
c© 2018 Dong Hun Lee

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/186334927?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A NODE-BASED APPROACH TO CHARM-FFT

BY

DONG HUN LEE

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2018

Urbana, Illinois

Adviser:

Professor Laximikant V. Kalé

Abstract

Parallel 3D Fast Fourier Transform is a communication intensive algorithm that suffers

from the unignorable communication overhead. Because the interconnect communication

bandwidth is a static component, adjustments to reduce or hide the necessary communication

overheads are performed to obtain the optimal performance with a FFT grid in a given

environment. In this thesis, an alternative method to an existing Parallel 3D FFT library was

explored. The FFT library, Charm-FFT empowered by Charm++, was redesigned to utilize

larger number of nodes while aiming to reduce the number of necessary communications

between its components during its computations. Instead of decomposing the input FFT

grid into the fine-grained objects that are distributed to the available PEs, coarser-grained

decomposition method that only distributes to the available nodes was applied. As there

are less number of receivers that each decomposed object communicates during the state

transposition, the overall number of communication is reduced at the cost of parallelism

from using the finer decomposition method. This loss of parallelism is attempted to be

mitigated by applying within-node parallelism using multi-threading or accelerators. Lastly,

to maintain the usability of the modified library when multiple FFT grid computations

are needed with given resource, each FFT grid is assigned to a subset of the resource to

compute and communicate only within its subset rather than to use all resource for each

grid’s computation.

ii

Acknowledgments

I would like to thank my advisor, Professor Laximikant V. Kalé, for the opportunity and

guidance in pursuing this thesis. I would also like to express my appreciation to the group

members at the Parallel Programming Lab for their unconditional help, especially Raghaven-

dra Kanakagiri who continuously provided constructive feedbacks during our countless dis-

cussions throughout my research. Lastly, being a part of PPL during my time at UIUC has

truly been an invaluable experience.

iii

Table of Contents

Chapter 1 Introduction . 1

Chapter 2 Charm-FFT . 4
2.1 Charm-FFT Implementation . 4
2.2 Charm-FFT Performance . 6

Chapter 3 Charm-NodeFFT . 8
3.1 Overview . 8
3.2 Modification Detail . 9
3.3 Performance Analysis of Charm-NodeFFT 11

Chapter 4 Accelerator Usage for FFT Operations 21
4.1 Modifications to Charm-NodeFFT . 22
4.2 Performance . 22

Chapter 5 Multi-Instance FFT . 27
5.1 Modifications to Charm-NodeFFT . 27
5.2 Performance . 28

Chapter 6 Conclusion . 32

References . 34

iv

Chapter 1: Introduction

Fast Fourier Transform (FFT) is a widely used algorithm with its usage in numerous areas

in scientific computing, ranging from digital signal processing to molecular dynamics and sim-

ulations. It is designed to compute discrete Fourier transform in relatively lower complexity,

and numerous libraries have expanded the methods to implement FFT operations to com-

pute multi-dimensional transforms, some in parallel. In a typical parallel three-dimensional

FFT (3D-FFT) algorithm, two types of domain decompositions exist for the parallelization

method on distributed-memory systems. First is a 1D domain decomposition, which is of-

ten called slab decomposition. In this method, the application domain is divided into 2D

slabs that are distributed to the available processors. Each processor performs a sequential

2D-FFT operation on its slab. Then, a global transpose is taken place after all processors

complete their FFT steps. After the transpose, sequential 1D FFTs are performed on the

last dimension to complete the parallel 3D FFT [1]. Another partitioning method is to

divide the application domain into 2D decomposition, which is commonly known as pencil

decomposition. For the 2D decomposition method that computes a single 3D FFT grid, two

global transpositions are needed between the three states, Z, Y, and X states. Each pencil

objects per state consists of a buffer that represents multiple rows of the FFT domain with

points along the dimension that it is set to perform 1D sequential FFT operation on [1].

Due to the efficiency and organization it provides to complete discrete Fourier transform,

FFTs have been integrated and optimized to many different libraries, one of which is Charm-

FFT. Charm-FFT [2] is a Charm++ library that computes parallel three dimensional Faster

Fourier Transform. Charm++ is an object-based message-driven parallel programming sys-

tem that decomposes an application’s domain into asynchronously executing units called

chares [3]. In Charm++, the user may break down a problem into a desired decomposition

granularity by creating any number of chares that can be mapped to available processing

elements (PEs). The created chares are then mapped by Charm++ Runtime System (RTS)

using the user-defined mapping or block mapping to available PEs. Charm++ chares may

communicate with another chare by invoking its non-blocking entry method. This will send

a message to the receiver chare, scheduled by Charm++ RTS, and can be used to send a

buffer to a chare to be copied.

Charm-FFT [2] is a library that computes parallel three dimensional Fast Fourier Trans-

form. It was developed by Nikhil Jain specifically for OpenAtom project, an application

for parallel Ab-initio molecular dynamics simulations,[4]. Charm-FFT implements 2D-

decomposition method to effectively distribute the pencils to available PEs. As stated before,

1

this method allows computing a single 3D-FFT grid in parallel with higher scalability.

In addition, to benefit from Charm++’s fully asynchronous nature, each pencil object is

assigned to a Charm++ chare. Multiple chares can then be mapped to unoccupied PE.

When a PE completes a pencil chare’s FFT operation, it will send FFT’ed data to the

designated receiver chares. While waiting for the incoming messages, a PE can compute

another FFT operation for a chare that it may be holding, potentially compensating for

the idle time that is produced until all messages arrive. However, this method of using

2D-decomposition with a single given FFT-grid for computation does not scale indefinitely

because of the natural limitation in how small the decomposing granularity can be in a given

resources and the inevitable communication overhead that exists during each transposition

step. Charm-FFT tries to overcome this by overlapping other computational work such as

multiple Charm-FFT instances or other computation in the same Charm++ application.

This is possible because Charm++ allows processing messages for any chare in a PE to

minimize the idle time, reinforced by having smaller decomposition sizes of pencil chares for

shorter execution units.

If larger number of processors are desired to be utilized for a fixed sized FFT grid, Charm-

FFT needs more instances to effectively use the idle time between chares’ state transition.

If the number of instances become fixed, then smaller granularity will be needed for each

instance to distribute over more nodes. In such cases, each pencil chare will be distributed

with smaller pencil size to compute, and while the FFT computation time of individual chare

would decrease, the number of messages that it is required to send as part the transposition

increases. Additionally, since the receiver chares would also be handling larger number of

messages, the overall communication overhead for the transposition would increase. At a

certain point, the communication overhead for the transposition steps will surpass the actual

computation time for each pencil chare, unnecessarily occupying CPU time. In such case,

larger granularity for pencil decompositions, at the cost of parallelism and asynchrony, may

be preferred.

In this thesis, an alternative approach to Charm-FFT’s implementation to pencil chare

distribution was experimented in attempts to focus on using sets of available nodes over

large number of available PEs. Chapter 2 describes the current Charm-FFT implementa-

tion and displays its characteristics that are used to handle the inclining communication and

scaling problem as finer decomposition is desired. In following chapters, different approaches

and modifications to Charm-FFT are presented. Chapter 3 modifies Charm-FFT’s decom-

position method for minimizing the number of communications between the pencil chares.

Chapter 4 is about an additional experiment that follows Chapter 3 to seek further benefit

from the modified decomposition structure. Lastly, Chapter 5 will describe the modified

2

Charm-FFT’s method of using multiple library instances and its effectiveness in amending

scalability limitation.

3

Chapter 2: Charm-FFT

Charm-FFT was developed in attempts to address the limited parallelism and the scaling

bottleneck that parallel FFTs have. With Charm++, each state of FFT grid is decomposed

into large number of Charm++ chares. These smaller objects that can be executed asyn-

chronously allows to overlap multiple concurrent instances of FFT computations on separate

FFT grids efficiently if desired[2].

