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ABSTRACT

This thesis explores the use of reinforcement learning approaches to improve replacement

policies of caches. In today’s internet, caches play a vital role in improving performance

of data transfers and load speeds. From video streaming to information retrieval from

databases, caches allow applications to function more quickly and efficiently. A cache’s

replacement policy plays a major role in determining the cache’s effectiveness and perfor-

mance. The replacement policy is an algorithm that chooses which piece of data in the

cache should be evicted when the cache becomes full and new elements are requested. In

computer systems today, most caches use simple heuristic-based policies. Currently used

policies are effective but are still far from optimal. Using more optimal cache replacement

policies could dramatically improve internet performance and reduce database costs for many

industry-based companies.

This research examines learning more optimal replacement policies using reinforcement

learning. In reinforcement learning, an agent learns to take optimal actions given informa-

tion about an environment and a reward signal. In this work, deep reinforcement learning

algorithms are trained to learn optimal cache replacement policies using a simulated cache

environment and database access traces. This research presents the idea of using index-

based cache access histories as input data for the reinforcement learning algorithms instead

of content-based input. Several approaches are explored including value-based algorithms

and policy gradient algorithms. The work presented here also explores the idea of using

imitation learning algorithms to mimic optimal cache replacement policies. The algorithms

are tested on several different cache sizes and data access patterns to show that these learned

policies can outperform currently used replacement policies in a variety of settings.
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CHAPTER 1: INTRODUCTION

Caches are a critical part of many aspects of today’s computer systems. Caches allow

faster access to data and can generally improve performance of computer systems. A wide

variety of applications that are critical to people all around the world use caching to improve

their functionality. Caches are used to store saved versions of web pages which allows for

faster access and less bandwidth usage. Video services, such as YouTube or Netflix, improve

video streaming quality by caching videos in distributed databases. Caches are vital to the

functionality of the internet and improving database access speeds. Better cache performance

would dramatically improve many applications and have significant impact throughout the

world.

More specifically, a cache is an intermediate store of data between an application using

the data and the original source of the data. A cache typically allows faster retrieval of data

but is also typically smaller than the original store of data. If an application needs a piece

of data that is already stored in a cache, the application can simply retrieve the data from

the cache and never has to interact with the original data source. However, if the piece of

needed data is not in the cache, a cache miss occurs, and the application must retrieve the

data from the original data source. A diagram depicting a standard cache setup is shown

in Figure 3.1. Due to the limited size of caches, it is critical for a cache to hold relevant

pieces of data that will be needed in the future. When a cache becomes full and wants to

store a new piece of data, it must decide which pieces of data in the cache to evict. The

cache decides which items to evict based on the cache’s replacement policy. The replacement

policy is an algorithm that decides which elements to remove based on the cache’s state and

past data accesses. Typically, the replacement policy is based off simple heuristic functions

such as eliminating the least recently used piece of data in the cache. These heuristics are

effective but are not the optimal replacement policy. Recent results in machine learning,

suggest that these replacement policies could be improved by using algorithms to learn more

optimal policies.

Machine learning has recently had several break throughs in the areas of reinforcement

learning and deep learning. Reinforcement learning is a subsection of machine learning where
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Figure 1.1: Example cache setting. Arrows represent data requests and transfers.

agents learn to behave optimally in environments in order to maximize rewards [1]. Deep

learning uses artificial neural networks with many layers to learn to approximate complex

functions. Deep learning has succeeded in impressive tasks such as classifying images [2]. In

the last few years, reinforcement learning and deep learning have been combined into deep

reinforcement learning. Deep reinforcement learn has enabled computers to be able to learn

complex tasks such as playing Atari video games [3]. Recent work of deep reinforcement

learning has investigated its application to learning replacement policies for caches.

The work presented in this thesis explores a new approach to applying deep reinforcement

learning to cache replacement policies. The problem of cache replacement policy is modeled

as a Markov decision process where the learning agent must decide which pieces of data

should be evicted from the cache. A novel part of the research presented here is the use of

index-based information for cache state representation instead of content-based information.

Previous approaches using deep reinforcement learning for cache replacement policies, looked

at the content of the items in the cache to determine which elements to remove. The approach

presented here uses a new cache state representation that is purely based on cache index

access histories.
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Using index-based cache states, agents are trained to learn a replacement policy to mini-

mize the number of cache misses that occur over a set of data accesses. Recent state-of-the-

art algorithms are used to solve this problem. Reinforcement learning methods such as the

value-based Double Deep Q-learning algorithm and the policy-based Advantage Actor-Critic

algorithm are explored. This thesis also presents new work on using imitation learning to

train cache replacement policies to mimic an optimal replacement algorithm. The optimal

Bélády’s replacement algorithm is used as an expert agent that always achieves the fewest

possible cache misses over a set of data accesses. Using supervised learning and Generative

Adversarial Imitation Learning, agents are trained to attempt to mimic the actions taken by

this optimal algorithm. The agents trained using imitation learning are also used to initialize

the policies of reinforcement learning algorithms.

The approaches in this work are evaluated using a simulated cache and database access

patterns. For experimentation, a simplified cache model is simulated on a series of data

reads. The data access patterns are generated following a Zipf distribution to attempt to

approximate real data access patterns. The algorithms are tested on several different cache

sizes and data distributions. The performances of these algorithms are evaluated based on

cache misses and compared to standard baseline algorithms.

The results of this thesis show that reinforcement learning algorithms are able to learn

better cache replacement policies than the standard replacement methods in a variety of

cache settings. Additionally, the results show that the algorithms tend to perform better

in more complex cache settings which suggests that the approaches described here could be

successfully extended to more complicated real-world caching systems.
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CHAPTER 2: BACKGROUND

The proceeding chapter will provide background information on caching and reinforcement

learning. This should help to clarify concepts and topics that will be explored in more detail

during later chapters of the thesis presented here.

2.1 CACHING

As described in the introduction, caches act as intermediate stores of data that can improve

performance and data transfer speeds. Caches improve performance by storing data that is

used multiple times so that applications can access this reused data faster than if it were

retrieved from the original data source. Caches can provide faster access times because

they are typically not as large as original data sources and only store a subset of all data

available. Caches are effective when they can keep relevant data in the smaller data store

for future work. The cache replacement policy decides which pieces of data are kept in the

cache. This work focuses on evaluating and learning better cache replacement policies to

allow more relevant data to be present in the cache. Caches are quite complicated and can

follow several different designs, but this work will focus on simple caches that are effective

for evaluating cache replacement policies.

2.1.1 Evaluation Metrics

A cache improves performance when data requested by the application is already stored in

the cache. When a cache becomes full and a new piece of data is requested, certain elements

of the cache are evicted by the replacement policy, and the new data is put in the cache.

Following a good replacement policy, caches are able to keep useful pieces of data in the

cache and evict other irrelevant pieces of data. A cache hit occurs when a newly requested

piece of data is currently stored in the cache. A cache miss occurs when a newly requested

piece of data is not present in the cache. Ideally, all requested data will always be in the

cache, but this is not possible in practice. Therefore, to measure a cache replacement policy’s

performance, cache hit ratio is used. A cache’s hit ratio is the number of cache hits divided
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by the total number of accesses [4, 5, 6].

Hit Ratio =
Cache Hits

Data Accesses
=

Cache Hits

Cache Hits + Cache Misses
(2.1)

This is the main metric that will be used to compare replacement policies. With a higher

hit ratio, more cache hits are occurring leading to faster data access and better application

performance. Hit ratio is typically examined with respect to a set of data access. A set of

data access refers to the order in which several pieces of data were requested from a database

or cache. In this work, a set of data accesses will also be referred to as an access trace or

data access pattern. There are many other methods to evaluate cache performance, however

hit ratio is the most direct metric to evaluate performance of the cache replacement policy.

2.1.2 Baseline Replacement Policies

Currently, caches use a number of heuristic based replacement policies. There are a wide

range of replacement policies used, but two of the most common are the least recently used

policy and least frequently used policy.

Least Recently Used (LRU) policy removes the item in the cache that was least recently

accessed in the cache [7]. The cache keeps track of the order that the items in the cache

were last accessed. When it needs to purge an element from the cache, the policy removes

the oldest item in the cache according to access history.

Least Frequently Used (LFU) policy removes the item that has been accessed least fre-

quently while in the cache [7]. The cache keeps track of the number of times each piece of

data has been accessed and will purge the item that had been accessed the fewest number of

times. If an item is removed from the cache and then placed back into the cache, its access

count is reset.

Another baseline replacement policy to consider is a truly random replacement policy.

