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ABSTRACT 

 

 The application of semiconductor nanocrystals known as quantum dots (QDs) to biology 

in the past few decades has advanced the field of single-molecule biology by allowing for long 

time-scale tracking of individual biomolecules.  However, QD single-molecule imaging studies 

have almost been exclusively limited to the extracellular space, due to limitations in intracellular 

delivery techniques and a limited understanding of how nanoparticles behave in the intracellular 

space. 

 In the first half of this thesis, a new analysis methodology is developed to quantitatively 

assess the intracellular delivery of QDs.  We present a method for using single-molecule imaging 

and subsequent single-particle tracking (SPT) of QDs delivered to the cytosol of living cells to 

assess delivery efficiency and uptake mechanisms.  In this method, single quantum dot mobility 

information is used in conjunction with single-molecule brightness measurements to develop 

novel single-cell metrics of delivery efficiency.  These metrics are used to investigate the impact 

of different nanoparticle surface properties on intracellular delivery and fate.  We investigate the 

delivery of a series of QDs designed with diverse surface properties.  This comparison revealed 

new insights into particle uptake and endosomal escape, as well as the discovery that zwitterionic 

surfaces are uniquely suited for intracellular mobility.  Additionally, this new analysis 

methodology was validated by established experimental approaches and analysis of simulated 

single-particle trajectories. 

The second half of this thesis applies the aforementioned tools towards two applications.  

The first application is to quantitatively evaluate QD labeling of intracellular proteins in live 

cells.  This was achieved by delivering QDs conjugated to biorthogonal functional groups to 

label a target protein and developing a new colocalization-based metric to quantify the degree of 

protein target labeling.  We present evidence of protein target labeling by using this single-

trajectory level colocalization metric in combination with nanoparticle mobility measurements.  

The second application is toward accurate measurement of hydrodynamic size of colloids with 

dimensions smaller than 100 nanometers (nm).  We develop a new method using widefield 

fluorescence microscopy and SPT to measure nanoparticle size and demonstrate accurate single-

molecule size measurements of a homogeneous nanoparticle population with hydrodynamic 

diameter of approximately 20 nm. 
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CHAPTER 1: INTRODUCTION 

1.1 Introduction 

Quantum dots (QDs) are semiconductor nanocrystals with unique optical and electronic 

properties.1,2 Originally investigated as components for light-emitting devices, solar cells, and 

catalysts in the early 1980’s, these particles were introduced in 1998 as optical tags for 

bioimaging and biological detection.3,4  The most significant contribution of QDs to biomedicine 

has been in the field of single-molecule fluorescence microscopy, for which they have filled a 

major need for bright fluorescent probes with long-term photostability.  These particles are now 

widely used for imaging the dynamics of individual molecules and the interactions between 

molecules in complex biological environments.   

In this chapter, we first describe the structure and optical properties of QDs.  We then 

explore recent biological questions that have been answered through the implementation of QDs 

as single-molecule emitters, and finally we explore the challenges in delivering QDs into the 

intracellular space for single-molecule studies of live cells. 

 

1.2 Quantum Dot Structure and Optical Properties 

1.2.1 Quantum Dot Structure 

Figure 1.1 depicts a prototypical QD used in single molecule imaging.  The core is a 

nanocrystal composed of a semiconductor material such as cadmium selenide (CdSe) with a 

diameter of 2-6 nm, surrounded by an insulating crystalline shell of cadmium sulfide (CdS) 

and/or zinc sulfide (ZnS).  Fluorescence and light absorption primarily take place in the core; the 

shell serves to enhance and protect the optical and electronic properties of the QD.5,6   The 

crystalline surface facets are coated with organic ligands and/or polymers that stabilize the 
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nanocrystal as a colloidal suspension in biological media and prevent nonspecific adhesion to 

proteins and cellular structures.  These outer layers can be specifically tagged with biomolecules 

such as peptides, nucleic acids, and small molecule ligands.  The most commonly used tagging 

strategy is based on QDs covalently conjugated to streptavidin, a modular protein adaptor that 

binds with high affinity to the small molecule biotin, which is readily linked to various 

biomolecules such as antibodies (see Figure 1.1).7,8 

 

Figure 1.1 Structure of a prototypical streptavidin-coated QD.  See text for details.9 

 

1.2.2 Photophysical Properties 

The most distinctive feature of a QD is its size-tunable fluorescence color (see Figure 

1.2a-b).  If the QD length dimensions are near to or smaller than a critical threshold (the Bohr 

exciton diameter), then the QD is within the “quantum confinement regime”.2 In this size range, 

the wavelength of fluorescence emission is determined by the nanocrystal size.  In the process of 

fluorescence, a ground state QD first absorbs an incident photon which excites an electron to a 

higher energy electronic state.  This leaves behind an empty electronic orbital that behaves like a 

positively charged particle analogous to the negatively charged electron.  When the electron and 
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hole recombine, their energy is converted into a fluorescent photon.  The conversion efficiency, 

or quantum yield (QY), is the number of photons emitted divided by the number of photons 

absorbed, and this value is largely a factor of the quality and thickness of the inorganic shell. 

 

 

Figure 1.2. Optical properties of QDs. (a) Vials containing 5 sizes of QDs composed of CdSe 

dissolved in solution are illuminated with an ultraviolet lamp. (b) Fluorescence spectra of QDs 

depicted in (a). (c) Absorption spectra (blue) and fluorescence spectra (red) of QDs are compared 

with those of a fluorescent protein (mCherry) and  an organic dye (Texas Red), showing the 

broad absorption spectra of QDs and narrow and symmetric fluorescence spectra of QDs. The 

relative sizes of these fluorescent labels are depicted next to their optical spectra.10 

 

1.2.3 Comparison with other Fluorophores 

Four key attributes of QDs are particularly advantageous for single-molecule imaging 

applications relative to other fluorescent reporters such as organic dyes, fluorescent proteins, and 

fluorescent beads.  First, their fluorescence brightness is 10-100x greater than that of organic 

dyes and proteins, which results in a higher signal-to-noise ratio with decreased excitation power 

requirements.3  This effect arises from the crystalline nature of these materials, in which 
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hundreds to thousands of bonding electrons collectively oscillate to generate massive extinction 

coefficients, compared with just tens of electrons in organic dyes and proteins.  Second, their 

emission stability is 100-1000x greater than that of other fluorophores, which enables long-term 

tracking of single molecules without signal decay.3,4,7  This attribute derives from the insulating 

shell, as the QD can withstand oxidation or decomposition of many bonds without detriment to 

the sensitive core bonds in which absorption and emission take place.  This is in contrast to 

organic dyes and proteins, for which breaking a single bond will lead to often irreversible 

fluorescence quenching.  These first two attributes are also characteristic of some fluorescent 

beads, however QDs provide this in a much more compact form (beads are generally an order of 

magnitude larger; see section 1.3).   

Third, QD fluorescence emission bands are narrow and symmetric and their excitation 

bands are broad (see Figure 2c), which allows for the simultaneous excitation of many 

fluorescence colors with little color crosstalk compared to conventional fluorophores. Fourth, 

their color is readily tuned over a broad spectrum by adjusting either the particle size or 

composition, spanning wavelengths of 300-5000 nm, far beyond what is possible with 

conventional fluorophores.  Collectively these attributes are responsible for the capacity to image 

and track multiple distinct colors of individual particles for long durations in complex oxidizing 

environments.  QDs can also be synthesized with a wide range of sizes, shapes, compositions, 

and composite structures, which allows for precise tuning of certain optical parameters (e.g. 

fluorescence lifetime and polarization) that cannot be predictably altered in conventional 

fluorophores.  This tunability is possible due to the well-understood physical laws governing 

QDs derived from decades of study of semiconductor physics, and this tunability has been an 

enabling feature in for their implementation in advanced microscopy techniques.2 
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1.3 Novel Biological Phenomena 

In 2003 and 2004, two seminal reports described the first use of QDs as probes for single 

molecules in living cells and demonstrated the major advantages of QDs over other available 

fluorophores.11,12  In this section, we describe how QDs have become critical tools in the past 

decade for evaluating the dynamics and behavior of biological molecules and for revealing the 

organization and molecular heterogeneity of living cells and tissues. 

1.3.1 Single-Molecule Dynamics 

When QDs are bound to membrane proteins, motor proteins, or other biological 

molecules, patterns emerge from their spatial trajectories that can be used to deduce 

biomolecular behavior.  In single-molecule trajectory analysis, the position of a single emitter in 

an image is first pinpointed in 2 dimensions (x, y) by calculating the centroid of the point spread 

function (PSF), and its displacement is calculated between sequential image frames.  Trends in 

molecular behavior can be found from the mean of the squared displacement (MSD) for a time 

lag τ: 

𝑀𝑆𝐷(𝜏) =  〈[𝑥(𝜏 + 𝑡0) − 𝑥(𝑡0)]2 + [𝑦(𝜏 + 𝑡0) − 𝑦(𝑡0)]2〉 (1.1) 

where x and y denote the position of the particle of interest at a given time, and the angled 

brackets denote a combined average over all increments of time τ.  When MSD values are plotted 

as a function of τ, a linear plot indicates random Brownian motion, while a plot with a decreasing 

slope indicates confined motion and a plot with an increasing slope indicates motion with a 

preferred directional orientation (see Figure 1.3). 
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Figure 1.3. A plot of MSD values as a function of time increment that shows the differences 

between Brownian motion, directed motion, and confined motion.13 

 

For Brownian motion in 2 dimensions, the MSD plot yields the diffusion coefficient (D) by the 

following equation: 

lim
𝜏→0

𝑀𝑆𝐷(𝜏) =  4𝐷𝜏 (1.2) 

The trajectory data can also be used to calculate an instantaneous diffusion coefficient (Dinst), by 

averaging only over a few time points to determine if the molecule diffuses into regions with 

different local environments with characteristic viscosities.  Alternatively, MSD curves can be fit 

to different diffusion models, with model selection being dependent on a priori knowledge about 

the system or statistical comparisons to see which model is best suited for the system.14  QDs are 

particularly effective for Dinst calculations because their brightness offers a greater signal-to-

noise ratio, which allows for more accurate reconstruction of the PSF, low localization error, and 

long duration tracking.  In contrast, organic dyes can only be tracked for a few seconds before 

irreversible photobleaching eliminates the fluorescent signal, and they require much higher 

excitation intensity for detection, which can be detrimental to cellular health. 
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1.3.2 Imaging and Tracking of Membrane Proteins 

The plasma membrane is a heterogeneous, dynamically changing structure that regulates 

the exchange of energy and matter between the cell and the surrounding medium, integrates the 

cell’s mechanical components with the extracellular matrix, and senses environmental change.  

Membrane proteins that mediate these effects exhibit complex behaviors that remain poorly 

understood.  Membrane protein-bound QDs have recently played a key role in elucidating 

membrane protein function, especially for detecting molecular confinement in membrane 

subdomains, and the field of neuronal biology has been one of the greatest beneficiaries of this 

work.15–17  Using QD-tagged receptors for neurotransmitters, receptor behaviors have been 

shown to differ when they are within the neuronal synapse compared to when they diffuse out of 

the synapse, and long-term imaging has allowed observation of the entire endocytosis/exocytosis 

receptor recycling process.12,18  These observations have revealed distinct receptor behaviors in 

the presence of neuromodulatory drugs.19,20  QD studies of plasma membrane proteins have 

connected short-term single-molecule dynamics with long-term molecular behavior that 

previously had not been possible.  For example, QD-tagged receptors for the neurotransmitter 

gamma-aminobutyric acid (GABA) were shown to redistribute in the presence of an extracellular 

gradient of GABA to amplify gradient sensing for nerve growth cone signaling.21  The retrograde 

transport of vesicles containing individual dimers of nerve growth factor (NGF) has been 

observed across the entire length of axons to the soma.22  Growth factor receptor dynamics have 

also been explored in a variety of other cellular systems, and the multicolor imaging capability of 

QDs has played a key role in understanding the dimerization of the epidermal growth factor 

receptor and its transport in the cell after binding to its cognate receptor EGF. 23,24 
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1.3.3 Motor Protein Imaging 

Motor proteins are enzymes that convert chemical energy from ATP into mechanical 

motion to power directional translocation along a substrate.  The cytoskeletal motor proteins 

myosin, dynein, and kinesin traverse cytoskeletal tracks to perform a variety of cellular functions 

such as intracellular cargo delivery and cellular division.  Specific modes of motion of these 

proteins have been established in vitro using purified proteins tagged with QDs, but it is a major 

challenge to deliver QDs into live cells for in vivo verification.  Intracellular delivery 

mechanisms include microinjection, electroporation, osmotic rupture of endosomes, or cationic 

lipid transfection, each of which has certain limitations.10  However studies have confirmed that 

QD-motor protein conjugates exhibit similar behaviors for both kinesin and myosin Va inside 

and outside of cells.25–27  Nucleic acid motors are a second class of enzymes that include 

polymerases, helicases, topoisomerases, and other enzymes involved in the maintenance, repair, 

and replication of genetic material.  The multicolor imaging capacity of QD probes has been 

used to image and map the binding of these proteins to DNA with nanometer-scale resolution, 

which allows precise mapping of enzyme binding locations, such as promoters, across entire 

genomes.28 

QDs have also been instrumental in determining how enzymes that are not powered by 

ATP efficiently scan through entire genomes to find their target sequence.  Simple calculations 

show that 3D diffusion of enzymes and random attachment to DNA alone would not provide the 

efficiency necessary for genomic maintenance and repair. Single-QD imaging has revealed that 

enzymes such as EcoRV, UvrA, UvrB, and N-glycosylases randomly attach to DNA but then 

slide along the DNA while rotating with the helix to scan for their targets.29–31  This 1D search 

process powered by thermal fluctuations is much more efficient than a random-attachment 
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search. 

 

1.4 Challenge of Intracellular Delivery 

It has been a major challenge to adopt QD-based single-molecule live-cell imaging to 

intracellular targets due to the difficulty in homogeneously transporting these nanoparticles to the 

cytoplasm. This mirrors ongoing challenges in the field of gene and antibody therapeutics, for 

which inefficient macromolecular transport continues to be a critical barrier to effective use.32,33  

A multitude of techniques have been developed using chemical carriers such as peptides,34,35 

proteins,11,36 polymers,37,38 and lipids, but the vast majority of payload remains trapped in 

endocytotic vesicles and aggregated.39  Single-cell microinjection39,40 can be effective but its 

exceptionally low throughput is problematic,41 and membrane pore-inducing methods using 

electroporation42,43 and streptolysin toxins44–46 can substantially alter cell physiology.  

Importantly, even when cytosolic delivery is observed using these methods, it is exceptionally 

challenging to definitively and quantitatively establish whether intracellular cargo is free or 

bound, and independent or aggregated.  There have been recent developments of even gentler 

techniques such as cell squeezing47, and photoporation48,49, and it will be imperative to evaluate 

if these techniques can be used to effectively deliver single QDs to the intracellular space.  

 

1.5 Conclusions 

QDs have made an important impact in the past decade in understanding complex 

processes intrinsic to biology with one of the primary areas of impact being measurements of 

single-molecule dynamics, which have been made possible by the unique optical properties of 

QDs.  However, the use of QDs in applications for single-molecule biology applications has 
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largely been limited to the study of either fixed cells or the extracellular space of living cells. 