As with many effective parallel FFT libraries, Charm-FFT also uses 2D decomposition

method, which is also commonly known as ”pencil decomposition”, to partition each of Z,

Y and X state’s domain into 2D blocks, called ’pencil’. Each pencil holds rows of arrays of

1D FFT points along the dimension that it is partitioned for as shown in Figure 2.1. Each

of these pencils that holds an array of 1D FFT points along its dimension are respectively

called X-Pencil, Y-Pencil and Z-Pencil for convenience.

A typical parallel FFT that uses 2D decomposition method properly divides two dimen-

sions of each states to form blocks of 1D pencils. But while still implementing the 2D

decomposition method, Charm-FFT’s design uses a 1D decomposition on one of the three

states, X-state. This causes the X-states’ ’pencils’ to be formed into slab-like blocks but

are considered as thicker pencils. As a result, decomposition on the X-dimension is only

done along the Z-plane, effectively creating a 1D decomposition just for that state. This de-

sign was influenced by OpenAtom project that normally needed the FFT’ed output complex

values to be in planes, bypassing an extra step to aggregate the output values.

The pencils of each state are represented as Charm++ chares. Each chare computes

1D line FFT on the buffer that it holds, independently from other pencil chares. After the

completion of the line FFT on its buffer, the chares asynchronously perform the transposition

steps by packing its FFT’ed buffer into messages and sending each of these messages to the

corresponding chares that are responsible for the next phase of FFT.

2.1 CHARM-FFT IMPLEMENTATION

A Charm-FFT library instance is created by calling Charm createFFT function in Charm-

FFT interface from a processor. For the inputs, the size of the FFT grid to compute,

the pencil decomposition of each dimension and a callback function that would be invoked

when the initial internal setups are complete are expected. Based on the inputs, the newly

created Charm-FFT library instance constructs several Charm++ chares that represents the

dimensional pencils, Z-Pencil, Y-Pencil and X-Pencil. The pencil chares are then assigned

4

Figure 2.1: Z-state 2D decomposed into 1D pencils

to a portion on which it is expected to compute a line FFT on. Once complete, the chares

are mapped to the available PEs by default block distribution or by the mapping scheme

that the user provides as an optional argument to Charm createFFT call.

During the pencil chares’ construction, each pencil chare will be set to have the references

to the receiver chares. These references are kept as the linear indices to the collections of

each state’s pencil chares and are used later during the state transition to send the segments

of the FFT’ed buffer after computation. Every chare has expected number of incoming

messages to receive before it is ready to perform the line FFT on its copied buffer. When

all pencil chares are initialized, the library instance creation is complete. The user-input

callback is then used to inform the user application that the pencil chares may now be

accessed from each PE using Charm++ group chares.

From each PE, Charm-FFT instance can be queried to acquire the linear offsets of Z, Y

or X dimensional pencil objects that are mapped to the current PE. Using these offsets as

identifiers, the user may assign the allocated input and output buffers for the FFT operations

on that portion of the FFT-grid. After these assignments, Charm-FFT instance is ready to

start the FFT operation. This can be requested to start by calling Charm doForwardFFT

or Charm doBackwardFFT from each PE. As the message to start the operation has been

broadcast from the PE 0 to all pencil chares of the starting phase, each chare performs a

series of line FFTs on its buffer independently. For the FFT operation, the line FFT would

begin with Z-pencils and X-pencils for the inverse FFT.

When a chare completes its FFT operation, messages that contain the FFT’ed data are

sent to the corresponding pencil chares of the next state. When a receiver chare is scheduled

to process an incoming message by Charm++ RTS, it unpacks the message and copies the

5

Total Chare Count Chares Per Dim Decomposition FFT (ms) IFFT (ms)
75 25 5x5 157 127
192 64 8x8 92 78
300 100 10x10 50 41
675 225 15x15 89 45
1200 400 20x20 96 70
1875 625 25x25 160 90
2700 900 30x30 316 153

Table 2.1: Effect of increasing decomposition on performance

contained segment of FFT’ed data into its own buffer. To ensure that the segments do not

overlap, the source chare’s indices are used to determine each segment’s location within

the buffer memory. Each message delivered to a pencil chare is queued and processed

sequentially, until all expected messages are received. Then, if the receiver chare has no

more expected incoming messages, it may start the FFT operation regardless of the other

pencil chares’ transposition status.

As all output pencil chares complete their FFT on its buffer, a reduction is performed to

ensure that all outputs are ready to be presented to the user. When the reduction completes,

the user-input callback is used to inform the user that the output values are now available.

The user, then, may access the FFT’ed data from each PE with the output memory buffer

that was allocated and provided prior to the start of the operation.

2.2 CHARM-FFT PERFORMANCE

2.2.1 Effect of Decomposition Size on Communication

To show the effects of decomposition size on performance, a simple test with single Charm-

FFT instance that performs series of FFT and IFFT operations is run using 300 x 300 x 300

FFT grid on 4 nodes of Knights Landing. Total of 128 cores were used with 32 core usage

on each node.

Table 2.1 presents the separate timings of FFT and IFFT operations as finer decompo-

sition is used for each dimension of the input FFT grid. As it can be seen from Table 2.1,

there is a gradual reduction in operation time as finer decomposition is used until 10 x 10

decomposition, which allocates total of 300 chares for the pencil decomposition, 100 chares

per state. This decomposition distributes about one pencil chare per state per PE. But after

this point, further decrease in granularity continuously drops the overall performance. Based

6

Figure 2.2: Timeline of pencil objects’ activities in 10x10 decomposition

Figure 2.3: Timeline of pencil objects’ activities in 20x20 decomposition

on this, it could be seen that the communication overhead from excessive grid decomposition

eventually overshadows the benefits of utilizing multiple short asynchronous objects.

Figure 2.2 and 2.3 are visualized timelines of traceable Charm++ events in PEs throughout

the application. Each color-coded segment is a traced entry method execution by a pencil

chare. These timelines have been traced and generated using Charm++ Projections tool[5].

Figure 2.2 is the timeline of one of the PEs performing inverse FFT operation on 300 x 300

x 300 FFT grid using the optimal 10x10 decomposition from 2.1.

In Figure 2.2, the labeled blocks are the entry methods running inverse FFT for X-pencil

chare, Y-pencil chare and Z-pencil chare respectively. The other visible blocks are the

communication steps that consist of forming IFFT’ed points into messages, sending each

messages to their corresponding receivers and receiving the message to apply the points to

the buffers. The white blocks before the ZPencil Inverse FFT are the idle time when there

are no executing entry methods in a PE. As it can be observed, the amount of time that are

used for communication steps surpasses the computation time of each pencil chare. From

the total IFFT execution time for this PE, only about 25% of it was spent for the inverse

FFT operations on the current PE’s pencil chares.

Figure 2.3 presents a timeline for 20x20 decomposition, which creates 400 pencil chares

per state, distributing about 4 chares per state to each PE. According to Table 2.1, 20x20

decomposition produced 71% diminish in performance compared to the optimal decomposi-

tion of 10x10. The time that was spent in inverse FFT operations with this decomposition

was about 21%. While it is visible that finer-decomposition allows reducing the idle time

from waiting for other pencil chares’ messages, it can be seen that as excessive decomposi-

tion is used, that maps multiple chares per state in each PE, the communication overhead

inflates that ultimately impacts the overall performance negatively.

7

Chapter 3: Charm-NodeFFT

Charm-FFT emphasizes the decomposition of FFT grid’s states into fine-grained decom-

position pencil objects to increase the parallelism of FFT computations by distributing each

of these objects to available PEs. In addition, as these objects are formed as Charm++

chares, their computations can be performed asynchronously, allowing overlapping the com-

putations of multiple FFT-grids with multiple library instance.

Normally, when increase in the number of instances or higher parallelism is desired, a

larger number of chares must be constructed to optimally utilize available cores. Using finer

granularity for the decomposition not only implies that each chare will handle smaller pencil

size but also suggests that the number of messages generated for the communication between

each chare during the transposition steps increase. As the number of chare increase, there

are greater number of chares to coordinate with.

