 

myocytes (Buckingham & Rigby, 2014).  
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Although advances have been made to understand the cellular mechanisms that are at play 

during CR, most studies compare only the effects of a diseased state such as obesity and then the 

changes that occur after the dietary intervention. In this study, we sought to investigate the 

physiological effect of chronic CR following early-life high-fat diet consumption. Additionally, 

we explored the CR-induced transcriptional signature on skeletal muscle markers of homeostasis 

(nutrient sensing, protein recycling, myogenesis, inflammation, epigenetic modifiers). 

 

4.3. METHODS 

4.3.1. Experimental Design 

In the present study, 5-wk-old male Sprague–Dawley rats (N=33) were fed a high fat diet ad 

libitum (HF, 45% calories from fat) (Table 4.1) for 3 months (Fig. 4.1). Thereafter, animals showed 

a 15% increase in fat mass and were randomized into 3 groups High fat- diet ad libitum (HFD), 

weight maintenance (MTN), and chronic caloric restriction (CR).  

Total average daily energy consumption or maintenance energy requirement (MER) was 

calculated (average Kcal/day) for each individual animal in the MTN and CR groups by feeding 

AIN-93M (CON, 16% calories from fat) (Table 4.1) diet for 3 weeks ad libitum prior to the start 

of the treatment. During this period, the HFD group continued on the same HF diet. For this period, 

food intake was recorded daily and the body weight weekly. Following the MER calculation 

period, animals started their respective 6-month treatment where the HFD group continued on HF 

diet (n=9), whereas the Maintenance group (MTN) was fed 100% of their MER (100% MER) with 

AIN-93M diet to maintain body weight without weight gain (n=12), and the Caloric Restriction 

(CR) group was fed daily 75% of calories (25% MER restriction) with AIN-93M supplemented 

with micronutrients to reach the vitamin and mineral levels consumed by MTN animals (n=12).  
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Table 4.1. Diet composition. 

 CON HF 
Casein‡ 14.5 19.7 
L-Cystine‡ 0.2 0.3 
Corn Starch‡ 51.5 7.2 
Maltodextrin‡ 13.0 9.9 
Sucrose‡ 10.4 17.0 
Cellulose* 50 50 
Soybean oil‡ 9.4 5.5 
Lard‡ - 39.4 
t-Butylhydroquinone* 0.008 - 
Mineral mix* 35 10 
DiCalcium Phosphate* - 13 
Calcium Carbonate* - 5.5 
Potassium Citrate* - 16.5 
Vitamin mix* 10 10 
Choline Bitartrate* 2.5 2 
   

Protein‡ 14.7 20 
Carbs‡ 75.9 35 
Fat‡ 9.4 45 

‡ Kcal percentage. *Grams per 1000g of food. 

Animals were individually housed with 12-h light/dark cycles, and given free access to 

water throughout the study. Food intake and body weight were measured and recorded weekly 

during the treatment period. After 6 months of treatment, rats were euthanized with CO2 after an 

overnight fast (12 hours) to collect blood and tissues for subsequent analysis. To ensure that all 

rats were presented with comparable metabolic and feeding statuses, food was provided starting at 

6:00 PM for all groups. Food was removed starting at 8:00 PM, and the animals were sacrificed 

starting at 8:00 AM the following day. All applicable institutional and governmental regulations 

regarding the ethical use of animals were followed during this research (University of Illinois 

Institutional Animal Care and Use Committee protocol no. 09112). 
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Figure 4.1. Experimental Design. Animals were fed a high fat diet (HFD) for 3 months (45% Kcal from 
fat), at which point they were randomized into each of the experimental treatments. Following high fat-
feeding, the animals were switched to a control diet to calculate the maintenance energy requirements 
(MER) for each animal. MTN group received 100% of their MER, whereas the CR group received 75% of 
their MER. HFD group continued on a HFD ad libitum until the end of the study. Body weight was 
measured weekly, and body composition was performed on a monthly basis. The total duration of the study 
was 10 months. 

 

4.3.2. Body Composition Measurement 

Body composition was measured on Day 1 (initial) and every 30 days after until the end of the 

study (final), using the EchoMRI-700 Body Composition Analyzer (Echo Medical Systems, 

Houston, Texas). This approach allows the analysis of fat and lean mass simultaneously in 

conscious animals using magnetic resonance imaging (MRI) (Strakovsky et al., 2014). Total fat 

mass was measured using a pure oil standard prior to each measurement, whereas lean mass was 

calculated as non-water free lean mass. 

4.3.3. Biochemical measurements 

Trunk blood was collected at necropsy by decapitation, and the subsequent serum samples were 

prepared and stored at -70°C until future use. Serum lipids were analyzed using the Abaxis Piccolo 

XpressTM Lipid Panel Disc, which allows for the simultaneous measurement of total cholesterol 

(Chol), high-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL), 

very low-density lipoprotein cholesterol (VLDL), non-high-density lipoprotein cholesterol 
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(nHDL), and triglycerides (TAG). Serum glucose was determined using TRUE resultTM glucose 

meter (Florida, USA) blood glucose meter. Serum Insulin (Mercodia, Uppsala, Sweden) and IGF-

1 (R&D systems, Minneapolis, USA) levels were quantified using rat ELISA kits per 

manufacturer’s instructions. HOMA-IR was calculated using fasting serum glucose and insulin 

values:	"#$% − '( = *+,-./0	 1123
4 5	67/,+87	 19

4
::.< . 

4.3.4. RNA Isolation and Two-Step Real Time qPCR 

For tissue preparation, 50 mg of liver, 100 mg of muscle and visceral adipose tissue (VAT) were 

homogenized in liquid nitrogen prior to RNA isolation. Total RNA was isolated and DNAse I 

treated using the Direct-zol™ RNA MiniPrep (Zymo Research, Irvine, CA, USA) according to 

manufacturer’s instructions. RNA quality was assessed with a Nanodrop (Thermo Fisher 

Scientific) with a ratio of absorbance at 260/230 and 260/280 both at >1.8. Reverse transcription 

was performed on 2 µg of RNA using the High Capacity cDNA Reverse Transcription Kit 

(Applied Biosystems). Quantitative Real time PCR was using the StepOnePlus™ Real-Time PCR 

System with Power SYBR® Green PCR Master Mix. Quantification was performed using a 

standard curve with serial dilutions and the dissociation curve was analyzed in each experiment. 

Real-time PCR primers were designed using the VectorNTI software (Life Technologies, Grand 

Island, New York), analyzed using BLAST, and synthesized by IDT (Coralville, IA; Appendix B 

Supplemental Table 4.1). Genes included in our experiment have been previously reported as 

known markers for each pathway analyzed. mRNA data were normalized to the reference gene 

encoding ribosomal protein L7a (L7a) as previously reported (Strakovsky et al., 2014).  

4.3.5. Statistical Analysis 

Average caloric intake, body weight, body composition, and serum biochemical parameters were 

analyzed one-way ANOVA with a Tukey post hoc comparison in R 3.3.2. All data assumptions 
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(normality, homogeneity of variances, linearity) were met. Differences were considered significant 

at p<0.05.  

 

4.4. RESULTS  

4.4.1. Body Weight and Body Composition 

Body weight (BW) and body composition reported here show only the treatment period (6 

months), but the 3-month HF feeding nor the 1-month MER assessment periods are not shown as 

they were not statistically different and no weight loss was observed (Fig. 4.1). Hereafter, initial 

BW is prior to the start of the treatment and the final BW corresponds to the end of the experiment 

(6 months of dietary intervention) (Fig. 4.2A). Initial BW was significantly higher in the HFD 

group, compared to the other two groups. After the dietary intervention, the animals in the HFD 

and MTN groups showed an increase in BW. BW was the lowest for CR (387.26 ± 15.05, p<0.05), 

followed by MTN (496.50 ± 10.28, p<0.05), and the highest in HFD group (635.40 ± 13.33, 

p<0.05).  There are significant net increases in BW in HFD and MTN groups, and a decrease in 

CR group (∆weight final-initial: increase by 129.53 g, 24.47 g and a decrease of 86.09 g for HFD, 

MTN, and CR respectively) (p<0.05). Average daily calorie consumption was different between 

treatments (Fig. 4.2B), where the lowest energy intake was 44. 70 ± 0.45 Kcal (p<0.05) for CR 

that accounts for ~75% of MER in the MTN group, followed by MTN consuming 100% MER of 

60.18 ± 0.64 Kcal (p<0.05), and the highest for the HFD group which consumed the average of 

76.58 ± 0.57 Kcal (p<0.05).  

Body composition is presented for fat and lean mass as the initial measurement (after MER 

establishment) and as the final measurement at the last day of the dietary intervention (Fig. 4.2C 
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and D). There was a slight difference in total fat mass at the beginning of the intervention (HFD: 

74.37 ± 4.93 g; CR: 62.04 ± 5.99 g, MTN: 51.67 ± 3.70 g, p<0.05) (Fig. 4.2D), but no differences 

 
Figure 4.2. Body weight and composition of animals following 6 months of CR. A) Initial (4 months), 
final (10 months) body weight, and weight change of rats, showed significant differences between all 
treatments. B) Average caloric intake from the beginning of the dietary intervention (4 months) until the 
end of the experiment (10 months) highlights the energy consumed based on the energy requirements for 
each experimental group. Body composition measurement with EchoMRI-700 Body Composition Analyzer 
showing C) total lean, and D) total fat mass before and after dietary intervention, as well as lean and E) the 
difference in fat-to-lean ratio. Values are expressed as means ± SEM. abc Different letters between 
treatments indicate significant statistical difference with Tukey post hoc test $p<0.05 and ‡p<0.001. 
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in total muscle mass were observed (Fig. 4.2C). Fat mass percentage (relative to body weight) was 

not different between treatment groups at the beginning of the study (data not shown). Significant 

statistical differences were observed in the CR group for lean (p<0.0001) (Fig. 4.2C) and fat 

(p<0.0001) (Fig. 4.2D) mass from initial to final assessment (after 6 months of dietary 

intervention). No differences were observed in lean mass (p=0.42) or fat mass (p=0.22) from the 

beginning to the end of the study for the MTN group (after 6 months of dietary intervention). At 

the end of the study (after 6 months of dietary intervention), rats in the HFD group showed a 

significant increase in lean (p<0.05) (Fig. 4.2C) and fat mass (p<0.001) (Fig. 4.2D), with the 

highest values among all groups. Differences in fat-to-lean ratio (final-initial) were the lowest for 

CR (decreased 0.08 units; lean mass 346.96 ± 4.66 g and fat mass 21.95 ± 2.41 g) then MTN 

(increased by 0.01 units; lean mass 416.91 ± 6.58 g and fat mass 59.35 ± 4.17 g), and highest in 

HFD (increased by 0.16 units; lean mass 443.55 ± 6.84 g and fat mass 153.79 ± 11.66 g) (Fig. 

4.2E).  

4.4.2. Growth Signal Assessment 

Changes in growth responses were estimated through the analyses of serum hormones insulin and 

IGF1, as well as gene expression of Igf1 and its receptor Igf1r in different metabolic tissues. Serum 

insulin levels were not significantly different between groups (Fig. 4.3A). A marginal decrease in 

insulin was observed in the CR group, but it was not statistically different (CR: 0.65 ± 0.12 ng/mL 

vs. MTN: 0.95 ± 0.10 ng/mL, HFD: 0.74 ± 0.18 ng/mL). Moreover, serum IGF-1 levels were 

significantly lower in CR (0.75 ± 0.04 ng/mL, p<0.05), compared to both MTN and HFD (1.01 ± 

0.02 and 1.02 ± 0.04 ng/mL, respectively, Fig. 4.3A). Given that growth signals known to originate 

from different metabolic tissues (H. R. Chang, Kim, Xu, & Ferrante, 2016), we characterized the 

gene expression of Igf-1 in different metabolic tissues (liver, muscle, and visceral adipose tissue 
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[VAT]). In liver, gene expression of both Igf-1 and its receptor Igf1r were decreased by CR (Fig. 

4.3B, p<0.05), and only Igf1r for MTN, compared to HFD. This corresponded to a significant  

 

Figure 4.3. Growth signal and receptor expression are altered with chronic CR. A) Serum IGF-1 and 
Insulin levels are expressed in ng/mL. Gene expression of Igf-1 and Igf-1r from B) liver, C) Muscle, and 
D) Visceral Adipose Tissue (VAT) shows alterations in the expression of both hormone and receptor gene 
expression. Linear regression of IGF-1 to E) Fat and F) Lean mass slope. Fat and lean mass changes are 
represented as the slope of the regression vs. time of treatment.  
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reduction in liver weight by CR (p<0.05), compared to MTN and HFD (Data not shown). 

Additionally, VAT expression of Igf1 was decreased CR (p<0.05), compared to HFD (2-fold) and 

MTN (1.8-fold); no changes were observed for Igf1r in VAT (Fig. 4.3D). Skeletal muscle Igf1r 

mRNA expression was decreased in CR compared to both MTN and HFD, whilst no differences 

were observed for Igf1 mRNA expression in muscle (Fig. 4.3C). Finally, a regression analysis of 

body composition and serum IGF1 revealed a significant predictive Pearson correlation of fat (R2= 

0.505) (Fig. 4.3E), and lean mass (R2= 0.644) (Fig. 4.4F) with the serum IGF1 levels. Additionally, 

a high Pearson correlation coefficient was found between the average caloric intake and IGF1 (R2= 

0.639), but not for insulin (R2=0.04) (Data not shown). 

4.4.3. Biochemical measurements 

Table 4.2. Serum Biochemical Analysis of CR Animals Following Early Life HF-Feeding. 

 HFD  MTN  CR 
Chol1 103.80 ± 14.3  100.17 ± 9.6  98.71 ± 12.9 
HDL-c1 59.00 ± 9.7  50.67 ± 6.8  45.83 ± 2.5 
TAG1 160.80 ± 19.8 ab  186.83 ± 27.4 a  109.43 ± 10.9 b 
Glu1 156.40 ± 21.4  126.67 ± 11.8  173.29 ± 18.9 
HOMA-IR2 5.95   ± 1.4  5.39  ± 0.4  3.85   ± 0.6 
nHDL1 44.40 ± 6.9  49.83 ± 3.2  41.00 ± 2.6 
TC/H2 1.82 ± 0.1  2.03 ± 0.1  1.92 ± 0.1 
LDL-c1 13.60 ± 6.2  14.83 ± 4.3  19.00 ± 3.1 
VLDL-c1 32.20 ± 4.0 ab  37.33 ± 5.6 a  21.86 ± 2.2 b 
ALT3 47.80 ± 1.4  59.57 ± 8.7  54.71 ± 3.7 
AST3 170.40 ± 8.7  180.43 ± 24.7  168.43 ± 18.7 

Values are presented as means ± SEM. 1Data are expressed as mg/dL; 2Data are expressed as 
arbitrary units; 3Data are expressed as U/L. ab Different letters between treatments indicate 
significant statistical difference at p<0.05 with Tukey’s post hoc test. Chol: Total cholesterol; 
HDL-c: high-density lipoprotein cholesterol; TAG: triglycerides; Gluc: Fasting Glucose; 
LDL-c: low-density lipoprotein cholesterol; VLDL-c: very low-density lipoprotein 
cholesterol; nHDL: non-high-density lipoprotein cholesterol; HOMA-IR: Homeostatic Model 
Assessment-Insulin Resistance; AST: aspartate aminotransferase; ALT: alanine 
aminotransferase. 
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To assess the metabolic status of the animals, lipid profile and hepatic function enzymes were 

assessed in serum samples at the end of the experiment (6 months after dietary intervention) (Table 

4.2). Circulating levels of TAG were lowest for CR (109.43 ± 10.94 mg/dL, 41% decrease) 

(p<0.05), compared to MTN group (186.83 ± 27.38 mg/dL) (p<0.05) and HFD (160.80 ± 19.77 

mg/dL). Similar results were observed for fasting VLDL (CR: 21.86 ± 2.21 mg/dL vs. MTN: 37.33 

± 5.52 mg/dL and HFD: 32.20 ± 3.99 and). A numerical decrease was observed for HOMA-IR 

index for CR compared to HFD but no statistical difference was observed. No other changes in 

lipid profile or liver enzymes were observed between groups (Table 4.2). 

4.4.4. Skeletal muscle gene expression analysis 

To elucidate the metabolic and immunologic mechanisms that mediate the changes observed for 

muscle mass, we assessed the effect of the dietary intervention in gene expression pattern of 

nutrient sensing, autophagy-related, myogenic-related, inflammatory genes and chromatin 

modifier markers. Statistical differences are reported using the HFD group consuming high fat-

diet throughout the study as a control (Fig. 4.4). Nutrient sensing systems are vital for appropriate 

nutrient uptake and usage in skeletal muscle. Therefore, nutrient sensing genes were analyzed in 

skeletal muscle of rats. Mamalian target of Rapamicyn (mTor) was significantly different in CR 

compared to HFD (1.1-fold), but not MTN (Fig. 4.4A). Beta-oxidation markers Cpt1a (Carnitine 

Palmitoyltransferase 1A) and Mlycd (Malonyl-CoA Decarboxylase) were both increased in the 

HFD group compared to CR and MTN. Antioxidant enzymes Paraoxonase 1 and 2 (Pon1 and 

Pon2) differed significantly in the CR compared to both MTN and HFD (-1.8 and -1.5-fold for 

Pon1; -1.2-fold for Pon2) (Fig. 4.4A).  

Protein turnover genes related to autophagy were not different between CR and MTN. 

Significant differences were observed for Atf4, between CR and HFD (Fig. 4.4B). 
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Autophagosome-formation proteins Atg2a and Lc3a (microtubule associated protein light chain α) 

were increased in CR and MTN, compared to HFD (-1.2- and -1.4-fold). Cysteine proteases Capn1 

and Capn2 and proteasomal E3 ligase Murf1 were significantly increased by CR, whereas E3 ligase 

Atrogin1 was significantly upregulated by HFD group (1.3-fold) (Fig. 4.4B). 

 

Figure 4.4. Gene expression of nutrient sensing, proteostasis-, and inflammatory- related pathways 
and epigenetic modifiers from skeletal muscle using qPCR. Values are means of the ratio to L7a ± SEM; 
HFD (n=9), MTN (n=12), CR (n=12). *p≤0.05 for CR vs. HFD and ‡for MTN vs. HFD. 
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The pathways that lead to atrophy were analyzed, mainly the Activin-Myostatin-Follistatin 

system (Fig. 4.4C). No significant changes were observed for myogenic activator Fst; however, 

the myogenic inhibitor Myostatin (Mstn) was significantly upregulated in the CR group compared 

to MTN (1.2-fold), but was not different from HFD. No changes were observed for Activin A 

(Inhba) and inhibin (Inha). Myogenic transcription factor Mapk14 was upregulated by CR, 

compared to both MTN and HFD (1.2- and 1.5-fold, respectively) (Fig. 4.4C). Early myoblast 

differentiation factors Pax3 and Pax7 showed an inverse pattern (-2.0-fold), with CR having the 

lowest values. Concurrent pathways that are known to impact atrophy such as inflammation were 

explored. Markers of skeletal muscle precursor proliferation, differentiation, and fiber homeostasis 

were measured. CR showed higher expression values for MyoD compared to HFD (1.8-fold). The 

main differences between HFD and MTN were for the expression of MyoG and Mrf4, where the 

first two had significantly higher values in MTN (-2.5- and -1.4-fold, respectively) (Fig. 4.4C). 

Inflammatory markers that are known to regulate myogenesis and muscle wasting were assessed 

(Fig. 4.4D). Inflammatory cytokine expression of Tnf-α, Ifn-γ, Il-1β, and Il-6 was significantly 

reduced in CR, despite the increased expression of Nfkb (p50 subunit), and possibly due to the 

reduced Ikbke expression in the CR group, compared to HFD 

Finally, chromatin modifiers were measured in skeletal muscle to assess possible 

epigenetic regulation by CR. Maintenance DNA methyltransferase Dnmt1 was reduced by CR 

(Fig. 4.4E). Significant increases in mRNA expression were observed for NAD-dependent protein 

deacetylases Sirt1 and Sirt6 in CR animals, compared to HFD (Fig. 4.4E). Both CR and MTN 

were able to reduce the expression of histone-lysine methyltransferase Suv39h1. An integrative 

view of the epigenetic regulation of gene expression in muscle is summarized in Fig. 4.5. 
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4.5. DISCUSSION 

In this paper, we assessed the effectiveness or a chronic caloric restriction (CR) protocol in high 

fat-fed animals. We observed that when animals are subjected to a 25% restriction of calories, 

striking changes in body weight and composition are observed, which are not observed with a 

maintenance diet. Furthermore, synthesis of growth hormone IGF-1 appears to be modulated by 

CR in liver and visceral adipose, and it impacts the circulating levels of this hormone, which are  

 

Figure 4.5. Transcriptional Regulation of Skeletal Muscle by CR compared to High Fat Diet. Genes 
where a significant effect was found are highlighted in yellow. Arrows for CR group indicate the direction 
of the effect compared to the HFD control. IGF-1, Insulin-like Growth Factor -1; Igf1r, Insulin-like Growth 
Factor -1 Receptor; INS: Insulin; mTor, mammalian Target of Rapamycin; Ifn-ɣ, Interferon-ɣ, IL-6, 
Interleukin-6; IL-1β, Interleukin-1β; Tnf, Tumor necrosis factor-α; Ikbke, Inhibitor of nuclear factor kappa-
B kinase subunit epsilon; Pgc-1α, Peroxisome proliferator-activated receptor gamma coactivator 1-alpha; 
Pon1, Paraoxonase 1; Pon2, Paraoxonase 2; Cpt-1α, Carnitine palmitoyl transferase-1α; Suv39h1, Histone-
Lysine methyltransferases Suppressor of variegation 39 homolog 1; Dnmt1, DNA methyltransferase 1; 
Sirt1, Sirtuin 1; Sirt6, Sirtuin 6; Mapk14, Mitogen Activated Protein Kinase 14; Myod1: Myogenic 
Differentiation 1; Atf4, Activating Transcription Factor 4; Lc3a, Microtubule-Associated Protein 1 Light 
Chain 3 Alpha; Atg2a, Autophagy Related 2A; Capn1, Calpain 1; Capn2, Calpain 2; MuRF-1, Muscle-
Specific RING Finger Protein 1; Atrogin 1: Muscle Atrophy F-Box Protein. 
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predicted by the changes in fat and lean mass. Finally, for the first time we report and integrative 

view of the cellular transcriptional adaptation to CR in skeletal muscle, where nutrient sensors and 

protein degradation pathways are impacted, whereas myogenic signals are increased to 

compensate the nutrient restriction. Additionally, pathways that inhibit myogenenesis, such as 

inflammation and oxidative stress are silenced by CR. We propose a direct effect of CR on 

epigenetic modulators that can in turn revert the programming of high fat diet. 

  Caloric restriction (CR) is regarded as an effective tool for weight management control, 

as well as the long-term effects on lifespan. Previous studies have highlighted the potential effects 

of chronic CR on quality of life, but recognizing the importance of skeletal muscle as one of the 

major contributors to metabolic homeostasis. In our study, we aimed to define the molecular 

mechanisms that are at play in skeletal muscle of high fat-fed rats after a period of chronic caloric 

restriction. Following the high fat-diet (HFD) feeding period, the animals underwent a CR 

regiment for six months. For the first time, we used a maintenance control (MTN) to account for 

normal growth and weight changes, and to to assess the differential response attributed exclusively 

to CR. Compared to traditional CR studies, the addition of a control group that is neither obese nor 

restricted (MTN) eliminates the growth bias while highlighting the effects of chronic restriction, 

compared to a HFD overconsumption animal model (HFD). Compared to HFD, the CR group 

presented a preferential decrease of fat and lean mass, as observed for calorie restriction protocols 

without exercise (S. E. Mitchell, Delville, et al., 2015). Weight maintenance (MTN) does not 

produce the same effect on weight and composition as the 25% restriction (CR), nor the HFD 

overconsumption (HFD). Meanwhile a positive energy balance in the HFD group, not only in fat 

but also lean mass, delineate the phenotypical differences with the CR group that might be able to 

explain the molecular discrepancies observed in both fat and muscle mass.  



	 76	

The effects on body composition are regulated, at least in part, by hormonal adaptations to 

the energy intake. Hormones such as Insulin and Insulin-like Growth Factor-1 (IGF-1) can elicit 

an anabolic response in a variety of tissues, stimulating the uptake of glucose from the blood, 

synthesis of proteins and fatty acids, thus contributing to the overall positive contribution of 

overfeeding to body mass. We observed a reduction on circulating levels of IGF-1, which is 

consistent with previous studies (S. E. Mitchell, Delville, et al., 2015). Increased synthesis of IGF-

1 at the primary site of production and stimulation ability through the binding to IGF1R in the 

liver, are hallmarks of obese individuals (Sharples et al., 2016), which lead to the development of 

metabolic abnormalities. Liver size, and hepatic levels of Igf-1 and Igf1r transcripts appear to be 

responsive to the consumption of HFD or 25% caloric reduction. Likewise, peripheral metabolic 

tissues such as skeletal muscle and adipose tissue showed significant differences in the expression 

of Igf-1 and Igf1r, indicating an adaptation mechanism to the energy intake that can be reverted by 

chronic CR. Recently, the secretion of IGF-1 by the adipose tissue has been explored as a major 

site of synthesis (H. R. Chang et al., 2016), thus the greater ability of fat depots to secrete IGF-1 

provides an insight into the elevation of circulating hormone, without changes in the ability of the 

liver. Lastly, the levels of circulating IGF-1, but not insulin, appear to be responsive to the 

restriction of calories and could help to explain the adaptive mechanism of liver, skeletal muscle, 

and adipose tissue that reduce the stimulation by anabolic hormones. Peripheral adaptations to the 

reduced anabolic stimulation in the CR group, lead to the progressive reduction in fat and lean 

mass that are correlated with the circulating hormone levels. Consequently, given the reduction in 

the stimulatory capacity of IGF-1 by CR, the liver and adipose reduce their synthetic capabilities 

as well as the possible stimulation through IGF1R, therefore contributing to the concomitant 

reduction in both fat a lean mass. 
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Given the changes in body composition observed in CR, we sought to explore the changes 

at the transcriptional level that are mediated by the caloric input in muscle. Aside from being the 

largest tissue in the body, skeletal muscle plays a key role in metabolic and hormonal regulation. 