This has primarily been limited by the challenges in delivering nanoparticles to the cytosol of 

live cells, but with advancement of intracellular delivery techniques, QDs are poised to reveal 

intracellular single-molecule dynamics underlying various subcellular signaling and trafficking 

processes.  
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CHAPTER 2: SINGLE QUANTUM DOT TRACKING TO ASSESS CYTOPLASMIC 

DELIVERY 

 

2.1 Background  

2.1.1 Motivation 

 With the development of new pharmaceutical agents there is a need to deliver 

macromolecules, biologics, and nanoparticles to intracellular targets.  However, processes for 

delivery to the cytoplasm are both inefficient and poorly understood.1–5  Furthermore, current 

approaches to asses these delivery methods rely either on indirect end-point measurements that 

don’t allow for the direct interrogation of mechanisms or on ensemble-level measurements that 

mask single-molecule heterogeneity.6–9  Traditional methods to explore mechanisms include 

fractionation of cell populations to isolate intracellular components, and fixation of cells 

followed by optical or electron microscopy.6  However, the harshness of these treatments has 

been widely observed to introduce artifacts, including fixation-induced translocation of 

exogenous nanoparticles that misled the nanomedicine community for years.10,11  These 

limitations make it impossible to understand intracellular delivery mechanisms and to 

subsequently improve these delivery techniques. 

Live-cell fluorescence imaging has generated some of the most crucial insights in cell 

biology due to the ability to localize specific molecules with high resolution during physiological 

processes.12–15 A major current goal is to analyze the dynamics of individual molecules to discern 

the heterogeneity and mechanisms of molecular processes underlying emergent behaviors at the 

finest level of detail.16–18 However traditional fluorescence probes based on organic molecules 

(fluorescent dyes and fluorescent proteins) are limited in both their duration and intensity of light 
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emission. Semiconductor quantum dots (QDs) have been pinpointed as a next-generation emitter 

for these applications due to their extraordinary stability and bright emission at the single-molecule 

level.19–22 Previous limitations of large size and molecular specificity have recently been addressed 

and QDs are now a key tool for analyzing membrane proteins and dynamic processes in cell 

environments.23–25 

 In this chapter we present a method for using single-molecule imaging and subsequent 

single-particle tracking (SPT) of quantum dots (QDs) delivered to the cytosol of living cells to 

assess delivery efficacy and mechanisms.  In this method, single quantum dot track information 

was used in conjunction with single-molecule brightness measurements in order to develop novel 

single-cell metrics of delivery efficiency. 

2.1.2 Delivery Approach 

 To develop our analysis technique, we focused on one method of delivering QDs to the 

cell cytosol: osmotic pinosome lysis (OPL), a two-step delivery process that manipulates 

extracellular tonicity and natural mechanisms of fluid-phase pinocytosis.26  The first step of OPL 

is to expose cultured cells to the macromolecules or nanoparticles to be delivered mixed with a 

hypertonic delivery media composed of PEG and sucrose.  Exposure to this delivery media 

triggers fluid-phase pinocytosis by which the cells internalize the nanoparticle payload.  The 

second step of OPL is a brief exposure of the cells to a hypotonic media, compose of incomplete 

cell culture media diluted with deionized water.  This triggers the rupture of pinosomes and 

subsequent release of the payload into the cytoplasm (Figure 2.1a).  Cell volume changes and 

membrane “ruffling” indicating pinocytosis were verified by brightfield microscopy (Fig. 2.1b). 
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Figure 2.1. Characterization of QD delivery by OPL in CHO cells. (a) Schematic of OPL depicting 

changes in cell morphology and location of QDs for cells prior to treatment (left), during 

hypertonic loading of QDs (middle), and after hypotonic treatment to rupture pinosomes (right). 

(b) Brightfield images with nuclear stain (blue) demonstrating morphological changes of cells 

undergoing OPL, at stages corresponding to schematics in (a). Scale bars are 10 μm. 

 

 

The proposed mechanism of OPL was further verified at the different steps by examining 

subcellular QD location an internalization by transmission electron microscopy (TEM) of silver 

developed QDs (Fig. 2.2).). 
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Figure 2.2. TEM images of mPEG-QD delivery to A431 cells. QDs were developed with silver to 

increase nanoparticle contrast.27 (a) Cells exposed to QDs in complete medium show QDs 

primarily trapped in endosomes. (b) Cells exposed to QDs in hypertonic loading buffer, showing 

QDs trapped in pinosomes, adhering to the cell membrane, and localized in gaps between cells.  

(c) Cells exposed to QDs in hypertonic loading buffer, followed by addition of hypotonic lysis 

buffer, showing QDs in the cytoplasm near the cell membrane and further inside the cell.  All scale 

bars indicate 2 μm. 

 

Compared to other delivery approaches, the primary advantage of OPL is that it is 

relatively high throughput, allowing for delivery to whole wells of cells simultaneously.  Further, 

if exposure to the hypertonic delivery media and the hypotonic lysis media is limited, OPL has 

relatively low cytotoxicity.  This was confirmed by both cell viability assays and live/dead 

imaging as summarized in Figure 2.3. 
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Figure 2.3. Live/dead and viability after loading and lysis treatments. (a) CCK-8 viability assay 

for the indicated loading and lysis times. (b) Live/dead analysis using Calcein AM and EtH-1 for 

the indicated loading and lysis times.  n = 3 for all experimental conditions.  Error bars in panels 

(a) and (b) indicate s.e.m. Sample images depict loading times of (c) 2.5, (d) 10, and (e) 15 min, 

all with 1.5 min lysis. All scale bars indicate 50 μm. 
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2.1.3 Imaging Approach 

 In order to perform single-molecule imaging of cytoplasmic QDs, we utilized highly-

inclined laminar optical sheet (HILO) microscopy.  HILO microscopy provides similar signal-to-

noise ratio and fast wide-field acquisition to traditional total internal reflection fluorescence 

(TIRF) microscopy.28  However, HILO allows for the acquisition of images at distances greater 

than 100-200 nm above the coverslip-cell interface.28 

 Since we’re using HILO, in order to ensure that we were only imaging and QDs in the 

intracellular space, a cell membrane impermeant QD-quencher was utilized.  In this case, we 

used bromocresol green (BCG), which has strong absorbance around 600 nm that allows it to 

quench emitted fluorescence light of the QDs being used in this study.  As shown by Valentine, 

et. al., BCG does not cross the cell membrane, and it requires access to the surface of the QD in 

order to quench its emission.29  This combination of properties allows BCG to serve as an 

extracellular quencher, which lets us ensure that we’re imaging intracellular QDs exclusively. 

 

2.2 Data and Results 

2.2.1 Analysis Methodology 

 After obtaining HILO fluorescence microscopy movies of intracellular QDs delivery by 

OPL, we preformed single-particle tracking analyzing using the previously mentioned u-Track 

algorithm.30  The resulting single-particle trajectories were then analyzed by two routes: (1) 

diffusion analysis and (2) single-molecule optical analysis. 

2.2.1.1 Mobility Analysis 

As previously described, mean-square displacement (MSD) analysis is a powerful tool to study 

the random motion of particles that is often used to interpret SPT results.  A common model for 
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intracellular diffusion is the anomalous diffusion model, which is given as 

𝑀𝑆𝐷(𝜏) = 4𝐷𝜏𝛼 , (2.1) 

where MSD(τ) is the mean squared displacement as a function of time lag, τ, D is the diffusion 

coefficient and α is a unitless confinement parameter.  In the anomalous diffusion model, when α 

is equal to 1, then the model simplifies to the Brownian diffusion model; when α < 1, then this 

indicates a subdiffusion or a level of confinement that is typical of the behavior seen in the 

cytoplasm due to macromolecular crowding; and when α > 1, this indicates some form of 

superdiffusion or directed motion, often arising from motor proteins or similar subcellular 

mechanisms.31,32  To make our model more complete and to account for the localization 

uncertainty of the SPT algorithm, the model had to be adjusted to 

𝑀𝑆𝐷(𝜏) = 4𝐷𝜏𝛼 + 4𝜎𝑥𝑦
2 , (2.2) 

where σxy is the average localization error for each trajectory, which is an output parameter of the 

SPT algorithm.  Addition of the localization error to the diffusion model was confirmed to be 

necessary, as when it was left out this led to the appearance of artifactual subpopulations at low 

alpha values, as shown in Figure 2.4. 
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Figure 2.4. Localization error correction. Heat maps compare D versus α plots for intracellular 

QDs with 5 coatings, using the same data from Figure 4a in the main text. (a) Data derived from 

MSD fitting to the anomalous diffusion model without the localization error correction factor. (b) 

Data derived from MSD fitting to the anomalous diffusion model with the localization error 

correction factor. 

 

 Another aspect of the model that had to be optimized was the number of time lag points 

to fit to.  Extensive analytical and simulation work has been done showing that careful selection 

of τfit is necessary for accurate D estimations.33,34  Extensive recommendations have been for 

fitting to a Brownian motion models.35,36  However, the literature reports on anomalous diffusion 

are more sparse.  Kepten and colleagues recommend that τfit be fixed as 10 time lags for 

anomalous diffusion, given for tracks in the regime of strong subdiffusion to weak superdiffusion 

(α = 0.3-1.3) with low localization error.37  However, given the nature of QDs diffusing in and 

out of the focal plane that yields many trajectories that are shorter than 100 frames, it was 
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necessary to determine an alternative for such short trajectories.  Thus, we used a variable 

definition for τfit, where τfit is 10 frames if the trajectory length is shorter than 100 frames and τfit 

is defined as ¼ of the total trajectory length. 

2.2.1.2 Optical Analysis 

Parallel to the diffusion analysis, single-molecule brightness values were analyzed to 

extract information about the number of QDs in a detected spot or trajectory.  As the measured 

average size of a single QD is significantly smaller than the diffraction limit of 600 nm 

wavelength light, small clusters of QDs and single QDs would all appear as diffraction-limited 

spots in fluorescence microscopy.  However, since the QDs synthesized in our lab have a 

relatively uniform and narrow distribution of brightness values when measured diffusing in 

glycerol (Fig 2.5), it’s possible to infer the number of QDs present in a given spot or trajectory 

by evaluating the fluctuations in the single-molecule brightness. 

 

Figure 2.5. Distributions of maximum single-particle relative brightness (𝐵rel
max ) for QDs (a) 

immobilized on a glass coverslip or (b) diffusing in 98% glycerol, demonstrating uniform 

brightness in a cell-free environment. f = frequency. 

 

Brightness measurements were taken as previously described by averaging the intensity over a 3x3 

pixel area centered on the tracked coordinates for each trajectory in each frame.  From these 

intensity time traces, it was possible to extract the maximum relative brightness for each trajectory 

(𝐵rel
max). 
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A well-known property of single QDs is their fluorescence intermittency, also known as 

“blinking”.38 This property allows us to identify single QDs, as they exhibit a clear “off” stat and 

one “on” state at a single intensity, as opposed to clusters of QDs exhibit multiple “on” 

intensities (Fig 2.6). 

 

Figure 2.6. For optical analysis, the brightness per trajectory at each time point, B(t), is analyzed 

to determine its maximum relative value, 𝐵rel
max, to calculate the number of QDs per cluster, nQD. 

Representative data show intensity time traces of a single QD (red) a QD cluster (black). 

 

For each cell, the mean single-QD brightness (𝐵rel
1 ) could be calculated by identifying the 

center-value of the first peak in the corresponding 𝐵rel
max distribution by using the first derivative 

of this distribution, which is defined by the following equation: 

𝐵rel
1 =  (

d𝑁

d𝐵rel
max)

0,1

 
(2.3) 

where N is the number of trajectories as a function of 𝐵rel
max.  

 The calculated vale of 𝐵rel
1  could be used to convert all of the 𝐵rel

max values for that cell to 

the more concrete value of nQD, the number of QDs in that trajectory, by the following formula: 

𝑛QD =
𝐵rel

max

𝐵rel
1 , (2.4) 
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2.2.1.3 Defining New Single-Cell Metrics 

 Using the trajectory-level information of D, α, and nQD we were able to define a number 

of novel single-cell metrics to quantify the intracellular state of the delivered QDs in the terms of 

their mobility and clustering.  These included the fmobile, the fraction of mobile trajectories; f1, the 

fraction of trajectories that consisted of single-QDs; and f1,mobile, the fraction of trajectories that 

are both single-QDs and mobile.  The relationship of these subsets to each other and which 

analysis methodology the derive from are summarized in Figure 2.7. 
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Figure 2.7. Schematic of combined single particle mobility and clustering analysis. Single particle 

trajectories (x(t),y(t)) are extracted from raw image stacks of I(x,y), and each trajectory is analyzed 

by diffusion (left) and optical metrics (right). For diffusion analysis, mean squared displacement 

(MSD) curves for each trajectory are fit to an anomalous diffusion model to yield a diffusion 

coefficient, D, and confinement parameter, α. These values for each trajectory are aggregated 

across all cells for a given experimental condition and thresholds are imposed to determine the 

mobile fraction, fmobile. For optical analysis, the brightness per trajectory at each time point, B(t), 

is analyzed to determine its maximum relative value, 𝐵𝑟𝑒𝑙
𝑚𝑎𝑥, to calculate the number of QDs per 

cluster, nQD. The distribution of all 𝐵𝑟𝑒𝑙
𝑚𝑎𝑥 values for each cell is then analyzed to extract the fraction 

that is single, f1, and the average number of QDs per cluster, 𝑛𝑄𝐷̅̅ ̅̅ ̅, and then aggregated across all 

cells for each experimental condition. The diffusion and optical analyses are then combined to 

analyze specific particle populations to determine the fraction that are both single and mobile, 

f1,mobile, represented in the Venn diagram at center. Parameters in rectangles are determined for each 

trajectory, whereas parameters in rounded boxes are determined for a population of QDs in a one 

cell or multiple cells. 

 

 The mobile fraction, fmobile, required the selection of threshold values for D and α above 

which a trajectory would be considered mobile and free to diffuse in the cytosol.  These 

threshold values were set empirically by comparing the calculated D and α parameter 

distributions of QD immobilized on a coverslip to both QDs diffusing in an aqueous glycerol 

solution and QDs diffusing in the cell cytosol.  HILO videos from all 3 conditions were 
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processed as previously described to obtain fitted D and α values for all detected trajectories.  

Ultimately, the QD diffusing in the cell cytosol were used as the positive control, because 

detailed investigation showed that on average QDs diffusing in glycerol with similar diffusion 

coefficients stayed in the focal plan for shorter periods of time (Figure 2.8).  This may be due to 

some sort of z-confinement provided by the cells. 

 

Figure 2.8. Track length histograms of QDs in glycerol solution or cells. (a) Track length 

distributions of QDs diffusing in aqueous solutions of glycerol with indicated glycerol weight 

percentage. The percentage of tracks longer than 10 frames is noted for both solutions. The reduced 

number of >10-frame tracks in the 85% glycerol solution sets a maximum value of measurable D 

by 2D SPT. (b) Track length distributions for QDs with the 5 different coatings in CHO cells. Note 

that the pZW-QD and pPEG-QD samples have higher measured D compared with QDs diffusing 

in 98% glycerol because they demonstrate a larger percentage of tracks longer than 10 frames, due 

to z-axis confinement. Data correspond to the same as that of Figure 4a-b. 

 

 One-dimensional receiver operator curve analysis was performed on the immobilized 

QDs and the pZW QDs in cells for both D and α and threshold of D > 0.020 μm2s-1 and α > 0.21 

were set by finding the points that maximized sensitivity and specificity (Figure 2.9). 
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Figure 2.9. Receiver operator curve analysis. (a) Heat map of diffusion coefficient, D, versus 

confinement parameter, α for pZW-coated QDs in cell cytosol. Thresholds imposed for mobility 

are shown as black lines, yielding fmobile shown in each plot. (b) Heat map of D versus α for 

immobilized QDs. (c) Receiver operating characteristic (ROC) curves distinguishing immobilized 

QDs from pZW-coated QDs in CHO cells, independently for D (blue) and α (black). Cutoffs that 

maximize both sensitivity and specificity (D > 0.020 μm2 s-1 and α > 0.21) are marked by red 

circles. 

