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ABSTRACT

Graph matching or network alignment refers to the problem of matching two
correlated graphs. This thesis presents a deep Q learning based method,
which represents the matching process by a graph neural network. By break-
ing the symmetry, the parameterized graph neural network is able to capture
a wide range of neighborhoods. Extensive experiments on various training
and testing data have shown better performance, strong scalability and the
ability to adapt to different domains.
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement and Background
Graph structured data is becoming increasingly prevalent for modeling com-
plex relationship among entities. Many types of real-world data, for example,
the user data on social networks, gene data on biological regulatory networks,
log data on telecommunication networks, or text documents on word embed-
dings all have a graph structure. Recently, both combinatorial methods and
statistical models applicable on such network data have been active areas of
research.

In this thesis, we address the graph matching/network alignment problem,
where two partial views of the network are provided, but node identities are
ambiguous. This problem has been widely studied in many scientific ap-
plications, such as computer vision, biology, social network analysis, and
linguistics. Specifically, applications of graph matching include the follow-
ing: (1) finding the same user in two anonymized social networks by graph
structure [1], [2], [3]; (2) matching similar patterns in multiple images [4],
[5], [6], [7], [8], [9]; (3) matching protein-protein interaction (PPI) networks
in biology to understand the similarity between proteins of two species [10],
[11], [12], [13]; (4) reconciling databases by aligning their database schema
[14], [15]; and (5) other interesting applications on social network, chemistry
or biology [16], [17].

In all the above applications, we often assume the two graphs to be cor-
related. For example, in the PPI network, as evolution transfers metabolic
processes from species to species, PPI networks of two species can be seen as
highly correlated. Then researchers can transfer their knowledge of proteins
across species by identifying the correspondence of the protein in multiple
PPI networks.
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Graph matching/network alignment specifically refers to the problem of
finding a bijective mapping of vertices from one graph to another. A mis-
match for such mapping happens when two vertices are connected in one
graph, while their mapped vertices are not connected in another. If two
graphs are isomorphic, there exists a matching that has no mismatches.
Graph matching is then reduced to graph isomorphism and this problem
is called exact graph matching. However, in general, such perfect matching
may not be feasible. In this case, graph matching tries to find a mapping
that minimize the number of mismatches and this type of problem is said to
be inexact graph matching.

As an example, a node represents a user in a social network and an edge
is a unidirectional contact relationship with another user. We are given two
graphs without node identities. G1(V1, E1) is the Facebook network of a
group of users and G2(V2, E2) is the Twitter network of the same group. In
this case, |V1| = |V2| = n. But the two graphs may not be isomorphic because
some users may not add all their Facebook contacts on Twitter. Our task is to
find one-to-one mapping f : V1 → V2 such that any two users (u1, v1) ∈ E1 iff
(f(u1), f(v1)) ∈ E2. This problem is more difficult when only the topologies
of two graphs are available, i.e., the nodes are unlabeled. In this thesis, we
mainly focus on the scenario that (1) two graphs have the same size, and (2)
every node has to be matched to exactly one node in another graph.

Finding such optimal matching is computationally challenging. Let G1 and
G2 be the adjacency matrices of two graphs. Mathematically, the problem
above is expressed as finding a permutation matrix P such that:

P = argmin
X∈Π

||G1 −XG2X
T ||2F (1.1)

where Π is the set of all permutation matrices of size n×n. By expanding the
square in (1.1), we can obtain an equivalent quadratic assignment problem
(QAP) formulation:

P = argmax
X∈Π

Tr(G1XG2X
T ) (1.2)

QAP is NP-hard to solve exactly. It was also proven that QAP does not have
an approximation algorithm running in polynomial time for any (constant)
factor, unless P = NP [18]. As a special case of QAP, graph isomorphism is
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to solve ||G1 −XG2X
T ||2F = 0. It is still unclear if graph isomorphism is in

P or not.
Recent advances in deep learning and specifically the graph neural net-

works have brought new insights into using deep neural nets to solve combi-
natorial problems on graphs approximately.

In this thesis, we present a new graph neural network based algorithm
to solve graph matching problems. The empirical results show that our
algorithm has better performance in terms of accuracy, scalability and speed
compared to the state-of-the-art algorithms.