In this study, three major pathways that are known to contribute to muscle mass accretion or loss 

were explored: Nutrient sensing, autophagy, and myogenesis and atrophy. Regarding skeletal 

muscle nutrient sensing systems, mTor and Pgc1-α appeared to be significantly increased by CR, 

and it’s in agreement with positive changes in nutrient sensing epigenetic regulators Sirt1 and 

Sirt6. Consistent with the insulin resistant phenotype, the HFD group displayed a switch towards 

a fatty acid oxidation-dependent metabolism given the high expression of both Cpt1a. This 

indicates that the adaptation of skeletal muscle to HFD is to obtain energy mainly from fatty acids, 

compared to MTN and CR. Both 25% restriction (CR) and no restriction (MTN), seem to be 

efficient at utilizing nutrients, and are not entirely dependent on fat, whilst reducing the expression 

of inflammatory markers Tnf-α, Ifn-γ, Il-1β, and Il-6, and increased antioxidant enzymes Pon1 and 

Pon2, indicating a reduction of stress burden in skeletal muscle by CR. 

Protein turnover in skeletal muscle is vital for growth, adaptation and maintenance of 

skeletal muscle fibers. The major pathways that lead to protein recycling are the autophagosome, 

Ubiquitin-proteasome, and cysteine proteases (Bowen et al., 2015). This allows the cell to target 

the degradation of proteins that are not necessary, this to obtain resources needed for “dynamic 

proteostasis” or proper adaptation to the lack of nutrient availability. Autophagic responses are 

vital for the proper recycling of cellular components during prolonged starvation (L. Yang et al., 

2016b). Marked differences in autophagic markers (Atf4, Atg2a, and Map1Lc3a) were observed 

between MTN and CR vs. HFD. Moreover, E3 Ligases were differentially expressed in skeletal 

muscle in response to CR, where Murf1 was significantly increased compared to both MTN and 
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HFD groups, indicating that a higher degradation of potential targets such as enzymes able to 

generate ATP indirectly, as well as directly such as ATP synthase and creatine kinase, and also 

those proteins related to myofibrils like Titin, TnI, TnT, Myotilin among others (Witt, Granzier, 

Witt, & Labeit, 2005). On the other hand, E3 Ubiquitin ligase Atrogin-1 was highly expressed in 

skeletal muscle from HFD rats, compared to both MTN and CR. Unlike MuRF1, proteasomal 

protein Atrogin1 can target eIF3-f (Lagirand-Cantaloube et al., 2008) and MyoD1, a potent 

transcription factor that induces cell cycle exit and activation of differentiation, for proteasomal 

degradation (Lagirand-Cantaloube et al., 2009). Both IFNγ and TNFα are known activators of 

Atrogin 1 (Y. P. Li et al., 2005), which is consistent with our findings of increased inflammation 

in HFD that leads to targeted MyoD-degradation through Atrogin1. Activation of proteosomal 

ligases seems to be indicative of atrophy, despite the increase in muscle mass for the HFD group. 

Finally, calcium-dependent cysteine proteases Capn1 and Capn2 expression was increased by CR 

and MTN. The Calpain family of proteins are thought to act upstream of the Ubiquitin proteasome 

by initiating the cleavage of nebulin an titin (J. Huang & Forsberg, 1998), proteins related to 

sarcomere integrity. Interestingly, during CR the levels of Capn 1 and 2 were increased as well as 

proteasomal activation (Murf1), both of which are thought to be required for differentiation to 

myocytes to occur (Ueda et al., 1998). Moreover, the transcript level of MyoD1 in CR animals was 

significantly higher compared to both MTN and HFD, indicating a possible link between the 

recycling of proteins (autophagy, proteasome, calpains) and funneling of substrate towards 

differentiation. No indication of myogenesis (Mrf4, MyoG, MyoD) was found for the HFD group, 

suggesting that the Atrogin 1 levels might be more related with atrophy rather than with 

differentiation and proliferation. In the context of energy restriction, myogenic factors (MyoD, 

Mrf4, MyoG, and Myf5) can couple the response to lower nutrient influx with the greater 
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availability of substrate from proteolysis, and in turn they might activate resident stem cells to 

proliferate and differentiate, as seem with short term caloric restriction (Cerletti et al., 2012). The 

flux through the autophagosome and ubiquitin-proteasome systems in lean versus obese 

individuals might differ; In an obese condition the upregulation of the proteasome is the preferred 

mechanism whereby proteins are recycled and this is an adaptive mechanism to the nutrient influx 

in HFD (Bollinger, Powell, Houmard, Witczak, & Brault, 2015). On the other hand, the flux 

through the autophagy/lysosome pathway might be stimulated in CR and the activation of both 

systems might help to regenerate muscle mass in response to prolonged CR. This explains the 

preferred activation during caloric overload and deprivation, as well as the downstream effects of 

the activation of different pathways that perpetuates the phenotype observed in skeletal muscle. 

Epigenetic regulation occurs through covalent modifications exerted by a myriad of 

chromatin and DNA modifiers. As previously discussed, epigenetic modifiers such as HDAC3 are 

known to regulate the expression of the TNF gene; however, other modifiers are known to act 

within proximal or distal regions to modulate its expression. A novel NAD+-dependent 

deacetylase, SIRT6, has emerged as a possible candidate that extends lifespan (Kanfi et al., 2012; 

Michishita et al., 2008) and inhibits the activity of NFkB in different cellular models (N. Zhang et 

al., 2016). Therefore, despite the increased Nfkb expression by CR, Sirt6 might act as a repressor 

of the inflammatory signal. Interestingly, no information is available regarding the epigenetic 

modulation of cytokine signaling in muscle during CR. The Histone-Lysine N-Methyltransferase, 

suppression of variegation 3-9 homolog 1 (SUV39H1), has been regarded as an important 

regulator of inflammation (T. T. Chen et al., 2017; Villeneuve et al., 2008). In our study, we 

observed a repression of Suv39h1 by the maintenance group (MTN) or CR. Interestingly, 

inflammatory cytokine TNF itself can interact with Ezh2 (within the transcriptional inhibitor 
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complex PRC2), to produce the silencing of the myogenic transcription factor Pax7 that stimulates 

satellite cell differentiation (Palacios et al., 2010). Finally, both DNA methyltransferases, DNMT1 

and DNMT3A, are known to impact inflammation upon stimulation with different stimuli (Cheng 

et al., 2014; Falvo et al., 2010; J. Yu et al., 2016). In our study, we observed a reduction of Dnmt1 

which agrees with the decrease in inflammatory markers in skeletal muscle of CR animals. 

In conclusion, the beneficial effects that can be attributed to CR following a HFD 

consumption are related to weight loss, and the repression of inflammation and oxidative stress, 

together with the activation of protein turnover pathways can in turn promote myogenesis to 

maintain a critical muscle mass. Future studies regarding the coupling of caloric restriction signals 

and epigenetic regulation of metabolic pathways are needed, this to fully understand the 

programming of adaptive mechanisms by chronic CR. 
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CHAPTER 5: TITRATION OF ALTERNATE DAY CALORIC RESTRICTION (ADCR) 
MINIMIZES MUSCLE WASTING AND DECREASES INFLAMMATION IN MALE 

RATS 
 

 
5.1. ABSTRACT 

Background: Caloric restriction (CR), without malnutrition, is considered an effective dietary 

intervention to extend lifespan and quality of life, and such effects include those related to 

musculoskeletal health; however, patient adherence to the CR protocol remains a challenge. 

Alternate Day Caloric Restriction (ADCR) consists of controlled feeding alternated with CR, and 

has proven to be overcome adherence limitations as well as to cause weight loss.  Objective: Using 

a 3X3 factorial restriction protocol (three degrees of restriction, and 3 restriction schedules) we 

aim to explore body composition and muscle transcriptomic changes in high fat diet (HFD) model.  

Methods: 4-week old Male rats consumed a HFD (45% calories from fat) for 3 months, 

maintenance energy requirement (MER) was calculated for 3 weeks, and from then on, ADCR 

began by consuming a normal chow diet on the feeding days (100% of MER), followed by 

alternated consumption of 75% (IF1-3), 50% (IF4-6) or 25% (IF7-9) of ER during one, two or 

three days per week. A chronic CR (25% ER) groups was used as control. Food intake, body 

weight (BW), and body composition were regularly monitored and following six months of 

ADCR, animals were sacrificed. Results: No significant BW differences were observed for the 

25% restriction groups (IF1-3). Of the 50% ER groups, only the 3-day restriction (IF6) produced 

similar effects to CR. Both 2- and 3-day 75% ER groups (IF8 and 9) produced similar effects to 

CR. Serum nutrient-sensing intermediates IGF-1 positively correlated with final fat and lean mass 

(p<0.0001), whereas insulin and HOMA-IR were only correlated to final fat mass (p<0.0001). 

Skeletal muscle gene expression of nutrient sensing and protein recycling markers showed that CR 

and 3-day 75% restriction (IF9) produced similar effects, whereas IF5-8 produced a discriminant 
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transcriptional pattern. Finally, skeletal muscle Tnf showed a marked decrease for all 50% and 

75% restriction groups similar to CR. Conclusion: Energy reduction by 50% 3 days per week, or 

75% restriction more than two days per week is an effective weight loss strategy to reduce muscle 

inflammation. 

 
5.2. INTRODUCTION 

Caloric restriction (CR) has been regarded as one of the most effective strategies for weight 

reduction, with the addition of the long-term benefits such as delayed aging and improved quality 

of life (Cava & Fontana, 2013; Fontana & Partridge, 2015). Nevertheless, the feasibility of 

voluntary, chronic CR in humans still remains the greatest challenge in the clinical practice. Novel 

strategies for weight control have emerged and provide a safer yet effective alternative to reduce 

or maintain body weight. Such strategies derive from the original ~25% energy restriction that the 

usual CR protocol describes, and substitute the daily restriction for alternating fasting and feast 

days. Given the limitations of the current CR protocols, novel strategies are required that can 

confer the benefits related to CR while providing higher translatability to a clinical setting. 

 CR is able to act on diverse pathways that permit the extension of lifespan and health 

span; the benefits associated to caloric restriction and other forms of restriction include but are 

not limited to improvement of stem cell function, decrease in oxidative stress, improvement of 

nutrient sensing pathways, protein recycling enhancement, reduction of insulin resistance, 

prevention of genomic instability, and modulation of inflammation and immune function 

(Fontana & Partridge, 2015). Dietary or calorie restriction protocol that provide the same energy 

by implementing modified protocols have found similar if not better health outcomes. Protocols 

that implement “fasting” and “feasting” days alternated are termed Alternate Day Fasting or 

Alternate day CR (ADCR) (Varady & Hellerstein, 2007), and can modulate risk factors that lead 
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to the development of chronic diseases in animal models. However, despite the great potential 

ADCR on chronic disease risk reduction, the feasibility of such restrictive protocols for long 

periods of time has been questioned given that the hunger sensation during fasting days does not 

seem to decrease, and the addition of small meal during those days was not able to increase the 

fullness sensation (Johnstone, 2015). Nevertheless, such modification to the widely used CR 

method has been used in many human studies (Johnson et al., 2007; Varady, Tussing, Bhutani, & 

Braunschweig, 2009) (Stockman, Thomas, Burke, & Apovian, 2018), proving the effectiveness 

of ADCR to both improve patient compliance and improve risk markers.  

Weight loss studies in human populations have found that the partial restriction of calories 

during the “fasting” day to only 20% of the calories, which resulted in a marked 8% body weight 

reduction after 8 weeks of ADMF (Johnson et al., 2007). Collectively these studies highlight 

potential of dietary caloric restriction, in particular ADCR, as a positive strategy for weight loss 

with the great translational competence. Therefore, the purpose of this study was to assess whether 

the implementation of different restriction levels (25%, 50% and 75% restriction) during alternated 

fasting periods (one-, two-, or three- days a week) interspersed with feasting days could elicit 

comparable effects to chronic CR. To analyze the complexity of the responses we took advantage 

of the newly developed Geometric Framework for Nutrition (GFN) (Simpson, Le Couteur, James, 

et al., 2017; Simpson, Le Couteur, Raubenheimer, et al., 2017; Solon-Biet, Mitchell, et al., 2015), 

which offers a platform for tackling this complexity in terms of macronutrient limitation. Finally, 

we assessed the transcriptional signature of skeletal muscle, a tissue of great importance for the 

young and elderly populations undergoing CR, and compared the effects to the gold standard, 

chronic 25% CR.  
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5.3. METHODS 

5.3.1. Experimental Design 

In the present study, post-weaning, 4-5-wk-old male Sprague–Dawley rats (N=144) were fed a 

high fat diet (HFD, 45% calorie from fat) for 3 months (Fig. 5.1). Food intake and body weight 

were measured and recorded weekly. Hereafter, the animals were randomized into 12 groups, and 

one of those groups (OL) was fed with HFD for the entirety of the study, whereas for the remaining 

11 groups the Maintenance Energy Requirement (MER) or the basal energy requirement was 

estimated. To establish MER, the remaining animals in the 11 groups (not OL) were fed AIN-93M 

diet for 3 weeks Ad libitum prior to the start of the treatment diets for the adjustment and 

establishment of the MER, calculated as the average daily individual caloric intake within 3 weeks 

(Fig. 5.1). After this feeding period, animals were randomized into 11 groups: Maintenance group 

(ML) that was provided with 100% MER, to avoid overfeeding (n=12). Caloric Restriction (CR) 

group, which was fed daily with a diet to meet 75% of MER supplemented with micronutrients to 

reach optimal vitamin and mineral levels similar to ML group (n=12); lower alternate-day caloric 

restriction (low ADCR) with 75% MER restriction for 1 (IF1), 2 (IF2), or 3 days (IF3), alternated 

with days where they received 100% of MER; intermediate alternate-day caloric restriction (mid 

ADCR) with 50% MER restriction for 1 (IF4), 2 (IF5), or 3 days (IF6), alternated with days where 

they received 100% of MER; and high alternate-day caloric restriction (high ADCR) with 25% 

MER restriction for 1 (IF7), 2 (IF8), or 3 days (IF9), alternated with days where they received 

100% of MER. Animals continued on their respective maintenance, CR, or ADCR protocols for 6 

months, and after this period all rats were euthanized with CO2 after 12 h of overnight fasting. 

Body composition was evaluated by scanning fat and lean mass in a Body Composition Analyzer 

(Echo Medical Systems, Houston, TX, USA). Blood collection, tissue dissection and weighing 
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were performed at necropsy. To ensure that all rats were presented with comparable feeding 

statuses, food was placed starting at 6:00 PM for all groups. Food was removed starting at 8:00 

PM, and the animals were sacrificed starting at 8:00 AM the following day. The animals were 

individually housed with 12-h light/dark cycles, and given free access to water throughout the 

study. All applicable institutional and governmental regulations regarding the ethical use of 

animals were followed during this research (University of Illinois Institutional Animal Care and 

Use Committee protocol no. 09112). 

 
Figure 5.1. Experimental Design. Animals were fed a high fat diet (HFD) for 3 months (45% Kcal from 
fat), at which point they were randomized into each of the experimental treatments. Following high fat-
feeding, the animals were switched to a control diet to calculate the maintenance energy requirements 
(MER) for each animal. ML group received 100% of their MER, whereas the CR group received 75% of 
their MER. OL group continued on a HFD ad libitum until the end of the study. Low alternate-day caloric 
restriction (low ADCR) with 75% MER restriction for 1 (IF1), 2 (IF2), or 3 days (IF3), intermediate 
alternate-day caloric restriction (mid ADCR) with 50% MER restriction for 1 (IF4), 2 (IF5), or 3 days (IF6), 
and high alternate-day caloric restriction (high ADCR) with 25% MER restriction for 1 (IF7), 2 (IF8), or 3 
days (IF9), alternated with days where they received 100% of MER. Body weight was measured weekly, 
and body composition was performed on a monthly basis. The total duration of the study was 10 months. 
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5.3.2. RNA Isolation and Two-Step Real Time qPCR 

Total RNA from Skeletal muscle (Gastrocnemius/ Soleus complex) was isolated using TRI reagent 

(Sigma, St. Louis, MO, USA), followed by Direct-zol™ RNA MiniPrep according to 

manufacturer’s instructions. Reverse transcription was performed using the High Capacity cDNA 

Reverse Transcription Kit (Applied Biosystems). Quantitative Real time PCR was using the 

StepOnePlus™ Real-Time PCR System with Power SYBR® Green PCR Master Mix using the 

respective forward and reverse primer for each gene (Appendix C Supplemental Table 5.1), and 

were designed by Vector NTI software (Invitrogen Corporation) and synthesized by Integrated 

DNA Technologies (www.idtdna.com). Standard curves with a slope of -3.30 (SEM 0.30) and R2 

≥ 0.99 were accepted. A 60S ribosomal protein (RpL7a) housekeeping gene whose expression was 

not affected by treatment were used to normalize the gene expression data. 

5.3.3. Biochemical measurements 

Trunk blood was collected at necropsy by decapitation, and the subsequent serum samples were 

prepared and stored at -70°C until future use. Serum lipids were analyzed using the Abaxis Piccolo 

XpressTM Lipid Panel Disc, which allows for the simultaneous measurement of total cholesterol 

(Chol), high-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL), 

very low-density lipoprotein cholesterol (VLDL), non-high-density lipoprotein cholesterol 

(nHDL), and triglycerides (TAG). Serum glucose was determined using TRUE resultTM glucose 

meter (Florida, USA) blood glucose meter. Serum Insulin (Mercodia, Uppsala, Sweden) and IGF-

1 (R&D systems, Minneapolis, USA) levels were quantified using rat ELISA kits per 

manufacturer’s instructions. HOMA-IR was calculated using fasting serum glucose and insulin 

values: HOMA-IR= (Glucose (mmol/L) x Insulin (mU/L))/22.5. 
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5.3.4. Saccharin Preference 

Saccharin preference test was assessed one week prior to the end of the experiment. Prior to the 

paradigm test, male rats were habituated to the two-bottle paradigm by allowing them to explore 

and drink water from two bottles positioned on opposite sides of the cage. On the testing day, 

results were collected from individual in cages (n=12) for 24 h where they had access to two 250 ml 

drinking bottles. One tube was filled with water and the other with 0.3% saccharin solution. Food 

was provided ad libitum. Saccharin preference was calculated as follows: Saccharin preference 

(AU)= Saccharin volume consumed (ml)/ [saccharin volume consumed (ml) + water volume 

consumed (ml)]. 

5.3.5. Statistical Analysis 

 A one-way ANOVA was used for cumulative caloric intake, body weight and body composition, 

biochemical measurements, saccharin preference, and gene expression data. Student’s t-test was 

used for body weight and body composition compared to zero with a p value ≤0.05. Tukey’s LSD 

was used for post hoc tests with a p value ≤0.05. Response landscapes describing each mouse’s 

physiological change with nutritional intake were established by fitting generalized additive 

models to the data (Thin Plate Spline Regression) as previously described (Solon-Biet et al., 2014). 

Briefly, general additive models (GAM) with thin-plate splines were used to model the changes 

with diet macronutrient composition (protein, carbohydrate, and fat) or physiological changes. 

GAMs were fitted with the help of the akima, scatterplot3d, rgl, rglwidget, and plot3D packages 

of the R language. All statistical tests were performed in R 3.3.4. 
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5.4. RESULTS 

5.4.1. Body Weight and Body Composition of Animals Following Alternate-Day Caloric 

Restriction. 

To examine the effectiveness of different levels of Alternate-day Caloric Restriction (ADCR) we 

used a 3-day and 3-restriction level experimental design, having the commonly used restriction 

protocol of chronic 25% restriction (CR), a maintenance group (ML), and a lifelong HFD group 

(OL) as controls. CR was used each time as a reference to assess each level of restriction 

separately. To achieve the different levels of ADCR, animals consumed varying calorie levels each 

week (Fig. 5.2A), the highest being the OL group (77.65 ± 0.57 Kcal/day), followed by ML (60.18 

± 0.65 Kcal/day), IF1 (58.86 ± 0.58 Kcal/day), IF4 (57.72 ± 0.62 Kcal/day), IF2 (58.69 ± 0.58 

Kcal/day), and IF7 (56.42 ± 0.66 Kcal/day), then IF3 (54.82 ± 0.53 Kcal/day) and IF5 (53.31 ± 

0.53  Kcal/day), and finally IF8 (47.55 ± 0.47 Kcal/day), IF6 (45.64± 0.48 Kcal/day), CR (44.69 

± 0.45 Kcal/day), and IF9 (41.95 ± 0.58 Kcal/day). ADCR at different levels are used to overcome 

the feasibility issue of CR in humans (Brandhorst et al., 2015), whilst retaining the beneficial 

effects observed with CR. The effects of CR can be studied based on the total amount calories that 

are restricted or by the amount of the restrictive macronutrient provided, in this case protein and 

no carbohydrates or fat intake. Furthermore, several studies have pointed out that CR and protein 

restriction (PR) can cause similar effects, and it has been hypothesized in different studies and 

meta-analysis that the CR acts through different ranges of protein restriction (Simpson, Le 

Couteur, Raubenheimer, et al., 2017; Speakman, Mitchell, & Mazidi, 2016)), as seen in the studied 

ADCR patterns. In our experiment, we are able to achieve different levels of protein restriction 

compared to carbohydrate intake (Fig. 5.2B), where the OL group has a similar ratio of 
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carbohydrate:protein (C:P) intake similar to diets that maximize reproduction (1:1 carbohydrate-

to-protein ratio), whereas the ML group shows a C:P ratio that localizes in between commonly  

  
Figure 5.2. Caloric intake and body weight changes following 6-month ADCR. A) Average caloric 
intake from the beginning of the dietary intervention (4 months) until the end of the experiment (10 months) 
highlights the energy consumed based on the energy requirements for each experimental group. B) Protein-
to-Carbohydrate ratio used in the experimental diets for each ADCR group adapted to Simpson et al. 2017 
(10.1016/j.arr.2017.03.001). C) Response surfaces showing the relationship between protein intake 
(Kcal/day) versus carbohydrate and fat content. Response surfaces were fitted with generalized additive 
models (GAMs) using thin-plate splines. D) Body weight difference from initial (4 months) to final (10 
months), showing significant differences between all treatments. Values are expressed as means changes ± 
SEM. *Indicates significant statistical difference from zero with Student’s T test p<0.05. Response surfaces 
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Figure 5.2. (cont.) showing the relationship between protein and carbohydrate intake (Kcal/day) versus 
final body weight in E) 2 and F) 3 dimensions. Dotted line in all surface plots show the standardized chow 
diet composition with a carbohydrate-to-protein ratio of 3:1. In all surfaces, red indicates the highest value, 
while blue indicates the lowest value, with the colors standardized across response surfaces. 
 
used chow diets (3:1 carbohydrate-to-protein ratio) and those that are known to promote longevity 

(10:1 carbohydrate-to-protein ratio). Finally, the least restrictive ADCR protocols (IF1-3, IF4-5, 

and IF7) have similar C:P ratios with decreasing rates of protein, whereas the most restrictive 

ADCR protocols (IF6, IF8-9) and CR group shows the highest C:P ratios (Fig. 5.2B), and localize 

closely to diets that aim to extend lifespan. 

Advances in the field of nutritional geometry have demonstrated the significant effects of 

macronutrient distribution, mainly protein restriction, by modelling the state-space responses of 

animals to varying levels of energy or protein, and how they balance the restrictive nutrient intake. 

In our study, we used this Geometric nutritional framework (GNF) to question whether the 

restriction of calories and protein was sufficient to erase the effects of early-life HFD consumption. 

This approach allows for the three-dimension visualization of any given physiological or 

biochemical parameter; On the x-axis, a limiting macronutrient like protein is loaded, and in the 

y-axis another macronutrient such as fat or carbohydrates, or a physiological outcome are loaded, 

and these two define the spatial distribution of the animals. The third component then, is plotted 

in a heat map with values that range from the minimum (shown in blue) to the maximum (shown 

in red), and is adjusted according to the state-space of the first two components. In Fig. 5.2C, the 

relationship of protein:carbohydrate:fat intake can be visualized for each experimental group, with 

the OL group showing the highest fat consumption (red), and the remaining groups showed a  

lower consumption of fat (blue). 

Given that the animals were provided different levels of calories and P:C, we examined the 

changes in body weight and body composition. Body weight (BW) is presented as the change from 
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beginning of the experimental period (following MER, 4 months) to the end of the treatment period 

(10 months) (Fig. 5.2D). As seen previously, the OL group showed a significant increase in BW  

 

Figure 5.3. Body composition changes following 6-month ADCR. Body composition differences from 
initial (4 months) to final (10 months), showing significant differences for A) fat and B) lean mass. Values 
are expressed as means changes ± SEM. *Indicates significant statistical difference from zero with 
Student’s T test p<0.05. C) Response surfaces showing the relationship between initial body weight and 
initial lean and fat mass (4 months). D) Response surfaces showing the relationship between final body 
weight and final lean and fat mass (10 months). Response surfaces showing the relationship between protein 
and carbohydrate intake (Kcal/day) versus E) final lean and F) fat mass. Response surfaces were fitted with 
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Figure 5.3. (cont.) generalized additive models (GAMs) using thin-plate splines. Dotted line in all surface 
plots show the standardized chow diet composition with a carbohydrate-to-protein ratio of 3:1. In all 
surfaces, red indicates the highest value, while blue indicates the lowest value, with the colors standardized 
across response surfaces. 
 