When an item from the cache must be evicted, a random policy will choose an element to

evict at random. This baseline will provide a lower bound for how the cache should perform

with no knowledge or information.
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2.1.3 Bélády’s Algorithm

In addition to considering baseline algorithms, this work also looks at optimal cache re-

placement policies such as Bélády’s algorithm or the clairvoyant algorithm [8]. Bélády’s

algorithm guarantees optimal cache hit ratio for a given trace of data accesses. However,

it is not feasible to implement in the practice because it requires knowledge of future data

accesses. Because it requires future knowledge of data accesses, it is sometimes referred to as

the clairvoyant algorithm. The algorithm works by removing the element in the cache that

will be accessed furthest ahead in time based on future data accesses. This has been proven

to be optimal but is not possible to use in real caching systems [8]. However, in simulated

data traces, it provides a useful upper bound to consider how well a replacement policy can

behave.

2.2 REINFORCEMENT LEARNING

Reinforcement learning is an area of machine learning that focuses on training agents

to act in unknown environments based on given reward signals. An agent must learn to

maximize cumulative rewards from the environment by repeatedly choosing an action to

take. The problem becomes an repeated decision making challenge. The agent observes the

current state of the environment and then takes an action. After taking the action, the agent

receives a reward and a new state from the environment. This process repeats as shown in

Figure 2.2 until some terminating event. The agent must learn to take the best actions such

as to maximize the reward received from the environment at each step.

To formalize the environment for reinforcement learning, Markov Decision Processes (MDPs)

are commonly applied to provide a mathematical framework to describe the situation[1].

MDPs are a method to formalize decision making processes where an agent repeatedly in-

teracts with an environment and learns to behave such as to maximize reward. In an MDP,

the agent must repeatedly decide on actions to take. An MDP is defined by the set of

states the environment can be in S, the set of actions the agent can take A, the transi-

tion function P (s′|s, a) : S × S × A → R where s, s′ ∈ S and a ∈ A, the reward function

R(s, a) : S × A → R where s ∈ S and a ∈ A, and a discount factor γ where 0 < γ ≤ 1.
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Figure 2.1: Example reinforcement learning environment

The transition function models the probability of transitioning from one state to another

state given that the agent took some action. The reward function returns a scalar reward

value for taking an action in the state of the environment. The discount factor γ is used to

scale summations of rewards so that rewards do not go to infinity over long time periods.

An important property of MDPs are that they follow the Markov Property. The Markov

Property implies that the environment’s future states purely depend on the current state.

States prior to the current state have no impact upon future states or rewards if the current

state is known. This assumption is typically true, but sometimes the assumption is violated.

To clarify MDPs further consider the situation described below. For timesteps, t = 0,1,2,...,

the agent observes a state st ∈ S from the environment, then takes an action at ∈ A, receives

a reward for taking this action rt ∈ R, and then ends up in the next state st+1 based on the

transition probability. This can be written as series of events:

s0, a0, r0, s1, a1, r1, ... (2.2)

The goal of the agent is to maximize cumulative reward of this series of actions or
∑

t rt.

To do this, the agent must learn a policy function π(s) : S → A which tells the agent an

action to take given a state of the environment. This function is also sometimes written as

π(a|s) : S × A → R which defines a function that tells the agent the probability it should
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take action a given it is in state s.

π(a|s) = Pr(action = a|state = s) (2.3)

However, solving for this policy function be challenging for a few reasons. Typically,

some parts of the MDP are not fully known. The transition function P (s′|s, a) is typically

stochastic and not fully defined. After taking an action a in state s, it is not always known

which state s′ the environment will end up in. This will typically follow a random process

where the probabilities are not known. Additionally, the reward function R(s, a) can be a

partially known or a stochastic function. The agent does not know what reward it will get

from the environment when it takes an action. These unknown parts of the MDP makes

solving for the optimal policy challenging. It is impossible to directly derive the optimal

policy since these parts of the MDP are not known. Instead methods must be used to

attempt to learn the optimal policy by interacting with the environment.

Solving a stochastic MDP can be broken into two different categories. The first category is

model-based approaches. These approaches attempt to directly learn the transition function

P (s′|s, a) and reward function R(s, a) to solve the MDP. The other category is model-free

approaches which do not attempt to learn a model of the environment and try to directly

find a policy to follow in the unknown environment. In this work, model-free algorithms will

be explored because they are more directly applicable to the problem being solved.

In model-free based approaches, a policy is learned to achieve as much cumulative reward

as possible. The value function of a policy determines how much reward will be achieved

following that policy for all future timesteps. This can be formally written as V π:

V π(st) = Eπ

[
∞∑
k=0

γkrt+k|st = s

]
(2.4)

V π(s) represents the expected reward from following policy π starting in state s. The goal

of reinforcement learning is to find a policy that achieves the highest possible value function

for all states.

To learn this optimal policy that maximizes the cumulative reward, there are two com-
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monly used approaches. Policy based approaches directly optimize the policy function. Value

based approaches learn a form of the value function and base the policy function of the value

estimates. Additionally, there is a third method that uses a combination of policy and value

functions to behave optimally. These algorithms are called actor-critic methods.

A popular set of policy-based approaches are policy gradient methods. These methods

attempt to create a parametric approximation of the policy function π(a|s). This function

approximation can be written as π(a|s; θ) where θ is the parameters of the function ap-

proximator. Given a policy function π(a|s; θ), policy gradient methods attempt to optimize

this policy by performing gradient ascent updates to the functions parameters θ so as to

maximize the expected reward [9]. The basic update rule for these algorithms is shown

in Equation 2.5 where J is the estimated expected value following the policy approximated

with θ. The policy function π(a|s; θ) is commonly approximated using a deep neural network

who’s parameter weights are θ.

θ ← θ +∇θJ(θ) (2.5)

A popular set of value-based algorithms is the family of Q-learning algorithms and ex-

tensions. These algorithms attempt to approximate the function Qπ which can be defined

as:

Qπ(s, a) = Eπ

[
∞∑
k=0

γkrt+k|st = s, at = a

]
(2.6)

Qπ(s, a) represents the expected reward of taking action a in state s and then following policy

π until the end of the episode. Deep Q-learning algorithms attempt to do this by using a

neural network as a function approximator for the Q function. The algorithms attempt to

approximate Qπ(s, a) as Qπ(s, a; θ) where the function is approximated using a deep neural

network with parameters θ. If Qπ is known, it is easy to formulate a policy based on this:

π(s) = argmaxa′Q
π(s, a′) (2.7)

A third category of algorithms are actor-critic algorithms. These algorithms approximate

both the Q(s, a) function and the policy function π(a|s). This provides the benefit of directly

learning the policy while also using the estimated value of each action to determine how to
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update the policy [10]. This improves on the learning approach of policy gradient by reducing

variance in the updates to the parameters.

Another topic related to reinforcement learning is imitation learning. Imitation learning

is where an agent attempts to learn to mimic the actions of an expert agent. This is

different from reinforcement learning in that the agent does not receive any reward from the

environment and instead simply tries to clone the behavior of an expert. Initially learning

from an expert agent can provide a good method for initializing the parameters of an agent

using reinforcement learning. It is typically easier for an agent to initially learn to mimic an

expert than to learn its own optimal policy directly.

This section has given some background into the ideas of reinforcement learning. The

specific algorithms used in this work will be expanded in greater detail in later sections.
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CHAPTER 3: PROBLEM FORMULATION FOR CACHE REPLACEMENT

The chapter presented below will detail the approach used in thesis to model cache re-

placement policy as a reinforcement learning problem. The chapter will also describe the

MDP formalizing the problem.

3.1 CACHE REPLACEMENT POLICY AS A MARKOV DECISION PROCESS

The problem of cache replacement policy can be modeled as a Markov Decision Process

(MDP). In this research, the agent of the MDP is modeled as the algorithm that decides

which element of the cache should be evicted when the cache becomes full.

The problem of cache replacement is well suited for being treated as a Markov Decision

Process. In any cache setting, a series of data items are requested from the original data

source. As these pieces of data are requested, some of the items are stored in the cache for

future accesses. However, once the cache becomes full, some items must be evicted. The

cache repeatedly must choose which item to remove from the cache when it is full and a

new request for data occurs. This type of repeated decision process is exactly what MDPs

are designed to mathematically model. The agent in this Markov decision process can be

thought of as an internal agent of the cache that chooses which elements to keep and which

elements to evict. This setting is depicted in Figure 3.1.

Another import aspect for a problem to be well suited for modeling as a Markov Decision

Process is that the Markov Assumption is true. The current state of the cache is based only

off the elements in the cache. The previous items in the cache do not impact the state of

the cache. Additionally, the past data pieces that were evicted by the cache play no role

in current state of the cache. Therefore, for cache replacement policy, the Markov property

holds. This indicates again that this problem is clearly well made for being an MDP.

The state space S of the MDP is the possible set of the states the cache can be in. In

this work the cache’s state is recorded as a history of cache index accesses. This will be

explained in more detail in the next section.

The action space A is the set of indices in the cache that can be evicted. For example, if
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the cache was of size 3, the action space would be size 3 because each of the elements in the

cache could be evicted. The action space is equal to the size of the cache. Each index of the

cache can be evicted.

