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ABSTRACT

We explore methods of weakly supervised learning from referring expression. Unlike tradi-

tional fully supervised semantic segmentation of object recognition tasks, in which a a small

set of discrete class bases is provided, the referring expression task is performed associated

with a sentence phrase, e.g. “the dude on the dolphin”. Previous approaches use LSTM

and fully convolutional network and have fairly good results under fully supervised setting.

However, the fully supervised setting is limited by manual labeling of segmentation masks,

which requires a significant amount of human labor. Therefore, we work on an approach

to perform segmentation with only image level language descriptions. Under our weakly

supervised setting, we are only provided with input images and the corresponding sentence

descriptions, without the pixel level labeling for each image as ground truth. In order to

get supervision only from language description, we utilize the multiple instance learning

loss. We first develop an end-to-end model to localize the image content corresponding to

the language expressions. In this model, we use GloVe and ELMo sentence embeddings

to get a vector representation for each sentence and combined with image features from a

fully convolutional network. However, the sentence level model is hard to interpret hence

we also study a more fundamental problem of weakly supervised object localization from

referring expressions. We compare the performance of the sentence level model on this task

to an alternative word-level model. Our investigation suggests that breaking the referring

expressions localization problem into smaller more manageable components is promising.
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CHAPTER 1: INTRODUCTION

Image segmentation is a core problem in computer vision. In traditional image segmen-

tation problem, each given image represents an object from a small set of object classes.

However, a small set of classes is insufficient to represent all concept present in images.

Therefore we are interested in using object localization from referring expressions. More

specifically, our question is that if an image and its corresponding sentence description of

some image content are given, can we perform segmentation or localization on the image

upon the input text query. For example, the input text could be either “person on raft” or

“anywhere on the group of people”.

Previously this problem has been studied using fully supervised method. In fully super-

vised method, each input data has its the correct segmentation mask for training. However

the cost of using human labor to generate segmentation masks is relatively expensive, since

people need to read the whole sentence before they mark and find the corresponding contents

on the image.

In this paper, we present the results of using weakly supervised learning localization

methods to solve this problem. Under our setting, we do not use the pixel-wise ground

truth segmentation masks while training the model. The only visible information is a pair

of sentence and the corresponding image. At this point it has became a weakly supervised

learning localization problem. We develop two models and training techniques for the weakly

supervised localization learning problem:

• Sentence Localization Model we present an end-to-end model by adjusting from the

model Hu et al. [4] propose. For a given input data with an image and an associ-

ated sentence, we generate an image embedding matrix using FCN[8] and combine it

with the associated sentence embedding vector. After we combine image feature and

sentence feature, we apply multiple instance learning loss[8] on top of it.

• Word Localization Model Our result shows the sentence localization model is not only

having a hard time to localize the correct object, but also not interpretable and hence

hard to debug. We then simplify our task into a weakly supervised word localization

problem. We first extract edge boxes[13] as region proposals for all the input image,

and then train separate classifiers for all noun words that ever appear in the sentences.

Therefore each noun word has a corresponding classifier when the entire training pro-

cess ends. The classifier will give the predicted edge box that contains the noun word

inside. In inference time, given an input image with a sentence, we locate the cor-

rect edge box on the image by extracting the noun phrase via constituency parse and
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applying the corresponding noun classifier.

Our contributions are as follows: (i) Extend existing fully supervised model for referring

expression localization to the weakly supervised case using multiple instance learning. (ii)

Propose a soft version of multiple instance learning loss and a size prior to improve stability.

(iii) Study the more fundamental problem of weakly supervised noun word localization from

referring expressions. Additionally, we also study the roles of negative region sampling,

ensemble, and dimension reduction of image features.
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CHAPTER 2: BACKGROUND AND RELATED WORK

We begin by discussing prior work on fully and weakly supervised object localization and

image segmentation with object labels. Then we review fully supervised phrase grounding

problem.

Fully Supervised Localization In fully supervised method setting, semantic segmenta-

tion and object detection have been studied systematically. In object detection task[16, 17],

region proposals or region proposal network is used to localize object and shows great per-

formance. In semantic segmentation task[7], fully convolutional network[7] has been widely

used by adjusting the network architecture from VGG[11] networks. Mask R-CNN[18] gives

an end-to-end segmentation model extended from faster R-CNN[16]. Dilated convolution[18]

aggregates multi-scale contextual information without losing resolution and also shows great

performance on semantic segmentation task.

