
c© 2018 Shiyi Yang

PLASMA LINE GENERATION AND SPECTRAL ESTIMATION FROM
ARECIBO OBSERVATORY RADAR DATA

BY

SHIYI YANG

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2018

Urbana, Illinois

Adviser:

Professor Erhan Kudeki

ABSTRACT

Incoherent scatter radar (ISR) signal spectrum is a statistical measure of Bragg
scattered radio waves from thermal fluctuations of the electron density in the iono-
sphere. The ISR spectrum consists of up- and down-shifted electron plasma lines
and a double-humped ion-line component associated with electron density waves
with the governing dispersion relations of Langmuir and ion-acoustic waves, re-
spectively. Such ISR spectral measurements can be conducted at the Arecibo
Observatory, one of the most important centers in the world for research in radio
astronomy, planetary radar and terrestrial aeronomy [Altschuler, 2002]. Although
ISR measurements have been routinely taken at Arecibo since the early 1960s,
full spectrum ISR measurements including the high-frequency plasma-line com-
ponents became possible only very recently [Vierinen et al., 2017] as a result of
critical recent upgrades in hardware configuration and computing resources. This
thesis describes the estimation and analysis of the full Arecibo ISR spectrum using
Arecibo line- and Gregorian-feed data collected with Echotec and USRP receivers
in September 2016 and processed using GPU-based parallel programming tech-
nology. In spectral analysis the “CLEAN” algorithm is used to deconvolve the
measured ISR spectrograms from frequency/height mixing caused by the finite
pulse length effect. CLEANed spectrograms are subsequently fitted to a Gaussian
spectral model for each height to extract an estimate of the plasma-line frequency
for each height.

ii

ACKNOWLEDGMENTS

I would like to thank my adviser Prof. Erhan Kudeki for his guidance on my re-
search. With his patient suggestions and thoughtful advice, I was able to solve the
problems encountered in research and understand the obscure concepts involved
during the experiment.

This thesis is based on incoherent scatter radar data collected at the Arecibo
Observatory located near Arecibo, Puerto Rico. I thank the Arecibo staff scien-
tists, engineers, and technicians who helped with the observations and initial data
processing, and in particular Dr. Nestor Aponte and Phil Perillat for producing
quick first-look data outputs and explaining many features and details of the ex-
periments for us, and Arun Venkataraman for helping us transport “big data” from
Arecibo to Illinois (in a multitude of ways).

I also thank Pablo Reyes for his academic advice in the ECE Illinois radar re-
mote sensing group from day one and for teaching me how to utilize remote2,
and Izzat Hajj for his technical support with the GPU system on impact1.
Thanks are also due to Profs. Wen-mei Hwu and Volodymir Kindratenko for pro-
viding time and space on their experimental GPU systems at various stages of this
project.

iii

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 THE IONOSPHERE AND THE THEORY OF IONO-
SPHERIC INCOHERENT SCATTERING 5
2.1 Earth’s Ionosphere . 5
2.2 Incoherent Scatter Theories . 7

CHAPTER 3 RADAR CONFIGURATION AT ARECIBO OBSER-
VATORY . 11
3.1 Arecibo ISR - System Description 11
3.2 Arecibo ISR Data Modes . 13
3.3 ISR Signal Processing and Spectral Estimation 17
3.4 Experiment Dates and Notes . 20

CHAPTER 4 COMPUTATION OF ARECIBO ISR BROADBAND
SPECTROGRAMS . 21
4.1 Tesla K40 - Introduction . 22
4.2 ULP Spectrograms . 22
4.3 ULP Spectrogram Generation - Operational Method 29
4.4 CLP Spectrograms . 30
4.5 Long ULP Spectrograms . 35

CHAPTER 5 SPECTRUM DECONVOLUTION AND PLASMA-LINE
DERIVATION . 38
5.1 Spectral Map Convolutional Distortion 38
5.2 Clean Algorithm . 38
5.3 ULP Spectrogram Deconvolution 40
5.4 ULP Plasma Line Frequency Estimation 46
5.5 Spline Fit . 51
5.6 CLP Spectrogram Deconvolution 51

CHAPTER 6 PLASMA-LINE PARAMETERS FITTING 60
6.1 ACF derivation and Gordeyev Integral Calculation 61
6.2 Gordeyev Integral Calculation 61

iv

CHAPTER 7 CONCLUSION AND FUTURE WORK 65

REFERENCES . 67

APPENDIX A ISR SPECTROGRAM GENERATION CODE 69
A.1 ULP Spectrogram Generation . 69
A.2 CLP Spectrogram Generation . 77

APPENDIX B CHIRP-Z GORDEYEV INTEGRAL CALCULATION . . 84

APPENDIX C PLASMA LINE DERIVATION CODE 87

v

CHAPTER 1

INTRODUCTION

Large power VHF/UHF radar systems used with very large gain antennas in iono-
spheric research are known as incoherent scatter radars (ISR). The highest sensi-
tivity ISR in operation in the world today is located at the Arecibo Observatory in
Puerto Rico, and this thesis describes very broadband and high resolution scattered
signal spectrum measurements conducted with the Arecibo ISR from ionospheric
altitudes above about 100 km.

The mechanism underlying incoherent scattering in ISR operations is the “dipole
radiation” of each free electron in the ionosphere made to oscillate by the trans-
mitted radar pulse—this is known as the Thomson scattering process. The density
of Thomson scattering free electrons in the ionosphere fluctuates as a superposi-
tion of electron density plane waves propagating in all directions across a broad
spectrum of wavelengths with propagation velocities governed by the Langmuir
and ion-acoustic wave dispersion relations. An ISR will only detect the super-
posed dipole radiation (Thomson scattering) signals of the electrons “belonging
to” density waves whose wavefronts are perpendicular to the radar beam since
scattering from electrons of waves propagating in other directions will be self-
canceling due to the destructive interference. Furthermore, only the scattering
of the electrons of waves with a wavelength equal to one half of the wavelength
of the transmitted radar pulse will not self-cancel—this wave component solely
responsible for the backscattered radar signal is called the “Bragg wave.” The
operation frequency of the Arecibo ISR is 430 MHz, which corresponds to about
70 cm wavelength, and 35 cm Bragg wavelength, meaning that Arecibo ISR will
only detect signals returned from 35 cm wavelength electron density waves which
are propagating parallel or anti-parallel to the direction of the radar beam. The
Arecibo ISR signal spectrum will then exhibit a pair of peaks up-shifted from 430
MHz, each one caused by 35 cm Bragg waves propagating toward the radar at
the ion-acoustic velocity Cs as well as the plasma-wave phase speed ωp/kB, re-
spectively, where ωp is the plasma frequency and kB is the Bragg wavenumber, in

1

addition to a pair of down-shifted peaks caused by the same waves propagating in
the opposite direction. The slower phase velocity peaks in the ISR spectrum re-
late to ion-acoustic waves in the ionospheric plasma while the fast phase velocity
peaks represent electron plasma (Langmuir) waves. Landau damping and colli-
sional damping of the scattering density waves will contribute to the broadening
of each of these spectral peaks. The broadened low-frequency ion-acoustic peaks
will tend to merge together to form the “double humped” ion-line feature of the
ISR spectrum. Broadened electron plasma lines will be separated in the ISR spec-
trum from the ion line on both sides by several MHz of frequency corresponding
to the “plasma frequency” of the ionosphere and will be undetactable unless the
radar system bandwidth is greater than twice the plasma frequency. The shape of
this entire broadband ISR spectrum, including the broadened ion and electron line
components just described, has been derived by Kudeki and Milla [2011] and is es-
sentially a superposition of electron and ion velocity distribution functions scaled
by kB and frequency-dependent weighting coefficients describing the collective
interactions of ionospheric charged particles (electrons and ions) via polarization
electric fields that they cause.

The high-power/large-aperture Arecibo ISR has an antenna bandwith exceed-
ing the ionospheric peak plasma frequencies encountered in daytime hours. Also,
with recent upgrades in its reception system, Arecibo is now capable of measur-
ing the full ISR spectrum including both the ion- and plasma-line components de-
scribed above. Such measurements have been successfully carried out at Arecibo
only very recently by taking advantage of new digital- and software-based receiver
technologies as well as improved computing speeds and data storage capacities.
More specifically, the use of USRP hardware coupled with GNU radio toolkit is
enabling the generation of terabytes of sampled radar data at 40 ns sampling rates,
permitting estimation of the full ISR spectrum with a Nyquist frequency exceed-
ing the maximum plasma frequencies encountered in the ionosphere. The intro-
duction of GPU-based parallel computation techniques allows large-volume and
high-speed spectral data analysis. The idea in parallel computation is to convert a
significantly long serial data processing task into multiple parallel tasks of smaller
length operations that can be quickly concluded—by generating multiple blocks
and threads, the GPU allows spectral analysis of 20000 chunks of 16384-point
time series simultaneously.

This thesis describes a GPU-based spectral analysis procedure we have used to
compute broadband spectral maps (spectrograms) with Arecibo ISR data, includ-

2

ing the ion- and plasma-line features, and presents examples of computed spectral
maps. The thesis also describes and discusses the convolutional distortions of the
meaasured spectrograms caused by the radar pulsing scheme utilized in the radar
measurements, as well as the deconvolution procedure based on the CLEAN algo-
rithm that was developed and used to distill—from the distorted spectrograms ob-
tained from the radar measurements—the actual underlying spectrogram of iono-
spheric electron density fluctuations that is geophysically significant.

There are six additional chapters in this thesis:

• Chapter 2 introduces basic concepts about the ionosphere and presents the
derivation of a model equation of the spectrum of the electron density fluc-
tuations causing the radar backscatter—a convolutionally distorted version
of this spectrum also models the backscattered radar signal spectrum that
can be computed from the sampled radar data.

• Chapter 3 describes the configuration of the Arecibo ISR system and the
technologies utilized in the experiment including the coded-long-pulse (CLP)
and uncoded-long-pulse (ULP) data collection modes.

• Chapter 4 describes the computation of the ISR and plasma-line spectrum
using the GPU technology. Two types of GPU based procedures will be
compared in terms of corresponding processing times.

• Chapter 5 describes the “CLEAN” algorithm used to extract—from the
measured spectral maps of the radar signal—the underlying and geophysi-
cally significant spectral maps of ionospheric Bragg waves causing the radar
backscatter. The procedure makes use of the 2D measurement “point spread
function” in the frequency/range space that is responsible for the distortion
of the Bragg wave spectral maps into measured ISR spectral maps. The
derivation of point spread function (PSF) will be presented.

• Chapter 6 presents the details of the theory of plasma-line spectrum includ-
ing the electron and ion Gordeyev integrals and their computation using
the tabulated Dawson’s integral data as well direct numerical computations
using the chirp-z algorithm.

• Chapter 7 presents the conclusions of this study and ideas for future work
in the general domain of ionospheric ISR spectrum estimation and spectral
analysis using model fitting techniques.

3

• Appendices A and B present the PyCUDA and Python codes used in ISR
and plasma-line spectrum estimation and the production of radar spectral
maps including their inversion for ionospheric state parameters. Appendix
C illustrates the codes in derivation of the plasma line from the raw data
received from Arecibo Observatory.

4

CHAPTER 2

THE IONOSPHERE AND THE THEORY OF
IONOSPHERIC INCOHERENT

SCATTERING

2.1 Earth’s Ionosphere

Earth’s upper atmosphere is a partially ionized and electrically conducting plasma
above about 50 km altitude. This deep layer of the atmosphere is called the “iono-
sphere” and blends into Earth’s “magnetosphere” above an altitude of about 1000
km as a magnetized plasma and into the “solar wind” beyond.

Two types of classification are used to describe the properties of the ionosphere:

• Temperature profile: As shown in Figure 2.1 on the left, atmospheric tem-
perature will decrease with height at an approximately constant rate below
an altitude of about 10 km in a region known as the troposphere. Above
the troposphere the temperature will increase with height throughout a re-
gion known as the stratosphere. The region of decreasing temperature above
the stratosphere is known as the mesosphere, above which lies a region of
increasing temperature known as the thermosphere. Stratospheric temper-
ature increase is due to the absorption of the ultraviolet portion of solar
radiation by ozone [Kelley, 2009]. Mesospheric temperature decrease with
height above 50 km is caused by radiative cooling whereas thermospheric
temperature increase is caused by daytime absorption of solar photons in
UV and EUV frequency bands.

• Plasma density profile: This characteristic is defined as the number of free
electrons per unit volume. As shown in Figure 2.1 on the right, ionospheric
plasma density reaches its peak value at a few hundred kilometers altitude
and exhibits substantial variation depending on daytime (solid curve) and
nighttime (dashed curve) conditions. The daytime profile represents an
equilibrium between the photo-ionization rate and recombination rate of
plasma production and decay. In daytime, the solar spectrum is incident on

5

Figure 2.1: Typical profile of neutral atmospheric temperature and ionospheric
plasma density with the various layers designated [Kelley, 2009].

a neutral atmosphere whose electron density increases exponentially with
decreasing altitude. Since the photons are absorbed in the process of pho-
toionization, the incoming beam itself decreases in intensity as it penetrates
the atmosphere. The combination of decreasing solar flux, increasing neu-
tral density, and diffusion provides a simple explanation for the basic large-
scale vertical layer of ionization [Kelley, 2009]. From 60 km to 90 km
altitude is the D region, from 90 km to 150 km is the E region, and beyond
150 km lies the F region. Peak plasma density occurs in the F region. The
ion composition differs among regions; at lower altitudes, namely in the D
region, it is less affected by the solar radiation. Therefore, there is a large
number of neutral particles in the lower altitude. In the F region, on the
other hand, due to the chemical reaction between oxygen gas, nitrogen gas
and solar UV radiation, O+ and N+ ions will dominate the ion composition
[Kelley, 2009].

Ionospheric plasma density drops dramatically at night at D region heights
while staying nearly the same higher up in the ionosphere in the F-region; this

6

is due to to the dramatic difference of the recombination rates of the F- and D-
region plasmas as explained in Kelley [2009], where atomic and molecular ions
dominate, respectively. In the lower altitude D-region the recombination process
may be:

NO++ e−→ N +O,

and
O+

2 + e−→ O+O.

In F region, the dominant recombination process goes as

O++ e−→ O+photon.

Without the solar radiation at night, the recombination at lower altitude will occur
more frequently than at higher altitude. As a result, the plasma density in F region
will still exist with a slight decrease in magnitude while the plasma density in D
region will almost disappear.

2.2 Incoherent Scatter Theories

According to the incoherent scatter spectral theories [Kudeki and Milla, 2011],
ionospheric incoherent scatter is caused by Thomson scattering of radar pulses at
radio frequencies from collections of ionospheric free electrons. In this section,
we will first describe the Thomson scattering process by single electrons, then
study the Thomson scattering effect of multiple electrons.

2.2.1 Thomson Scattering by a Free Electron

A free electron excited by a transmitted TEM wave pulse field Ei will be forced to
oscillate at the transmitted wave frequency and therefore radiate a scattered copy
of the transmitted TEM wave pulse back towards the radar antenna. The oscillat-
ing electron behaves like a Hertzian dipole and, assuming a z-directed oscillation,
the dipole radiation field propagating in direction θ away from the z-axis can be
written as

~Er(r) = jkηoIodz
e− jkr

4πr
sinθ θ̂ = θ̂ sinθ

re

r
Eie− jkr, (2.1)

7

where ηo ≡
√

µo
εo

is the intrinsic impedance of free space, θ is the zenith angle
measured away and

re ≡
e2

4πεomc2 ≈ 2.818×10−15 m (2.2)

is the classical electron radius. This follows from modeling Iodz as −ev where
v = −eEi

m jω is the electron velocity phasor expressed in terms of the incident pulse
field Ei assumed to point in z-direction, electron charge −e, electron mass m, and
pulse frequency ω = ck. Writing Ei seen by an electron located at position~r with
respect to the radar as Eo(~r)e− jkr, we can express the phasor amplitude of the
scattered field 2.1 for direction θ = 90◦as

Es =−
re

r
Eie− jkr =−re

r
Eo(~r)e− j2kr. (2.3)

This is the Thompson backscattered electric field received by the radar antenna
from a single electron located at position~r with respect to the radar antenna.

