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ABSTRACT

Blind linear system identification (or recovery) arises in several applications

in engineering (e.g. channel equalization, super-resolution, MRI and SAR

image formation). This is a special case of a bi-linear inverse problem, and

is sometimes equivalent to range-based operator recovery.

The aim of this research is to study the structure of solutions for range-

based identification, which is typically an affine or projective variety, and is

usually ambiguous (containing more than one element - not identifiable).

Algebraic geometry was utilized to derive a generic range-space based

identification algorithm and identifiability test. The properties of irreducible

complex varieties were used to derive a numerical identifiability guaran-

tee for complex parametric families. In addition, an alternative approach

(of so-called preserving pre-compositions) examined the ambiguity from a

non-parametric viewpoint, searching for operations that preserve both the

structure of a system as well as its range space.

The established framework and results were then used to determine cases

wherein the recovery of sampled multichannel finite impulse response (FIR)

configurations, particularly blind sampled deconvolution, is ambiguous.

The last chapter of this work offers some insights about the spatial struc-

ture of data eigen-patches, that were used in previous chapters in the process

of system identification. Empirical results indicate that those eigen-patches

tend to exhibit wave-like shapes, and the sample covariance operator is ap-

proximately Toeplitz. A heuristic explanation for those two phenomena is

offered with some statistical analysis, which could be further developed later

into a complete and rigorous explanation of the observations.
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CHAPTER 1

INTRODUCTION

Linear System Identification aims at determining an unknown input-output

model (possibly parameterized) by its inputs, outputs, and priors about

its model. When the input is unknown, the problem is classified as blind

identification, which is the main topic of this work.

1.1 Motivation: Blind Linear System Identification

Algebraically, signals and system can be regarded as vectors and operators

over linear spaces. Let U, V be spaces of input and output signals respec-

tively (over some field k), and let M ⊂ Lin(U, V ) be a subset of all linear

operators Lin(U, V ) mapping U to V .

Blind Identification and Based on Output Data

Problem: given a collection of output data {yi} ⊂ V (here i ∈ E is

an index), find a linear mapping S ∈ M and corresponding inputs

{xi} ⊂ U such that

yi = Sxi for all indices i ∈ E (1.1)

Example 1.1. An image is blurred by six different kernels, which are then

sampled on randomly scattered patches of pixels (Figures 1.1b, 1.1a) on dif-

ferent locations. From this data, the goal is to recover the blurs (system,

Figure 1.1c) and possibly the image itself (input, Figure 1.1d).

We are interested in studying

• How does one recover the blurs and the input?

• What sampling patterns enable a unique recovery? (up to scaling)

• What blurs have a unique recovery? (up to scaling)

1



(a) A patch: only red pixels were sam-
pled

(b) Data ensemble (×6 channels)

(c) System recovery (6 blurs) (d) Input recovery

Figure 1.1: Blind de-blurring and interpolation

1.1.1 Different Formulations of Blind System Identification

Blind system identification can be formulated as a special case of problems

in broader contexts, such as the following:

A Bilinear Inverse Problem

Blind identification is classified as a bi-linear inverse problem. In its most

general form, a bi-linear problem (see [1] for a general discussion) aims at

finding all pairs(a, b) such that

c = F (a, b) (1.2)

for a bivariate function F (·, ·) which is linear in both entries, and some fixed

value c. Indeed, the mapping

(S, x) 7→ Sx : Lin(U, V )× U → V

is trivially linear in both S and x. The collection Si = {(S, x)} ⊂ M× U
or all pairs satisfying (1.1) constitute a solution of the bi-linear problem

2



Sx = yi ∈ V . There are three solution scenarios, corresponding to what

part of the solution is desired:

1. Joint recovery if both the input x and system S are sought.

2. Input recovery if only the input x is sought.

3. System recovery if only the system S is sought.

System identification is concerned with the third case, which is the main

focus of this work.

Algebraic Geometry Problem

The bi-linear formalism may not necessarily offer a full and comprehensive

description of solution set (not as of writing this work, in any case). It does,

however, suggest an important takeaway: a bi-linear solution can be written

as a set of zeros of an algebraic function:

{(S, x) | q(S, x) = 0} q(S, x) = y − Sx (1.3)

The implication of this seemingly trivial formula is that the bi-linear solu-

tion (in the finite dimensional case) is an affine variety in Lin(U, V )× U I ,
indicating that algebraic geometry might be the natural setting for the anal-

ysis. The empirical identifiability theory in this work directly stems from

properties of complex algebraic varieties.

Tensor Recovery Problem

Recent trends (see Section 1.2 for examples) treat bi-linear problems (specif-

ically emerging from blind channel identification) as tensor completion prob-

lems. The idea is that for every bi-linear form F (S, x), by conflating S and

x = (xi) ∈ U I we can write a multilinear (tensor) form π that agrees with

F on rank-1 tensors:

F (S, x) = π(S ⊗ x)

For the example, we rewrite F : k2×2 × k2 → k2 as a multilinear form

π : k2×2 ⊗ k2 → k2:

F (S, x) =

[
S11x2 − S22x1

S12x1

]
 π(W ) =

[
W11,2 −W22,1

W12,1

]
(1.4)

3



and indeed π(S ⊗ x) = F (S, x).

In this tensor form (sometimes called “lifting”) the inverse bi-linear can

be written as follows: given data y ∈ V I , solve the following for W :

π(W ) = y ∈ V I such that W is of rank 1 (1.5)

Within the solution set of W , each of which factors to S⊗x, we choose only

those that S ∈M.

In practice, this is a matrix completion problem, wherein S⊗x is written as

vec(S)vec(x)T . Think of W as a matrix with missing entries, and complete

them such that W if of rank 1, factored as W = SxT , and S ∈ M. For the

example (1.4) we have

W =


W11,1 W11,2

W12,1 W12,2

W21,1 W21,2

W22,1 W22,2



If we wish to solve, for instance, π(W ) =

[
1

−1

]
then

W =


W11,1 α

−1 W12,2

W21,1 W21,2

α− 1 W22,2


where unresolved entries of W can obtained by ensuring that all 2×2 minors

vanish (see similar discussion in [1]), which guarantees that rk(W ) ≤ 1.

1.1.2 Range Space Based Operator Recovery

If an operator S ∈ M maps a set of inputs to outputs on the graph

{(xi, yi)}i∈I , namely yi = Sxi, it does so to any linear combination ap-

plied simultaneously to the inputs and outputs. For every (finite) scalar

collection {ci} one has

∑
i

ciyi = S

(∑
i

cixi

)
(1.6)

If no restrictions imposed on the input x (allowing linear combinations of

{xi} among other things), one can generate many other pairs on the linear

4



span (usually infinitely more).

In such cases, the relevant information for the recovery of S can be dis-

tilled to the output span spani{yi} rather than the output data itself {yi}.
Then, the output-data based blind identification problem that was intro-

duced earlier can be equivalently posed for range spaces:

Blind System Identification based on Range Space

Problem: given some subspace Ṽ ⊂ V , find S ∈M s.t Ṽ = Im(S)

Remark 1.2. The same problem statement applies for kernel-based identi-

fication, and the results following are completely analogous.

Using spans instead of explicit vectors can have practical application; for

example, if the outputs {yi} cannot be measured directly, but rather their

unknown linear combination (i.e. {ci} in (1.6) are unknown), one can still

identify the system S (Lemma 2.20 generalizes that). The idea used in this

work is to solve the homogeneous equation

PṼ ⊥S = 0 subject to S ∈M (1.7)

where PH is a projection on a space H. This is a generalization of the

strategy used in [2], with the exception that M is not necessarily a linear

family.