1.2 Related Works
Prior works on graph matching can be divided into the following categories:

Optimization: These works are based on relaxation of QAP problem
(1.2). Zhao et al. [19] use the semidefinite programming (SDP) relaxation.
While solving an SDP becomes unpractical when the graph size n > 20 due
to the computational complexity. IsoRank [10] relaxed QAP to the integer
quadratic program with some more relaxed constraints. Klau [20] alterna-
tively uses a linear programming relaxation and solves it iteratively. Netalign
[21] relaxed this problem as an integer quadratic programming problem and
solves it with message passing.

Spectral Methods: EigenAlign and LowRankAlign proposed by Feizi et
al. [22] are two spectral methods based on another relaxation of the QAP,
which achieves high accuracy and time complexity of O(n2). But both SDP
and spectral methods fail on regular graphs whose spectrums have repeated
eigenvalues. There are other algorithms that use heuristics to approximate
the solution.

Heuristic Methods: In the area of computational biology, many heuris-
tic methods have been proposed to match the PPI networks, which typically
minimize a convex cost function as a combination of structure similarity.
These examples include: GRAAL [13], [12], MAGNA [11], and SPINAL [23].

Embeddings Methods: In the area of data mining, many graph match-
ing problems are based on calculating the embedding of nodes and match
them by similarity of embeddings. Generally, the embeddings can be com-
puted by (1) local neighborhood [24], [25] and (2) recursive features [26],
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which gather local neighborhood information iteratively and thus include
information from a wider region. The embeddings are often gathered by
heuristics and designed for a specific data domain.

Percolation Methods: Percolation graph matching (PGM) is one of the
most scalable algorithms which is based on percolation theory. While it
requires an initial seed to start the percolation. The performance of match-
ing highly relies on the quality of the initial seed. It assigns the embed-
dings of each node based the matched subgraph. This line of research is
widely analyzed under random graphs and implemented for social network
deanonymization. PGM was first proposed independently by [1] and [27].
Improvement of the dependence of the initial seed was proposed by [28]. An
analysis of a simple method of invoking the initial seed in a seedless setting
was proposed in [29].

Graph Neural Network Based Embeddings: Nowak et al. [30] com-
pute the embeddings of the nodes by a parameterized graph neural network,
which resembles the recursive embedding in [26]. They trained the neural
network in a supervised settings which assumes a ground truth. The accuracy
of matched nodes is the best among all the existing work.

With the advancement of the graph neural network, another line of research
focuses on applying the graph neural network on combinatorial problems.

Graph Neural Network: The graph neural network parameterizes the
embedding of the nodes by applying linear combinations of local graph op-
erators like graph adjacency or the graph Laplacian, and then applying non-
linear functions. It has better representational power of structured data and
demonstrated breakthrough performance on tasks like link prediction, and
graph classification [31]. Further improvement of the performance by atten-
tion mechanism was presented in [32] and [33].

Reinforcement Learning on Combinatorial Problems: Bello et al.
[34] first proposed the applications of the deep reinforcement learning on
combinatorial problems on graphs. In [35] and [36], the graph neural network
was applied on several graph combinatorial problems. Kool and Welling [37]
applied the attention network on the Euclidean TSP problem.

Among all the graph matching techniques, spectral methods proposed by
Feizi et al. [22] and Nowak et al. [30] have the highest accuracies, which will
be used as baselines in this thesis.
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CHAPTER 2

GRAPH MATCHING BY PERCOLATION
AND REINFORCEMENT LEARNING

2.1 Problem Definition
Given two undirected graph G1(V1, E1) and G2(V2, E2), |V1| = |V2| = n, our
task is to find one-to-one mapping f : V1 → V2 such that (u1, v1) ∈ E1 iff
(f(u1), f(v1)) ∈ E2. We use A1,2 to denote the adjacency matrix respectively.
Then the problem is:

P = argmin
X∈Π

||A1 −XA2X
T ||2F (2.1)

where Π is the set of all permutation matrices of size n× n.
Let a pair (i, j) represent a pair of nodes in each graph, where i, j ∈ V1,2.

Let a couple [u, v] ∈ V1 × V2 represent a pair of nodes across two graphs.
We propose to solve this problem in a greedy manner, which matches one
couple at each step until all the nodes are matched. The next couple we
choose depends on the current matching. Let M be an n× n binary matrix
where M(u, v) = 1 means that node u in network G1 is mapped to node
v in network G2. In this setting, each node in one graph can be mapped
to exactly one node in the other graph, i.e.,

∑
u M(u, v) = 1 for all v, and

similarly
∑

v M(u, v) = 1 for all u.