Weakly Supervised Localization To reduce the expensive annotation cost, weakly

supervised object localization uses higher level label information. For example, we can

only use image-level label during the training process. Most of weakly supervised object

localization approaches[20, 21, 22, 23] take the advantage that discriminative features tend

to appear in one class with higher frequency than other classes. Pathak et al.[8] propose

a way to perform semantic segmentation in a weakly supervised way. In their paper, each

image is feed into a fully convolutional network[7] to get 21 channels heatmaps, where

each heatmap is corresponding to one of the 20 fixed classes and an additional heatmap

represent the heatmap for the background. A multi-class multiple instance learning loss is

defined on top of the 21 heatmaps by maximizing the peak pixel value on the corresponding

heatmap. This multi-class multiple instance learning gives us the basic inspiration on the

more complicated case of referring expressions. In our approach, we analog each referring

natural language expression as a fixed class label, and apply multiple instance learning loss

in a similar manner.

Fully Supervised Phrase Grounding In recent years, there are several works on refer-

ring expressions in fully supervised setting. Hu et al.[4] present a model by using LSTM[6]

for sentence embedding and fully convolutional network[7] for image feature extraction. Af-

ter extracting sentence and image features, an additional neural network is designed to be

applied on top of the combined sentence and image features to generate an output heatmap.

In the fully supervised setting, they make full use of the ground truth segmentation mask

and apply weighted binary cross entropy loss on the output heatmap. Furthermore, Liu et

al.[5] further improve the result by adding an additional LSTM on the sentence embedding
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and combine the output of LSTM with the extracted image feature.

In chapter 3 and chapter 4, we will explain two proposed models and how different training

strategies affect the results on ReferIt game[3] dataset.

4



CHAPTER 3: SENTENCE LOCALIZATION MODEL

3.1 APPROACH

This approach is an end-to-end model inspired by the fully supervised model proposed by

Hu et al.[4]. We call it sentence localization model because we encode the entire referring

expression in the model. Under the weakly supervised learning setting, we are not allowed

to use pixel-level ground truth segmentation masks.

In our model, when we have an input pair of image and natural language expression, we

first extract an image feature map and a language feature vector. Then we combine image

and language features before a fully convolutional classification network and an upsample

network. The final output will be a pixel-wise segmentation mask. The model can be

interpreted as shown in Fig. 3.1.

Since the weakly supervised setting makes the training process difficult in our experiment,

we also add PASCAL VOC 2012[1] dataset and use it in a fully supervised manner. We

expect fully supervised learning from PASCAL VOC data set to help a great guide the

weakly supervised learning on ReferIt[3] dataset. The single class word from PASCAL VOC

will be treated as the natural language expression in our model.

3.1.1 Image Feature Extraction

Given a single image with RGB channels, we want to find a feature representation of this

image. We simply forward the single image of size H ×W × 3 into a fully convolutional

network, more specifically, FCN-32s[7]. The output of feature representation will be in size

of h×w×Dim. Since the input image may have different input size, we make zero padding

around the image to make all input image with size 512× 512× 3.

In our implementation, The FCN-32s is adopted from VGG-16 network architecture[11],

the fc6, fc7 and fc8 layers are modified as fully convolutional layers. The output dimension

Dim = 1324 in our case, the number 1324 is from 1024 from ELMo embedding and 300 from

GloVe embedding, which we will explain in section in section 3.1.2.

3.1.2 Encoding Natural Language

To simplify the model complexity while maintaining the explained information from the

sentence, we use fixed sentence embedding in our model instead of an LSTM network. Peters
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et al.[9] claim that adding ELMo embedding will increase the speed of convergence while

maintaining the text information. For each sentence, we concatenate the ELMo sentence

embedding vector and GloVe[10] embedding vector to get our sentence embedding vector.

Since ELMo sentence embedding vector is trained using a 2-layer LSTM network, it helps

maintaining the sentence structure.

For the input of natural language expression, we use two different pre-trained language

embedding methods. Firstly, in the ELMo sentence embedding model, We pick the second

LSTM layer output from it, and get a sentence embedding vector with dimension Delmo =

1024. Secondly, we get a GloVe embedding vector for a single sentence by the average values

of each word embedding vectors. We use pre-trained GloVe with 300 dimensions, hence

Dglove = 300. Then the final sentence embedding vector is created by concatenating these

two vectors described above, Dtext = Delmo +Dglove = 1324.