2.2.2 Thomson Scattering of Multiple Electrons

Figure 2.2: (a) Cartoon depicting radar scattering volume defined by the radar
antenna beam and (b) geometry of a subvolume ∆V of the scattering volume
shown in (a). Blue and red dots represent the scattering particles (electrons,
mainly, since the scattering cross section of ions is negligibly small compared
with that of the electrons) moving toward and away from the radar antenna,
respectively. [Kudeki and Milla, 2011].

8

For a subvolume ∆V in the radar beam shown in Figure 2.2, where the spheri-
cal wave could be approximately treated as a plane wave, the total backscattered
electric field from the subvolume ∆V will be the superposition of the backscattered
fields (2.3) from each of the electrons contained within ∆V . This backscattered
electric field can be expressed as

Es =−
No∆V

∑
p=1

re

rp
Eope− j2krp ≈−re

r
Eo

No∆V

∑
p=1

e j~k·~rp , (2.4)

where rp and Eop refer to the distance and incident electric field intensity seen
by the pth electron within ∆V , No is the average electron density within ∆V , and
Eo refers to the incident electric field intensity at the center of subvolume ∆V . In
addition, in (2.4) we used

~k ≡−2kor̂ (2.5)

to denote the Bragg wave vector and referred to the location of the pth electron
with a position vector~rp.

Given the electron density function in the subvolume ∆V ,

ne(~r, t)≡
No∆V

∑
p=1

δ (~r−~rp(t)), (2.6)

where~rp(t) represents the electron trajectory, the spatial Fourier transform of the
electron density function can be expressed as

∫
ne(r, t)e jk·rdr≡

No∆V

∑
p=1

e jk·rp(t) ≡ nek, t. (2.7)

And, as a consequence, we can express the Thomson backscattered field from a
collection of electrons as

Es(t)≈−
re

r
Ei

No∆V

∑
p=1

e jk·rp(t− r
c) ≡−re

r
Eine(k, t−

r
c
). (2.8)

As shown in Kudeki and Milla [2011], the backscattered field (2.8) implies a
baseband power spectrum (Fourier transform of the field ACF)

〈
|Es(ω)|2

〉
=

r2
e

r2 |Ei|2
〈
|ne(~k,ω)|2

〉
∆V (2.9)

9

from subvolume ∆V and a of backscattered signal from subvolume ∆V and a total
backscattered power of

Pr =
∫ dω

2π

∫
dV
|Ei|2/2ηo

r2 r2
e
〈
|ne(~k,ω)|2

〉
Ae(θ ,φ) (2.10)

from all the subvolumes covering the radar antenna beam — above Ae(θ ,φ) ≡
λ 2

4π
G(θ ,φ) denotes the effective antenna area for reception expressed in terms of

antenna gain G(θ ,φ) and wavelength λ = 2π

k , while
〈
|ne(~k,ω)|2

〉
represents the

electron density spectrum.
Finally, using dV = r2dΩdr as well as |Ei|2

2ηo
= PtG(θ ,φ)

4πr2 in (2.10), we obtain

Pr =
∫ dω

2π

∫
dr
∫

dΩ
PtG(θ ,φ)

4πr2 r2
e
〈
|ne(~k,ω)|2

〉
Ae(θ ,φ). (2.11)

This result is recognized to be a “soft target” radar equation wherein r2
e
〈
|ne(~k,ω)|2

〉
stands for the backscatter radar cross-section (RCS) per unit volume, per solid an-
gle, per unit frequency. Accordingly, using SI units, σ(~k,ω)≡ 4πr2

e
〈
|ne(~k,ω)|2

〉
is the “soft target” backscatter RCS of the ionosphere per cubic meter, per hertz.

10

CHAPTER 3

RADAR CONFIGURATION AT ARECIBO
OBSERVATORY

The Arecibo Observatory is located near the northern coastal town of Arecibo on
the island of Puerto Rico in a region populated by natural sinkholes in its terrain.
One such sinkhole about 15 km inland from Arecibo houses the largest single-
dish spherical reflector antenna in the world used for space research. The Arecibo
reflector antenna is part of the Arecibo ISR system that was designed and built
by William E. Gordon of Cornell University in the mid-1960s and maintained
by Cornell University until 2011. Since 2011 the Arecibo Observatory and its
ISR system have been operated under cooperative agreements with the National
Science Foundation. The Arecibo facility supports three major areas of research:
radio astronomy, atmospheric science, and radar astronomy. The observatory has
radar transmitters with effective isotropic radiated power of 1 MW at 2380 MHz
(S-band system) and 2.5 MW at 430 MHz (the ionospheric ISR system). This
thesis is focused on the use the Arecibo ISR system for ionospheric measurements
and research.

3.1 Arecibo ISR - System Description

The Arecibo ISR is a 430 MHz backscatter radar system using a spherical dish
antenna of 305 m diameter shown in Figure 3.1. The radar transmitter generates
pulses with peak power of 2.5 MW at the 430 MHz operating frequency [Isham

et al., 2000]. Given its very large antenna aperture and transmitted power op-
erated within the UHF band, Arecibo ISR achieves an overall sensitivity ∼ 100
larger than that of other ISR systems currently in existence. The original 430 MHz
line feed of the Arecibo Observatory could detect the F-region plasma line radar
scattering over a ±7.5 MHz bandwidth. After upgrades in the year 2000, Arecibo
bandwidth was broadened to ±15 MHz, as a result of which the detection fre-
quencies cover the range from 415 MHz to 445 MHz in ISR operations. The 430

11

Figure 3.1: Aerial view of the Arecibo Observatory. (Credit Arecibo
Observatory/NSF.)

MHz line feed makes an efficient use of the main dish when pointed vertically, as
its radiation pattern fills the available aperture. The new Gregorian feed that was
added to the system during the 2000 upgrades enables dual beam operations for
more efficient determinations or ionospheric plasma drifts [Isham et al., 2000].
In general, ISR signal spectrum contains two distinct features of importance in
ionospheric remote sensing: One is the low frequency ion-line feature, while the
second one is the plasma-line peaks seen at large frequency offsets from the radar
carrier as shown in Figure 3.2. Both spectral lines are characteristics of radar
pulses which are Bragg backscattered from electron density waves naturally ex-
cited and dissipated within ionospheric plasmas under thermal equilibrium. The
ion-line specifically is due to Bragg scattering from waves in the ion-acoustic
branch and can be utilized to estimate the plasma parameters including electron
and ion densities, temperatures, and ion composition. The plasma line spectrum,
on the other hand, results from Bragg scattering from the Langmuir waves, and

12

the spectrum is intensified by inverse Landau damping from photo-electrons and
can be used to measure the electron density and the electron energy spectrum
[Yngvesson and Perkins, 1968].

Figure 3.2: A schematic representation of the major features of the incoherent
scatter radar spectrum and its relationship to the ionospheric plasma frequency
profile. The ion and plasma lines arise from Bragg backscatter off thermal
density fluctuations, the power of which is concentrated in the acoustic and
electron Langmuir plasma wave modes, respectively [Isham et al., 2000].

3.2 Arecibo ISR Data Modes

Isham et al. [2000] describe six data acquisition modes for Arecibo ISR opera-
tions; two of them, coded long pulse (CLP) and uncoded long pulse (ULP), are
of importance in F-region and topside ionosphere studies. The use of CLP and
ULP modes for narrowband ion-line measurements with the main Arecibo ISR
receiver and broadband full spectrum measurements (including the plasma lines)
with Echotek and USRP receivers will be described here.

13

3.2.1 Coded Long Pulse Mode

In soft target radar measurements, if the correlation times of the scattering den-
sity waves are short compared to the inter-pulse period (IPP), then “pulse-to-
pulse” correlation methods cannot be used and it becomes necessary to utilize
“within pulse” correlation methods with multiple samples taken from the super-
posed echoes of transmitted pulses whose lengths need to exceed the sampling
interval by some substantial margin. Such “within pulse” operations are gener-
ally referred to as “long pulse” techniques. The disadvantage of using long pulses
is accepting relatively poor radar range resolution, unless the target SNR is so
strong that short baud length coding can be applied to the transmitted long pulse
to produce a range resolution determined by the baud length rather than the pulse
length.

The coded long pulse (CLP) mode utilized at Arecibo implements this idea and
works well to probe the lower F-region altitudes of the ionosphere where the elec-
tron density is relatively large and the corresponding scatter SNR is sufficient.
The mode was developed by Sulzer [1986] for high-resolution ion-line measure-
ments but it also works well in high-resolution plasma line measurements, as will
be shown in this thesis.

Arecibo CLP implementation for F-region measurements utilizes a 10 ms IPP
and a 440 µs long transmitted rectangular pulse, described in Figure 3.3, sub-
divided into 220 bauds of 2 µs length within which the phase of the 430 MHz
carrier is randomly assigned as 0◦ or 180◦ phase shifts. The 220 baud length ran-
dom binary phasing sequence encoded in transmission is sampled and the sampled
sequence is utilized to decode the echo signals to achieve a range resolution of 300
m corresponding to the 2 µs baud length (instead of 220X300 m corresponding to
the 440 µs pulse length) [e.g. Djuth et al., 1994].

More specifically, the CLP returns are sampled at the ion-line receiver output as
(I,Q) pairs (or as I+ jQ complex valued voltage phasors) at 2 µs intervals match-
ing the baud length of the binary code following an analog low-pass-filtering oper-
ation. Groups of 220 samples are conjugate multiplied with samples of the trans-
mitted pulse taken at the same receiver output to implement an effective “pulse
compression” and achieve a range resolution of 300 m for ion line measurements.
These measurements detect the ion-line spectrum from a 300 m wide slab of the
ionosphere without any distortion while smearing out the spectral content of 219
neighboring 300 m slabs located above and below as a white spectral background.

14

The binary phase coding used in the CLP technique is chosen such that its cross
correlation with its shifted versions is weak due to a destructive interference ef-
fect that results in the smearing effect just mentioned and can be characterized
as a convolutional distortion as discussed in Section 5.1. The spectral estimate
obtained in this fashion also lacks the high-frequency plasma line features located
well beyond the Nyquist frequency limit corresponding to the 2 µs sampling in-
terval used with the ion-line receiver output.

To estimate the full ISR spectrum including the plasma-line features, the CLP
returns need to be detected and sampled over a sufficiently wider baseband. This
is achieved using a USRP-based receiver operated in parallel with the ion-line re-
ceiver. The sampling interval of the USRP receiver is T =40 ns corresponding to
a Nyquist bandwitdh of B = 12.5 MHz. In spectral estimation with the USRP re-
ceiver, 11000 samples of the receiver corresponding to 440 µs of transmitted pulse
length are first conjugate multiplied with 11000 samples taken during the pulse
transmission time (this is the encoding phase sequence in effect) and the product
sequence is FFT’ed after zero-padding to a length of 16384 samples. This is a
very demanding operation that requires the use of GPU technology as described
in Chapter 4.

Figure 3.3: A schematic representation of the coded long pulse with 0.44 ms
pulse width. In a one-second file, the total pulse number is 100 and each pulse
has 11000 samples.

3.2.2 Uncoded Long Pulse Mode

The uncoded long pulse (ULP) mode is similar to CLP but no phase coding is
applied. Consequently the range resolution in this mode is determined by the

15

pulse length rather than some baud length. ULP mode is used to complement
CLP to extend the region successfully probed by CLP to higher altitudes where
ionospheric densities are lower and therefore the SNR is insufficient for CLP to
work. ULP works at those altitudes of weaker scattering cross sections because
in the absence of coding/decoding step the spectral contributions of neighboring
ionospheric slabs are not caused to smear; instead, they reinforce the ion-line
spectrum within the same frequency band and stand out from the background
noise level as a detectable and recognizable feature. Of course the price paid for
this is range resolution related ambiguities and spectral distortions—if ionospheric
parameters are changing substantially throughout the altitude region c(t±∆t)/2,
where t is the sampling time and ∆t the pulse length, then the computed spectrum
will include convolutional distortions which need to be addressed in some fashion
(see Chapter 5) during the data inversion stage.

Arecibo ULP implementation typically uses 500 µs pulse lengths and 20 ms
IPPs and 2 µs sampling intervals as shown in Figure 3.4. With 250 samples taken
per transmitted pulse echo, the ISR ion-line spectrum can be obtained using 250-
point FFTs or else by Fourier transforming the lag-profile matrices constructed
with auto-correlation function estimates obtained by circularly shifted products
of data sample sets. Once again plasma-line components are smeared out of the
ion-line estimates obtained with 2 µ samples taken at the output of the ion-lime
receiver system. The full ISR spectrum including the plasma-line features can
be estimated with the ULP returns sampled at the output of the USRP receiver
operated in parallel with the ion-line receiver. The sampling interval of the USRP
receiver is again T =40 ns corresponding to a Nyquist bandwitdh of B = 12.5
MHz. With the ULP mode, 12500 samples of the USRP receiver taken at T =40
ns intervals across the 500 µs long pulse length are first FFT’ed after zero padding
to a 16384 length. The operations are compute-intensive and are carried out with
GPUs as described in Chapter 4. A further detail of the Arecibo ULP mode is that
the carrier frequency used in consecutive pulse transmissions is varied as 430 MHz
±62.5 kHz from pulse to pulse. As a consequence, baseband data samples taken
after consecutive pulse transmissions need to be further de-modulated by ∓62.5
kHz before spectral analysis. This is true with both ion-line and full spectrum
analysis performed with the ion-line and the USRP receivers, respectively.

Finally, Arecibo ULP experiments are also run quite frequently using 1000 µs
long uncoded pulses as shown in Figure 3.5 with 2 µs or 4 µs sampling of the ion-
line receiver output. In these “long ULP” (LULP) measurements, FFT lengths will

16

Figure 3.4: A schematic representation of the uncoded long pulse with 0.5 ms
pulse width. In a one-second file, the total pulse number is 50 and each pulse has
12500 samples.

jump from 12500 to 25000 for full spectrum estimates using the USRP receiver
output still sampled at 40 µs intervals.

In the next chapter we will describe how CLP and ULP modes with shorter and
longer pulse lengths are interleaved in time during typical observation runs.

Figure 3.5: A schematic representation of the longer uncoded long pulse with 1
ms pulse width. In a one-second file, the total pulse number is 50 and each pulse
has 25000 samples.

3.3 ISR Signal Processing and Spectral Estimation

The ISR receiver will effectively convert the back-scattered electric field (2.8)
detected by the radar antenna into a voltage phasor

V (t)≡ I(t)+ jQ(t) = `Es(t) =−
re

r
Ei`ne(k, t), (3.1)

17

where ` is the antenna effective length in the direction of scattering volume ∆V ,
and I(t) and Q(t) are the in-phase and quadrature components of the voltage signal
with 90◦ phase shift. The voltage then is sampled at t = T which is the IPP in
pulse-to-pulse analysis or the sampling time after pulse transmission in a long
pulse experiment.

Consider an N-point voltage time series

Vn ≡V (nT),n ∈ [0,N−1] (3.2)

with sampling interval T forming a discrete Fourier transform pair with

Ṽm ≡ T
N−1

∑
n=0

Vne− j 2πnm
N ⇔Vn =

1
NT

N−1

∑
m=0

Ṽme j 2πnm
N (3.3)

for m ∈ [0,N−1], where 1
NT ≡ ∆ f is the sampling interval or “resolution” in the

frequency domain.1 The “average power” of the time series Vn is the “expected
value” of

1
N

N−1

∑
n=0
|Vn|2 = ∆ f

N−1

∑
m=0

|Ṽm|2

NT
, (3.4)

which is the discrete form of Parseval’s theorem where |Ṽm|2
NT is the “signal peri-

odogram” and its expected value 〈|Ṽm|2〉
NT the “signal spectrum”.