The reward function R(s, a) is defined to discourage cache misses. The agent takes an

action whenever the cache is full, and a cache miss has occurred. It only chooses an action

when an element needs to be evicted from the cache. This implies that a cache miss has

occurred. Therefore, the reward when a cache miss occurs is always -1. If the cache reaches

the end of the data accesses and there is no miss, the reward is 0. The reward function is

formally written in Equation 3.1.

R(st, at) =

 −1 if cache miss occurs at st+1

0 if st is terminal state
(3.1)

This reward function makes the agent attempt to reduce the number of cache misses. By

attempting to reduce the number of cache misses, the agent is attempting to increase the

number of cache hits and improve the cache hit ratio.

The transition function P (s′|s, a) for this Markov decision process is stochastic and un-

known. The transition from one cache state to the next depends on the next pieces of data

that are requested in the data access pattern. When a piece of data is evicted from the

cache, the next piece of data takes the spot in the cache and then a series of new data

requests occurs. The state depends on the next data requested and used. This cannot be

known ahead of time and therefore means that this MDP is not fully known.

The discount factor γ in this MDP is chosen to be close to 1. The series of data accesses

tends to be long and each reward is not overly dependent on each individual action taken.

Choosing γ to have a higher value makes the model consider long-term cumulative rewards

more important when compared to short-term rewards. In this problem, maximizing long

term hit ratio is most important and therefore choosing a high γ is best.
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Figure 3.1: Cache setup for modeling cache replacement policy as a Markov Decision Process
and using an agent to solve the problem.

3.2 INDEX BASED STATE REPRESENTATION

Related work that models cache replacement as a reinforcement learning problem, use a

content-based state representation. In contrast, this work uses an index-based state repre-

sentation of the cache. An index-based cache state representation means that the state of

the cache is represented as the history of cache access for each index in the cache. The state

representation does not care about what content is in the cache. The only thing considered

for creating the cache state is which index of the cache is accessed at each timestep.

The cache state is represented by a two-dimensional matrix. The matrix is of shape cache

size by history length. Cache size is the number of elements that fit inside of the cache.

History length is the number of timesteps in the past that the access pattern of the cache is

stored. The history length can be adjusted and changed. Each row in the matrix represents

the access history for the element at that cache index. Each column represents which index

of the cache was accessed at that timestep and if the element at that index was in the cache

at that timestep.

More formally, the state space S is in the set of matrices with shape cache size by history

length. If C is defined as the number of elements that can fit in the cache, and H is defined
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as the history length, the state space can be written as:

S ⊂ RC×H (3.2)

For a specific state st ∈ S where 0 ≤ i < C and 0 ≤ h < H, each location of the matrix

is defined as described in Equation 3.3.

sti,h =


1 if element i accessed at timestep (t-h)

x if element i not in cache at timestep (t-h)

0 Otherwise

(3.3)

In Equation 3.3, x is a flag value to differentiate an element being in the cache but not being

accessed from an element not being in the cache at this time.

For a concrete example of this, consider a basic cache of size 3 using a history length of

4. The cache will begin empty and will have the access pattern from left to right off

dm, dy, dy, dz, dm... (3.4)

Each d represents a piece of data being accessed. Data accesses with the same subscript

imply that the same piece of data is being accessed again. The state at s4, or after the

second access of dm, would be

s4 =


1 0 0 0

0 0 1 1

0 1 x x

 (3.5)

The first row corresponds to the accesses of element dm and has a 1 in the first column

because dm is accessed at timestep 4. The second row corresponds to the accesses of element

dy. The third row corresponds to accesses of element dz and has an x in the final two columns

because element dz was not in the cache at those times.

When an element in the cache is removed, the row that corresponded to that element of

that cache is replaced with the default value for the entire row. This row is then updated

to show that the most recent access is of the new element.
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For example, consider a continuation of the previous example where the next access in

the trace in Equation 3.4 is a new piece of data dn. This new data element is not in the

cache and one of the elements must be evicted. If dm at index 0 is evicted and dn is placed

into that index, the new state s5 becomes the value shown in Equation 3.6. The second and

third rows are shifted to the right by one from s4 based on the passing of one timestep.

s5 =


1 x x x

0 0 0 1

0 0 1 x

 (3.6)

This state representation is an expressive representation of state that gives the reinforce-

ment learning algorithms plenty of information to use for deciding which action to take.

Using this state representation, it is simple to approximate either the LRU or LFU directly.

To follow an LFU based policy, simply remove the index in the cache whose row has mini-

mum sum. This will be the item with the least accesses in the cache history. To follow an

LRU based policy, remove the row whose index of the first occurrence of a 1 is furthest to the

right. Both functions can be easily learned and approximated using deep neural networks.

This implies that reinforcement learning should be able to at least learn policies comparable

to these baselines and the set of algorithms that are combinations of these policies [11].

However, the neural networks will also be able to learn some sort of combination of these

approaches that could be more effective than LRU or LFU. Access patterns and correlations

between indices can be used more effectively than with other state representations. Overall,

the state provides plenty of information for the algorithms to learn good policies.

Now that the state definition is clarified, the MDP is fully-defined. Next, this work

considers the algorithms for solving this problem and finding an optimal policy.
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CHAPTER 4: REINFORCEMENT LEARNING ALGORITHMS

In the previous chapter, the problem of cache replacement policy was defined as a Markov

Decision Process. In this chapter, the process for solving this MDP will be examined in

detail. In this research, several different reinforcement learning algorithms were applied

to solving the problem of cache replacement policy. The reasons for using reinforcement

learning and the details of the algorithms will be presented below.

4.1 APPLICABILITY OF REINFORCEMENT LEARNING

The problem of cache replacement policy is an almost perfect problem to be solve with

Reinforcement learning. First, the problem can be modeled as an MDP which is described

in the previous chapter. The MDP for cache replacement policy is defined to be partially

known. This means that most of the MDP is known, but the transition function P (s′|s, a)

is stochastic and not fully known. Because this is unknown, direct optimization techniques

cannot be applied. Instead a policy must be learned by repeatedly interacting with the

environment. This is the exact type of problem reinforcement learning was designed to

solve.

Secondly, cache replacement policy can be simulated and run many times. Current state-

of-the-art reinforcement learning algorithms are still quite sample inefficient. This means

that they require seeing interacting with an environment a large number of times before

they are able to achieve good policies [1]. Current state-of-the-art algorithms are only able

to perform well after millions of games [12, 13]. For the cache problem, data is accessed

through caches or databases millions of times per day throughout the internet. There are

many data access traces with thousands of data requests that exist in the world that can be

used to simulate a cache problem. It is even possible to create purely synthetic data that

mimics the access patterns of real data. All of this allows reinforcement learning algorithms

to interact with the cache environment enough to be effective at learning policies. This

ability to run many training steps allows state-of-the-art reinforcement learning approaches

to work in this setting.
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The following sections describe the reinforcement learning algorithms used in this the-

sis. The work examines value-based methods such as Double Deep Q-learning. It examines

versions of policy gradient algorithms such as Advantage Actor-Critic. The work also ex-

plores initializing these reinforcement learning approaches by using imitation learning such

as Generative Adversarial Imitation Learning.

4.2 DOUBLE DEEP Q-LEARNING

Double Deep Q-Learning (DDQN) is a value-based reinforcement learning algorithm that

uses the Q function as defined in Equation 2.6. The policy of the algorithm is based off

of the values returned by the Q function such that π(s) = argmaxaQ(s, a). The algorithm

uses a deep neural network to approximate the Q function. This is defined as Q(s, a; θ)

where the weights of the neural network are represented by the parameters θ. If the Q

function approximation provides accurate value predictions for all state-action pairs, then

the algorithm will behave optimally. For Q-learning based algorithm to behave optimally,

the Bellman equation described in Equation 4.1 should hold true for sequences following

s, a, r, s′.

Q(s, a) = E [r + γmaxa′Q(s′, a′)|s, a] (4.1)

Because of this property of optimal Q functions, the neural network is trained to make

Equation 4.1 as close to true as possible. To do this, the neural network is updated using

stochastic gradient descent on batches of sequences (s, a, r, s′) to minimize the loss value in

Equation 4.2. The sequences are sampled from a set of stored past experiences gathered

form interacting with the environment.

L(θ) = E
[
((r + γQ̂(s′,maxa′Q(s′, a′; θ); θ−))−Q(s, a; θ))2

]
(4.2)

The function Q̂(s, a; θ−) is called the target network for the algorithm and is used for sta-

bilizing training. This network is initialized to have the same parameters as the main Q

function. The main Q network is updated each step using gradient descent and then after a

constant number of step the target network is set to be equal to the main network again or
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θ− = θ

In this work, the Double Deep Q-Learning algorithm is used to predict the values of

removing each item in the current cache state. The input to the neural network is the state

of the cache based on Equations 3.2 and 3.3. The output of the neural network is a vector of

shape RC where C is the size of the cache. Each index of the output vector corresponds to

the value of removing that index from the cache given its current state. The full pseudo-code

for this equation can be seen in Algorithm 4.1.