 

 The fraction of trajectories that represented single QDs, as opposed to small clusters of 

multiple QDs was calculated by the following formula: 

𝑓1 =
∫ 𝑁(𝐵rel

max) d𝐵rel
max𝐵rel

1 +(𝐵rel
1 −𝐵rel

0 )

𝐵rel
0

∫ 𝑁(𝐵rel
max) d𝐵rel

max∞

0

 (2.5) 

𝐵rel
0  is the minimum brightness value of the 𝐵rel

max distribution.  This equation counts the number 

of trajectories that are single QDs by integrating the area under the curve of the single-QD peak 

and divides that number by the total number of trajectories in that cell.  This method of counting 

the number of single-QD trajectories is based on the previous finding that single QDs have 

symmetrical distributions.38  The mean of the single-QD peak was set at 𝐵rel
1 , and the half-width 

of the peak was calculated as the difference between 𝐵rel
1  and 𝐵rel

0 .  With the assumption that the 

single-QD peak was symmetrical the upper bound of the integration was set at 𝐵rel
1  plus the half-
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width, resulting in the integral bounds used in the number of Equation 2.5. 

 This method of setting the upper-bound for the single-QD peak has the possibility of 

misidentifying non-single trajectories as single (false positives).  To account for this, we 

calculated the frequency of incorrect single-QD counts based on the assumption that the single 

QD distribution is symmetrical.  To determine how many of these trajectories were false 

positives, we calculated a maximum false positive fraction (FPR) for each brightness 

distribution, where FPR is defined as the number of trajectories misidentified as single divided 

by the total number of trajectories assigned as single. The number of misidentified trajectories 

was determined by assuming that the single-QD peak was symmetrical, which allowed us to 

estimate the expected number of single trajectories.  This value could be subtracted from the total 

number of trajectories assigned as single to determine the number of trajectories misidentified as 

single.  All cells with false positive ratios greater than 0.25 were excluded from downstream 

analysis, as this indicated that the single-QDs could not be accurately counted for that dataset 

(Figure 2.10). 

 

Figure 2.10. f1 error analysis. (a) Scatter plot of f1 and FPR values. (b) Histograms of FPR values. 

Number of data points are indicated by the area under the histogram. 
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 Since both the D and α threshold used to calculate fmobile and the counting method for 

calculating f1 are independent, we were able to calculate a third metric: f1,mobile, the fraction of 

trajectories that correspond to single-QDs that were “free” in the cytosol.  f1,mobile is perhaps the 

most important metric as this is the desired state for many intracellular nanoparticles. 

 In addition to these fractions, we defined two metrics to quantify delivery efficiency and 

efficacy.  The first parameter is Ncell, the total number of QDs delivered to the cell, can be 

calculated simply by summing nQD for all trajectories: 

𝑁cell = ∑ 𝑛𝑄𝐷

∞

0

=
1

𝐵rel
1 ∑ 𝑁 (𝐵rel

max)

∞

0

 (2.6) 

Similarly, Nmobile can be calculated by only including nQD values from trajectories with D and α 

values above the previously determined thresholds. 

 

2.3 Discussion 

 We describe a new analysis technique combining single-molecule diffusion and 

brightness analysis.  This approach further yielded novel single-cell metrics that can be used to 

interrogate nanoparticle delivery mechanisms and intracellular particle state and final fate.  

Notably, the metrics Ncell and Nmobile are not absolute numbers, as the focal plane in which the 

QDs are imaged is thinner than the thickness of the cell.  However, this limitation could be 

overcome by implementing imaging techniques that extend the z-range and are compatible with 

SPT, such as multifocal plane microscopy.39,40 

 With recent advances in instrumentation, probes, and image analysis software, the 

capacity to perform single-molecule tracking is now widely available.17,41–43  With the new 

metrics we presented, it may be further possible to accurately apply pharmacodynamics models 
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relating dose to efficacy and potency for nanoparticle therapeutics, which present unique 

challenges due to uncertainty of numerous transport parameters.44  Additionally, even though this 

method currently limited to imaging cultured cells, it could also potentially be applied to 

evaluate delivery in living tissues in both intracellular and extracellular domains using imaging 

techniques with both rapid acquisition and high depth penetration, such as spinning disk confocal 

microscopy, light sheet microscopy, or holographic multiphoton imaging.45,46  

 Furthermore, since the parameters underlying the single-cell metrics (i.e. D, α, and nQD) 

are defined for each trajectory there is a potential to define new single-cell metrics or to analyze 

subsets of trajectories with desired qualities.  This could especially have a lot of potential if any 

new trajectory-level information can be extracted for further correlations, such as colocalization 

with another fluorescently label or structure.  Such an application is presented in the fluorescence 

colocalization analysis presented in Chapter 4. 

 

2.4 Methods 

Transmission Electron Microscopy of Cells. Cells were cultured as monolayers on multi-well 

plates and fixed overnight at 4°C with 2.5% glutaraldehyde in 0.1 M cacodylate buffer (pH 7.4). 

Cells were then washed with the same buffer and post- fixed in 1% osmium tetroxide with 1.5% 

potassium ferrocyanide in the same buffer for one hour. The samples were subsequently rinsed 

with 2 or 3 exchanges of de-ionized water, dehydrated through an ethanol series ending with 

three exchanges of 100% absolute ethanol, and then embedded in Eponate 12 resin (Ted Pella, 

Inc.) by placing resin-infiltrated cells in a 60°C oven for 2 days. Upon resin polymerization, 

hardened resin blocks with monolayer cells on the bottom surface were removed from the culture 

plate, sawed into smaller pieces, and thin-sectioned parallel to the cell surface at 70 nm. Sections 
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were then picked up with 200 mesh copper grids, stained with 5% aqueous uranyl acetate and 

2% lead citrate, and viewed on a Hitachi H-7500 transmission electron microscope (Hitachi High 

Technologies America, Inc.) equipped with a BioScan CCD camera (Gatan, Inc.). 

 

Cytotoxicity Studies. CHO cells were seeded in a 96-well plate (Greiner Bio-One) at a density of 

20,000 cells per well, 24 hours prior to treatments. For the cytotoxicity study, 10 µL of Cell 

Counting Kit-8 (Dojindo Molecular Techniques, Inc.) was added to each well. After 3 hours, the 

absorbance of each well was measured at 450 nm using a Synergy HT microplate reader (BioTek 

Instruments, Inc.). For the viability study, 2 µM calcein AM (Santa Crux Biotechnology, Inc.) 

and 4 µM ethidium homodimer-1 (Setareh Biotech) were added to each well and incubated for 

15 minutes at 37C. Live/dead imaging was performed with a 20× 0.50 NA Plan-Neoufluar dry 

objective. Both calcein AM and ethidium homodimer-1 were excited using a 100 W halogen 

lamp, with excitation and emission light filtered by GFP and Cy3 filter sets (Zeiss), respectively. 

For the DAPI membrane-permeability measurement, CHO cells seeded at a density of 40,000 

cells mL-1 in a LabTek chamber were loaded with 40 nM pPEG QDs with standard parameters of 

10 minute hypertonic loading and 3 minute hypotonic lysis. The cells were then incubated with 1 

μg/mL of DAPI (Sigma Aldrich), which allowed us to distinguish live cells from dead cells. 

Then we located cells with and without DAPI stain and acquired HILO images of the 

intracellular QDs and performed standard SPT and diffusion analysis. 

 

Single Particle Tracking (SPT) and Diffusion Analysis. Single-molecule videos were analyzed 

by SPT using the MATLAB u-track software package developed by Jaqaman, et al.30 to 

determine centroid pixel positions (xo, yo) for trajectories at each time point. Custom MATLAB 
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scripts were used to calculate mean squared displacement (MSD) versus time increment (τ) 

curves for each particle trajectory and were fit to a model of anomalous diffusion in Equation 

1.31,32,47,48  For tracks longer than 100 frames, curves were fit for the first 10 time increments, 

whereas ¼ of the track length was fit for shorter tracks. Tracks shorter than 10 frames were 

discarded.  These lengths were selected based on recommendations of Kepten and colleagues for 

tracks in the regime of strong subdiffusion to weak superdiffusion (α = 0.3-1.3) with low 

localization error.37  We evaluated the impact of the localization error on D versus α heat maps  

and evaluated the impact of time increment span for curve fitting and found that both had fairly 

small impact on absolute mobile fractions. Curve fits were filtered based on the calculated error 

of the fitting parameters with error tolerances of 0.05 μm2/s for D and 0.15 for α. 

 

𝑩𝐫𝐞𝐥
𝐦𝐚𝐱 Calculation.  𝐵rel

max was calculated as the mode of the top 6% of the 𝐵(𝑡) distribution of its 

complete trajectory:  

𝐵rel
max = 𝑀𝑜 [𝐵(0.94 ≤ 𝑃(𝐵) ≤ 1)], (2.7) 

where 𝑃(𝐵) is the probability distribution of brightness values from an intensity time trace, 𝐵(𝑡). 

Because QDs randomly fluctuate between on and off states (blinking), only the brightest state 

was considered in calculating 𝐵rel
max, and we previously determined that the single-QD on-state 

brightness is homogeneous among for uniform QDs with this composition (Fig. 2.5).38  
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CHAPTER 3: OPTIMIZING QUANTUM DOT SURFACES FOR CYTOPLASMIC 

DELIVERY 

 

3.1 Background  

 Macromolecule fate in the intracellular space is strongly influenced by the surface 

properties of the given material.  Anionic nucleic acids are effectively immobile in cells for 

molecular weights > 100 kDa, whereas neutral colloids of equal mass are mobile.1 

Surface properties also impact the efficacy of macromolecule delivery as well.  OPL-mediated 

gene delivery of anionic nucleic acids2 and their complexes with cationic polymers3 has 

relatively low efficacy compared with the high delivery efficacy of proteins, which can be 

characterized as zwitterionic colloids.  The strong impact of surface properties is likely to play a 

role in nanoparticle uptake and mobility as well. 

 To investigate the impact of different nanoparticle surface properties on intracellular 

delivery and fate, we prepared QDs with diverse surface properties.  All QDs were based on 

(CdSe)CdZnS (core)shell nanocrystals with 5.7 nm diameter and 605 nm fluorescence emission 

(Figure 3.1). 

 

Figure 3.1 Characterization of quantum dot cores. (a) Schematic depiction of (core)shell 

(CdSe)CdZnS quantum dots (QDs). (b) Transmission electron micrograph of QDs; scale bar = 20 

nm. (c) Absorbance and fluorescence spectra of QDs in hexane. 
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The QDs were coated with five different polymer structures that are detailed in Figure 3.2.  The 

polymer coatings were based on monodentate thiol-terminated polyethylene glycol (mPEG), a 

series of polydentate ligands with tunable hydrophilic groups including carboxylic acids 

(pCOOH), polyethylene glycol (pPEG), and zwitterions (pZW), and amphiphilic polymers 

functionalized with carboxylic acids (aCOOH). 

 

 

Figure 3.2. Chemical structures of polymeric QD coatings used in this work. 

 

It is important to note that all final QDs had hydrodynamic diameters between 7-12 nm, as 

measured by dynamic light scattering (DLS). The surface charges of the different coatings were 

vastly different, with mPEG, pPEG, and pZW having nearly neutral surface charge and aCOOH 

and pCOOH had zeta potentials between -30 and -45 mV (Fig 3.3). 
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Figure 3.3 Schematic depictions of each QD coating (not to scale), showing differences in the 

number of binding groups (blue circles) per ligand. The coating naming convention indicates the 

binding mode (m = monodentate, a = amphiphilic, p = polydentate). Hydrodynamic diameter (h.d.) 

measured by dynamic light scattering (DLS) and zeta potential (ζ) were acquired in pH 7.4 buffer.  

n = 3 for all QD coatings, and all error bars indicate s.e.m. 

 

All QDs were stable for months except for mPEG-QDs, as monodentate ligands slowly detach 

upon dilution in oxidizing conditions, although these QDs were stable in concentrated stock 

solutions for several days (Figure 3.4).4,5 
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Figure 3.4. Stability of mPEG-QDs in 50 mM borate buffer. Stability was measured by 

centrifuging at 7000 x g for 10 minutes to remove aggregates that may have formed due to coating 

instability. Concentrations were determined by measuring absorbance values at 350 nm. n = 3 for 

both temperature conditions. Error bars indicate s.e.m. 

 

3.2 Data and Analysis 

3.2.1 QD Surface Comparison Results 

 HILO fluorescence movies of intracellular QDs were acquired for at least seven cells for 

each coating type approximately 1 hour after delivery by OPL to Chinese hamster ovarian cancer 

(CHO-K1) cells.  SPT analysis was performed on all of the movies and the tracks were analyzed 

in terms of single-molecule diffusion and brightness, as described in the previous chapter.  The 

diffusion analysis results are summarized in Fig 3.5a.  Based on the empirical thresholds 

described previously (D > 0.020 μm2 s-1, α > 0.21), the mPEG QDs, which had unstable coatings 

with neutral surface charge, and the aCOOH and pCOOH QDs, both of which had stable 

coatings with highly negative surface charge, showed majority immobile trajectories.  On the 

other hand, the pPEG and pZW coated QDs, both of which had stable and electrostatically 

neutral surfaces, show 60-82% mobile trajectories.  These trends show that both stable and 

neutral surface coatings are necessary for intracellular mobility. 
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Figure 3.5. Coating-dependent behavior of intracellular quantum dots. (a) Heat maps of 

diffusion coefficient, D, versus confinement parameter, α. Histograms of D and α are projected on 

the x and y axes, respectively, and thresholds imposed for mobility are shown as black lines, 

yielding fmobile shown in each plot. n = 7, 7, 16, 11, and 18 CHO cells for mPEG, aCOOH, pCOOH, 

pPEG, and pZW, respectively. (b) Representative 3D plots of D versus α versus 𝑩𝐫𝐞𝐥
𝐦𝐚𝐱 for the 

different quantum dot (QD) coatings in individual cells. The box indicates the same threshold from 

(a), in addition to a 𝑩𝐫𝐞𝐥
𝐦𝐚𝐱 threshold for delineating populations of single QDs to determine f1,mobile, 

which is in the inset of each plot. 

 

 Figure 3.5b shows 3D scatter plots of 𝐵rel
max for each particle type together with both 

mobility parameters. Each QD coating class exhibited a distinct level of clustering, indicated by 

the distributions of points along the z-axis. The rectangular box in the bottom right of each plot 

indicates the region designating those that are both mobile and single (f1,mobile), with trajectories 

color-coded to indicate whether they fall in the brightness population of single QDs (blue) or 

clusters (red). The mPEG and aCOOH QDs demonstrated substantial clustering inside cells, 

indicated by numerous red spots at high 𝐵rel
max values. However, pPEG, pZW, and the mostly 
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immobile pCOOH QDs all had f1 fractions greater than 45%. These are single-cell data; Figure 

3.6 shows representative cell-to-cell variability.  Notably, although the pCOOH QDs are almost 

entirely immobile, they also have a high single-QD fraction, showing that stable multidentate 

coatings are necessary for delivery of single QDs and for avoiding clustering. 

 

Figure 3.6. 3D plots of D versus α versus 𝐵𝑟𝑒𝑙
𝑚𝑎𝑥  for pPEG QDs. Heterogeneity of brightness 

distributions and QD clustering is apparent between different cells. 
 