To develop a model for the signal spectrum we note that if the time series Vn is
a sample sequence of a wide sense stationary (WSS) random process, then

〈|Ṽm|2〉 = T 2
N−1

∑
n=0

N−1

∑
n′=0
〈V ∗n Vn′〉e− j 2πm(n′−n)

Ns = T 2
N

∑
p=−N

(N−|p|)〈V ∗n Vn+p〉e− j 2πmp
N

= NT 2
N

∑
p=−N

(1− |p|
N

)〈V ∗n Vn+p〉e− j 2πmp
N (3.5)

in terms of the auto-correlation function (ACF) 〈V ∗n Vn+p〉 of the process. In that
case the spectrum

〈|Ṽm|2〉
NT

= T
N

∑
p=−N

(1− |p|
N

)〈V ∗n Vn+p〉e− j 2πmp
N , (3.6)

1Notice 2πnm
N = 2πnT m

NT = 2πnT m∆ f in the exponents in (3.3), a discrete form of the product
ωt.

18

forming a discrete Fourier transform pair with a triangle weighted signal ACF

(1− |p|
N

)〈V ∗n Vn+p〉= ∆ f
N−1

∑
m=0

〈|Ṽm|2〉
NT

e j 2πmp
N , (3.7)

which in turn reduces to (and thus verifies) the expected value of the discrete form
of Parseval’s theorem (3.4) if/when p = 0.

The WSS assumption leading to the Fourier transform pair relations (3.6) and
(3.7) is in general valid for voltage time series Vn obtained in pulse-to-pulse radar
experiments. Time series Vn formed in long pulse experiments, however, will in
general fail to fit the WSS model (because of altitude dependence of the iono-
sphere from which different samples of Vn are obtained), and, as a consequence,
the computed power spectrum using |Ṽm|2

NT will in general be an “altitude mixed”
version of the discrete Fourier transform pair of true ACFs 〈V ∗n Vn+p〉 belonging to
different altitudes as governed by some “ambiguity function” that will be derived
and discussed in Chapter 5.

In practical spectral estimation with voltage time series Vn, we obtain, using an
FFT routine, Ṽm/T =FFTm[Vn], and thus the spectrum, scaled by N/T , can be ob-
tained by arithmetic averaging all |FFTm[Vn]|2 produced over some averaging time
interval, and optionally this time average can be divided by N2 if it is desirable
that a sum over all m (frequency index) gives the signal power.

The choice of averaging time depends on signal strength (SNR to be specific)
and how fast the spectral characteristic of the probed medium is changing. Rea-
sonable averaging times need to be “short enough” compared to time scales over
which the average properties of the scattering medium changes and “sufficiently
long” in order to reduce the random fluctuations of the frequency distribution of
back-scattered radar signal below the additive noise related fluctuations in the
computed spectra.

Finally, the key in physical modeling of signal spectrum and ACF is the relation
(3.1) according to which the average value of |FFTm[Vn]|2 will be a scaled version
of the space-time average of |FFTm[ne(~k,nT)]|2 or the Fourier transform pair of
the electron density ACF 〈n∗e(~k,nT)ne(~k,(n+ p)T)〉.

19

3.4 Experiment Dates and Notes

The Arecibo CLP and ULP data processed in this project were acquired at Arecibo
during two three-day campaigns conducted in 2016 over six days of observations.
Data are stored in binary files covering 10 seconds of CLP, 10 seconds of ULP
(with 0.5 ms pulse width) and 10 seconds of L-ULP (with 1 ms pulse width). Ion-
line data files contain samples taken from both the line-feed and Gregorian feed
channels. Separate data files contain the Gregorian/echotek samples covering the
5.5-9.5 MHz band and the line-feed/USRP samples covering the -12.5-12.5 MHz
band used for plasma line estimation. Table 3.1 illustrates the experiment dates in
2016, and Table 3.2 also shows the data collecting hours for each experiment day
in 2016. Table 3.2 shows the operation hours for each experiment date in 2016.

Table 3.1: Experiment dates in 2016. The radar pulse configuration is shown in
these six days of available data.

Pulse Type CLP ULP Long ULP
Day of Year 210-212, 267-269

Date July 28-30, September 23-25
Height Range (km) 0-1500 0-3000 0-3000

IPPs (ms) 10 20 20
Pulse Width (ms) 0.44 0.5 1.0

Table 3.2: Experiment hours for each date in 2016.

Day of Year Date Time
210 July 28 22:00:42-23:00:42
211 July 29 00:00:42-11:00:42, 23:27:32-23:59:58
212 July 30 00:29:58-3:29:58, 13:25:01-22:17:48
267 September 23 20:31:05-23:31:05
268 September 24 00:31:05-23:51:52
269 September 25 00:51:52-14:51:52

20

CHAPTER 4

COMPUTATION OF ARECIBO ISR
BROADBAND SPECTROGRAMS

ISR spectral estimation is a computationally demanding task in particular when
high resolution estimates of broadband spectra are desired as in Arecibo ISR ap-
plications [Djuth et al., 1994]. Fortunately we are living in an era of rapid techno-
logical development and increasing computational speeds based on increasingly
powerful GPU designs and GPU applications in parallel programming to process
increasingly large volumes of data. In this chapter we will describe how we take
advantage of new GPU and parallel programming techniques in order to produce
high-resolution broadband ISR spectrograms from raw data streams collected at
Arecibo and how to process the resulting spectrograms to correct for multiplica-
tive and convolutional distortions and extract geophysical parameters by suitable
fitting techniques. Our results will show that with the introduction of GPU-based
coding platforms including CUDA C and PyCUDA, ISR spectral estimation re-
solving the high-frequency plasma-line features becomes possible within accept-
able processing times. We will illustrate the use of a Tesla K40 GPU system to
process both coded and uncoded long-pulse ISR data from Arecibo using sev-
eral different approaches and compare the results and performances. PyCUDA
gives access to NVIDIA’s CUDA parallel computation API [Klöckner et al., 2012]
which enables efficient implementation of large-scale FFTs.

Table 4.1: Tesla K40 specification.

GPU Tesla K40
Stream Processors 2880

Core Cloak 745 MHz
Memory Width 384 bit
Memory Clock 6 GHz
Single Precision 4.29TFLOPS

VRAM 12 GB

21

Figure 4.1: Data arrangement. There are 10 seconds CLP, 10 seconds ULP (0.5
ms puls width) and 10 seconds LULP (1 ms pulse width) files every 30 seconds.

4.1 Tesla K40 - Introduction

To process the Arecibo ISR raw data for full bandwidth spectral estimation we use
a Tesla K40 system with 12 GB memory that features a 4.29 TFLOPS single pre-
cision performance. This system is hosted by a server machine named impact1
on csl.illinois.edu subnet which is a Linux machine with a fast con-
nection to illinois.edu network domain and to our data server remote2
on ece.illinois.edu subnet that stores the USRP raw voltage data from
Arecibo ISR experiments. According to Table 4.1, Tesla K40 on impact1 fea-
tures nearly 3000 stream processors and also 6 GHz memory clock, which ensures
the capability to deal with large-scale FFTs.

4.2 ULP Spectrograms

Contemporary ISR experiments at Arecibo make frequent use of the coded long
pulse (CLP) and uncoded long pulse (ULP) data acquisition modes. It is typical
to interleave the use of these modes at 10 second intervals. Arecibo ISR data is
stored in 1 s files—during a 1-min time interval 60 data files are produced. The
arrangement of these stored files is 10 seconds of ULP with 0.5 ms pulse width,
and 10 seconds of longer ULP with 1 ms pulse width, followed by 10 seconds of
CLP files and so on, as shown in Figure 4.1, where LULP represents the uncoded
long pulse with pulse width 1 ms.

We will next describe the generation of broadband ISR spectra and spectro-
grams using ULP mode raw data sampled at the USRP receiver output with the
help of Figure 4.2. In the ULP mode the IPP is 20 ms, transmitted pulse length
is 0.5 ms, and the sampling interval of the USRP receiver output is T = 40 ns.
Therefore 500000 complex voltage raw data samples are taken in each pulse trans-
mission period, with the first 12500 of them taken during the time of pulse trans-

22

mission. Consider moving the first 12500 samples of raw data V0 to V12500−1 to the
first row of a matrix V depicted in Figure 4.2 to represent the voltage time series
of height h0 (assigned a zero value). Then by skipping one sample, the next 12500
samples of raw data from V1 to V12500 are moved to the second row of the matrix
to form the time series for h1 = 6 m. The spectral measurement from 0 to 1180 km
will require a 196608×12500 matrix formed in this manner. If coverage of higher
altitudes is needed the matrix can be extended up to 3000 km in this manner, 3000
km being the limit imposed by the 20 ms IPP of the ULP experiment.

Here we will limit our attention to spectral estimation up to 1180 km height
(plasma line is undetectably weak at higher altitudes) and thus the 2-D data matrix
shown in Figure 4.2 is relevant. As shown in the figure the 2-D matrix is extended
by zero padding to 214 for FFT—the final dimensions are 196608×16384. The
formation of the matrix shown in Figure 4.2 is carried out using the GPU mounted
on impact1 accessing the raw USRP voltage data through a file system mounted
from remote2.

Before a 1-D parallel FFT operation is performed with the matrix, each row
is multiplied by e± j2π fonT , where fo = ±62.5 kHz is the transmitted frequency
offset from the 430 MHz carrier frequency utilized in the ULP mode on alternate
pulses—this multiplication pulls the voltage time series in each row back to 430
MHz based baseband. Finally FFT will be implemented on each row of the matrix
to derive the ULP spectrogram.

GPU-based platforms PyCUDA and CUDA C are used in applying the FFT
operation on the 2-D data matrix prepared as described above. In PyCUDA imple-
mentation the “batch value” — the number of FFTs implemented simultaneously—
needs to be specified. In this experiment, we choose the batch value to be some
power of 2, from 1024 to 16384. Processing a 196608 × 16384 matrix in the
GPU as a single step is not applicable because the memory space required for
the operation would exceed the Tesla K40 memory capacity. We have to subdi-
vide the 2-D matrix into several blocks, such that we can iterate each block of the
spectrogram matrix to implement the parallel FFTs. When determining the batch
value, we could initialize a large number such as 214, such that a smaller number
of blocks for iteration is required. However, a large batch value will introduce
more threads in GPU to handle the computation, which will cause more overhead
in the calculation. In this case, there is a trade off between the number of iteration
and the thread block required in this computation.

As shown in Kudeki and Milla [2006] ISR spectra Sm ≡ 〈|Ṽm|2〉
NT estimated with

23

Figure 4.2: Process of spectrum generation.

finite length time series will include a statistical estimation error with a standard
deviation given by is δSm = Sm/

√
I, if the estimate for Sm is taken as the arithmetic

average of |Ṽm|2
NT computed with I independent and non-overlapping time series

Vn using the notation introduced in Chapter 3. Alternatively, the estimate could
be obtained as a result of “frequency smoothing” over I consecutive frequency
bins of an I×N-point |Ṽm|2 (derived with a single FFT of a I×N-point Vn time
series) followed by decimation by a factor if I. Error standard deviation remains
unchanged.

We will proceed here with our description of ISR spectrum estimation with

24

Arecibo USRP receiver data collected on 2016.09.23 from 14:11:45 to 14:11:55
LT in ULP mode where N = 12500 and I = 500 (with and I value of 50 per second
of data).

(a) ULP spectrogram representing a stack of Sm estimates. The center straight line is
ion-line while the curve lines are the up and down shifted plasma-lines. The altitude
independent vertical band between 427.5 and 428 MHz is due to a bump in the system
frequency response function

(b) Estimate of the system frequency response H(ω).

(c) ULP spectrogram Ŝm corrected for Hm distortions.

Figure 4.3: ULP spectrogram computation details using a batch value of 1024.

We neglect the first 12500 rows of data to avoid the cluttering below 75 km of
lower altitudes such that the dimension of the matrix becomes 184108× 16384.
Let the spectrum Sm derived so far, by accumulating over I = 500 instances of
the magnitude squares of the GPU computed FFTs, be samples of the ISR spec-
trum Ŝ(ω) filtered through the USRP receiver frequency response function H(ω).
Magnitude squared frequency response |H(ω)|2 is obtained from Sm of the high-

25

est altitudes in the computed spectrogram—the reason for this is the spectrum
estimates from those heights are just the frequency independent background noise
spectrum (sky noise plus receiver noise referred to as system noise in general)
filtered by H(ω) and have the same shape as |H(ω)|2. Given |Hm|2, the measured
spectrum Ŝm is obtained as

Ŝm =
Sm

|Hm|2
. (4.1)

Figure 4.3(a) shows a filtered ULP spectrogram of Sm estimates, (b) the fre-
quency response magnitude |Hm| in dB derived from the top 100 altitudes of the
spectrogram, and (c) the corrected spectrogram Ŝm. The corrected spectrogram in
Figure 4.3(c) shows three “lines”, namely the central ion line feature of the ISR
spectrum and additional up- and down-shifted plasma lines on two sides of the
ion-line representing electron Langmuir waves traveling away from and towards
the radar, respectively. This well formed ISR spectrogram derived from 10 s of
collected raw data (I = 500) was computed in 761.18 seconds by using a batch
value of 210 = 1024. Results of a test run conducted with batch values ranging
from 210 to 214 are shown in Table 4.2. The table demonstrates that the batch
value does not affect the time cost for the spectrum computation significantly—
the overhead incurred by the threads will offset the time cost for the number of
iterations.

A repeat of Figure 4.3 computed with a 16384 batch value is shown in Figure
4.4.

Table 4.2: Time cost in each batch value.

Batch Value Number of Iteration Time Cost [s]
1024 192 758.57
2048 96 755.87
4096 48 756.61
8192 24 758.57

16384 12 761.18

The ISR spectrograms shown in Figures 4.3 and 4.4 were computed using large
data matrices of 184108× 16384 dimensions and required computation times of
more than 750 s, far exceeding the data collection time of 10 s. The resulting
spectrogram matrices also had 184108× 16384 dimensions and were impossible
to display in full resolution in Matplotlib while full resolution displays in Bokeh
(zoomable/expandable) were very slow to generate.

26

(a) ULP spectrogram representing a stack of Sm estimates. The center straight line is
ion-line while the curve lines are the up and down shifted plasma-lines. The altitude
independent vertical band between 427.5 and 428 MHz is due to a bump in the system
frequency response function

(b) Estimate of the system frequency response H(ω).

(c) ULP spectrogram Ŝm corrected for Hm distortions.

Figure 4.4: ULP spectrogram computation details using a batch value of 16384.

Clearly operational needs demand faster and smaller scoped approximate meth-
ods for sprectrogram generation and display. We discuss such methods in the next
section.

27

Figure 4.5: Processing FFT by skipping 25 samples between consecutive FFTs.

28

4.3 ULP Spectrogram Generation - Operational
Method

In Arecibo ISR experiments 10 s of ULP mode of data is collected once every
30 s. In the last section we found out that spectrogram generation with ULP
data collected in each 30 s period takes about 750 s of processing time using the
GPU system mounted to the impact1 server. Summarizing the workflow of the
spectrograms shown in the previous section, GPU code operating on impact1

server creates the raw data matrices needed for spectrogram generation from the
mounted data volume served by remote2, and GPU based FFT results are ac-
cumulated by GPU code until the final spectrogram is passed back to remote2
in form of an *.np file to be plotted in remote2 using Matplotlib. It is possi-
ble to accelerate this process from 750 s to 30 s to match the effective collection
time of the data underlying the computed spectrograms by forming 2-D data and
spectrogram matrices using only “1-in-25” of the data rows included in matrix
V depicted in Figure 4.2. That is, consider a reduced data matrix V’ depicted in
Figure 4.5 that has in its each row 12500-point time series (zero padded to 16384)
consisting of samples taken at T = 40 ns intervals starting at row n with voltage
sample V25∗n. Taking the FFT of this matrix in the GPU and accumulating the
squared FFT’s as a spectrogram over 10 s of ULP data collection taken within
each 30 s time intervals we obtain a 30 s spectrogram after 30 s of computation in
the GPU. The resulting *.np file (of 25 times smaller size) is then passed back to
remote2 and spectrogram plots such as those shown in Figure 4.6 are generated
with Matplotlib.