This algorithm could be effective for solving the cache replacement policy because it

has been proven to effectively work with large state spaces [14]. Previous versions of Q-

learning struggled with large state spaces because it was hard to get an effective method to

approximate the Q function. However, deep neural networks have proven to be effective at

doing this. In this work, the state space is a reasonably large two-dimensional matrix. This

is comparable to some of the problems where deep Q-learning has proved to be effective.

Deep Q-learning has been effective taking images in directly as states. An image is similar

to the cache state history as it is again simply a large 2D matrix. Using the 2D matrix state

representation as input, the Deep Q-learning should be able to effectively find a good policy.

Algorithm 4.1 Double Deep Q-Learning with Experience Replay

Initialize experience replay D with capacity N
Initialize action-value function Q with random parameters θ
Initialize target action-value function Q̂ with random parameters θ− = θ
for episode = 1,M do

Initialize s0 to start state of cache
for t = 1,T do

With probability ε select a random action at
Otherwise select at = argmaxaQ(st, a; θ)
Execute action at and observe reward rt and st+1

Store transition (st, at, rt, st+1) in D
Sample random minibatch of transitions (sj, aj, rj, sj+1) in D

yj =

{
rj if sj+1 is terminal

rj + γQ̂(sj+1,maxa′Q(st+1, a
′; θ); θ−) if sj+1 is non-terminal

Perform a gradient descent step on (yj −Q(sj, aj, ; θ))
2 with respect to

parameters θ
Every C steps set Q̂ = Q

end for
end for
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4.3 ADVANTAGE ACTOR-CRITIC

Advantage Actor-Critic (A2C) is a policy gradient based reinforcement learning algorithm

[15]. This policy gradient algorithm is modeled as an actor-critic method meaning that it

directly optimizes the policy function, but it also approximates the value function. In this

work, a deep neural network is used to approximate the policy function defined in Equation

2.3. This neural network is defined as π(a|s; θπ) where θπ is the weights of the neural network.

The algorithm also approximates the value function as defined in Equation 2.4 using a deep

neural network defined as V (s; θv).

To train the policy function, the parameters θπ are updated using gradient descent to

directly maximize the expected reward E[R] from using those parameters. E[Rt] is defined

as the expected reward after timestep t as Rt =
∑T

i=t ri. Standard policy gradient algorithms

update the parameters θπ based on the value ∇θπ log(π(at|st; θπ)Rt which acts as an estimate

for ∇θπE[Rt]. This estimate is unbiased but tends to have high variance. To reduce variance,

the approximated value function V (s; θv) is used as a baseline. The value (Ri− V (si; θv)) is

the estimated advantage of taking action ai in terms of received reward compared predicted

value. to The final gradient update used is shown in Equation 4.3.

θπ ← θπ + α∇θπ log π(at|st; θπ)(Rt − V (st; θv)) (4.3)

Similar to Double Deep Q-learning, the value network is trained to minimize the mean

squared loss described in Equation 4.4.

L(θv) = (Rt − V (st; θv))
2 (4.4)

In this work, the policy network predicts the probability of which index of the cache should

be evicted given the current state of the cache. The pseudo-code for this A2C is formally

written in Algorithm 4.2.

The A2C algorithm should be able to excel in the MDP defined in this work. Policy

gradients tend to be able to perform quite well in areas involving large action spaces [16]. The

algorithm is directly learning to approximate the π(a|s; θπ) function. This is different from
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the previously seen Q-learning algorithm. By directly learning this function, the algorithm

should be able to perform better in larger action spaces. This can be quite useful here as

the action space for this problem is the size of the cache. The size of the cache can get quite

large and therefore it would be beneficial to use an algorithm that can handle such a large

action size. Similar to Deep Q-learning, A2C has proved to be able to handle large 2D input

matrices as state inputs [15]. While there are some more sample efficient algorithms, A2C

provides close to state-of-the-art performance for policy gradient algorithms.

Algorithm 4.2 Advantage Actor-Critic (A2C)

Initialize policy function π(a|s; θπ) with random parameters θπ
Initialize value function V (s; θv) with random parameters θv
Initialize T = 0
Initialize t = 0
repeat

Reset gradient: dθπ ← 0
Reset gradient: dθv ← 0
for episode = 1,K do

tstart = t
repeat

Perform action at according to policy π(a|s; θπ)
Receive reward rt and new state st+1

t← t+ 1
T ← T + 1

until st is terminal or t− tstart == tmax

R =

{
0 if st is terminal
V (st, θv) if st is non-terminal

for i ∈ {t− 1, ..., tstart} do
R← ri + γR
Accumulate gradients wrt θπ: dθπ ← dθπ +∇θπ log π(ai|si; θπ)(R− V (si; θv))

Accumulate gradients wrt θv: dθv ← dθv + ∂(R−V (si;θv))
2

∂θv
end for

end for
Perform update of θπ using dθπ
Perform update of θv using dθv

until T > Tmax
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4.4 IMITATION LEARNING FOR INITIALIZATION

In addition to simply using reinforcement learning, imitation learning was explored as a

way to initialize the neural networks prior to starting to train using reinforcement learning.

Imitation learning allows agents to learn to mimic an expert agent. By mimicking the

expert agent, the learning agent can achieve good performance that ideally is comparable to

the expert. Imitation learning can be applied to the cache replacement problem because the

perfect expert action can always be known if the entire trace of future data accesses is known.

Future data accesses are known in simulated environments when training the algorithms. In

the problem of cache replacement policy, an agent following Bélády’s algorithm, as defined

in Section 2.1.3, will always perform optimally. The issue is that Bélády’s algorithm is not

possible in practice because Bélády’s algorithm requires knowledge of future cache accesses.

However, imitation learning can be used to train an agent to mimic the actions of Bélády’s

algorithm on a training set of data accesses with the hope that it can perform similar to it

on a new set of data accesses.

A simple form of imitation learning is supervised learning using expert state-action pairs.

The policy network π(a|s; θπ) of A2C can be initialized by training it to correctly predict

the action the expert would take. The expert algorithm is run for a set of training examples.

The state-action pairs produced by this are saved. The policy network is then trained using

supervised learning and stochastic gradient descent to make the network predict the action

that the expert would take given the state. This is done by training the network to minimize

the log cross entropy loss described in Equation 4.5 [17]. In this equation, yi is the true label

that the expert action is action i and pi is the predicted probability that the expert action

is action i.

L(θπ) = −
∑

yi log (pi) (4.5)

After training using this supervised learning approach, the weights learned in this method

can be transfered to the policy network of the A2C algorithm. The normal A2C algorithm

can then be run to additionally train the agent.

Generative Adversarial Imitation Learning (GAIL) is a state-of-the-art imitation learning

algorithm [18]. GAIL trains an agent to mimic expert actions using the ideas from Generative
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Adversarial Networks (GAN) [19]. A discriminator function D(s, a) predicts if an action is

an expert action or the learning agent’s action. The discriminator is approximated with

D(s, a; θD). The goal is to have the discriminator be unable to distinguish expert actions

from agent actions. This discriminator is used to provide a reward to update the policy

function. If the discriminator thinks the actions are expert actions, the policy is updated

to take those actions more frequently. The discriminator is updated using binary cross

entropy loss and supervised learning of batches of state-action pairs. The original GAIL

paper updates the policy using a Trust Region Policy Optimization (TRPO) step [18, 15].

However, more recent work has shown that using Proximal Policy Optimization (PPO) is

more effective and simpler to implement [20]. In this work, the GAIL algorithm is run

using PPO to update the agent’s policy and is run using an actor-critic approach. PPO is

similar to A2C in that it is a policy gradient algorithm, but it instead does a proximal policy

gradient update. The update uses the ratio function defined in Equation 4.6.

rt(θπ) =
π(at|st; θπ)

π(at|st; θπold)
(4.6)

This ratio is then used to update the policy using the clipped policy gradient estimate defined

by Equation 4.7.

min(rt(θπ)At, clip(rt(θπ), 1− ε, 1 + ε)At) (4.7)

In this equation, At = log(D(st, at; θD))−V (st; θ
−
v ) which estimates the advantage for taking

action at. The equation here does not use any reward but is simply based off the prediction

of discriminator. The clip function keeps the ratio value between the other two constant

values for stability. The value function V (s; θv) is updated using the mean squared error

as described for the A2C algorithm. The entire pseudo-code for the algorithm is written in

Algorithm 4.3.