1.1.3 Solution Existence and Ambiguity

As with any inverse problem, a fundamental question is the existence and

uniqueness (or ambiguity) of the solution. For the main concern of this

work, the range-based identification (essentially Equation (1.7)) we have:

• Existence: a solution S ∈M (1.7) exists only if its range is contained

in the given Ṽ . Strict existence can be relaxed in by approximating Ṽ

(in practice, converting (1.7) to a minimization problem).

• Ambiguity: we have uniqueness only when a given Ṽ corresponds

to a single S ∈ M with Ṽ = Im(S). Solutions of blind identification

problems notoriously tend to be ambiguous.

5



Goal Statement

The main goal of this work was to understand the extent to which

range-based system identification is ambiguous, or informally, to

quantify the identifiability of systems.

In the (more general) bi-linear context, a joint solution exists iff both fac-

tors exist separately. Thus, existence is equivalent for all solution scenarios

(input, system, and joint recovery), but usually not guaranteed - depending

on whether the given data is a valid output of some system in M. As for

ambiguity, a unique factor does not mean the other is non-ambiguous. For

example, given {(S, x)}, where S is unique with a nontrivial kernel in U ,

then x is ambiguous with x+ Ker(S).

In the tensor formalism, existence of a rank-1 tensor W = S ⊗ x does

not imply that either S or x satisfies any further restrictions. A solution to

the matrix completion problem is merely just one first step in the solution

process.

In the special case of homogeneous M (i.e. λM ⊆ M for all scalars λ),

the scaling ambiguity is inherent to the solution, as every scalar α 6= 0 yields

(αS)(
1

α
x) = Sx

Note that the tensor formalism S ⊗ x eludes this homogeneity ambiguity.

1.2 Related Works

A common application of blind system identification arises in blind decon-

volution (featured in Example 1.1 and in Chapter 4), aiming at factoring a

signal y as a convolution of h and x (i.e. y = h∗x), that are unknown factors.

Blind Finite Impulse Response (FIR) deconvolution further asserts that the

filter h is finitely supported. The problem gets more complicated when y

is only a partial sampling of the convolution, namely, for some sampling

operator D the data is

y = D(h ∗ x)

Such models have been utilizes in several applications, such as:

• Channel equalization: the reversal of a distortion incurred by a com-

munication channel h, in order to recover the transmitted signal [2,3].
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• Image de-blurring is a 2D analogous problem of the channel equaliza-

tion, where the goal is to recover an input image x by a set of blurred

measurements y (see [4, 5]). Additional constraints on the blurs are

often imposed such as spatial priors (sparsity and gradients), as well

as positivity (see e.g. [6]).

• Super-resolution (see e.g. [7]): here the output y corresponds to a lower

resolution data emerging from a high-resolution image x. The model

of S is typically well known, so in that context the solution focuses on

the input x.

Recent trends in blind identification employ the inverse bi-linear and ma-

trix completion approach, as described in Section 1.1.1. Several works came

up with conditions on the sampling function π under which a tensor can

essentially be uniquely recovered [8–10]. The conditions are derived by al-

gebraic and combinatorial considerations. Another related work aims at

learning conditions under which a range space can be uniquely associated

with a partially sampled matrix [11]. That is, given Ṽ = Im(S) and the sam-

ple π(S) of some unknown S, different completions of π(S) to S yield various

ranges, but under some conditions on π, the range of S can be determined

by π(S) solely.

Sparsity priors for bi-linear inverse problems were also incorporated, often

relaxing the rank condition to a nuclear norm1 [9, 10, 12]. This relaxation

translates the identification into a convex minimization problem:

min
W
‖W‖∗ subject to π(W ) = y

More related to this work, algebraic geometry has been playing an im-

portant role in the analysis in this research. The applications of some basic

tools of algebraic geometry to the questions of identifiability have been un-

dertaken earlier (see e.g. [13,14]). Those papers address similar questions to

the one discussed in this research, with essentially the same toolbox. Their

results, however, do not rely on the range (or kernel) identifiability, and do

not exploit generic properties, which lie in the foundation of the numerical

identifiability test obtained in this research (Section 2.3).

Lastly, the notion of system identification in this work is different, though

remotely related to the state-space system identification studied in [15,16].

1Given by the sum of the singular values.
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1.3 Established Contributions and Document Outline

The identification problem poses several interesting questions:

1. How can one recover an operator through its range?

2. Under what conditions is an operator identifiable by its range?

3. If one operator is identifiable, does it mean that others are too?

4. How can one test for identifiability of one or more operators?

5. Can increasing the number of channels (i.e. identify several systems

simultaneously assuming common input) promote identifiability?

6. Can a system still be identified through partial measurements?

Our goal in this work, is to answer those questions. Some of the early results

in this work (e.g. Theorem 2.22) were already outlined in [17], though

without the proofs or any detailed analysis.

The analysis can be divided into two main categories, based on the de-

scription of the operator family M:

• Explicit parametrization of M, where the ambiguity is studied in the

parameter space, which is the main topic of Chapter 2.

• Implicit description of M (i.e. algebraic variety), where the range

ambiguity is studied in M itself, discussed in Chapter 3.

The two approaches can be combined and complement each other, as demon-

strated in Chapter 4 with the analysis of discrete FIR identifiability.

The following list highlights the contributions of this research and the

structure of this document:

1. Formulation of the identification problem in terms of algebraic vari-

eties, and the range-based identification algorithm (Chapter 2).

2. A theorem stating that identifiability is a generic property (for com-

plex polynomial parametric models), providing a numerical identifia-

bility guarantee (Section 2.3).

3. Characterization of solutions through M-preserving pre-compositions

(Chapter 3), using the fact that Im(SA) ⊆ Im(S) for every linear

endomorphism A. The introduced algebraic structures characterize

8



the solution ambiguity in both the operator and parameter space, and

can given insights about a potential of a family to be identified through

modifications (such as multichannel extensions).

4. Classification of identifiable sampled FIR configurations on general-

ized (discrete, Abelian) index groups (Chapter 4). Traditional FIR

identifiability theory has been addressing one-dimensional sequences

or digital images, and fairly simple (rectangular or periodic) sampling

models, often employing the range-space base approach [2,4,7]. One of

the interesting conclusions is that uniform sampling of the index group

results with an ambiguous identification (Section 4.2.1). Lastly, using

pre-composition approach, a combinatorial analysis was developed to

test whenever a sampling configuration is not identifiable (Section 4.4).

5. Chapter 5 is a separate endeavor that began while studying the princi-

pal components of sample autocorrelations (which stemmed from the

parametric identification algorithm, relying on the data span). Ex-

amining the way patches occupy an operator’s output space (through

principal component analysis) revealed an interesting pattern: there

are significant wave-like components in natural images, and the ones

of lower energy (i.e. constant and “slow” varying) look very much

like solutions of a harmonic problem on the patch domain. We take a

closer look at this phenomenon, and offer some heuristic explanations.

Some technical notes such as mathematical formulation and proofs are

included in the appendices.
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CHAPTER 2

IDENTIFIABILITY OF PARAMETRIC

OPERATOR FAMILIES

Fix a linear domain and co-domain U and V respectively over a field k.

Generally speaking, an operator family can be any subset

M⊂ Lin(U, V ) (Generic Operator Family)

but we will focus on families with structure, specifically algebraic varieties,

and parametric models (that are useful in applications in engineering and

physics).

This chapter will be structured as follows:

• Section 2.1 features formal definitions of operator families, rank strat-

ification, and specific properties of complex families.

• Section 2.2 discusses the range-based identification of a parametrized

operator within a family.

• Section 2.3 highlights one of the main results of this research: a guar-

antee for identifiability for irreducible complex parametric families

(which include linear families).