3.1.3 Classification and upsampling

After extracting the images feature map of size h × w × Dim, and the natural language

encoded vector of size Dtext, we combine the image and language features and classify each

pixels as a foreground or background.

To make the shape of image feature and language feature consistent, we tile the text

embedding to the size of h×w×Dtext, note we have Dtext = Dim = 1324. After making the

size consistent, we perform a dot product across the third dimension between the images

feature map and tiled text encoder matrix. Specifically, we perform elementwise product on

the h × w × Dim image feature and h × w × Dtext text feature, then sum across the third

dimension, this will result into a matrix of size h× w.

After getting the h × w feature map, we add two bi-linear up sampling layers on top of

it. The first layer is with scaling factor 4 and the second layer is with scaling factor 8.

There is also a one-to-one convolutional layer between the two upsampling layers. Finally,

we complete the entire model graph with a heat map of size H ×W , which is the same size

as the padded input image.

3.1.4 Loss Functions

Once we get the final H ×W heat map for each data, we apply the MIL loss on top of it.

There are two different types of MIL loss function we define to perform the weakly supervised

learning task. For clarity, we denote P as the H ×W heat map, and Pij represents for the

entry in i-th row and j-th column.

6



Figure 3.1: sentence localization model for weakly supervised segmentation from natural
language expressions.

3.1.4.1 Hard MIL Loss

The MIL loss is inspired by the Deepak et al.[8]. On the H×W heat map, we pick top kf

pixel values as foreground pixels, and the lowest kb pixel values as background. We denote

the set of pixels as has top kf values as Skf , and similarly for Skb. Based on the MIL loss,

we want to maximize the foreground pixel values in Skf and minimize the background pixels

values in Skb. The reason to use kf and kb instead of only maximizing the peak value on

the heatmap is to increase the stability of the model. In the case, as long as the actual true

foreground pixel appears in Skf , the learning will towards the right direction as we increase

the correct pixel value. In our setting, kf = 3 and kb = 1000 are used to achieve better

performance.

Hard MIL Loss = Lhard = − 1

kf

∑
p+∈Skf

log(p+)− 1

kb

∑
p−∈Skb

log(1− p−) (3.1)

The loss is saying if a pixel in the final heatmap has a high value as in Skf , we will maximize

it to reduce the loss. Similarly, if a pixel in the final heatmap has a low value as in Skb, we

will minimize it to reduce the loss.
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3.1.4.2 Soft MIL Loss

To even further increase the stability of the model, we adjust the loss function to be in

a soft version manner. In this case, instead of only increasing the top kf pixel values and

decreasing lowest kb, we use model predicted probability as soft labels. More precisely, a pixel

with a higher value will have a higher weight to increase and vice versa. The weight above

is defined by the current value on the pixel. However, we are not going to backpropagate

through this weight while training.

Soft MIL Loss = Lsoft = −
∑
i,j

Wij logPij −
∑
i,j

(1−Wij) log (1− Pij) (3.2)

where the value Wij = Pij.

3.1.4.3 Prior Restriction on Object size

Based on the ReferIt dataset, we found there are roughly average 15% of pixels are fore-

ground and 85% of pixels are background. Therefore, we add a prior constraint to the final

loss to ensure there are roughly θprior percent of pixels are foreground. In our setting, θprior

is set to be different values as {0.1, 0.15, 0.2, 0.25, 0.5, 0.75}

Prior Restriction = Lsize = | 1

WH

∑
i,j

Pij − θprior| (3.3)

3.1.4.4 Final Loss Total

Therefore, as we discuss from 3.1.4.1 to 3.1.4.3, final total loss function is defined as:

Total Loss = Ltotal = Lhard/soft + Lsize (3.4)

The MIL Loss can be either hard MIL loss or soft MIL loss described in section 3.1.4.1 and

3.1.4.2.

3.2 EXPERIMENT AND RESULTS

In the training process, we use the VGG-16 pre-trained weights on Imagenet 1000 classes

classification challenge as the initialization weights on the FCN image feature extraction.