However, the decomposition size of each state is limited to the size of a minimum line FFT

that can be performed in a PE. The communication overhead, which consists of message

creation, sending, scheduling, unpacking and applying, is only partially dependent on the

size of the decomposition and is mostly constant. In this case, to utilize larger number of

nodes, Charm-FFT would need to minimize the distribution of pencil chares of an instance

across the nodes so that the inter-node communication cost would not become the major

bottleneck. If, for instance, the network bandwidth between the nodes is sufficiently low or

if too many pencil chares are mapped to a single node while multiple Charm-FFT instance

is concurrently running, excessive partitioning would lead to costly communication during

each chare’s transposition step, eventually causing the communication time to surpass the

computation time.

Thus, modifications focusing on reducing the number of necessary inter-node communica-

tions have been made to Charm-FFT as an alternate approach to implement the communi-

cation intensive 3D FFT algorithm.

3.1 OVERVIEW

To reduce the communication overhead that Charm-FFT induces during each chare’s

transposition step, modifications that adjusts the pencil decomposition and distribution

was attempted. Instead of partitioning the FFT grids into large number of pencil objects

to compute per state, the modified Charm-FFT (Charm-NodeFFT) decomposes the FFT

grids into less number of objects. Each pencil object in Charm-NodeFFT then holds a larger

8

pencil size than the pencil chares in Charm-FFT. The pencil chares in Charm-NodeFFT

was also set to distribute to the available nodes rather than to available PE’s, as it was in

Charm-FFT.

This conversion is primarily aiming to reduce the number of required communications

between the pencil chares. Yet there is a clear cost in parallelism with less decomposition

because it undermines the benefits of over-decomposition. Thus, the loss of parallelism was

compensated by multithreading each pencil chare’s FFT computation using the local PEs

available to a node. Multithreading each chare’s FFT computation was done with Charm++

CkLoop library[6]. CkLoop library supports loop-level parallelism by allowing multithreading

a task of a chare with PEs that are already available in Charm++ runtime.

3.2 MODIFICATION DETAIL

Similar to Charm-FFT, to create an instance of Charm-NodeFFT library, the user must

call Charm createFFT from a processor with expected inputs. The dimensions of the FFT

grid to compute and a callback function to invoke when initialization is complete are re-

quired inputs and remain unchanged. However, instead of determining each state’s pencil

decomposition according to the user’s needs, the library expects the total number of pencil

chares for each state to equal the number of available nodes when the application runs. This

design implies that only one pencil chare per state should exist per node. This also results

in each pencil chare to have relatively larger pencil buffer compared to the pencil chares in

Charm-FFT.

Internally, once the request to create a Charm-NodeFFT library is received, the library

creates Charm++ nodegroup chares. In contrast to Charm-FFT’s use of Charm++ group

chares, which provide convenient access to the pencil chares in a local PE, nodegroup chares

are used to interact with the pencil chares in Charm-NodeFFT nodes. When message is

sent to a nodegroup chare by invoking its entry method, the message is processed by any of

the available PE within the node. Because of this, incoming messages may be processed con-

currently in separate PE’s, avoiding the bottleneck that could occur if the arriving messages

were processed sequentially by one PE.

Pencil chares are created based on the user input and are distributed to nodes so that

each nodegroup chare has access to one of each X, Y, and Z pencil chare. As with Charm-

FFT, each pencil will have references to the destination chares for the transposition and

have expected number of messages before it is ready to start its FFT computation. Once all

pencil chares have been constructed according to the user-input arguments and registered

to the respective nodegroup chares, the library initialization is assumed complete. The user

9

is notified by the previously provided callback function.

After receiving the messages to the callback functions, the user may access the pencil

chares from each node. Unlike the original Charm-FFT, where the access was achieved

through each PE, the user access to pencil chare is achieved from each node to allocate and

assign the input and output buffers to the pencil chare that is in the local node. Then, the

request to start the FFT or inverse FFT operations can be made with Charm doForwardFFT

or Charm doBackwardFFT from each node.

When the operation is commenced, the root nodegroup chare of Charm-NodeFFT instance

will broadcast the start message to all pencil chares. This broadcast will initiate the opera-

tion on the pencil chares that are in the starting state of the requested FFT type (X-pencil

if Inverse FFT or Z-pencil if FFT). As it did with Charm-FFT, the pencil chares in Charm-

NodeFFT are to perform series of line FFT’s in the buffer along the dimension that it is

responsible for; however, because each pencil chare would typically hold distinctly thicker

pencil compared to that of chare in Charm-FFT, sequential computation of each line of its

pencil would cause significant loss of performance.

To mitigate this, the FFT operations within each chare have been multi-threaded using

Charm++ CkLoop library. As each pencil chare begins its FFT operation, the buffer will

be evenly assigned to the PEs so that each available PE in a node will be assigned to

approximately similar sized segments of the pencil to compute on. Because CkLoop library

works for shared-memory multi-threading environment and all PEs in a node will share

memory because of SMP mode, each PE does not need to introduce additional space and

time overhead need to copy its portion of the pencil segement; instead, each will work on

the non-overlapping memory space, then perform series of 1D line FFTs over the assigned

segments of the pencil buffer. After PEs in a node complete their FFT operation on their

respective segments, the nodegroup chare prepares to create messages from its buffer to be

sent to the corresponding nodegroups as part of the transposition step.

The original Charm-FFT’s process of transposition consists of a sequential message pack-

ing for each sending messages, invoking the destination chares with the packed message and

unpacking to apply the contained FFT’ed points to the local buffer when received. The

receiver pencil chare in a PE handles the incoming messages one at a time when Charm++

RTS schedules it. Since the sending messages contain points that never overlap with any

other points in other message of this pencil chare, the message creation do not need to be

sequential. In Charm-NodeFFT, this step has been multithreaded using the functionality of

CkLoop that allows the available PEs in the node to concurrently pack and send the messages

to their corresponding receivers. Additionally, in contrast to Charm-FFT, the messages are

not sent directly to the receiver chares. Instead, they are sent to the nodegroup chares that

10

the receiver chares are respectively placed in. This modification is derived from the feature

that nodegroup chare provides. If the messages are directly sent to the pencil chare, the

PE that has the pencil chare will process it. However, because Charm-NodeFFT suffers

from lack of decomposition by the intended conversion, the larger pencil size leads to larger

message size per communication. If one PE processed all messages sequentially, this would

become the major bottleneck of the transposition step. To avoid this, the FFT’ed data are

sent to the nodegroups by invoking their entry methods. Nodegroup chares receive messages

and one of the available PEs in the node handles the message. As previously stated, the

PEs do not mistakenly overwrite each other’s segments regardless of the order of the entry

method invocations, because the messages containing FFT’ed data do not overlap.

Afterward, similar to Charm-FFT, the nodegroup chare will be on hold until all expected

messages are received and copied properly into its local buffer by its PEs. Then, the next

phase’s FFT operations will be ready to start. After all three states’ FFTs across all node-

groups have been performed and verified by the reduction, the user-input callback function

will be invoked. The user can then access the FFT’ed data from the output memory from

each node.

3.3 PERFORMANCE ANALYSIS OF CHARM-NODEFFT

3.3.1 Testing for the Correctness

A simple test case has been used throughout the development of Charm-NodeFFT to

constantly verify the efficacy of the modification and the consistency of outcome of the FFT

procedure. To ensure the correctness, the initial inputs of each pencil have been saved. After

performing a series of transformation, the resulting output are normalized using the product

of the input dimensions and compared to the initial inputs. The errors from each pencil

chare are aggregated with reduction to check if any reduced error occurred on each iteration

of transformation.