• Lastly, Section 2.4 concludes with results that are specific for linear

families only.

2.1 Algebraic and Parametric Families

We begin with a basic notion of an operator variety.

Definition 2.1. An operator variety is an algebraic variety in Lin(U, V )

M = V(q1, . . . ,qK) ⊂ Lin(U, V ) (2.1)

q1, . . . ,qK ∈ k[Lin(U, V )]

where {qk} are polynomial mappings taking operators in Lin(U, V ) to k.

10



This definition gives an implicit description of the operator family, in

which S ∈ M iff qk(S) = 0 for all 1 ≤ k ≤ K (or q(S) = 0 in short). We

say that M is a linear family if it is a linear subspace of Lin(U, V ).

Example 2.2. The set of all rigid transformations on the 2D real plane

(in homogeneous coordinates) is an operator variety in Lin(U, V ) = R3×3.

Given S = (sij) ∈ Lin(U, V ), define the family M = V(q1, . . .q6) as the

zeros of

q1(S) = s11 − s22 q2(S) = s21 + s12

q3(S) = s11s22 − s21s12 − 1 q4(S) = s23 − 1

q5(S) = s31 q6(S) = s32

This is the set of all 3× 3 real matrices with the structure q1 q2 t1

−q2 q1 t2

0 0 1

 subject to q2
1 + q2

2 = 1

An alternative way to describe operator families is by explicit parametriza-

tion. A parametric family of operators is generally a mapping

m : M→ Lin(U, V ) (2.2)

from a parameter set M, that is usually embedded in kD. Every parameter

θ ∈ M is associated with some operator m(θ) ∈ Lin(U, V ). An algebraic

family is a special case of parametric family split out from Lin(U, V ) by

polynomial equations.

Definition 2.3 (Algebraic Family). An algebraic family is a polynomial

image of an algebraic variety in an operator space. That is, the parameter

space is an (affine) algebraic parameter variety:

M = V(p1, . . . , pK) ⊂ kD p1, . . . , pK ∈ k[X1, . . . , XD] (2.3)

and a polynomial mapping m : kD → Lin(U, V ):

Operator Family: M = m(M) ⊂ Lin(U, V )

By saying that the mapping m ∈ Lin(U, V )[X1, . . . , XD] is a polynomial

map: the matrix entries of m(θ) are polynomials in θ ∈M.
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Remark 2.4. Algebraic families make a relaxation of operator varieties:

every variety is a polynomial image of itself, but not necessarily the other

way around (e.g. the projection of the complex variety V(x1x2 − 1) ⊂ C2 to

x2 ∈ C is C \ {0} is not a variety). Only certain types of varieties can be

always parametrized (linear families for example).

All results that concern algebraic families also hold for operator varieties,

therefore, analysis will be done on algebraic families when possible.

Remark 2.5. The collection of all scalar polynomial mappings on an affine

variety V is known as coordinate ring, denoted k[V]. For an algebraic fam-

ily m : M → Lin(U, V ), the parametrization m is a function in k[M] ⊗
Lin(U, V ) (the collection of all Lin(U, V )-valued polynomial functions on

M).

Example 2.6. Let M = U = V = kn. Define the family m by circulant

matrices (on the standard basis):

m(θ) =


θ0 θ2 θ1

θ1 θ0 θ2

. . .
. . .

θn−1 θ1 θ0


Example 2.7. For θ ∈M = kD define the autoregressive equation

y[n] =

D−1∑
i=1

θiy[n− i] + θ0x[n] ∀n ≥ 0 (2.4)

in x and y, subject to zero-initial condition y[n] = 0 for all n < 0. Given

x[n] =
[
x[0] . . . x[n]

]T
y[n] =

[
y[0] . . . y[n]

]T
one can write y[n] = An(θ)x[n] for some (n + 1) × (n + 1) matrix An(θ)

which is polynomial in θ. To construct An(θ) write (2.4) as

y[n] = θ̄nAn−1(θ)x[n− 1] + θ0x[0] =
[
θ̄nAn−1(θ) θ0

]
x[n]

Here θ̄n is a vector of n entries associated with θ as follows:

θ̄n =
[
0 . . . 0 θD . . . θ2 θ1

]
∈ Cn

12



and truncated whenever n < D. Then An(θ) has the recursive structure:

An(θ) =

[
An−1(θ) 0

θ̄nAn−1(θ) θ0

]
=



a0(θ) 0 0

a1(θ) a0(θ)
...

. . .

an(θ) an−1(θ) . . . a0(θ)


(2.5)

of a lower-triangular Toeplitz matrix. The polynomial an(θ) is defined by

the recursion a0(θ) = θ0 and

an(θ) = θ̄n

[
a0(θ) . . . an−1(θ)

]T
(2.6)

2.1.1 Homogeneous Families and Projectivization

Homogeneous varieties are invariant under scaling. Those objects are central

to this study, since linear spaces are homogeneous.

Definition 2.8. A family M is homogeneous if αM ⊂ M for all α ∈ k

(the same definition applies specifically to operator varieties). A parametric

algebraic family m : M → Lin is said to be homogeneous if M is homoge-

neous and in addition, m is also homogeneous, i.e. m(λθ) = λdm(θ) for all

λ ∈ k, θ ∈M.

Homogeneous families require special treatment in range-identifiability

analysis, since range-spaces of operators do not alter under rescaling. This

ambiguity is reflected back to the parameter space: θ ∈ M and λθ ∈ M

are indistinguishable through observation of the range, as Im(m(λθ)) =

Im(m(θ)) for any nonzero λ ∈ k∗. This inherent ambiguity is mitigated by

replacing M with its projectivization:

PM := (M\{0})/(θ∼λθ,λ∈k∗) (2.7)

In general, when M is an affine algebraic variety defined by a system

of homogeneous polynomials of the same degree d, the projectivization re-

sults in a projective algebraic variety PM, and if M = kD then PM is the

projective space PD−1(k).

13



2.1.2 Constructions over Operator Families

Operator families can be combined together to create other families. Alter-

natively, operator families can sometimes be described as combinations of

simpler families.

Let M1 and M2 be two operator families (not necessarily in the same

ambient space). An outer construction defines new operators by pairs

(S1, S2) ∈ M1 ×M2 in various way, depending on whether M1 and M2

share the same domain U , co-domain V , or are separate altogether. We

consider two cases:

1. Common domain U , that is, M1 ⊂ Lin(U, V1) and M2 ⊂ Lin(U, V2).

The product M1 × M2 has a natural structure in Lin(U, V1 ⊕ V2)

defined by

(S1, S2)x := (S1x, S2x)

and is naturally embedded in Lin(U, V1)⊕Lin(U, V2) (much like stack-

ing matrices one over the other). We do not require M1 and M2 to

be identical.

2. Multichannel extension of the same model : multiple instances of the

same model operate on a common input (Figure 2.1). In this case

S ∈ML is the channel stack

S =
[
S1, . . . , SL

]
: U → V L

where Sk ∈M corresponds to the k-th channel. Alternative notations

are S ∈ Lin(U, V L), S ∈ Lin(U, V ⊗ kL), and with abuse of notations

S ∈ (Lin(U, V ))L or S ∈ Lin(U, V )⊗ kL.

x S1
y1

...

SL yL

Figure 2.1: Multichannel construction

Constructions over operator families maintain their type: products of

operator varieties are operator varieties, products of algebraic families are

algebraic, and products of homogeneous families are homogeneous.

Internal constructions are defined between families in the same ambient
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space Lin(U, V ). If M1,M2 ⊂ Lin(U, V ) are two families, the minimal

linear family containing both families is the span:

span{M1,M2} = span{M1}+ span{M2}

Whenever M1,M2 are linear spaces, then the above is the linear space

M1+M2. Those are used later in Chapter 3 to determine how multichannel

extensions affect identifiability.