2.2 Percolation Graph Matching
Based on the percolation theory, percolation graph matching (PGM) requires
an initial seed, which is a set of pre-matched couples A0 ⊂ V1× V2. The goal
is to find a bijective map, i.e. a set of couples M ⊂ V1 × V2 such that every
node appears in exactly one couple in M . PGM is a class of algorithms
that iteratively expand A0 to M by adding new couples [i, j′] at each step
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to current partial matching A. This algorithm stops until all the possible
couples have been added.

Input: G1(V1, E1), G2(V2, E2), initial seed A0 and threshold r
Output: The set of matched couples M
for all couples [i, j′] ∈ A0 do

add one score to all the neigboring couples of [i, j′]
if the score of [r, s′] > r and V1(r) /∈ E1 and V2(s

′) /∈ E2 then
add [r, s′] to A0

end
end
M ← A0

return M
Algorithm 1: Percolation Graph Matching (PGM)

This algorithm is greedy as it picks the best couple to add to current
matching at each iteration by looking at current partial matching. Alterna-
tively, deep Q learning picks the best couple to add to current matching by
looking at Q value which is global. So the idea of this thesis is to seek a way
of learning a good Q function.

2.3 Reinforcement Learning Formulations
We aim to learn a parameterized Q function that measures the quality of long-
term reward for the current action in the context of current matching. For a
current matching S, the next couple [u, v] to add to current S is chosen by
maximizing Q. Let t = {0, 1, · · · , n} denote the number of steps. Specifically,

1. State: A state S is current matching. Initially, S0 = ∅. It can be
represented by an ordered list St = ([u1, v1], [u2, v2], · · · , [ut, vt]).

2. Action: An action a is the current couple at = [ut, vt] we pick from all
the valid couples to add to the current matching.

3. Transition: The transition is deterministic here. St+1 = St

∪
at.

4. Reward: r(St, at) at state St is defined as the change in total re-
ward function R =

∑n
i=1 r(St, at), which should be consistent with

the matching loss.

6



5. Policy: During testing, we pick an action at each step by greedy policy
π(at|St) := argmaxa Q(St, a;G1, G2, θ).

Figure 2.1 shows an example of the matching process. The blue unmatched
candidate pair is chosen by considering the current matched pairs and un-
matched nodes.

u1

u2

u3

v1

v2

v3

unmatched nodes
matched pairs
unmatched candidate pair

Figure 2.1: Illustration of state and action

2.4 Reward Function
The matching loss we consider for a permutation matrix is X ∈ Π is ||A1 −
XA2X

T ||2F . We propose a consistent reward function, which can be computed
directly at each step via counting patterns in subgraphs.
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Figure 2.2: Illustration of match, mismatch, and neutral subgraphs

Definition 1. Suppose G1 = (V1, E1) and G2 = (V2, E2) are undirected
graphs. Let (i, r) ∈ V1 and (j, s) ∈ V2 where M(i, j) = 1 and M(r, s) = 1.
Then,

• � (i, j) and (r, s) are matches if (i, r) ∈ E1 and (j, s) ∈ E2.

• � (i, j) and (r, s) are mismatches if only one of the edges (i, r) and (j, s)

exists. �

• (i, j) and (r, s) are neutrals if none of the edges (i, r) and (j, s) exists.

Here we use the following reward function:

r(St, at) = α1 ×# of matches + α2 ×# of mismatches + α1 ×# of neutrals
(2.2)

2.4.1 Node Embeddings

We expect the Q function should take into account the current matching
and also the structure similarity of two graphs. We first use a graph neural
network to compute the embedding of each node, and then aggregate the
embeddings to estimate Q values at the current step. We initialize the em-
bedding µ

(0)
v ∈ Rp at each node as zero vector. And for all v ∈ V1

∪
V2, we
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update the embeddings at each iteration as:

µ(t+1)
v = BN(t)ReLU(xvθ

(t)
1 + (

∑
u∈Γ(G1)

µ(t)
u )θ

(t)
2 +

(
∑

u∈Γ(G2)

µ(t)
u )θ

(t)
2 + (

∑
u∈Γ(G̃)