3.3.2 Multithreading Optimization

Omitted optimization

Figure 3.1 shows the basic comparison of FFT and IFFT operations of Charm-NodeFFT

on two nodes of Knights Landing using 300 x 300 x 300 FFT grid. As shown in the figure,

inverse FFT operations show clearer gain in performance from increase in available worker

11

1 2 4 8 16 32 64
0

300

600

900

1,200

Worker Thread Counts

E
x
ec

u
ti

on
T

im
e

(m
s)

Time to FFT and IFFT a 300x300x300 grid

FFT
IFFT

Figure 3.1: Comparison of FFT and IFFT using CkLoop in 2 nodes

threads count compared to the FFT operation. This is caused by the omitted optimization

for the FFT procedure.

The multithreading optimization that uses CkLoop has been implemented in following

parts of Charm-NodeFFT :

1. FFT operations of each node’s pencil chares

2. Message creation and copying the FFT’ed data into each message to send

3. Message sending to each of their receiver pencil chares

This optimization was to be implemented for all transformation stages, Z-pencil to Y-

pencil to X-pencil and its inverse. However, CkLoop integration to Z-pencil chares post-FFT

message management was not completed. Currently, this part of copying and sending to Y-

pencil chares is only being processed sequentially by one PE using the initial Charm-FFTs

code, which creates a significant bottleneck. Such lack of CkLoop integration hinders the

ability to properly observe the effect of the intended conversions in Charm-NodeFFT when

Z to Y transformation is involved. Thus, the generated performance results from the current

Charm-NodeFFT are mainly from the inverse FFT results. This allows for the performance

results to avoid being affected by the unoptimized bottleneck conversion from Z-pencils to

Y-pencils.

12

Points per node Worker threads IFFT (ms)
150x150x300 4 286
150x150x300 8 148
150x150x300 16 122
150x150x300 32 194
150x75x300 4 212
150x75x300 8 194
150x75x300 16 109
150x75x300 32 262
75x75x300 4 208
75x75x300 8 164
75x75x300 16 67
75x75x300 32 174

Table 3.1: Inverse FFT timings based on the number of worker threads

(a) Messages received with Charm-FFT (b) Messages received with Charm-NodeFFT

Figure 3.2: Rate of messages received by PEs during the FFT and IFFT procedure

Optimal points per worker thread

In Table 3.1, inverse FFT performance on 300 x 300 x 300 FFT grid is measured to find

the optimal number of threads usage based on the number of points that each thread is

given to compute. Ironically, the optimal number of threads in each node for computation

is always measured at 16 threads regardless of the available node counts or distribution size.

Post 16 threads, it can be observed that the performance on each node starts to drop. This

trend implies that up to 16 threads in a node, there is benefit from using multithreading

to parallelize the computations for the pencil chare. Afterward, the performance always

immediate drops, indicating that the overhead from multithreading and synchronization

costs starts to outweigh the computation time. Thus, 16 threads per node is used for the

performance measurement.

13

3.3.3 Number of Communications

The number of messages that are received per second by each PE in a node were traced

and visualized using Projections [5]. Figure 3.2 presents the messages received by a subset

of a node’s PEs. Figure 3.2a is generated from running 300x300x300 FFT grid using 10x10

decomposition on 128 PEs, using Charm-FFT. Figure 3.2b is also generated from 128 PEs,

using 8 nodes total with Charm-NodeFFT.

From figure 3.2a, most PEs, excluding the PE 0, evenly distribute a number of messages

that averages just over 100 messages received. PE 0, which handles reductions and broad-

casts, naturally receive significantly larger number of messages. Figure 3.2b, on the other

hand, shows significantly reduced number of overall received messages. Incoming messages

for Charm-NodeFFT are focused to PE 0, and the PEs within a node do not need to send

messages amongst themselves. The messages received by PE 0 throughout the application

is largely for synchronization, and the number of messages for the transposition is below 40,

which is sigficantly less than messages received by Charm-FFT’s root PE alone. Further-

more, non-root PE in a node only receives messages during the initialization steps. As part

of the design for Charm-NodeFFT, the messages are only sent to the PE that has Charm++

nodegroup chare, which then can be executed by any available PE in a node without blocking.

While the number of communication for FFT and IFFT decreased with Charm-NodeFFT

conversion, these results strongly suggest that Charm-NodeFFT is greatly dependent on

the inter-node network bandwidth since each message sent to the root PE of the node is

significantly larger.

3.3.4 Comparison with Charm-FFT

Figure 3.3 presents the basic comparison of the inverse FFT operation between a single

instance of Charm-FFT and Charm-NodeFFT using their respective optimal decomposition

per given node count. Again, 300 x 300 x 300 FFT grid on Knights Landing nodes was

used to measure the timings, and only inverse FFT was considered for effective performance

comparison. For Charm-FFT, optimal time was generally produced when as many number of

PEs per node was used with pencil decomposition that closely maps one pencil chare per PE.

On the other hand, for Charm-NodeFFT, using wider nodes for larger pencil decomposition

benefited its performance the most while only using 16 worker threads per nodes for its

within-node parallelism.

As it can be observed from Figure 3.3, Charm-FFT shows the steady increase in perfor-

mance as PE counts increase, while Charm-NodeFFT shows sharp reduction in execution

14

1 2 4 8 16 32 64
0

50

100

150

200

250

300

350

Number of nodes

E
x
ec

u
ti

on
T

im
e

(m
s)

Performance of Charm-FFT and Charm-NodeFFT’s inverse FFT

Charm-FFT
Charm-NodeFFT

Figure 3.3: Single instance comparison based on the number of nodes, using respective
optimal settings

time from 1 to 4 nodes. This is because of the lack of decomposition that Charm-NodeFFT

has when smaller number of nodes are used, significantly hindering the performance because

of the sequential operations on large number of points. As more nodes are used, smaller

sized pencils are distributed across the nodes, significantly reducing the wait time of the

PEs during the transposition steps. At 4 nodes usage, Charm-FFT has 61% speedup over

Charm-NodeFFT. Afterwards Charm-NodeFFT starts to benefit from finer decomposition

across the nodes while Charm-FFT’s execution time plateaus at about 20 ms for the inverse

FFT step.

However, to utilize Charm-NodeFFT as effectively as Charm-FFT, a wider node was

needed. For instance, the Charm-NodeFFT’s measurement of 64 nodes was run using 16

PEs on each node, using total of 1024 PEs. Meanwhile, with Charm-FFT, 1024 PEs were

run on only 16 nodes, using 64 PEs each. When the same number of PEs were used, the

number of nodes used for Charm-FFT was lower. And Charm-NodeFFT, when given a

number of nodes, used very small portion of cores within each node.

Figure 3.4 and Figure 3.5 presents the performance comparison in two separate settings

with fixed number of PEs per node. As previously stated, Charm-FFT generally benefits

from utilizing as many PEs as available per node and decompose each grid to map each pencil

15

1 2 4 8 16 32
0

100

200

300

400

500

Number of nodes

E
x
ec

u
ti

on
T

im
e

(m
s)

Performance of Charm-FFT and Charm-NodeFFT’s inverse FFT

Charm-FFT
Charm-NodeFFT

Figure 3.4: Single instance comparison based on the number of nodes; using 64 PEs per
node

chare to a PE per state. To show this, Figure 3.4 was produced using 64 PEs per node to

compute 300 x 300 x 300 FFT grid. As it can be seen, Charm-FFT reaches its optimal

timing at 8 nodes, 1024 PEs and plateaus its execution time to about 25 to 30 ms. Charm-

NodeFFT, meanwhile, does not benefit from this setting as much as Charm-FFT does.

Because 64 PEs are available per node, each within-node parallelization using CkLoop will

always attempt to use all 64 PEs for all CkLoop parts. At 32 nodes with total of 2048 PEs,

it can be observed that the excessive attempt to multithread within each node eventually

caused negative impact to the performance, producing 60% increase in execution time from

16 nodes. This implies that for Charm-NodeFFT, the overhead from multithreading in the

transposition steps has surpassed the FFT computation time for each pencil chare after 16

nodes.