The entire FCN weights are trained through the entire process.
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In the evaluation time, once we have the final H × W heap map for a single data, we

apply a sigmoid function on each of the pixels and choose a classification threshold value θ

to mask out the foreground pixels. More specifically, we mark all pixels with a value greater

than θ as foreground and vice versa.

The evaluation metric used is intersection over union(IoU) between the predicted seg-

mentation masks and the ground truth segmentation masks. In order to fully explain the

result, we both compute IoU values for foreground and background. To compute the IoU for

background, we compute the IoU between all predicted background region and the ground

truth background region. We compare and explore the effect of different choice of MIL loss

functions as well as difference choice of prior values.

3.2.1 Effect of Losses

Table 3.1 shows the computed IoU evaluation metric on the validation set with different

choice loss functions. Prior threshold θprior = 0.15 and classification threshold θ = 0.15 are

used in this test.

Intersection over Union (IoU)
MIL Loss Type IoU Foreground(%) IoU Background(%)

Hard MIL 14.19 64.53
Soft MIL 14.82 84.46

Table 3.1: Intersection over Union on validation set when using different type of loss function.
IoU is both on foreground and background.

Based on the IoU results from the validation set, we can see that Soft MIL loss and prior

threshold help with the performance on the weakly supervised segmentation task. This

is because when we use hard MIL loss, if a ground truth foreground pixel is not in Skf ,

the model may not be updated towards an expected direction since it will not increase the

probability being a foreground. However, the soft MIL loss always keep a weight that the

true foreground value needs to be increased.

3.2.1.1 Effect of Prior Restriction

Table 3.2 shows the IoU evaluation metric on the validation set with different combination

of θprior and θ. From the IoU numbers in the table, θprior = 0.2 and θ = 0.1 give the best

IoU foreground on the ReferIt it validation data.
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classification threshold
prior threashold 0.10 0.15 0.20

0.10 0.161 0.156 0.144
0.15 0.171 0.152 0.130
0.20 0.172 0.166 0.154
0.25 0.150 0.145 0.137
0.50 0.134 0.128 0.123
0.75 0.160 0.161 0.165

Table 3.2: Foreground intersection over Union on validation set when using different values
of prior threshold and classification threshold.

3.2.2 Segmentation Results

The model gives some reasonable results showing in Fig. 3.2. But for examples show in

Fig. 3.3, it still has a hard time localizing the correct objects in the images.

The model is more likely to predict people as foreground no matter what the input natural

language is. This is very likely caused by the fully supervised part from PASCAL VOC

dataset as there is a class called “people” in PASCAL VOC and the full supervision takes

most part of the learning. However, if we remove the fully supervised part on PASCAL VOC

data set, the result outputs become totally random and unpredictable.

In general, this end-to-end sentence localization model using MIL loss does not perform

as we expected. Our best foreground IoU is 17.2%, which does not show a significant

improvement when we use the baseline strategy, which has IoU 15%. And the baseline

method is simply predict everything as foreground. This is mainly because of the noisiness

of the input sentence encoding vector. In the case of multi-class multiple instances learning

proposed by Pathak et al.[8], the study is on PASCAL VOC data set. However, the natural

language sentence encoded vector lies on a continuous space. Therefore we need to even

further simplify the problem in order to get better performance in the weakly supervised

setting.
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Figure 3.2: positive localization results.
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Figure 3.3: failure cases.
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CHAPTER 4: WORD LOCALIZATION MODEL

4.1 APPROACH

The sentence localization model does not seem to localize correct objects in the image.

And the model is not interpretable and the source of failure is hard to diagnose and fix. One

possible reason is that the natural language encoding vector lies on a continuous space, and

can be hardly analog to the work proposed by Pathak et al.. For example, for a single image

with same ground truth segmentation, the sentence can either be “person in front with white

shirt”, or “white shirt guy”, sometimes even more different ways. In this case, the output

heat map P may vary a lot while the input images and segmentation ground truth are the

same.

To overcome this fundamental challenge caused by the sentence localization model, we de-

velop a new model that completely discards the language encoding. We use POS Tagger[12]

to extract all noun words in each sentence and then perform multiple instance learning on

each noun word separately. To even further reduce the complexity of the problem, we want

to first solve object localization from natural language, instead of performing segmentation

task directly. To perform object localization task, we need to extract region proposals for

each image before apply classification on those regions.

The overview of the new procedure are: (i) Extract all noun words among all sentences.