3.2.2 Validation of QD Diffusion Results 

 In order to validate and understand the parameters derived from the single-trajectory 

analysis the results were compared to traditional analytical, experimental, and computational 

methods.  This included: ensemble level MSD analysis, fluorescence correlation spectroscopy 

(FCS) measurements, and analysis of simulated single-particle trajectories. 

Ensemble MSD Analysis.  Ensemble MSD curves were calculated by averaging over all 

trajectories within each coating class.  These results are plotted in Figure 3.7, showing the clear 
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distinguishable differences between the different materials at the ensemble level. The mean D 

values spanned between 0.02 to 0.2 m2 s-1 and were similar when calculated from individual 

trajectories or as an ensemble, however the average  was substantially smaller when calculated 

per trajectory (0.26 – 0.49) compared with pooled data (0.44 – 0.70) (Table 3.1). The values 

calculated from individual tracks are presumably more accurate, as each trajectory was fit using 

a measured localization error for each track, which could be highly variable between tracks. 

 

Figure 3.7. Ensemble average MSD plot for all recorded trajectories fit to Equation 1 for the first 

20 time increments. Average D and α values from ensemble and single-trajectory analyses are 

summarized in Table 3.1. 
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Table 3.1. Average diffusion coefficients and confinement parameters for data in Fig. 3.5 and 

3.7 

 

Single-Trajectory Analysis Ensemble Analysis 

 𝐷̅ (μm2s-1) 𝛼̅ 𝐷̅ (μm2s-1) 𝛼̅ 

mPEG 0.023 0.26 0.020 0.44 

aCOOH 0.030 0.34 0.025 0.46 

pCOOH 0.037 0.24 0.036 0.46 

pPEG 0.090 0.37 0.083 0.54 

pZW 0.22 0.49 0.23 0.70 

 

Fluorescence Correlation Spectroscopy. FCS is a well-established technique that is used to 

characterize the diffusion of small fluorescent molecules.  Recently, FCS has been explored to 

measure the diffusion of QDs.6,7  However, there are many challenges with this due to the fact 

that FCS is an ensemble technique that need many extrinsically determined parameters to fit D 

accurately, and this is further complicated by the fluorescence intermittency and dark fraction of 

QDs, both of which are on similar time scales of the diffusion of QDs in aqueous solution.6,8 

 HeLa cells were loaded with pPEG-QDs, and the QD behavior was characterized by both 

HILO imaging followed by SPT analysis and FCS measurements.  These results are summarized 

in Figure 3.8 and Table 3.2. 
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Figure 3.8.  Fluorescence correlation spectroscopy (FCS) data. (a) FCS autocorrelation curves for 

Rhodamine 110 and pPEG-QDs in aqueous buffer fit to a Brownian diffusion model. (b) FCS 

autocorrelation curves for pPEG-QDs delivered by OPL to HeLa cells, fit to the multi-component 

anomalous diffusion model shown in Equation 3.3. n = 13 samples. Fit parameters for the 

components of each trace are shown in Supplementary Table 2. (c) Heat map of D versus α for 

pPEG-coated QDs delivered to HeLa cells, calculated by SPT data.  n = 9 cells. 

 

Table 3.2.  FCS fit parameters for pPEG-QDs delivered to HeLa cells. Parameters correspond to 

those defined in Equation 3.3.  

 𝜏𝐷,1(s) D1 (μm2/s) α1 A1 𝜏𝐷,2(s) D2 (μm2/s) α2 A2 R2 

trace 1 0.0073 4.50 0.83 0.65 0.037 0.90 0.92 0.35 0.9957 

trace 2 0.009 3.50 0.57 1.0 -- -- -- -- 0.9979 

trace 3 0.054 0.61 0.52 0.41 0.16 0.20 0.80 0.59 0.9818 

trace 4 0.69 0.045 0.24 1.0 -- -- -- -- 0.9900 

trace 5 2.98 0.011 0.85 1.0 -- -- -- -- 0.9893 

trace 6 0.021 1.54 0.60 1.0 -- -- -- -- 0.9984 

trace 7 0.071 0.46 0.49 1.0 -- -- -- -- 0.9980 

trace 8 1.70 0.019 0.94 1.0 -- -- -- -- 0.9936 

trace 9 0.073 0.45 0.71 1.0 -- -- -- -- 0.9798 

trace 10 0.52 0.063 0.98 0.74 0.92 0.036 0.41 0.26 0.9901 

trace 11 0.029 1.15 0.34 1.0 -- -- -- -- 0.9976 

trace 12 1.72 0.020 0.66 1.0 -- -- -- -- 0.9825 

trace 13 0.82 0.040 1.0 0.59 0.84 0.039 0.36 0.41 0.9681 
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The average D measured with SPT was 0.10 μm2 s-1 and  = 0.45, while the ensemble average 

for FCS was 0.84 μm2 s-1 and  = 0.66. FCS also showed a wide range of D values in different 

cell regions as well as multimodal behavior in single locations. However highly immobile 

populations were not clearly resolved with the technique, which is likely the source of the small 

discrepancy between average D values, together with differences in time lag at which each is 

defined (1 second for SPT and D for FCS). 

 

Analysis of Simulated Trajectories.  Previous analytical, computational, and experimental work 

has shown that measuring diffusion coefficients by MSD analysis of single-particle trajectories 

has statistical limitations to its accuracy, and a natural spread in the fitted diffusion coefficients 

that arises from this analysis method.9–12  This can be overcome by maximizing the track 

length.9–12  However, the reality of experimental acquisition conditions does not allow this 

parameter to be controlled, as particles may randomly move out of the focal plane or “blink” off 

long enough to prevent accurate reconnection of long tracks. 

 In this regard, we simulated a number of trajectories with different inputs for D, α, σxy, 

and track lengths.  These simulated trajectories were analyzed by the same single-particle 

diffusion analysis used for the experimentally acquired trajectories to characterize the spread of 

fitting parameters of the MSD analysis.  Analyzing simulated tracks allowed us to isolate the 

impact of specific parameters.  For instance, varying the track length from 10-500 frames while 

holding all other factors constant showed that the distinctive spread and 45 degree “tilt” in the D 

versus α heat maps arose from the predominance of short tracks (Figure 3.9). 
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Figure 3.9. Simulation analysis of track length impact. Heat map of D versus α for 1000 

trajectories with D = 0.22 μm2 s-1 and α = 0.49 (average values for pZW-QDs) with fixed track 

lengths of (a) 10, (b) 100, (c) 250, and (d) 500 frames. Simulated localization error values were 

derived from experimentally measured average values from pZW-QDs. 
 

 Additionally, we used the power of analyzing simulated trajectories to understand what 

real D and α values were underlying the fitted D and α values for the experimental results.  As 

track length is a critical factor influencing the parameter distributions (Fig 3.10) were imposed as 

constraints in all of the simulations evaluating D-α pairs. 

 

Figure 3.10. Track length histograms of QDs in cells. Track length distributions for QDs with the 

5 different coatings in CHO cells. Note that the pZW-QD and pPEG-QD samples have higher 

measured D compared with QDs diffusing in 98% glycerol because they demonstrate a larger 

percentage of tracks longer than 10 frames, due to z-axis confinement. Data correspond to the same 

as that of Figure 3.5a-b. 

 

Similarly, experimentally measured localization error values were imposed for each QD coating 

type.  Using these experimentally measured constraints, we simulated appropriate ranges of D 

and α for mPEG and pZW QDs in order to see the impact of different D and α inputs on the 

output parameter distributions (Figs 3.11-12).   
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Figure 3.11. Simulation analysis of the impact of D and α. Track length distributions were derived 

from empirical results from pZW QDs (see Supplementary Figure 18) with 1610 trajectories.  Heat 

maps show D versus α with D ranging from 0.01 to 10 μm2  s-1 in each column and α = (a) 0.3, (b) 

0.7, and (c) 1. Simulated localization error values were derived from experimentally measured 

values from pZW QDs.  
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Figure 3.12. Simulation analysis of the impact of D and α. Track length distributions were 

derived from empirical results from mPEG QDs (see Supplementary Figure 13) with 1610 

trajectories.  Heat maps show D versus α with α ranging from 0.03 to 1 in each column and D of 

(a) 1, (b) 0.1, and (c) 0.01 μm2 s-1.  Simulated localization error values were derived from 

experimentally measured values from mPEG QDs.  
 

When comparing the experimental data to the simulation results, it is clear that the distributions 

observed in cells were too polydisperse to reflect a single population and must have derived from  

a range of mobility parameters. An analysis of the error associated with D vs  values derived 

from simulated data showed that both values were fairly accurate except when D was small such 

that the mobility was in the same range as the localization error (Fig 3.13). 
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Figure 3.13. Error in D and  measured from simulation results. (a,b) Plots show percent 

difference between the calculated average D and input D for track length distributions and 

localization error values derived from empirical data from (a) mPEG-QDs and (b) pZW-QDs. (c,d) 

Plots show percent difference between the calculated average  value and input  values for track 

length distributions and localization error values derived from empirical data from (c) mPEG-QDs 

and (d) pZW-QDs. 

 

Since it doesn’t appear that the experimental results could have arisen from homogenous 

populations with single D and α values, we summed up the results of multiple sets of simulated 

trajectories to show a possible range of D and α values that may have been underlying the mPEG 

and pZW experimental results (Fig 3.14).  
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Figure 3.14. Sums of simulated trajectories approximating experimental results (a) Heat map of 

D versus α for simulated trajectories generated using D and α inputs across the indicated ranges to 

approximate the mPEG-QD distribution. (b) Heat map of D versus α for simulated trajectories 

generated using D and α inputs across the indicated ranges to approximate the pZW distribution. 
 

3.2.3 Single-Cell Metrics: QD Surface Comparison 

 As previously noted, pPEG and pZW had the highest fractions of QDs that had 

cytoplasmic freedom and low levels of aggregation, while the mPEG, pCOOH, and aCOOH 

coatings yielded clustered or immobile QDs.  These results are summarized in Figure 3.15.  The 

mechanisms underlying these trends could be further understood by looking at trends in the other 

single-cell metrics defined in the previous chapter. 
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Figure 3.15. Data for each QD coating show f1, fmobile, and f1,mobile. The green dashed line indicates 

the lower limit for fmobile (0.053) corresponding to the localization error. Horizontal black lines 

indicate p < 0.05, calculated using Student’s t-test, for f1,mobile comparisons.  n = 7, 7, 16, 11, and 

18 cells for mPEG, aCOOH, pCOOH, pPEG, and pZW, respectively. 

 

 Trends in the total number of QDs delivered per cell, Ncell, and the final number of 

mobile QDs per cell, Nmobile, reveal differences in the uptake mechanisms for the different QD 

coatings.  (Fig 3.16a) If the mechanism underlying OPL delivery is simply fluid-phase transport, 

then  Ncell should theoretically be 100-150 for all QDs, independent of coating, based on an 

estimated influx volume of ~10 fL in the hypertonic loading step.2 Ncell for pZW-QDs (159 ± 20) 

was indeed close to this expected value, suggesting that pure fluid transport was responsible for 

uptake for this coating.  However, the higher Ncell values for all other QDs, reaching 1,963 ± 270 

for mPEG-QDs, indicates a parallel secondary uptake process, likely via membrane adsorption.  

Additionally, Figure 3.16b shows the surprising result that despite uptake varying by more than 

12-fold, Nmobile was statistically indistinguishable for QDs coated with mPEG, pCOOH, pPEG, 

and pZW, with Nmobile spanning 72-172, which overlaps with the range expected for pure fluid-

phase transport.  Note that Nmobile for aCOOH-QDs was significantly smaller compared with all 

of the neutral QDs (p < 0.05), likely due to strong anionic charge that can electrostatically repel 

the plasma membrane during loading. 
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Figure 3.16. Uptake efficiency and mobility. (a) Number of internalized QDs per cell for 40 nM 

loading concentrations. For mPEG and pCOOH, data are linear extrapolations from 10 nM 

concentrations due to high spot intensity due to clustering. (b) Mobile QDs per cell.  n = 7, 7, 16, 

11, and 18 cells for mPEG, aCOOH, pCOOH, pPEG, and pZW, respectively. 

 

In order to investigate this possible secondary uptake mechanism, we repeated the delivery of 

mPEG-QDs in the presence of adsorption-blocking agents (casein) and observed a vastly 

different diffusive pattern and significant shifts in the uptake efficiency (Fig 3.17a).  Ncell 

decreased to 23% of its value without blocking agents (p = 0.036) and fmobile increased by 77% (p 

= 0.018, calculated using Student’s t-test,) (Fig. 3.17b).  On the other hand, for mPEG-QDs, 

Nmobile did not change significantly with the addition of blocking agents during delivery (p = 

0.60; Figure 3.17c, calculated using Student’s t-test,) despite a drastic reduction in Ncell, 

presumably because osmotic transport that yields mobile cytoplasmic QDs is not mediated by 

adsorption.  
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Figure 3.17. Mobility, delivery, and clustering metrics for QDs. QDs coated with mPEG were 

loaded into CHO cells, with and without casein added to block nonspecific binding. (a) 

Aggregated data are plotted to show f1, fmobile, and f1,mobile for mPEG-QDs with and without casein 

blocking. The green dashed line in indicates the lower limit for fmobile (0.040) which corresponds 

to the localization error. (b) Number of internalized QDs per cell for mPEG-QDs with and 

without blocking for 10 nM loading concentration. The sharp decrease in Ncell for the mPEG 

QDs with the addition of casein to block nonspecific adsorption demonstrates that nonspecific 

interaction with the cell surface is likely to be the underlying mechanism for the high level of 

intracellular delivery for mPEG-coated QDs. (c) Total number of mobile mPEG-QDs per cell for 

each condition, showing that blocking does not significantly alter the number of mobile QDs per 

cell. (d) Effect of casein blocking on mPEG-QD clustering. The decrease in 𝒏𝐐𝐃̅̅ ̅̅ ̅  for mPEG with 

casein similarly demonstrates that nonspecific adsorption is associated higher levels of QD 

clustering. Horizontal black lines indicate p < 0.05. For all experimental conditions, n = 6 cells 

per group. All error bars indicate s.e.m. 

 

The second key step for any intracellular delivery process that utilizes endosomal pathways is 

typically some sort of endosomal escape or release mechanism. In our QD-surface comparison, 

we observed that fmobile negatively correlated with Ncell, as shown in Figure 3.18. This indicates 

that that endosomal release is inefficient in cells with large Ncell.  This negative correlation is 

indicative of the challenge in designing materials to balance both increased uptake efficiency and 

effective endosomal escape. 
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Figure 3.18. Negative correlation between fmobile and Ncell for coatings demonstrates that materials 

with high mobile fractions deliver less efficiently.  n = 7, 7, 16, 11, and 18 cells for mPEG, aCOOH, 

pCOOH, pPEG, and pZW, respectively. 

 

To gain further insight into how internalization differs between the coatings, we separately 

analyzed single QDs and clusters to determine how clustering impacts mobility. Figure 3.19 

shows a negative correlation of average cluster sizes, 𝑛QD̅̅ ̅̅ ̅, with fmobile showing that clustering is 

associated with lower mobility. 

 

Figure 3.19. Negative correlation between fmobile and 𝑛QD̅̅ ̅̅ ̅, for coatings demonstrates that QDs are 

clustered in cells in which they are immobile.  n = 7, 7, 16, 11, and 18 cells for mPEG, aCOOH, 

pCOOH, pPEG, and pZW, respectively. 
 