2.1.3 Rank Stratification of Operator Families

The rank function

rk : Lin(U, V )→ N

assigns a linear operator with the dimension of its image over k, which plays

a significant role in range-identifiability within M (i.e. a lower-dimensional

output space might result with ambiguous operator solutions).

It is often useful to stratify the space Lin(U, V ) into classes of different

operator ranks. Define

Lin≤r(U, V ) = {A ∈ Lin(U, V ) : rk(A) ≤ r}

consisting of operators of rank at most r, and likewise Lin<r, Lin=r etc.

The sets Lin≤r are algebraic varieties (called determinantal varieties): for

fixed bases in U and V , the set Lin≤r is given by the vanishing of all minors

of orders (r + 1)× (r + 1) in the corresponding matrices (hence the name).

These subsets are nested and define a natural stratification of Lin:

0 = Lin0(U, V ) ⊂ Lin≤1(U, V ) . . . ⊂ Lin≤min(s,t)(U, V ) = Lin(U, V )

Parametric families m : M → Lin(U, V ) can be stratified in the same way,

by introducing:

Mr =
{
θ ∈M

∣∣ rk(m(θ)) = r
}

i.e. the set of parameters whose corresponding operator has rank of exactly

r (similarly M≤r, where the rank is ≤ r etc.). The same hierarchy remains
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for the parameter stratification:

M0 ⊂M≤1 ⊂M≤2 . . . ⊂M

The stratification of an operator variety M = V(q) can be done by inter-

section with Linr:

Mr : = Linr ∩M

likewise M≤r, where the rank is ≤ r etc. Clearly Mr = m(Mr).

2.1.4 Complex Operator Families

In the specific case k = C we have three important properties: Euclidean

topology, Lebesgue measure, and algebraic closeness. Many results in this

work rely on properties of complex varieties that do not necessarily hold

with other fields (not even real numbers).

The significance of the complex field is demonstrated in the following

example:

Example 2.9. Consider the family m : C3 → Lin(C2) given by

m(θ1, θ2, θ3) :=

[
θ1 θ3

0 θ2

]

The rank of this family equals to 2 almost everywhere, and drops almost

nowhere:

Lin2 = {(θ1, θ2, θ3) | θ1, θ2 6= 0} ⊂ C3

Lin≤1 = V(θ1θ2) = {(θ1, θ2, θ3) | θ1θ2 = 0, }

Lin0 = {0}

See Figure 2.2 for an illustration on the real space (red shaded planes have

rank 1, the origin, in blue, has rank 0). In terms of topological dimensions,

Lin2 is a complex manifold of dimension 3, while Lin1 is of dimension 2

(the union of the planes θ1 = 0 and θ2 = 0) and Lin0 of dimension 0 - being

a single point in C3.
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θ1

θ2

θ3

Figure 2.2: Rank strata (of real parameters)

This example illustrates two interesting features:

• The subset Lin≤r is nowhere dense in Lin≤r+1 (and is a nullset).

• The rank function is lower-semicontinuous: it can only increase or

remain the same under small perturbations, but not drop. Figuratively

speaking, the variety Lin≤r−1 is a very thin membrane within Lin≤r.

In general, each open stratum consisting of all operators of rank exactly r,

Linr := Lin≤r \ Lin≤r−1

is a smooth manifold in Cst ∼= Lin(U, V ) of dimension r(s + t) − r2, here

s = dim(U) and t = dim(V ).

The following is standard result in algebraic geometry (see [18]):

Proposition 2.10. Let X be an irreducible algebraic variety over C, that

is, X cannot be represented as a finite union of algebraic varieties which are

not subsets of each other.1 A proper subvariety Y ⊂ X is nowhere dense in

X (or, equivalently, X \ Y is everywhere dense on X).

Informally, it means that imposing any extra polynomial constraint on an

irreducible algebraic variety drops the topological dimension of the variety.

The irreducibility caveat is required because otherwise, for example, the

variety

V = V(x1x2, x1x3) = V(x1) ∪ V(x2, x3) ⊂ C3

consists of a union of the plane V(x1) and the line V(x2, x3) (see Figure 2.3

for real part depiction), whence the former is dense in V and makes a large

portion of it.

1For example, any linear space is irreducible.

17



x1

x2

x3

Figure 2.3: A reducible variety V(x1x2, x1x3) (illustration in R3)

One of the implications of Proposition 2.10 is that rank is a generic prop-

erty:

Corollary 2.11. Consider an algebraic family m : M → Lin where M is

irreducible. If rk(m(θ)) = r for some parameter value θ ∈M, then the set

M<r (of all parameters where the rank is less than r), is a nowhere dense

algebraic subvariety of M.

Indeed, M<r is an algebraic subvariety of the irreducible M (given by the

vanishing minors of matrices with coefficients polynomial in θ), which by

Proposition 2.10 and its corollary is nowhere dense in M.

Definition 2.12 (Typical Rank). We call the largest rank of an operator

in the family m : M→ Lin the typical rank, denoted r̄.

The Corollary 2.11 implies that if M is irreducible, then the rank of m(θ)

is typical almost everywhere in M, namely, on a dense subset of M.

The following lemma and its corollary (see proof in Appendix A) is crucial

for the theory presented in this chapter, and will be later used to derive the

numerical guarantee for identifiability test.

Genericity Lemma

Lemma 2.13. Let X ⊂ Cn be a complex irreducible variety, and let

p : X → Cd be some polynomial mapping. Then the set of points in

X with ambiguous p-images,

X= := {θ | p(θ) = p(θ̃) for some θ̃ 6= θ ∈ X} ⊂ X

is algebraic: either dense in X or nowhere dense in X.
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Corollary 2.14.

1. The set of points in X with proportional p-images

X∝ := {θ | ∃θ̃ 6= θ ∈ X, p(θ) = λp(θ̃)} ⊂ X

is either dense in X or nowhere dense in X.

2. The same holds for projective varieties with homogeneous mapping p,

with essentially the same proof.

2.2 Range-based Identification of Algebraic Families

We already learned in Section 1.1.2 that blind system identification (without

input constraints) depends on the algebraic span of the data rather than on

the data itself, establishing the problem of range-based identification.

First an foremost, if S1, S2 : U → V where dim(V ) ≤ dim(U) and both

are of full rank, then they cannot be distinguished by their (identical) range.

This is a problem especially if the family is typically of full rank. We would

normally require that dim(V ) ≤ dim(U) (i.e. a “tall” family). If the family

is such that dim(V ) ≤ dim(U), there are several ways to solve it, such as

multichannel extensions (as discussed later in Section 3.2), or re-factoring

the family when possible (Lemma 2.27).