(129.53 ± 8.94) (p<0.0001), followed by ML (30.85 ± 2.66) (p<0.0001), and CR with a significant 

decrease in BW (70.60 ± 9.56) (p<0.0001). Regarding the ADCR groups, 25% ADCR groups in 

one (IF1), two (IF2), and three-day (IF3) restriction showed no significant difference between 

them, and only IF1 increased BW significantly (p=0.022) (Fig. 5.2D). Next, 50% one day a week 

(IF4) produced no significant effect (p=0.91) in BW, but both IF5 (two-day 50%) and IF6 (three-

day 50%) produced significant reductions in BW (p<0.0001). Only 50% restriction three days per 

week (IF6) produced comparable changes to CR (Fig. 5.2D). Lastly, all 75% restriction ADCR 

(IF7-9) were sufficient to cause a significant reduction in final BW (p<0.001), and only two- and 

three-day 75% restrictions comparable and superior to CR, respectively (Fig. 5.2D). 

Analyzing the macronutrient consumption through nutritional geometry (GNF), we can 

trace changes in body weight in response to the average consumption of each macronutrients. Final 

BW is higher for the OL group with the lowest C:P ratio (22.98:13.13, red) (Fig. 5.2E), whereas 

ML localizes at the at the top of the spatial macronutrient distribution (47.45:9.19, blue) with 

medium range BW, and the CR group localizes closer to the 10:1 C:P ratio for lifespan extension 

(35.24:6.82, black) and has the lowest body weight. For the ADCR groups, mid-ADCR show low-

to-mild changes in BW, whereas ADCR groups with the highest C:P ratios, show the lowest BW 

(Fig. 5.2E). This relationship can also be understood in a three-dimensional representation (Fig. 

5.2F) with an x-, y-, and z-components. 

Body weight changes in response to varying levels of calories indicate adaptive 

mechanisms and different utilization of nutrients. Body composition was measured before and 

after MER, showing no changes for all ADCR groups (data not shown). Body composition changes 
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were assessed comparing the differences at the end of the experiment with the pre-treatment period 

(following MER estimation), and the results for fat and lean mass are shown on Fig. 5.3A and B, 

respectively. As reported previously, fat mass changes were significant for all control groups (OL, 

ML, and CR) (Fig. 5.3A). No significant changes in fat mass were observed with low-ADCR 

protocols (IF1, IF2, and IF3), or one-day 50% restriction (IF4). Dose response changes were 

observed for 50% two and three days per week (IF5 and 6, respectively), as well as all high-ADCR 

protocols (IF7-9) (Fig. 5.3A). On the other hand, lean mass changes were significant for the three 

control groups, as reported previously (Fig. 5.3B). No changes were observed for one- or two-day 

25% ADCR, nor for one- or two-day 50% ADCR. Significant reduction in lean mass was observed 

for 3-day 25% and 50%, as well as all high-ADCR protocols (IF7-9) (Fig. 5.3B). To understand 

the changes in body composition that occur in response ADCR, we used a similar approach to 

GFN using the body weight, lean, and fat mass from the animals before (Fig. 5.3C) and after the 

ADCR protocol (Fig. 5.3D). Before the ADCR treatment, animals show a similar scattering pattern 

of the mean values and appear to be normally distributed (Fig. 5.3C). Following ADCR (6-month 

intervention), animals have adapted and used the excessive or limited amount of nutrients, and 

show scattering patterns that reflect the level of restriction. The unrestricted OL group consuming 

HFD shows the highest final BW, lean, and fat mass (Fig. 5.3D, upper right corner), then the ML 

control shows an intermediate BW, lean and fat mass (Fig. 5.3D, middle), and CR animals localize 

on the bottom left corner of the plot, indicating a low BW, lean, and fat mass (Fig. 5.3D). Next, 

we wanted to explore the individual contribution of macronutrients and their impact on both final 

lean (Fig. 5.3E), and fat mass (Fig. 5.3F).  
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5.4.2. Serum Anabolic Signals from Animals Following Alternate-Day Caloric Restriction. 

Given the changes in body composition in response to long-term ADCR, we sought to explore the 

systemic biochemical changes that occur and can be used as a biomarker for the degree of caloric 

limitation. Serum lipid profile, glucose and anabolic hormone signaling can be found on Appendix 

C Suppl. Table 5.2. No changes were observed in serum cholesterol, HDL-c, nHDL (total 

cholesterol minus HDL), ratio of TC/HDL, or LDL-c. 

 
Figure 5.4. Serum lipid profile following 6-month ADCR. Response surfaces showing the relationship 
between protein or fat consumption (Kcal/day) and final and fat mass (10 months) in relationship with A) 
serum total cholesterol, B) HDL cholesterol (HDL-c), C) Triglycerides, D) non-HDL particles, E) ratio of 
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Figure 5.4. (cont.) total cholesterol to HDL, F) LDL cholesterol (LDL-c), and G) VLDL. Individual values 
are presented on Appendix C Suppl. Table 5.2. Response surfaces were fitted with generalized additive 
models (GAMs) using thin-plate splines. Dotted line in all surface plots show the standardized chow diet 
composition with a carbohydrate-to-protein ratio of 3:1. In all surfaces, red indicates the highest value, 
while blue indicates the lowest value, with the colors standardized across response surfaces. 
 

Significant changes were observed for serum TAG and VLDL, where ML and IF1 (one-day 25%) 

had the highest values (p<0.05), followed by IF2, OL, IF7, IF4, IF3, IF6, IF5, CR, and IF8, and 

the highest 3-day restriction (IF9) had the lowest value (p<0.05) (Appendix C Suppl. Table 5.2). 

Using GNF, we were able to observe the effect of protein or fat consumption and final fat mass, 

on the distribution of serum cholesterol (Fig. 5.4A). Similar state-space representations are 

observed for HDL-c (Fig. 5.4B), nHDL (Fig. 5.4D), ratio of TC/HDL (Fig. 5.4E), and LDL-c (Fig. 

5.4F). Interestingly, protein consumption seems to be predictive of TAG and VLDL, when it’s 

graphed against an adiposity measure (final fat mass) (Fig. 5.4C and G, respectively).  

We then analyzed changes in serum glucose and anabolic signals Insulin, IGF-1 and the insulin 

resistant marker HOMA-IR. Results can be found on Appendix C Suppl. Table 5.2. No differences 

were observed for serum glucose. Serum insulin was higher in animals with the lowest ADCR 

(IF1), followed by IF7, IF2, ML, IF4, IF3, IF8, IF5, and OL, and the lowest values were found for 

CR, IF6, and IF9 (p<0.05) (Appendix C Suppl. Table 5.2). As expected, HOMA-IR values 

followed the same trend as serum insulin. Finally, serum IGF-1 proved to be a good predictor of 

the energy status in ADCR and non-ADCR animals. Animals with lower ADCR at 50% and 75% 

had similar IGF-1 levels to OL, followed by IF1, ML and IF2 (p<0.05), then IF3, IF5, IF8, and 

lastly the groups with the lowest IGF-1 were IF6, CR and IF9 (Appendix C Suppl. Table 5.2). 

When plotted against macronutrient distribution (Fig. 5.5A) or final fat mass (Fig. 5.5B), serum 

glucose shows a uniform pattern across the board. Moreover, HOMA-IR shows that the highest 

fat accretion is indicative of a higher glucose-to-insulin ratio (Fig. 5.5D), but not macronutrient 
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distribution (Fig. 5.5C). Finally, as seen on Appendix C Suppl. Table 5.2, serum IGF-1 is able to 

closely predict the restriction pattern having that the animals with the highest and medium fat mass 

and protein intake have increased IGF-1, whereas the animals with the lowest protein intake and 

lowest fat mass have reduced IGF-1 (Fig. 5.5E and F). 

 
Figure 5.5. Serum IGF-1 and insulin resistant index (HOMA-IR) following 6-month ADCR. A) 
Response surface showing the relationship between protein and carbohydrate consumption (Kcal/day) and 
serum glucose. B) Response surface showing the relationship between protein and fat consumption 
(Kcal/day) and serum glucose. C) Response surface showing the relationship between protein and 
carbohydrate consumption (Kcal/day) and HOMA-IR. D) Response surface showing the relationship 
between protein and fat consumption (Kcal/day) and HOMA-IR. E) Response surface showing the      
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Figure 5.5. (cont.) relationship between protein and carbohydrate consumption (Kcal/day) and serum IGF-
1. B) Response surface showing the relationship between protein and fat consumption (Kcal/day) and serum 
IGF-1. Response surfaces were fitted with generalized additive models (GAMs) using thin-plate splines. 
Dotted line in all surface plots show the standardized chow diet composition with a carbohydrate-to-protein 
ratio of 3:1. In all surfaces, red indicates the highest value, while blue indicates the lowest value, with the 
colors standardized across response surfaces. 
 

 Different tissues are known to be impacted by CR; adipose tissue depots are depleted 

quickly following a short 3-month CR, followed by reproductive organs, kidneys, etc., whereas 

the liver, brain, heart and pancreas among others, are spared (S. E. Mitchell, Tang, et al., 2015). 

Here we assessed the effect of long-term ADCR (6 months) on brain and liver weights. Animals 

with the highest brain weight were OL, ML, IF2, IF4, and IF7 (2.13 ± 0.03, 2.12 ± 0.03, 2.15 ± 

0.04, 2.13 ± 0.02, and 2.12 ± 0.02 g, respectively), followed by IF3 and IF5 (2.11 ± 0.02 and 2.11 

± 0.02 g, respectively), and the lowest CR, IF1, IF6, IF8, and IF9 (2.06 ± 0.01, 2.09 ± 0.02, 2.04 

± 0.03, 2.08 ± 0.02, and 2.06 ± 0.03 g, respectively). Using GNF, we can classify each of the 

groups according to their protein (Fig. 5.6A) or fat consumption (Fig. 5.6B), and observe the spatial 

distribution of the relative brain weight (ratio to final BW). We can observe that animals 

consuming the highest protein and fat mass (OL group) do not possess the highest relative brain 

mass (Fig. 5.6A and B, blue). On the other hand, low to medium ADCR maintain a relative brain 

weight according to their body weights (ML, IF1, IF2, IF3, IF4, IF5, and IF7, yellow or green), 

whereas the highest ADCR (IF6, IF8, and IF9) and CR possess the highest relative brain mass 

(Fig. 5.6A and B, red). Another protected tissue during CR is the liver, and we see that at the end 

of 6 months of ADCR the highest absolute liver weights belong to OL, ML, low-ADCR (IF1-3), 

mid-ADCR (IF4,5), and the lowest 75% ADCR (IF7) (16.05 ± 0.89, 15.24 ± 0.56, 15.01 ± 0.93, 

15.20 ± 1.26, 13.91 ± 0.60, 14.64 ± 0.67, 14.98 ± 1.25, and 14.79 ± 0.79 g, respectively). The 

lowest liver weights corresponded to CR, IF6, IF8, and IF9 (11.81 ± 0.45, 10.60 ± 0.59, 12.34 ± 

0.92, and 11.26 ± 0.50 g, respectively). Nevertheless, relative liver weight was higher for all CR 
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and ADCR groups (except IF6), but lower in the HFD consuming animals (OL group). Using 

GNF, we can observe that relative liver weight remains mostly unchanged by protein (Fig. 5.6C) 

or fat consumption (Fig. 5.6D). 

 

 

Figure 5.6. Relationship of brain and liver mass to final body weight following 6-month ADCR. 
Response surfaces showing the relationship between protein intake (Kcal/day) and A) final lean or B) fat 
mass versus brain mass at the time of collection. Response surfaces showing the relationship between 
protein intake (Kcal/day) and A) final lean or B) fat mass versus liver mass at the time of collection. 
Response surfaces were fitted with generalized additive models (GAMs) using thin-plate splines. Dotted 
line in all surface plots show the standardized chow diet composition with a carbohydrate-to-protein ratio 
of 3:1. In all surfaces, red indicates the highest value, while blue indicates the lowest value, with the colors 
standardized across response surfaces. 
 

5.4.3. Saccharin preference test. 

One of the limitations of chronic CR is the constant sensation of hunger that patients experiment, 

but this can be bypassed by using ADCR and allowing the consumption of 100% of the MER on 

non-restricted days. In our study, we aimed to overcome this limitation and therefore assessed 
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anhedonic/reward behavior as a direct measure of depressive-like behaviors using a saccharin 

preference test. In our study, we used a two-bottle testing paradigm with one drinking bottle that 

contained a solution sweetened with saccharin (0.3% Saccharin in water) and another one with  

 

Figure 5.7. Conditioned water, saccharin consumption and saccharin preference following 6-month 
ADCR. Response surfaces showing the relationship between A) protein, B) carbohydrate, or C) fat intake 
(Kcal/day) and fat mass versus water consumption (ml). Response surfaces showing the relationship 
between A) protein, B) carbohydrate, or C) fat intake (Kcal/day) and fat mass versus saccharin (0.3% 
Saccharin in water) consumption (ml). Response surfaces showing the relationship between A) protein, B) 
carbohydrate, or C) fat intake (Kcal/day) and fat mass versus saccharin preference (saccharin consumption 
in ml/total volume consumed in ml). Response surfaces were fitted with generalized additive models 
(GAMs) using thin-plate splines. Dotted line in all surface plots show the standardized chow diet 
composition with a carbohydrate-to-protein ratio of 3:1. In all surfaces, red indicates the highest value, 
while blue indicates the lowest value, with the colors standardized across response surfaces. 



	 100	

 

plain water. Following habituation to the presence of two bottles, animals were tested overnight 

and the water/saccharin consumption was assessed for each individual animal. The results indicate 

that animals with the highest restriction (CR, IF6, IF7, IF8, and IF9) had the greatest consumption 

of water and saccharin (p<0.05), whereas the OL, ML, and the lower ADCR (IF1-3, IF4-5) had 

the lowest (Appendix C Suppl. Fig. 5.1A and B). However, despite the differences in water and 

saccharin consumption, only IF6 (3-day 50% ADCR) and IF8 (2-day 75% ADCR) showed 

significantly lower saccharin preference (p=0.02 and p=0.05, respectively) compared to CR 

(Suppl. Fig. 5.1C). Using GNF we can observe that lower protein, fat and carbohydrate 

consumption leads to a higher water and saccharin intake (Fig. 5.7A and B), but no appreciable 

differences in saccharin preference (Fig. 5.7C). 

5.4.4. Skeletal muscle gene expression and Tnf modulation by ADCR. 

We previously assessed the effect of skeletal muscle on nutrient sensing genes and inflammatory 

genes, and our findings indicate that CR is sufficient to erase the early-life HFD feeding, 

stimulating protein recycling and myogenesis. In order to characterize the response to prolonged 

ADCR as a suitable alternative strategy to CR, we measured the expression of nutrient sensing 

genes in skeletal muscle given the observed drastic changes in muscle mass (Fig. 5.8). As 

previously described, significant differences were observed in nutrient sensing, protein recycling, 

and myogenesis genes in muscle between OL, ML, and CR, and such differences are apparent in 

the top three panels of the heatmap (Fig. 5.8A). In regard to low-ADCR groups, 1- and 2-day 25% 

ADCR (IF1 and 2, respectively) showed similar patterns of expression between them, and were 

different from 3-day 25% ADCR (IF3). The latter showed a pattern that closely resembled that of 

the CR group. Mid-ADCR group IF4 (1-day 50% ADCR) showed a pattern of expression similar 
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to CR, and was different from both IF5 and IF6 (2- and 3-day 50% ADCR, respectively). Finally, 

high-ADCR groups IF7 and IF8 produced similar effects in the expression of nutrient sensing and 

protein recycling genes, but were different from CR. The highest restriction, 3-day 75% ADCR 

(IF9), produced similar effects to CR and had different expression patterns from the other high-

ADCR groups (Fig. 5.8A).  

Figure 5.8. Gene expression of nutrient sensing and proteostasis related pathways from skeletal 
muscle using qPCR following 6-month ADCR. A) Heatmap with one-way hierarchical clustering 
comparing the overall scaled gene expression pattern of skeletal muscle. B) Principal component analysis 
of the expression of groups in two components and C) loading plot showing the relationship between the 
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Figure 5.8. (cont.) genes analyzed in skeletal muscle. Ellipses show 95% confidence interval for each 
control group. Each dot represents one biological sample. 
 

In order to examine the data as a whole, we performed a principal component analysis 

(PCA) of the gene expression data from skeletal muscle (Fig. 5.8B). PCA project the data onto the 

PCs (principal components) in two dimensions, and such PCs provide a new space of uncorrelated 

variables that best explain the variation in the original data to represent the samples in a succinct 

way. As seen in Fig. 5.8A and B, a similar pattern of expression was observed for CR, IF3, IF4, 

and IF9. OL clustered separately, whereas the ML group was dispersed between OL and CR. 

Lastly, a distinct pattern of expression of nutrient sensing and protein recycling genes was 

observed for IF5-8 (Fig. 5.8B). Comparison of individual ADCR patterns and CR can be observed 

in Suppl. Fig. 5.2. Interestingly, the PCA loading plot, which is a representation of the degree of 

correlation between the tested variables (highly correlated genes appear closer together), shows 

the commonly CR responsive genes Sirt1, Pgc1a, and Lc3b closer together. Genes such as Lkb1, 

mTor, Mstn, Atf4, Akt2, and Fbp2 are at 90-degree angle from CR-responsive genes (Sirt1, Pgc1a, 

and Lc3b), which indicates that there is a degree of negative correlation between them. 

Given the significant impact that CR has on inflammation, we sought to examine the effect 

of long term ADCR on skeletal muscle inflammation, in particular the myokine Tnf that is related 

to muscle cachexia. As seen in Fig. 5.9A, muscle Tnf expression is increased by HFD in the OL 

group, and it’s similar to 3-day 25% ADCR (IF3). Intermediate effects were observed for IF2, IF3, 

IF4, IF5, IF7, and IF9. Finally, the lowest muscle Tnf expression was observed for ML, CR, IF6, 

and IF8. Interestingly, 50% ADCR was the only strategy that seemed to produce a dose-dependent 

effect on Tnf expression (IF4>IF5>IF6), whereas 25% (IF1-3) and 75% ADCR (IF7-9) produced 

a U-shaped effect. Using GNF, we can dissect the effect of protein (Fig. 5.9B) or fat consumption 
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(Fig. 5.9C) and final fat mass on Tnf expression, having that animals that consume the highest 

protein and fat and accrue the highest fat mass have the greater expression of Tnf. On the other  

 

Figure 5.9. Tnf gene expression in muscle following 6-month ADCR. A) Gene expression of Tnf mRNA 
in skeletal muscle from animals at the end of the experiment. Values are expressed as means ± SEM. 
abcDifferent letters between treatments indicate significant statistical difference with Tukey post hoc test at 
p<0.05. Response surfaces showing the relationship between B) protein or C) fat intake (Kcal/day) and fat 
mass versus Tnf mRNA expression in muscle. Response surfaces showing the relationship between D) 
protein or E) fat intake (Kcal/day) and lean mass versus Tnf mRNA expression in muscle. Tnf values are 
normalized to the housekeeping gene RpL7a. 
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hand, medium to high final lean mass accretion is able to predict higher levels of Tnf in skeletal 

muscle, where CR, IF6, and IF8 respond to either low protein (Fig. 5.9D) or low fat (Fig. 5.9E) 

and mount an adaptive low-grade inflammatory response (Fig. 5.9D and E, bottom left corner). 

 

5.5. DISCUSSION 

This study demonstrated the effectiveness of different Alternate Day Caloric Restriction (ADCR) 

protocols as a measure to overcome the shortcomings of chronic CR. Low-, mid-, and high-ADCR 

not only impact body weight and body composition, but also induce significant changes in serum 

biochemical parameters and skeletal muscle transcriptional response. Low-ADCR protocols (IF1-

3) showed increases in body weight and body composition, increased cholesterol/HDL ratio, 

VLDL and TAG, different nutrient sensing, protein recycling, and increased inflammatory signals, 

compared to chronic CR. Mid-ADCR (50%, IF4-6) on more than two days, and high-ADCR (75%, 

IF7-9) produced incremental effects on body weight and body composition; the higher restrictions, 

IF6, IF8, and IF9 produced the biggest decreases in serum biochemical parameters and lipid 

profile, and produced similar transcriptional signatures in skeletal muscle to that of chronic CR. 

By using a novel geometric nutrition framework, this study validates ADCR protocols that 

overcome the limitations of chronic CR and can produce significant changes in body composition 

and biochemical parameters, while stimulating skeletal muscle adaptation, which can be titrated 

to find an optimal balance. 

Using a novel geometric approach to nutritional interventions, our paper addresses for the 

first time the long-term effect of ADCR integrating the multidimensionality and dynamic nature 

of the adaptation to calorie restriction. Previous studies have demonstrated the benefits of using a 
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Geometric Framework for Nutrition (GFN) on diverse contexts such as the nutritional geometry 

of liver disease (Simpson et al., 2018), brain and cognition (Wahl et al., 2016), aging and lifespan 

(Le Couteur et al., 2016; Piper, Partridge, Raubenheimer, & Simpson, 2011), among others, and 

have concluded that the restriction of calories, rather than being the result of overall energy, results 

from the restriction of macronutrients. Formulated laboratory diets contain the three 

macronutrients in different proportions to fulfil a desired function; whether the goal of the study 

is intended for reproduction (Protein-to-carbohydrate ratio of 1:1), or lifespan (Protein-to-

carbohydrate ratio of 1:10), or a chow diet that maximizes both functions simultaneously (Protein-

to-carbohydrate ratio of 1:3) (Simpson, Le Couteur, Raubenheimer, et al., 2017). In our study, 

diets that are used to restrict calories have a ratio that locates between the chow and lifespan 

compositions, and thus the varying proportions of protein/carbohydrate (P:C) can be used to 

explain the adaptation to the titration in ADCR animals. The relationship of P:C (or non-protein 

components) can adequately determine the limiting macronutrient and how that affects metabolic 

parameters; a conserved mechanisms across species is the prioritization of protein intake rather 

than calories or carbohydrates or fat requirements (Simpson, Le Couteur, Raubenheimer, et al., 

2017), and this phenomenon is called protein leverage (Simpson & Raubenheimer, 2005). 

Therefore, given the great benefits to assessing nutritional interventions with general additive 

models (Simpson, Le Couteur, James, et al., 2017), expressing the treatment outcomes in a state-

space relative to the macronutrient consumption will improve the translatability of ADCR 

strategies. To our knowledge, this is the first study that seeks to combine GFN and ADCR to better 

understand metabolic adaptations to calorie restriction. 

A clear consensus exists on the effects of chronic CR; whether the desired effect is lifespan 

extension, reduced oxidative stress, improved insulin sensitivity, improved proteostasis, or lower 
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inflammation, chronic CR is known to positively affect diverse cellular mechanisms that improve 

health span (Fontana & Partridge, 2015). Nevertheless, despite the positive outcomes related to 

CR in different model organisms and human trials, some limitations of such dietary restrictive 

protocols include but are not limited to low patient compliance and translatability (Johnstone, 

2015; Varady & Hellerstein, 2007). The hypothesis of this study is that titration of CR on different 

days and at different energy levels can achieve comparable physiological and metabolic benefits 

to CR. The initial goal was to provide low, medium, and high levels of CR on “fasting” days 

interspersed with “feeding” days to produce changes in body weight and body composition. By 

providing varying levels of chronic restriction, ADCR was able to produce significant changes in 

body weight; lower ADCR was associated with high variability, no changes from baseline, or 

weight gain, whereas mid-to-high ADCR consistently produced weight loss. The most effective 

groups that produced similar weight loss to chronic CR were 50% ADCR for 3 days a week and 

75% ADCR on 2 or more days a week. The changes in body weight observed for the low-ADCR 

protocols demonstrate the limitations or “dangers” of fasting trends in which the subject can 

experience no changes in weight or could induce weight gain and contribute to lower patient 

compliance. On the other hand, mid- and high-ADCR on more than 2 days a week significantly 

and consistently produced weight reduction, which provides a solution to improve patient 

compliance in the clinics. Our surprising findings demonstrate the ability of 50% ADCR for 3 days 

a week and 75% ADCR on 2 or more days a week to produce similar results to chronic CR in 

terms of body weight, but without the constant restriction of calories. 

Changes in body weight due to ADCR constitute the first indication of the effectiveness of 

modified restrictions protocols on health span. In addition to body weight, body composition (fat 

and lean mass) and serum biochemical parameters were also assessed as an outcome of the 
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restriction. Animals with low-ADCR (IF1-3) and the less frequent mid-ADCR (1-day restriction, 

IF4) produced none to very little changes in body composition, and small changes in serum lipids 

and hormones. Restriction of 50% of calories on two or more days and 75% ADCR on 1 or more 

days produced significant reduction in fat and lean mass. Interestingly, our results indicate that the 

long term ADCR can be titrated in a ‘dose’-dependent manner starting with the medium levels of 

restriction and optimized for higher levels of energy limitation avoiding chronic CR. Such 

restrictive patterns could constitute viable alternatives not only for weight loss, but also to improve 

health and reduce disease states. Moreover, despite the general lack of changes in serum lipids, 

TAG and VLDL were affected by the mid- and high-ADCR protocols indicating the influence on 

de novo hepatic lipid synthesis. Serum anabolic hormone IGF-1 proved to be an accurate predictor 

of the restriction level and responded to varying levels of protein intake. Finally, HOMA-IR was 

improved with the highest levels of restriction, which indicates that the metabolic improvements 

related to insulin sensitivity might require greater restriction of calories many times per week. Our 

findings emphasize the versatility of ADCR protocols which can be optimized to accomplish either 

a reduction in body weight, body fat, improvement of lipid profile, or amelioration of insulin 

resistance. 