Visually, Figure 4.6, obtained after 30 s of computations looks the same as Fig-
ure 4.4 obtained after about 750 s of computations. Full resolution an accelerated
spectrogram results are re-potted in Figure 4.7 for easy comparisons. Notice that
in these plots we depict 2-D matrices of different sizes with equal image sizes—
the equalization is done automatically by the Matplotlib imshow command with
its default call parameters. A more direct and controlled comparison of the full
resolution and accelerated spectrogram calculations is presented in Figure 4.8.
Here the top row depicts the down- and up-shifted plasma line features of the ac-
celerated spectrogram. The same features are depicted in the middle row derived
from averaging and decimating the full resolution result to match the reduced di-
mensions of the accelerated result. Finally the bottom row shows the ratio of
the results displayed in top and middle rows in dB to detect, if any, significant

29

(a) ULP spectrogram representing a stack of Sm estimates made using the operational
approach.

(b) Estimate of the system frequency response H(ω) based on 364 top heights.

(c) ULP spectrogram Ŝm corrected for Hm distortions.

Figure 4.6: ULP spectrogram computation details using the accelerated
procedure.

differences attained using the two approaches. Clearly we detect no significant
differences between the outcomes of the two approaches.

4.4 CLP Spectrograms

In Arecibo CLP implementation the transmitted pulse is 0.44 ms and 220 baud
long and corresponds to 11000 samples taken at T = 40 ns intervals at the output
of the USRP receiver. The IPP is 10 ms and the number of pulses recorded in
each 1-second file is 100. As discussed in Section 4.3, we create a 7864 × 16384

30

(a) ULP spectrogram representing a stack of Sm estimates made
using the operational approach.

(b) ULP spectrogram representing a stack of Sm estimates made
using the full resolution approach.

(c) ULP spectrogram Ŝm corrected for Hm distortions obtained
with the accelerated approach.

(d) ULP spectrogram Ŝm corrected for Hm distortions obtained
with the full resolution approach.

Figure 4.7: ULP IS spectrogram comparison between accelerated and full
resolution approaches.

31

(a) Down-shifted plasma line spec-
trogram using accelerated proce-
dure.

(b) Up-shifted plasma line spectro-
gram using accelerated procedure.

(c) Down-shifted plasma line with
block average of full spectrogram.

(d) Up-shifted plasma line with
block average of full spectrogram.

(e) Down-shifted plasma line ratio in
dB.

(f) Up-shifted plasma line ratio in dB.

Figure 4.8: ULP IS plasma line spectrogram comparison between accelerated
and full resolution approaches.

32

matrix for accelerated spectrogram generation as shown in Figure 4.9 after zero
padding 11000 samples of data on each row to a 16384 length. The matrix is de-
coded by conjugate multiplying each row with the complex conjugate of the first
row, a direct recording of the 220-baud pseudo-random binary +1/-1 sequence
multiplying a rectangular pulse of 0.44 ms duration. Decoded matrix is FFT’ed
in the GPU and its magnitude square is accumulated as the accelerated spectro-
gram as before. For frequency response correction we use |Hm|2 values derived
from the previous ULP run. An example of CLP spectrogram computed using the
accelerated approach just described is shown in Figure 4.10.

Figure 4.9: CLP plasma line generation.

33

(a) CLP spectrogram representing a stack of Sm estimates. The center straight line is ion-
line while the curve lines are the up and down shifted plasma-lines. The altitude independent
vertical band between 427.5 and 428 MHz is due to a bump in the system frequency response
function.

(b) CLP spectrogram Ŝm corrected for Hm distortions.

Figure 4.10: CLP spectrogram computation details.

34

4.5 Long ULP Spectrograms

In LULP mode the transmitted pulse is 1 ms long and corresponds to 25000 sam-
ples taken at T = 40 ns intervals at the output of the USRP receiver. In Figure
4.11, the first 25000 samples of USRP output data V0 to V25000−1 are put into the
first row of the matrix A to generate height h0. In the accelerated approach the
data matrix is filled as shown in Figure 4.11 by starting each row n with sample
V25∗n and zero padding each row to 32768 length. The rest of processing details to
obtain spectrograms is identical to the accelerated CLP method described earlier.
An example of LULP spectrogram computed using the accelerated approach is
shown in Figure 4.12 corresponding to LULP data recorded on 2016.09.23 from
14:11:55 to 14:12:05.

Figure 4.11: Long ULP plasma line generation.

35

(a) LULP spectrogram representing a stack of Sm estimates. The center straight line is
ion-line while the curve lines are the up and down shifted plasma-lines. The altitude
independent vertical band between 427.5 and 428 MHz is due to a bump in the system
frequency response function.

(b) Estimate of the system frequency response H(ω).

(c) LULP spectrogram Ŝm corrected for Hm distortions.

Figure 4.12: LULP spectrogram computation details using the accelerated
procedure.

36

Table 4.3 summarizes the time cost for each type of the transmitted radar pulse
when using the accelerated operational method discussed in the last three sections.

Table 4.3: Time cost of spectrogram generation from 10 s of ULP, CLP, and
LULP data records

Pulse Type Batch Value Time Cost [s]
Uncoded Long Pulse 7864 26.83
Coded Long Pulse 7864 63.23

Long Uncoded Long Pulse 7864 85.02

37

CHAPTER 5

SPECTRUM DECONVOLUTION AND
PLASMA-LINE DERIVATION

5.1 Spectral Map Convolutional Distortion

Let p0, p1, p2, p3, p4 denote the time-series voltage of a 5-baud radar pulse trans-
mitted to the ionosphere, and V0,V1,V2,V3,V4 represent sampled voltages at the
receiver scattered from some ionospheric heights as shown in Figure 5.1. Notice
that the Vn sequence consists of not only the five “blocks” of back-scattered signal
from height h0 as indicated in the figure, but also from h1 to h4 as well as h−4

to h−1. This leads to a convolutional distortion where signal contributions from
many subvolumes of the ionosphere are mixed. In the actual ULP mode discussed
in Chapter 4, 12500 back-scattered signal samples of each row of the data matrix
V consist of the echoes from subvolumes at heights h−12499 to h12499. In order to
recover the true sampled back-scattered radar echoes from height h0, a deconvo-
lution algorithm “CLEAN” must be utilized as will be discussed in this chapter.

5.2 Clean Algorithm

The CLEAN algorithm was first introduced and described by Högbom [1974].
CLEAN is a deconvolution algorithm to reconstruct images recorded in radio as-
tronomy. This image restoration method is a non-linear operation, and the algo-
rithm is based upon the fact that the image to be deconvolved is itself a convolution
of a scene with multiple point sources with a point spread function (PSF) descrip-
tive of the observing instrument. The CLEAN algorithm has been discussed in
detail [Rich et al., 2008] and it works as follows:

1. Finding the location of the maximum absolute brightness point source in
the “dirty map” ;

38

Figure 5.1: Representation of ULP radar transmission and reception.

2. Multiplication of the strength of this point source with a gain factor to gen-
erate a “CLEAN component” at this location;

3. Convolution of the CLEAN component with the “dirty beam”, and sub-
traction this from the dirty map, recording the position and strength of the
CLEAN component subtracted;

4. Repeating step 1, 2 and 3 on the dirty map until all emission is found,
or a certain flux threshold is reached, or a number of iterations has been
achieved;

5. Adding the subtracted map to the CLEAN image.

As we discussed in Section 5.1, the received sampled voltages consist of radar
echoes from multiple heights. Height h0 is located at the center of the tilted 5×5
square. As a result, we create a matrix in which the transmission pulse is at
the center. By going from the center to the top and bottom of the matrix each
time, the rectangular pulse is multiplied with a shifted version such that the total
length of the product is reduced by one as described in Figure 5.1. Then we
will get a 25000× 12500 matrix P. By extending the matrix P by zero-padding
to 25000× 16384, we will implement FFT on each row of the matrix to derive
the ULP PSF. After the 25000× 16384 matrix is created, the resulting PSF is
compressed in *.npz file and passed back to remote2, and the spectrogram is

39

shown in Figure 5.2. The transmitted ULP pulse is a rectangular function whose
Fourier transform pair is a sinc function. A broader band of rectangular function
will result in a narrower sinc function with stronger peak. As a result, the PSF is
‘I’ shaped and its maximum magnitude is located at the center of the image.

(a) ULP PSF in magnitude. (b) ULP PSF in dB. We add 10−7 bias on the
PSF spectrogram to display it in logarithmic
scale.

Figure 5.2: Full spectrogram of ULP PSF.

5.3 ULP Spectrogram Deconvolution

After the point spread function is derived, the true ISR spectrogram could be re-
covered from the convolutional distortion by using the CLEAN algorithm. The
spectrogram to deconvolve is the full spectrogram of 10-second integration on
2016.09.24 from 14:11:45 to 14:11:55. In this section, we will focus on the up-
shifted plasma line region and down-shifted counterpart respectively. The “dirty
images” are the two separate normalized plasma line regions and the “dirty beam”
is the normalized PSF. Figure 5.3 shows the idealized CLEAN beam which is
2D Gaussian distribution. By modifying standard deviation along height and fre-
quency respectively, we observe that the resulting cleaned spectrogram is most
reasonable when σ f requency = 20, and σheight = 10. The full spectrogram deconvo-
lution requires a significant amount of computing resources to process. We focus
on the height of the spectrogram region from 165 km to 345 km. The gain step size

40

Figure 5.3: 2D Gaussian CLEAN beam.

is 0.2 and the resulting spectrogram is the deconvolution of a 30000× 4096 ma-
trix and a 25000×16384 matrix. Figure 5.4 represents the up-shifted CLEANed
plasma line spectrogram after the deconvolution. Visually, the CLEANed plasma
line could be extracted from the distorted spectrogram when we keep iterating the
CLEAN algorithm until it converges, which implies that the CLEAN algorithm
is working on the full spectrogram. However, we could improve the performance
of the CLEAN algorithm by modifying the gain value, which we will discuss in
the next section. The 2000 iterations of cleaning require 47.88 min, and the 3207
iterations for convergence require 96.19 min. For a 30 s data collection, the data
process requires over 95 min. When the height of the “dirty beam” is from 75
km to 450 km and we decrease the step size to 0.05 for better CLEANed spectro-
gram, the CLEAN algorithm will take an even longer time to derive the plasma
line spectrogram.

However, it is possible to accelerate the CLEAN process by deconvolving the
spectrogram matrices using only “1-in-25” of the data rows included in the full
spectrogram matrices described in the last section. Then, the PSF is block-averaged
by 25 rows such that the dimension of PSF matrices is 1000×16384, and the to-
tal data size is reduced by a factor of 25. Figure 5.5 shows the averaged PSF,
and Figure 5.6 illustrates the CLEANed spectrogram with the same gain size 0.2.
The height of the “dirty image” is from 75 km to 689.4 km, and the time cost for
generating the two plasma line spectrograms is 6.94 min.

By visually inspecting the resulting spectrogram, we observe that a nose-shaped
plasma line is extracted from the convolutional distorted spectrogram. As a result,

41

(a) CLEANed spectrogram after 2000 iterations.

(b) CLEANed spectrogram after 3207 iterations. The CLEAN algorithm converges.

Figure 5.4: CLEANed spectrogram from 165 km to 345 km with gain step size
0.2.

the CLEAN algorithm by using accelerated procedure works well in the spectral
measurement. However, there is some information missing from 423 MHz to
423.5 MHz. According to the algorithm discussed in Section 5.2, we can change

42

Figure 5.5: ULP PSF by using accelerated procedure.

the step size of gain to modify the CLEAN algorithm. By running the accelerated
deconvolution procedure, we will investigate the resulting spectrogram with gain
step 0.05.

Figure 5.7 represents the CLEANed plasma line with the gain step 0.05. The
resulting plasma lines are successfully derived from the distorted spectrogram,
which justifies our CLEAN algorithm. The time cost for the two plasma line
derivation is 7.29 min.

In order to estimate the plasma line frequency, the background noise from the
spectrogram is required to be removed. We choose a range of highest altitudes’
response as the background noise, and the noise of up-shifted plasma line and
down-shifted counterpart is shown in Figure 5.8.

By subtracting the background noise from the deconvolved plasma line spec-
trogram, we could derive the true plasma line spectrogram for estimation. Figure
5.9 shows the plasma line spectrogram with background noise removed.

43

(a) The left figure is distorted up-shifted plasma line spectrogram and right figure is re-
covered up-shifted plasma line.

(b) The left figure is distorted down-shifted plasma line spectrogram and right figure is
recovered down-shifted plasma line.

Figure 5.6: Cleaned plasma line spectrogram with gain step 0.2.

44

(a) The left figure is distorted up-shifted plasma line spectrogram and right figure is the
recovered up-shifted plasma line.

(b) The left figure is distorted down-shifted plasma line spectrogram and right figure is
recovered down-shifted plasma line.

Figure 5.7: Restored plasma line spectrogram with gain step 0.05.

45

(a) Background noise of up-shifted plasma line spectrogram.

(b) Background noise of down-shifted plasma line spectrogram.

Figure 5.8: Background noise of CLEANed plasma line spectrogram.

5.4 ULP Plasma Line Frequency Estimation

After we restore the true plasma line spectrogram from the convolutional distor-
tion, we could estimate the plasma line frequency at each altitude, in which we
could approximate the power spectrum with either a Gaussian distribution model
or a argmax function. By running the plasma frequency estimation test with these
two methods, we will inspect the plasma frequency prediction and the time cost
for each method.

• Gaussian Fitting
By fitting the mean µ and the standard deviation σ , we could obtain the
plasma frequency at each height with a particular uncertainty. In this sec-
tion, we use least-square package to optimize the parameters µ and σ such
that the mean-square error is minimized:

argmin
µ,σ

N

∑
i=1

(y(i)− f (x(i),µ,σ))2, (5.1)

where y(i) is the measured spectrum and f (x,µ,σ) is the fitted spectrum. In
this section, we choose the spectra at height 200 km, 250 km and 300 km

46

(a) The left figure is distorted up-shifted plasma line spectrogram and right figure is up-
shifted plasma line spectrogram with noise removed.

(b) The left figure is distorted down-shifted plasma line spectrogram and right figure is
down-shifted plasma line spectrogram with noise removed.

Figure 5.9: Up-shifted and down-shifted plasma line spectrograms.

47

respectively to illustrate the process to find the plasma frequency.
By inspecting the power spectrum of these three heights as shown in Figures
5.10 and 5.11, we obtain the measured data y(i). Then we use a Gaussian
distribution to optimize the two parameters in the model. By minimizing
the χ2, the optimal parameters µ and σ could be derived, where µ rep-
resents the estimated plasma frequency and σ denotes the uncertainty in
the estimated plasma frequency. In addition, the time cost to estimate the
plasma frequency from 75 km to 450 km is 62 seconds for Gaussian fitting
for one plasma line spectrogram. Then the total time cost will be around
132 seconds.

Figure 5.10: Down-shifted plasma line fitting by using Gaussian fitting at height
200km, 250km and 300km.

48

Figure 5.11: Up-shifted plasma line fitting by using Gaussian fitting at height
200km, 250km and 300km.

• Argmax Function

The argmax function will track the frequency which has the maximum
power magnitude. In each height, this frequency is the plasma line fre-
quency. The time cost for argmax method is 0.04 seconds.

By comparing the two fitting results with the original distorted plasma line spec-
trogram, we conclude that the two fitting results are very close, as shown in Figure
5.12. However, since argmax function will save more time than Gaussian fitting,
we will implement the argmax function in further spectral analysis.

For a 30 s data collection, the Gaussian distribution fitting will require over 2
min to obtain the plasma frequency, while the argmax function only requires 0.04

49

(a) Fitting down-shifted plasma line by using Gaussian fitting and argmax fitting.

(b) Fitting up-shifted plasma line by using Gaussian fitting and argmax fitting.

Figure 5.12: Fitted plasma line spectrogram by using Gaussian distribution and
argmax function.