This negative correlation could either be due to clusters having inherently lower mobility due to 

their increased size or because whatever process immobilized the QDs also facilitated the 
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clustering of the nanoparticles.  Figure 3.20 shows plots of f1,mobile / f1 and f>1,mobile / f>1. For 

coatings for which f1,mobile / f1 > f>1,mobile / f>1, we can infer that clustering restricts mobility, either 

because clusters are too large to exit endosomes, or because the endosomes cannot rupture. This 

was indeed the case that clustering restricted mobility for pCOOH, aCOOH, and pPEG QDs (p < 

0.07, calculated using Student’s t-test,), all of which loaded well beyond the limits of osmotic 

transport, likely due to adsorption to membrane components. However for both pZW and mPEG, 

f1,mobile / f1 and f>1,mobile / f>1 were statistically indistinguishable (p > 0.5). This similarity is logical 

for pZW-QDs, which were nearly entirely mobile, but this is suggests a unique uptake pathway 

for mPEG QDs that prevented release even when internalized individually in single endosomes. 

These QDs were unstable at low concentrations, so adsorption to endosomes likely prevented 

endosomal escape. 

 

Figure 3.20. Comparison of f1,mobile / f1 and f >1,mobile / f >1 reflect mobility for single QDs and 

clusters, respectively. Horizontal lines indicate p < 0.05 within coating types only.  n = 7, 7, 16, 

11, and 18 cells for mPEG, aCOOH, pCOOH, pPEG, and pZW, respectively. 

 

3.2.4 Single-Cell Metrics: Cell Type Comparison 

We analyzed the impact of cell type using CHO cells, HeLa human cervical cancer cells, and 

A431 human epidermoid cancer cells, the latter of which were analyzed separately for single 
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cells and cells that grew in clumps with cell-cell junctions that reduce the accessible membrane 

surface area. This comparison was done using pPEG-QDs, which showed a mix of both 

cytoplasmic and immobile states in our initial comparison of QD surface coatings in CHO cells. 

As shown in Figure 3.21a, cell type had less impact on f1, fmobile, and f1,mobile compared with the 

impact of QD coating, which is consistent with previous ensemble studies of OPL.2 However, f1 

was significantly larger for CHO cells, which may reflect distinct pinocytotic mechanisms due to 

their small size and surface area.13  On the other hand, HeLa cells exhibited significantly lower 

f1, higher Ncell, and higher Nmobile (Fig. 3.21b-c).  The higher Ncell and Nmobile values may be 

explained by the larger average surface area of the HeLa cells, which is likely associated with 

higher adsorption-dependent uptake (Fig. 3.21d).  Cell type also had a significant impact on 

clustering that also correlated with membrane surface area (Fig. 3.21e). Only the smallest CHO 

cells exhibited enhanced endosomal escape for single QDs compared to clusters (f1,mobile / f1 > 

f>1,mobile / f>1), shown in Figure 3.21f. 
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Figure 3.21. Impact of cell type on OPL delivery. (a) Data for three cell types (A431, CHO-K1, 

and HeLa), showing f1, fmobile, and f1,mobile. For A431 cells, single and clumped cells were analyzed 

separately. Horizontal lines indicate p < 0.05 for f1,mobile. (b) Number of internalized QDs per cell. 

(c) Mobile QDs per cell. (d) Ncell correlates with the average cell area.  (e) Little correlation is 

observed between fmobile and 𝒏𝐐𝐃̅̅ ̅̅ ̅, but different cell types have distinct clustering. Cell types are 

indicated by color codes in panel (d). (f) Comparison of f1,mobile / f1 and f >1,mobile / f >1 reflect mobility 

for single QDs and clusters, respectively. Horizontal lines indicate p < 0.05 within cell types only. 

All cell type comparisons used pPEG-QDs, with n = 10, 9, 7, and 9 cells for CHO, HeLa, single 

A431, and clumped A431 cells, respectively. All error bars are s.e.m. 

 

3.3 Discussion 

 The new single-cell metrics presented here, allow for investigations of delivery 

mechanisms and intracellular particle state in ways that have not been accessible before.  Ncell 

and fmobile, reflect the efficiency of transport into the cell and the efficiency of endosomal release, 

respectively, the two critical steps in cytoplasmic delivery.  The derived metrics nQD, f1, and 

f1,mobile, yield important insights into the state of the internalized materials and the endosomal 
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release mechanism.  These outcomes require the unique photophysical properties of QDs, with 

bright and stable emission that is homogeneous across a population of nanoparticles.4 

Specifically, these properties allow correspondence of brightness to absolute particle number as 

well as long-term tracking, which are not possible with organic dyes.14 

The major finding from our analyses is that pZW-QDs are uniquely suited to cytoplasmic 

delivery through OPL. The pPEG-QDs had similar physical properties but smaller fmobile, likely 

due to nonspecific binding evident from higher Ncell. The differences in mobility between the 

pZW and pPEG QDs and the increased efficiency of endosomal escape for the pZW-QDs may 

be due to different levels of hydration and different interactions with intracellular proteins.  

Molecular simulations comparing zwitterionic and nonionic PEG based materials have shown 

that zwitterionic materials exhibit stronger hydration than nonionic PEG materials and that PEG 

materials interfere with the hydrophobic domains of proteins while zwitterionic materials have 

limited interaction with these domains.15  However, fmobile for pPEG-QDs increased substantially 

when delivered through liposomal vesicles, reaching 78%, which further shows that adsorption 

processes occurring during delivery can have a dominating impact on final intracellular state. 

The other major finding from the surface comparisons was that unstable or highly charged 

surface coatings result in immobilized intracellular nanoparticles.  When PEG was only weakly 

attached (mPEG-QDs), Ncell drastically increased for OPL delivery, while endosomal escape was 

drastically reduced.  Proteins that exhibit membrane adsorption were found to exhibit similar 

outcomes.16 Uptake was further enhanced when the magnitude of electrostatic charge was greater 

(aCOOH-QDs, pCOOH-QDs) likely due to binding to cationic protein domains, but endosomal 

release was further diminished, likely due to rapid acidification of the vesicles and neutralization 
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of the ionically stabilized colloids.17,18  These outcomes suggest that for intracellular targeting 

with molecular probes, stable and neutral surfaces are ideal. 

Based on these results, it is evident that total cell uptake measurements are not suited for 

optimizing cytoplasmic delivery because the absolute number of delivered cargo Ncell was highly 

disproportional to Nmobile, as QDs with smallest Ncell values (pPEG-QDs, pZW-QDs) had similar 

Nmobile values to those with the largest Ncell values (mPEG-QDs). Importantly, these live-cell 

analyses were much more quantitative compared with analysis of TEM images, which were 

exceptionally challenging to quantify and exhibited significant fixation artifacts. In particular, 

QDs were often observed near the cell periphery (Figure 2.2), which was not reflected in living 

cells. 

The spread of measured values strongly depends on track length (Figure 3.9).  The accuracy of 

measured D and  values can be improved by using a faster video frame rate or methods that 

extend the z-range to increase track lengths, and by using brighter QDs to increase the photon 

flux to reduce localization error. However brighter emitters would necessitate the use of larger 

sizes that may no longer physically reflect proteins being emulated. 

Our analysis techniques and surface modulation methods can be widely adopted to improve our 

understanding of cell delivery processes,19–21 which are plagued by the need to balance the 

seemingly opposing processes of endocytosis and endosomal escape, both of which can now be 

independently assessed in single cells. 

 

3.4 Methods 

Quantum Dot Synthesis. (All QD synthesis done by Sung Jun Lim, UIUC) Nanocrystals 

composed of (core)shell (CdSe)CdZnS were synthesized in organic solvents.4 In sequential steps, 
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3.0 nm CdSe cores were synthesized and shells composed of 3.2 monolayers of CdS and 1.5 

monolayers of ZnS were grown layer-by-layer. The resulting nanocrystals were coated with 

oleylamine and oleic acid and were purified by acetone precipitation and hexane-methanol 

extractions. Coating with pPEG,5 pCOOH,5 pZW,22 and aCOOH4 was performed according to 

our previously reported methodologies described in Supplementary Methods. For coating with 

mPEG, QDs in hexane were transferred to N-methlyformamide using tetramethylammonium 

hydroxide5 and mixed with a 5,000-fold molar excess of methoxy-PEG-SH (2,000 Da; Rapp 

Polymere) at 60C under nitrogen atmosphere with stirring for 3 hours. The QDs were then 

precipitated using anhydrous diethyl ether, dispersed in methanol, and precipitated again with a 

mixture of hexane and chloroform. The nanocrystals were then dispersed in 50 mM sodium 

borate buffer and centrifuged to remove possible aggregates. These QDs were stable for more 

than one week under ambient conditions at >1 μM concentration (Figure 3.4) 

 

Optical Spectroscopy. (Performed by Sung Jun Lim, UIUC) Fluorescent spectra were measured 

using a NanoLog Horiba Jobin Yvon with Fluo Essence V3.5 software (Horiba Scientific). UV-

Vis spectra were obtained using a Cary series UV-Vis-NIR spectrophotometer with Cary WinUV 

Scan Application Version 6.00 1551 software (Agilent Technologies). 

 

Transmission Electron Microscopy of QDs. (Performed by Sung Jun Lim, UIUC) TEM images 

were obtained using a JEOL 2010 LaB6 high-resolution microscope in the Frederick Seitz 

Materials Research Laboratory Central Research Facilities at University of Illinois. For QDs in 

organic solvents, samples were prepared by placing a drop of dilute QD solution in hexane on an 
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ultrathin carbon film TEM grid (Ted Pella; Product # 01824) and then wicking the solution off 

with a tissue. 

 

pPEG and pCOOH Quantum Dot Coating. (Ligands synthesized by and QDs coated by Liang 

Ma, UIUC) A methanol solution of tetramethylammonium hydroxide (25%) was added to a 

biphasic mixture of N-methylformamide (NMF) and purified QDs in hexane. The suspension 

was stirred vigorously for 1 hour until the QDs were completely transferred to the NMF phase. 

Hexane was removed, and the NMF solution was washed with hexane twice. Residual hexane 

and methanol were evaporated under vacuum. A solution of pPEG or pCOOH in NMF (5:1 

imidazole to QD surface atom) was added dropwise to the hydroxide-coated QDs in NMF (1 

µM, 0.4 mL) with stirring under nitrogen atmosphere. The reaction was allowed to proceed at 

110°C for 2 hours. The coated QDs were precipitated from NMF using anhydrous diethyl ether. 

The QDs were then dispersed in 50 mM sodium borate buffer (pH 8.5) and centrifuged to 

remove possible aggregates.  The QDs were purified using centrifugal filtration (Amicon Ultra 

50 kDa molecular weight cutoff) in 50 mM sodium borate buffer. The dilution–filtration cycle 

was performed five times. 

 

pZW Quantum Dot Coating. (Ligands synthesized by and QDs coated by Liang Ma, UIUC) 

Purified QDs in hexane were transferred to NMF using the same method as for the pPEG and 

pCOOH polymers. pZW polymer dissolved in NMF was mixed with the hydroxide-coated QDs 

in NMF (1 µM, 0.4 mL) (5:1 thiol to QD surface atom) and purged with nitrogen for 2 minutes. 

The mixture was stirred at 110°C for 4 hours and then diluted with 50 mM sodium borate buffer 
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(pH 8.5). The QDs were purified using centrifugal filtration (50 kDa molecular weight cutoff) in 

50 mM sodium borate buffer. The dilution–filtration cycle was performed five times. 

 

aCOOH Quantum Dot Coating. (QDs coated by Liang Ma, UIUC) Purified QDs were dispersed 

in chloroform (∼1 μM, 2-10 mL) and mixed with a 2,000-2,500-fold molar excess of aCOOH. 

Chloroform was slowly evaporated under vacuum with vigorous stirring. After complete 

evaporation, a 10 mM sodium hydroxide solution in distilled water (2–3 mL nmol−1) was added 

and stirred for several hours until the amphipol-coated QDs were fully dispersed. Finally, the 

solution was centrifuged to remove possible aggregates. 

 

mPEG-QD Stability. The stability of mPEG coated QDs in 50 mM sodium borate buffer was 

measured by centrifugation at 7000g for 10 minutes to remove any aggregates that may have 

formed due to coating instability. Concentrations were determined by measuring absorbance at 

350 nm using a NanoDrop ND-1000 Spectrophotometer (Thermo Fisher Scientific). 

 

DLS and Zeta Potential. (Measurements taken by Liang Ma, UIUC) Dynamic light scattering 

and zeta potentiometry were performed using a Zetasizer Nano ZS (Malvern Instruments Ltd.) 

with samples dispersed in 10 mM phosphate buffer (pH 7.4). 

 

Cell Culture and Quantum Dot Delivery. A431, CHO, and HeLa cells (ATCC) were seeded at a 

density of 20,000 cells/cm2 in LabTek chambers (Thermo Scientific), 24 hours before OPL 

treatment. CHO cells were cultured in Kaighn’s Modification of Ham’s F-12 Medium (Cell 

Media Facility, School of Chemical Sciences, UIUC). A431 cells and HeLa cells were cultured 
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in Dulbecco’s Modified Eagle’s Medium (DMEM; Cell Media Facility, School of Chemical 

Sciences, UIUC) with 10% fetal bovine serum (FBS; HyClone) and 1% penicillin/streptomycin 

(P/S; Mediatech). Cells were washed twice with phosphate buffered saline, and the hypertonic 

loading reagent (Life Technologies) containing QDs (10 or 40 nM) was added. Cells were 

incubated for 10 minutes at 37C, and then the medium was removed and replaced with 

hypotonic lysis medium composed of 6 parts incomplete DMEM without phenol red and 4 parts 

deionized water, for 3 minutes at 37C. The medium was then replaced with complete DMEM 

without phenol red and the cells were incubated for 10 minutes at 37C. Nuclei were stained with 

Hoechst (Sigma-Aldrich) for 20 minutes, followed by washing and treatment with BCG (200 

μM; Sigma-Aldrich) in phenol red-free DMEM to quench any extracellular QDs, and cells were 

imaged within 45 minutes. The protocol was optimized to ensure that the majority of cells were 

viable (Figure 3.3). Hypertonic medium was the most toxic, so a maximum 10 minute exposure 

time was used. DAPI dye was used to positively identify dead cells, and positively-stained cells 

had similar D values as those not permeable to DAPI, indicating temporary permeabilization 

rather than death.23 Notably, some cells observed by TEM demonstrated membrane damage, but 

major cellular structures remained intact. Further evaluation of cellular effects, such as changes 

in gene expression, were not pursued.  For the passive uptake of QD, CHO cells were seeded at a 

density of 20,000 cells/cm2 in LabTek chambers 24 hours before addition of 10 nM pPEG QDs 

in complete medium without phenol red. Uptake was assessed by microscopy after 24 hours, 

immediately after washing. 

 

Fluorescence Microscopy. Fluorescence imaging was performed using wide-field illumination 

on a Zeiss Axio Observer.Z1 inverted microscope with a 100X 1.45 NA alpha Plan-Fluar oil 
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immersion objective. QD images in cells were acquired with HILO excitation with a 488nm 

100mW optically pumped semiconductor laser with 15% laser power at optimized HILO angles 

for our system (~60 from normal). Excitation light was excluded using a 482/18 nm laser-line 

bandpass filter (Semrock), and emission light was filtered with a 600/37 nm bandpass filter 

(Semrock). Images were acquired using a Photometrics eXcelon Evolve 512 EMCCD using 

Zeiss Zen software. QDs were imaged at 19.6 frames per second, 40 minutes after equilibration 

at 37C with a focal plane set at the largest cross-section of the cell, a few microns above the 

center of the nucleus. 

 

FCS Studies. HeLa cells were seeded at a density of ~84,000 cells/cm2 in glass-bottom CellView 

dishes (Greiner Bio-One) 24 hours before OPL delivery of 240 nM pPEG-QDs. FCS data were 

acquired on an Alba FCS instrument (ISS) with a diode laser (470 nm) for excitation and single-

photon avalanche photodiode detector.  Each trace was acquired for 30 seconds at a frequency of 

100,000 Hz.  