Previous studies have assessed the effect if short-term CR on the turnover and utilization 

of different tissues, and have established that some tissues are preferentially utilized (adipose 

tissue, spleen, reproductive organs, kidneys and skin), whereas others are protected (liver, 

pancreas, lungs, heart and brain), or are invested onto (gastrointestinal tract) (S. E. Mitchell, Tang, 

et al., 2015). In our study, we wanted to focus on the idea of protected tissues such as the brain 

and the liver, and analyze what are the changes that occur with long-term ADCR. Using GFN, we 

observed that only the animals with the lowest protein content and lowest final lean or fat mass 
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tended to preserve brain tissue relative to their body weight, but the liver appeared to be protected 

by all ADCR groups and ML group. These differential responses could be indicative of the 

metabolic outcomes to each ADCR protocol and require further exploration. Another feature of 

chronic CR that needs to be addressed is related to the constant sensation of hunger that these 

patients experience.  For that purpose, we assessed the anhedonic/reward behavior as a direct 

measure of depressive-like behaviors using two-bottle paradigm for saccharin preference. We saw 

a consistent elevation of water and saccharin consumption for the groups that had the highest 

restrictions (CR, IF6, IF8, IF9), but no differences were observed in terms of saccharin preference. 

The former indicates that the amount of saccharin consumed is related to the increased sensation 

of hunger or reward that does not dissipate, whereas the latter indicates that the water and the non-

nutritive sugar solution are consumed in the same proportion indicating the similar pleasure-

seeking behavior for all animals. This study for the first time combined a behavioral test outcome 

with ADCR titration using GFN, which can be extended in future experiments for the optimization 

of hunger/satiety tests.  

Chronic CR, like protein restriction, is able to activate diverse mechanisms that are related 

to delayed aging (Mercken et al., 2017; Mercken, Crosby, et al., 2013; Simpson, Le Couteur, 

Raubenheimer, et al., 2017); Reduces anabolic responses and cell growth (mTOR, IGF-

1/Insulin/Growth hormone), while improving protein turnover (autophagy and proteasomal 

degradation), nutrient sensing (AMPK, SIRT1), and mitochondrial function (PGC1-a). Although 

such adaptations are beneficial for the overall health of different biological systems and tissues, 

the negative effects that such CR-specific adaptive mechanisms have on skeletal muscle needs to 

be addressed (Simpson, Le Couteur, Raubenheimer, et al., 2017). Skeletal muscle, the largest and 

one of the most metabolically active tissues in the body, is of great concern for young and old 
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individuals undergoing CR. Therefore, given the significant changes in lean mass following 

ADCR, we compared the transcriptional signature of skeletal muscle to that of animals with 

chronic CR. Transcriptional profiles of skeletal muscle indicate that lower restriction levels IF1 

and IF2 (1- and 2-day 25% ADCR) are not sufficient to produce significant changes in skeletal 

muscle gene expression. Interestingly, despite the lack of similarities between IF3 (3-day 25% 

ADCR) and IF4 (1-day 50% ADCR) with CR, both of these groups together with IF9 (3-day 75% 

ADCR) produced similar transcriptional responses to CR of protein recycling and nutrient sensing 

genes. Additionally, low levels of restriction, such as IF3 and IF4 produce genetic patterns that are 

similar to CR and IF9, but are achieved without the changes in lean or fat mass. This result 

accentuates the positive effect of lower levels of restriction to modulate the transcriptional 

response of skeletal muscle, but caution must be exercised when implementing lower ADCR (IF3-

4) given the unwanted weight gain, or the highest ADCR (IF9) that has the highest wasting rate. 

Finally, mid-to-high ADCR, IF5 (2-day 50% ADCR), IF6 (3-day 50% ADCR), IF7 (1-day 75% 

ADCR), and IF8 (2-day 75% ADCR), generated distinct transcriptional patterns from CR while 

decreasing lean and fat mass. Importantly, our study is one of the first to define a happy medium 

restrictive space with either IF5-8 levels of ADCR, where significant changes in body weight, 

body composition, lipid profile, and insulin sensitivity are achieved, and ultimately result in a 

consistent improvement of the nutrient sensing and protein recycling pathways in skeletal muscle. 

Altogether, our results indicate that intermediate levels of restriction are able to produce the desired 

changes in body composition and establish a new transcriptional signature that can be 

advantageous to prevent sarcopenia and wasting.  

Lastly, along with the features of nutrient sensing and protein turnover, muscle 

inflammation is of importance given the size and secretory nature of skeletal muscle. The 
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inflammatory response of muscle was assessed by measuring the expression of the Tnf gene or 

“cachexin”, associated with chronic inflammation and muscle wasting. This study demonstrates 

for the first time, the titration capacity of the inflammatory response in skeletal muscle by using 

ADCR combined with GFN. Lower restrictions (IF1, IF2, IF3, IF4, IF7) are not sufficient elicit an 

adaptive response on muscle inflammation. Higher levels of restriction, IF6 and 8 significantly 

reduced inflammation to the levels of CR, but when the restriction becomes excessive like the case 

for IF9 (highest restriction level), the level of Tnf increases again. The latter highlights the 

importance of the titration of CR and ADCR to optimize the changes in body composition, while 

establishing a personalized and beneficial transcriptional profile of skeletal muscle. Strategies such 

as IF6 and 8 demonstrated great improvement of physiological, biochemical, and metabolic 

parameters, and could minimize cachexia in multiple clinical populations. Optimization of ADCR 

in our study using GFN systematically demonstrated that mid-ADCR is most effective at 

mimicking chronic CR, and that IF6 and 8 represent the superior strategies for the achievement of 

metabolic adaptation to long-term restriction. 

Our study is novel in the context of personalized nutrition because we optimized different 

levels of restriction with a high translatability potential to achieve body composition, biochemical, 

and muscle transcriptional changes. We explored the differences between each ADCR level in the 

context of macronutrient consumption and the observed changes in body mass. This is significant 

given that it paves the way for personalized ADCR strategies in order to achieve full or partial 

adjustments. Future studies should address the impact of isocaloric diets that provide varying 

levels of macronutrients to be able to define the complete state-space following chronic restriction. 

We found that mid-to-high restriction levels like IF6 and IF8 provide the best results for health 

span and should be used to replace the widely used chronic CR protocols. In addition, mechanistic 
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studies are needed to understand the important long-term programming or epigenetic changes that 

occur in skeletal muscle, and examine if they become permanent and can be transgenerationally 

inherited.  

 This study provides validation of modified CR protocols with a high translation potential 

that overcome the limitations of chronic CR. Such ADCR alternatives produce significant changes 

in body composition and biochemical parameters, while stimulating skeletal muscle adaptation, 

and reduced inflammation. Finally, we demonstrate that physiological, biochemical, and 

transcriptional responses can be titrated to find an optimal balance. 
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CHAPTER 6: CALORIC RESTRICTION FOLLOWING HIGH FAT-DIET FEEDING 
EPIGENETICALLY REPRESSES SKELETAL MUSCLE NF- kB SIGNALING AND 

TNF IN MALE RATS 
 

 
6.1. ABSTRACT 

Caloric restriction (CR), without malnutrition, fosters musculoskeletal health. The canonical 

inflammatory marker TNF is able to down-regulate muscle hypertrophy and induce wasting, 

however the epigenetic mechanisms elicited by CR that act on Tnf regulation remains largely 

unknown. The aim of our study was to evaluate the mechanisms by which muscle Tnf gene is 

epigenetically modified, as well as the modifiers that are recruited by CR. In our study, 4-week 

old male Sprague-Dawley rats were fed a high fat diet (HF, 45% Kcal from fat) ad libitum for 4 

months. Animals were then divided into HF ad libitum (OL), maintenance group were fed a control 

diet (ML, 100% energy requirement at baseline adjusted with body weight), and the caloric 

restriction group (CR, 25% energy reduction). The dietary intervention continued for six months, 

at this point animals were sacrificed and muscle samples were collected for gene expression and 

epigenetic analysis. Gene expression in muscle showed a marked decrease in Ikbkε and Tnf 

(premRNA, mRNA and protein) in the CR group, accompanied by Tnf promoter DNA 

hypermethylation. Expression of NAD+-dependent histone deacetylase Sirt6 was increased by CR, 

whereas methyltransferase of H3K9 Suv39h1 was downregulated in CR animals. CR decreased 

promoter and coding region binding of transcription factors (TF) NF-kB (p50) and C/EBP-b within 

in silico-predicted regions. miRNA data mining retrieved miR-19b and miR-181a, and qPCR 

analysis in muscle revealed that CR downregulated the pro-inflammatory miR-19b and increased 

the anti-inflammatory miR-181a and confirmed miR-19b targets (Kdm2a, Zbtb16, Tnfaip3). 

Chronic CR is able to regulate muscle-specific inflammation by targeting the NF-kB pathway as 

well as transcriptional and post-transcriptional regulation of Tnf. 
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6.2. INTRODUCTION  

High fat, calorically dense diet consumption leads to an increased systemic inflammatory state that 

contributes to the development of several chronic metabolic diseases in humans including Obesity 

and Cancer. Skeletal muscle is the largest tissue in the body and a major source of inflammatory 

cytokines and their chronic increase promotes metabolic and immune impairment, which in turn 

can lead to sarcopenia or wasting (Collins et al., 2016; Dai et al., 2016). The transcriptional and 

epigenetic regulation of inflammatory cytokines, like Tumor Necrosis Factor (TNF), has been 

extensively described in immune tissues (T. T. Chen et al., 2017; Cheng et al., 2014; Falvo et al., 

2010; J. E. Lee et al., 2013; X. Li et al., 2017; Palacios et al., 2010; Su et al., 2016; Vella et al., 

2013; Villeneuve et al., 2008; J. Yu et al., 2016; N. Zhang et al., 2016), but no information is 

available regarding non-immune tissues like skeletal muscle. TNF and IL-6 are the main myokines 

(muscle cytokine) that contribute to metabolic regulation, myogenesis and immune function, and 

if dysregulated they can stimulate tissue wasting. 

High-fat (HF) diet induces not only physiological (Helge, 2002; Hotamisligil & Davis, 

2016; Kitessa & Abeywardena, 2016; Kraegen, Cooney, Ye, Thompson, & Furler, 2001; Storlien, 

Pan, Kriketos, & Baur, 1993)  but also genome-wide epigenetic changes in various tissues, which 

are translated into an epigenomic programming of cellular metabolism and inflammation. Both 

DNA methylation and histone modifications can be altered by HF, and disturbance of gene 

expression patterns can be transgenerationally inherited. HF diet produces genome-wide 

epigenetic modifications that impact cellular metabolism and inflammation across many 

generations (Moody, Chen, & Pan, 2017; Y. Zhang et al., 2015). Given the nature of the 

widespread and inheritable nature of these epigenetic modifications, strategies that address not 
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only weight loss, but are able to reprogram the epigenome are needed for the sustained weight 

loss-effect at the cellular level. 

Caloric restriction (CR) without malnutrition has been used as an effective weight management 

strategy, which can restore metabolic function and decrease inflammation (Cava & Fontana, 2013; 

Fontana, 2009; Fontana & Partridge, 2015). Studies have demonstrated the beneficial effects of 

CR on longevity and overall improvements in the quality of life (QOL) (Longo et al., 2015; Weiss 

& Fontana, 2011).  We and others have found that CR is effective at downregulating the Tnf gene 

expression in muscle, leading to a reduction on inflammation-mediated muscle wasting (Atrogin-

1), increase protein recycling (Murf1), whilst increasing myogenic factors (MyoD1, MyoG, Myf5). 

Interestingly, CR downregulates inflammation independently from weight loss (Mercken, Crosby, 

et al., 2013; Robertson & Mitchell, 2013; L. Yang et al., 2016b), but the mechanisms that lead to 

myokine regulation have not been fully described. Moreover, scarce information is available 

regarding the epigenetic effects of CR on myokines, which can have long-lasting anti-

inflammatory effects. A better understanding of the mechanisms that lead to TNF silencing by CR, 

especially in skeletal muscle is critically needed. 

CR is able to modify the epigenome in different tissues, and such actions are thought to be 

mediated by nutrient-sensing epigenetic modifiers like SIRT1, which can alter the acetylation 

status of histone H3 (Bordone & Guarente, 2005; Guarente, 2005; Hasty, 2001). Additionally, CR 

is able to mediate DNA methylation changes that have been associated to the aging and senescence 

processes (Maegawa et al., 2017; Mendelsohn & Larrick, 2017). Early-life exposure to high-fat 

diet epigenetically programs inflammation, which could be “erased” and reprogrammed by chronic 

CR. Therefore, elucidation of the epigenetic mechanism activated by chronic CR can help to 

determine the basis for the transgenerational and muscle-specific impact on inflammation. 



	 115	

Transgenerational modulation of inflammation by CR could help prevent chronic metabolic 

diseases, or lessen the impact of poor nutritional choices. Finally, the elucidation of a CR-

responsive epigenetic pathway that instructs non-immune tissue to create an anti-inflammatory 

environment will provide therapeutic alternatives for the treatment of chronic metabolic diseases, 

such as Obesity. 

6.3. METHODS 

6.3.1. Experimental Design 

In the present study, post-weaning, 4-5-wk-old male Sprague–Dawley rats (N=33) were fed a high 

fat diet (HF, 45% calorie from fat) (Research Diets, Inc., Cat. No. D12451) for 3 months (Fig. 6.1). 

Thereafter, from the time the animals showed an increase in fat mass (15% grams of fat) they were 

randomized into 3 groups: High fat- diet ad libitum (OL), weight maintenance (ML), and chronic 

caloric restriction (CR). Total average daily energy consumption or maintenance energy 

requirement (MER) was calculated (average Kcal/day) for each individual animal in the ML and 

CR groups by feeding AIN-93M (CON, 16% calories from fat) diet for 3 weeks ad libitum prior 

to the start of their individual dietary treatment. During this time, the OL group continued 

consuming HF diet. During this period, food intake was recorded daily and the body weight 

weekly. Following MER estimation, the respective 6-month dietary treatment began where the OL 

group continued to consume HF diet (n=9), the Maintenance group (ML) was fed 100% of their 

individual MER (100% MER) with AIN-93M diet to maintain body weight without weight gain 

(n=12), and finally the Caloric Restriction (CR) group was fed daily 75% of their individual 

calories (25% MER restriction) with AIN-93M supplemented with micronutrients to reach the 

vitamin and mineral levels consumed by MTN animals (n=12). Food intake and body weight were 

measured and recorded weekly during the treatment period. Animals were individually housed 
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with 12-h light/dark cycles, and given free access to water throughout the study. At the end of the 

6-months dietary treatment, animals were euthanized with CO2 after an overnight fast (12 hours) 

to collect blood and tissues for subsequent analysis. To ensure that all rats were presented with 

comparable metabolic and feeding statuses, food was provided starting at 6:00 PM for all groups. 

Food was removed starting at 8:00 PM, and the animals were sacrificed starting at 8:00 AM the 

following day. All applicable institutional and governmental regulations regarding the ethical use 

of animals were followed during this research (University of Illinois Institutional Animal Care and 

Use Committee protocol no. 09112). 

 

Figure 6.1. Experimental Design. Animals were fed a high fat diet (HFD) for 3 months (45% Kcal from 
fat), at which point they were randomized into each of the experimental treatments. Following high fat-
feeding, the animals were switched to a control diet to calculate the maintenance energy requirements 
(MER) for each animal. MTN group received 100% of their MER, whereas the CR group received 75% of 
their MER. HFD group continued on a HFD ad libitum until the end of the study. Body weight was 
measured weekly, and body composition was performed on a monthly basis. The total duration of the study 
was 10 months. 
 

6.3.2. RNA Isolation and Two-Step Real Time qPCR 

Total RNA from Skeletal muscle (Gastrocnemius/ Soleus complex) was isolated using TRI reagent 

(Sigma, St. Louis, MO, USA), followed by Direct-zol™ RNA MiniPrep according to 

manufacturer’s instructions (Cat. No. R2072). Reverse transcription was performed using the High 
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Capacity cDNA Reverse Transcription Kit (Applied Biosystems). Quantitative Real time PCR was 

using the StepOnePlus™ Real-Time PCR System with Power SYBR® Green PCR Master Mix 

(Cat. No. 4367659) using the respective forward and reverse primer for each gene (Appendix D 

Suppl. Table 6.1), and were designed by Vector NTI software (Invitrogen Corporation) and 

synthesized by Integrated DNA Technologies (www.idtdna.com). Standard curves with a slope of 

-3.30 (SEM 0.30) and R2 ≥ 0.99 were accepted. A 60S ribosomal protein (RpL7a) housekeeping 

gene whose expression was not affected by treatment were used to normalize the gene expression 

data. 

6.3.3. Muscle TNF Western Blot 

Total protein from skeletal muscle (50 mg) isolated by adding in 500 ul of protein lysis buffer 

(0·125 MTris–HCl, pH 6·8, 1 % SDS, 0·04 % bromophenol blue and 20 % glycerol, v/v) with 1X 

proteinase inhibitor (Roche Applied Science) and phosphatase inhibitor cocktail 1 and 2 (Sigma-

Aldrich). Then, samples were sonicated with thirty pulses at a power setting of 3 (Fisher Scientific 

Model 100 Sonic Dismembrator). Diluted protein samples (25 mg) were size-fractionated on a 18 

% Tris–HCl polyacrylamide gel and transferred onto a polyvinyl difluoride (PVDF) membrane 

(Bio-Rad Laboratories, Inc.) with a Trans-Blot® Turbo™ Transfer System (Bio-Rad Laboratories, 

Inc.) using the Turbo setting. To investigate TNF protein expression, the transferred PVDF 

membrane was incubated with blocking solution (5% w/v BSA) in TBS/T (20 mmol/L Tris–HCl, 

pH 7.6, 137 mmol/L NaCl, and 0.1% (v/v) Tween-20) for 1 h at room temperature. A rabbit 

polyclonal antibody against TNF (Anti-TNF alpha antibody, Abcam Cat. No. ab6671) diluted 

1:2,000 in the blocking solution with 5% BSA and incubated with the membrane for overnight at 

room temperature before washing with 2% BSA in TBS/T 5 times for 5 min. A goat anti-rabbit 

HRP-conjugated secondary antibody (Kirkegaard & Perry Laboratories, Gaithersburg, MD) was 
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diluted to 1:10,000 in the blocking solution containing 3% BSA and incubated with the membrane 

for 1 h at room temperature (Appendix D Suppl. Table 6.2). After washing 5 times for 5 min in 

the blocking solution containing 1% BSA, the membrane was exposed to the enhanced 

chemiluminescence reagent ECL signal enhancer for 6 min (Amersham G&E, Cat. No. RPN2232). 

Signals from the membrane were detected and quantified by the ChemiDoc XRS imaging system 

(Bio-Rad, Hercules, CA). β-Actin was used as a loading control for the protein expression (Santa 

Cruz Biotechnology, Cat. No. sc-1616). 

6.3.4. Genomic DNA isolation and methylation-sensitive PCR analysis of Tnf  

Frozen muscle (50 mg) was ground in liquid nitrogen and genomic DNA (gDNA) was them 

isolated using ZR Genomic DNA™Tissue MiniPrep (Zymo Research, Irvine, California, Cat. No. 

D3051) per manufacturer’s instruction. gDNA was bisulfite converted using the EZ DNA 

Methylation-Gold Kit (Zymo Research, Irvine, California, Cat. No. D5005) following the 

manufacturer’s instructions.  Quantitative PCR used 20 ng of gDNA as the template using Power 

SYBR Green PCR Master as the reporter. Primers used for each genomic region were designed 

using the Primer Express™ Software (Thermo Fisher Scientific) within CpG sites vidualized in 

the Methprimer website (http://www.urogene.org/methprimer/index.html) (L. C. Li & Dahiya, 

2002), to create six primer sets that targeted the promoter (-5000 bp to 0 bp) or coding region (0 

bp to 2.61 kb) of rat Tnf. Primers were screened in the IDT OligoAnalyzer to minimize dimers and 

hairpin loops. Primer information can be found in Appendix D Suppl. Table 6.1. Data are presented 

as fold change calculated with the  DDCt method. 

6.3.5. Skeletal Muscle Chromatin Immunoprecipitation (ChIP) 

To determine specific histone modifications and NF-kB1 and C/EBPb binding on the promoter 

and coding region of Tnf, ChIP analysis was performed according to a modified protocol (D. Zhou, 
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Wang, Cui, Chen, & Pan, 2015). Briefly, 200 mg frozen liver was ground in liquid nitrogen and 

suspended in PBS. Protein-DNA cross-linking was performed, and sheered on ice by a Sonic 

Dismembrator (Fisher Scientific, model F100) for 40 s at power setting 5 with 2 min cooling 

interval between each burst, four bursts for rat samples. Sheared chromatin incubated with specific 

antibodies (Appendix D Suppl. Figure 4.2), and precipitated with pre-blocked protein G-agarose 

beads (Millipore, Cat. 16-266). A normal rabbit IgG was used as a negative control. Supernatant 

from incubated IgG was saved as the input DNA for each sample. Then protein-DNA complexes 

were eluted and reverse cross-linked. Chromatin DNA was purified using QiaPrep miniprep kit 

(Qiagen, Cat. No. 27106) after proteinase K digestion. Immunoprecipitated DNA was then 

quantified by real-time quantitative PCR using primers specific to the promoter and coding region 

of gene (Appendix D Suppl. Table 6.1). The results were expressed as percent to input DNA. 

Antibodies are listed in Appendix D Suppl. Table 6.2. 

6.3.6. Transcription Factor Binding In Silico Analysis 

Transcription factor binding identification within the promoter and coding region of the rat Tnf 

gene were analyzed using the PROMO tool version 8.3 of TRANSFAC (Farre et al., 2003; 

Messeguer et al., 2002). Sequences were retrieved from Ensembl (ENSRNOT00000079677.1) 

defining the promoter region within 1000 bp upstream of the transcription start site (TSS), and 

within the coding region only the +600 to +700 containing the highest variation in C/EBPb and 

NF-kB1 binding is shown. 

6.3.7. Identification of miRNAs targeting Tnf 3’-UTR 

To identify rat miRNAs that might target inflammatory pathways or the 3’-UTR of Tnf gene, we 

used a three-pronged analysis. First, we used a bioinformatic approach to map the 3’-UTR of 

Rattus norvegicus Tnf gene in miRDB (http://www.mirdb.org/), Targetscan 
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(http://www.targetscan.org/), and microRNA.org (http://34.236.212.39/microrna/home.do) to 

predict miRNAs that interact with Tnf or its pathway. Then, we performed a systematic search in 

PubMed with the keywords “muscle TNF” and “miRNA” for any organism to identify a broadly 

conserved miRNA family across vertebrates that targeted the gene. Finally, we performed a similar 

systematic search in PubMed with the keywords “caloric restriction” and “miRNA” for any 

organism to identify a broadly conserved miRNA family across vertebrates that was targeted by 

CR. The final miRNA candidates were selected based on broadly conserved families that 

overlapped in the in the three approaches. The full list of miRNAs for each approach can be found 

in Appendix D Suppl. Table 6.3. The miRNA that overlapped in the screening process were rno-

mir-19b-3p (MIMAT0000788) and rno-mir-181a-1-5p (MIMAT0000858). Quantification of 

specific miRNA was achieved by performing individual reverse transcription of previously 

isolated RNA for enrichment, followed by qPCR with the commercially available TaqMan probes 

for rno-mir-19b-3p (Assay ID: rno478264_mir, Cat. No. A25576), rno-mir-181a-1-5p (Assay ID: 

rno481485_mir, Cat. No. A25576), following manufacturer’s instructions. All miRNA content 

was normalized to a U6 housekeeping snRNA (NCBI Accession: NR_004394; Assay ID: 001973 

[Cat. No. 4440887]).  

6.3.8. Statistical Analysis 

 A repeated measures ANOVA was used for cumulative caloric intake, body weight and body 

composition changes. A one-way ANOVA was used to analyze the gene expression and protein 

quantification data. Tukey’s LSD was used for post hoc tests with a p value ≤0.05. Significant 

differential expression of miRNA data was defined as a fold change greater than 0.5. Violin plots 

and statistical tests were performed in in R 3.3.2. 
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6.4. RESULTS 

6.4.1. Caloric intake and Body Composition  

Animals were assigned to a high-fat feeding protocol for 3 months until fat mass increased by 10-

15% from the initial measurement. Following the high-fat feeding period, the animals were 

randomly allocated to one of three groups: OL (chronic HF), ML (BW maintenance), and CR (25% 

restriction). Both ML and CR underwent a 3-week period of maintenance energy requirement 

(MER) estimation by feeding control AIN-93 diet and measuring the average caloric intake per 

individual animal. Once the MER was calculated, the ML group was fed 100% of their MER to 

prevent overfeeding, and the CR group was given 75% of their individual MER. Cumulative 

caloric intake for each group from the start of the dietary treatment are shown in Fig. 6.2A. Caloric 

intake was used to define the separation between groups, and so the OL group had a significantly 

higher intake starting from week 4 of dietary intervention, compared to ML and CR.   

Body weight changes were recorded weekly, having that by week 4 of dietary intervention 

significant differences between all groups were observed (OL: 517.34 ± 5.34 g, ML: 468.58 ± 7.42 

g, CR: 440.43 ± 9.85 g), and such differences were maintained throughout the experiment (Fig. 

6.2B). Body composition changes for each group can be observed in Fig. 6.2B. Body weight 

incremented weekly for the OL group, as shown by the final fat mass gain of 75.62 ± 8.24 g and 

26.97 ± 4.93 g of lean mass gain, compared to the initial measurement (beginning of dietary 

intervention). The ML group was used to assess changes following maintenance of body weight, 

as such, we observed a final fat mass gain 7.36 ± 2.24 g and 7.64 ± 2.76 g of lean mass, and 

statistically different from OL (p<0.0001). The ML group showed a 1:1 ratio of fat-to-lean mass 

gain, whereas the OL group showed a 3:1 increment ratio. Lastly, the CR group significantly 
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decreased both final fat (-40.09 ± 5.91 g) and lean mass (-57.89 ± 3.57 g), showing a slight 

preferential wasting coming from lean mass (1:1.44 fat-to-lean) (Fig. 6.2B). 