While in range-based identification the objects of interest are linear spaces,

for practical purpose, basis vectors are still being used. The statement

Ṽ = ρ(θ) = m(θ)U materializes computationally with a choice of a basis:

U = span{u1, . . . , us} ⇒ Ṽ = span{m(θ)u1, . . . ,m(θ)us}

Parameterizing linear spaces by bases is highly ambiguous, being invariant to

any full-rank linear combination of the basis elements. We wish to assign V

with a unique set of parameters that are invariant to bases change (perhaps

up to scaling). Fortunately, the Plüker embedding does exactly that, rather

elegantly.
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2.2.1 Parametrization of Linear Spaces

The exterior product (sometimes called wedge product) of vectors generalizes

cross-products in R3. Recall that in R3, every two-dimensional subspace is

spanned by a pair of vectors that are not co-linear, and can be associated

with a single normal vector in R3. The span of two pairs {u, v}, {u′, v′} ⊂ R3,

can be compared by their cross-product:

span{u, v} = span{u′, v′} ⇐⇒ u× v, u′ × v′ 6= 0

u× v, u′ × v′are proportional

The exterior product captures the gist of this concept: map any arbitrary

ordered basis {vk}rk=1 of Ũ of dimension r to the exterior product

ψ : {v1, . . . , vr} 7→ v1 ∧ . . . ∧ vr

Under any basis change {vk} 7→ {v′k} by a matrix A one has

ψ(v′1, . . . , v
′
r) = det(A)ψ(v1, . . . , vr)

In fact, the order of the basis vectors does not matter either, as it at most

can flip the sign of the exterior product. As a result, the space Ũ is uniquely

associated with the one-dimensional span of ψ(v1, . . . , vr) of some arbitrary

basis, which is a class in the projective variety P(
∧r Ũ). When the vectors

{vk}rk=1 are linearly dependent, the exterior product vanish.

The Plüker embedding defines a unique set of homogeneous coordinates

for range spaces of parametric families. Fix a basis {uk}sk=1 of the domain

U , and define the map ψ : M→
∧s(V )

ψ(θ) :=

s∧
k=1

m(θ)uk (2.8)

The definition of ψ(θ) depends on the choice of basis, but a basis change

will only scale ψ. Otherwise θ, θ′ lead to the same range space if ψ(θ), ψ(θ̃)

are proportional and nonzero.

It is important to note that if m is polynomial in θ, then ψ(θ) is also

polynomial in θ. If m is homogeneous, then ψ is homogeneous as well.
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2.2.2 Subspace Observables

Once parameterized by numerical coordinates, range spaces can be thought

of as observations in a topological manifold (a Grassmanian in this case).

In general, when a topological parameter space M is observed through a

mapping

Obs : M→ O

The set O is called the space of observables, that poses the O-identifiability

problem: the extent to which an observation Obs(θ) identifies a parameter

θ ∈M.

Definition 2.15. A single parameter value θ is said to be Obs-identifiable

if Obs(θ) = Obs(θ̃) implies that θ̃ = θ, i.e. Obs−1(Obs(θ)) = {θ}, is the sole

parameter value corresponding to a given observation. Thus, we say that

θ, θ̃ ∈M are ambiguous if Obs(θ) = Obs(θ̃), and non-trivially ambiguous if

θ 6= θ̃.

There is a hierarchy of parameter identification criteria:

Definition 2.16. We say that the parameters of M are:

• Globally identifiable if the mapping Obs is one-to-one (an embedding).

• Almost everywhere identifiable (or generic identifiability), if there is

an open dense subset Mo ⊂M where Obs is identifiable.

• Locally identifiable at θ ∈ M, if the restriction of Obs to some open

vicinity of Uθ is identifiable.

Fix an algebraic family m : M → M ⊂ Lin(U, V ) of typical rank r̄.

The image of the range mapping Im, when restricted to Linr̄, is in the

Grassmanian Gr(V, r̄), i.e.

Im : Linr̄ → Gr(V, r̄) S 7→ Im(S)

Define the range observation ρ = Im ◦m : Mr̄ → Gr(V, r̄):

ρ(θ) :=Im(m(θ)) ∈ Gr(V, r̄) (2.9)

Range-based parameter identification refers to the identifiability of the

observation ρ : M→ O = Gr(V, r̄), in the terms of Definition 2.16. Thus we

will use the notation ρ-identifiability to discuss range-identifiability.

21



Of course, ρ is defined only on the subsets Mr, where the rank is constant,

the identifiability question makes sense only on the set of parameters where

the rank is typical.

In the homogeneous case, the mapping ρ : PMr̄ → Gr(V, r̄) is well defined,

and identification aims at finding homogeneous solution, i.e. parameters up

to scaling.

2.2.3 Parameter Identification Algorithms

To effectively recover a parameter θ from a range space Ṽ ∈ Gr(V, r̄), we need

to write an equation in the parameter θ that includes the range constraint

Ṽ (the family constraint is inherent to the parametrization, whereas in (1.7)

it is an additional constraint).

Let Ṽ ∈ Gr(V, r̄) be an observed range some m(θ) ∈ Lin(U, V )) of typical

rank r̄. Recall that two subspaces Ṽ , Ṽ ′ ∈ Gr(U, r̄) coincide if their Plücker

coordinates are nonzero and proportional, or ψ(Ṽ )∧ψ(Ṽ ′) = 0. Solving the

equation below (which is a polynomial equation in θ),

A(θ) = ψ(Ṽ ) ∧ ψ(θ) = 0 (2.10)

subject to ψ(θ) 6= 0, guarantees that ρ(θ) = Ṽ . This equation is not com-

putationally feasible (especially when the involved dimensions are big, the

Grassmanian is even bigger).

A slightly more explicit approach utilizes linear projections. Let q ∈
Lin(V ) be any linear map that vanishes on Ṽ . There are infinitely many such

maps, but we can explicitly write one of them as the orthogonal complement

Ṽ ⊥ ⊂ V :

PṼ ⊥ = Id− PṼ (2.11)

assuming that V has some inner product (which is always the case for finite

dimensional spaces).
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The Annihilator Mapping

The mapping eṼ : M→ Lin(U, Ṽ ⊥) defined by

eṼ (θ) := (Id− PṼ )m(θ) (2.12)

is a polynomial mapping in θ. The zeros of this mapping

eṼ (θ) =0 (2.13)

correspond to parameters identified by Ṽ , i.e. ρ(θ) ⊆ Ṽ . Therefore,

to recover θ, solve (2.13) above. Furthermore, whenever rk(m(θ)) is

typical, i.e. θ ∈Mr̄, then the subspaces coincide: ρ(θ) = Ṽ .

Clearly eρ(θ)(θ) = 0 for all θ, but existence of zeros for (2.13) for arbitrary

subspace Ṽ ∈ Gr(r, V ) is not guaranteed unless the latter is ρ(θ̃) for some

θ̃ ∈ M. Failure to find zeros indicates that the proposed algebraic family

does not model the measured data.

Identification Algorithm

Require: measurement coordinates {yα}
Require: an algebraic family m : M→ Lin(U, V ).

Stack {yα} → a matrix V

if V is not of typical rank then

Warning: non-identifiable parameter or insufficient excitation.

end if

V → PṼ , a projection onto colsp(V )

Solve eṼ (θ) = 0 for θ.

if Solution Empty then

Exception: inadequate model

end if

Return solution(s).

This algorithm does not presume identifiability (i.e. unique solution),

though can be rather used to test identifiability of a given θ, based on the

cardinality of the algebraic variety V(eρ(θ)) (we will elaborate on that and

introduce a guarantee based on that idea). Of course, when the parametric

model is homogeneous (and specifically linear), the solution of eṼ (θ) = 0 is

also homogeneous and is never unique, so identifiability is pronounced up to

scaling, and tested whenever V(eṼ ) is a one-dimensional line in M.
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Example 2.17. Consider the algebraic (nonlienar) family on M = C2

m(θ) =


θ1 θ2

2

0 2θ2

−θ2
2 0

0 1


We wish to identify θ such that its associated range is

Ṽ = span




0

−4

−8

−1

 ,


10

8

−4

2




The orthogonal V ⊥ spanned by
[
0 1 0 −4

]T
and

[
2 0 1 −8

]T
, there-

fore the annihilator map,

eṼ (θ) =

[
0 1 0 −4

2 0 1 −8

]
θ1 θ2

2

0 2θ2

−θ2
2 0

0 1

 =

[
0 2θ2 − 4

2θ1 − θ2
2 2θ2

2 − 8

]

has a unique zero at θ = (2, 2).