In this thesis, Bélády’s algorithm is run on a train set of data. The algorithm stores the

states and optimal actions taken. GAIL is run to train the agent to mimic the behavior of

the optimal algorithm on new data access traces. The learned policy and value networks can

then be used as an agent to behave in the cache environment. By itself, this could be used as

22



Algorithm 4.3 Generative Adversarial Imitation Learning (GAIL)

Input: Stored trajectories from expert policy: τE ∼ πE
Initialize discriminator function D(s, a; θD) with random parameters θD
Initialize policy function π(a|s; θπ) with random parameters θπ
Initialize target policy function π(a|s; θ−π ) with parameters θ−π = θπ
Initialize value function V (s; θv) with random parameters θv
Initialize target value function V (s; θ−v ) with parameters θ−v = θv
for m = 1,Episodes do

Sample trajectories from current policy τπ ∼ π(a|s; θπ)
Sample trajectories from expert policy τE ∼ πE
Update the discriminator D(s, a; θD) parameters θD following the gradient:

Eτπ [∇θD log(D(s, a; θD))] + EτE [∇θD log(1−D(s, a; θD))]

for n = 1, EpisodesPPO do
tstart = t
repeat

Perform action at according to policy π(a|s; θπ)
Receive new state st+1

t← t+ 1
until st is terminal or t− tstart == tmax
for j = tstart, t do

Compute rj(θπ) =
π(aj |sj ;θπ)
π(aj |sj ;θ−π )

Accumulate gradient for j with respect to θπ into dθπ using the gradient step:

min(rj(θπ)Aj, clip(rj(θπ), 1− ε, 1 + ε)Aj)

Where Aj = log(D(sj, aj; θD))− V (sj; θ
−
v )

Accumulate gradient for j with respect to θv into dθv using the loss:

(log(D(sj, aj; θD)− V (sj; θv))
2

end for
Perform update of θπ using dθπ
Perform update of θv using dθv

end for
θ−π ← θπ
θ−v ← θv

end for
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an agent. An additional step taken in this work is to have this trained agent be used as the

starting point for the A2C algorithm. This is done by taking the neural networks trained

in the GAIL setting and initializing the weights of the A2C networks to be these values.

This is different because the A2C networks are typically randomly initialized as described

in Algorithm 4.2. This provides a good initialization to be improved upon by A2C and can

be thought of as helping the algorithm find a good initial policy.

The GAIL algorithm should be effective here because it has been used successfully in

problems with large action spaces and complex input states. Many of the initial use cases

of the GAIL algorithm was working in continuous action spaces. Since it can work in

continuous action spaces, GAIL should be effective working in large discrete action spaces.

With abundant expert trajectories and large action space, the cache replacement policy

problem seems like an ideal problem to initially attempt to solve by mimicking Bélády’s

algorithm.
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CHAPTER 5: EXPERIMENTAL SETTINGS

The following chapter will detail the experiments run to evaluate the methods described in

the previous chapter. The details of the cache model, the training process, and the algorithm

parameters will be explained.

5.1 CACHE MODEL

Cache environments can be quite complex. In real-world settings, caches must handle

reading data and writing pieces of data from many different processes. Each piece of data

tends to have different sizes and data elements are commonly broken up into smaller pieces.

All of these factors can complicate cache performance. In the experiments of this thesis, a

simplified cache model is used to make evaluating the performance of the cache replacement

policy clearer.

The agents are run in a simplified simulated cache model. The cache model is a fixed size

cache that only deals with reading data and does not deal with writing data. Each piece of

data is assumed to have the same size. The cache size is therefore equal to the number of

elements that can fit in the cache. The simulated cache is implemented in Python and uses

a NumPy array for storage of data and history of information [21].

The cache state described in Equations 3.3 and Equation 3.2 is stored as a two-dimensional

NumPy array that is updated every data access. For the x placeholder values in the cache

history, a small positive value was used. This would give a slight positive signal similar to

when an item was accessed in the cache but would be far less important than an actual

index access. For all experiments, the value 1/H where H is the length of the cache history

was used for x. It was also explored using negative values such as -1, but this led to worse

performance.

In this simulation, each piece of data has the same size and takes up one index of the

cache. For example, a cache of size 10 will be able to hold exactly 10 items in the cache. In

this work, relatively small cache sizes are used for evaluation. The cache sizes evaluated are

25, 50, and 100. These cache sizes are small for real-world situations but allow for smaller
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scale evaluation and faster experimental run times. For the cache history length, a variety

of number were explored. History length of around 50 provided a good tradeoff between

enough information and reasonable run time so that the state did not become too large.

This is the number that was explored in experiments.

5.2 SIMULATED DATA

The cache is evaluated on simulated data access patterns. Each trace is an ordered list of

data accesses. Each access represents the next piece of data requested from the database.

Each piece of data is simply an integer number. The data is generated following a Zipf

distribution. The Zipf distribution is defined following the probability density function

shown in Equation 5.1 [22].

p(x) =
x−α

ζ(α)
where ζ(y) =

∞∑
n=0

1

ny
(5.1)

In the above equation, α is a parameter and ζ is the Riemann zeta function. This distribution

results in the frequency of a data item being inversely-proportional to the rank of the item

where ranking is based off how frequently it occurs. For example, the nth most common

piece of data occurs with frequency proportional to 1
n
.

This is chosen because database access patterns tend to follow a Zipf-like distribution

[23, 22]. While it is not the same as the Zipf Law, accesses do generally tend to follow

a pattern similar to the Zipf distribution. In this work, the α parameters for the Zipf

distribution is chosen to be 1.15 and 1.3. These two α values are chosen because they

provide two different data distributions that are reasonably challenging for the cache model

described.

5.3 TRAINING AND EVALUATION

The algorithms were trained on a set of 2000 cache traces each having 1000 data accesses

in them. The algorithms learned on these 2000 training traces while being evaluated on

100 separate evaluation traces. Training continued until performance on the evaluation set
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stopped improving. Finally, the performance was tested on a set of 1000 distinct testing

traces. The algorithm’s performance was then compared to baseline implementations of

LFU, LRU, and random replacement policies using the same cache state information. For

imitation learning algorithms, another set of 500 training traces was used to generate expert

actions based on the optimal algorithm. This set of optimal state-action pairs were then

used in the supervised learning or GAIL algorithms.

To run the training and testing process, this work made use of the Illinois Campus Cluster,

a computing resource that is operated by the Illinois Campus Cluster Program (ICCP) in

conjunction with the National Center for Supercomputing Applications (NCSA) and which

is supported by funds from the University of Illinois at Urbana-Champaign.

5.4 NEURAL NETWORK ARCHITECTURES AND PARAMETERS

All the algorithms described in the chapter on algorithms use neural networks as function

approximators. These algorithms are implemented using the python deep neural network

library called Pytorch [24]. This library provides an easy way to implement neural networks

for testing and provides methods for automatic backpropagation.

Most neural networks take the cache state matrix as input and output a value for each

possible action. Given the input state matrix, a value is output for each index of the cache

that indicates if that element of the cache should be removed. Initially, each row of the

cache history was only used in predicting the value of removing the item at that row in the

cache history. For example, the access history of the element at the first index is only used

to predict if the element at the first index should be removed. This makes logical sense

because the value of a row is only dependent on the access history of that row. The other

rows of the access histories should not impact the value of that index. Therefore, networks

using structures similar to the one shown in Figure 5.1 were initially used.

However, neural networks that used all the data in the cache state to predict all the values

in the action space were also explored. While this might not be as intuitive, this provides

the neural network with additional information and possible input combinations to perform

better. This ended up leading to better performance and therefore architectures similar to
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Figure 5.1: Neural network architecture that keeps each cache history separate. The cache
history in the orange row is only used to predict the value from the action at that index in
orange.

the one shown in Figure 5.2 were used for achieving the best performance.

Different neural network architectures were explored for all algorithms. The most suc-

cessful networks tended to be simple feed forward networks. Convolutional networks were

explored, but they did not perform as well.

The below subsections will detail the best network architectures used and the parameters

used for training them for each algorithm.

5.4.1 Double Deep Q-Learning

The Double Deep Q-learning algorithm uses two neural networks that each estimate the

value function Q(s, a). The two networks are the current network and the target network.

Both have the same architecture. The architecture used in this work is a simple feed forward

network. The input to the network is the two dimension matrix of the cache state history

as described in Equation 3.3. This input state is flattened to a vector of length (CH) where

C is cache size and H is history length. The network has 2 hidden fully connected layers

each respectively with size 2CH and CH. All layers except for the output layer use the
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Figure 5.2: Neural network architecture that combines all cache histories. The value for the
orange row is predicted using all the rows in the cache history including the blue rows.

ReLU activation function. The final output size is C with one value for each possible action.

The output value is the predicted value for Q(s, a) for the given state and the corresponding

index.

The replay memory for holding experience tuples is initialized to have size 10000. For the

training algorithm, the neural network is updated using the Adam optimizer. The batch

size for each update is 128. The learning rate starts at 0.001 and decreases in half every 200

episodes. The algorithm follows an ε-greedy exploration policy with ε set to 0.05 to start and

decreases in half every 200 episodes. The target network is updated every 10000 updates. γ

value of 0.99 was used.

5.4.2 A2C

A2C has two neural networks. One network estimates the policy function π(a|s; θπ) and

the other estimates the value function V (s; θv). The policy function takes a state value and

outputs the probabilities of taking each action. The input is the flattened state of size CH.