	

Figure 6.2. Caloric Intake and Body Composition of changes in CR animals following a HF diet. A) 
Cumulative daily caloric intake highlights the energy consumed based on the energy requirements for each 
experimental group. Different symbols indicate significant statistical difference with Tukey post hoc test 
using repeated measures ANOVA at p<0.05: ‡ ML vs. OL; * CR vs. OL. B) Body composition changes 
were analyzed with EchoMRI-700 Body Composition Analyzer showing a sustained change in fat and lean 
mass for all animals at week 2. Body weight changes can be observed in the lines connecting each time 
point, whereas fat (yellow bars) and lean (red bars) mass is presented as a proportion to body weight 
changes.  Values are expressed as means ± SEM. Different symbols indicate significant statistical difference 
in lean mass (‡), fat mass (*), and body weight changes (ABC) with Tukey post hoc test using repeated 
measures ANOVA at p<0.05. 
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6.4.2. Skeletal Muscle Tnf Expression and Protein Content 

Given the preferential loss of lean mass in CR, muscle cachexia was assessed by measuring the 

gene expression of Nfkb1 and Tnf, both known markers of skeletal muscle wasting. Surprisingly, 

CR group showed increased expression of Nfkb1 compared to OL (p<0.05), but a significant 

decrease in its activation kinase Ikbke (Fig. 6.3A), together with a significant upregulation of the 

Inhibitor of NF-kB (Nfkbia) or IKBa. No changes were observed in TNF receptors Tnfrsf1a and 

Tnfrsf12a, and upstream kinase Ripk1, as well as Cebpb, Rela (p65), or Ikbkg between all groups 

(Fig. 6.3A).  

 

 

Figure 6.3. Violin Plots of the Distribution of Transcription Rate, Gene and Protein Expression of 
TNF in Skeletal Muscle of CR Rats Following HF Diet. A) Gene expression distribution of TNF 
receptors Tnfrsf1a and Tnfrsf12a, Ripk1, Nfkb1 (p50), Rela (p65), Nfkbia (Ikba), Ikbkg, Ikbke, Tnf mRNA 
and pre-mRNA. abc Different letters indicate significant statistical difference with Tukey post hoc test at 
p<0.05. B) TNF protein content in skeletal muscle shown in representative blots (left) and quantification of 
the ratio to Actinβ (right). abc Different letters indicate significant statistical difference with Tukey post 
hoc test at p<0.05. 
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Next, expression of mature Tnf RNA was significantly reduced by ML and CR, compared 

to OL, whereas active translation assessed by measuring immature Tnf RNA content was only 

significantly reduced for CR, compared to OL (Fig. 6.3A). Given the marked reduction in Tnf 

transcription, we assessed the content of TNF protein in skeletal muscle. Similar to premRNA and 

mRNA levels, CR was able to significantly reduce TNF protein expression, compared to ML and 

OL (Fig. 6.3B). 

6.4.3. DNA Methylation Analysis of Tnf Promoter 

Following assessment of mRNA and protein measurement of TNF in muscle, we aimed to explore 

the changes in DNA methylation that would lead to an alteration of the transcriptional control of 

the Tnf gene. DNA methyltransferases are responsible for changes in DNA methylation both 

maintenance (Dnmt1) and de novo methylation (Dnmt3b). 

Gene expression of Dnmt1 was decreased by CR (p<0.05), compared to OL indicating 

alterations in methylation maintenance (Fig. 6.4A). No significant changes were observed for de 

novo methyltransferase Dnmt3b (Fig. 6.4A). Promoter DNA methylation is known to regulate 

gene transcription; for that reason, DNA methylation changes were assessed at 5’-upstream sites 

of the Tnf gene (-4850 to -4789 bp, -2922 to -2834 bp, -1902 to -1832 bp, -1018 to -950 bp, and -

253 to -155 bp) (Fig. 6.4B). Significant changes in 5’-upstream methylation were observed at -

1018 to -950 bp, where the CR group showed the highest methylation at this site (p<0.05), followed 

by and ML and OL groups that showed the lowest levels of methylation (Fig. 6.4C). Other regions 

within the promoter displayed a trend towards a decrease for CR, but were not statistically 

significant. 
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Figure 6.4. Violin Plots of the Distribution of DNA Methyltransferases and DNA Methylation from 
Tnf Promoter in Skeletal Muscle of CR Rats Following HF Diet. A) Gene expression distribution of 
Dnmt1 and Dnmt3b. abc Different letters indicate significant statistical difference with Tukey post hoc test 
at p<0.05. B) MSP primers for Tnf promoter methylation analysis are found within -4850 to -4789bp, -1902 
to -1832bp, -1018 to -950 bp, -253 to -155 bp. (―) Red line within the diagram depicts the input sequence 
of 5000 bp upstream of Tnf TSS; (―) Black line within the diagram depicts the intensity of GC percentage 
(%GC) within 5000 bp upstream of Tnf TSS; (―) Blue line within the diagram depicts the ratio of observed 
vs. expected CpG (O/E CpG) within 5000 bp upstream of Tnf TSS; (||||) Vertical red lines within the diagram 
depict the Individual CpG sites within 5000 bp upstream of Tnf TSS; (Û) Yellow double arrows within the 
diagram indicate the approximate location of each primer within 5000 bp upstream of Tnf TSS. C) DNA 
Methylation percentage (%) within each region analyzed with MSP primers. Data are presented as mean 
values ± SEM. abc Different letters indicate significant statistical difference with Tukey post hoc test at 
p<0.05. 
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6.4.4. Chromatin Immunoprecipitation (ChIP) and In silico Transcription Factor binding  

Together with DNA methylation, epigenetic modification such as histone tail modifications have 

a strong impact on the availability of the underlying DNA sequences to transcription factors and 

transcriptional machinery. For that reason, we assessed transcription factor binding, namely NF-

kB (p50) and C/EBP-b, and histone 3 lysine 4 trimethylation (H3K4me3) and histone 3 acetylation 

(H3Ac) as marks of a permissive chromatin (Yan & Boyd, 2006). As seen in Fig. 6.5A, Tnf from 

Rattus norvegicus has a highly conserved promoter, and coding region mainly spanning exons, 

and portions of the 3’-UTR. Both NF-kB (p50) and C/EBP-b binding was increased for the OL 

group within the promoter and along the coding region (Fig. 6.5C & D), compared to the IgG 

negative control (Fig. 6.5B). OL showed a consistent NF-kB (p50) binding along the Tnf gene, 

whereas C/EBP-b showed a higher peak within Intron 1-2 (+614 to +688 bp) (Fig. 6.5C & D). 

Both CR and ML displayed a decreased NF-kB (p50) and C/EBP-b binding within the promoter 

and coding region of Tnf. Activating histone marks H3K4me3 and H3Ac were slightly increased 

within the first exon of Tnf (Fig. 6.5E & F), whilst no changes were observed for OL for these two 

marks.  

To characterize the binding sites within the promoter and coding region of Tnf, an in silico 

analysis was performed to define the regions of highest NF-kB (p50) and C/EBP-b density. Using 

a consensus sequence 5'-GGRNNYYCC-3' for NF-kB (p50) and 5'-T[TG]NNGNAA[TG]-3' for 

and C/EBP-b, we mapped the predicted binding sites. Binding of NF-kB (p50) has numerous cis-

elements within the promoter of rat Tnf, and the sequences are can be found in Fig. 6.6A. Given 

the increased binding of NF-kB (p50) within intron 1-2, we found that 3 different binding sites are  
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Figure 6.5. NF-kB and CEBP-b Transcription factor binding and Histone modifications within the 
Tnf gene. A) Phylogenetic basewise conservation PhyloP (-Log p-value) from 100 vertebrates of the Tnf 
gene. Each site of corresponds to the depicted 5’-upstream region or within the Tnf rat gene. B) IgG 
(negative control), C) NF-kB (p50 subunit) (inset: consensus sequence), D) CEBP-b (inset: consensus 
sequence), binding within each genomic region depicted in the Tnf gene diagram. E) Histone 3 Lysine 4 
trimethylation (H3K4me3), and F) Histone 3 Acetylation (H3Ac) modifications within each genomic 
region depicted in the Tnf gene diagram. Data are presented as mean values ± SEM. ‡, * Different symbols 
within each site indicate significant statistical difference with Tukey post hoc test at p<0.05. ‡ ML vs. OL; 

* CR vs. OL. 
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Figure 6.6. In silico Prediction of NF-kB and CEBP-b Binding Sites within the Tnf gene. Consensus 
sequence and individual predicted binding sites and cis-element within the 5’-upstream region or within the 
Tnf rat gene for A) NF-kB (p50 subunit) and B) CEBP-b. C) DNA methylation percentage of Tnf coding 
within +540 to +604bp. (―) Red line within the diagram depicts the input sequence of Tnf coding region; 
(―) Black line within the diagram depicts the intensity of GC percentage (%GC) of Tnf coding region; (―) 
Blue line within the diagram depicts the ratio of observed vs. expected CpG (O/E CpG) of Tnf coding 
region; (||||) Vertical red lines within the diagram depict the Individual CpG sites of Tnf coding region; (Û) 
Yellow double arrows within the diagram indicate the approximate location of each primer of Tnf coding 
region; (   ) Blue regions within the diagram indicate CpG island prediction of Tnf coding region. Data are 
presented as mean values ± SEM. abc Different letters indicate significant statistical difference with Tukey 
post hoc test at p<0.05. 
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found within the same region as seen in Fig. 6.5C. On the other hand, C/EBP-b has fewer binding 

site within the promoter of Tnf (Fig. 6.6B), and can also bind the same genomic location found for 

C/EBP-b ChIP (Fig. 6.5D). Interestingly, coding region DNA methylation within Intron 1-2 (+540 

bp to +604 bp) was significantly increased for the OL group, compared to both the ML and CR  

groups (Fig. 6.6C). Next, we assessed gene expression of several histone modifiers (histone 

deacetylases, methyltransferases and demethylases) in skeletal muscle samples from animals. 

Neither histone deacetylase Hdac3 nor NAD+-dependent deacetylase Sirt1 were affected by CR, 

although an increasing trend was observed for the latter (Fig. 6.7A).  

 

Figure 6.7. Violin Plots of the Distribution Gene Expression of Chromatin Modifiers in Skeletal 
Muscle of CR Rats Following HF Diet. A) Gene expression distribution of histone deacetylases Sirt1, 
Sirt6, and Hdac3, B) histone demetylase Kdm6b and C) histone methyltransferases Kmt2b, Ezh2, and 
Suv39h1. Data are presented as mean values ± SEM. abc Different letters indicate significant statistical 
difference with Tukey post hoc test at p<0.05. 
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Gene expression of another NAD+-dependent deacetylase, Sirt6 was highly induced by 

chronic CR, compared to ML and OL (Fig. 6.7A). Lysine-Specific Demethylase 6b (Kdm6b) 

showed an increasing trend for CR, but was not statistically significant (Fig. 6.7B). Likewise, 

histone methyltransferases Lysine N-Methyltransferase 2b (Kmt2b) and Enhancer of Zeste 2 

(Ezh2) were unchanged by treatment, but the Suppressor of Variegation 3-9 Homolog 1 (Suv39h1), 

which targets specifically H3K9 methylation, was suppressed by CR, compared to OL and ML 

(Fig. 6.7C).  

6.4.5. miRNA Analysis 

To define the epigenetic mechanisms at play during CR that are able to revert the HF-induced 

epigenetic program, we sought to explore the involvement of miRNA in skeletal muscle 

inflammation regulation. Following the bioinformatics analysis using Tnf 3’-UTR with online 

databases, PubMed search with algorithms that target “muscle Tnf” AND “miRNA” and “caloric 

restriction” AND “miRNA”, we found a total of 207 miRNA. Of the 207 miRNAs, 37 unique 

miRNA that are able to target the Tnf 3’-UTR region were identified, whereas 83 were found with 

“muscle Tnf” and “miRNA” algorithm, and 155 were observed for “CR and miRNA”. A total of 

2 miRNA that overlapped for all three strategies were selected, both rno-mir-19b-3p and rno-mir-

181a-5p are broadly conserved miRNAs that are related to inflammation or Tnf mRNA (Fig. 6.8A). 

rno-mir-181a targets the 3’-UTR of the Tnf gene (Fig. 6.8B), and its expression can be found in 

Fig. 6.8C.  

Anti-inflammatory miR-181a-5p was decreased in OL, and was significantly different 

from ML and CR (p<0.05) (Fig. 6.8C). Moreover, LRR Binding FLII Interacting Protein 1 

(Lrrfip1) a known repressor of Tnf, whose function is complimentary to mir-181a-5p, was reduced 
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in ML and CR groups, compared to OL (Fig. 6.8D). Moreover, mir-19b-3p is able to target the 

repressors  

Figure 6.8. Database Mining and Expression of miRNA targeting NF-kB Signaling and Tnf Expression in 
Muscle. A) Venn diagram depicting the results from miRNA database and PubMed mining, showing an 
overlap for rno-mir-181a-5p and rno-mir-19b-3p (Appendix D Suppl. Table 6.3). B) rno-mir-181a-5p 
directly targets the Tnf 3’-UTR. C) Violin plot of distribution of the fold change in rno-mir-181a-5p in 
skeletal muscle. D) Violin plot of the distribution of TNF inhibitor, Lrrfip1, in skeletal muscle (inset: 
binding sequence). E) rno-mir-19b-3p directly targets the 3’-UTR of Kdm2a and Tnfaip3. F) Violin plot of 
distribution of the fold change in rno-mir-19b-3p in skeletal muscle. G) Violin plot of the distribution of 
NF-kB inhibitors, Kdm2a, Zbtb16, and Tnfaip3, in skeletal muscle. Data are presented as mean values ± 
SEM. abc Different letters indicate significant statistical difference with Tukey post hoc test at p<0.05. 
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of NF-kB signaling (Rnf11, Kdm2a, Tnfaip3, Zbtb16), and thus its increase will lead to an 

overstimulation of NF-kB and the downstream inflammatory pathway (Gantier et al., 2012). Fig. 

6.8D shows a representative binding site of mir-19b-3p to the 3’-UTR of Kdm2a and Tnfaip3. In 

skeletal muscle, OL group showed the highest expression of mir-19b-3p, followed by ML and CR 

(p<0.05) (Fig. 6.8E). Additionally, the inhibitors of NF-kB signaling, Kdm2a, Zbtb16, and Tnfaip3 

are consistently increased by CR, compared to OL and ML (p<0.05) (Fig. 6.8F). Rnf11 is not 

adequately annotated in the rat genome, therefore the analysis was not performed. 

A summary of the results can be observed in Fig. 6.9, where high-fat diet or its associated 

chronic inflammatory state are able to stimulate receptors within the muscle cells that lead to the 

activation of Inhibitor of Nuclear Factor Kappa B Kinase (IKK), which phosphorylates the 

Inhibitor of Nuclear Factor Kappa B (IkBa) and promote its proteasomal degradation (Fig. 6.9A). 

Following activation of NF-kB (RelA/p50 complex), NF-kB translocates to the nucleus where it 

can bind cis-elements within the promoter and coding region of Tnf and enhance transcription 

aided by the decreased promoter DNA methylation in response to high-fat feeding (Fig. 6.9B). 

Other factors that are mediated by high-fat diet, such as C/EBP-b also bind the promoter and 

coding region to produce a similar effect. Following transcriptional activation, premRNA from 

Tnf is exported out of the nucleus where it matures (7-mG cap, poly A tail, and splicing), forming 

the mature mRNA that can be translated into TNF protein (Fig. 6.9C). CR is able to Inhibit IKK 

expression (Fig. 6.9A), NF-kB, and C/EBP-b binding (Fig. 6.9B), as well as increase promoter 

methylation. Chronic CR downregulated the transcriptional activation (premRNA) of Tnf, as well 

as its mRNA and protein expression (Fig. 6.9C). Furthermore, CR is capable of upregulating miR-

181a which depletes Tnf mRNA (Fig. 6.9D), and downregulates miR-19b which targets the 

inhibitors of NF-kB (Fig. 6.9E), leading to the regulation of the inflammatory pathway. 
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Figure 6.9. Summary of the Effects of Chronic CR on NF-kB Signaling and Tnf Expression in Skeletal 
Muscle. A) Chronic high-fat diet or its associated chronic inflammatory state are able to stimulate receptors 
within the muscle cells, leading to the activation of Inhibitor of Nuclear Factor Kappa B Kinase (IKK), 
which phosphorylates the Inhibitor of Nuclear Factor Kappa B (IkBa) and promotes its proteasomal 
degradation. B) Following activation of NF-kB (RelA/p50 complex), NF-kB translocates to the nucleus 
where it can bind cis-elements within the promoter and coding region of Tnf and enhance transcription 
aided by the decreased promoter DNA methylation in response to high-fat feeding. Other factors that are 
mediated by high-fat diet, such as C/EBP-b also bind the promoter and coding region to produce a similar 
effect. C) Following transcriptional activation, premRNA from Tnf is exported out of the nucleus where it 
matures and forms mRNA that can be translated into TNF protein by the ribosomal machinery. CR is able 
to Inhibit IKK expression (Panel A), NF-kB, and C/EBP-b binding, Suv39h1 expression, and increase Sirt6 
(Panel B), as well as increase promoter methylation that leads to the transcriptional downregulation of Tnf, 
mRNA and protein expression (Panel C). D) Furthermore, CR is capable of upregulating miR-181a that 
recruits the RNA-induced silencing complex (RISC) to mediate the degradation of Tnf mRNA, and E) CR 
also downregulates miR-19b which targets the inhibitors of NF-kB, which fosters the redundant 
downregulation of the inflammatory pathway. 
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6.5. DISCUSSION 

This study demonstrated for the first time the reprogramming effect of chronic CR on skeletal 

muscle inflammation, which establishes an adaptive epigenetic response to prevent inflammation 

and cachexia. Rats were assigned to life-long HF (OL), early-life HF with weight maintenance 

(ML), or early-life HF with chronic 25% CR (CR). Animals undergoing CR decreased expression 

of Ikbkε and Tnf (premRNA, mRNA and protein), despite the Nfkb1 increase, compared to OL and 

ML. Tnf promoter DNA methylation was increased by CR, despite Dnmt1 reduction. Moreover, 

gene expression of Sirt6 and Suv39h1 were altered by CR, although no changes in Tnf H3K4me 

or H3Ac were observed. CR prevented promoter and coding region binding of TFs NF-kB (p50) 

and C/EBP-b within in silico-predicted regions. Finally, miRNA data mining identified miR-19b 

and miR-181a, and analysis in skeletal muscle revealed that CR downregulated the pro-

inflammatory miR-19b and increased the anti-inflammatory miR-181a together with the confirmed 

miR-19b targets. Chronic CR is able to regulate muscle-specific inflammation by targeting the 

NF-kB pathway and repressing transcription of Tnf through promoter DNA methylation and 

promoter and coding region TF inhibition, as well as blunting inflammatory miRNA. 

Chronic CR is regarded as a safe and effective weight loss strategy, and is associated with 

increased lifespan and improved metabolic health (Cava & Fontana, 2013; Fontana, 2009; Fontana 

& Partridge, 2015). To our knowledge, this is the first study that includes a control group (ML) 

that will facilitate the separation of the CR-specific effects taking into account early life-HF, while 

maintaining BW and avoiding overfeeding. We observed a marked separation of not only body 

weight in our experimental groups, but a positive relationship between the caloric intake and the 

body composition, having that CR preferentially used muscle mass as a dynamic reservoir of 

energy. Together with this shift in lean mass, CR was able to turn off inflammatory mediators such 
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as Ikke and Tnf, compared to its HF-fed counterparts. As reported in previous studies, CR (%) is 

able to regulate muscle inflammation in aged rats in a muscle-type specific manner similar to 

younger animals (Phillips & Leeuwenburgh, 2005; L. Yang et al., 2016a). Therefore, CR without 

malnutrition is effective at decreasing fat and lean mass, as well as inflammation, to overcome the 

effects of early-life HF feeding. 

Epigenetic regulation of inflammatory genes has been extensively described in immune 

tissues (Falvo et al., 2010), but other metabolically active tissues such as the liver, adipose and 

more importantly skeletal muscle, are able to transform dietary cues into an immunologic response 

(Oh et al., 2016; Pedersen & Hojman, 2012). To our knowledge, we are the first to describe a novel 

mechanism by which CR makes use of the epigenetic machinery to repress NF-kB signaling and 

specifically TNF expression in skeletal muscle. Despite the decreased Dnmt1 expression in CR 

muscle, Tnf promoter methylation is in accordance with the transcription rate reduction (Tnf 

premRNA), which in turn limits the amount of mRNA generated and leads to decreased TNF 

protein content in muscle of CR animals. Intronic DNA methylation is a poorly understood, but 

warrants exploration given the marked reduction in the CR and ML groups, possibly revealing an 

unknown regulatory element within the coding region of the gene. In addition, CR is able to block 

promoter and coding region binding of TFs such as NF-kB and C/EBP-b, which are known 

modulators of inflammation in response to systemic inflammation or dietary factors (Ertunc & 

Hotamisligil, 2016; Gregor & Hotamisligil, 2011; Hotamisligil, 2017a, 2017b). Decreased binding 

of such TFs speaks to the ability of CR to block chromatin accessibility to in silico predicted 

binding sites that are needed for activation of the Tnf gene (Falvo et al., 2010). Such blocking 

might be related to the shifts in expression of chromatin modifiers Sirt6 and Suv39h1, which could 

directly affect Tnf accessibility or indirectly instruct inhibitors of inflammation (IKBa) to regulate 
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the NF-kB pathway and TNF. Nuclear NAD+-dependent histone deacetylase, SIRT6, is able to 

inhibit expression of NF-kB (p65 subunit) and by altering H3K9 acetylation on NF-kB target genes 

(Kawahara et al., 2009; Lappas, 2012; Mendes, Lelis, & Santos, 2017; Tilstra, Clauson, 

Niedernhofer, & Robbins, 2011). Additionally, SIRT6 monoubiquitinates cysteine residues within 

the pre-SET (neighboring SET) domain of SUV39H1, leading to its displacement from the IkBa 

locus, and in turn IkBa is transcribed to sequester NF-kB within the cytosol (Santos-Barriopedro 

et al., 2018), which is in accordance with the upregulation of Nfkbia (IKBa) in CR muscle. By 

ensuring the persistent blocking of TFs within cis-regions of the Tnf gene and by modulating the 

expression of modifiers, chronic CR can reprogram skeletal muscle inflammation to prevent 

wasting and encourage myogenesis (Cerletti et al., 2012). 

The mechanism we describe is novel, given that no efforts have been made to understand 

muscle inflammation and how dietary interventions like CR act to ameliorate the deleterious 

effects of HF diet. HF consumption is able to produce long-lasting modifications to the epigenome, 

from genome wide DNA methylation to chromatin accessibility, and miRNA expression. miRNAs 

are small non-coding nucleotides that direct the multiprotein complex RNA-induced silencing 

complex (RISC) to degrade target genes, adding another layer of epigenetic regulation. In our 

study, we used miRNA data mining and current literature to select for miRNAs that can control 

inflammation and Tnf in skeletal muscle. By using this three-pronged approach we found two 

miRNA that can interfere with NF-kB signaling (miR-19b) and TNF expression (miR-181a). CR 

not only can prevent the expression of Tnf (pre-mRNA, mRNA and protein), but can also increase 

miR-181a to bind Tnf ’s 3’-UTR, leading to its RISC-mediated degradation. Similarly, CR 

selectively inhibits miR-19b, a negative regulator of NF-kB signaling inhibitors (Kdm2a, Tnfaip3, 

Zbtb16), leading to increased NF-kB-inhibitor expression and Tnf modulation. Gantier et al. 
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(Gantier et al., 2012) proved that miR-19b directly regulates the expression of Kdm2a, Tnfaip3, 

and Zbtb16 through direct binding on the 3’-UTR, and ablation of the region prevented miR-19b 

binding. ZBTB16 (or PLZF) is thought to be a substrate-recognition component of the E3 ubiquitin 

proteasome and a powerful transcriptional repressor of NF-kB, as seen in HAT1-induced NF-kB 

signaling inactivation through the formation of a novel repressor complex (ZBTB16/HDAC3/NF-

kB) (Sadler et al., 2015). Moreover, TNFAIP3 is induced by TNF and has both ubiquitin-ligase 

(E3-ligase) and deubiquitinase roles; it deubiquitinates RIPK1 Lysine-63 polyubiquitin chains and 

catalyzes Lysine-48 polyubiquitination, as well as deubiquitination of NEMO/IKK (upstream of 

NF-kB) (S. C. Lin et al., 2008), thus promoting proteasomal degradation and termination of NF-

kB signaling. Finally, KDM2A (or FBXL11) is known to inhibit NF-kB signaling by 

demethylating Lysine-218 and -221, and overexpression of KDM2A inhibits NF-kB activity (Lu 

et al., 2010). Consequently, CR is able to activate anti-inflammatory miR-181a that destabilizes 

Tnf mRNA, and increase selective NF-kB inhibitors through directed silencing of anti-

inflammatory miR-19b. 

Novel epigenetic mechanisms that respond to chronic CR are vital to understand the 

immunometabolic regulation that occurs in large, metabolically active non-immune tissues like 

skeletal muscle. Transcriptional regulation through DNA methylation and TF binding inhibition, 

as well as miRNA activation are needed to ensure that muscle cells function correctly during 

calorie restriction. We and others have characterized the transcriptional signature of muscle in 

response to CR and have defined the beneficial effects, which lead to decreased wasting, 

senescence, and aging. However, several reports have pointed out the limitations of long-term CR 

as being a poorly sustainable dietary strategy, and thus not entirely translatable to human subjects. 

The titration of CR that allows for reprogramming of inflammation (promoter methylation, TF 
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inhibition, and miRNA), is vital to delineate a viable and highly translatable restriction protocol. 