µ(t)
u )θ

(t)
3 ) (2.3)

where θ
(t)
1 ∈ Rp, θ(t)2 ∈ Rp×p, θ(t)3 ∈ Rp×p are trainable parameters; xv = 1 if

v is already matched; t = 0, 1, · · · , T denotes the number of layers.
Alternatively, we can write this in a matrix form:

Y (t+1) = BN(t)ReLU(Xθ
(t)
1 +

∑
J

[
A

(J)
1

A
(J)
2

]
Y (t)θ

(t)
2

+

[
M

M⊤

]
Y (t)θ

(t)
3 + b(t)) (2.4)

where Y (t) ∈ R(n1+n2)×p is the concatenation of node embeddings of two
graphs. A

(J)
1,2 = zero diagnalmin(1, AJ) encode J-hop neighborhoods of each

node in each graph. This allows us to aggregate local information in different
scales, which is useful to break the symmetry in regular graphs.

Figure 2.3: Example of breaking symmetry in regular graphs

Figure 2.3 gives us an example of the importance of wide range information.
At first step, if we only encode one-hop neighborhoods, all the nodes have
the same embedding, thus, there is a possibility to match u1 to v5. However,
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two-hop neighborhoods allow us to break the symmetry between u1,2,3,4 and
u5,6,7. It is natural to match two rectangles and two triangles in any order.

2.4.2 Parameterizing Q functions

We use the embedding at the last layer Y (T ) to represent the Q function. For
current matching S and action [u, v], the Q value is computed by:

Q(S, [u, v];G1, G2) =

θT4 ReLU(ReLU([
∑
u∈V1

µ(T )
u θ5,

∑
v∈V2

µ(T )
v θ5, µ

(T )
u θ6, µ

(T )
v θ6, w(u, v)θ7])θ8 + b)

(2.5)

where θ4 ∈ R5pθ5 ∈ Rp×p,θ6 ∈ Rp×p, θ7 ∈ R6×p,θ8 ∈ R5p×5p,b ∈ R5p, [·, ·] is
the concatenation operator.

W = (A1MA2, A1I, IA2, A
2
1MA2

2, A
2
1MA2, A1MA2

2) ∈ R6×n×n is a tensor
to break the symmetry for [u, v] couple. Here w(u, v) ∈ R6 is six-dimensional
vector.

As shown in Figure 2.4, after the first step, u2, v2, u3, v3 are matched.
When we consider the next step, according to the symmetry of the current
partially matched graph, the embedding of u1, v1, u4, v4 should be exactly
the same. However, for possible remaining couples, if the Q value is simply
represented by the embeddings, i.e. Q = h(µu1,4 , µv1,4), it cannot distinguish
between couple [u1, v1] and [u1, v4]. Thus, we have to break the symmetry
according to the current matched couples.

It is natural to count the number of paths through matched couples be-
tween any unmatched couple [u, v] in Figure 2.5 to break the symmetry. The
number of the first path between u and v is [A1MA2]u,v. Similarly, we can
count the number of the other three paths. As we can see from Figure 2.4,
although the embedding of u1, v1, u4, v4 are the same, the number of first
paths between u1 and v1 is different from the number of second paths.

As shown in Figure 2.6, for any unmatched couple [u, v] we use a six-
dimensional vector Wuv to represent the counts of different paths. Together
with the embeddings, we can parameterize the Q function.
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Figure 2.4: Example of breaking symmetry in matched graph

Figure 2.5: Different kinds of paths
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Figure 2.6: Counting paths between u and v

The overall neural network architecture is illustrated by Figure 2.7.

Figure 2.7: Neural network architecture

We first compute the embeddings of two graphs by a multilayer graph neu-
ral network to get Y . Then, we select the action by finding the largest valid
unmatched couple in the Q table. This method can be seen as an extension
of the PGM algorithm because they both use the number of matches added
to partial matching as the measurement of quality of a new couple. However,
DQN can find the first match by using only two graph structures without
any initial seed. The graph neural network representation of the Q function
allows us to encode the information we need (e.g. the number of neighboring
couples), which provides more flexibility.
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CHAPTER 3

TRAINING: Q LEARNING

3.1 Training Algorithm
We use the standard DQN training strategy [38], [39] for training the Q
network.

Output: Q∗

Initialize replay memory D to capacity N

Initialize Q functions Q1 and Q2 with same weights θ1 = θ2 = θ for
episode e = 1, 2, ...E do

Draw random graphs (G1, G2) from some distribution
for step t = 0, 1, 2, ... do

at =

maxv Q1(st, v), w.r.p. 1− ϵ

random action, w.r.p. ϵ

from environment, get rt, st+1, add transition tuple
(st, at, rt, st+1) to D.