To measure the confocal spot size of the FCS instrument, FCS data were acquired for a dye 

standard with known diffusion coefficient (Rhodamine 110; D = 17.6×10-10 m2s-1), and the 

resulting autocorrelation function, 𝐺(𝜏), was fit to the following equation: 

𝐺(𝜏) =
1
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(3.1) 

where 𝑁 is the average number of particles in the confocal volume, 𝐹 is the triplet fraction, 𝜏𝑡𝑟𝑖𝑝𝑙𝑒𝑡 

is the characteristic blinking time of the dye, 𝜏𝐷 is the characteristic decay time associated with 

the diffusion of the dye through the confocal volume, 𝜔𝑥𝑦 is the xy-radius of the confocal spot, 
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and 𝜔𝑧 is the z-radius of the confocal spot.6 The spot sizes of 𝜔𝑥𝑦 = 0.363 μm and 𝜔𝑧 = 3.07 μm 

were used as fixed parameters for subsequent FCS curve fittings. 

To measure the characteristic blinking time for our QDs (𝜏𝑏𝑙𝑖𝑛𝑘), FCS data for pPEG-coated QDs 

in aqueous buffer were acquired, and the resulting autocorrelation function was fit to the following 

equation: 

𝐺(𝜏) =
1

𝑁
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where 𝜃 is a factor that accounts for the number of particles in a nonfluorescent state.24 The result 

of this measurement was 𝜏𝑏𝑙𝑖𝑛𝑘= 187 μs, which was used as a fixed parameter for subsequent 

fitting of FCS curve fittings. 

Autocorrelation functions for pPEG-QDs in cells were fit to a multicomponent anomalous 

diffusion model shown below: 

𝐺(𝜏) =  
1

𝑁
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 (3.3) 

where n is the confinement parameter for the nth component, and An is the fractional contribution 

the nth component to the total curve. Each fit was calculated with 1 to 4 components. Minima of 

the Akaike information criteria (AIC) were used to determine the number of fitted components.  

The diffusion coefficient Dn for each component was calculated by using the following equation:8 

𝐷𝑛 =
𝜔𝑥𝑦

2

4𝜏𝐷,𝑛
 (3.4) 

 

Simulation Analysis. Trajectories were simulated using the MATLAB wfbm function, which 

generates a fractional Brownian motion trajectory with specified α, when normalized by standard 
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deviation. Trajectories were scaled by D, and a series of normally distributed measurement errors 

were added to each position in each dimension.25 Measurement errors derived from a distribution 

with zero mean and a standard deviation derived from the mean experimental localization error 

from the SPT analysis for each QD coating class. Track lengths were truncated to match the 

distribution of experimentally measured track lengths for each QD coating (Figure 5.10). These 

simulated trajectories were analyzed using the diffusion analysis method described above. 

 

Nonspecific Adsorption Experiments. HeLa cells were seeded at a density of 72,000 cells/cm2 in 

CellView dishes (VWR), 24 hours before OPL treatment. Cells were washed twice with phosphate 

buffered saline, and the hypertonic loading reagent (Life Technologies) containing mPEG-QDs 

(10 nM) with or without 0.5x casein blocking buffer (Sigma-Aldrich) was added. Cells were 

incubated for 10 minutes at 37C, and the medium was removed and replaced with hypotonic lysis 

medium. All subsequent steps for OPL delivery described in the main text methods were then 

followed. 

 

Statistical Analysis. All error bars are standard error of the mean values, unless indicated 

otherwise.  All p-values were calculated using a two-tailed t-test, unless indicated otherwise.  
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CHAPTER 4: SINGLE QUANTUM DOT TRACKING TO OPTIMIZE LABELING OF 

INTRACELLULAR PROTEINS IN LIVING CELLS 

 

4.1 Background  

4.1.1 Labeling Intracellular Proteins in Living Cells 

 A longstanding goal in biology is to understand the behavior of proteins, especially those 

involved in cell signaling, in their native cellular environments.  Although many advances have 

been made in understanding the behavior of purified proteins in vitro, there is still a major gap in 

understanding how this information translates into the cellular environment, especially at the 

single-molecule level.  This level of information will require the ability to follow single proteins 

at time scales ranging from seconds to minutes.  This would not be possible with fluorescent 

proteins, which can only be tracked for seconds before they photobleach.  With their superior 

brightness and photostability, QDs are uniquely positioned to fill this role.1  

 QD labeling of membrane-bound proteins and receptors have revealed many previously 

unknown mechanisms in cell signaling and neuron biology.  However, there is still a major 

challenge to deliver QDs targeted to specific intracellular proteins in order to track them to reveal 

single-molecule dynamics.  Although there have been seminal demonstrations of the intracellular 

delivery of QDs that localize to specific subcellular regions via localization sequences and the 

delivery of QD-motor protein conjugates that demonstrate the distinctive linear motion of motor 

proteins, none of these studies had quantitative confirmation of binding to specific intracellular 

targets or appropriate controls demonstrating the degree to which the targeting is specific.2–4  

More recent studies have reported varying degrees of intracellular labeling.5,6  However, the 

results presented only have qualitative evidence of labeling5 or show homogeneous over-labeling 
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of the target6.   In this chapter, we present the labeling of a fusion protein with QD-probes 

delivered via OPL to live cells, along with quantitative comparison of the labeling efficiency 

with specific control comparisons. 

4.1.2 HaloTag Protein System 

 The first step in labeling a cytoplasmic protein with a QD probe is to design a coupling 

strategy.  Here we target proteins expressed as fusions to the HaloTag protein. HaloTag protein is 

a modified bacterial haloalkane dehalogenase that bonds with aliphatic hydrocarbons with halide 

groups.7 This binding is covalent, efficient, and occurs fast, with a second-order rate constant of 

2.7×106 M-1s-1, which is comparable to that of streptavidin-biotin. 7  The structure of the 

HaloTag protein and how it binds with a commercially available chloroalkane-based ligand is 

depicted in Figure 4.1 

 

 

Figure 4.1 HaloTag protein system. (a) Model of the HaloTag protein with covalently bound TMR 

HaloLigand. (b) Detailed chemical structure of the commercially available TMR HaloLigand from 

Promega.  Figure adapted from Ref 7. 

 

4.2 Data and Results  

4.2.1 Transgene Target System 

 Our chosen target system for was a fusion protein HaloTag-GFP-ActA.  ActA is a protein 

that binds to the cytoplasmic face of the outer mitochondrial membrane.8  The HaloTag-GFP-
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ActA plasmid was provided as a gift from the Selvin Lab at UIUC.  The plasmid is described in 

further detail in Teng, et. al. in their recent publication.9  The design of the probe allows for 

positive identification of cells expression the fusion protein via the GFP subunit (Fig 4.2b).  

HeLa cells were transiently transfected with this plasmid using Lipofectamine2000.  Details of 

the transfection protocol can be found in the Methods section.  We confirmed the presence of the 

HaloTag subunit by testing with the commercially available TMR- HaloLigand from Promega 

Corporation.  The spatially identical GFP and TMR signals confirmed the successful expression 

of the HaloTag-GFP-ActA transgene (Fig 4.2b-c). 

 

Figure 4.2 Fluorescence images of HeLa cells transfected with HaloTag-GFP-ActA at 100x 

magnification confirming the expression of the fusion protein. (a) Transmitted light and nuclear 

stain (blue) (b) TMR-HaloLigand labeling of the HaloTag subunit of the HaloTag-GFP-ActA 

fusion protein. (c) GFP fluorescence channel with identical spatial distribution to the TMR-

HaloLigand signal.  All scale bars are 10 μm. 

 

4.2.2 QD Imaging Probe Design 

 In designing a QD-probe to target HaloTag-GFP fusion proteins intracellularly three 

major requirements needed to be met: (i) minimal spectral overlap with GFP, (ii) monodispersity, 

and (iii) chemically active targeting ligand for HaloTag labelling. 

 Even at emission wavelengths longer than 550 nm GFP has a long “red tail” that is 

characteristic of many fluorescent proteins and organic dyes.  This spectral bleed through to the 
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red emission range is particularly problematic for single-molecule imaging, which requires low 

background for accurate single particle detection.  In order to minimize interference from GFP, 

we used a HgCdSe(CdS/CdZnS) core(shell) QDs with emission at 800 nm, which is sufficiently 

red-shifted into the near infrared in order to avoid bleed through from GFP (Fig 4.3).10   

 

Figure 4.3 Minimizing spectral overlap of GFP and QD800 fluorescence.  Absorbance and 

fluorescence spectra of GFP and 800 nm emitting QDs.  GFP spectral information and inset 

schematic depiction adapted from references [11,12]. 

 

 We coated these QDs with a modified version of the pPEG coating from the previous 

chapter that has azide functional groups to allow for conjugation of appropriate targeting ligands 

(detailed structure in Fig 4.4a).  This coating resulted in a water soluble QD population that was 

almost entirely monodisperse (see Fig 4.4b). 
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Figure 4.4 pPEG-N3 coated QD800.  (a) Detailed structure of pPEG coating ligand with azide 

functional groups for bioconjugation. (b) FPLC characterization of pPEG-N3-coated QD800 

showing a monodisperse population. 

 

 As described earlier, using the HaloTag requires chloroalkane groups on the targeting 

molecule.  Here we use a type of copper-free click-chemistry to accomplish this.  Click-

chemistry is a class of biocompatible conjugation strategies that have high specificity and 

efficiency.  For use with semiconductor nanocrystals, it is important to specifically use copper-

free click chemistry, as copper catalysts are not compatible with QDs.   We used an azide-alkyne 

based click-chemistry.13  Specifically, the pPEG polymer coating, which was introduced in the 

previous chapter, was modified to have terminal azide groups, which are reactive after QD-

coating (Figure 4.4a). 14 These azide groups can be conjugated to the strained alkyne 

dibenzycyclooctyne (DBCO), as depicted in Figure 4.5, in a reaction that proceeds with high 

efficiency, without catalysts in aequeous solution. 13 
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Figure 4.5 Schematic depiction of DBCO-chloroalkane conjugation to pPEG-N3-coated QDs via 

DBCO-azide copper-free click chemistry. 

 

 Confirmation of the chloroalkane-QD conjugation was confirmed by gel electrophoresis.  

The amount of chloroalkane had to be balanced because if the chloroalkane: QD ratio was too 

low, then HaloTag protein-QD binding was incomplete or undetectable (see Fig 4.6).  On the 

other hand, the conjugation of too much of the hydrophobic chloroalkane molecules would 

destabilize the pPEG coating causing QD aggregation. 

 

 

Figure 4.6 Chloroalkane-QD conjugation and ratio optimization.  Gel electrophoresis results 

showing the optimized chloroalkane:QD ratio where the amount of gel shift in the lanes with 

HaloTag protein indicate the amount of QD-protein binding.  The chloroalkane:QD ratio of each 

sample and whether or not the QDs were incubated for 1h with 10x molar excess HaloTag protein 

is indicated above each lane.  The arrow indicates the position of the wells where the samples were 

initially loaded, and the (+) and (-) signs indicate the polarity of the gel.  The 0:1 ratio shows no 

gel shift, hence no protein binding; 5:1 and 10:1 show partial protein binding; and 20:1 shows a 

complete shift of the gel band, hence complete binding of the QDs to the HaloTag protein. 
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Thus, we found the minimal chloroalkane:QD ratio that resulted in a stable chloroalkane-QD 

conjugate was 20:1.  The specificity of the final conjugate to the ligand tunnel of the HaloTag 

protein (see Figure 4.1), we tested the reactivity of the chloroalkane-QD conjugates with 

HaloTag protein that had been incubated with 10x molar excess TMR-HaloLigand demonstrating 

that the chloroalkane-QDs did not have nonspecific binding to other protein residues (see Fig 

4.7). 

 

Figure 4.7 Chloroalkane-QD specificity for HaloTag protein.  Gel electrophoresis results showing 

the specificity of 20:1 chloroalkane-QDs.  The presence or absence of 10x molar excess TMR 

HaloLigand and whether or not the QDs were incubated for 1h with 10x molar excess HaloTag 

protein is indicated above each lane.  The arrow indicates the position of the wells where the 

samples were initially loaded, and the (+) and (-) signs indicate the polarity of the gel.  The lane 

without HaloTag protein and without the TMR HaloLigand indicates the distance that the QDs 

migrated without binding to the HaloTag protein; the lane with HaloTag protein but no TMR 

HaloLigand indicates the gel shift introduced from protein binding.  As the band in the lane with 

both HaloTag protein and TMR HaloLigand has the same migration distance as the first well, this 

indicates a lack of QD-protein binding and the specificity of the 20:1 chloroalkane QDs for the 

HaloTag protein. 

 

4.2.3 Mitochondrial Labeling 

Experimental Details: Chloroalkane-QD delivery by OPL was identical to the optimized 

delivery conditions describe in chapters 4 and 5 with a few key exceptions.  First of all, BCG 

does not work as an extracellular quencher for QDs with 800 nm emission, as the peak 

absorbance of BCG does not align with the emission peak of these QDs.  Instead we used 

indocyanine green (ICG), a small molecule dye that has strong absorbance around 800 nm in 
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aqueous solution making it well suited to be an extracellular quencher for GFP (see Fig 4.8).15  

Both the quenching capability and cell membrane impermeability were confirmed 

experimentally. 

 

Figure 4.8 Suitability of indocyanine green (ICG) as an extracellular quencher for 800nm emitting 

QDs.  Absorption spectrum for ICG and spectra for QD800, demonstrating strong overlap of ICG 

absorption and QD800 fluorescence emission.  ICG spectral information adapted from Ref 15. 

 

 Additionally, QD imaging was performed 4 h after QD delivery, as opposed to less than 1 

h when studying QD diffusion and delivery.  This is because although the HaloTag- chloroalkane 

reaction is very efficient in vitro, the intracellular environment is vastly different due to 

crowding, lower effective concentrations, etc., which is expected to slow down reaction rates 

(refs).  We empirically found that much longer time periods were required to see evidence of QD 

QDs binding to the HaloTag protein targets.  On a similar note, the QD delivery concentration 

had to be increased to 160 nM for two reasons: (1) Higher numbers of QDs were necessary to 

clearly visualize QDs binding to their target proteins and (2) conjugation of additional 

hydrophobic groups to the QD surface appeared to decrease the efficiency of QD delivery by 

OPL at a given concentration.  This is likely due to decreased QD interaction with the 
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extracellular membrane, similar to the trend described in Chapter 3 in section 3.2.3. 

In order to have a control for comparison, a subset of the cells being imaged were treated 

to block the HaloTag subunit of the fusion protein using a cell membrane permeable Biotin 

HaloLigand purchased from Promega.  The details of this HaloTag blocking are in the methods 

section below under the heading HaloTag Pre-Blocking.  Given the specificity of the 

chloroalkane-QDs in binding to the HaloTag protein, if there is a measurable difference in the 

behavior of the QD probes in these two groups, then we should be able to establish the successful 

QD-labeling of the target fusion protein. 

 

Analysis Workflow: HILO movies of the intracellular QDs were analyzed by SPT and single-

molecule diffusion analysis, as detailed in Chapter 4.  A simple look at the D-α space does not 

show a clear difference between the two groups (Figure 4.9).   

 

Figure 4.9 D vs α heat maps of chloroalkane-QD mobility 4h after delivery with and without 

ligand blocking. Heat map of diffusion coefficient, D, versus confinement parameter, α for 

Histograms of D and α are projected on the x and y axes, respectively, and thresholds imposed for 

mobility are shown as black lines, yielding fmobile shown in each plot. (a) Without ligand blocking 

and (b) With ligand blocking. n = 13 and 16 cells respectively. 