The network is a fully connected network with 3 hidden layers. The hidden layers have

size CH/4, CH/8, and CH/16. The output layer has size C. The activation function of
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all layers except for the output layer is ReLU. The final layer activation is a SoftMax layer

to convert the logits into probabilities. The neural network for the value function takes a

state as inputs and gives the value of being in that state or one scalar output. The neural

network follows the same structure as that described in the policy function except the final

output layer size is 1. It also does not use a SoftMax layer at the end because it should

output a scalar value and not a probability. In some works, the value and policy networks

are combined into one network with two separate output layers. In this work, two separate

networks seemed to perform better and therefore separate networks were used.

The algorithm is run for until each data access trace is completed. After 4 access traces

or episodes, the cumulative rewards are computed, and the value and policy networks are

updated based on the algorithm rules. The Adam optimizer is used with learning rate

starting at 0.05 and decreasing by half every 200 episodes. γ is set to 0.99.

5.4.3 GAIL

GAIL uses 5 neural networks in the implementation in this work. The three functions

to be approximated are the policy function π(a|s; θπ), the value function V (s; θv), and the

discriminator function D(s, a; θD). Both the policy and value functions also have target

functions so there are 5 total networks. The policy and value functions follow the same

format as the A2C algorithm.

The discriminator is different. The discriminator takes the state of the cache and an

action as input. The state is flattened similar to the previous algorithms. The action is

converted to a one-hot vector. The state and the one-hot vector are concatenated together

to form the input to the neural network. The network has 3 hidden layers each using a ReLU

activation function. The input size is CH+C for the combination of state and one-hot action

representation. The hidden layers have size CH/4, CH/8, and CH/16. The output layer is

a single value and the activation function is the sigmoid function to make the value between

0 and 1. The output of this function is the probability that the action taken in the given

state is the expert action.

The Adam optimizer is used to update the policy function, the value function, and the
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discriminator. The policy, value, and discriminator functions are updated every rollout.

The discriminator is updated using the state-action pairs from the rollout and an equivalent

number of state-action pairs sampled from expert behavior. The expert actions are gathered

from running Bélády’s algorithm on a set of 500 data access traces from the training set.

The agent is then trained on the 2000. After 5 updates, the target policy function and the

target value function are updated to the current policy and value functions.

5.4.4 Imitation Learning for Initialization

In addition to directly using imitation learning algorithms, the algorithms were used to

intialize reinforcement learning algorithms. Two imitation learning techniques were used to

train neural networks whose weights would then be used to initialize the neural networks of

the A2C algorithms.

First, supervised learning was used to initialize the policy network for A2C. The policy

network was trained to predict the expert action from a set of state-action pairs from Bélády’s

algorithm. This dataset was generated from saving state-action pairs from 500 cache traces

and resulted in about 250 thousand expert state-action pairs. This was split into a training

and validation set. Using Adam optimizer and cross entropy loss, the network was trained for

25 epochs with a learning rate of 0.001. This trained network was then used as initialization

for A2C policy network. After using this initialization, the standard training procedure was

run.

Second, GAIL was used as initialization for the policy and value networks for the A2C

algorithm. The training procedure for GAIL was used as described above. After GAIL

completed training, the weights of the neural networks for the policy and value networks

were saved and then used to initialize the equivalent networks in the A2C algorithm.
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CHAPTER 6: RESULTS

The following section will detail the results of the methods and experiments described in

the previous chapters. In the experiments, reinforcement learning algorithms and imitation

learning algorithms were tested on a variety of different cache and data settings. The al-

gorithms were examined on different cache sizes including 25, 50, and 100. They were also

examined on two different data access patterns including Zipf with α = 1.3 and α = 1.15. In

almost all of the settings, algorithms were able to achieve cache hit ratios that were higher

than the baselines.

6.1 PERFORMANCE OF ALGORITHMS

The below section describes the performance of the different algorithms and shows how

their training process progressed. For each algorithm, there is a training curve graph showing

information about the performance of the algorithm such as Figures 6.1, 6.2, and 6.3. For

these figures, the unit of the x-axis is an episode where each episode is one data trace from

the training set. The y-axis shows the hit ratio. The blue line is the cumulative running

average hit ratio on training set up until that episode. The orange line is the hit ratio of the

algorithm on the evaluation set. The horizontal lines show that performance on the final

testing set. The red horizontal line is the performance of the algorithm on the test set. The

green line shows the optimal cache hit ratio possible obtained using Bélády’s algorithm on

the test set. The other lines show the LFU, LRU, and random policy performance on the

test set.

Double Deep Q-learning resulted in the worst performance of the reinforcement learning

algorithms explored. The algorithm was able to achieve performance better than random

and improved over time but did not achieve results better than baseline algorithms in most

settings. A variety of different network architectures and learning parameters were explored,

but performance would not converge to a hit ratio higher than the baselines. An example

training curve for the algorithm is shown in Figure 6.1. The algorithm’s training performance

begins right around the expected performance of a random cache policy. This is to be
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Figure 6.1: Training curve for Double Deep Q-learning using cache size 50 and Zipf distri-
bution with α = 1.3.

expected as the neural networks are randomly initialized. After a few training episodes, the

algorithm’s performance begins to improve. It quickly moves above the random performance

and is clearly learning a better policy that improves cache hit ratio. The performance of

the algorithm begins to converge after around 250 episodes where each episode is one data

access trace from the training set. The algorithm converges to about the performance level

of LRU in this setting and is unable to improve past this hit ratio.

Advantage Actor-Critic is able to learn a good policy that is able to outperform the results

achieved by the previous value-based approach. The algorithm is even able learn policies

that achieve higher hit ratios than those achieved by the LRU and LFU baselines. A training

curve for the performance of the algorithm is shown in Figure 6.2. This curve looks rather

similar to the training curve of DDQN but has some important differences. The algorithm’s

training performance begins around random performance and even slightly below. After a

few episodes, the training hit ratio increases quickly. After around 300 episodes, the training

and validation cache hit ratios are about as good as the best baseline algorithm. This is

different than DDQN because it was never able to achieve hit ratio this high. Over the next

1000 episodes, the algorithm gradually increases training hit ratio, and validation hit ratio
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Figure 6.2: Training curve for A2C algorithm using cache size 50 and Zipf distribution with
α = 1.3. See Figure 6.1 for explanation of all lines.

improves slightly. The final testing hit ratio of the A2C algorithm is above both the LFU

and LRU algorithms. However, there is still a significant gap between the achieved hit ratio

and the optimal possible hit ratio.

The third main algorithm explored was the GAIL algorithm which trained the agent to

mimic the behavior of the optimal actions derived from Bélády’s algorithm. The algorithm

achieved good results and produced performance better than LFU and LRU. However, it was

not able to perform better than A2C. An example training curve and performance are shown

in Figure 6.3. This training curve shows slightly different trends than the other previous

training curves. The training performance again begins around random, but this time the

algorithm improves performance more slowly. The training hit ratio gradually increases to

around the baselines. The validation hit ratio takes around 500 episodes for it to converge to

a level above the LFU and LRU baselines. This difference in training curve is most likely due

to the algorithm doing imitation learning instead of reinforcement learning. The algorithm

is learning to mimic an expert instead of learning form rewards. Additionally, this algorithm

uses five neural networks compared to the two used by the other algorithms, so it makes

sense for it to take more time to converge.
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Figure 6.3: Training curve for GAIL algorithm using cache size 50 and Zipf distribution with
α = 1.3.

6.2 IMPACT OF INITIALIZATION

Over the course of trying these experiments, it became clear that initialization of the neural

networks had significant impact on the performance of the algorithms. If the neural network’s

random initialization was poor, the end performance of the algorithm would be much lower

than the performance of the same algorithm with a good initialization. An example of this

problem is shown in Figure 6.4. Therefore, to provide good initialization, both supervised

learning and GAIL algorithms were used to initialize networks for reinforcement learning.

Supervised learning was not able to provide great initialization for the neural networks.

After training on a set of supervised data, this algorithm was able to predict what action

the expert agent would take most of the time, but it was not accurate enough to have good

performance. For example, Figure 6.5 shows the training curve for using for a cache of size 50

with Zipf distribution with α = 1.3. This training curve shows the neural network’s accuracy

for predicting the expert action given the input state. This curved was obtained using a

training set of around 250 thousand state action pairs retrieved from expert actions taken by

Bélády’s algorithm. A validation set of around 25 thousand examples were kept separate to

evaluate performance. The supervised learning approach was only able to achieve around 78
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(a) Good Initialization (b) Bad Initialization

Figure 6.4: Comparison of performance of two different random initializations for neural
networks. Bad initialization can lead to dramatically lower final performance.

percent accuracy on the validation set. Different neural network architectures and methods

were unable to achieve higher validation accuracies than this. It was possible to achieve

higher training accuracies, but this would lead to overfitting and the validation accuracy

would decrease. This accuracy was far better than randomly guessing which action to take.

However, it was unable achieve good performance when running the learned policy as the

caches replacement policy. When using this neural network as initialization, the agent’s

testing hit ratio tended to be lower than if the agent had a random initialization.