Further exploration of the mechanisms that respond to CR entail the generation of a viable animal 

or cell culture experiment, which is not available to date. Nevertheless, we have uncovered a robust 

epigenetic silencing mechanism used by CR to block inflammation and prevent muscle wasting. 

We describe for the first time that CR, in a series of coordinated efforts, redundantly silences 

inflammation by employing all the epigenetic machinery. 

Chronic CR is able to regulate muscle-specific inflammation by targeting the NF-kB 

pathway and repressing transcription of Tnf, which can have significant effects in obese individuals 

with sarcopenia or those that undergo cachexia. Through a series of redundant epigenetic signaling 

pathways, chronic CR prevents inflammation in skeletal muscle and leads to a decrease in TNF 

secretion. Future studies will require the study of the CR-responsive histone modifications that can 

modulate inflammatory genes and promote protein recycling and myogenesis. The activation of 

the epigenetic machinery evidenced by increased promoter DNA methylation and TF inhibition, 

together with anti-inflammatory miRNA are examples of the powerful and long-lasting effect of 

CR. 
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CHAPTER 7: FUTURE DIRECTIONS 

 

Given the critical role that skeletal muscle has in homeostatic regulation, in addition to the intricate 

relationship between inflammation and metabolism, the exploration of mechanisms that modulate 

skeletal muscle inflammation and specifically TNF signaling requires attention. Animal models 

provide a good study subject for the exploration of dietary interventions and whole-body 

homeostasis and inflammation; however, in situ manipulation of signaling pathways becomes 

challenging. Cell culture models provide an excellent tool for the manipulation of signaling 

pathways; therefore, the establishment of a model that mimics the conditions of CR in animals is 

necessary. Utilization of a specialized cell culture model to mimic physiological conditions, while 

being able to manipulate targeted epigenome modifiers will generate unique information that could 

not otherwise be obtained from in vivo animal models. Future studies are needed where primary 

isolated myofibers exposed to in vitro CR conditions are studied, thus thoroughly exploring the 

genetic and epigenetic mechanisms that drive TNF expression. 

 Research conducted in out lab aimed to address this issues by comparing primary isolated 

myoblasts with commercially available L6 rat myoblasts L6 (ATCC® CRL-1458™). We first aimed 

to differentiate these cells using diverse protocols: Hydrocortisone/Dexamethasone (H&D) media 

containing 10% FBS + 5% Horse Serum + 50 uM hydrocortisone + 0.1 uM dexamethasone, or 

Azacitidine media containing 20 uM azacytidne with 5% horse serum for 3 days, then changed to 

10 %FBS + 2% horse serum until myotubes are formed, or lastly Galectin-1 with serum free 

DMEM with 200 ng/mL Galectin-1. Unfortunately, cells within the last two differentiation 

conditions (Azacitidine and Galectin-1) did not yield the desired myofiber phenotype. Therefore, 

we continued hereafter with the H&D media that yielded the expected myofiber fusion following 
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a 4-week differentiation period (Fig. 7.1A). However, upon closer inspection of the primary cell-

derived myofibers, fluorescent staining with Hoechst (red dye, nucleus) and Mitotracker (green 

dye, mitochondria) showed significant morphological deviations from the L6 control myofibers 

(Fig. 7.1B). Similar complications related to the differentiation protocol and contamination of the 

culture prompted us to continue the proposed experiments with L6 myofibers, which require a 

shorted differentiation period (10 days, Dif10) and easier differentiation media (DMEM +2% Fetal 

bovine serum +Penicilin/Streptomycin). In the following experiments L6 myofibers (Dif 10) were 

utilized. 

 

7.1. AIM 1  

Determine the change in expression of inflammatory markers following in vitro caloric restriction-

mimicking media. 

7.1.1. Hypothesis  

CR will act through epigenetic modifiers to induce chromatin modifications within the Tnf gene, 

thus repressing inflammation in primary isolated myofiber. 

7.1.2. Results 

Once the phenotypical shape was observed for L6 rat myofibers, we continued to test our 

hypothesis of whether a caloric restriction (CR)-mimicking media or a high fat (HF) media will 

elicit discriminant effects on myofiber gene expression. We used the following conditions: 

Table 7.1. Experimental conditions used for incubation media of L6 myoblasts. 

CON HG DMEM-HF DMEM-CR 
DMEM with low 
glucose medium 
(1 g.L-1 glucose, 
with 1% 
Pen/Strep) 

 

DMEM with low 
glucose medium 
(100 g.L-1 glucose, 
with 1% Pen/Strep) 
 

DMEM with low glucose medium 
(1 g.L-1 glucose, with 1% 
Pen/Strep), 1X glutamic acid 
(0.0147 g/L), Lipid mixture 1 
 

DMEM with low glucose medium 
(1 g.L-1 glucose, with 1% 
Pen/Strep), 2X glutamic acid 
(0.0294 g/L), without methionine, 
NEFA (200 uM), 5 µM β-
Hydroxybutyrate 
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Fig. 7.1. Rat myoblast differentiation and gene expression of inflammatory markers following in vitro 
caloric restriction-mimicking media. Representative micrographs of A) primary isolated rat or B) L6 
myoblasts and myofibers, and mitochondrial staining. Hoechst is shown in red for nucleus and Mitotracker 
is shown in green for mitochondria. Diagram of myofiber differentiation depicts the specific stage and 
morphology of the myofibers. C) Gene expression of selected genes is reported as the mean ± SEM. 
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We used a control (CON) and a high glucose condition (HG) to weed out the specific 

changes in gene expression. The HF media contained 0.1% of chemically defined lipids with non-

animal derived fatty acids (2 µg/ml arachidonic and 10 µg/ml each linoleic, linolenic, myristic, 

oleic, palmitic and stearic), 0.22 mg/ml cholesterol from New Zealand sheep′s wool, 2.2 mg/ml 

Tween-80, 70 µg/ml tocopherol acetate and 100 mg/ml Pluronic F-68 solubilized in cell culture 

water. Myofibers within each group (CON, HG, HF, CR) were incubated for 2 days in the 

respective media.  

We assessed gene expression of L6 myofibers following the treatment period (Fig. 7.1C, 

white background), and after 3-hr LPS incubation to challenge the immune response (Fig. 7.1C, 

grey background). Gene expression of differentiated L6 myofibers following treatment failed to 

produce the same phenotype observed in animals under 6-month 25% CR. Nevertheless, the 

expression of Tnf was similar to that of the animals, but the pre-processed transcript showed a 

different expression pattern, suggesting that the expression of Tnf was not due to our treatment 

media. Moreover, the CR media showed the 

lowest protection to an LPS challenge, which 

tells us that the CR in vitro treatment is not able 

to produce long-lasting epigenetic changes 

within the Tnf gene to prevent an inflammatory 

response. 

To test whether the cells were 

responding to the CR-treatment media, we 

assessed the gene expression in undifferentiated 

myoblasts. In Fig. 7.2 we can observe the lack 
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of significant effects elicited by our CR media concoction. Therefore, we attributed the changes 

observed in Fig. 7.1C to variations within the experimental conditions or one of the components 

of the media. Following this observation, we repeated the experiment >5 times and observed highly 

variable effects following LPS incubation. For that reason, we then examined the LPS-dose 

response in two different cell lines L6 myoblasts and H4 hepatoma cells (Fig. 7.3). Following a 

3hr incubation with LPS, both L6 and H4 cells were allowed to rest overnight in DMEM media 

and then gene expression was studied. As seen in Fig. 7.3A, LPS at different concentrations failed 

to stimulate undifferentiated L6 myoblasts. This prompted us find the best time point at which LPS 

is able to stimulate Tnf gene 

expression. This yielded in 

negative results (Fig. 7.3C), 

and thus we used the 12-hr 

period as one with the best 

induction potential. 

Next, we analyzed 

each individual component 

of our CR media against the 

complete concoction (CR), 

or the DMEM control 

(CON). The results are 

shown in Fig. 7.3C. In terms 

of protection against an LPS 

challenge, the complete CR 
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media showed the worst potential, as the levels of Tnf transcription were not decreased. 

Interestingly, a well-known CR-mimicking component, Resveratrol, was not able to prevent LPS-

induced Tnf expression. Therefore, we suspect that each individual component of the CR media is 

not sufficient to produce the anti-inflammatory effect.  

 

7.2. AIM 2  

Manipulation of chromatin modifiers and transcription factors will be able to override the effect 

of CR. 

7.2.1. Hypothesis  

Overexpression of two forms of transcription factor CEBP-b will be able to differentially induce 

Tnf expression. 

7.2.2. Results 

Despite the of positive results developing the CR media in Aim 1, we wanted to expand our 

understanding of the effect of C/EBPb on Tnf expression in undifferentiated L6 myoblasts. Based 

on our findings that C/EBPb binding is reduced by CR in animals, we explored the differential 

effect of two isoforms of the transcription factor. Two isoforms of C/EBPb exists; the activating 

form (LAP/LAP*) and the inhibitory form (LIP), which are produced by alternative transcription 

(Fig. 7.4A). These two isoforms of C/EBPb differ in length and function, while LAP activates 

C/EBPb-target genes, LIP inhibits the targets due to the lack of a transactivating domain (Thiaville, 

Dudenhausen, Zhong, Pan, & Kilberg, 2008). We validated the size and integrity of the pdDNA 

empty plasmid, the LAP and LIP plasmids in an agarose gel (Fig. 7.4B), and then proceeded to 

overexpress the plasmids using lipofectamine (Thermo Fisher) in undifferentiated L6 myoblasts, 
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and allowed to incubate in DMEM for 24hr. Gene expression results for the C/EBPb-target genes 

as well as Tnf are shown in (Fig. 7.4C). 

 
Fig. 7.4. Overexpression of the activating isoform of C/EBPb in L6 myoblasts stimulates Tnf 
expression. A) Diagram depicting the alternative transcription of C/EBPb, which produced either the 
activating (LAP) or the inhibitory isoform (LIP). The activating isoform is longer (44 kDa) and possesses 
the transactivating domain required for gene activation, whereas the inhibitory form lacks this domain, is 
shorter (22 kDa), and inhibits the expression of target genes. B) Validation of the pcDNA empty plasmid, 
and LAP/LIP integrity using EcoRI digestion for 1 hr. C) Gene expression of C/EBPb target genes and Tnf 
expression. Data are presented as mean values ± SEM. 
 
 Expression of human C/EBPb demonstrated effective overexpression of the LAP and LIP 

plasmids, and only LAP is able to activate endogenous rat Cebpb. Further, LAP activates known 
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target genes Atf3, Snat, Asns, and Vegfa, whereas LIP is unable to induce transcription. No changes 

in active transcription were observed for Tnf (premRNA), but Tnf mature mRNA is induced by 

LAP and inhibited by LIP. Studies suggest that LAP/LIP ratio is able to regulate myogenesis by 

inhibiting the myogenic factor MyoD1 in satellite cells (Marchildon et al., 2012). In animals, we 

observed that MyoD1 was inhibited by chronic HFD and stimulated by chronic CR, thus the ratio 

of LAP/LIP might be an additional mechanism employed by CR to increase myogenesis. 

Moreover, CR might increase alternative transcription of LIP and repression of LAP to 

downregulate inflammation in muscle. 

 Additional mechanistic studies should be conducted to understand the necessary steps 

that CR regulates to silence inflammation. Manipulation of the CR-induced silencing might shed 

light on the core anti-inflammatory mechanism and weed out the redundant inhibitory factors 

activated by CR. 
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APPENDIX A: CHAPTER 3 APPENDIX 
 
Supplemental Table 3.1. Algorithm search for miRNA and CR 
	

miRNA %CR Tissue Change by CR* Ref. 

cel-miR-1824-5p 2-day fasting Whole animals Downregulated (Kogure et al., 2017) 
cel-miR-1829b 2-day fasting Whole animals Downregulated (Kogure et al., 2017) 
cel-miR-2210-5p 2-day fasting Whole animals Downregulated (Kogure et al., 2017) 
cel-miR-2221 2-day fasting Whole animals Downregulated (Kogure et al., 2017) 
cel-miR-239a-5p 2-day fasting Whole animals Downregulated (Kogure et al., 2017) 
cel-miR-243-3p 2-day fasting Whole animals Downregulated (Kogure et al., 2017) 
cel-miR-259-3p 2-day fasting Whole animals Downregulated (Kogure et al., 2017) 
cel-miR-259-5p 2-day fasting Whole animals Downregulated (Kogure et al., 2017) 
cel-miR-35-5p 2-day fasting Whole animals Downregulated (Kogure et al., 2017) 
cel-miR-38-5p 2-day fasting Whole animals Downregulated (Kogure et al., 2017) 
cel-miR-40-5p 2-day fasting Whole animals Downregulated (Kogure et al., 2017) 
cel-miR-43-3p 2-day fasting Whole animals Downregulated (Kogure et al., 2017) 
cel-miR-4809-3p 2-day fasting Whole animals Downregulated (Kogure et al., 2017) 
cel-miR-4936 2-day fasting Whole animals Downregulated (Kogure et al., 2017) 
cel-miR-49-5p 2-day fasting Whole animals Downregulated (Kogure et al., 2017) 
cel-miR-50-3p 2-day fasting Whole animals Downregulated (Kogure et al., 2017) 
cel-miR-52-3p 2-day fasting Whole animals Downregulated (Kogure et al., 2017) 
cel-miR-55-5p 2-day fasting Whole animals Downregulated (Kogure et al., 2017) 
cel-miR-5592-3p 2-day fasting Whole animals Downregulated (Kogure et al., 2017) 
cel-miR-5592-5p 2-day fasting Whole animals Downregulated (Kogure et al., 2017) 
cel-miR-58b-5p 2-day fasting Whole animals Downregulated (Kogure et al., 2017) 
cel-miR-63-3p 2-day fasting Whole animals Downregulated (Kogure et al., 2017) 
cel-miR-75-3p 2-day fasting Whole animals Downregulated (Kogure et al., 2017) 
cel-miR-75-5p 2-day fasting Whole animals Downregulated (Kogure et al., 2017) 
cel-miR-784-3p 2-day fasting Whole animals Downregulated (Kogure et al., 2017) 
cel-miR-789 2-day fasting Whole animals Downregulated (Kogure et al., 2017) 
cel-miR-791-5p 2-day fasting Whole animals Downregulated (Kogure et al., 2017) 
cel-miR-79-3p 2-day fasting Whole animals Downregulated (Kogure et al., 2017) 
cel-miR-80-5p 2-day fasting Whole animals Downregulated (Kogure et al., 2017) 
cel-miR-83-5p 2-day fasting Whole animals Downregulated (Kogure et al., 2017) 
cel-miR-1832b-3p 2-day fasting Whole animals Downregulated (Kogure et al., 2017) 
cel-miR-4808-5p 2-day fasting Whole animals Downregulated (Kogure et al., 2017) 
cel-let-7-3p 12-hr starvation Whole animals Downregulated (Garcia-Segura et al., 2015) 
cel-mir-79 12-hr starvation Whole animals Downregulated (Garcia-Segura et al., 2015) 
cel-mir-85 12-hr starvation Whole animals Downregulated (Garcia-Segura et al., 2015) 
cel-miR-85-5p 12-hr starvation Whole animals Downregulated (Garcia-Segura et al., 2015) 
dme-miR-305 24-hr, 72hr starved media Whole animals Downregulated (Barrio et al., 2014) 
mmu-miR-126-5p 40% CR Serum Downregulated (Dhahbi et al., 2013) 
mmu-miR-127-3p 40% CR Serum Downregulated (Dhahbi et al., 2013) 
mmu-miR-136-3p 40% CR Serum Downregulated (Dhahbi et al., 2013) 
mmu-miR-139-5p 40% CR Serum Downregulated (Dhahbi et al., 2013) 
mmu-miR-194-5p 40% CR Serum Downregulated (Dhahbi et al., 2013) 
mmu-miR-27b-3p 40% CR Serum Downregulated (Dhahbi et al., 2013) 
mmu-miR-29c-3p 40% CR Serum Downregulated (Dhahbi et al., 2013) 
mmu-miR-322-3p 40% CR Serum Downregulated (Dhahbi et al., 2013) 
mmu-miR-335-5p 40% CR Serum Downregulated (Dhahbi et al., 2013) 
mmu-miR-34a-5p 40% CR Serum Downregulated (Dhahbi et al., 2013) 
mmu-miR-381-3p 40% CR Serum Downregulated (Dhahbi et al., 2013) 
mmu-miR-411-5p 40% CR Serum Downregulated (Dhahbi et al., 2013) 
mmu-miR-434-5p 40% CR Serum Downregulated (Dhahbi et al., 2013) 
mmu-miR-540-3p 40% CR Serum Downregulated (Dhahbi et al., 2013) 
mmu-miR-541-5p 40% CR Serum Downregulated (Dhahbi et al., 2013) 
mmu-miR-101a-3p 40% CR Liver Downregulated (Noren Hooten et al., 2016) 
mmu-miR-101b-3p 40% CR Liver Downregulated (Noren Hooten et al., 2016) 
mmu-miR-106b-5p 40% CR Liver Downregulated (Noren Hooten et al., 2016) 
mmu-miR-107-3p 40% CR Liver Downregulated (Noren Hooten et al., 2016) 
mmu-miR-122-5p 40% CR Liver Downregulated (Noren Hooten et al., 2016) 
mmu-miR-125a-3p 40% CR Liver Downregulated (Noren Hooten et al., 2016) 
mmu-miR-142-3p 40% CR Liver Downregulated (Noren Hooten et al., 2016) 
mmu-miR-148a-3p 40% CR Liver Downregulated (Noren Hooten et al., 2016) 
mmu-miR-152-3p 40% CR Liver Downregulated (Noren Hooten et al., 2016) 
mmu-miR-15a-5p 40% CR Liver Downregulated (Noren Hooten et al., 2016) 
     



	 178	

Supplemental Table 3.1. (cont.) 
mmu-miR-192-5p 40% CR Liver Downregulated (Noren Hooten et al., 2016) 
mmu-miR-
1937b_v16.0 40% CR Liver Downregulated (Noren Hooten et al., 2016) 

mmu-miR-
1937c_v16.0 40% CR Liver Downregulated (Noren Hooten et al., 2016) 