(ii) Extract region proposals for each image. (iii) Train individual classifiers for each noun

word. (iv) In inference time, given an image and a sentence, find the most important noun

word or noun phrase, and use the classifier associated with the noun word to find the most

relative region of proposal in the image.

4.1.1 Extracting Noun Words

To extract the noun words, we use Stanford Log-linear Part-Of-Speech Tagger(POS Tag-

ger)[12] to select all NN and NNs for each sentence and then save the indexes of NN and

NNs in a dictionary.

4.1.2 Extracting Region Proposals and Image Features

For each image, we need to extract region proposals that contain objects. Laurence et

al.[13] propose edge box extraction, which has showed significant performance in selecting
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objects in the image. Taking advantage of this previous work, we extract 100 edge boxes

from each of the raw images, then we feed the selected edge box regions into ResNet152[14]

network pre-trained on Imagenet classification task. To extract the image features, we output

the feature vectors before feeding to the final classification layer in ResNet152. Since the

size and shape of the edge box may vary, we resize and pad all edge boxes to be with a

fixed shape of 224 × 224 before feeding into ResNet152. After the feature extraction, for

every single image, we will have 100 number of feature vectors with size Dim. Based on the

architecture of ResNet152, Dim = 2048 is the default value.

4.1.3 Multiple Instance Learning on Edge Boxes

Section 4.1.1 and 4.1.2 describe how we get pre-processing data. Now we need to find

a way to train classifiers for each noun separately. What the classifier tells is that among

all the given 100 edge boxes, which of these is containing correct content related to this

noun word. For simplicity, we will use “dog” as an example of the single noun word we are

training.

As we are training on the noun word “dog”, we will only look at all the sentences that

contain “dog” and discard all the other data for now. We denote the set of all images

that have a natural language description containing “dog” as S+
dog. On the other hand, we

construct another set of images that none of their natural language descriptions contains

“dog”, denoted by S−dog.

To prevent from overfitting, we keep the model as simple as a single hidden layer neural

network. Fig. 4.1 shows the flow graph of our model on a single data a “dog” classifier.

In the figure, the edge box feature vectors are with size Dim and they are fed into a multi-

layer perceptron(MLP) with only one hidden layer. Each edge box input will get a single

probability interpreted as how likely it contains a “dog” or not. The negative feature vectors

are edge box feature vectors that are randomly sampled from the image in S−dog. In our

experiment, we sampled a total amount of 1000 random edge boxes that from S−dog.

4.1.3.1 Loss Functions

Let us take a single training data in S+
dog. Since there are 100 edge box feature vectors,

the input matrix feed into MLP is of size 100 × Dim, hence the output will be a vector of

size 100 × 1 with probabilities saying how likely each edge box contains a dog, denoted by

P+. Similarly, the negative feature vectors input is of size 1000 ×Dim and the output is a

vector with size 1000× 1, denoted by P−.
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Figure 4.1: Our model for edge box classification on a single noun word “dog”.

MIL Loss. The key information we know is that at least one of the edge box feature

in the S+
dog contains a dog, and none of the edge box in the S−dog has a “dog”. Now we can

utilize our multiple instance learning loss function by

i∗ = argmax
i

P+
i

MIL LOSS = − logP+
i∗ −

∑
i 6=i∗

log (1− P+
i )−

∑
i

log (1− P−i ) (4.1)

where the subscript i denotes the i-th value in the vector P−i or P+
i . The MIL loss is ba-

sically saying that pick the highest value in P+
i as the potential edge box that contains a

“dog” and maximize its probability while minimizing all the other probabilities from edge

boxes in P+
i and P−i .

Conservative MIL Loss. However, one problem of defining MIL loss using the way above

is that we also minimize other probabilities in P+
i . In the setting of weakly supervision, it is

common that the model misses the true edge box that contains the true object “dog”. Once

it misses the true edge box, the MIL loss defined above will also minimize its probability,
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which may make the model even more difficult to find the correct edge box. Therefore, we

remove the P+
i part and define a more stable version of MIL loss, called conservative MIL

loss. In this case, we are not going to reduce the probability of the true edge box even

though it does not get the maximum probability.

i∗ = argmax
i

P+
i

CONSERVATIVE MIL LOSS = − logP+
i∗ −

∑
i

log (1− P−i ) (4.2)

4.1.3.2 Feature Ablation

We extract the edge box feature by feeding the edge box into ResNet152 pre-trained on the

Imagenet classification problem. To make it easier for multiple instance learning to discover

useful image features, we perform dimension reduction to get rid of redundant features.