GAIL provided a better method for learning to mimic the expert actions and provided

a good initialization for the A2C algorithm. Initially, the agent was trained to mimic the

behavior of the expert agent following Bélády’s algorithm. This resulted in good performance

that was a bit higher than the baseline methods even before additional training as shown in

6.3. The weights learned in GAIL were then transferred to the be the weights of the A2C

policy and value networks. The A2C algorithm was then run and trained. This resulted in

performance that was consistently around the peak hit ratio and in some situations performed

better than standard A2C. An example training curve is shown in Figure 6.6. The figure

shows that the algorithm clearly starts with higher performance than random initialization

and continues to improve slightly from there. The GAIL algorithm is most likely able

to provide better initialization to the A2C algorithm because it is better able to mimic

the distribution of action taken by the expert. Instead of simply trying to predict the

correct action based on supervised examples, GAIL attempts to take actions that follow
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Figure 6.5: Training curve for supervised learning with cache size 50 and Zipf distribution
with α = 1.3.

a distribution that cannot be distinguished from the actions of the expert. This proved

to be able to generalize better than supervised learning and provides a consistently good

initialization for A2C.

6.3 DISCUSSION OF NUMERICAL RESULTS

This section contains a more detailed numerical set of results for each algorithm on a

number of different cache sizes and access pattern distributions. A table of all final testing

performance for the algorithms is shown in Table 6.1. These results are discussed, and

intuition is given as to why these results occurred.

Looking at the baselines and Bélády’s algorithm, there are some clear trends in perfor-

mance based on cache size and Zipf distribution. Obviously, random cache policy has the

lowest hit ratios in all settings and Bélády’s algorithm has the highest. As cache size gets

larger, cache hit ratio gets higher. This makes logical sense because as the cache gets larger

more items can be in the cache making the likelihood of have an element in the cache larger.

Similarly, the larger the α in the Zipf distribution, the larger the cache hit ratio. If the α

value is larger, the frequency of each data item increases. This also makes the cache hit ratio

higher because if elements are accessed frequently, they are more likely to already be in the
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Figure 6.6: Training curve for A2C algorithm after being initialized using the GAIL algo-
rithm. Trained with cache size 50 and Zipf distribution with α = 1.3.

cache from the last access.

Another trend that the data shows is that as the cache size gets larger, the performance

of the random policy gets closer to the performance of baseline algorithms and the optimal

policy. For example, the random cache policy is much closer to LRU, LFU, or optimal policy

when cache size is 100 compared to when the cache size is 25. This is caused because as the

cache gets larger, it is easier to have more relevant data items in the cache purely because

it is larger.

The data also shows that Bélády’s algorithm does not increase performance significantly

when larger cache sizes are used. For example, from cache size 50 to cache size 100 with

α = 1.3, the hit ratio only goes up 0.002. Some cache misses simply cannot be avoided.

For example, if a data item is only accessed once, it will always result in a cache miss.

Additionally, if an item is only accessed a few times and there are many accesses in between

repetitions, it will be quite challenging to avoid a cache miss on later accesses. This is clearly

evident with the optimal algorithm because even though the cache doubles in size it is barely

able to improve performance.

Double Deep Q-learning did not perform great and resulted in mediocre performance in
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α 1.30 1.15
Cache Size 25 50 100 25 50 100
Random 0.49320 0.58118 0.64287 0.23858 0.29520 0.36159
LRU 0.54253 0.61180 0.66307 0.28263 0.33612 0.38473
LFU 0.55687 0.62183 0.67152 0.29010 0.34721 0.39424
DDQN 0.54524 0.61057 0.67259 0.26520 0.33259 0.39516
A2C 0.56143 0.62912 0.68547 0.28594 0.34782 0.40533
A2C (GAIL Init.) 0.56029 0.63201 0.68124 0.28417 0.35103 0.39826
A2C (Supervised Init.) 0.54732 0.60913 0.65391 0.26934 0.33734 0.39151
GAIL 0.5411 0.62867 0.67718 0.28260 0.34163 0.40349
Supervised Learning 0.50231 0.57293 0.63343 0.25632 0.28494 0.36267
Bélády’s algorithm 0.68215 0.71879 0.72075 0.44219 0.47475 0.47794

Table 6.1: Table of results showing a comparison of different algorithm’s performance on
different cache sizes and data distributions. The numbers are the hit ratios on the test set
and the bold number shows the best performing algorithm in terms of hit ratio.

most settings. It typically was not able to outperform the baseline algorithms and resulted

in lower cache hit ratios than LRU and LFU. It was clearly able to outperform the random

cache replacement which shows that it was able to learn a a method better than simply

random. In most settings, it performed similarly to baselines but typically a bit lower. This

could be due to the somewhat large action space. Deep Q-learning methods have excelled in

large state spaces, but relatively small actions spaces. For example, many Atari games have

only couple possible actions. In this case, there are between 25 and 100 actions. Since Deep

Q-learning attempts to model the Q(s, a) function, this larger action space could make it

challenging for the algorithm to achieve high performance.

For imitation learning, the numbers generally show that GAIL provided good performance

while supervised learning imitation was ineffective. For supervised learning, the performance

of the algorithm was typically close to random and rarely close to performing as well as the

baselines. For α = 1.3 and cache size 50 or 100, the algorithm performs worse than random.

Clearly, attempting to directly copy actions does not generalize well and was not an effective

way to learn a replacement policy. Without being able to directly copy the actions perfectly,

the supervised learning approach cannot perform well and leads to it taking worse actions

than random.

On the other hand, GAIL performs quite well. GAIL always achieves higher hit ratios
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than random policies and commonly outperforms LRU and LFU. For α = 1.3 with cache

50 and 100, GAIL performs better than any baselines. Similarly, for α = 1.15 and cache

size 100, GAIL outperforms the baselines by a significant amount. This shows that learning

directly from the actions of an expert without receiving any reward function can be used to

improve cache performance. GAIL is able to perform better with larger cache sizes which

indicates that with more complexity it is able to perform better relative to baselines. This

could indicate that with larger action sizes it is able to get closer to mimicking the expert or

close enough that the performance is good. GAIL has been shown to be effective to perform

in large or continuous action spaces and this environment would be another situation where

it can perform well with more action choices.

Across most environments, the A2C algorithm was the best performing algorithm and was

able to beat the performance of the baseline algorithms. With α = 1.3 and some sort of

initialization, A2C was as able to outperform the baseline algorithms when cache size was 25,

50, and 100. With α = 1.15 and some sort of initialization, A2C was able to outperform the

baseline algorithms when cache size was 50 and 100. The trend in the performance of A2C

shows that generally as the cache size gets larger, A2C performs better than the baseline

methods by greater margins. When the cache size is 25, A2C only outperforms LFU slightly

when α = 1.3 and performs worse than LRU when α = 1.15. However, cache size is 100, A2C

is able to outperform baselines by over 0.01 when α = 1.3 and when α = 1.15. This seems to

indicate that as the cache size gets larger, the algorithm is able to improve more significantly

compared to baselines. A2C is a policy gradient algorithm. This means it directly learns the

policy function π(a|s) instead of learning the Q(s, a) function. Removing this intermediate

learning allows the algorithm to more directly optimize the policy and do better with larger

action spaces. The larger cache size gives the agent access to more possible actions and

choices when following a cache policy. This increase allows the agent to learn more effective

policies. When the cache size is smaller, A2C has a harder time learning optimal behavior

because there are fewer actions and there is less room for small mistakes. However, A2C

improves more when cache size increases from 25 to 50 than when cache size increases from

50 to 100. For α = 1.3, A2C performs around 0.07 better when cache size is 50 compared

to 25. A2C only performs around 0.05 better for cache size 100 compared to 50. This can
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be attributed to the unavoidable cache misses that occur even with larger cache sizes.

For initialization, A2C can be slightly improved with GAIL initialization. For both α

values, using GAIL initialization improved performance when cache size was equal to 50.

This seems to indicate that training, based off an expert, leads to a policy that is effective

in these settings. After this, the policy is able to be marginally improve by continuing to

train using the rewards from the environment. In other settings, the GAIL initialization

lead to comparable or slightly lower performance of A2C. This could indicate that the policy

learned by GAIL was different than the optimal policy learned by A2C. Therefore, when

A2C started to train it could have trouble as GAIL had already initialized the network in

a way that was not helpful for A2C or lead to a local minimum. Supervised learning was

ineffective for initialization. Supervised learning caused A2C to perform worse in all settings.

Since supervised learning performs worse than random on its own, it makes sense for A2C

to be negatively impacted by supervised initialization.

Overall, algorithms presented here are able to outperform the baselines policies. In a range

of settings, the A2C method can outperform LFU and LRU. However, the hit ratios are not

dramatically higher than the baseline performances. The performance of the algorithms is

still a good bit lower than the performance of the optimal policy. However, this is somewhat

to be expected as the optimal algorithm can only achieve these hit ratios by seeing future

access patterns. It is infeasible to expect cache replacement policies to be able to achieve

results overly close to the optimal. Another important aspect to consider here is training

time. These results were achieved after a significant number of training exercises. This

indicates that it could be difficult to use these algorithms in an online setting. In an online

setting, the algorithms would have to learn the optimal cache policy while running. This

could lead to a significant amount of time where the algorithms are not performing well.