More elaborate examples will be given in Chapter 4.

2.2.4 Ambiguity Structures of Parameters

For a given parameter θ ∈M, a natural question to ask is what (other) pa-

rameters in M are ρ-ambiguous with θ. We define the pre-ordering between

parameters based the ordering of their respective ranges:

Definition 2.18. For θ, θ̃ ∈M define

θ̃ � θ : ρ(θ̃) ⊆ ρ(θ) (2.14)

and similarly ≺ if the dimension is strictly lower. This ia a pre-order that

induces equivalence between parameters:

θ̃ ∼ θ ⇔ ρ(θ) = ρ(θ̃) (2.15)

which also indicates equal rank of m(θ) and m(θ̃).
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Equivalent parameters are not necessarily equal, and not all pairs in M

are comparable. For a given θ ∈ M, we define the set of all parameters

bounded by θ with respect to �

M�θ := {θ̃ ∈M | θ̃ � θ}

For every θ ∈M, the set M�θ is, in fact, a variety:

Proposition 2.19.

1. M�θ = V(eθ) here eθ := eρ(θ) per (2.13).

2. If θ̃ � θ then V(eθ̃) ⊆ V(eθ), and θ ∼ θ̃ implies V(eθ) = V(eθ̃).

Proof. The first part is trivial by construction of eθ. For the second part,

let φ ∈ V(eθ̃), namely eθ̃(φ) = (Id− Pρ(θ̃))m(φ) = 0. Since θ̃ � θ then

ρ(φ) ⊂ Ker(Id− Pρ(θ̃)) = ρ(θ̃) ⊂ ρ(θ) = Ker(Id− Pρ(θ))

so that φ ∈ V(eθ) as well. The equality follows from mutual inclusion.

If θ̃ ∈ V(eθ) then the two parameters are comparable with θ � θ̃, but

not necessarily equivalent, for they may have different ranks. The set of all

parameters equivalent to θ

{θ̃ | ρ(θ) = ρ(θ̃)} = V(eθ̃) ∩Mr̄

is dense in the variety V(eθ̃).

When M is given without parametrization (implicitly, as a variety) we

define the set of all operators in M that share the same range as a specific

operator S ∈M:

M�S := {S ∈M | ρ(T ) ⊂ ρ(S)}

and MS , M=S etc.

2.2.5 Rank Deficiency and Sufficient Excitation Condition

Throughout the discussion, we were concerned thus far only with parameters

of typical rank, i.e. Mr̄. Rank deficient parameters in parameters in M<r̄

have been found empirically to be non-identifiable. A general statement
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about identifiability of parameters in M<r̄ is an open problem as of the

time of writing this document.

In addition, the default assumption that the dimension of the output span

indeed meets the typical rank r̄

dim spani{yi} = r̄ (2.16)

This can only happen if the input vectors {xi} fully span the input space

U , a condition known as sufficient excitation. Otherwise a lower dimension

ρ(θ) has larger ortho-complement, thus imposing less constraints on θ̃ in the

annihilator equation eρ(θ)(θ̃) = 0.

It is important to mention that (2.16) can be broken by insufficient exci-

tation as well as rank-deficient parameter. However, there is no way to tell

which of the conditions fail (perhaps both), without additional priors, just

like the equation xy = 0 cannot specify which factor vanish.

2.2.6 Transformations That Preserve Identifiability

The lemma below (see proof in Appendix A) suggests that range identifia-

bility of algebraic families remains intact under several transformations.

Lemma 2.20. If θ is a ρ-identifiable parameter of an algebraic family m :

M→ Lin, then it is also ρ-identifiable in the families m1, m2, m3 defined

as follows:

m̃1(θ) := m(θ)S, S ∈ Lin(Ũ , U) is surjective (2.17)

m̃2(θ) := Tm(θ), T ∈ Lin(V, Ṽ ) is injective (2.18)

m̃3(θ) := m(f(θ)), f : M̃→M is invertible (2.19)

Note that m̃3 is an algebraic family only if f is a polynomial map.

The Lemma 2.20 carries into local ρ-identifiability of the family, almost-

everywhere ρ-identifiability and global ρ-identifiability.

Note that if M(θ) has the factorization TM̃(θ)S where S is injective and

T is surjective, then M̃ has the same identifiability as M. In particular,

rank-deficient linear families can be reduced to full-rank families that way

(see Lemma 2.27).
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2.2.7 Rational Families

Most of the theory discussed here applies to rational families as well, whose

matrix entries (of m(θ)) for a fixed bases of U and V are rational functions

in θ. Equivalently, one can write

m(θ) =
1

md(θ)
mn(θ)

Here md ∈ k[M] is the least common multiplier of all the denominators of

all entries, and mn : M→ Lin(U, V ) is an algebraic family.

Note that whenever md(θ) 6= 0 then Im(m(θ)) = Im(mn(θ)), thus

m(θ) is identifiable ⇐⇒ mn(θ) is identifiable, and md(θ) 6= 0

namely, identification of a rational m(θ) amounts to identification of alge-

braic mn(θ), up to avoiding parameters in the subvariety V(md) where m

is not defined (and is usually nowhere dense in M anyhow).

Example 2.21. Let θ = (θn, θd) ∈ kN×kD define an autoregressive moving-

average equation on sequences:

D−1∑
i=0

θd[i]y[n− i] =
N−1∑
i=0

θn[i]x[n− i] (2.20)

with initial condition y[n] = 0 for all n < 0. Then

y[0] =
θn[0]

θd[0]
x[0]

y[1] =
θn[0]

θd[0]
x[1] +

(θn[1]

θd[0]
− θd[1]θn[0]

θd[0]2
)
x[0]

...

By induction y[n] linearly depends on x[n] :=
[
x[0], . . . , x[t]

]T
and gen-

erally we have a linear mapping y[n] = An(θ)x[n] where An(θ) is a rational

function in θ. This is also an example of a homogeneous family, as

m(λθ) = m(θ)

for all nonzero λ ∈ k.
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2.3 Identifiability Guarantee for Complex Algebraic
Families

We already have a strategy to test the identifiability of a single parameter -

out of infinitely many others. A surprising result shows that identifiability

is a generic property of a complex algebraic family, that is, if one parameter

is identifiable, then all of them but a nullset are identifiable as well.

Generic Identifiability of Irreducible Families

Consider some algebraic family m : M→ Lin of typical rank r̄.

Theorem 2.22. If M is an irreducible variety, then ρ-identifiability

is a generic property in M.

Proof. This is a direct consequence of Lemma 2.13. Fix an arbitrary basis

{uk} ⊂ U , and recall the polynomial mapping (2.8):

p(θ) :=

r∧
k=1

m(θ)uk

The collection of all parameters θ with proportional images under p is either

dense or nowhere dense in M.

As a result of Theorem 2.22, a numerical guarantee for the range identi-

fiability can be provided by testing a single parameter value.

Numerical Identifiability Guarantee

Corollary 2.23. A random parameter value, drawn from any density

continuous with respect to the Lebesgue measure on the (open stratum)

of M, is identifiable with probability 1 if and only if the family is

almost everywhere identifiable.

The case study in Chapter 4 utilizes this guarantee for linear models,

though we should remark that this guarantee is valid for nonlinear families,

which distinguishes this work from previous results.

2.3.1 The Homogeneous Case

In the homogeneous case, one resort to identification up to a scalar by

replacing the parameter space M with its projectivized version, PM as de-

fined in (2.7). The observable ρ : PMr̄ → Gr(V, r̄) is well defined due to
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the homogeneity (and Mr is obviously homogeneous for all r). The same

the nomenclature of identifiability persists in the homogeneous case: global,

almost everywhere etc., - for this case, even while the rescaling ambigu-

ity is intrinsically there. Identifiability up to scaling in M is equivalent to

identifiability in PM.