On the other hand, Figure 3.5 presents the performance comparison when only 16 PEs

were used per node. This setting benefits Charm-NodeFFT as it was shown in Table 3.1 that

16 worker threads were the optimal number for Charm-NodeFFT’s CkLoop usage. Unlike

Figure 3.4, Charm-FFT shows gradual increase in performance until 64 nodes, which uses

1024 PEs total. Charm-FFT’s execution time at 64 nodes with 16 PEs in each node closely

matches its performance from Figure 3.4 at 8 nodes with 64 PEs in each node. This confirms

16

1 2 4 8 16 32 64
0

50

100

150

200

250

300

350

Number of nodes

E
x
ec

u
ti

on
T

im
e

(m
s)

Performance of Charm-FFT and Charm-NodeFFT’s inverse FFT

Charm-FFT
Charm-NodeFFT

Figure 3.5: Single instance comparison based on the number of nodes; using 16 PEs per
node

that for Charm-FFT, the performance is optimal when large number of PEs are in small

number of nodes. Conversely, better performance from Charm-NodeFFT can be observed

when only 16 PEs are used per node. At its optimal performance when using 64 nodes and

total of 1024 PEs, it has 81% reduction in execution time compared to its performance from

Figure 3.4 at 16 nodes with 64 PEs in each node, which also uses total of 1024 PEs. Thus for

Charm-NodeFFT, using larger number of nodes with specific number of PEs in each node

produces the best performance.

Charm-NodeFFT’s irregular behavior at small number of nodes

In all performance comparisons presented in this section, Charm-NodeFFT consistently

shows problematic performance for 1 and 2 nodes. Afterward there is a significant improve-

ment in execution time between 2 and 4 nodes usage. This problem is always observed

regardless of the number of PEs per node. For the current Charm-NodeFFT, this behav-

ior is caused by how CkLoop is used for within-node parallelism. As previously described,

Charm-NodeFFT involves CkLoop in two parts of each pencil chare’s procedure. First is

for multi-threading the FFT operation by dividing each pencil into multiple rows, and each

PE will be given multiples of these non-overlapping rows to compute sequential 1D FFTs on

17

concurrently. The second place is just after the first CkLoop parts’ ends. After all sequential

1D FFTs are complete in every PE that is used for CkLoop, each pencil chare needs to

create messages to send and copy its FFT’ed segments to the corresponding messages. In

current implementation, CkLoop is set to use each message as the chunk to distribute to

the PEs. Thus, each PE will be creating the assigned messages, copying the segments from

the node’s memory and sending the filled in messages to its receivers sequentially. However,

in case of 1 or 2 nodes, there are only 1 or 2 messages to send between the pencil chares,

because there is almost no decomposition at 1 and 2 nodes by design. Since CkLoop is set

to parallelize based on the messages, with only 1 or 2 messages per transpose steps, it is as

if the entire pencil is handled by one PE, becoming the major bottleneck in the procedure.

As a simple idea to mitigate this, CkLoop can be set to parallelize based on the segments of

each message, rather than per message. However, this method can be expected to produce

synchronization overheads between the PEs as it will have to be ensured that each message

creation and copying is complete by all PEs working on it before the message is ready to

send.

In addition to the message based multi-threading, the performance loss is also caused from

the receiver chares when using small number of nodes. As described before, the receiver

nodegroup chare directs one of its PEs to handle the incoming message. This allows the

messages to be processed in parallel, reducing the time to process all messages. However, in

case of 1 or 2 nodes, there are only 1 or 2 incoming messages. Thus only 1 or 2 PEs will

be handling the incoming message, causing the similar bottleneck as the previous problem.

To resolve this problem, when a message is received, it can be determined if the message

is sufficiently large to use CkLoop to process the message by distributing the segments of

it to be copied to the local buffer by each PE. This method will not introduce any new

synchronization overhead as all PEs in a nodegroup should always be complete before it is

ready to start the FFT operation.

3.3.5 Current Problem of Charm-NodeFFT

The initial purpose of reducing the number of communications was to minimize the com-

munication overhead between the state transitions. Charm-NodeFFT was able to limit the

necessary amount of communication cost primarily by increasing each pencil’s size and sec-

ondarily by using within-node parallelism to mitigate the loss of parallelism from lack of

decomposition. This approach was attempted since the processing time for the message

transactions inclined faster than the actual FFT computation time as the number of avail-

able PEs increased.

18

Figure 3.6: Timeline of pencil objects’ activities in 2 PEs in a node

However, this conversion introduced other sources of bottleneck that led to overall per-

formance loss. The newly identified problem that was introduced occurred mainly from

the synchronization within a node for CkLoop operation. Within-node idle time that pro-

duced during the transposition steps between the nodes are further propagated from CkLoop

synchronization.

During each part of Charm-NodeFFT that uses CkLoop, the work is divided among the

specified number of worker threads. While the amount of time that each worker thread takes

to execute the given work is approximately equal, it is not always guaranteed that all workers

will start their execution at the same point, especially if there are other overlapping works in

the background that are blocking the PEs. In current Charm-NodeFFT’s implementation,

when a node that is ready to compute one of its pencils, there are no background works that

are running. If a pencil chare is ready to compute FFT, it implies that all messages are

received and processed. However, because CkLoop will always break the FFT computation

into the number of specified chunks, if there are any computation external to this library

that occupies PEs, it can delay Charm-NodeFFT’s stages that uses CkLoop.

Another cause of the performance loss is from the node’s idle time while it is waiting for

the other nodes’ pencil chares to complete their computation and send their FFT’ed data, as

shown in Figure 3.6. This timeline, generated with Projections [5], shows pencil chare events

on 2 out of 16 PEs in a node, performing X-pencil to Y-pencil transition step. The first

block, labeled XPencil Inverse FFT, is followed by XPencil Message Creation block which

creates and sends messages to Y-pencil chares. Then, the colored blocks between the XPencil

Message Creation and YPencil Inverse FFT are Y-pencil chare’s entry methods that handle

the incoming messages and fill in the local pencil chare’s buffer. In this timeline, the idle

period for all PEs, displayed by the white intervals between the YPencil Incoming Message

Handling blocks, continues until the last expected message is received and processed. Only

after then, Y-pencil operations start, and the PEs are utilized again.

This is a similar symptom that was displayed by Charm-FFT as well in Figure 2.2. Charm-

FFT has the capability to utilize these idle times by mapping multiple finer-grained pencil

chares to a PE. Charm-NodeFFT, however, has traded off this asynchrony with reduction

in communication count. For Charm-NodeFFT, to fill in these idle times, multiple FFT

19

operations may run concurrently during each others’ idle time or other computation may be

overlapped as Charm-FFT does to continuously scale. This attempt for Charm-NodeFFT

will be described in Chapter 5.

20

Chapter 4: Accelerator Usage for FFT Operations

The modifications made to Charm-FFT was an attempt to reduce the number of neces-

sary communications between the chares during the transposition steps. Charm-NodeFFT

achieves this by decomposing each dimension into larger pencil chares per state and dis-

tributing them to the available nodes.

While Charm-NodeFFT reduces the number of messages that each pencil chare must

create and send, each pencil chare was given comparably larger pencils to compute. In

Charm-NodeFFT, multithreading the computation step was implemented using Charm++

CkLoop library for serial FFT computations. However, using the multithreading for the

within-node parallelization introduced another another potential bottleneck. Because all

within-node operations are parallelized by multithreading, if any PE’s parts of the operation

lags behind, it will delay the whole node’s progression, potentially further preventing the

other nodes’ from proceeding to the next pencil computation.

In the case when the number of available nodes is low and the FFT-grid to compute on

is large, Charm-NodeFFT library will have to depend greatly on the number of available

processing elements that CkLoop library can utilize to maintain the parallelism lost from the

lack of node count. However, it is shown in the previous chapter that there is a limitation

to how much parallelism can be expected within a node with the current implementation of

Charm-NodeFFT. This finding suggests, if the size of the pencils that each nodegroup chare

has is sufficiently large, it may be beneficial to offload the FFT computation of the entire

pencil to an accelerator, such as GPU or Xeon Phi, if available in the local node.