 

However, a qualitative assessment of where the immobilized trajectories are relative to the GFP 
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signal for both groups shows that in the group without ligand blocking the immobilized QDs 

appear to have an increased association with the GFP signal, while this is not the case for the 

group with ligand blocking (Figure 4.10).  Since the key outcome in this experiment was the 

labeling of the Halo-GFP-ActA fusion protein expressed on the mitochondrial membrane, we 

had to quantitatively assess the colocalization of the detected QD spots with the GFP signal. 

 

 

Figure 4.10 Representative images of QD colocalization with GFP fluorescence.  GFP 

fluorescence images with superimposed single-particle tracks from chloroalkane-QDs, with the 

green trajectories corresponding to mobile QDs and red trajectories corresponding to immobile 

QDs for a) the group without ligand blocking and (b) the group with ligand blocking and showing 

qualitative association of the immobilized QDs with the GFP signal in the group without ligand 

blocking. All scale bars are 10 μm. 
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 Traditional fluorescence colocalization approaches and metrics are defined to quantify 

the degree of colocalization of two fluorescently labeled proteins, usually in order to see if the 

two proteins are co-expressed and have a spatial relationship.16,17  However, these metrics do not 

work well with our data because there are far more Halo-GFP-ActA than the amount of QDs 

available.  In this case, we needed to define a new colocalization score that could quantify the 

relative GFP intensity associated with the detected QD positions.  This GFP colocalization score 

(CSGFP) was defined as follows for a given single-particle trajectory: 

𝐶𝑆𝐺𝐹𝑃  ≡  
1

𝐿
 ∑

𝐼𝐺𝐹𝑃(𝑥𝑖, 𝑦𝑖) − 𝐼𝐺𝐹𝑃,𝑏𝑔

2𝑛

𝐿

𝑖=1

 (4.1) 

where L is the length of the trajectory in frames, IGFP(xi,yi) is the average GFP intensity of a 3x3 

pixel area centered on the (x,y) coordinated of the single-particle trajectory at the ith time point or 

frame, IGFP,bg is the average background intensity of the GFP channel, and n is the bit depth that 

the GFP fluorescence was acquired at (n = 8 in our case).  The denominator and background 

subtraction normalized the colocalization score so that it is a unitless score that varies between 0 

and 1, where 0 means the trajectory has not association with the GFP signal and 1 means the 

trajectory was fully colocalized with GFP with saturated pixels. 

 

Colocalization Results: We analyzed 13 videos of cells in the group without ligand blocking and 

16 videos for the group with ligand blocking and calculated the CSGFP for reach detected 

trajectory.  This resulted in a total of 1096 trajectories and colocalization scores for the group 

without ligand blocking and 14871 trajectories and scores for the group with ligand blocking.  

The distributions of colocalization results for both groups are compared in Figure 4.11 below. 
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Figure 4.11 Histograms comparing GFP colocalization scores without ligand blocking (red) and 

with ligand blocking (blue) shown in (a) linear scale and (b) logarithmic scale, to emphasize the 

range over which the differences between the two groups are clearer. 

 

 

As the calculated colocalization scores are trajectory-level data, it is also possible to compare the 

CSGFP values for just the subset of immobile QDs, as defined by the thresholds calculated in 

Chapter 2 (Figure 4.12).   
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Figure 4.12 Box plots of GFP colocalization scores for (a) the set of all detected tracks and (b) the 

subset of immobile tracks.  The red line in the box corresponds to the median of the corresponding 

datasets, and the upper and lower bounds of the box mark the first and third quartile of the data.  

The length of the whiskers corresponds to 1.5 time the adjacent interquartile range, with any data 

points outside of these bounds represented by blue points. 

 

As the CSGFP distributions in Figure 4.10 don’t appear to be normally distributed, we used a two-

sided Wilcoxon rank sum test, which is equivalent to the Mann Whitney U-test, to test the 

hypothesis that the two distributions are statistically distinct with unequal median values.  

Comparing the set of all trajectories with this test resulted in a p-value of 6.073 × 10-23, and 

comparing the subset of just the immobilized QDs yielded a p-value of 7.24 × 10-34, showing that 

the two groups have statistically distinct levels of colocalization with GFP. 

 

4.3 Discussion  

 Here we presented specific targeting of intracellular proteins in live cells with externally 

delivered QD-probes.  Furthermore, we used quantitative verification of the targeted labeling by 

characterization of the degree of colocalization with the target fusion protein showing an 

increased colocalization of the QD-probe with the target protein in the group without ligand 

blocking.  Additionally, in the subset of the immobilized QD-probes the group without ligand 
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blocking showed even higher levels of colocalization with the target protein when compared to 

the group with ligand blocking. 

 Currently, there are two competing processes resulting in immobilized QDs: (1) specific 

immobilization from the chloroalkane-QDs binding to the HaloTag protein target and (2) the 

nonspecific background binding of the QDs.  With the current targeting methodology, 3-4 hours 

are necessary for the QD-probes to show distinct association with the mitochondria.  However, in 

this time period, the level of background binding is significant enough to decrease the mobile 

fraction of the QDs to nearly 25%.  This means that in the time required for the chloroalkane-

QDs to bind to their target, QD-probes in the group with ligand blocking could also randomly 

immobilize in the proximity of the target proteins, yielding to apparent or false-positive binding 

to the target. 

The degree of targeting and distinction over background binding could be improved in 

two major ways: (1) by reducing the background binding over the time period required for the 

probe to bind to the target molecule or (2) by increasing the efficiency of the probe binding to the 

target molecule, so that the required time period is shorter.  The first goal could be achieved by 

using a pZW-based coating with azide functional groups that may remain mobile and diffusive 

over the time period required for the targeting chemistry to proceed to completion, as zwitterions 

are less likely to destabilize due to their increased level of hydration and limited interaction with 

the hydrophobic domains of intracellular proteins.18  Additionally, we could try to model the 

process of random or nonspecific immobilization to see what the CSGFP would be given a 

particular GFP spatial distribution for completely random immobilization due to background 

binding. 
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4.4 Methods 

Quantum Dot Synthesis. (QDs synthesized by Suresh Sarkar, UIUC) Nanocrystals composed of 

(core)shell (HgxCd(1-x)Se)CdZnS were synthesized in organic solvents.10 In sequential steps, ~3.2 

nm CdSe cores were synthesized and Hg exchange process was performed taking the CdSe core 

in chloroform.10 After the purification,  HgxCd(1-x)Se  core was capped with shells composed of 

3.2 monolayers of CdS and 1.5 monolayers of ZnS  grown layer-by-layer. The final nanocystals 

were purified by several times precipitation with 1:5 mixture of methanol and acetone followed 

by re-dispersing in hexane.  

 

pPEG-N3 Quantum Dot Coating. (QDs coated and characterized by Zhiyuan Han, UIUC) A 

methanol solution of tetramethylammonium hydroxide (25%) was added to a biphasic mixture of 

N-methylformamide (NMF) and purified QDs in hexane. The suspension was stirred vigorously 

for 1 hour until the QDs were completely transferred to the NMF phase. Hexane was removed, 

and the NMF solution was washed with hexane twice. Residual hexane and methanol were 

evaporated under vacuum. A solution of pPEG-N3 in NMF (5:1 imidazole to QD surface atom) 

was added dropwise to the hydroxide-coated QDs in NMF (1 µM, 0.4 mL) with stirring under 

nitrogen atmosphere. The reaction was allowed to proceed at 110°C for 2 hours. The coated QDs 

were precipitated from NMF using anhydrous diethyl ether. The QDs were then dispersed in 50 

mM sodium borate buffer (pH 8.5) and centrifuged to remove possible aggregates.  The QDs 

were purified using centrifugal filtration (Amicon Ultra 50 kDa molecular weight cutoff) in 50 

mM sodium borate buffer. The dilution–filtration cycle was performed five times.  

Monodispersity of coated QDs was assessed by size exclusion chromatography. 
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Synthesis of DBCO modified chloroalkane. (Synthesized by Liang Ma, UIUC) Chloroalkane 

amine was first synthesized according to literature reports.19  Then 3.22 mg of chloroalkane 

amine (14.4 µmol) in dry DMF (100 µl) was mixed with 2 mg of DBCO-TEG5-NHS ester (2.8 

µmol) in dry DMF (200 µl). After addition of 9.3 mg of DIPEA (12 µl), the mixture was 

incubated overnight under shaking. The successful synthesis of DBCO modified chloroalkane 

was confirmed by ESI-MS (low resolution, positive mode): calculated for C42H60ClN3O10, m/z 

801.4 [M]+; found 802.4 [M+H]+. The product was used without purification for the next step. 

 

Chloroalkane-QD Preparation. Chloroalkane-QD conjugates were prepared within 24h of usage 

in cells.  Conjugation was performed by mixing pPEG-N3-coated QDs with DBCO-chloroalkane 

in 50 mM borate buffer (20:1 molar ratio of chloroalkane:QD), with the final QD concentration 

being approximately 1μM.  The conjugation was allowed to proceed for 10-12 h at room 

temperature, after which the free DBCO-chloroalkane was purified 4 times using a centrifugal 

filter with a 30 kDa molecular weight cutoff (Millipore).  Conjugation was confirmed using 

electrophoresis in a hybrid polyacrylamide-agarose gel (2% polyacrylamide and 0.5% agarose) at 

4° C. 

 

Cell Culture and Plasmid Transfection. HeLa cells (ATCC) were seeded at a density of 150,000 

cells/cm2 in LabTek chambers (Thermo Scientific), 3 days before delivery of QD conjugates.  

Cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM; Mediatech) with 10% 

fetal bovine serum (FBS; HyClone) and 1% penicillin/streptomycin (P/S; Mediatech). 12-24 

hours after initial seeding, cells were transfected with ActA-GFP-HaloTag plasmid, which was 

provided by Prof. Paul Selvin’s lab (UIUC).  Lipoefectamine-DNA complexes were prepared 
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(for each well to be transfected) by mixing 0.8 μg plasmid with 2 μL Lipofectamine2000 

(Invitrogen) in 100 μL incomplete DMEM for 20 minutes.  Before addition of the lipofectamine-

DNA complexes to the cultured cells, the culture media was replaced with DMEM supplement 

only with 10% FBS, and then 100 μL of the DMEM with lipofectamine-DNA was added.  The 

transfection was allowed to proceed for 3h, after which the culture media was replaced with 

DMEM with 10% FBS.  Transgene expression was verified by fluorescence microscopy 24-48h 

after transfection. 

 

HaloTag Pre-Blocking.  Before starting the QD delivery process, 10 μM of HaloTag biotin 

ligand (Promega, Product No. G828B) was added to the designated control wells for 100 

minutes, in order to pre-block the target HaloTag proteins.  In the subsequent designated steps, 

10 μM of HaloTag biotin ligand was also included for the control wells in order to provide 

continuous blocking of the HaloTag target proteins. 

 

Quantum Dot Delivery.  Cells were washed twice with phosphate buffered saline, and the 

hypertonic loading reagent (Life Technologies) containing 160 nM chloroalkane-QD conjugates 

was added (HaloTag pre-blocking included for control wells). Cells were incubated for 10 

minutes at 37C, and then the medium was removed and replaced with hypotonic lysis medium 

composed of 6 parts incomplete DMEM without phenol red and 4 parts deionized water, for 3 

minutes at 37C. The medium was then replaced with complete DMEM without phenol red and 

the cells were incubated for 10 minutes at 37C, after which the media was replaced with fresh 

phenol red free DMEM.  The cells were incubated at 37°C for 4 h in order to allow the QD-

conjugates to label the HaloTag target proteins (HaloTag pre-blocking included for control 
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wells).  Immediately before imaging, indocynanine green (1.44 μM; Pfaltz and Bauer) diluted in 

phenol red-free DMEM was added to quench any extracellular QDs. 

 

Fluorescence Microscopy. Fluorescence imaging was performed using wide-field illumination 

on a Zeiss Axio Observer.Z1 inverted microscope with a 100X 1.45 NA alpha Plan-Fluar oil 

immersion objective.  Before QD images were acquired a single GFP channel image was 

acquired using lamp excitation and a standard GFP filter set (Zeiss).  QD images in cells were 

acquired with HILO excitation with a 488nm 100mW optically pumped semiconductor laser 

with 15% laser power at optimized HILO angles for our system (~60 from normal). Excitation 

light was excluded using a 482/18 laser-line bandpass filter (Semrock), and emission light was 

filtered with a 835/70 bandpass filter (Semrock). Images were acquired using a Photometrics 

eXcelon Evolve 512 EMCCD using Zeiss Zen software. QD-conjugates were imaged 4 h after 

delivery at 19.6 frames per second, over the course of an hour at 37C with a focal plane set at 

the largest cross-section of the cell. 

 

Diffusion Analysis.  Single-molecule videos were analyzed by SPT using the MATLAB u-track 

software package developed by Jaqaman, et al.20 to determine centroid pixel positions (xo,yo) for 

trajectories at each time point t. Custom MATLAB scripts were used to calculate mean squared 

displacement (MSD) versus time increment (τ) curves for each particle trajectory and were fit to 

a model of anomalous diffusion in Equation 2.2.21–24  For tracks longer than 100 frames, curves 

were fit for the first 10 time increments, whereas ¼ of the track length was fit for shorter tracks. 

Tracks shorter than 10 frames were discarded.  These lengths were selected based on 

recommendations of Kepten and colleagues for tracks in the regime of strong subdiffusion to 
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weak superdiffusion (α = 0.3-1.3) with low localization error.25  Curve fits were filtered based on 

the calculated error of the fitting parameters with error tolerances of 0.05 μm2/s for D and 0.15 

for α. 

 

Colocalization Analysis.  The degree of QD colocalization with GFP signal was calculated for 

each detected track by calculating a GFP-colocalization score (CSGFP) as described by Equation 

4.1.  This was accomplished by calculating the background-subtracted GFP intensity of a 3x3 

pixel area centered on the (x,y) coordinates of the single-particle trajectory for each frame from 

the corresponding single frame GFP image.  As indicated in Equation 4.1, the CSGFP scores were 

normalized over the length of the trajectory and the bit depth of the image, which yields a 

unitless score for each trajectory that ranges between 0 and 1, where 0 means the trajectory has 

not association with the GFP signal and 1 means the trajectory was fully colocalized with GFP 

with saturated pixels. 
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CHAPTER 5: SINGLE QUANTUM DOT TRACKING TO MEASURE 

HYDRODYNAMIC SIZES DISTRIBUTIONS 

 

5.1 Background  

5.1.1 Nanoparticle Size Measurement Techniques 

 Accurate high-throughput characterization of nanoparticles is necessary to push forward 

the development of standardized, effective nanoparticle-based therapeutics.  Current methods 

such as dynamic light scattering and fluorescence correlations spectroscopy are indirect 

ensemble techniques that require complex time series analysis to extract physical sizes, and these 

techniques have serious shortcomings in characterizing heterogenous nanoparticle populations.1  

Chromatography-based techniques such as size-exclusion chromatography can characterize 

heterogenous populations with good resolution, but they require correspondence to known 

standard curves in order to report absolute size measurements.2,3 

 The speed and high signal-to-noise ratio of sensitive widefield fluorescence imaging 

techniques such as highly inclined laminar optical sheet (HILO) microscopy allows for the 

characterization of a large field of potentially heterogeneous nanoparticles via direct 

measurement of the diffusive behavior of the nanoparticles.  If other parameters, such as the 

viscosity and ambient temperature are known, then the diffusion coefficient can be directly 

converted into a hydrodynamic diameter (DHD) using the Stokes-Einstein equation, which is 

given as follows: 

𝐷𝐻𝐷 =
𝑘𝑏𝑇

2 𝜋𝜂𝐷
, 

where 𝑘𝑏 is the Boltzmann constant, 𝑇 is temperature, 𝜂 is viscosity, and 𝐷 is the diffusion 

coefficient.  Single-particle tracking (SPT) based size measurement has been applied in a 
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commercial system that uses scattering.  However, this scattering-based SPT technique is 

plagued by issues of nonspecific signal from sample contamination, and it is only able to 

accurately measure sizes of particles with DHD >100 nm.4,5  Here we present the initial 

development of a fluorescence microscopy based SPT measurement technique to accurately 

measure the hydrodynamic diameters of particles with DHD < 100 nm. 