To reduce the dimension, we define an encode weight vector Wen of shape 128× 2048 and

a decode weight vector Wde of shape 128 × 2048. Let Seb denote the set of all edge boxes

and we minimize

Lossrecon =
1

|Seb|
∑

Xim∈Seb

|WenXimW
T
de −XT

im|+ |Wen|+ |Wde| (4.3)

The absolute values on Wen and Wde are used by regularization. After the Lossrecon con-

verges, we construct the low dimensional feature vector by computing WenXim, the new low

dimension Dim is now 128 instead of 2048.

4.1.3.3 Model Ablation

Even though we propose all setting above to improve the stability of multiple instance

learning tasks, a single multi-layer perceptron is still easy to have random performance since

it is easy to latch on to incorrect regions. To increase the model robustness, we add some

parallel MLPs with random initialization. These parallel MLPs perform in an ensemble way

to make the entire model stable.

Assume we have k different MLPs with same structure, and the outputs probabilities from

the k MLPs are denoted by P 1+, P 2+, ..., P k+, and P 1−, P 2−, ..., P k−. The final P+ and P−
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are defined as

P+ =
1

k

k∑
i=1

P i+ (4.4)

P− =
1

k

k∑
i=1

P i− (4.5)

And the MIL loss or conservative MIL loss are still computed as described in 4.1.3.1.

4.2 EXPERIMENT AND RESULTS

Once we finish training, each noun word will have its own classifier. In the inference

time, when evaluating a single data, we use a pre-trained constituency parsing model from

ELMo[9] to extract the noun words. More precisely, given a sentence, we recursively find

the last noun phrase, then treat all NN and NNs in this final noun phrase as the nouns

we want to look at. To simplify the evaluation process, we create separate evaluation sets

for each noun word. For example, we collect all data that have the word “dog” appears

in the last noun phrase, denote Seval
dog . However, since there are around 8000 nouns in the

word dictionary, we only train 97 noun words that have the highest frequency in the entire

ReferIt[3] dataset.

The evaluation metric is the recall value at top {1, 5, 30} edge boxes. We consider the

prediction is true if among the k edge boxes that with highest predicted probabilities, there

is at least one of edge boxes has IoU value greater than some threshold with the ground

truth bounding box. In order to find the best model for our problem, we then explore the

effect on different feature dimensions, loss functions and number of MLPs being used.

4.2.1 Effect of Dimension Reduction

Table 4.1 shows the top 1, top 10 and top 30 recall values at different threshold level using

only single MLP and MIL loss function setting. For example, in the section recall@1, we

compute top 1 recall values with threshold 0.1, 0.2, and 0.5. That is, if the IoU between

predicted edge box and ground truth is greater than a threshold, we consider it as correctly

classified.

From the reported values in the table, it can be observed that with 2048 dimension edge

box feature vector, the performance is significantly better. Therefore, our auto encoder-

decoder dimensional reduction method loses important features and is not going to get

better results.
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recall@1 recall@10 recall@30
Feature Dimension 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5

128 0.19 0.11 0.03 0.61 0.42 0.13 0.84 0.70 0.30
2048 0.44 0.28 0.06 0.80 0.64 0.24 0.90 0.78 0.42

Table 4.1: top 1, top 10, top 30 recall value at IoU threshold 0.1, 0.2, 0.5 using different
edge box feature dimension.

4.2.2 Effect of Ensemble

In this section, we want to look at how the number of MLPs affects the final result. Table

4.2 shows the top 1, top 10 and top 30 recall values at different threshold level using feature

dimension Dim = 2048 and MIL loss to train the models.

recall@1 recall@10 recall@30
Number of MLPs 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5

1 0.44 0.28 0.05 0.80 0.64 0.24 0.90 0.79 0.41
5 0.42 0.27 0.06 0.78 0.62 0.24 0.90 0.78 0.41
10 0.44 0.29 0.06 0.81 0.65 0.26 0.92 0.81 0.42

Table 4.2: top 1, top 10, top 30 recall value at IoU threshold 0.1, 0.2, 0.5 using different
number of MLPs.