Offloading the FFT computation to an accelerator in each node may not only remove the

limitation bound by the multithreading but may also may open up a possibility of reducing

the number of communications even further. By offloading, the option to use larger pencil

size per node even further as accelerators are relied on for the within-node computation may

be available.

In this chapter, Nvidia cuFFT library[7], a CUDA-based FFT library that performs FFT

on supported GPUs, was used in place of FFTW[8] to offload FFT computations to the GPUs

in each node. While cuFFT library supports a 3D-FFT operations on a 3D-FFT grid, for

this experiment, only 1D transforms were used in the similar manner that FFTW[8] was

used in Charm-FFT and Charm-NodeFFT.

21

4.1 MODIFICATIONS TO CHARM-NODEFFT

To run any computation on GPU, device memory on GPU has to be allocated in order

to hold data that the user wants to run computation on. Because GPU cannot normally

access the host memory which is accessible by the PEs, a separate memory for GPU has to

be allocated for its accessibility. Then, data from the host memory has to be transferred to

the allocated device memory. Often, a form of cudaMemcpy is used for this operation. Once

the desired computation on GPU is complete, data in the device memory will then need to

be transferred back to the host memory so that the PEs can manage the computed data.

In Charm-NodeFFT, this operation is performed each time when a pencil chare needs to

run a series of 1D line FFTs on its buffer. During the initialization phase, each pencil chare

constructs a cufftPlan to use when cufft execution call has to be made on its buffer. At this

stage, the device memory on GPU to copy the buffer is also allocated. When a pencil chare

properly fills in all segments of its buffer with incoming messages from other pencil chare,

the buffer is then copied to the device memory. With the pre-constructed cufftPlan the PEs

in the node are left idle until cufft execution completes. The device is then synchronized

and the FFT’ed points in device memory is copied back to the host memory. Afterward, the

message creation and packing steps are started and parallelized using CkLoop.

Depending on the application, the memory transfer counts for the inputs and outputs

can be reduced if the computations before or after the FFT operation is still required to be

performed in the device. However, to maintain the interface that Charm-FFT has initially

designed, the user is expected to allocate memory on the host side and assign it to the

Charm-NodeFFT even when using GPU for internal computation.

4.2 PERFORMANCE

Figure 4.1 shows the basic performance comparison of Charm-NodeFFT using FFTW [8]

and cuFFT [7] for the 1D FFT computations. The table was produced computing 300 x

300 x 300 FFT grid with 4 worker threads per node. And Nvidia Pascal P100 GPUs was

used in each node for cuFFT. Although it was shown from Chapter 3 that Charm-NodeFFT

does not perform well in smaller number of nodes, only up to 4 nodes were used in this

experiments to demonstrate effectiveness of the accelerator’s computation power and its

impact on Charm-NodeFFT.

As it can be observed from the figure above, when larger pencils are given to smaller

number of nodes, cuFFT demonstrates its effectiveness. At 1 node, cuFFT shows 34.5%

reduced execution time compared to FFTW. However, this reduction in execution time

22

1 2 3 4 5
0

300

600

900

1,200

1,500

Number of Nodes

E
x
ec

u
ti

on
T

im
e

(m
s)

Execution Time of IFFT with different 1D FFT libs

FFTW
cuFFT

Figure 4.1: Comparison of using FFTW and cuFFT for the 1D FFT operations within
Charm-NodeFFT

quickly diminishes as the pencil size per node decreases. By 4 nodes, cuFFT only produces

19.9% reduction in time, which will continuously decrease as the number of nodes increase.

The results show that if the whole FFT grid to compute is extremely large and the resource

to run the computation is limited, it could be preferable to use accelerators like a GPU at

lower number of nodes. As an example, the performance of cuFFT version on 2 nodes

produced shorter execution time compared to the FFTW version on 3 nodes.

4.2.1 Data Transfer Time

Table 4.1 shows a simplified breakdown of GPU activities during the computation step

of a node, profiled using NVidia CUDA nvprof tool [9]. As it can be seen, the combined

amount of time that took to transfer the memory between the device and the host for the

pencil occupies over 97% of the GPU operation. This test was performed on Nvidia Pascal

P100 GPU with 300 x 300 x 300 FFT grid. It is speculated that as the input grid becomes

sufficiently larger, the percentage of time spent to perform each dimension’s FFT will rise.

Regardless, the transfer time will be the dominating factor.

Because the usage of cuFFT showed performance improvement from the previous section

when small number of nodes were used, it could be a useful idea to further optimize the

23

Operation Total Time (ms) Average Time (ms) Op Count Percentage (%)
CUDA Memcpy HtoD 174.94 29.157 6 56.05
CUDA Memcpy DtoH 128.97 21.495 4 41.32

Data Conversion 3.2862 0.822 4 1.05
D1 FFT 1.6445 0.822 2 0.53
D2 FFT 1.6243 0.812 2 0.52
D3 FFT 0.835 0.835 2 0.27

Table 4.1: Breakdown of GPU activity during the cuFFT operations

implementation in Charm-NodeFFT for a better result. Since the memory transfer time

seems to be the main source of the time consumption for the GPU operation, a few options

to optimize the memory transfer are considered.

Pinned Memory

Pinned memory denotes the page-locked memory space that CUDA uses when transferring

data from host to device [10]. Since the user allocates pageable host memory, when the data

transfer to the device is invoked, CUDA first copies the content of the pageable host memory

to pinned memory first, which then is copied to the device memory. If the initial host memory

is allocated to be the pinned memory, an unnecessary data transfer step can be avoided.

Unified Memory

Another optimization for the memory transfer is the usage of Unified Memory [11]. Unified

memory is a memory space that is a managed memory space that designed to be accessi-

ble by both the host and the device by using prefetches to the pages and device memory

as needed [11] Charm-NodeFFT as the frequent simultaneous access to the memory from

both the host and the device is unnecessary, the unified memory may still be a sufficient

optimization if continuous data transfer on demand during each pencil computation can be

avoided.

Results of alternative allocations

The table 4.2 shows the comparison of Inverse FFT operation on 300 x 300 x 300 FFT grid

using the default, pinned and unified memory allocation methods. In this result, the default

allocation method ironically always produced the lowest execution times for all number of

24

1 2 3 4 5
0

300

600

900

Nodes

E
x
ec

u
ti

on
T

im
e

(m
s)

Comparisons of different allocations

Default
Pinned
Unified

Figure 4.2: Inverse FFT times of Charm-NodeFFT when using different allocations for
cuFFT

Allocation Type FFT Time (s) IFFT Time (s)
No GPU; FFTW 2.264516 1.98487

Default 1.274754 1.260624
Pinned 1.663768 1.448181
Unified 1.95958 1.66119

Table 4.2: Comparison of allocations when using larger grid of 500x500x500

nodes. While pinned memory allocation method stayed close to the optimal execution time

that the default method produced, its performance does not necessarily seem to get better

even when the node counts increase. It seems that the overhead of using the pinned memory

allocation outweighs the performance benefit that it should provide. If there are occasions

when the allocated memory need to be reused by GPU, using pinned memory would show

its benefits more clearly. However, in Charm-NodeFFT, where the allocated memory is only

used once per computation, the benefit of the pinned memory seems to be belittled. Unified

memory, on the other hand, was noticeably slower than the other two methods. This is

expected as the main benefit of the unified memory is to provide spontaneous access to the

host without the need of frequent manual memory copying operations.

25

Table 4.2 is a simple result of computing 500 x 500 x 500 FFT grid on 4 nodes with 4 worker

threads on each. Focusing on the inverse FFT time, the optimal method of using GPU in

small number of nodes seems to be using the default allocation, reducing the execution time

of the inverse FFT operation by 36.5% from the baseline Charm-NodeFFT that used CPU

for its 1D FFTs.

In this chapter, accelerator was used in place of 1D FFT operation to see if the within-node

parallelization that was previously relying on Charm++ CkLoop library can be alternated.