The Theorem 2.22 holds in the homogeneous case as well.

Theorem 2.24. Let m : M → Lin be a homogeneous algebraic family of

typical rank is r̄ with an irreducible M. The corresponding range observable

defined on the dense subset of PM is:

ρ : PMr̄ → Gr(V, r̄)

If there exists a single parameter value θ ∈ PMr̄ which is ρ-(i.e. range)-

identifiable, then the family m : PM→ PLin is almost everywhere identifi-

able with respect to ρ.

2.4 Results for Linear Families

Linear families are directly related to the problem of blind multichannel

deconvolution that motivated this study. Linear structure exhibit homo-

geneity (which adds the complexity of dealing with with projective spaces),

but compensate with a straightforward analysis.

A family M ⊂ Lin(U, V ) is said to be linear whenever M is a linear

space. Correspondingly, a parametric family m : M→ Lin(U, V ) is said to

be linear whenever M is a linear space and m is a linear map. To make

the analysis strategy more transparent, it helps to fix the range of m with

a basis, say {Sσ} ⊂ Lin(U, V ) (whence M = kΣ), so that

m(θ) =
∑
σ∈Σ

θσSσ (2.21)

We can make the following assumptions without loss of generality:

1. M = kΣ, U = ks and V = kt are Cartesian spaces, and the operator

space is the matrix space Lin = kt×s, assuming standard (or any other

fixed) bases for U, V . In what follows, the analysis of linear families will

be done on matrices rather than operators, that is, m : kD → kt×s.

2. m is injective - and has a trivial kernel in M (otherwise, replace M with

the quotient space M/Ker(m) or Ker(m)⊥, and adjust m accordingly).
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3. m has full typical rank (otherwise, it can be factored out, see Lemma

2.27).

4. For identifiability, we require that t > s (i.e. “tall” matrix family)

which implies r̄ = s. Otherwise if t ≤ s, then ρ(θ) = V for almost all

θ ∈M.

When the family m : M→ Lin(U, V ) is linear, then eṼ in (2.12) is linear

in θ. Now the obvious corollary to Theorem 2.24 reads can be stated in

terms of nullity.

Identifiability Testing Criterion for Linear Families

Corollary 2.25. If the kernel of eθ̃(θ) is a one-dimensional subspace

of M (and thus generated by θ̃), then θ̃ is ρ-identifiable, and m is

ρ-identifiable almost everywhere. Conversely, if m is ρ-identifiable

almost everywhere, then there exists a subset of M of full (Lebesgue)

measure, such that for any θ̃ in this subset, the kernel of eθ̃ is one-

dimensional.

The kernel of eṼ is given by the homogeneous linear equation in kΣ:

eṼ (θ) = (Id− PṼ )m(θ) =
∑
σ∈Σ

θσ(Id− PṼ )Sσ = 0 (2.22)

which determines identifiability: existence, if (2.22) has a nontrivial solution

space, and uniqueness if its nullity is 1.

Example 2.26. Suppose that we want to test the identifiability of the matrix

family m : C2 → C4×3 defined by

m(θ) =


θ1 θ2 0

θ1 0 θ2

0 θ1 θ2

θ2 0 θ1


Throw a random parameter, say θ∗ = (1, 1). The orthogonal to the range is

spanned by
[
0 1 0 −1

]T
and the annihilator map is

eθ∗(θ) =
[
0 1 0 −1

]T

θ1 θ2 0

θ1 0 θ2

0 θ1 θ2

θ2 0 θ1

 =
[
θ1 − θ2 0 θ2 − θ1

]
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is a homogeneous equation in θ with a one-dimensional solution spanned by

span{(1, 1)} (note that θ∗ is in that span). Therefore, the family is range

identifiable almost everywhere in M.

We remark on some necessary conditions for almost everywhere image

identifiability for linear M: at the very least, the dimension of the variety

PM should be at most the dimension of the typical Grassmanian Gr(V, r̄).

Recalling that the dimension of Gr(V, r̄) is (t− r̄)r̄, where t = dim(V ), we

see that

dim(PM) = dim(M)− 1 ≤ (t− r̄)r̄ (2.23)

is necessary for range-identifiability of linear families. This condition will be

later exploited in Chapter 4 to determine what kind of sampling patterns

and how many channels are required for multichannel FIR identification.

2.4.1 Rank Deficient Families

Incidentally, when the typical r̄ of a linear family is not full, the rank defi-

ciency can be factored out.

Lemma 2.27. Let m : M→ Lin be linear with typical rank r̄. There exists

a factorization

m(θ) = Tm̃(θ)S∗ (2.24)

where m̃ : M → Ct̃×s̃ has full typical rank (i.e. min(t̃, s̃) = r̄, and S, T of

appropriate dimensions are independent on θ).

See proof in Appendix A.

By Lemma 2.20, if S, T have full rank then identifiability of m is can be

tested by the one of the reduced m̃. This is particularly useful for cases in

which the ambient spaces dimensions are much larger than the data.

Note that Lemma 2.27 does not hold for nonlinear families, as in the next

example:

Example 2.28. Consider the family m : C2 → C2×2 defined by

m(θ) :=

[
θ1

θ2

] [
θ1 θ2

]
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Clearly, the typical rank of this family is 1. Assume by contradiction that it

has a factorization of the form (2.24). Then m̃(θ) should be a scalar (rank

1), and so the operator

S = m(θ) = Tm̃(θ)S∗ = m̃(θ)TS∗︸︷︷︸
C

is a matrix with entries all of the form Si,j = m̃(θ)Ci,j. However, note that

the entries of

m(θ) =

[
θ2

1 θ1θ2

θ1θ2 θ2
2

]
do not have a common polynomial factor, which is a contradiction.
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CHAPTER 3

M-PRESERVING PRE-COMPOSITIONS

So far, we have studied the operator identification ambiguity from the per-

spective of the parameter space M. Looking at an operator S ∈M, if there

exists some A ∈ Lin(U) such that SA ∈ M as well, then clearly S can-

not be identified in M by its range, simply because Im(SA) ⊆ Im(S) (see

Lemma 3.1). In this chapter, we will characterize the ambiguity of range-

identification by studying what operations onM preserve both its structure

and range.

The resulting concept is a useful computational tool to study ambiguity

of operator varieties, and linear families especially.

3.1 Range Invariants

Recall a classical result in linear algebra:

Lemma 3.1. Two operators S, T ∈ Lin(U, V ) admit Im(S) ⊆ Im(T ) if and

only if there exists A ∈ Lin(U) such that S = TA.

Consequently, we define pre-composition as composing S with A ∈ Lin(U):

Definition 3.2 (Pre-Composition). Let S ∈ Lin(U, V ) and A ∈ Lin(U).

The pre-composition map associated with A is defined as the linear self-

mapping of Lin(U, V ) given by S 7→ SA.

S ∈M
A ∈ Lin(U)

V

U

U

U

SA ∈M

Figure 3.1: M-preserving pre-composition map
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By Lemma 3.1, any pre-composition keeps the range intact or shrinks it,

Im(SA) ⊆ Im(S) with equality when A has full rank. We will be interested

finding pre-compositions A of M that intersect M.