50

s to generate the plasma line. By visually inspecting the fitted plasma line by using
above two approaches, the resulting plasma lines are very close to each other. As
a result, we choose the argmax function to derive the plasma line frequency in our
future spectral measurement.

5.5 Spline Fit

So far we have derived the plasma frequency by fitting the power spectrum of
each height independently. However, at a given time instant, the plasma fre-
quency should be continuous across the heights. It turns out that when fitting
the power spectrum independently, there will be oscillation between consecu-
tive points along the curve. As a result, in order to guarantee the continuity and
smoothness of the plasma line spectrum, the spline interpolation is introduced.
The spline interpolation is a type of interpolation which uses piece-wise polyno-
mials to approximate the original data. By implementing the spline interpolation,
the plasma line spectrum is more smooth as shown in Figure 5.13. We then com-
pare the spline interpolation of the plasma line with the plasma line without de-
convolution, and we have Figure 5.14. We have derived the ISR plasma frequency
from the raw data received from Arecibo Observatory ULP measurements. Figure
5.15 demonstrates each step to generate the plasma line spectrogram and deter-
mine the plasma frequency.

5.6 CLP Spectrogram Deconvolution

Based upon Figure 5.15, we follow each step to generate the plasma line from the
raw data received from the Arecibo Observatory CLP spectral measurements.

• Generate ISR CLP spectrogram and obtain the corrected CLP spectrogram
for USRP receiver H(ω) described in Section 4.4.

• Use accelerated CLEAN algorithm to deconvolve the plasma line spectro-
gram from the convolutional distortion. The derivation of CLP PSF is sim-
ilar to that of ULP except that each row of the PSF matrices will be multi-
plied with the complex conjugate of the transmitted CLP. Figure 5.16 shows
an example of CLP PSF.

51

Figure 5.13: Spline interpolation of up-shifted and down-shifted plasma line
spectrum.

Then the gain step size is set to be 0.05 and the CLEANed spectrogram is
shown in Figure 5.17

• Remove the background noise from the plasma line spectrogram, and use
argmax function to estimate the plasma frequency at each height. Figure
5.18 shows the spectrogram with background noise removed and Figure
5.19 represents the estimated plasma line frequency.

• Use spline interpolation to smooth the plasma line to derive more accurate
plasma frequency. Figure 5.20 illustrates the spline interpolation of the CLP
plasma line.

52

(a) The left figure is original distorted down-shifted plasma line spectrogram and right
figure is spline interpolation of the fitted plasma line.

(b) The left figure is original distorted up-shifted plasma line spectrogram and right figure
is spline interpolation of the fitted plasma line.

Figure 5.14: Spline interpolation of plasma line spectrogram.

53

Figure 5.15: Block diagram to derive the plasma frequency from the raw data
received from Arecibo Observatory.

54

Figure 5.16: Point-spread-function of the CLP with pulse width 0.44 ms.

55

(a) The left figure distorted up-shifted plasma line spectrogram and right figure is recov-
ered up-shifted plasma line.

(b) The left figure is distorted down-shifted plasma line spectrogram and right figure is
recovered down-shifted plasma line.

Figure 5.17: Restored plasma line spectrogram with gain step 0.05.

56

(a) Down-shifted CLEANed spectrogram with background noise removed.

(b) Up-shifted CLEANed spectrogram with background noise removed.

Figure 5.18: Restored plasma line spectrogram without background noise.

57

(a) Estimated down-shifted plasma frequency.

(b) Estimated up-shifted plasma frequency.

Figure 5.19: Estimated plasma frequency.

58

Figure 5.20: Spline interpolation of CLP plasma line.

59

CHAPTER 6

PLASMA-LINE PARAMETERS FITTING

With the plasma-line spectrogram, one could estimate the parameters including
electron density, ion density and their corresponding component in the ionosphere
by applying the general framework of incoherent scatter spectral theories accord-
ing to Kudeki and Milla [2006]. The spectrum of electron density fluctuations in
the equilibrium plasma is given by:

〈|n(k,ω)|2〉= | jωεo +σi|〈|nte(k,ω)|2〉
| jωεo +σe +σi|2

+
|σe|〈|nti(k,ω)|2

| jωε +σe +σi|2
, (6.1)

where
〈|nts(k,ω)|2〉= 2Noℜ{Js(ωs)}, (6.2)

and
σs(k,ω) =

1− jωsJs(ωs)

k2h2
s

· jωεo. (6.3)

In the above equations, ωs represents the Doppler-shifted frequency in the radar
frame while hs ≡

√
εKTs
Noe2 denotes the Debye length of the species s. In addition,

Js(ω) corresponds to Gordeyev integral of species s where it could be expressed
as

Js(ω)≡
∫

∞

0
dτe− jωτ〈e jk·∆rs〉, (6.4)

where 〈e jk·∆rs〉 denotes the single particle’s auto-correlation function (ACF).
In this chapter, the non-magnetic and collision-less case will be discussed and

the corresponding specification of ACF 〈e jk·∆rs〉 will be derived for Gordeyev
integration.

60

6.1 ACF derivation and Gordeyev Integral Calculation

In a non-magnetized and collisionless plasma, particles will move along the straight
line trajectories with random velocities v. In this case, the displacement vector
could be denoted as:

∆r = vτ. (6.5)

Then, the Gaussian-distributed displacements ∆r will have a probability distribu-
tion

f (∆r) =
e
− ∆r2

2〈∆r2〉√
2π〈∆r2〉

. (6.6)

The mean square of the displacement could be expressed as

〈∆r2〉= 〈v2〉τ2 =C2
τ

2, (6.7)

where C ≡
√

KT/m is the thermal speed of the charged carrier.
As a result, the single particle’s ACF in a non-magnetized and collisionless

plasma will be
〈e jk·∆r〉= e−

1
2 k2C2r2

. (6.8)

After the generalization of single particle’s ACF, we will move forward to the
Gordeyev integral calculation to generate the theoretical plasma-line power spec-
trum.

6.2 Gordeyev Integral Calculation

The Gordeyev integral is demonstrated as

J(ω) =
∫

∞

0
dτe− jωτ〈e jk·∆r〉. (6.9)

In this section, two algorithms will be discussed for the implementation of
Gordeyev integral calculations. The first algorithm is the Dawson integral for
F-region computation while the second method will be chirp-z algorithm which
will be applied in higher plasma-frequency and electron density.

61

6.2.1 Dawson Integral

The Gordeyev integral in a non-magnetized collisionless plasma is

J(ω) =
∫

∞

0
dτe− jωτ〈e jk·∆r〉=

∫
∞

0
dτe− jωτe−

1
2 k2C2τ2

. (6.10)

For the equation above, the identity as show below could used

jZ(θ)≡
∫

∞

0
dte− jθ te

−t2
2 =
√

πe−θ 2
− j2e−θ 2

∫
θ

0
et2

dt, (6.11)

where e−θ 2 ∫ ∞

0 et2
is the Dawson’s integral function. Figure 6.1 represents a sam-

ple theoretical plasma-line spectrum by applying the Dawson’s integral.

(a) Plasma spectrum in loglog scale. (b) Plasma spectrum in dB scale.

Figure 6.1: Incoherent scatter spectral model.

In the right section of the Figure 6.1, the peak in the center region describes the
ion-line component of the spectrum while another two peaks at ±3 MHz denote
the location of the plasma-line. This is the most basic incoherent scattering model.
If we zoom into the center part for a closer investigation, a double humped shape
will appear as show in Figure 6.2

However, the Dawson’s integral will not be functioning well when the plasma
frequency or the electron density is significantly high. When the electron den-
sity is increasingly higher, the plasma line in the theoretical incoherent scatter
spectrum will be distorted and the Dawson’s integral will present an incorrect rep-
resentation. Consequently, the chirp-z algorithm will be adopted to deal with the
high electron density.

62

Figure 6.2: Ion line spectrum.

6.2.2 Chirp-z Calculation

The Gordeyev integral is

J(ω) =
∫

∞

0
dτe− jωτ〈e jk·∆r〉, (6.12)

According to Li et al. [1991], by applying “Chirp” fast-field program, given an
arbitrary integration

∫ kmax
0 F(z,zs;k)e−ikrdk could be evaluated a N-point summa-

tion. The kmax in the integration is chosen such that the error produced by truncat-
ing the range of integral is negligible. The summation could be expressed as

SN = ∆k
N−1

∑
n=0

F(z,zs;n∆k)exp(−in∆kro)W nm
N , (6.13)

where
WN = exp(−2ipπ/N). (6.14)

In our calculation, ro is chosen as 0 so that the N-point summation becomes

SN = ∆k
N−1

∑
n=0

F(z,zs;n∆k)W nm
N . (6.15)

The parameter p has been introduced so that ∆k and ∆r could be chosen indepen-
dently. By manipulating the equation, we could get the equation

SN = ∆kW m2/2
N

N−1

∑
n=0

F(z,zs;n∆k)×W n2/2
N W−(m−n)2/2

N . (6.16)

63

If we define F(z,zs;n∆k)W n2/2
N as a new sequence Xn and W−n2/2

N as Yn, then the
summation can be treated as the discrete convolution of Xn and Yn. Thus, the
convolution can be expressed as:

SN = ∆kW (m2/2)
N IFFT{FFT[Xn]FFT[Yn]}. (6.17)

Consequently, the Gordeyev integral calculation could be evaluated by the high
speed convolution. Figure 6.3 represents the theoretical incoherent scatter spectra.

(a) Plasma spectrum in loglog scale. (b) Plasma spectrum in dB scale.

Figure 6.3: Incoherent scatter spectral model.

Similarly, Figure 6.4 shows the ion spectrum component if we take a closer look
at the center region.

Figure 6.4: Ion line spectrum.

According to the observation, the Chirp-z method could generate a decent and
plasma-line spectrogram efficiently. When we are dealing with high electron den-
sity or plasma frequency, we could adopt the Chirp-z algorithm to generate the
theoretical incoherent scatter spectra.

64

CHAPTER 7

CONCLUSION AND FUTURE WORK

The ISR spectrogram generation requires heavy computation which could not be
easily handled due to the limitation of technology decades ago. However, thanks
to the development of the graphics processing unit and introduction of parallel
programing, we can efficiently generate the ISR spectrogram by implementing
parallel FFTs in GPU. By implementing the full spectrogram analysis and accel-
erated procedure, the time cost for spectrogram generation and spectral measure-
ment have been discussed. We find out that the optimal algorithm to process the
ISR ULP and CLP data is to use an accelerated procedure.

In both ULP and CLP mode spectrogram processing, we use an accelerated
operational method by skipping every 25 heights prior to FFT and spectrogram
accumulation. In ULP mode analysis each pulse is multiplied with e± j2π fonT ,
where fo = ±62.5 kHz is the transmitted frequency offset from the 430 MHz
carrier frequency utilized in the ULP mode on alternate pulses, to demodulate the
ULP pulses back to 430 MHz. In the CLP mode each pulse has a unique sequence
of binary code imposed on it which requires a demodulation step accomplished by
multiplying each data row with the complex conjugate of the transmitted samples
contained in row 0.

The ISR spectrogram obtained by the accelerated procedure is corrected for its
convolutional distortions by using the CLEAN algorithm as discussed in Section
5.1—namely, we use CLEAN to deconvolve the plasma line features in the spec-
trograms making use of the appropriate point spread functions of the ULP and
CLP modes. CLEANed spectrograms can be fitted to a Gaussian model or re-
duced using an argmax based approach to identify the plasma line frequency for
each sampled altitude. Both methods work well and produce near identical results
but the argmax method is faster and thus preferable, in particular after the spline
smoothing operation that is implemented as the final step.

Regarding future work, we will explore the feasibility of accelerating the plasma
frequency estimation technique even further and apply the method to process all

65

the Arecibo USRP ULP and CLP data collected since July 2016. We will also
apply the methods developed here to deconvolve and fit the ion-line component
of the broadband ULP and CLP spectrograms derived from USRP data. Spec-
tral fits of both the ion-line and plasma lines can be based on the theory outlined
in Chapter 6. Theoretical ISR spectrum in non-magnetized plasmas can be de-
rived by approximating the Gordeyev integrals required by the theory using Daw-
son’s function tabulated in MATLAB and numpy. However for broadband and
zoomed-in frequency calculations the Gordeyev integrals need to be computed
using the Chirp-z algorithm as described by Kudeki and Milla [2011]. We plan
to develop a Chirp-z transform based broadband ISR spectrum model to be fitted
to both the ion-line and plasma-line features obtained in ULP and CLP experi-
ments. By fitting the ion-lines and plasma-lines simultaneously we would have
a most comprehensive means of detecting the ionospheric state parameters de-
scribing the electron and ion populations and their dynamic and thermodynamic
states.

66

REFERENCES

Altschuler, D. R., The National Astronomy and Ionosphere Center’s (NAIC)
Arecibo Observatory in Puerto Rico, in Single-Dish Radio Astronomy: Tech-
niques and Applications, vol. 278, pp. 1–24, 2002.

Djuth, F. T., M. P. Sulzer, and J. H. Elder, Application of the coded long-pulse
technique to plasma line studies of the ionosphere, Geophysical Research Let-
ters, 21(24), 2725–2728, 1994.

Högbom, J., Aperture synthesis with a non-regular distribution of interferometer
baselines, Astronomy and Astrophysics Supplement Series, 15, 417, 1974.

Isham, B., C. Tepley, M. Sulzer, Q. Zhou, M. Kelley, J. Friedman, and
S. González, Upper atmospheric observations at the Arecibo Observatory: Ex-
amples obtained using new capabilities, Journal of Geophysical Research:
Space Physics, 105(A8), 18,609–18,637, 2000.

Kelley, M., The Earth’s Ionosphere: Plasma Physics and Electrodynamics, Inter-
national Geophysics, Elsevier Science, 2009.

Klöckner, A., N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih, Pycuda
and pyopencl: A scripting-based approach to gpu run-time code generation,
Parallel Computing, 38(3), 157–174, 2012.

Kudeki, E., and M. Milla, Incoherent scatter spectrum theory for modes propagat-
ing perpendicular to the geomagnetic field, Journal of Geophysical Research:
Space Physics, 111(A6), 2006.

Kudeki, E., and M. A. Milla, Incoherent scatter spectral theories–part I: A general
framework and results for small magnetic aspect angles, IEEE Transactions on
Geoscience and Remote Sensing, 49(1), 315–328, 2011.

Li, Y., S. Franke, and C. Liu, Numerical implementation of an adaptive fast-field
program for sound propagation in layered media using the chirp z transform,
The Journal of the Acoustical Society of America, 89(5), 2068–2075, 1991.

Rich, J., W. De Blok, T. Cornwell, E. Brinks, F. Walter, I. Bagetakos, and R. Ken-
nicutt Jr, Multi-scale clean: A comparison of its performance against classical
clean on galaxies using things, The Astronomical Journal, 136(6), 2897, 2008.

67

Sulzer, M. P., A radar technique for high range resolution incoherent scatter auto-
correlation function measurements utilizing the full average power of klystron
radars, Radio Science, 21(06), 1033–1040, 1986.

Vierinen, J., B. Gustavsson, D. Hysell, M. Sulzer, P. Perillat, and E. Kudeki, Radar
observations of thermal plasma oscillations in the ionosphere, Geophysical Re-
search Letters, 44(11), 5301, 2017.

Yngvesson, K., and F. Perkins, Radar Thomson scatter studies of photoelectrons in
the ionosphere and Landau damping, Journal of Geophysical Research, 73(1),
97–110, 1968.

68

APPENDIX A

ISR SPECTROGRAM GENERATION CODE

The following code consists of both the uncoded-long pulse and coded-long pulse
operational spectrogram generation. The notebook uses both Python and Pycuda
to process the ISR raw data from Arecibo Observatory.