As the result of the experiment, using GPU per node accelerates the operation if the number

of nodes is sufficiently small and the pencil size that each node is handling is rather large. As

more nodes become available and the finer pencil decomposition is used, the effect from using

accelerator diminishes quickly, and the overhead to transfer the memory grows. While other

allocation optimizations have been attempted, because of Charm-NodeFFT’s characteristic

of not using any allocated buffer more than once, the allocation optimization did not provide

further benefit.

26

Chapter 5: Multi-Instance FFT

OpenAtom[4] was used as the standard application to test the efficacy of the modified

Charm-NodeFFT library. Using the OpenAtom allows for a comparative analysis of the

Charm-NodeFFT to be made since the Charm-FFT library has been developed for Ope-

nAtom and is integrated in it. In addition, using OpenAtom could be hypothesized to be

the most compatible application to the modified library, as Charm-FFT has already been

well integrated and optimized within OpenAtom application. However, this is not to limit

the use of Charm-NodeFFT, as the library can be integrated into other applications.

In a standard OpenAtom simulation, multiple instances are created during a lifetime of

the application, and each instance holds certain size of FFT grids that are used for density

function. These instances are independent of each other during their respective 3D FFT oper-

ation. The original Charm-FFT handles multiple OpenAtom instances by allowing multiple

Charm-FFT library instances to be created and be computed independently. Furthermore,

because the library instances do not need to be synchronized with each other throughout

the application, Charm-FFT utilizes Charm++’s asynchronous nature by distributing each

Charm-FFT instance’s 2D decomposed pencil chares across the available PE’s and having

them run concurrently.

The Charm-NodeFFT library, however, is designed to utilize all available nodes for each

library instance. Thus, if multiple Charm-NodeFFT instances are created in an application

in the same manner that Charm-FFT does, it would simply increase the number of different

instances’ pencil chares per node, where the parallelism within a node would be bound by the

number of available cores per node regardless of the actual number of nodes in the system.

Instead, when a node size and the count of the instance that the simulation attempts to run

with is specified, a subset of the nodes can be assigned per instance so that all necessary

communication for an instance would only occur within this assigned subset of the nodes.

5.1 MODIFICATIONS TO CHARM-NODEFFT

To create a library instance for the standard Charm-NodeFFT, calling Charm createFFT

once with the expected inputs from any of the processor is sufficient. To create multiple

library instances, the user would need to call Charm createFFT for each instance that needs

to be created with their respective inputs. After the library instances are created, these

instances can be distinguished from another using the identifiers within the messages that are

sent to the user-input callbacks. However, these instances are not informed of other Charm-

27

NodeFFT instances that may be running concurrently. This creates nodegroup chares and

pencil chares as if only one instance is running in the application. In this case, each library

instance creation will simply just add more library instances per node.

For each library instance to be aware of other instances that the user is expecting to create,

the total number of instances in the application and the current instance’s linear offset, for

the identifier, are required as the additional arguments for Charm createFFT. During the

library instances’ creations, based on the additional inputs, each instance will internally

identify the available nodes for the current application by first creating the nodegroup chares

and then assign itself to the subset of the created nodegroup chares as evenly as possible.

While the steps for the pencil chares constructions remain the same, the mapping of these

chares is altered so that the chares will be mapped only amongst the designated subset that

their library instance’s are assigned to. Because of this, the user will also need to adjust the

arguments for pencil decomposition sizes based on the environment that the application will

be running on.

Even though each instance is aware of other library instances in the application by the

provided inputs, these instances compute their process independently and do not need to

be synchronized once the libraries are properly initialized. Each instance will follow the

procedure that the standard Charm-NodeFFT performs, just within the nodes that it was

assigned. When an instance’s operation is complete, its user-input callback function will be

invoked even if other instances may still be computing. Because of this, an instance may

compute multiple iterations of FFTs regardless of the status of other concurrently running

instances.

5.2 PERFORMANCE

5.2.1 Test Design

The original Charm-FFT was initially designed to be compatible with OpenAtom ap-

plication. Charm-NodeFFT, while being a modification of Charm-FFT, requires a different

mapping of the controller chares in OpenAtom application to be able to access the input and

output data using nodegroup chares. In addition, because Charm-FFT library has already

been integrated into OpenAtom application, optimizations that specifically supports the

Charm-FFT’s input and output chare layouts have already been implemented. This creates

difficulties in applying the same optimizations to Charm-NodeFFT due to the compatibility

reasons. Thus, it is difficult to observe the effect of the Charm-NodeFFT modifications

in isolated manner. Instead, a simple imitation that simulates the OpenAtom’s density

28

Number of Instances Avg FFT Time (ms) Avg IFFT Time (ms) Completion Time (ms)
1 53 6 61
2 50 6 60
3 52 7 66
4 53 10 70
8 58 35 101
16 82 74 165

Table 5.1: Effect of increasing the number of Charm-NodeFFT instances in 8 nodes

calculation stage that uses 3D FFT for each of its instance was created.

In a standard OpenAtom run, each OpenAtom instance contains electron density in g-space

and real-space that are respectively represented as separate chare arrays. These chares are

used to perform series of FFT and inverse FFT[4]. To imitate this, in the test simulation, a

chare array is created to function as OpenAtom instances. Each instance chare will construct

its own electron density space representations as chare arrays based on the user input FFT

grid size. When all instances and their density spaces are initialized, all instance chares

performs a FFT followed an inverse FFT individually. In the simulation, each OpenAtom

instance will create a set of electron density space chare arrays called RhoR and RhoG.

Then, each instance further creates a FFT library instance that will be used to compute

FFTs on each of the density space chare. When all instances for the test are ready to begin

the FFT operation, all instances start their procedures independently. Then, at the end of

its procedure, it contributes to a reduction to alert that its computation is complete. When

all instances have contributed to the reduction, an iteration of the simulation ends.

5.2.2 Multi-instance handling comparison

When there are multiple FFT library instances to run in an application, Charm-NodeFFT

can be used in a similar manner that Charm-FFT handles multiple instances by allowing the

instances to run in all nodes as available. In Charm-NodeFFT’s implementation, this method

will allow each instance to use all available nodes, and within each node, the instances’ pencil

chares will use available PEs to compute their operations. On the other hand, a subset of

nodes to each instance can be assigned to perform the standard Charm-NodeFFT within

the instances’ respectively assigned nodes.

29

Using all nodes for each instance

Table 5.1 shows the effect of increasing the number of instances in a given number of

nodes. For this test, each instance was given 100 x 100 x 100 FFT grid to compute, and

each instances’ Rho chares were constructed to best utilize the all available nodes for the

test. The test was run on 8 Haswell nodes with 24 cores on each.

As shown in Table 5.1, the majority of the operation time is taken by FFT operation

which contributes to a substantial performance loss due to the unoptimized multi-threading

part that was described in Chapter 3. However, it can be seen that as more instances are

added, the average inverse FFT time increases, showing a significant rise in the computation

time if the number of cores to use per instance becomes scarce. In such case, the pencils of

the instance that are ready to compute have to wait until the occupying pencil chare releases

the resource. Thus, when larger number of instances are used, some of the instances simply

act as if they are performing FFT operations after another instance is complete, unable to

run their operations simultaneously.

Because of this, the method of increasing the number of nodes for Charm-NodeFFT does

not increase the number of instances that can be running concurrently. Although having

more nodes will allow reduced average FFT and inverse FFT operations, the same lack of

resource per instance will occur, leading some pencil chares to be computed as if they are

scheduled to run in sequence.

Using only a subset of nodes for each instance

Table 5.2 and Table 5.3 show the result of assigning a subset of nodes to 2 and 4 instances.

Same as before, each instance was given 100 x 100 x 100 FFT grid with its pencil chares and

Rho chares decomposed to best utilize its assigned subset of nodes. The average FFT time

still shows its bottleneck from its unoptimized multi-threading parts even though it shows

its improvement in performance as larger number of nodes are used for each instance. Also

when only one node is given per instance, it is unable to effectively utilize the available PEs,

as described in Chapter 3.