From the reported values, we can conclude that increasing the number of MLPs can make

the entire model slightly more robust and give better results.

4.2.3 Effect of Training on Negative Region in Positive Bag

Finally, we will explore the effect of the loss function, and how MIL loss and conservative

MIL loss can affect the results. Table 4.3 shows the top 1, top 10 and top 30 recall values at

different threshold using edge boxes feature dimension Dim = 2048 and 10 number of MLP

classifiers.

recall@1 recall@10 recall@30
Type of Loss function 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5

MIL Loss 0.30 0.19 0.04 0.75 0.58 0.20 0.89 0.77 0.39
Conservative MIL Loss 0.44 0.29 0.06 0.80 0.65 0.26 0.90 0.79 0.42

Table 4.3: top 1, top 10, top 30 recall value at IoU threshold 0.1, 0.2, 0.5 using different loss
function.

From reported IoU values in the Table 4.3, we observe that the convervative MIL loss is

significantly better than MIL loss. This result is also as expected because by using original
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MIL loss, it decrease the potential corrected edge box probability value, hence the model is

more likely to converge something random. However, the adjusted conservative MIL loss only

backpropagate the negative edge boxes, which are total disjoint with any possible correct

edge box.

4.2.4 Qualitative Results

Fig 4.2 shows some qualitative sample outputs edge box predictions in the test set using

our best model, which is using edge box feature vectors dimension Dim = 2048, 10 MLP

classifiers and conservative MIL loss function definition.
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Figure 4.2: Localization results. Predicted edge box and ground truth is marked as red box.
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CHAPTER 5: DISCUSSION

5.1 COMPARISON

In our work we use both sentence and word localization method to solve image segmenta-

tion problem. For sentence localization method, our best model achieves IoU 17.2%, which

is a slight improvement comparing to the baseline strategy with IoU 15%, where the base-

line strategy is simply predicting all pixels as foreground. Afterwards, we construct a word

localization model to find the bounding box that contains corresponding objects.

To make the two models comparable, we create bounding boxes using the segmentation

outputs from the sentence localization model. Specifically, we take the most top, left, bot-

tom, right pixels in the segmentation output and generate a bounding box based on those

boundary pixels. We choose the best model from each method and compute the top 1 recall

values with different IoU threshold values as described in section 4.2.1.

Based on Table 5.1, when IoU threshold is 0.1, the sentence localization model gives better

top 1 recall value. However, the word localization model gives better top 1 recall values at

higher IoU thresholds. Therefore, the word localization method tends to give higher quality

bounding boxes and thus has better performance on object localization task since the recall

values at higher IoU thresholds are higher.

Recall@1(%)
Methods 0.1 0.2 0.5

Sentence Localization 50.3 26.6 4.2
Word Localization 44.4 29.3 6.4

Table 5.1: Top 1 recall values by sentence localization model and word localization model.

5.2 LIMITATION

Edge box bottleneck While we use edge boxes as the region proposals, the final selected

bounding box is limited by the fixed edge boxes. In the worst possible case, none of the edge

boxes captures the actual object in the image.

Sentence bottleneck Since we train and classify the edge box from single noun word,

our method may not process complex sentence structure sufficiently accurate. For example,

if the input sentence is “the person on the left”, our model will give the edge box that

contains “person”, but not necessary to be the person on the left.
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CHAPTER 6: CONCLUSION

We propose a weakly supervised end-to-end sentence localization method to perform image

segmentation task from natural language expression, in which case we are only given pairs

of input image and natural language expression. However, the sentence localization model

can hardly correctly localize the correct object in the images. The main reason is that the

vector encoding is too high-dimensional and easy to mislead the entire training process.

To simplify the task, we omit the language encoding part and design a word localization

model. In this case, same words will be associated with multiple images, which is much

easier to train in the weakly supervised setting. We use edge boxes as region proposals and

train individual classifiers for each extracted noun words using multiple instance learning

loss.

We compare the performance of sentence and word localization methods. The results

show that word localization method tends to give better object localization result since it

gives higher top 1 recall values. We also find and conclude that for a complicated multiple

instance learning or weakly supervised task, we may further divide the task into several

simpler tasks to achieve more stable results. In addition, our ablation study also shows the

importance of using negative sampling and ensemble techniques on the weakly supervised

or multiple instance learning tasks.
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