A.1 ULP Spectrogram Generation

%pylab inline

import glob,os

dpath = ’/mnt/remote2_rdata3_radar/’

dirlist = sorted(glob.glob1(dpath,"2016-09-24T??-??-??"))

filespath = os.path.join(dpath,dirlist[13])

flist = sorted(glob.glob1(filespath,"*.h5"))

def read_file_data(fname,verbose=False):

import h5py

fp =h5py.File(fname,"r")

data = fp.get(’rf_data’)

if verbose:

print (data.dtype)

ndata = data[’r’].squeeze() + 1j * data[’i’].squeeze()

return ndata.astype("complex64")

#Modified code

def Detect_IPP_Tx(ndata0,verbose=False):

import numpy as np

decim=100

pwr100 = (abs(ndata0)**2).reshape(ndata0.shape[0]//decim,decim

).sum(1)

derv100 = pwr100[1:]-pwr100[:-1]

thresh1 = 2e8

thresh2 = -1e8

curr_test = 0

69

#Adjust the threshold value

if (np.nonzero(derv100[curr_test:]>thresh1)[0].size == 0 or np

.nonzero(derv100[curr_test:]<thresh2)[0].size ==0):

thresh1 = 2e6

thresh2 = -1e6

if (np.nonzero(derv100[curr_test:]>thresh1)[0].size == 0 or np

.nonzero(derv100[curr_test:]<thresh2)[0].size ==0):

TxUp = []

IPPs_start = []

if verbose:

print ("No Pulses detected")

return TxUp, IPPs_start

curr_test += np.nonzero(derv100[curr_test:]>thresh1)[0][0]

TxUp = np.nonzero(derv100[curr_test:]<thresh2)[0][0]

while TxUp<50:

if verbose:

print ("false pulse")

curr_test += TxUp

Its not a Tx pulse (maybe interference)

if (np.nonzero(derv100[curr_test:]>thresh1)[0].size == 0 or

np.nonzero(derv100[curr_test:]<thresh2)[0].size ==0):

TxUp = []

IPPs_start = []

print ("No pulses detected")

return TxUp, IPPs_start

curr_test += np.nonzero(derv100[curr_test:]>thresh1)[0][0]

TxUp = np.nonzero(derv100[curr_test:]<thresh2)[0][0]

if verbose:

print (curr_test, TxUp)

IPPs_start = [curr_test* decim] # Start of first Tx

TxWs = [TxUp * decim]

curr_test += TxUp

while curr_test < len(derv100)-1:

find_result = np.nonzero(derv100[curr_test:]>thresh1)[0]

if len(find_result)==0:

if verbose:

print ("end of file")

break

70

curr_test += find_result[0]

TxUp = np.nonzero(derv100[curr_test:] < thresh2)[0][0]

while TxUp<50:

if verbose:

print ("false pulse",curr_test)

curr_test += TxUp

Its not a Tx pulse (maybe interference)

find_result = np.nonzero(derv100[curr_test:]>thresh1)[0]

if len(find_result)==0:

if verbose:

print ("no more pulses found")

break

curr_test += find_result[0]

TxUp = np.nonzero(derv100[curr_test:]<thresh2)[0][0]

if TxUp>50:

IPPs_start += [curr_test* decim]

TxWs += [TxUp * decim]

curr_test += TxUp

IPPs_start = np.array(IPPs_start)

TxWs = np.array(TxWs)

if len(IPPs_start)<=1:

TxUp = []

IPPs_start = []

print ("only one pulse detected")

return TxUp, IPPs_start

if verbose:

print ("Samples in Pulse:",TxUp * decim)

print ("Samples in IPPs:",(IPPs_start[1]-IPPs_start[0]) *

decim)

Refining the Tx start

startTx = IPPs_start[0]

startscan = max(0,startTx-100) # in case pulse is close to the

start of the file

maxTxval = max(abs(ndata0[startscan:startscan+400]))

findresult = np.nonzero(abs(ndata0[startscan:startscan+400])>

maxTxval/2)[0]

if len(findresult)>0:

newstartTx = startscan + findresult[0]

correction = newstartTx - startTx

71

else:

correction = 0

IPPs_start += correction

return TxWs,IPPs_start

def get_delta_f_ph(data):

x = np.fft.fftshift(abs(np.fft.fft(data))**2)

omega = argmax(x)

return omega - len(data)//2

import pycuda.autoinit

import pycuda.driver as drv

import pycuda.gpuarray as gpuarray

import skcuda.fft as cufft

from pycuda.compiler import SourceModule

nFFT = 16384

batch = 7864

plan2 = cufft.Plan(shape = (nFFT,), in_dtype=np.complex64,

out_dtype=np.complex64,

batch = batch, stream = None, mode = 1,

inembed = np.array([nFFT],dtype = int),

istride = 1,

idist =nFFT,

onembed = np.array([nFFT],dtype = int),

ostride =1,

odist = nFFT)

#Rearrange the one dimension array into a 20000*11000 matrix

kernel = SourceModule("""

#include <stdio.h>

#include <complex.h>

__global__ void rearrange(float2 *a, float2 *dest)

{

//int Rows = blockIdx.y*blockDim.y + threadIdx.y;

int Cols = blockIdx.x*blockDim.x + threadIdx.x;

int batch = 7864;

int nFFT = 12500;

72

if(Cols < nFFT)

{

for (int i = 0; i < batch; i++)

dest[Cols + nFFT * i] = a[Cols + i * 25];

}

}

""")

rearrange = kernel.get_function(’rearrange’)

#Getting the magnitude of the matrix and add them up

kernel1 = SourceModule("""

#include <stdio.h>

#include<complex.h>

__global__ void power(float2 *a, float *dest)

{

//Thread index

int nFFT = 16384;

int batch = 7864;

const int Rows = blockIdx.y * blockDim.y + threadIdx.y;

const int Cols = blockIdx.x * blockDim.x + threadIdx.x;

int a_index = Cols + nFFT * Rows;

float reala,imaga;

if (Rows < batch && Cols < nFFT)

{

reala = a[a_index].x;

imaga = a[a_index].y;

__syncthreads();

dest[a_index] += reala * reala + imaga * imaga;

}

}

""")

power = kernel1.get_function(’power’)

##Multiply the samples with corresponding code

kernel2 = SourceModule("""

__global__ void shifting(float2 *a, float2 *cod)

{

int Rows = blockIdx.y*blockDim.y + threadIdx.y;

int Cols = blockIdx.x*blockDim.x + threadIdx.x;

float real;

73

float imag;

int nFFT = 12500;

int batch = 7864;

if (Rows < batch && Cols < nFFT){

real = a[Cols + Rows * nFFT].x * cod[Cols].x - a[Cols + Rows *

nFFT].y * cod[Cols].y;

imag = a[Cols + Rows * nFFT].y * cod[Cols].x + a[Cols + Rows *

nFFT].x * cod[Cols].y;

__syncthreads();

a[Cols + Rows * nFFT].x = real;

a[Cols + Rows * nFFT].y = imag;

}

}

""")

shifting = kernel2.get_function(’shifting’)

#store the FFT value

dest_temp = gpuarray.empty([batch,nFFT-3884],np.complex64)

#store the power value

dest_gpu = gpuarray.zeros([batch,nFFT],np.float32)

gpu_zero_padding = gpuarray.zeros([batch,nFFT],np.complex64)

dest_temp_gpu = gpuarray.empty((batch,nFFT),np.complex64)

cpu_dest = np.zeros([batch,nFFT],float32)

np.seterr(divide=’ignore’)

os.nice(20)

n=0

flag = False

t1 = time.time()

filespath = os.path.join(dpath,dirlist[13])

flist = sorted(glob.glob1(filespath,"*.h5"))

N = 12500

j = 2439

#flag = False

while (j<2449):

#for j in range(2473,2473+10):

print ("processing the file",j)

sys.stdout.flush()

ndatai = read_file_data(os.path.join(filespath,flist[j]))

TxWidth, IPPs_start = Detect_IPP_Tx(ndatai,False)

74

if (len(TxWidth) ==0 or len(IPPs_start) ==0):

j+=1

#Determine if it’s ULP

elif (all(IPPs_start[1:]-IPPs_start[:-1]==500000) and all(

TxWidth==12500)):

x_gpu = gpuarray.to_gpu(ndatai)

t = np.arange(N)

test_pulse = ndatai[IPPs_start[0]:IPPs_start[0] + 12500]

omega = get_delta_f_ph(test_pulse)

modsignal1 = np.exp(-1j*t*62.5/2*2*pi/N)

modsignal2 = np.exp(1j*t*62.5/2*2*pi/N)

modsignal1_gpu = gpuarray.to_gpu(modsignal1).astype(

complex64)

modsignal2_gpu = gpuarray.to_gpu(modsignal2).astype(

complex64)

if omega > 0:

for numIPPs in range(0,len(IPPs_start)-1,2):

#shifting

rearrange(x_gpu[IPPs_start[numIPPs]:IPPs_start[

numIPPs] + 25*batch + 12500 - 25],dest_temp,grid

= (13,1),block = (1024,1,1))

shifting(dest_temp,modsignal1_gpu,grid = (391,246),

block = (32,32,1))

#zero-padding

gpu_zero_padding[:,:dest_temp.shape[1]] = dest_temp

#Generating spectrum

cufft.fft(gpu_zero_padding,dest_temp_gpu,plan2)

power(dest_temp_gpu,dest_gpu,grid = (512,246),block =

(32,32,1))

for numIPPs in range(1,len(IPPs_start)-1,2):

#shifting

rearrange(x_gpu[IPPs_start[numIPPs]:IPPs_start[

numIPPs] + 25*batch + 12500 - 25],dest_temp,grid

= (13,1),block = (1024,1,1))

shifting(dest_temp,modsignal2_gpu,grid = (391,246),

block = (32,32,1))

#zero-padding

gpu_zero_padding[:,:dest_temp.shape[1]] = dest_temp

#Generating spectrum

cufft.fft(gpu_zero_padding,dest_temp_gpu,plan2)

75

power(dest_temp_gpu,dest_gpu,grid = (512,246),block =

(32,32,1))

if omega < 0:

for numIPPs in range(0,len(IPPs_start)-1,2):

#shifting

rearrange(x_gpu[IPPs_start[numIPPs]:IPPs_start[

numIPPs] + 25*batch + 12500 - 25],dest_temp,grid

= (13,1),block = (1024,1,1))

#rearrange(x_gpu[IPPs_start[numIPPs]:IPPs_start[

numIPPs] + 10*batch + 12500 - 10],dest_temp,grid

= (13,1),block = (1024,1,1))

shifting(dest_temp,modsignal2_gpu,grid = (391,246),

block = (32,32,1))

#zero-padding

gpu_zero_padding[:,:dest_temp.shape[1]] = dest_temp

#Generating spectrum

cufft.fft(gpu_zero_padding,dest_temp_gpu,plan2)

power(dest_temp_gpu,dest_gpu,grid = (512,246),block =

(32,32,1))

for numIPPs in range(1,len(IPPs_start)-1,2):

#shifting

rearrange(x_gpu[IPPs_start[numIPPs]:IPPs_start[

numIPPs] + 25*batch + 12500 - 25],dest_temp,grid

= (13,1),block = (1024,1,1))

#rearrange(x_gpu[IPPs_start[numIPPs]:IPPs_start[

numIPPs] + 25*batch + 12500 - 25],dest_temp,grid

= (13,1),block = (1024,1,1))

shifting(dest_temp,modsignal1_gpu,grid = (391,246),

block = (32,32,1))

#zero-padding

gpu_zero_padding[:,:dest_temp.shape[1]] = dest_temp

#Generating spectrum

cufft.fft(gpu_zero_padding,dest_temp_gpu,plan2)

power(dest_temp_gpu,dest_gpu,grid = (512,246),block =

(32,32,1))

j = j+1

t2 = time.time()

cpu_dest = dest_gpu.get()

spectrum = np.fft.fftshift(cpu_dest,axes=1)

76

print ("the total time is",(t2-t1))

x = linspace(417.5,442.5,16384)

fnoise = spectrum[7500:,:].mean(0)

spectrum2 = spectrum[500:,:]/fnoise

A.2 CLP Spectrogram Generation

%pylab inline

import matplotlib.pyplot as plt

import glob,os

dpath = ’/mnt/remote2_rdata3_radar/’

dirlist = sorted(glob.glob1(dpath,"2016-09-24T??-??-??"))

filespath = os.path.join(dpath,dirlist[13])

flist = sorted(glob.glob1(filespath,"*.h5"))

import time, calendar

def read_file_data(fname,verbose=False):

import h5py

fp =h5py.File(fname,"r")

data = fp.get(’rf_data’)

if verbose:

print (data.dtype)

ndata = data[’r’].squeeze() + 1j * data[’i’].squeeze()

return ndata.astype("complex64")

#Modified code

def Detect_IPP_Tx(ndata0,verbose=False):

import numpy as np

decim=100

pwr100 = (abs(ndata0)**2).reshape(ndata0.shape[0]//decim,decim

).sum(1)

derv100 = pwr100[1:]-pwr100[:-1]

thresh1 = 2e8

thresh2 = -1e8

curr_test = 0

#Adjust the threshold value

if (np.nonzero(derv100[curr_test:]>thresh1)[0].size == 0 or np

.nonzero(derv100[curr_test:]<thresh2)[0].size ==0):

thresh1 = 2e6

thresh2 = -1e6

if (np.nonzero(derv100[curr_test:]>thresh1)[0].size == 0 or np

77

.nonzero(derv100[curr_test:]<thresh2)[0].size ==0):

TxUp = []

IPPs_start = []

if verbose:

print ("No Pulses detected")

return TxUp, IPPs_start

curr_test += np.nonzero(derv100[curr_test:]>thresh1)[0][0]

TxUp = np.nonzero(derv100[curr_test:]<thresh2)[0][0]

while TxUp<50:

if verbose:

print ("false pulse")

curr_test += TxUp

Its not a Tx pulse (maybe interference)

if (np.nonzero(derv100[curr_test:]>thresh1)[0].size == 0 or

np.nonzero(derv100[curr_test:]<thresh2)[0].size ==0):

TxUp = []

IPPs_start = []

print ("No pulses detected")

return TxUp, IPPs_start

curr_test += np.nonzero(derv100[curr_test:]>thresh1)[0][0]

TxUp = np.nonzero(derv100[curr_test:]<thresh2)[0][0]

if verbose:

print (curr_test, TxUp)

IPPs_start = [curr_test* decim] # Start of first Tx

TxWs = [TxUp * decim]

curr_test += TxUp

while curr_test < len(derv100)-1:

find_result = np.nonzero(derv100[curr_test:]>thresh1)[0]

if len(find_result)==0:

if verbose:

print ("end of file")

break

curr_test += find_result[0]

TxUp = np.nonzero(derv100[curr_test:] < thresh2)[0][0]

while TxUp<50:

if verbose:

print ("false pulse",curr_test)

curr_test += TxUp

Its not a Tx pulse (maybe interference)

78

find_result = np.nonzero(derv100[curr_test:]>thresh1)[0]

if len(find_result)==0:

if verbose:

print ("no more pulses found")

break

curr_test += find_result[0]

TxUp = np.nonzero(derv100[curr_test:]<thresh2)[0][0]

if TxUp>50:

IPPs_start += [curr_test* decim]

TxWs += [TxUp * decim]

curr_test += TxUp

IPPs_start = np.array(IPPs_start)

TxWs = np.array(TxWs)

if len(IPPs_start)<=1:

TxUp = []

IPPs_start = []

print ("only one pulse detected")

return TxUp, IPPs_start

if verbose:

print ("Samples in Pulse:",TxUp * decim)

print ("Samples in IPPs:",(IPPs_start[1]-IPPs_start[0]) *

decim)

Refining the Tx start

startTx = IPPs_start[0]

startscan = max(0,startTx-100) # in case pulse is close to the

start of the file

maxTxval = max(abs(ndata0[startscan:startscan+400]))

findresult = np.nonzero(abs(ndata0[startscan:startscan+400])>

maxTxval/2)[0]

if len(findresult)>0:

newstartTx = startscan + findresult[0]

correction = newstartTx - startTx

else:

correction = 0

IPPs_start += correction

return TxWs,IPPs_start

import pycuda.autoinit

79

import pycuda.driver as drv

import pycuda.gpuarray as gpuarray

import skcuda.fft as cufft

from pycuda.compiler import SourceModule

nFFT = 16384

batch = 7864

plan2 = cufft.Plan(shape = (nFFT,), in_dtype=np.complex64,

out_dtype=np.complex64,

batch = batch, stream = None, mode = 1,

inembed = np.array([nFFT],dtype = int),

istride = 1,

idist =nFFT,

onembed = np.array([nFFT],dtype = int),

ostride =1,

odist = nFFT)