However, even though this online method might not be effective, these algorithms can be

used in other situations well. Caching systems can store past data access patterns. Then,

in an offline setting, these algorithms can be trained to perform well on these traces. After

training on these traces, the algorithms should be able to outperform the baselines in new

unseen data access patterns if the underlying pattern of the accesses is similar. Having

similar access patterns is quite common in databases or applications that run similar or
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repetitive jobs. Using these algorithms trained on these specific data patterns, could lead

to significant performance increase in terms of cache hit rate. Increasing the cache hit ratio

could greatly improve overall cache performance and improve run time of applications.
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CHAPTER 7: RELATED WORK

Improving cache replacement policy has been explored in several different works and has

been approached in a number of different ways. This area of research has been popular

because cache performance has a significant impact on many areas of computing. Due to

the recent improvements of machine learning, many approaches have explored using learning-

based approaches to improve cache replacement policies. In this section, related approaches

will be explored and compared to the work presented here.

7.1 MACHINE LEARNING APPROACHES

For several years, learning-based approaches have been used to determine cache policy.

One category of these works has used adaptive cache replacement policies. These are ap-

proaches that mostly use standard heuristic-based replacement policies but have some sort of

mechanism to change the replacement policy in different situations. Adaptive Replacement

Cache (ARC) uses an adaptive approach to balance the importance of both LRU and LFU

replacement policies [25]. If LRU is performing better than LFU, then an LRU approach is

used more frequently than the LRU approach. If the LFU starts performing better, it will

be used more. This builds on other works describing the spectrum of policies made up of

combinations of LRU and LFU [11]. Another approach called Adaptive Caching Using Mul-

tiple Expert (ACME) uses machine learning to decide how to weight a number of different

expert static replacement policies [26]. This algorithm has a pool of cache policies that it

runs simultaneously. Each policy is given a weight that is updated based on if following that

policy would have resulted in more cache hits or misses. The action chosen is then based off

the combination of weights of these static methods.

Supervised learning approaches have also been used to approximate cache replacement

policies. Neural networks have been trained on real-world data to predict if an piece of data

will be requested again [6, 27]. The real-world memory access traces are labeled to indicate

whether each piece of data will be accessed in the future. The neural network takes in input

about the cached item such as frequency and recency of use and predicts if the item will be
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accessed again. Using the neural network, objects are removed if they are not predicted to be

reused. Similarly, other non-linear and linear classifiers have been used in similar methods

as described above [5].

7.2 REINFORCEMENT LEARNING APPROACHES

Reinforcement learning approaches have also been explored relating to cache policy. Go-

ing back a few years, reinforcement learning has been applied to memory management for

improving performance [28]. The work uses an older tabular version of Q-learning to im-

prove memory scheduling and processing speed. Another work models the problem of cache

policy as a multiarmed bandit problem [29]. A multiarmed bandit problem is a common

version of a reinforcement learning problem where an agent must choose which level to pull

at each timestep to maximize reward. The work explores a few older reinforcement learning

approaches to solve this problem. Another work used reinforcement learning to learn the

popularity distribution of content requests [30].

Recent work has even examined using deep reinforcement learning for content caching.

One such work used a version of actor-critic methods to perform content based cache re-

placement policy [31]. This work uses a similar deep reinforcement learning approach as to

the work in this thesis but uses a different state representation of the cache. Each piece of

data accessed is assigned a content ID and this is used to derive the state representation.

The work uses a deep neural network to approximate the policy function.

7.3 COMPARISON

The work presented in this thesis is different from the previous work described and shows

more promise than other techniques. First, when compared to static methods such as LRU

and LFU, the work presented here has been shown to outperform them in a reasonable

number of settings and tends to perform better as cache size gets larger.

When compared to adaptive cache policy techniques, the reinforcement learning ap-

proaches presented here can learn much more complex learning policies. These adaptive
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approaches are only able to learn simple combinations and mixtures of standard heuristic

policies. This limits the performance that can be achieved using these approaches. The ap-

proach here can learn almost any possible policy based on the state inputs. Additionally, the

learning algorithm here can be changed dramatically to fit more diverse data distributions.

When comparing with supervised learning approaches, the reinforcement learning ap-

proach presented here is far better able to learn long-term importance of decision making.

The approach described in this thesis is modeled as an MDP to maximize cumulative re-

ward. The reward function encourages reducing the number of cache misses and encourages

maximizing the long-term cache hit ratio. Supervised learning approaches struggle to model

the long-term dependencies of cache replacement decisions and only considered the short-

term choice. This is shown in this work by the performance of the supervised learning

algorithm used as initialization. The choices it learned were not productive in terms of

improving performance. Reinforcement learning is much better suited to solve this problem

than supervised learning.

The most direct comparison to make with this work is to other reinforcement learning

approaches. Older reinforcement learning approaches did not use dramatically effective

function approximation techniques. The older approaches did not use neural networks which

prevent the algorithm from being able to learn overly complex state spaces and larger action

spaces. The deep learning approach used in this thesis enables the algorithm to use large

state inputs and large action sizes. Other deep reinforcement learning approaches applied to

cache replacement learning use different state representations and define the Markov Decision

Process differently. The state defined in this work is better than those described in other

works because it is purely index-based and quite expressive. The state of the cache never

depends on the content in the cache and only about the access histories of each index in the

cache. This means that even if the algorithm is run on different sets of data, it will be able

to perform well if the underlying access pattern is similar. Using this purely index-based

representation, it is able to achieve comparable performance to other deep reinforcement

learning approaches. Additionally, the state described in this work allows any combination

of policies such as LRU and LFU because the state is very expressive. The algorithm can

learn complex trends in the correlation of accesses.
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Additionally, the use of imitation learning following the optimal policy is a novel idea

that shows promise for helping initialize complex neural networks. Previous works have not

explored the use of Bélády’s algorithm as an expert to learn from using neural networks

[32]. GAIL is a state-of-the-art technique that had not been previously applied to cache

replacement policy. This algorithm has shown to be able to perform well in settings and

rival reinforcement learning approaches.
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CHAPTER 8: CONCLUSION

In this thesis, reinforcement learning is used to attempt to improve cache replacement

policy. The problem of cache replacement policy is presented as a partially known Markov

decision process. This work presents a novel state representation for the cache. The cache

state is represented as a history of index cache accesses. The state does not consider the

content in the cache and simply is based on the history of access at each index of the cache.

Using this new state representation, recent state-of-the-art deep reinforcement learning

algorithms were explored to find optimal policies to solve this problem. Several approaches

were used including value-based algorithms such as Double Deep Q-learning and policy

gradient based algorithms such as Advantage Actor-Critic.

In addition to reinforcement learning, imitation learning was used as a novel approach

to improve initialization of standard reinforcement learning algorithms. The clairvoyant

Bélády’s algorithm was used as an expert agent for algorithms to attempt to mimic and

achieve higher performance. For imitation learning algorithms, supervised learning and the

Generative Adversarial Imitation Learning algorithm were used to mimic this expert agent.

These algorithms were directly explored and used as initialization for reinforcement learning

algorithms

The proposed methods were then tested in simulated environments. A simple cache model

was implemented to test performance of these algorithms on improving cache hit ratio.

Simulated data access patterns were generated following the Zipf distribution to mimic real

data and test performance of these algorithms. As a point of comparison, the algorithms

were compared to baseline cache replacement algorithms such as least frequently used and

least recently used. The results show that in most settings the algorithms are able to achieve

performance comparable or better than the baseline methods. The Advantage Actor-Critic

algorithm was able to consistently outperform the baseline methods in terms of cache hit

ratio in a variety of experimental settings. The imitation learning algorithms were somewhat

effective in mimicking the optimal algorithm and acting as initialization for reinforcement

learning algorithms.

Based on the results in this work, these algorithms can be applied to current caching sys-
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tems. In databases with consistent data distributions, the algorithms and methods described

in this work can be used to train policies that outperform currently used heuristic-based

cache replacement policies. After training these algorithms in an offline setting, the algo-

rithms could be used as cache replacement policies that improve cache hit ratio and therefore

improve overall cache performance. This result could be quite beneficial as improving cache

performance could have significant impact on a wide range of applications such as speeding

up web traffic and reducing database access times.

For future work, the algorithms and approaches described here should be extended and

explored in real database cache systems. The experimental process in this work used a simu-

lated and simplified cache model. The model was meant to simulate the real-world problems

as much as possible, but performance should be explored in real-world settings. The al-

gorithms seem to show greater performance relative to baselines as the problem gets more

complex. Additionally, the index-based cache representation and neural network approxi-

mators should facilitate effective scalability to large scale cache problems with complicated

data access patterns. These two factors seem to indicate that with further exploration on

more challenging cache problems, the work presented here could provide even better results.
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