Sample a mini-batch of transitions (sj, aj, rj, sj+1) from D.

set yj =

rj terminate atj + 1

rj + αmaxv Q2(sj+1, v) otherwise
perform a gradient descent step on square loss
(yj −Q1(sj, aj)) w.r.t weights θ1

every C steps, reset Q2 ← Q1 by copying weights
end

end
Algorithm 2: Training Algorithm

13



3.2 Validation and Testing
During testing, for each particular graph pair, we use a greedy policy to
choose the next action. However, the Q function is computed by the matched
nodes and structure of two graphs. When there are only a few matched
couples, the Q function may not be accurate enough for picking the correct
action. We apply the Q function guided tree search to alleviate the inaccurate
Q function. As Figure 3.1 shows, instead of exhaustively searching for all the
possible actions, at the t step, the agent only searches among the top B

actions a that maximize the Q(st, a). For each step, we search down D steps
and pick the action that maximizes Q values or the sum of rewards after D

steps. Thus, we can fix the breadth B and depth D of the tree. However, the
tree search and back-tracking are still time-consuming. We set two thresholds
to trigger the tree search. At the t step, we only do a tree search when t is
less than T0 and the gap of the top two Q values is less than G.

Figure 3.1: Q value guided tree search

Throughout the thesis, we set B = 10, D = n, T0 = 40, G = 3 for testing
all datasets.
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CHAPTER 4

EXPERIMENT

4.1 Experiments Details
We demonstrate our methods on synthetic datasets.

1. Matching the Erdos-Renyi Graph: We consider A1 to be an Erdos-
Renyi graph with density p, A2 is a small perturbation of A1 according
to the following model:

A2 = A1 ⊙ (1−Q) + (1− A1)⊙Q′ (4.1)

where Q and Q′ are binary random matrices whose entries are drawn
from i.i.d. Bernoulli distributions are such that P (Qij = 1) = q and
P (Q′

ij = 1) = pq
1−p

.

2. Matching Random Regular Graph: We generate random regular graph
A1 by [40], A2 is generated by the same small noise perturbation model
according to (4.1).

3. Architecture: For our experiments, the number of layers is 10, the
number of features is 32, and the batch size is 32.

4. Training: We use a learning rate of 10−4 with the Adam optimizer
and initialize all of our parameters with the Gaussian distribution
N (0, 10−6). We also use an exploration probability ϵ that is reduced
from 1.0 to 0.05 linearly. The discount factor is set at 0.8.
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4.2 Performance Comparisons
We evaluate our model by two measures: loss and recovery rate. For a match-
ing, we compute the loss by using corresponded permutation matrix X as
L(X;A1, A2) = ||A1−XA2X

T ||2F . According to the small noise perturbation
model (4.1), we set the ground truth permutation matrix of both Erdos-Renyi
graphs and random regular graphs as identity matrices. The recovery rate is
simply measured by the average number of correct pairs compared with the
ground truth. We compare the performance of LowRankAlign (k = 4), GNN
and our RL model on the Erdos-Renyi graphs and random regular graphs.
All graphs have the same size n = 50, same density p = 0.2, and the noise
level q ranges from 0.00 to 0.05. For each noise levels, we report the mean
and standard error on 100 experiments.

Our model is trained on n = 50, p = 0.2, q = 0.05 Erdos-Renyi graphs and
tested on both Erods-Renyi graphs and random regular graphs.

0.00 0.01 0.02 0.03 0.04 0.05
Noise

0

5

10

15

20

||A
−
PB

PT
||2 F

LowRankAlign(k=4)
RL
GNN

Figure 4.1: Loss on Erdos-Renyi graph
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Figure 4.2: Loss on the regular graph
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Figure 4.3: Recovery rate on Erdos-Renyi graph

17



0.00 0.01 0.02 0.03 0.04 0.05
Noise

0.2

0.4

0.6

0.8

1.0

Re
co
ve

ry
 R
at
e

LowRankAlign(k=4)
RL
GNN

Figure 4.4: Recovery rate on the regular graph

We present our performance in Figures 4.1, 4.2, 4.3 and 4.4 by the metrics
and standard error. We observe significant improvement of performance on
the Erdos-Renyi graphs. Though our model and GNN have similar recovery
rates on regular graphs, our model has lower losses.