#Rearrange the one dimension array into a 20000*11000 matrix

kernel = SourceModule("""

#include <stdio.h>

#include <complex.h>

__global__ void rearrange(float2 *a, float2 *dest)

{

//int Rows = blockIdx.y*blockDim.y + threadIdx.y;

int Cols = blockIdx.x*blockDim.x + threadIdx.x;

int batch = 7864;

int nFFT = 11000;

if(Cols < nFFT)

{

for (int i = 0; i < batch; i++)

dest[Cols + nFFT * i] = a[Cols + i * 25];

}

}

""")

rearrange = kernel.get_function(’rearrange’)

#Getting the magnitude of the matrix and add them up

kernel1 = SourceModule("""

#include <stdio.h>

#include<complex.h>

__global__ void power(float2 *a, float *dest)

{

//Thread index

const int Rows = blockIdx.y * blockDim.y + threadIdx.y;

80

const int Cols = blockIdx.x * blockDim.x + threadIdx.x;

int batch = 7864;

int nFFT = 16384;

int a_index = Cols + nFFT * Rows;

float reala,imaga;

if (Rows < batch && Cols < nFFT)

{

reala = a[a_index].x;

imaga = a[a_index].y;

__syncthreads();

dest[a_index] += reala * reala + imaga * imaga;

}

}

""")

power = kernel1.get_function(’power’)

##Multiply the samples with corresponding code

kernel2 = SourceModule("""

__global__ void decode(float2 *a, float2 *cod)

{

int Rows = blockIdx.y*blockDim.y + threadIdx.y;

int Cols = blockIdx.x*blockDim.x + threadIdx.x;

float real;

float imag;

int nFFT = 11000;

int batch = 7864;

if (Rows < batch && Cols < nFFT){

real = a[Cols + Rows * nFFT].x * cod[Cols].x - a[Cols + Rows *

nFFT].y * cod[Cols].y;

imag = a[Cols + Rows * nFFT].y * cod[Cols].x + a[Cols + Rows *

nFFT].x * cod[Cols].y;

__syncthreads();

a[Cols + Rows * nFFT].x = real;

a[Cols + Rows * nFFT].y = imag;

}

}

""")

decode = kernel2.get_function(’decode’)

#store the FFT value

dest_temp = gpuarray.empty([batch,nFFT-5384],np.complex64)

#store the power value

81

dest_gpu = gpuarray.zeros([batch,nFFT],np.float32)

dest_temp_gpu = gpuarray.empty((batch,nFFT),np.complex64)

gpu_zero_padding = gpuarray.zeros([batch,nFFT],np.complex64)

cpu_dest = np.zeros([batch,nFFT],float32)

np.seterr(divide=’ignore’)

os.nice(20)

n=0

#flag = False

#IPPindex = 0

t1 = time.time()

filespath = os.path.join(dpath,dirlist[13])

flist = sorted(glob.glob1(filespath,"*.h5"))

#flag = False

j=2429

while j<2439:

print ("processing the iteration",j)

sys.stdout.flush()

ndatai = read_file_data(os.path.join(filespath,flist[j]))

##Corner Case

TxWidth, IPPs_start = Detect_IPP_Tx(ndatai,False)

if (len(TxWidth) ==0 or len(IPPs_start) ==0):

j+=1

#Determine if it’s ULP

elif (all(IPPs_start[1:]-IPPs_start[:-1]==250000) and all(

TxWidth==11000)):

x_gpu = gpuarray.to_gpu(ndatai) ##pulse with rfi

for numIPPs in range(len(IPPs_start)-1):

codi = np.conj(ndatai[IPPs_start[numIPPs]:IPPs_start[

numIPPs] + 11000])

cod_gpu = gpuarray.to_gpu(codi)

rearrange(x_gpu[IPPs_start[numIPPs]:IPPs_start[numIPPs]

+ 25*batch + 11000 - 25],dest_temp,grid = (11,1),

block = (1024,1,1))

decode(dest_temp,cod_gpu,grid = (344,246),block =

(32,32,1))

82

gpu_zero_padding[:,:dest_temp.shape[1]] = dest_temp

cufft.fft(gpu_zero_padding,dest_temp_gpu,plan2)

power(dest_temp_gpu,dest_gpu,grid = (512,246),block =

(32,32,1))

j = j+1

cpu_dest = dest_gpu.get()

spectrum = np.fft.fftshift(cpu_dest,axes=1)

t2 = time.time()

print ("the total time is",(t2-t1))

fnoise = spectrum[7500:,:].mean(0)

spectrum2 = spectrum[500:,:]/fnoise

83

APPENDIX B

CHIRP-Z GORDEYEV INTEGRAL
CALCULATION

def chirpz(g,n,dt,dw,wo):

"""transforms g(t) into G(w)

g(t) is n-point array and output G(w) is (n/2)-points starting

at wo

dt and dw, sampling intervals of g(t) and G(w), and wo are

prescribed externally in an idependent manner

--- see Li, Franke, Liu [1991]"""

g[0]=0.5*g[0] # first interval is over dt/2, and hence ...

W = exp(-1j*dw*dt*arange(n)**2/2.)

S = exp(-1j*wo*dt*arange(n)) # frequency shift by wo

x = g*W*S; y = conj(W)

#x = g*W; y = conj(W)

x2 = np.zeros(len(x)); y2 = np.empty(len(y))

y2 = y[::-1]

x3 = np.concatenate((x,x2)); y3 = np.concatenate((y,y2))

#x[n/2:] = 0.; y[n/2:] = y[0:n/2][::-1] # treat 2nd half of x

and y specially

#xi = fft.fft(x); yi = fft.fft(y); G = dt*W*fft.ifft(xi*yi) #

in MATLAB use ifft then fft (EK)

xi = fft.fft(x3); yi = fft.fft(y3); G = dt*W*(fft.ifft(xi*yi)

[:len(x)])

#return G[0:n/2]

return G

Ionospheric State

Ne=18.0e11 #Electron density (1/mˆ3)

fp=sqrt(Ne*80.6)

Ne = (8e6)**2/80.6;NO = Ne*0.998

Ion Composition

NO=0.998*Ne

Te = TO = 2000

Physical Paramters (MKS):

me=9.1093826e-31 # Electron mass in kg

84

mO = 1836.152*16.*me

mO=1836.152*16.*me # Ion mass

qe=1.60217653e-19 # C (Electron charge)

K=1.3806505e-23 # Boltzmann cobstant mˆ2*kg/(sˆ2*K);

eps0=8.854187817e-12 # F/m (Free-space permittivity)

c=299.792458e6 # m/s (Speed of light)

re=2.817940325e-15 # Electron radius

aspect=45.*pi/180. # Aspect angle (rad) with 0 perp to Bs

Ce = sqrt(K*Te/me);CO = sqrt(K*TO/mO);

Debye Lengths

debe = sqrt(eps0*K*Te/(Ne*qe**2));debO=sqrt(eps0*K*TO/(NO*qe**2))

Tmax=10*1.0e-6 #total integration time for electron Gordeyev

integral

N = 22000*100/2

dt=Tmax/N

fo=0.0e6

fmax=12e6# Hz units (I choose this)

df=(fmax-fo)/(N/2) # in Hz units - only N/2 elements are returned

from chirpz

wo=2*pi*fo

dw=2*pi*df

w=wo+arange(N/2)*dw ##??????????

fradar=430.0e6 # Radar Frequency (Hz)

lam=c/fradar/2.

kB=2*pi/lam # Bragg wavenumber kB = 2*ko

#Electron Gordeyev integral (Brownian)

t=arange(N)*dt

acfe = exp(-(kB*Ce*t)**2/2.)

Ge=chirpz(acfe,N,dt,dw,wo) # Electron Gordeyev Integral

figure(1)

plot(t/1.e-6,acfe); xlabel(’Time Lag (us)’); ylabel(’Electron ACF

’)

figure(2)

plot(w/2./pi/1e6,real(Ge)); xlabel(’Doppler Frequency (MHz)’);

ylabel(’Re[Electron Gordeyev]’)

plot(w/2./pi/1e6,imag(Ge))

Oxygen Gordeyev integral (Brownian)

dtO=dt*100

t=arange(N)*dtO #adjust dt such that full range of acfi is

covered by range t

acfO = exp(-(kB*CO*t)**2/2.)

GO=chirpz(acfO,N,dtO,dw,wo) # Ion Gordeyev Integral

figure(1)

85

plot(t/1.e-6,acfO); xlabel(’Time Lag (ms)’); ylabel(’O+ ACF’)

figure(2)

plot(w/2./pi/1e6,real(GO)); xlabel(’Doppler Frequency (MHz)’);

ylabel(’Re[O+ Gordeyev]’)

plot(w/2./pi/1e6,imag(GO))

Total ISR Spectrum

yO=(1-1j*w*GO)/(kB**2*debO**2) # oxygen admittance

ye=(1-1j*w*Ge)/(kB**2*debe**2) # electron admittance

spec=real(Ne*2*Ge)*abs((1+yO)/(1+ye+yO))**2+ \

real(NO*2*GO)*abs((ye)/(1+ye+yO))**2

plot(w/2./pi/1e6,spec);

xlabel(’Doppler Frequency (MHz)’); ylabel(’ISR Spectrum’)

xlim(0,0.1)

loglog(w/2./pi/1e6,spec);

xlabel(’Doppler Frequency (MHz)’); ylabel(’ISR Spectrum’)

#ylim(1.0e-16,1.0e-2)

plot(w/2./pi/1e6,10*log10(spec));

xlabel(’Doppler Frequency (MHz)’); ylabel(’ISR Spectrum’)

#xlim(0,0.1)

86

APPENDIX C

PLASMA LINE DERIVATION CODE

import glob

import sys,os

import pycuda.autoinit

import pycuda.driver as drv

import pycuda.gpuarray as gpuarray

import skcuda.fft as cufft

from pycuda.compiler import SourceModule

dpath = ’/mnt/remote2_rdata3_radar/’

dirlist = sorted(glob.glob1(dpath,’*’))

syear_arr,smonth_arr,sday_arr,shh_arr,smm_arr,sss_arr =

[],[],[],[],[],[]

for i,fname in enumerate(dirlist[:-10]):

syear_arr += [fname[:4]]

smonth_arr += [fname[5:7]]

sday_arr += [fname[8:10]]

shh_arr += [fname[11:13]]

smm_arr += [fname[14:16]]

sss_arr += [fname[17:19]]

for i,syear in enumerate(syear_arr):

print (i,syear_arr[i],smonth_arr[i],sday_arr[i],shh_arr[i],

smm_arr[i],sss_arr[i])

def process_spec(yyyy,mm,dd,hh,mmin,ss):

from time import gmtime,strftime

from calendar import timegm

from glob import glob1

import numpy as np

import sys,os

nyear = int(yyyy)

nmonth = int(mm)

nday = int(dd)

nhh = int(hh)

nmm = int(mmin)

nss = int(ss)

87

#ndoy = gmtime(timegm((nyear,nmonth,nday,0,0,0))).tm_yday

##Create folders to saving

specfolder_year = ’/home/yang158/notebook/FFT_on_ULP/CLEAN/

func/processed/%.4d/’%nyear

specfolder = ’/home/yang158/notebook/FFT_on_ULP/CLEAN/func/

processed/%.4d/%.4d_%.2d_%.2dT%.2d_%.2d/’%(nyear,nyear,

nmonth,nday,nhh,nmm)

if not os.path.exists(specfolder_year):

os.makedirs(specfolder_year)

if not os.path.exists(specfolder):

os.makedirs(specfolder)

dpath = ’/mnt/remote2_rdata3_radar/’

dirlist = sorted(glob.glob1(dpath,’*’))

##Reading data in each file

def read_file_data(fname,verbose=False):

import h5py

fp =h5py.File(fname,"r")

data = fp.get(’rf_data’)

if verbose:

print (data.dtype)

ndata = data[’r’].squeeze() + 1j * data[’i’].squeeze()

return ndata.astype("complex64")

#Modified code

def Detect_IPP_Tx(ndata0,verbose=False):

decim=100

pwr100 = (abs(ndata0)**2).reshape(ndata0.shape[0]//decim,

decim).sum(1)

derv100 = pwr100[1:]-pwr100[:-1]

thresh1 = 2e8

thresh2 = -1e8

curr_test = 0

TxWs = []

IPPs_start = []

#Adjust the threshold value

if (np.nonzero(derv100[curr_test:]>thresh1)[0].size == 0 or

np.nonzero(derv100[curr_test:]<thresh2)[0].size ==0):

thresh1 = 2e6

thresh2 = -1e6

88

try:

curr_test += np.nonzero(derv100[curr_test:]>thresh1)

[0][0]

TxUp = np.nonzero(derv100[curr_test:]<thresh2)[0][0]

except:

return TxWs, IPPs_start

while TxUp<50:

if verbose:

print ("false pulse")

curr_test += TxUp

Its not a Tx pulse (maybe interference)

try:

curr_test += np.nonzero(derv100[curr_test:]>thresh1)

[0][0]

TxUp = np.nonzero(derv100[curr_test:]<thresh2)[0][0]

except:

return TxWs, IPPs_start

if verbose:

print (curr_test, TxUp)

IPPs_start = [curr_test* decim] # Start of first Tx

TxWs = [TxUp * decim]

curr_test += TxUp

while curr_test < len(derv100)-1:

find_result = np.nonzero(derv100[curr_test:]>thresh1)[0]

if len(find_result)==0:

if verbose:

print ("end of file")

break

curr_test += find_result[0]

try:

TxUp = np.nonzero(derv100[curr_test:] < thresh2)

[0][0]

except:

return TxWs,IPPs_start

while TxUp<50:

if verbose:

print ("false pulse",curr_test)

89

curr_test += TxUp

Its not a Tx pulse (maybe interference)

find_result = np.nonzero(derv100[curr_test:]>thresh1)

[0]

if len(find_result)==0:

if verbose:

print ("no more pulses found")

break

curr_test += find_result[0]

try:

TxUp = np.nonzero(derv100[curr_test:]<thresh2)

[0][0]

except:

return TxWs,IPPs_start

if TxUp>50:

IPPs_start += [curr_test* decim]

TxWs += [TxUp * decim]

curr_test += TxUp

IPPs_start = np.array(IPPs_start)

TxWs = np.array(TxWs)

if verbose:

print ("Samples in Pulse:",TxUp * decim)

print ("Samples in IPPs:",(IPPs_start[1]-IPPs_start[0])

* decim)

Refining the Tx start

startTx = IPPs_start[0]

startscan = max(0,startTx-100) # in case pulse is close to

the start of the file

maxTxval = max(abs(ndata0[startscan:startscan+400]))

findresult = np.nonzero(abs(ndata0[startscan:startscan

+400])>maxTxval/2)[0]

if len(findresult)>0:

newstartTx = startscan + findresult[0]

correction = newstartTx - startTx

else:

correction = 0

IPPs_start += correction

90

return TxWs,IPPs_start

def get_delta_f_ph(data):

x = np.fft.fftshift(abs(np.fft.fft(data))**2)

omega = argmax(x)

return omega - len(data)//2

##Generate the PSF

def psf_func(txdata0):

N = 12500

t = arange(N)

#TxWidth, IPPs_start = Detect_IPP_Tx(data,verbose=False)

#txdata0 = data[IPPs_start[0]:IPPs_start[0] + TxWidth[0]]

omega = get_delta_f_ph(txdata0)

if omega<0:

modsignal = np.exp(1j*t*62.5/2*2*pi/N)

if omega>0:

modsignal = np.exp(-1j*t*62.5/2*2*pi/N)

basebandTx = txdata0 * modsignal

dest_cpu = np.zeros([2*N,N+3884],np.complex64)

dest_output = np.empty([2*N,N+3884],np.complex64)

dest = np.empty(dest_cpu.shape).astype(complex64)

for i in range(1,N):

dest_cpu[i,0:i] = basebandTx[N-i:] ##leftshift

for i in range(N):

dest_cpu[i+N,:N-i] = basebandTx[:N-i]##rightshift

nFFT = 16384

batch = 2**13

for i in range(dest_cpu.shape[0]):

dest[i,:] = np.fft.fft(dest_cpu[i,:])