mmu-miR-1939_v16.0 40% CR Liver Downregulated (Noren Hooten et al., 2016) 
mmu-miR-193a-3p 40% CR Liver Downregulated (Noren Hooten et al., 2016) 
mmu-miR-19b-3p 40% CR Liver Downregulated (Noren Hooten et al., 2016) 
mmu-miR-203-3p 40% CR Liver Downregulated (Noren Hooten et al., 2016) 
mmu-miR-212-3p 40% CR Liver Downregulated (Noren Hooten et al., 2016) 
mmu-miR-21a-5p 40% CR Liver Downregulated (Noren Hooten et al., 2016) 
mmu-miR-26b-5p 40% CR Liver Downregulated (Noren Hooten et al., 2016) 
mmu-miR-27b-3p 40% CR Liver Downregulated (Noren Hooten et al., 2016) 
mmu-miR-29b-3p 40% CR Liver Downregulated (Noren Hooten et al., 2016) 
mmu-miR-29c-3p 40% CR Liver Downregulated (Noren Hooten et al., 2016) 
mmu-miR-30a-5p 40% CR Liver Downregulated (Noren Hooten et al., 2016) 
mmu-miR-30e-5p 40% CR Liver Downregulated (Noren Hooten et al., 2016) 
mmu-miR-34a-5p 40% CR Liver Downregulated (Noren Hooten et al., 2016) 
mmu-miR-466f-3p 40% CR Liver Downregulated (Noren Hooten et al., 2016) 
mmu-miR-5097 40% CR Liver Downregulated (Noren Hooten et al., 2016) 
mmu-miR-720_v18.0 40% CR Liver Downregulated (Noren Hooten et al., 2016) 
mmu-miR-155 30% CR Colon mucosa Downregulated (Olivo-Marston et al., 2014) 
mmu-miR-30e 40% CR brain Downregulated (Khanna et al., 2011) 
mmu-miR-34a 40% CR brain Downregulated (Khanna et al., 2011) 
mmu-miR-181a-1* 40% CR brain Downregulated (Khanna et al., 2011) 
mmu-miR-200a 30% CR breast tissue Downregulated (Devlin et al., 2016) 
mml-miR-106b-5p 30% restriction, starting at 10% Plasma Downregulated (Schneider et al., 2017) 
mml-miR-125a-5p 30% restriction, starting at 10% Plasma Downregulated (Schneider et al., 2017) 
mml-miR-125b-5p 30% restriction, starting at 10% Plasma Downregulated (Schneider et al., 2017) 
mml-miR-133b-5p 30% restriction, starting at 10% Plasma Downregulated (Schneider et al., 2017) 
mml-miR-133c-5p 30% restriction, starting at 10% Plasma Downregulated (Schneider et al., 2017) 
mml-miR-143-5p 30% restriction, starting at 10% Plasma Downregulated (Schneider et al., 2017) 
mml-miR-16-5p 30% restriction, starting at 10% Plasma Downregulated (Schneider et al., 2017) 
mml-miR-182 30% restriction, starting at 10% Plasma Downregulated (Schneider et al., 2017) 
mml-miR-20a-5p 30% restriction, starting at 10% Plasma Downregulated (Schneider et al., 2017) 
mml-miR-224-5p 30% restriction, starting at 10% Plasma Downregulated (Schneider et al., 2017) 
mml-miR-92a-3p 30% restriction, starting at 10% Plasma Downregulated (Schneider et al., 2017) 
mml-miR-486-5p 30% restriction, starting at 10% Plasma Downregulated (Schneider et al., 2017) 
mmu-miR-100-5p 40% CR Serum Downregulated (Dhahbi et al., 2013) 
cel-miR-1822-5p 2-day fasting Whole animals Upregulated (Kogure et al., 2017) 
cel- miR-34-3p 2-day fasting Whole animals Upregulated (Kogure et al., 2017) 
cel- miR-1817 2-day fasting Whole animals Upregulated (Kogure et al., 2017) 
cel- miR-4810 2-day fasting Whole animals Upregulated (Kogure et al., 2017) 
cel- miR-64-3p 2-day fasting Whole animals Upregulated (Kogure et al., 2017) 
cel- miR-5552-3p 2-day fasting Whole animals Upregulated (Kogure et al., 2017) 
cel- miR-796 2-day fasting Whole animals Upregulated (Kogure et al., 2017) 
cel-miR-253-5p 2-day fasting Whole animals Upregulated (Kogure et al., 2017) 
cel-miR-359 2-day fasting Whole animals Upregulated (Kogure et al., 2017) 
cel-miR-266 2-day fasting Whole animals Upregulated (Kogure et al., 2017) 
cel-miR-2210-3p 2-day fasting Whole animals Upregulated (Kogure et al., 2017) 
cel-miR-1823 2-day fasting Whole animals Upregulated (Kogure et al., 2017) 
cel-miR-1829a-5p 2-day fasting Whole animals Upregulated (Kogure et al., 2017) 
cel-miR-1832a 2-day fasting Whole animals Upregulated (Kogure et al., 2017) 
cel-miR-255-3p 2-day fasting Whole animals Upregulated (Kogure et al., 2017) 
cel-miR-4812-5p 2-day fasting Whole animals Upregulated (Kogure et al., 2017) 
cel-miR-235-5p 2-day fasting Whole animals Upregulated (Kogure et al., 2017) 
cel-miR-2214-5p 2-day fasting Whole animals Upregulated (Kogure et al., 2017) 
cel-miR-797-5p 2-day fasting Whole animals Upregulated (Kogure et al., 2017) 
cel-miR-798 2-day fasting Whole animals Upregulated (Kogure et al., 2017) 
cel-miR-39-3p 12-hr starvation Whole animals Upregulated (Garcia-Segura et al., 2015) 
cel-miR-37-3p 12-hr starvation Whole animals Upregulated (Garcia-Segura et al., 2015) 
cel-miR-35-3p 12-hr starvation Whole animals Upregulated (Garcia-Segura et al., 2015) 
cel-miR-38-3p 12-hr starvation Whole animals Upregulated (Garcia-Segura et al., 2015) 
cel-miR-41-3p 12-hr starvation Whole animals Upregulated (Garcia-Segura et al., 2015) 
cel-miR-36-3p 12-hr starvation Whole animals Upregulated (Garcia-Segura et al., 2015) 
cel-miR-4813-5p 12-hr starvation Whole animals Upregulated (Garcia-Segura et al., 2015) 
cel-miR-40-3p 12-hr starvation Whole animals Upregulated (Garcia-Segura et al., 2015) 
cel-miR-34-3p 12-hr starvation Whole animals Upregulated (Garcia-Segura et al., 2015) 
cel-miR-41-5p 12-hr starvation Whole animals Upregulated (Garcia-Segura et al., 2015) 
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cel-mir-35 12-hr starvation Whole animals Upregulated (Garcia-Segura et al., 2015) 
cel-miR-359 12-hr starvation Whole animals Upregulated (Garcia-Segura et al., 2015) 
cel-miR-39-5p 12-hr starvation Whole animals Upregulated (Garcia-Segura et al., 2015) 
cel-miR-240-5p 12-hr starvation Whole animals Upregulated (Garcia-Segura et al., 2015) 
cel-miR-246-3p 12-hr starvation Whole animals Upregulated (Garcia-Segura et al., 2015) 
dme-mir-184 High to low energy switch Whole animals Upregulated (Gendron & Pletcher, 2017) 
dme-let-7 High to low energy switch Whole animals Upregulated (Gendron & Pletcher, 2017) 
dme-mir-125 High to low energy switch Whole animals Upregulated (Gendron & Pletcher, 2017) 
dme-mir-100 High to low energy switch Whole animals Upregulated (Gendron & Pletcher, 2017) 
mmu-miR-150 30% CR Colon mucosa Upregulated (Olivo-Marston et al., 2014) 
mmu-miR-351 30% CR Colon mucosa Upregulated (Olivo-Marston et al., 2014) 
mmu-miR-16 30% CR Colon mucosa Upregulated (Olivo-Marston et al., 2014) 
mmu-let-7f 30% CR Colon mucosa Upregulated (Olivo-Marston et al., 2014) 
mmu-miR-34c 30% CR Colon mucosa Upregulated (Olivo-Marston et al., 2014) 
mmu-miR-29c 30% CR breast tissue Upregulated (Orom et al., 2012) 
mmu-miR-203 30% CR breast tissue Upregulated (Orom et al., 2012) 
mmu-miR-150 30% CR breast tissue Upregulated (Orom et al., 2012) 
mmu-miR-30 30% CR breast tissue Upregulated (Orom et al., 2012) 
mmu-miR-139-5p 40% CR Liver Upregulated (Noren Hooten et al., 2016) 
mmu-miR-92a-3p 40% CR Liver Upregulated (Noren Hooten et al., 2016) 
mmu-miR-338-5p 40% CR Liver Upregulated (Noren Hooten et al., 2016) 
mmu-miR-1187 40% CR Liver Upregulated (Noren Hooten et al., 2016) 
mmu-let-7c-5p 40% CR Liver Upregulated (Noren Hooten et al., 2016) 
mmu-miR-125b-5p 40% CR Liver Upregulated (Noren Hooten et al., 2016) 
mmu-let-7b-5p 40% CR Liver Upregulated (Noren Hooten et al., 2016) 
mmu-miR-1944_v16.0 40% CR Liver Upregulated (Noren Hooten et al., 2016) 
mmu-miR-1906 40% CR Liver Upregulated (Noren Hooten et al., 2016) 
mmu-miR-574-5p 40% CR Liver Upregulated (Noren Hooten et al., 2016) 
mmu-miR-2134_v15.0 40% CR Liver Upregulated (Noren Hooten et al., 2016) 
mmu-miR-2133_v15.0 40% CR Liver Upregulated (Noren Hooten et al., 2016) 
mmu-miR-2141_v15.0 40% CR Liver Upregulated (Noren Hooten et al., 2016) 
mmu-miR-2135_v15.0 40% CR Liver Upregulated (Noren Hooten et al., 2016) 
mmu-miR-2146_v15.0 40% CR Liver Upregulated (Noren Hooten et al., 2016) 
mmu-miR-486-3p 40% CR Serum Upregulated (Dhahbi et al., 2013) 
mmu-miR-3107-3p 40% CR Serum Upregulated (Dhahbi et al., 2013) 
mmu-miR-34b-5p Young vs. old vs. CR (no CR) Serum Upregulated (Victoria et al., 2015) 
mmu-miR-344d-2-5p Young vs. old vs. CR (no CR) Serum Upregulated (Victoria et al., 2015) 
mmu-miR-592-5p Young vs. old vs. CR (no CR) Serum Upregulated (Victoria et al., 2015) 
mmu-mir-136 Young vs. old vs. CR (no CR) Serum Upregulated (Victoria et al., 2015) 
mmu-mir-127 Young vs. old vs. CR (no CR) Serum Upregulated (Victoria et al., 2015) 
mmu-miR-540 Young vs. old vs. CR (no CR) Serum Upregulated (Victoria et al., 2015) 
mmu-miR-449 Young vs. old vs. CR (no CR) Serum Upregulated (Victoria et al., 2015) 
mmu-miR-379 Young vs. old vs. CR (no CR) Serum Upregulated (Victoria et al., 2015) 
mmu-miR-5107 Young vs. old vs. CR (no CR) Serum Upregulated (Victoria et al., 2015) 
mmu-miR-146 Young vs. old vs. CR (no CR) Serum Upregulated (Victoria et al., 2015) 
mmu-miR-342 Young vs. old vs. CR (no CR) Serum Upregulated (Victoria et al., 2015) 
mmu-miR-368 Young vs. old vs. CR (no CR) Serum Upregulated (Victoria et al., 2015) 
mmu-miR-154 Young vs. old vs. CR (no CR) Serum Upregulated (Victoria et al., 2015) 
mmu-mir-15 Young vs. old vs. CR (no CR) Serum Upregulated (Victoria et al., 2015) 
mmu-miR-34c-5p Young vs. old vs. CR (no CR) Serum Upregulated (Victoria et al., 2015) 
rno-miR-667 lifelong 40% CR CEVC Upregulated (Csiszar et al., 2014) 
rno-miR-383 lifelong 40% CR CEVC Upregulated (Csiszar et al., 2014) 
rno-miR-328a lifelong 40% CR CEVC Upregulated (Csiszar et al., 2014) 
rno-let-7b lifelong 40% CR CEVC Upregulated (Csiszar et al., 2014) 
rno-miR-92a lifelong 40% CR CEVC Upregulated (Csiszar et al., 2014) 
rno-miR-532-3p lifelong 40% CR CEVC Upregulated (Csiszar et al., 2014) 
rno-miR-181c lifelong 40% CR CEVC Upregulated (Csiszar et al., 2014) 
rno-miR-145 lifelong 40% CR CEVC Upregulated (Csiszar et al., 2014) 
rno-let-7c lifelong 40% CR CEVC Upregulated (Csiszar et al., 2014) 
rno-miR-329 lifelong 40% CR CEVC Upregulated (Csiszar et al., 2014) 
rno-miR-23a lifelong 40% CR CEVC Upregulated (Csiszar et al., 2014) 
rno-miR-214 lifelong 40% CR CEVC Upregulated (Csiszar et al., 2014) 
rno-miR-125b-5p lifelong 40% CR CEVC Upregulated (Csiszar et al., 2014) 
rno-miR-15b lifelong 40% CR CEVC Upregulated (Csiszar et al., 2014) 
rno-let-7e lifelong 40% CR CEVC Upregulated (Csiszar et al., 2014) 
rno-miR-181a lifelong 40% CR CEVC Upregulated (Csiszar et al., 2014) 
rno-miR-221 lifelong 40% CR CEVC Upregulated (Csiszar et al., 2014) 
rno-let-7d lifelong 40% CR CEVC Upregulated (Csiszar et al., 2014) 
rno-miR-34a lifelong 40% CR CEVC Upregulated (Csiszar et al., 2014) 
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rno-miR-24 lifelong 40% CR CEVC Upregulated (Csiszar et al., 2014) 
rno-miR-872 lifelong 40% CR CEVC Upregulated (Csiszar et al., 2014) 
rno-miR-29a lifelong 40% CR CEVC Upregulated (Csiszar et al., 2014) 
rno-miR-140 lifelong 40% CR CEVC Upregulated (Csiszar et al., 2014) 
rno-miR-301a lifelong 40% CR CEVC Upregulated (Csiszar et al., 2014) 
rno-miR-30c lifelong 40% CR CEVC Upregulated (Csiszar et al., 2014) 
rno-miR-30b lifelong 40% CR CEVC Upregulated (Csiszar et al., 2014) 
rno-miR-27a lifelong 40% CR CEVC Upregulated (Csiszar et al., 2014) 
rno-miR-26a lifelong 40% CR CEVC Upregulated (Csiszar et al., 2014) 
rno-miR-542-5p lifelong 40% CR CEVC Upregulated (Csiszar et al., 2014) 
rno-miR-152 lifelong 40% CR CEVC Upregulated (Csiszar et al., 2014) 
rno-miR-26b lifelong 40% CR CEVC Upregulated (Csiszar et al., 2014) 
rno-miR-186 lifelong 40% CR CEVC Upregulated (Csiszar et al., 2014) 
rno-miR-20a lifelong 40% CR CEVC Upregulated (Csiszar et al., 2014) 
rno-miR-126 lifelong 40% CR CEVC Upregulated (Csiszar et al., 2014) 
rno-miR-29c lifelong 40% CR CEVC Upregulated (Csiszar et al., 2014) 
rno-miR-192 lifelong 40% CR CEVC Upregulated (Csiszar et al., 2014) 
rno-miR-30e lifelong 40% CR CEVC Upregulated (Csiszar et al., 2014) 
rno-miR-301b lifelong 40% CR CEVC Upregulated (Csiszar et al., 2014) 
rno-miR-101a lifelong 40% CR CEVC Upregulated (Csiszar et al., 2014) 
rno-miR-210 lifelong 40% CR CEVC Upregulated (Csiszar et al., 2014) 
rno-miR-106b lifelong 40% CR CEVC Upregulated (Csiszar et al., 2014) 
rno-miR-449a lifelong 40% CR CEVC Upregulated (Csiszar et al., 2014) 
rno-miR-17 lifelong 40% CR CEVC Upregulated (Csiszar et al., 2014) 
rno-miR-130b lifelong 40% CR CEVC Upregulated (Csiszar et al., 2014) 
rno-miR-16 lifelong 40% CR CEVC Upregulated (Csiszar et al., 2014) 
rno-miR-19b lifelong 40% CR CEVC Upregulated (Csiszar et al., 2014) 
rno-miR-503 lifelong 40% CR CEVC Upregulated (Csiszar et al., 2014) 
mml-miR-6529-5p 30%  restriction, starting at 10% Plasma Upregulated (Schneider et al., 2017) 
mml-miR-21-5p 30%  restriction, starting at 10% Plasma Upregulated (Schneider et al., 2017) 
mml-miR-340-5p 30%  restriction, starting at 10% Plasma Upregulated (Schneider et al., 2017) 
mml-miR-130a-5p 30%  restriction, starting at 10% Plasma Upregulated (Schneider et al., 2017) 
mml-miR-1260b 30%  restriction, starting at 10% Plasma Upregulated (Schneider et al., 2017) 
mml-miR-130b-5p 30%  restriction, starting at 10% Plasma Upregulated (Schneider et al., 2017) 
mml-miR-411-5p 30%  restriction, starting at 10% Plasma Upregulated (Schneider et al., 2017) 
mml-miR-598-5p 30%  restriction, starting at 10% Plasma Upregulated (Schneider et al., 2017) 
mml-miR-500a-5p 30%  restriction, starting at 10% Plasma Upregulated (Schneider et al., 2017) 
mml-miR-501-5p 30%  restriction, starting at 10% Plasma Upregulated (Schneider et al., 2017) 
mml-miR-122a-5p 30%  restriction, starting at 10% Plasma Upregulated (Schneider et al., 2017) 
mml-miR-337-5p 30%  restriction, starting at 10% Plasma Upregulated (Schneider et al., 2017) 

hsa-miR-1-3p 
7-day weight maintenance (WM) 
period was followed by 28 days 

of 30% ER 
Serum Upregulated (Margolis et al., 2017) 

hsa- miR-133a-3p 
7-day weight maintenance (WM) 
period was followed by 28 days 

of 30% ER 
Serum Upregulated (Margolis et al., 2017) 

hsa-miR-133b 
7-day weight maintenance (WM) 
period was followed by 28 days 

of 30% ER 
Serum Upregulated (Margolis et al., 2017) 

hsa-miR-206 
7-day weight maintenance (WM) 
period was followed by 28 days 

of 30% ER 
Serum Upregulated (Margolis et al., 2017) 
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Supplemental Table 4.1. Primer sequences used for qPCR of skeletal muscle. 
 

Gene (Ensembl ID) Forward sequence (5’➙3’) Reverse sequence (5’➙3’) 
Igf-1 (+454 to +545) 
(ENSRNOT00000081822.1) GGTGGACGCTCTTCAGTTCGTG TCTGTGGTGCCCTCCGAATG 

Igf-1r (+2239 to +2304) 
(ENSRNOT00000019267.6) CTGAGAGGAGGCGGAGAGATG TGTTCCTGCTTCGGCTGG 

mTor (+196 to +263) 
(ENSRNOT00000014167.7) TCCAGCACTATGTCACCA CTGGTCATAGAAGCGAGTAG 

Rptor  (+1128 to +1200) 
(ENSRNOT00000005337.6) CTCCAGATGTGGTGAAGACC TGAGGACCCATAGACAGAGG 

Akt2 (+252 to +319) 
(ENSRNOT00000025303.3) GCTAGGTGACAGCGTGTTAATG TGGAGCCAGCCTTCTTTG 

Lkb1 (+1497 to +1573) 
(ENSRNOT00000060683.3) CAATGGACTGGACACCTT CCGTGGTGATGTTGTAGA 

Pik3ca (+289 to +365) 
(ENSRNOT00000025687.7) ACTGTCAGTCAGAGGTTCAG CTGTTCAGGTGCTTCAGA 

Ampkg (+12 to +77) 
(ENSRNOT00000083354) TAGCAATGGAGTCGGTTG GGGTCTCTTGAGAGTGTTCA 

Phkg1 (+157 to+233) 
(ENSRNOT00000001222.4) ACCTAACTAGGTGCTTGGG AGAATGAGAGTCAGGGAGG 

Pgc1a (+15 to +98) 
(ENSRNOT00000006071.5) TGGCGTCATTCAGGAGCTGG CAACCAGGGCAGCACACTCTATG 

Cebpb (+1607 to +1670) 
(ENSRNOT00000083876.1) CGCAACCCACGTGTAACTGTCAG CAGCAACAAGCCCGTAGGAACA 

Cpt1a (+1027 to +1102) 
(ENSRNOT00000019652.3) GAGCGACTCTTCAATACTTCCC TGTGCCTGCTGTCCTTGATA 

Cpt1c (+291 to +366) 
(ENSRNOT00000035908.4) TTACCTCTCTGCCCTACGCTCCTG CGGGACCACACCAGCAAGAAA 

Mlycd (+673 to +749) 
(ENSRNOT00000019923.5) GCCCTGTGAGGTGCTTCAGAAGA GCCGCTTCATGTCCATCCAGT 

Lpl (+506 to +581) 
(ENSRNOT00000016543.3) AGTAGACTGGTTGTATCGGG CACATCATTTCCCACCAG 

Acc2 (+1146 to +1229) 
(ENSRNOE00000005258) CTCCTCCACCATTGTAGCCCAGAC TCCTCCGTCCACTCCACTGTGA 

Chrebp (+2281 to +2344) 
(ENSRNOT00000071067.2) CGGGACATGTTTGATGACTATGTC AATAAAGGTCGGATGAGGATGCT 

Pfk1(+1653 to +1743) 
(ENSRNOT00000001625.5) CCACCATCAGCAACAATGTC TTGATGCGGTCACAACTCTC 

Atf4 (+253 to +315) 
(ENSRNOT00000065304.4) GGCTCCTCAGAATGGCTGGCTAT ATCCTCCTTGCCGGTGTCTGAG 

Atf3 (+949 to +1028) 
(ENSRNOT00000089841.1) CGGCCATTCTCAGATGACCTAGC TCTGCCTGCATCCCATTAGTGC 

Bnip3 (+652 to +739) 
(ENSRNOT00000023477.6) AAGGCGTCTGACAACTTCCA TCACAGCTCAGCGTGAAT 

Atg2a (+190 to +306) 
(ENSRNOT00000090100.1) GCTACAGCACTACTTGGGTC ACAGACCAGGTTTCCAGG 

Chop (+636 to +731) 
(ENSRNOT00000083472.1) CTCTGATCGACCGCATGGTCAG TGGCGTGATGGTGCTGGG 

Bcl2 (+730 to +817) 
(ENSRNOT00000003768.2) CCCTGGTGGACAACATCGCTC GCATCCCAGCCTCCGTTATCC 

Lc3b (+626 to +726) 
(ENSRNOT00000051352.6) GTGTTGTGGAAGAATGCC TCACCCTTGTATCGCTCT 

Lc3a (+443 to +536R) 
(ENSRNOT00000035060.4) AGTGTATCCACACCCATCGC AGCCGAAGGTTTCTTGGG 

Ulk1 (+2780 to +2849) 
(ENSRNOT00000056790.3) GCTTACAGACTGCCATTGACCAGA ACCACCTGCTTCACAGTAGACGAA 

Gcn2 (+356 to +426) 
(ENSRNOT00000009222.7) GCAGTGTGGAGAGGTGATGATA GCTTGTTATGCTCGCTGAGA 

Pon1 (+1149 to +1221) 
(ENSRNOT00000011823.6) AGTGAGGCCATCATTTCAGCC ATTCGTTGGTGAGCGGAGATC 

Pon2 (+584 to +658) 
(ENSRNOT00000036460.3) TACGCCACCAATGACCACT TGCCCAACGTAGGTTCAAG 
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Sod1 (+239 to +310) 
(ENSRNOT00000002885.6) CAGCGGATGAAGAGAGGCA ACACATTGGCCACACCGTC 

Capn1 (+534 to +596) 
(ENSRNOT00000028431.6) CTGGCATCTTTCATTTCCA AATCATCCACGACCACATCTA 

Capn2 (+949 to +1020) 
(ENSRNOT00000045326.3) GAGTTCTGGAGTGCCCTTCTGGA ACCCCCTGAGAGTGCTTCATAGC 

Murf1 (+210 to +283) 
(ENSRNOT00000067524.3) TCCTGCCCTGCCAGCACAA GGTCCAGTAGGGATTGGCAGCC 

Atrogin1 (+276 to +347) 
(ENSRNOT00000010361.3) GATGAGAAAAGCGGCACCTT CAGGCTGTTGAACAGATTCTCC 

Mstn (+403 to +493) 
(ENSRNOT00000038093.3) CAGAGGGATGACAGCAGT AGTCAGACTCGGTAGGCA 

Inha (+293 to +364) 
(ENSRNOT00000027227.4) GCTTCATGCACAGGACCTCTGAAC CACCTGTGGCTGGGAAAAGGAT 

Ihnba (+608 to +682) 
(ENSRNOT00000019272.5) AGATCATCACCTTTGCCGAGTCAG GGTCACTGCCTTCCTTGGAAATCT 

Fst (+42 to +103) 
(ENSRNOT00000015680.4) CTCCTGCTGCTGCTACTCTGC CAGCAATTCCCAGCCTGG 

Foxo1a (+994 to +1056) 
(ENSRNOT00000018244.5) AGGATAAGGGCGACAGCAACAG GGGACAGATTGTGGCGAATTG 

Foxo3 (+2424 to +2516) 
(ENSRNOT00000000327.5) TTGCCAAATCTGCTCTCAGC TCTCTGCTGGGTTAGGAAGATG 

Mapk14 (+727 to +817) 
(ENSRNOT00000000617.8) CACTCGGCTGACATAATCCA CCAGCCCAAAATCCAGAA 

Pax3 (+824 to +900) 
(ENSRNOT00000018652.5) CTGTGCCCTCAGTGAGTTCCATCA TAAATCCGCCTCCTCCTCTTCTCC 

Pax7 (+1333 to +1402) 
(ENSRNOT00000025488.6) TACAGCACCACGGGCTACAGT CAGCAGTTTGACCGTACTGGC 

Myod1 (+160 to +227) 
(ENSRNOT00000015109.2) GACGACTCTTCAGGCTTG GGCGATAGTAGCTCCATG 

Mrf4 (+682 to +779) 
(ENSRNOT00000006523.5) CCTGGTGATAACTGCTAAGG CTGAGGAAATACTGTCCACG 

Myog (+547 to +623) 
(ENSRNOT00000042046.1) GAGTGGGGCAATGCACTGGA TTGTGGGCACCTGTAGGGTCAG 

Myf5 (+697 to +763) 
(ENSRNOT00000006453.5) CACCAGCCCCACCTCCAACT CTTTCGGGACCAGACAGGGC 

Nfkb (p50)(+1907 to +1985) 
(ENSRNOT00000045233.3) AGGCAGCACTCCTTATCAACCACC GACAGGCTGTTGCTCATCACAGCT 

Ikbke (+1189 to +1257) 
(ENSRNOT00000038151.3) CCCTGCTCTGGATGTCCCAAAG CCCTTAGCGGTGCTGTAATCGG 

Il-1b (+793 to +871) 
(ENSRNOT00000006308.4) CACCTCTCAAGCAGAGCACAG GGGTTCCATGGTGAAGTCAAC 

Il-6 (+559 to +637) 
(ENSRNOT00000013732.6) TCCTACCCCAACTTCCAATGCTC TTGGATGGTCTTGGTCCTTAGCC 

Ifng (+116 to +182) 
(ENSRNOT00000009919.2) CTCAAGTAGCATGGATGCTATGGA CTTTTGCCAGTTCCTCCAGATATC 

Tnfa (+339 to +449) 
(ENSRNOT00000079677.1) AAATGGGCTCCCTCTCATCAGTTC TCCGCTTGGTGGTTTGCTACGAC 

Nfatc1 (+1447 to +1537) 
(ENSRNOT00000058382.4) GCCTTTTGTGAGCAGTATCTGTCG ATGGGCTCATGTATGACGTTGG 

Nfatc2 (+1599 to +1674) 
(ENSRNOT00000065615.1) GGAGCCAAAGAACAACATGCGGG CAGCTCGATGTCAGCGTTTCGGA 

Nfatc3 (+1837 to +1898) 
(ENSRNOT00000089783.1) GCATCTATTCCTGTTGAGTG TACTTCTCAATGTGAGGGAG 

Nfatc4 (+1293 to +1372) 
(ENSRNOT00000089584.1) CTTAGCAGTTCCTTCTCCCCTC GTAGGGCAGAGGTCCTGAAGAT 

Nfat5 (+994 to +1068) 
(ENSRNOT00000017005.5) CAGCATCAATGAGTCAGACAAGCG AAGAAGCATCGGCAGCAACTACAG 

Sirt1 (+734 to +810) 
(ENSRNOT00000078739.1) TTAATCAGGTAGTTCCTCGG GAAGACAATCTCTGGCTTCA 

Sirt6 (+582 to +660) 
(ENSRNOT00000008758.5) GCCTGTAGAGGGGAGCTGAGAGAC CATCAGCGAGCGTTAGGTCCC 

Hdac3 (+1011 to +1128) 
(ENSRNOT00000084735.1) GCTCCATCCAGATGTCAGCACCCGCAT CTGGACACTGGGTGCATGGTTCAGC 

Suv39h1 (+1127 to +1200) 
(ENSRNOT00000008399.5) GCTGTTGCTGTGGCTATGACTGC GCGGAAGATGCAGAGGTTGTAGC 
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Ezh2 (+1110 to +1180) 
(ENSRNOT00000008149.5) CCACAGTGTTATCAGCATCTGGAGG GTCTTTATCCGCTCAGCAGTAAGGG 

Kmt2b (+961 to +1049) 
(ENSRNOT00000080842.1) CTAGAATCAGGTCAGGGTCGTGGTC GGTCCCCTTTCCTGTTCATCTCC 

Dnmt1 (+1713 to +1792) 
(ENSRNOT00000064932.4) TCCTACGCCATGCCCAGTTTG GAAGATGGGCGTCTCATCATCG 

Dnmt3b (+1197 to +1274) 
(ENSRNOT00000015482.6) AATGCGCTGGGTACAGTGGTTTG AACAGACCCAGAGCCACCAGCT 
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Supplemental Table 5.1. Primer sequences used for qPCR of skeletal muscle. 
 

Gene (Ensembl ID) Forward sequence (5’➙3’) Reverse sequence (5’➙3’) 
mTor (+196 to +263) 
(ENSRNOT00000014167.7) TCCAGCACTATGTCACCA CTGGTCATAGAAGCGAGTAG 

Akt2 (+252 to +319) 
(ENSRNOT00000025303.3) GCTAGGTGACAGCGTGTTAATG TGGAGCCAGCCTTCTTTG 

Lkb1 (+1497 to +1573) 
(ENSRNOT00000060683.3) CAATGGACTGGACACCTT CCGTGGTGATGTTGTAGA 

Pik3ca (+289 to +365) 
(ENSRNOT00000025687.7) ACTGTCAGTCAGAGGTTCAG CTGTTCAGGTGCTTCAGA 

Ampkg (+12 to +77) 
(ENSRNOT00000083354) TAGCAATGGAGTCGGTTG GGGTCTCTTGAGAGTGTTCA 

Pgc1a (+15 to +98) 
(ENSRNOT00000006071.5) TGGCGTCATTCAGGAGCTGG CAACCAGGGCAGCACACTCTATG 

Atf4 (+253 to +315) 
(ENSRNOT00000065304.4) GGCTCCTCAGAATGGCTGGCTAT ATCCTCCTTGCCGGTGTCTGAG 

Bnip3 (+652 to +739) 
(ENSRNOT00000023477.6) AAGGCGTCTGACAACTTCCA TCACAGCTCAGCGTGAAT 

Lc3b (+626 to +726) 
(ENSRNOT00000051352.6) GTGTTGTGGAAGAATGCC TCACCCTTGTATCGCTCT 

Mstn (+403 to +493) 
(ENSRNOT00000038093.3) CAGAGGGATGACAGCAGT AGTCAGACTCGGTAGGCA 

Fst (+42 to +103) 
(ENSRNOT00000015680.4) CTCCTGCTGCTGCTACTCTGC CAGCAATTCCCAGCCTGG 

Tnfa (+339 to +449) 
(ENSRNOT00000079677.1) AAATGGGCTCCCTCTCATCAGTTC TCCGCTTGGTGGTTTGCTACGAC 

Sirt1 (+734 to +810) 
(ENSRNOT00000078739.1) TTAATCAGGTAGTTCCTCGG GAAGACAATCTCTGGCTTCA 

Fbp2 (+4 to +77) 
(ENSRNOT00000023865.3) TGAGAGAGCAAGGATTCCTACGAGG GCTTCTGTCCGTCATTGTGGCA 

Cdkn2d (p19) (+753 to +821) 
(BC088350.1) TTTTCCCCCCATTACTCCGA GGAAAGCCCAAAATGCCA 

G6pc (+825 to +883) 
(ENSRNOT00000028033.6) CTCCAGCATGTACCGCAAGA AACGGAATGGGAGCGACTT 

Camkk2 (+966 to +1034) 
(ENSRNOT00000001774.6) CGGGCACATCAAGATAGC TTAGACAGCAAGGCGTCG 

Pepck (+1177 to +1253) 
(ENSRNOT00000025260.7) CGAACGCCATTAAGACCATCCAG CCAGTAAACACCCCCATCACTTGTC 
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Supplemental Table 5.2. Serum Biochemical Parameters from animals following 6-month ADCR. 