We also compare the results on testing Erdos-Renyi graphs (n = 50, p =

0.2, q = 0.03); each experiment is repeated for 50 instances except the SDP
method, which is repeated for five instances. The results are shown in Table
4.1.

Table 4.1: Performance comparisons of different algorithms

Methods Loss Recovery Rate
cSDP [41] 26.65± 0.49 22.4%± 3.86%

IsoRank [10] 25.25± 0.19 35.93%± 1.4%

Klau’s [20] 26.58± 0.07 11.3%± 0.6%

NetAlign [21] 26.54± 0.07 10.14%± 0.5%

LowRankEigenAlign (k = 8,c = 3) [42] 24.23± 0.18 43.1%± 1.2%

LowRankAlign (k = 4) [22] 20.22± 0.16 49.55%± 0.9%

PGM (a0 = 10) [27] 21.89± 0.11 20.22%± 1.7%

Canonical Labeling (h = 10) [29] 31.19± 0.07 1.8%± 0.3%

GNN [30] 8.52± 0.28 95.5%± 0.4%

RL (ours) 6.83± 0.33 97.55%± 0.6%
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4.3 Generalization on Larger Graphs
To measure the scalability, we train our model on n = 20, p = 0.2, q = 0.05

Erdos-Renyi graphs and test on larger Erdos-Renyi graphs. As a comparison,
the GNN model is trained on n = 20, p = 0.2, q = 0.05 Erdos-Renyi graphs
with default hyper-parameters.

Table 4.2: Generalization on larger graphs and comparison with GNN

Train
RL(n = 20) GNN(n = 20)

Loss Recovery Rate Loss Recovery Rate
n = 100 15.89± 0.95 95.64%± 0.55% 44.68± 0.08 25.44%± 0.6%

n = 200 22.31± 2.41 97.42%± 0.82% 89.49± 0.06 6.25%± 0.17%

n = 400 77.73± 8.53 87.09%± 3.80% 178.94± 0.06 1.63%± 0.04%

As Table 4.2 shows, the rows are testing performance with various sizes,
the columns are different training data. Our method has much higher gen-
eralization performance compared to the GNN method. It can match two
graphs that have size n = 400 by training on small graphs (n = 20). We
omit the results when n > 400 due to computational time restrictions.

4.4 Generalization across Graph Types
To understand what kind of training data has better generalization ability
on other graphs, we train our model on small noise graphs, random regular
graphs with fixed size n = 50 and density p = 0.2.

Table 4.3: Generalization across training data types

Noise q
q = 0.01 Erdos-Renyi q = 0.05 Regular
Loss Recovery Rate Loss Recovery Rate

0.01 ER 12.81± 0.93 75.2%± 4.3% 25.71± 0.15 2.56%± 0.9%

0.01 10.53± 1.14 64.92%6.4% 23.37± 0.06 2.88%± 0.5%

0.05 ER 15.67± 0.75 63.6%± 5.3% 25.50± 0.09 1.2%± 0.2%

0.05 15.89± 0.90 45.4%± 6.4% 23.76± 0.07 2%± 0.3%

Table 4.3 shows that training on Erdos-Renyi graphs has the most gener-
alization power. Training on graphs with large noise can generalize on the
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graphs with smaller noise, which verifies the intuition that training on harder
examples can lead to generalization on easier samples.

4.5 Simulation Time
The testing time is directly related to the depth, width and threshold of the
tree search. For all sizes of graphs, we use the settings for the tree search
and report the average testing time among 50 instances (see Table 4.4). All
of our experiments are computed on one single GPU.

Table 4.4: Simulation time

Time(seconds)
n = 20 19
n = 50 69
n = 100 314
n = 200 872
n = 400 2469
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CHAPTER 5

CONCLUSION

In this thesis, we presented a reinforcement learning-based algorithm for
matching two correlated graphs. The main contribution of the algorithm is
the architecture of the graph neural network, which breaks the symmetry of
a matched subgraph. The reward design and shaping makes it flexible under
other settings like overlapping matching or different sizes. We demonstrated
better performance in terms of the number of mismatches on various datasets.
By training on small but hard examples, our method is able to generalize to
larger graphs and graphs from different distributions, which makes it useful
in real datasets.
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