Number of nodes Avg FFT Time (ms) Avg IFFT Time (ms) Completion Time (ms)
2 85 58 223
4 67 12 108
8 47 9 61
16 41 7 59

Table 5.2: Using a subset of nodes for 2 instances

30

Number of nodes Avg FFT Time (ms) Avg IFFT Time (ms) Completion Time (ms)
4 105 47 182
8 89 14 112
16 76 10 94

Table 5.3: Using a subset of nodes for 4 instances

Table 5.2 shows that with 2 instances, increasing the node count from 2 to 16 reduces

the overall completion time by 74%. In this case, each instance was given 1 to 8 nodes to

compute on, and synchronization between these two instances was not needed. As a result,

there are only 18% difference in the completion time of both instances and the average

FFT and inverse FFT times combined. Comparing the completion time and the combined

average times may not be an appropriate method to confirm that the instances are running

concurrently. But, in this method, if the FFT or the inverse FFT operations are synchronized

between the instances and are caused to be computed in sequential order, as it did with the

previous method when too many instances were given for available cores in a node, overall

completion times would be very inflated even if the average computation times of instances

would seem low.

Table 5.3 shows the performance of using the same method with 4 instances instead of 2.

Similar to 2 instances, the reduction in the completion time and the average computing time

from 1 node per instance to 2 and 4 is still visible. But, the overall completion time and

the inverse FFT time for 4 instances is higher than 2 instances even when the same number

of nodes are given to each instance. For example, when 8 nodes are used for 2 instances,

giving 4 nodes per instance, it produced 61 ms for the completion time, while 4 instances

test has 59% increased completion time of 97 ms when 4 nodes are given to each of its

instances as well. Even if the average operation time can be improved when each instance

is provided larger subset of nodes, this steady increase in completion time is still observed

as more instances are added.

In this test that was created to imitate just the FFT operations of OpenAtom density

function, the completed instances wait for the other incomplete instances to measure the

overall timing. However, in a standard application where instances are independent of each

other, when the concurrently computing FFT operations are complete for some, they can

move on to start the next steps without necessarily waiting for the delayed instances. So

in such case, the overall completion time is less impactful than it would seem while the

average FFT operation time that multiple instances can perform in parallel would be more

meaningful.

31

Chapter 6: Conclusion

In this thesis, a different approach to increase the scalability of a communication inten-

sive algorithm, a parallel FFT, has been explored based on an existing parallel FFT library,

Charm-FFT. The primary method of this approach was to reduce the number of communica-

tion that often becomes costlier than the actual FFT time. This is achieved by adjusting the

decomposition granularity of the pencil objects. These pencil objects are then distributed to

the available nodes rather than the available PEs so that each node will be given relatively

larger sized pencils to compute. The loss of parallelism was mitigated using multithreading,

effectively parallelizing within-node computation without producing additional communica-

tions.

By the decomposition design of Charm-NodeFFT, each node was given sufficiently larger

pencil. In order to further optimize the within-node FFT computation that was relying on

multithreading, usage of the accelerators was attempted. In this experiment, the pencils were

offloaded to GPU to measure the necessary data transfer time and the overall computation

time. While the usage of GPU was capable of producing faster computation result, its

benefit was retained by the data transfer time. Because of this, its benefit diminished as the

number of available nodes became larger. To mitigate this, other types of device allocation

have been tested, which were unnecessarily producing positiveness performance.

To follow the Charm-FFT’s original intent of optimizing OpenAtom application, the de-

sign of Charm-NodeFFT had to be adjusted so that multiple library instances could be

handled simultaneously and run concurrently. Due to its similarities to Charm-FFT, Charm-

NodeFFT can be used by simply adding multiple Charm-NodeFFT instances per node and

by stacking up multiple library instances in every node. However, this design is inferior to

Charm-FFT as it imitates Charm-FFT’s pencil distribution, only using multiple instances

to accomplish it. Because of this, the library has been altered so that it would know the other

Charm-NodeFFT instances that would be running concurrently and adjust the initialization

accordingly so that their resources do not overlap.

Charm-NodeFFT is designed to always use all of the available nodes that it is given.

Because of the lack of flexibility, the library does not attempt to use only the subset of the

nodes for a smaller grid’s computation. Further, it is currently unable to provide custom

maps to only utilize a subset of the nodes for performance optimization. Thus, when a

significantly large number of nodes are available with very small FFT grid to compute

on, Charm-NodeFFT will naturally be inferior to the original Charm-FFT. In addition,

because only one pencil chare is mapped per node, the node usage for Charm-NodeFFT is

32

quite low. While this can be mitigated by Charm++’s feature of asynchrony to run other

background works, the design of Charm-NodeFFT naturally wastes a large portion of each

node’s available resource.

33

References

[1] A. Chan, P. Balaji, W. Gropp, and R. Thakur, “Communication analysis of parallel 3d
fft for flat cartesian meshes on large blue gene systems,” in International Conference
on High-Performance Computing. Springer, 2008, pp. 350–364.

[2] N. Jain, “Optimization of communication intensive applications on HPC networks,”
Ph.D. dissertation, Dept. of Computer Science, University of Illinois, 2016.

[3] B. Acun, A. Gupta, N. Jain, A. Langer, H. Menon, E. Mikida, X. Ni, M. Robson,
Y. Sun, E. Totoni, L. Wesolowski, and L. Kale, “Parallel Programming with Migratable
Objects: Charm++ in Practice,” ser. SC, 2014.

[4] S. Kumar, Y. Shi, E. Bohm, and L. V. Kale, “Scalable, fine grain, parallelization of
the car-parrinello ab initio molecular dynamics method,” UIUC, Dept. of Computer
Science, Tech. Rep., 2005.

[5] L. V. Kale, G. Zheng, C. W. Lee, and S. Kumar, “Scaling applications to massively
parallel machines using projections performance analysis tool,” in Future Generation
Computer Systems Special Issue on: Large-Scale System Performance Modeling and
Analysis, vol. 22, no. 3, February 2006, pp. 347–358.

[6] C. Mei, “Message-driven parallel language runtime design and optimizations for
multicore-based massively parallel machines,” Ph.D. dissertation, Dept. of Computer
Science, University of Illinois, 2012.

[7] NVIDIA, CUFFT library Version 10, 2018. [Online]. Available: https://developer.
nvidia.com/cufft

[8] M. Frigo and S. G. Johnson, “The design and implementation of FFTW3,” Proceedings
of the IEEE, vol. 93, no. 2, pp. 216–231, 2005, special issue on “Program Generation,
Optimization, and Platform Adaptation”.

[9] NVIDIA, CUDA Toolkit Documentation - nvprof, 2018. [Online]. Available:
https://docs.nvidia.com/cuda/profiler-users-guide/index.html#nvprof-overview

[10] M. Harris, How to Optimize Data Transfers in CUDA C/C++.

[11] M. Harris, Unified memory in CUDA 6.

34

https://developer.nvidia.com/cufft
https://developer.nvidia.com/cufft
https://docs.nvidia.com/cuda/profiler-users-guide/index.html#nvprof-overview

	Chapter 1 Introduction
	Chapter 2 Charm-FFT
	Charm-FFT Implementation
	Charm-FFT Performance
	Effect of Decomposition Size on Communication

	Chapter 3 Charm-NodeFFT
	Overview
	Modification Detail
	Performance Analysis of Charm-NodeFFT
	Testing for the Correctness
	Multithreading Optimization
	Number of Communications
	Comparison with Charm-FFT
	Current Problem of Charm-NodeFFT

	Chapter 4 Accelerator Usage for FFT Operations
	Modifications to Charm-NodeFFT
	Performance
	Data Transfer Time

	Chapter 5 Multi-Instance FFT
	Modifications to Charm-NodeFFT
	Performance
	Test Design
	Multi-instance handling comparison

	Chapter 6 Conclusion
	References