 CHOL1 HDL1 TAG1 nHDL1 TC/H2 LDL1 VLDL1 IGF11 Glucose1 Insulin3 HOMA2 

OL 103.8 ± 14.28 a 59.0 ± 9.72 a 160.8 ± 19.77 ab 44.4 ± 6.88 a 1.8 ± 0.13 a 13.6 ± 6.19 a 32.2 ± 3.99 ab 1.10 ± 0.04 a 128.25 ± 7.57 a 0.79 ± 0.20 ab 5.96 ± 1.41 

ML 100.1 ± 9.54 a 50.6 ± 6.82 a 186.8 ± 27.38 a 49.8 ± 3.21 a 2.0 ± 0.07 a 14.8 ± 4.29 a 37.3 ± 5.51 a 1.01 ± 0.03 ab 107.08 ± 8.21 a 0.96 ± 0.10 ab 5.39 ± 0.42 

CR 98.71 ± 12.89 a 45.83 ± 2.5 a 109.4 ± 10.94 ab 41.0 ± 2.59 a 1.9 ± 0.04 a 19.0 ± 3.11 a 21.85 ± 2.20 ab 0.73 ± 0.04 de 115.18 ± 9.78 a 0.65 ± 0.12 b 3.85 ± 0.56 

IF1 102.1 ± 19.09 a 40.2 ± 6.27 a 224.3 ± 30.64 a 45.0 ± 7.20 a 2.2 ± 0.20 a 7.0 ± 1.77 a 46.0 ± 6.44 a 1.01 ± 0.05 ab 115.50 ± 7.81 a 1.27 ± 0.25 a 9.94 ± 2.63 

IF2 112.1 ± 15.04 a 63.5 ± 11.77 a 169.0 ± 41.80 ab 45.7 ± 8.19 a 2.0 ± 0.18 a 10.0 ± 4.96 a 33.8 ± 8.32 ab 1.00 ± 0.04 ab 122.45 ± 
10.62a 0.97 ± 0.11 ab 8.10 ± 1.40 

IF3 101.3 ± 8.50 a 54.8 ± 5.13 a 122.8 ± 19.40 ab 46.5 ± 5.21 a 1.9 ± 0.09 a 21.8 ± 2.99 a 24.5 ± 3.80 ab 0.97 ± 0.03 abc 134.50 ± 6.11 a 0.91 ± 0.11 ab 7.64 ± 1.04 

IF4 104.4 ± 6.01 a 59.5 ± 4.63 a 147.7 ± 24.47 ab 44.8 ± 4.82 a 1.7 ± 0.12 a 15.7 ± 6.26 a 29.71 ± 4.85 ab 1.08 ± 0.04 a 141.92 ± 8.79 a 0.95 ± 0.08 ab 8.01 ± 0.59 

IF5 94.8 ± 12.98 a 51.5 ± 11.11 a 118.8 ± 13.89 ab 43.6 ± 4.69 a 2.1 ± 0.15 a 18.8 ± 6.09 a 23.8 ± 2.82 ab 0.93 ± 0.03 abcd 119.58 ± 8.29 a 0.80 ± 0.07 ab 5.92 ± 0.84 

IF6 129.0 ± 37.29 a 52.0 ± 4.09 a 119.0 ± 29.57 ab 39.6 ± 0.93 a 1.8 ± 0.08 a 21.4 ± 2.18 a 23.8 ± 5.93 ab 0.78 ± 0.04 cde 120.00 ± 13.93 

a 0.57 ± 0.05 b 3.96 ± 0.51 

IF7 102.2 ± 12.50 a 53.2 ± 10.71 a 160.6 ± 28.80 ab 48.8 ± 3.35 a 2.0 ± 0.14 a 16.8 ± 4.50 a 32.0 ± 5.79 ab 1.10 ± 0.08 a 123.75 ± 9.25 a 1.12 ± 0.20 ab 7.75 ± 1.00 

IF8 80.2 ± 8.48 a 42.5 ± 3.97 a 105.7 ± 12.65 ab 39.5 ± 4.26 a 1.9 ± 0.05 a 16.7 ± 2.91 a 21.3 ± 2.47 ab 0.82 ± 0.08 bcde 130.33 ± 11.29 

a 0.81 ± 0.17 ab 6.84 ± 0.97 

IF9 76. 7 ± 5.31 a 41. 3 ± 4.10 a 86.8 ± 23.14 b 35.1 ± 3.93 a 1.9 ± 0.13 a 17.7 ± 4.20 a 17.3 ± 4.70 b 0.64 ± 0.04 e 129.25 ± 8.21 a 0.52 ± 0.04 b 4.20 ± 0.40 

Data are expressed as means ± SEM. 1Espressed as mg/dL.  2Expressed as arbitrary units. 3Expressed as ng/mL.  
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Supplemental Figure 5.1. Conditioned water and saccharin consumption and saccharin preference 
following ADCR. Volume of A) water of B) saccharine consumed in a two-bottle test paradigm. Values 
are expressed as means ± SEM. abcDifferent letters between treatments indicate significant statistical 
difference with Tukey post hoc test at p<0.05. Saccharin preference assessed as the ratio of saccharin 
consumed (in ml) to total volume consumed. Data reported was collected from the second day of exposure 
to allow for habituation to the two-bottle paradigm using two water bottles in each cage. 
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Supplemental Figure 5.2. Subgroup analysis of gene expression of nutrient sensing and proteostasis 
related pathways by restriction level or day from skeletal muscle using qPCR. Principal component 
analysis of the expression of groups in two components categorized by A) 1-, B) 2-, and C) 3-day restriction. 
Principal component analysis of the expression of groups in two components categorized by A) 25%, B) 
50%, and C) 75% restriction. Ellipses show 95% confidence interval for each control group. Each dot 
represents one biological sample. 
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APPENDIX D: CHAPTER 6 APPENDIX 
 
 
Supplemental Table 6.1. List of Primers. 

Gene (Ensembl ID) Forward sequence (5’➙3’) Reverse sequence (5’➙3’) 

Tnfrsf1a (+1285 to +1363) 
(ENSRNOT00000048529.4) CTGTTCGGAAATGGGAAG ACAGCATACAGCATCGCA 

Tnfrsf12a (+313 to +379) 
(ENSRNOT00000004842.5) TTTCTGGTTTCCTGGTCTGG GTCTCCTCTATGGGGGTAGTAAAC 

Ripk1 (+1978 to +2057) 
(ENSRNOT00000004842.5) TGGACCGAGTTCACAACCACCA TGGTGTTAGCGAAGACGGCTTG 

Nfkb1 mRNA(p50) (+1907 
to +1985) 
(ENSRNOT00000045233.3) 

AGGCAGCACTCCTTATCAACCACC GACAGGCTGTTGCTCATCACAGCT 

Cebp-b mRNA (+1220 to 
+1287) 
(ENSRNOT00000083876.1) 

AGAACGAGCGGCTGCAGAAGA GAACAAGTTCCGCAGCGTGC 

Nfkbia mRNA (Ikba) (+701 
to +763) 
(ENSRNOT00000009894.6) 

CTACCTGGGCATCGTGGAGCA CAGGGCTCCTGAGCGTTGACA 

Ikbke mRNA (+1189 to 
+1257) 
(ENSRNOT00000038151.3) 

CCCTGCTCTGGATGTCCCAAAG CCCTTAGCGGTGCTGTAATCGG 

Ikbkg mRNA (+494 to +563) 
(ENSRNOT00000038151.3) GAGGCTGCTACCAAGGAACGACA GCTGTCTGACCTGCTCACTAACTGC 

Tnf mRNA (+339 to +449) 
(ENSRNOT00000079677.1) AAATGGGCTCCCTCTCATCAGTTC TCCGCTTGGTGGTTTGCTACGAC 

Tnf premRNA (+1279 to 
+1370) 
(ENSRNOT00000079677.1) 

CGGAAGTGAAGTGTGGGTAGAAGT GTTTGCTGAGGGAGGGAGAATT 

Dnmt1 mRNA (+1713 to 
+1792) 
(ENSRNOT00000064932.4) 

TCCTACGCCATGCCCAGTTTG GAAGATGGGCGTCTCATCATCG 

Dnmt3b mRNA (+1197 to 
+1274) 
(ENSRNOT00000015482.6) 

AATGCGCTGGGTACAGTGGTTTG AACAGACCCAGAGCCACCAGCT 

Tnf MSP Meth (-4850 to -
4789) 
(ENSRNOT00000079677.1) 

AACTTACCGCTACCTAAAATTACTTTAAACG GGTTTGTGGGTGAGGTTTTTTGT 

Tnf MSP Meth (-4850 to -
4789) 
(ENSRNOT00000079677.1) 

ACCAACTTACCACTACCTAAAATTACTTTAAAC AAAGGTTTATATCGTGTCGTTCGAGT 

Tnf MSP Meth (-2922 to -
2834) 
(ENSRNOT00000079677.1) 

TTTTGGTTTTTTATATTAGTGTGCG AATAACAACAAAAACGTCCCGTA 

Tnf MSP Unmeth (-2921 to 
-2831) 
(ENSRNOT00000079677.1) 

TTTGGTTTTTTATATTAGTGTGTGG AAAAATAACAACAAAAACATCCCATA 

Tnf MSP Meth (-1902 to -
1832) 
(ENSRNOT00000079677.1) 

GCGTATAGAAATTTGTGTATTCGGG AACACAACCCCCTAATACATTAAACGTA 

Tnf MSP Unmeth (-1902 to 
-1832) 
(ENSRNOT00000079677.1) 

TTAGTGTATAGAAATTTGTGTATTTGGGG AACACAACCCCCTAATACATTAAACATA 

Tnf MSP Meth (-1018 to -
950) 
(ENSRNOT00000079677.1) 

GTTTTTAGTAATATGATGGATTCGT CTTATCCTTTAAATCTCCTCCGAC 

Tnf MSP Unmeth (-1018 to 
-947) 
(ENSRNOT00000079677.1) 

GTTTTTAGTAATATGATGGATTTGT AACCTTATCCTTTAAATCTCCTCCA 

Tnf MSP Meth (-253 to -
155) 
(ENSRNOT00000079677.1) 

TGTTATAGAATTTTGGTGAGGACG TCTCAATTTCTTCTCCAATACGAA 
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Supplemental Table 6.1. (cont.) 

Tnf MSP Unmeth (-252 to -
153) 
(ENSRNOT00000079677.1) 

GTTATAGAATTTTGGTGAGGATGG TCTCTCAATTTCTTCTCCAATACAAA 

Tnf MSP Meth (+540 to 
+604) 
(ENSRNOT00000079677.1) 

CGTGTAGAGATGTGTAGAGACGTGG CTCGAATTTTTATCTCTTACTTCTTCCCTA 

Tnf MSP Unmeth (+540 to 
+604) 
(ENSRNOT00000079677.1) 

TGTGTAGAGATGTGTAGAGATGTGGTTAG TCTCAAATTTTTATCTCTTACTTCTTCCC 

Tnf ChIP (-1389 to -1322) 
(ENSRNOT00000079677.1) AAGAGGGGAGAGATGGAA TGTGGTAACTGACGCCTT 

Tnf ChIP (-970 to -897) 
(ENSRNOT00000079677.1) GGAGGAGACCCAAAGGATAAGGCT TCACTTCTCCCAGAACCTCCGTCT 

Tnf ChIP (-453 to -378) 
(ENSRNOT00000079677.1) CTCCCAATGCTAAGTTCTC AGAGACACCATGCCTATGT 

Tnf ChIP (+110 to +182) 
(ENSRNOT00000079677.1) CCCGAGGCAACACATCTC GCCAGTTCCACATCTCGG 

Tnf ChIP (+614 to +688) 
(ENSRNOT00000079677.1) GGAGACGAGGGAGATAAGGAGATA CCCTCTGTGCTTGATCTGTTGT 

Tnf ChIP (+1117 to +1254) 
(ENSRNOT00000079677.1) CAGGTGAGAGAGTCAGAGCGGTGA ACGTCCCATTGGCTACGAGGTC 

Tnf ChIP (+1710 to +1788) 
(ENSRNOT00000079677.1) GCTGAGGTCAACCTGCCCAAGT CGCCTCACAGAGCAATGACTCC 

Sirt1 mRNA (+734 to +810) 
(ENSRNOT00000078739.1) TTAATCAGGTAGTTCCTCGG GAAGACAATCTCTGGCTTCA 

Sirt6 mRNA (+582 to +660) 
(ENSRNOT00000008758.5) GCCTGTAGAGGGGAGCTGAGAGAC CATCAGCGAGCGTTAGGTCCC 

Hdac3 mRNA (+1011 to 
+1128) 
(ENSRNOT00000084735.1) 

GCTCCATCCAGATGTCAGCACCCGCAT CTGGACACTGGGTGCATGGTTCAGC 

Suv39h1 mRNA (+1127 to 
+1200) 
(ENSRNOT00000008399.5) 

GCTGTTGCTGTGGCTATGACTGC GCGGAAGATGCAGAGGTTGTAGC 

Ezh2 mRNA (+1110 to 
+1180) 
(ENSRNOT00000008149.5) 

CCACAGTGTTATCAGCATCTGGAGG GTCTTTATCCGCTCAGCAGTAAGGG 

Kmt2b mRNA (+961 to 
+1049) 
(ENSRNOT00000080842.1) 

CTAGAATCAGGTCAGGGTCGTGGTC GGTCCCCTTTCCTGTTCATCTCC 

Kdm6b mRNA (+367 to 
+441) 
(ENSRNOT00000067677.3) 

AGCAGTAACAACACTGGTCTTC AGGGTTTTGGTAATGGTCAG 

Lrrfip1 mRNA (+467 to 
+545) 
(ENSRNOT00000050191.2) 

CAGGGAGATCAAGGACTCTC GTTGTCTAGCTGGGCGTT 

Kdm2a mRNA (+1063 to 
+1149) 
(ENSRNOE00000186026) 

CAAGGTGGAAAGGTCTTCTGGC TCCCTGTTTCCCTGATAGCAGC 

Tnfaip3 mRNA (+394 to 
+473) 
(ENSRNOT00000074583.1) 

CTGAAAACCAACGGTGATG ACCAAGTCAGTATCCTGGACA 

Zbtb16 mRNA (+1759 to 
+1838) 
(ENSRNOT00000045356.3) 

TCAAAGGAAGATGCCCTGGA TTCCCACACAGCAGACAGAAGA 
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Supplemental Table 6.2. List of Antibodies. 
Name Cat. No. Origin Company 
TNF ab6671 Rabbit Abcam 
b-Actin sc-1616 (I-19) Goat Santa Cruz 
IgG sc-2027 Rabbit Santa Cruz 
NF-kB ab16502 Rabbit Abcam 
C/EBPβ sc-150 Rabbit Santa Cruz 
H3K4me3 07-442 Rabbit Millipore Sigma 
H3Ac 06-599 Rabbit Millipore Sigma 
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Supplemental Table 6.3. miRNA Database search for rat Tnf 3’-UTR, and miRNA in PubMed for Myomir and CR. 
 

3'-UTR Tnf  Myomir and Tnf  CR and miRNA 

miR ID Database  miRNA Reference miRNA Reference  miRNA Reference miRNA Reference 

mir-411 
miRanda-
miRSVF 

 miRNA-
29b Kulkarni, AS et al 2018 mml-

miR-1271 
Mercken, EM 
et al 2013 

 
mml-miR-

486-5p 
Schneider, A 
et al 2017 

rno-let-7c Csiszar, A et al 
2014 

mir-240 
miRanda-
miRSVF 

 miRNA-
29b Li, J et al. 2017 mml-

miR-17 
Mercken, EM 
et al 2013 

 mml-miR-
92a-3p 

Schneider, A 
et al 2017 

rno-miR-
329 

Csiszar, A et al 
2014 

mir-211 
miRanda-
miRSVF 

 miR-1 Fan, J et al 2016 mml-
miR-221 

Mercken, EM 
et al 2013 

 mml-miR-
16-5p 

Schneider, A 
et al 2017 

rno-miR-
23a 

Csiszar, A et al 
2014 

mir-212 
miRanda-
miRSVF 

  miR-133 Fan, J et al 2016 mml-
miR-339 

Mercken, EM 
et al 2013 

 mml-miR-
125a-5p 

Schneider, A 
et al 2017 

rno-miR-
214 

Csiszar, A et al 
2014 

mir-132 
miRanda-
miRSVF 

 miR-206 Fan, J et al 2016 mml-
miR-16 

Mercken, EM 
et al 2013 

 mml-miR-
125b-5p 

Schneider, A 
et al 2017 

rno-miR-
125b-5p 

Csiszar, A et al 
2014 

mir-27b 
miRanda-
miRSVF 

 miR-208 Fan, J et al 2016 mml-
miR-34a 

Mercken, EM 
et al 2013 

 mml-miR-
143-5p 

Schneider, A 
et al 2017 

rno-miR-
15b 

Csiszar, A et al 
2014 

mir-27a 
miRanda-
miRSVF 

 miR-486 Fan, J et al 2016 mml-
miR-15a 

Mercken, EM 
et al 2013 

 mml-miR-
106b-5p 

Schneider, A 
et al 2017 rno-let-7e Csiszar, A et al 

2014 
mir-
125a-3p 

miRanda-
miRSVF 

 miR-431 Fan, J et al 2016 mml-
miR-192 

Mercken, EM 
et al 2013 

 mml-miR-
20a-5p 

Schneider, A 
et al 2017 

rno-miR-
181a 

Csiszar, A et al 
2014 

mir-19b 
miRanda-
miRSVF 

 miR-499 Fan, J et al 2016 mml-
miR-19b 

Mercken, EM 
et al 2013 

 mml-miR-
133c-5p 

Schneider, A 
et al 2017 

rno-miR-
221 

Csiszar, A et al 
2014 

mir-19a 
miRanda-
miRSVF 

 miR-155 Fan, J et al 2016 mml-
miR-29b 

Mercken, EM 
et al 2013 

 mml-miR-
133b-5p 

Schneider, A 
et al 2017 rno-let-7d Csiszar, A et al 

2014 

mir-181d 
miRanda-
miRSVF 

 
miR-146a Fan, J et al 2016 mml-

miR-181b 
Mercken, EM 
et al 2013 

 
mml-miR-

182 
Schneider, A 
et al 2017 

rno-miR-
34a 

Csiszar, A et al 
2014 

mir-181c 
miRanda-
miRSVF 

 
miR-181a 

Fan, J et al 2016; Li, QJ 
et al 2007; Mercken, EM 
et al 2013 

mml-
miR-181a 

Mercken, EM 
et al 2013 

 

mml-miR-
224-5p 

Schneider, A 
et al 2017 

rno-miR-
24 

Csiszar, A et al 
2014 

mir-181b 
miRanda-
miRSVF 

 let-7c Yu, JH et al. 2016 mml-
miR-653 

Mercken, EM 
et al 2013 

 mml-miR-
6529-5p 

Schneider, A 
et al 2017 

rno-miR-
872 

Csiszar, A et al 
2014 

mir-181a 
miRanda-
miRSVF 

 miR-155 Seok, HY et al. 2011 mml-
miR-489 

Mercken, EM 
et al 2013 

 mml-miR-
21-5p 

Schneider, A 
et al 2017 

rno-miR-
29a 

Csiszar, A et al 
2014 

mir-499 
miRanda-
miRSVF 

 
miR-10a  Xu, D et al 2016 mml-

miR-1323 
Mercken, EM 
et al 2013 

 
mml-miR-

340-5p 
Schneider, A 
et al 2017 

rno-miR-
140 

Csiszar, A et al 
2014 

mir-208 
miRanda-
miRSVF 

 miR-16 Talari, M et al 2015.   mml-miR-
130a-5p 

Schneider, A 
et al 2017 

rno-miR-
301a 

Csiszar, A et al 
2014 

mir-99a 
miRanda-
miRSVF 

 miR-146b Fiorillo, A et al 2015   mml-miR-
1260b 

Schneider, A 
et al 2017 

rno-miR-
30c 

Csiszar, A et al 
2014 
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Supplemental Table 6.3. (cont.) 

mir-99b 
miRanda-
miRSVF 

 miR-374a Fiorillo, A et al 2015   mml-miR-
130b-5p 

Schneider, A 
et al 2017 

rno-miR-
30b 

Csiszar, A et al 
2014 

mir-100 
miRanda-
miRSVF 

 miR-31 Fiorillo, A et al 2015   mml-miR-
411-5p 

Schneider, A 
et al 2017 

rno-miR-
27a 

Csiszar, A et al 
2014 

rno-miR-
540-3p  miRDB 

 miR-146a Fiorillo, A et al 2015   mml-miR-
598-5p 

Schneider, A 
et al 2017 

rno-miR-
26a 

Csiszar, A et al 
2014 

rno-miR-
181b-5p  miRDB 

 miR-223 Fiorillo, A et al 2015   mml-miR-
500a-5p 

Schneider, A 
et al 2017 

rno-miR-
542-5p 

Csiszar, A et al 
2014 

rno-miR-
181c-5p  miRDB 

 miR-320a Fiorillo, A et al 2015   mml-miR-
501-5p 

Schneider, A 
et al 2017 

rno-miR-
152 

Csiszar, A et al 
2014 

rno-miR-
181d-5p  miRDB 

 miR-382 Fiorillo, A et al 2015   mml-miR-
122a-5p 

Schneider, A 
et al 2017 

rno-miR-
26b 

Csiszar, A et al 
2014 

rno-miR-
181a-5p  miRDB 

 miR-206 Režen, T et al 2014   mml-miR-
337-5p 

Schneider, A 
et al 2017 

rno-miR-
186 

Csiszar, A et al 
2014 

rno-miR-
298-5p  miRDB 

 miR-23a Režen, T et al 2014   miR-1-3p Margolis, LM 
et al 2017 

rno-miR-
20a 

Csiszar, A et al 
2014 

rno-miR-
204-5p  miRDB 

 let-7 Režen, T et al 2014    miR-133a-
3p 

Margolis, LM 
et al 2017 

rno-miR-
126 

Csiszar, A et al 
2014 

rno-miR-
211-5p  miRDB 

 mml-miR-
451 Mercken, EM et al 2013   miR-133b Margolis, LM 

et al 2017 
rno-miR-

29c 
Csiszar, A et al 

2014 
rno-mir-
181-5p TargetScan 

 mml-miR-
144 Mercken, EM et al 2013   miR-206 Margolis, LM 

et al 2017 
rno-miR-

192 
Csiszar, A et al 

2014 
rno-mir-
27-3p TargetScan 

 mml-miR-
129 Mercken, EM et al 2013   

miR-221 
Ortega, FJ et 

al 2015;  
rno-miR-

30e 
Csiszar, A et al 

2014 

  
 mml-miR-

200c Mercken, EM et al 2013   scarna-17 Serna, E et al 
2013 

rno-miR-
301b 

Csiszar, A et al 
2014 

  
 mml-miR-

942 Mercken, EM et al 2013   
miR-21 

Serna, E et al 
2013 

rno-miR-
101a 

Csiszar, A et al 
2014 

  
 mml-miR-

141 Mercken, EM et al 2013   
miR-130a 

Serna, E et al 
2013 

rno-miR-
210 

Csiszar, A et al 
2014 

  
 mml-miR-

142-3p Mercken, EM et al 2013   
miR-494 

Serna, E et al 
2013 

rno-miR-
106b 

Csiszar, A et al 
2014 

  
 mml-miR-

18a Mercken, EM et al 2013   
miR-19b 

Serna, E et al 
2013 

rno-miR-
449a 

Csiszar, A et al 
2014 

  
 mml-miR-

106b Mercken, EM et al 2013   mmu-miR-
34c-5p 

Victoria, B et 
al  

rno-miR-
17 

Csiszar, A et al 
2014 

  
 mml-miR-

15b Mercken, EM et al 2013   mmu-miR-
34b-5p 

Victoria, B et 
al  

rno-miR-
130b 

Csiszar, A et al 
2014 

  
 mml-miR-

215 Mercken, EM et al 2013   mmu-miR-
344d-2-5p 

Victoria, B et 
al  

rno-miR-
16 

Csiszar, A et al 
2014 

  
 mml-miR-

223 Mercken, EM et al 2013   mmu-miR-
592-5p 

Victoria, B et 
al  

rno-miR-
19b 

Csiszar, A et al 
2014 
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 mml-miR-

194 Mercken, EM et al 2013   rno-miR-
667 

Csiszar, A et 
al 2014 

rno-miR-
503 

Csiszar, A et al 
2014 

  
 mml-miR-

409-5p Mercken, EM et al 2013   rno-miR-
383 

Csiszar, A et 
al 2014 

mmu-
miR-150 

Olivo-Marston, 
SE et al 2014 

  
 mml-miR-

93 Mercken, EM et al 2013   rno-miR-
328a 

Csiszar, A et 
al 2014 

mmu-
miR-351 

Olivo-Marston, 
SE et al 2014 

  
 mml-miR-

17-5p Mercken, EM et al 2013   rno-let-7b Csiszar, A et 
al 2014 

mmu-
miR-16 

Olivo-Marston, 
SE et al 2014 

  
 mml-miR-

495 Mercken, EM et al 2013   rno-miR-
92a 

Csiszar, A et 
al 2014 

mmu-let-
7f 

Olivo-Marston, 
SE et al 2014 

  
 mml-miR-

32 Mercken, EM et al 2013   rno-miR-
532-3p 

Csiszar, A et 
al 2014 

mmu-
miR-34c 

Olivo-Marston, 
SE et al 2014 

  
 mml-miR-

19a Mercken, EM et al 2013   rno-miR-
181c 

Csiszar, A et 
al 2014 

mmu-
miR-155 

Olivo-Marston, 
SE et al 2014 

  
 mml-miR-

20a Mercken, EM et al 2013   rno-miR-
145 

Csiszar, A et 
al 2014   

 
mml: Macaca mulatta; rno: Rattus norvegicus; mmu: Mus musculus. 
 