#print (i)

#sys.stdout.flush

dest2 = abs(dest)**2

psf = dest2.reshape(1000,25,16384).mean(axis=1)

#psf = dest2.reshape(25,1000,16384).mean(axis=0)

psf = np.fft.fftshift(psf,axes=1)

91

ref = average(psf[:50,:500])

psf_ref = np.copy(psf)

for i in range(psf.shape[0]):

reference = amax(psf[i,:])

#for j in range(6250,8250):

for j in range(8192,8292+300):

if 10*log10(psf[i,j])<10*log10(reference)-10:

psf_ref[i,j:] = 0

psf_ref[i,:2*8192-j] = 0

break

return psf_ref

nFFT = 16384

batch = 16384

#Rearrange the one dimension array into a 20000*11000 matrix

plan2 = cufft.Plan(shape = (nFFT,), in_dtype=np.complex64,

out_dtype=np.complex64,

batch = batch, stream = None, mode = 1,

inembed = np.array([nFFT],dtype = int),

istride = 1,

idist =nFFT,

onembed = np.array([nFFT],dtype = int),

ostride =1,

odist = nFFT)

kernel = SourceModule("""

#include <stdio.h>

#include <complex.h>

__global__ void rearrange(float2 *a, float2 *dest)

{

//int Rows = blockIdx.y*blockDim.y + threadIdx.y;

int Cols = blockIdx.x*blockDim.x + threadIdx.x;

int batch = 16384;

int nFFT = 12500;

if(Cols < nFFT)

{

for (int i = 0; i < batch; i++)

dest[Cols + nFFT * i] = a[Cols + i * 1];

}

}

""")

rearrange = kernel.get_function(’rearrange’)

92

#Getting the magnitude of the matrix and add them up

kernel1 = SourceModule("""

#include <stdio.h>

#include<complex.h>

__global__ void power(float2 *a, float *dest)

{

//Thread index

int nFFT = 16384;

int batch = 16384;

const int Rows = blockIdx.y * blockDim.y + threadIdx.y;

const int Cols = blockIdx.x * blockDim.x + threadIdx.x;

int a_index = Cols + nFFT * Rows;

float reala,imaga;

if (Rows < batch && Cols < nFFT)

{

reala = a[a_index].x;

imaga = a[a_index].y;

__syncthreads();

dest[a_index] += reala * reala + imaga * imaga;

}

}

""")

power = kernel1.get_function(’power’)

##Multiply the samples with corresponding code

kernel2 = SourceModule("""

__global__ void shifting(float2 *a, float2 *cod)

{

int Rows = blockIdx.y*blockDim.y + threadIdx.y;

int Cols = blockIdx.x*blockDim.x + threadIdx.x;

float real;

float imag;

int nFFT = 12500;

int batch = 16384;

if (Rows < batch && Cols < nFFT){

real = a[Cols + Rows * nFFT].x * cod[Cols].x - a[Cols +

Rows * nFFT].y * cod[Cols].y;

imag = a[Cols + Rows * nFFT].y * cod[Cols].x + a[Cols +

Rows * nFFT].x * cod[Cols].y;

__syncthreads();

a[Cols + Rows * nFFT].x = real;

93

a[Cols + Rows * nFFT].y = imag;

}

}

""")

shifting = kernel2.get_function(’shifting’)

def decimation(spec):

spectrum = spec[:196600,:].reshape(7864,25,16384).mean(axis

=1)

spectrum = np.fft.fftshift(spectrum,axes=1)[533:,:]

return spectrum

def band_pass_filter(spec):

fnoise = spec[7000:,:].mean(0)

spec = spec/fnoise

return spec

def pulse_process(numFile,length): ##10 sec ULP processing

counter = 0

nFFT = 16384

batch = 16384

Store data in CPU

cpu_dest = np.zeros([12*batch,nFFT],float32)

Store data after shifting

dest_temp = gpuarray.empty([batch,nFFT-3884],np.complex64)

Store the zero-padding data

gpu_zero_padding = gpuarray.zeros([batch,nFFT],np.complex64

)

#Store FFT value

dest_temp_gpu = gpuarray.empty((batch,nFFT),np.complex64)

#store the power value

dest_gpu = gpuarray.zeros([batch,nFFT],np.float32)

N = 12500

t = arange(N)

while (counter < 9 and numFile < length):

ndata = read_file_data(os.path.join(filespath,flist[

numFile]))

94

TxWidth, IPPs_start = Detect_IPP_Tx(ndata,False)

numFile += 1

#if (len(TxWidth_0) != 50 or len(IPPs_start_0) != 50):

#numFile += 1

if (len(TxWidth) == 50 and len(IPPs_start) == 50 and all

(IPPs_start[1:]-IPPs_start[:-1]==500000) and all(

TxWidth==12500)):

counter += 1

x_gpu = gpuarray.to_gpu(ndata)

test_pulse = ndata[IPPs_start[0]:IPPs_start[0] +

12500]

omega = get_delta_f_ph(test_pulse)

modsignal1 = np.exp(-1j*t*62.5/2*2*pi/N)

modsignal2 = np.exp(1j*t*62.5/2*2*pi/N)

modsignal1_gpu = gpuarray.to_gpu(modsignal1).astype(

complex64)

modsignal2_gpu = gpuarray.to_gpu(modsignal2).astype(

complex64)

for i in range(12):

if omega > 0:

for numIPPs in range(0,len(IPPs_start)-1,2):

#shifting

rearrange(x_gpu[IPPs_start[numIPPs] + i *

batch:IPPs_start[numIPPs]+ i*batch + 1*

batch + 12500 - 1],dest_temp,grid =

(13,1),block = (1024,1,1))

shifting(dest_temp,modsignal1_gpu,grid =

(391,512),block = (32,32,1))

#zero-padding

gpu_zero_padding[:,:dest_temp.shape[1]] =

dest_temp

#Generating spectrum

cufft.fft(gpu_zero_padding,dest_temp_gpu,

plan2)

power(dest_temp_gpu,dest_gpu,grid =

(512,512),block = (32,32,1))

for numIPPs in range(1,len(IPPs_start)-1,2):

#shifting

rearrange(x_gpu[IPPs_start[numIPPs] + i *

batch:IPPs_start[numIPPs]+ i*batch + 1*

batch + 12500 - 1],dest_temp,grid =

(13,1),block = (1024,1,1))

95

shifting(dest_temp,modsignal2_gpu,grid =

(391,512),block = (32,32,1))

#zero-padding

gpu_zero_padding[:,:dest_temp.shape[1]] =

dest_temp

#Generating spectrum

cufft.fft(gpu_zero_padding,dest_temp_gpu,

plan2)

power(dest_temp_gpu,dest_gpu,grid =

(512,512),block = (32,32,1))

if omega < 0:

for numIPPs in range(0,len(IPPs_start)-1,2):

#shifting

rearrange(x_gpu[IPPs_start[numIPPs] + i *

batch:IPPs_start[numIPPs]+ i*batch + 1*

batch + 12500 - 1],dest_temp,grid =

(13,1),block = (1024,1,1))

shifting(dest_temp,modsignal2_gpu,grid =

(391,512),block = (32,32,1))

#zero-padding

gpu_zero_padding[:,:dest_temp.shape[1]] =

dest_temp

#Generating spectrum

cufft.fft(gpu_zero_padding,dest_temp_gpu,

plan2)

power(dest_temp_gpu,dest_gpu,grid =

(512,512),block = (32,32,1))

for numIPPs in range(1,len(IPPs_start)-1,2):

#shifting

rearrange(x_gpu[IPPs_start[numIPPs] + i *

batch:IPPs_start[numIPPs]+ i*batch + 1*

batch + 12500 - 1],dest_temp,grid =

(13,1),block = (1024,1,1))

shifting(dest_temp,modsignal1_gpu,grid =

(391,512),block = (32,32,1))

#zero-padding

gpu_zero_padding[:,:dest_temp.shape[1]] =

dest_temp

#Generating spectrum

cufft.fft(gpu_zero_padding,dest_temp_gpu,

plan2)

power(dest_temp_gpu,dest_gpu,grid =

(512,512),block = (32,32,1))

96

cpu_dest[i*batch:(i+1)*batch,:] += dest_gpu.get()

dest_gpu *= 0

spectrum = decimation(cpu_dest)

spec = band_pass_filter(spectrum)

##Free GPU memeory

dest_temp.gpudata.free()

gpu_zero_padding.gpudata.free()

dest_gpu.gpudata.free()

dest_temp_gpu.gpudata.free()

x_gpu.gpudata.free()

modsignal1_gpu.gpudata.free()

modsignal2_gpu.gpudata.free()

return spec

def overlap(dirty,psf,mx,my):

radius_x = int(psf.shape[1]/2)

radius_y = int(psf.shape[0]/2)

dxbegin = 0

dxend = dirty.shape[1]

pxbegin = radius_x - mx

pxend = pxbegin + dirty.shape[1]

if my - radius_y < 0:

dybegin = 0

dyend = my + radius_y

pybegin= radius_y - my

pyend = 2 * radius_y

elif my + radius_y > dirty.shape[0]:

dybegin = my - radius_y

dyend = dirty.shape[0]

pybegin = 0

pyend = radius_y - my + dirty.shape[0]

#elif my-psf.shape[1]/2>=0 and my+psf.shape[1]/2<dirty.

shape[1]:

elif my + radius_y <= dirty.shape[0] and my - radius_y >=

0:

dybegin = my - radius_y

dyend = my + radius_y

97

pybegin = 0

pyend = 2 * radius_y

return (int(dxbegin), int(dxend), int(dybegin), int(dyend))

, (int(pxbegin), int(pxend), int(pybegin), int(pyend))

def hogbom(dirty,psf,gain):

#frac = 0

res = np.array(dirty)

cleaned = np.zeros(dirty.shape)

point = np.ones(psf.shape)*0

sigma_x = 20

sigma_y = 10

x = linspace(-100,100,201)

y = linspace(-100,100,201)

x,y = np.meshgrid(x,y)

z = 1/sqrt(2*pi*sigma_x**2)*exp(-x**2/2/sigma_x**2) * 1./

sqrt(2*pi*sigma_y**2)*exp(-y**2/2/sigma_y**2)

z = z/amax(z)

point[psf.shape[0]//2-100:psf.shape[0]//2+101,psf.shape

[1]//2-100:psf.shape[1]//2+101] = z

for i in range(30000):

my, mx=numpy.unravel_index(argmax(res), res.shape)

mval= res[my, mx] * gain

d_index, p_index = overlap(res,psf,mx,my)

res[d_index[2]:d_index[3],d_index[0]:d_index[1]] -= psf[

p_index[2]:p_index[3],p_index[0]:p_index[1]] * gain

#res[my,:] = 0

#res[d_index[2]:d_index[3],d_index[0]:d_index[1]] -= psf

[p_index[2]:p_index[3],p_index[0]:p_index[1]] * mval

cleaned[d_index[2]:d_index[3],d_index[0]:d_index[1]] +=

mval*point[p_index[2]:p_index[3],p_index[0]:p_index

[1]]

#frac=sum(dirty)/sum(cleaned)

##Condition

#if amax(res)<0.02:

if amax(res)<0.002 or amax(res)<(dirty[4000:,:]).max():

#if frac < 0.02

98

break

restored = cleaned + res

fnoise = restored[4000:,:].mean()

ref_spec = restored - fnoise

#return cleaned, i,res

return ref_spec

def spline_fit(spec1,spec2):

from scipy.interpolate import UnivariateSpline as spline

x = linspace(79.95,694.35,4096)

index=4096

y,y2 = [],[]

for i in range(index):

y.append(argmax(spec1[i,:]))

y2.append(argmax(cleaned_spec2[i,:]))

y = 1.0*25*(np.array(y)+3184)/16384-12.5

y2 = 1.0*25*(np.array(y2)+9104)/16384-12.5

result = spline(x[:index],y)

result.set_smoothing_factor(10)

result2 = spline(x[:index],y2)

result2.set_smoothing_factor(10)

return x,y,y2,result(x),result2(x)

##Main Program

filespath = dpath+syear_arr[i]+’-’+smonth_arr[i]+’-’+sday_arr[

i]+’T’+shh_arr[i]+’-’+smm_arr[i]+’-’+sss_arr[i]

flist = sorted(glob.glob1(filespath,"*.h5"))

file_length = len(flist)

numFile = 0

base = []

while(numFile + 9 < file_length):

ndatai = read_file_data(os.path.join(filespath,flist[

99

numFile]))

#print(os.path.join(filespath,flist[numFile]))

#sys.stdout.flush()

TxWidth_0, IPPs_start_0 = Detect_IPP_Tx(ndatai,False)

print ("processing the file:",numFile)

sys.stdout.flush()

##Determine if it’s ULP

if (len(TxWidth_0) != 50 or len(IPPs_start_0) != 50):

numFile += 1

elif (all(IPPs_start_0[1:]-IPPs_start_0[:-1]==500000) and

all(TxWidth_0==12500)):

##Determine if it’s starting ULP

numFile_ref = numFile + 8

ndata_ref = read_file_data(os.path.join(filespath,flist[

numFile_ref]))

TxWidth_ref, IPPs_start_ref = Detect_IPP_Tx(ndata_ref,

False)

if (len(TxWidth_ref) != 50 or len(IPPs_start_ref) != 50)

:

numFile += 9

elif (all(IPPs_start_ref[1:]-IPPs_start_ref

[:-1]==500000) and all(TxWidth_ref==12500)):

psf_data = ndatai[IPPs_start_0[0]:IPPs_start_0[0] +

TxWidth_0[0]]

psf = psf_func(psf_data)

spectrum_10s = pulse_process(numFile,file_length)

##Deconvolution by using clean algorithm

spec_dirty1 = spectrum_10s[:4096,3184:7280]

spec_dirty2 = spectrum_10s[:4096,9104:13200]

spec_dirty1_norm = spec_dirty1/amax(spec_dirty1)

psf_norm = psf/amax(psf)

spec_dirty2_norm = spec_dirty2/amax(spec_dirty2)

100

cleaned_spec = hogbom(spec_dirty1_norm,psf_norm,0.05)

cleaned_spec2 = hogbom(spec_dirty2_norm,psf_norm

,0.05)

height,sp_upshift_frequency,sp_downshift_frequency,

downshift_frequency,upshift_frequency=spline_fit(

cleaned_spec,cleaned_spec2)

s1 = time.strftime("%x,%X",time.gmtime(int(flist[

numFile][3:-7])))[:2]

s2 = time.strftime("%x,%X",time.gmtime(int(flist[

numFile][3:-7])))[3:5]

s3 = time.strftime("%x,%X",time.gmtime(int(flist[

numFile][3:-7])))[6:8]

s4 = time.strftime("%x,%X",time.gmtime(int(flist[

numFile][3:-7])))[9:11]

s5 = time.strftime("%x,%X",time.gmtime(int(flist[

numFile][3:-7])))[12:14]

s6 = time.strftime("%x,%X",time.gmtime(int(flist[

numFile][3:-7])))[15:18]

sstime = []

sstime = [s1]+[s2]+[s3]+[s4]+[s5]+[s6]

#print (sstime)

outfname = time.strftime("%X",time.gmtime(int(flist[

numFile][3:-7])))

np.savez_compressed(specfolder+outfname,

height = height,

sp_upshift_frequency =sp_upshift_frequency,

downshift_frequency = downshift_frequency,

upshift_frequency = upshift_frequency,

sp_downshift_frequency = sp_downshift_frequency,

time = sstime

)

base.append(upshift_frequency)

numFile += 9

else:

101

numFile += 9

else:

numFile += 1

print ("done")

return base

102