5.1.2 Track Length Optimization for Accurate Size Measurement 

Studies of MSD analysis of single-particle tracks deriving from first principles6, Monte 

Carlo simulations7, and experiments following one particle for thousands of frames8 have 

demonstrated that when fitting to a Brownian diffusion model, longer unbroken trajectories are 

required for accurate fitting of the diffusion coefficient.  As MSD analysis of single particle 

trajectories is a process that is subject to the limitations of experimental acquisition, such as 

localization error, finite length trajectories, and acquisition limitations, there is always some sort 

of spread of the distribution when calculating DHD from SPT information.  Qian, et. al. and 

Saxton showed from first principles and analysis of simulated trajectories what the distribution 

of fitted diffusion coefficients looks like under different experimental conditions.6,7  Further they 

demonstrated that the key parameter for accurate diffusion coefficient measurement is to have 

long tracks.6,7  This trend has been experimentally confirmed in follow-up studies that one 

particle for thousands of frames.8 

5.2 Data and Results  

5.2.1 Experimental Setup 

In order to obtain single-particle tracks with sufficiently long lengths, we used aqueous 

solutions of glycerol with high weight percentages of glycerol (93-95%).  Since the viscosities of 

such solutions of glycerol are well documented, given the ambient temperature we can calculate 
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the viscosity of any aqueous solution of glycerol.9,10  To investigate a range of nanoparticle sizes, 

pPEG-coated QDs with three different core sizes were prepared.  The detailed characterization 

can be seen in Figure 5.1.  The sizes measured by SEC serve as the gold standard that all further 

analysis steps are checked against. 

The experimental data that was collected were 1000 frame long HILO movies of the 

pPEG-coated QDs diluted in 93, 95, and 98% glycerol solutions.  These videos had dense fields 

of view that were processed to extract single-particle tracks using the FIJI plugin TrackMate.11  

Since TrackMate can run as a multi-threaded process, this allowed for the fast processing of 

many dense fields of diffusing particles. 

 

Figure 5.1 Characterization of 3 different sizes of pPEG-coated QDs (a) TEM images of bare QD 

cores with average core size superimposed on the images, (b) Size measurement of pPEG-coated 

QDs by size exclusion chromatography (SEC).  Measured size from known standard curve 

indicated on the plot by the color-coded curves. 

 

5.2.2 Mean Square Displacement and τfit Optimization 

 The MSD values of the SPT outputs were fit to the following Brownian diffusion model 

𝑀𝑆𝐷(𝜏) = 4𝐷𝜏 + 4𝜎𝑥𝑦
2 , (5.1) 

where σxy is the average localization error for each trajectory, which is an output parameter of the 

SPT algorithm.  Optimizing the number of time lags to use for the MSD fitting, τfit, is a complex 
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problem that has been addressed by experts in the field in different ways.12,13  This is because a 

balance needs to be struck between using a small value for τfit, which may be influenced by 

inaccuracies in localization error measurement, and using large values for τfit, which is prone to 

error from the calculation of MSD values at long time lags with small sample numbers.  

Furthermore, as seen previously in Chapter 2 (Figure 2.8) imaging diffusing QDs with HILO 

leads to a distribution of track lengths, which makes it unclear what the optimal value for τfit 

would be. 

 In this regards, we proceeded with τfit optimization by testing out a series of fixed values 

(τfit = 4, 10, 25, 50, and 100) for all trajectories for QD680 diffusing in 93, 95, and 98% glycerol.  

Additionally, based on the recommendation from Michalet’s analytical optimization for MSD 

fitting within particular parameters13, we used the following equation for a variable definition of 

τfit: 

𝜏𝑜𝑝𝑡𝑖𝑚 = 3 + (4.5𝐿0.4 − 8.5)1.2 (5.2) 

where τoptim is the optimal τfit value and L is the length of the trajectory in frames.  The results of 

both the fixed τfit and variable τfit fittings are summarized in Figure 5.2. 
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Figure 5.2 Plots of error in the median values of fitted DHD for τfit = 4, 25, 50, and 100 calculated 

from experimentally acquired diffusion data of QD680 in 93, 95, and 98% glycerol.  The dashed 

lines of the corresponding colors correspond to the error results from the τoptim recommendation 

from Michalet.13 

 

Due to the wide track length distribution resulting from the acquisition conditions, a fixed τfit 

value typically results in some degree of overestimation of DHD that is exaggerated at the 

extreme values of the shortest and longest τfit values.  Notably, the highest viscosity solutions 

have the lowest fitting error for, regardless of how τfit is defined.  Furthermore, the variable τoptim 

always yields error comparable to the lowest value produced by the best fixed τfit results.  The 

accuracy of τoptim is further confirmed when looking at the DHD distributions (Figure 5.3).  

However, one outstanding question is the underlying factors for the spread the DHD distributions. 



93 

 

 

Figure 5.3 Histograms of fitted DHD using the τoptim recommendation from Michalet.13  Calculated 

from experimentally acquired diffusion data of QD680 in 93, 95, and 98% glycerol.  The red 

dashed line indicated the expected size by FPLC of 17.8 nm. 

 

5.2.3 Verification of Hydrodynamic Diameter Distributions by Simulated Trajectories 

 In order to investigate the characteristics of our imaging and analysis technique we 

analyzed simulated trajectories based on the experimental data that was collected.  Brownian 

motion was simulated using MATLAB wfbm function.  The expected value for the diffusion 

coefficient, based on the size measured by SEC, was the primary input for the simulated 

trajectories.  We truncated the trajectories based on the experimentally measure distribution of 

track lengths.  Additionally, localization error was imposed as part of the simulation based 

experimentally measured values.  Finally, these simulated trajectories were analyzed using the 

same MSD analysis approach detailed above with a range of fixed τfit values and τoptim.  The 

results of the simulated trajectory analyses are shown in Figure 5.4.  Interestingly, τoptim still 
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approximates the best results from fixed τfit values.  The most striking result of the simulation 

results is that even with an input of a single diffusion coefficient and using τoptim results in an 

almost identical distribution of fitted DHD values (Figure 5.5). 

 

Figure 5.4 Plots of error in the median values of fitted DHD for τfit = 4, 25, 50, and 100 calculated 

from simulated trajectories of QD680 in 93, 95, and 98% glycerol.  The dashed lines of the 

corresponding colors correspond to the error results from the τoptim recommendation from 

Michalet.12 
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Figure 5.5 Histograms of fitted DHD using the τoptim recommendation from Michalet.13  Calculated 

from simulated trajectories of QD680 in 93, 95, and 98% glycerol.  The red dashed line indicated 

the expected size by FPLC of 17.8 nm. 

 

5.3 Discussion  

Here we demonstrated a direct measurement of nanoparticle size in the range of 20 nm 

DHD using HILO microscopy based SPT analysis.  This beats the lower limit of accurate size 

measurement by comparable scattering-based SPT analysis by nearly 80 nm. 

By using an optimized variable definition for τfit, we were able to minimize the fitting 

error for DHD.  However, there is a significant spread of the fitted DHD distribution, which we 

were able to confirm was characteristic of the acquisition and analysis method by analysis of 

simulated trajectories.  These leaves some open questions about what the resolution limit of this 

method will be for measuring nanoparticle size. 

These questions will be further investigated by measuring the sizes of the other two sizes 
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of QDs depicted in Figure 5.1 in addition to particles with fixed core size and variable polymer 

coating thicknesses.  Ultimately, the goal will be to analyze a population of QDs with mixed 

sizes to demonstrate the power of widefield SPT analysis to measure the sizes of heterogenous 

populations of nanoparticles. 

5.4 Methods 

 

Quantum Dot Synthesis. (QDs synthesized by Suresh Sarkar, UIUC)  The three different QD 

cores were synthesized similarly to the methods described in previous chapters.  Differences in 

the synthetic protocol can be found in recently published work.14   

 

Transmission Electron Microscopy of QDs. (Performed by Suresh Sarkar, UIUC) TEM images 

were obtained using a JEOL 2010 LaB6 high-resolution microscope in the Frederick Seitz 

Materials Research Laboratory Central Research Facilities at University of Illinois. For QDs in 

organic solvents, samples were prepared by placing a drop of dilute QD solution in hexane on an 

ultrathin carbon film TEM grid (Ted Pella; Product # 01824) and then wicking the solution off 

with a tissue. 

 

pPEG Quantum Dot Coating. (QDs coated and characterized by Liang Ma, UIUC) A methanol 

solution of tetramethylammonium hydroxide (25%) was added to a biphasic mixture of N-

methylformamide (NMF) and purified QDs in hexane. The suspension was stirred vigorously for 

1 hour until the QDs were completely transferred to the NMF phase. Hexane was removed, and 

the NMF solution was washed with hexane twice. Residual hexane and methanol were 

evaporated under vacuum. A solution of pPEG in NMF (5:1 imidazole to QD surface atom) was 

added dropwise to the hydroxide-coated QDs in NMF (1 µM, 0.4 mL) with stirring under 
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nitrogen atmosphere. The reaction was allowed to proceed at 110°C for 2 hours. The coated QDs 

were precipitated from NMF using anhydrous diethyl ether. The QDs were then dispersed in 50 

mM sodium borate buffer (pH 8.5) and centrifuged to remove possible aggregates.  The QDs 

were purified using centrifugal filtration (Amicon Ultra 50 kDa molecular weight cutoff) in 50 

mM sodium borate buffer. The dilution–filtration cycle was performed five times.  

Monodispersity of coated QDs was assessed by size exclusion chromatography. 

 

Sample Preparation. QDs prepared in 50 mM borate buffer were dispersed in glycerol to reach a 

final concentration of 0.123 nM and a glycerol concentration of ~93, 95, or 98%.  For imaging, 

~100 µL of the QDs dispersed in the glycerol solution were deposited in a CellView dish with a 

#1.5 coverglass bottom (Greiner Bio-One, Kremsmünster, Austria). 

 

Microscopy.  All samples were imaged using highly-inclined laminar optical sheet (HILO) 

microscopy on a Zeiss Axio Observer.Z1 inverted microscope (Zeiss, Oberkochen, Germany) 

with a 100x 1.45 NA alpha Plan-Fluar oil immersion microscope.  The particles were excited 

with a 488nm 100mW optically pumped semiconductor laser with 15% laser power at optimized 

HILO angles for our system (~60 from normal). Excitation light was excluded using a 482/18 

nm laser-line bandpass filter (Semrock), and emission light was filtered with a 600/37 nm or 

650/100 nm bandpass filter (Semrock.. Data was acquired on a Photometrics eXcelon Evolve 

512 EMCCD (Photometrics, Tuscon, AZ) and using Zeiss Zen software.  All samples were 

uniformly excited, and data was collected for 60 seconds at a rate of 21.64 frames/s. 

 

Diffusion Analysis.  Single particle detection and tracking was done using the FIJI plugin called 
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TrackMate.11  Custom MATLAB scripts were used to calculate MSD values for all of the tracked 

particles and to fit a Brownian motion model in order to calculate diffusion coefficient values.  In 

order to accurately calculate hydrodynamic diameters from these diffusion coefficient values, 

only particle tracks with a length of 200 frames or more (based on literature recommendations7,8) 

and a diffusion coefficient greater than 0.02 µm2/s (based on the empirically determined 

localization error for immobilized particles on our system) were included in the hydrodynamic 

diameter calculations.  Hydrodynamic diameters were calculated using the Stokes-Einstein 

relation and known viscosity values of glycerol solutions.10 

 

Analysis of Simulated Trajectories. Trajectories were simulated using the MATLAB wfbm 

function, which generates a fractional Brownian motion trajectory with specified α (set to α = 1 

in this case to simulation Brownian motion), when normalized by standard deviation. 

Trajectories were scaled by D, and a series of normally distributed measurement errors were 

added to each position in each dimension.15 Measurement errors derived from a distribution with 

zero mean and a standard deviation derived from the mean experimental localization error from 

the SPT analysis for each QD coating class. Track lengths were truncated to match the 

distribution of experimentally measured track lengths. These simulated trajectories were 

analyzed using the diffusion analysis method described above. 
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CHAPTER 6: CONCLUSIONS AND OUTLOOK 

 

6.1 Summary  

QDs have made an important impact in the past decade in understanding complex 

processes intrinsic to biology with one of the primary areas of impact being measurements of 

single-molecule dynamics, which have been made possible by the unique optical properties of 

QDs.  The work presented in this dissertation builds on this progress, specifically making 

advances in the imaging in the intracellular space and nanoparticle size measurement. 

 In Chapter 2, we described a new analysis technique combining single-molecule diffusion 

and brightness analysis.  This approach further yielded novel single-cell metrics that can be used 

to interrogate nanoparticle delivery mechanisms and intracellular particle state and final fate.  In 

Chapters 3, this analysis technique was used to optimize QD surfaces for optimal intracellular 

delivery with outcomes suggesting that for intracellular targeting with molecular probes, stable 

and neutral surfaces are ideal.  In Chapter 4, we presented initial work aimed towards specific 

targeting of intracellular proteins in live cells with externally delivered QD-probes with such 

stable and electrostatically neutral surfaces.  We further used quantitative verification of the 

targeted labeling by characterization of the degree of colocalization with the target fusion protein 

showing an increased colocalization of the QD-probe with the target protein in the group without 

ligand blocking.  Finally, in Chapter 5 we demonstrated a direct measurement of nanoparticle 

size in the range of 20 nm DHD using HILO microscopy based SPT analysis beating the lower 

limit of accurate size measurement by comparable scattering-based SPT analysis by nearly 80 

nm. 
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6.2 Future Outlook 

 With recent advances in instrumentation, probes, and image analysis software, the 

capacity to perform single-molecule tracking is now widely available.1–4  With the new methods 

presented, it will be possible to use single-particle imaging and tracking not just as a tools to 

understand biology at this scale, but also to understand and optimize intracellular delivery of 

nanoparticles and intracellular dynamics and trafficking.  It may be possible to accurately apply 

pharmacodynamics models relating dose to efficacy and potency for nanoparticle therapeutics, 

which present unique challenges due to uncertainty of numerous transport parameters.5  

Additionally, even though this method currently limited to imaging cultured cells, it could also 

potentially be applied to evaluate delivery in living tissues in both intracellular and extracellular 

domains using imaging techniques with both rapid acquisition and high depth penetration, such 

as spinning disk confocal microscopy, light sheet microscopy, or holographic multiphoton 

imaging.6,7  

 Furthermore, if the appropriate materials improvements can be made to optimize 

intracellular labeling of proteins with extrinsically delivered QDs for cytoplasmic targets that are 

relatively stationary, then the optimized intracellular labeling parameters could be extended to 

labeling more dynamic targets, such as transcription factors.  The tracking of intracellular protein 

dynamics and trafficking, especially in response to drug treatments, could reveal biological 

mechanisms that have never been measured before. 
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