The identity A = Id is a trivial example, and A = λId for homogeneous

families. Formally we define the following:

Definition 3.3. Let M⊂ Lin(U, V ). We say that A ∈ Lin(U) is:

1. Weak M-preserving with respect to a single S ∈M, if SA ∈M.

2. Weak M-preserving with respect to a subset M′ ⊂M, if M′A ⊂M.

3. Strong M-preserving, if MA ⊂M.

The corresponding sets ofM-preserving pre-compositions in Lin(U) shall

be defined as

SM(S) := {A : SA ∈M}

SM(M′) := {A : M′A ⊂M}

SM := {A : MA ⊂M}

There is a clear hierarchy

Id ∈ SM ⊂ SM(S) (3.1)

so thatM-preserving sets, weak or strong, are never empty. When SM(A) =

{Id} for A = S,M′ or M we say that it is trivial (the same definition is

valid with λId for the homogeneous case).

The set SM is simple to compute in some cases. One of the main conclu-

sions of this work is that families with nontrivial strong SM do not have an

identifiable multichannel extension.

3.1.1 Identifiability and M-Preserving Sets

The M-preserving pre-compositions make a useful computational tool in

range identifiability: an operator S ∈ M is range identifiable if SM(S) =

{Id} (or λId if M is homogeneous), in which case SM(S) is said to be

trivial.

Corollary 3.4. The immediate conclusion from (3.1) is that a necessary

(but insufficient) condition for identifiability is that SM is trivial.
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The analogous condition in the homogeneous case is SM(S) = span{Id},
namely only rescaling of S is preserved in M.

Proposition 3.5. Let M be a homogeneous family. For every sub-family

M′ ⊂M and every operator S ∈M′ we have

span{Id} ⊆ SM ⊆ SM(M′) ⊆ SM(S) (3.2)

where span{Id} is the space of all scaler operators.

See proof in Appendix A.

Before we continue to some examples, it is worth mentioning that pre-

compositions act as linear column combinations of matrix representations

(obtained once bases are fixed). Searching for A such that SA ∈M amounts

to finding all column linear combinations, that maintain SA ∈M.

The simplest type of operation on columns is moving one column from one

index to another (including to itself). All other linear column combinations

can be written as a linear combination of such moves.

Example 3.6. Consider the four-dimensional linear family M ⊂ k3×7

whose matrix structure is depicted in Figure 3.2. Certain column moves

are prohibited (e.g. 3→ 2, 5→ 4) for they end outside the permitted family

structure. Other moves such as 1↔ 2), 2→ 3 might be allowed, but require

further checking: they entail moves that might be prohibited for certain ma-

trices in this family. For example, the move 1 → 2 entail the moves 3 → 4

and 4 → 5, all of which are allowed. The move 2 → 1 entails the move

4→ 3 which is prohibited.

θ0 θ1 θ2 θ3

θ0 θ1 θ2 θ3

θ0 θ1 θ2 θ3

× ×
1 2 3 4 5 6 7

Figure 3.2: Preserving structured matrix by column operations

If we find nontrivial moves that preserve the matrix structure (e.g. 1→ 2

in the above example), then this model will never be identifiable - even in

a multichannel setup. This kind of combinatorial strategy can be used to
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determine when families of certain types are identifiable or not, which is the

main topic discussed in Section 3.4.1 and later in Section 4.4.

Example 3.7. Consider the three-dimensional family in Lin(C5,C2) :

m(θ1, θ2, θ3) :=

[
θ1 θ2 θ3 0 0

0 0 θ1 θ2 θ3

]

• Let S1 = m(1, 0, 0) =

[
1 0 0 0 0

0 0 1 0 0

]
; for A ∈ C5×5 we have

S1A =

[
a11 a12 a13 a14 a15

a31 a32 a33 a34 a35

]

To maintain structure, namely, SA = m(α, β, γ) for some α, β, γ:

A ∈ SM(S1) ⇒ A =


α β γ 0 0

a21 a22 a23 a24 a25

0 0 α β γ

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55


hence SM(S1) is linearly parameterized by 18 parameters.

• For S2 = m(0, 1, 0) and S3 = m(0, 0, 1) we get A of the forms

SM(S2) =


A =


a11 a12 a13 a14 a15

α β γ 0 0

a31 a32 a33 a34 a35

0 0 α β γ

a51 a52 a53 a54 a55





and SM(S3) =


A =


a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

α β γ 0 0

a41 a42 a43 a44 a45

0 0 α β γ




respectively, which are linear spaces with 18 degrees of freedom.

• For strong preserving SM = SM(S1)∩SM(S2)∩SM(S3) (see Equation
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(3.9) below) hence we require

A =


α 0 0 0 0

β γ δ 0 0

0 0 α 0 0

0 0 β γ δ

0 0 0 0 α


which is a four-dimensional linear space. This is no coincidence that

the degree of ambiguity is the square of the shift between the first and

second row of m(θ) (see Theorem 4.10).

3.1.2 The Structure of M-Invariants

When M = V(q(S)) ⊂ Lin(U, V ) is an operator variety, it turns out that

the various preserving sets SM in Definition 3.3 are also algebraic varieties.

The weak preserving set SM(S) is a variety in Lin(U) given by

SM(S) = {A : q(SA) = 0} = V(p) ⊂ Lin(U) (3.3)

where p(A) := q(SA). This is an implicit structural constraint on SM(S).

The strong preserving set can be written as the intersection

SM =
⋂
S∈M

SM(S) ⊂ Lin(U) (3.4)

This is an intersection of closed sets (in the Zariski topology), which is a

closed set on its own. By Hilbert’s basis theorem (see [19]), there must

be a finite set of polynomials spanning the ideal I(SM). In practice, it

means that the strong SM = V(p) is an algebraic variety defined by some

polynomial mapping p(A).

3.1.3 Relations between SM and Ambiguous Parameters

Recall that for an algebraic family m : M → Lin(U, V ), we defined the

variety of ambiguous parameters M�θ. It is natural to ask how this set

compares to SM(m(θ)). Indeed, there is a correspondence between the two:

define Ψθ : M→ Lin(U) by

Ψθ(θ̃) := m(θ)†m(θ̃)
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Here m(θ)† is the Moore-Penrose pseudo-inverse. Clearly Ψθ is a polynomial

mapping in θ̃ (as m is).

Lemma 3.8.

1. Ψθ maps M�θ into SM(θ) := SM(m(θ)).

2. Ψθ is injective on M�θ in the sense that Ψθ(θ̃1) = Ψθ(θ̃2) implies

m(θ1) = m(θ2) (and θ1 = θ2 if m is injective).

Proof. For every θ̃ ∈M�θ, we have

m(θ)Ψθ(θ̃) = m(θ)m(θ)†m(θ̃)

= Pρ(θ)m(θ̃) (ρ(θ̃) ⊂ ρ(θ̃))

= m(θ̃)

so that Ψθ(θ̃) ∈ SM(θ).

For the injectivity assume that θ̃1, θ̃2 ∈M�θ such that Ψθ(θ̃1) = Ψθ(θ̃2).

By Lemma 3.1 we know that m(θ1) = m(θ)Ψθ(θ̃1) and m(θ2) = m(θ)Ψθ(θ̃2)

so the two trivially coincide: m(θ1) = m(θ2).

Mapping in the opposite direction, i.e. from SM(θ) to M�θ, is less obvi-

ous, since m is usually not invertible (and even if so, the inverse is rarely a

polynomial). However, the mapping

A 7→m(θ)A

offers a partial inverse, intoM rather than all the way back into the param-

eter space M�θ. Trivially, m(θ)SM(θ) 7→ M (by definition of the former),

and so Ψθm(θ)A = A when restricted to A ∈ SM(θ).

To conclude, we showed the existence of a polynomial map between M�θ

to SM(θ), and a linear map between SM(θ) back to M�θ. The two are

unfortunately not necessarily isomorphic as algebraic varieties. In the special

case of linear families, both M�θ and SM(θ) are linear spaces, and the

mapping Aθ is a linear isomorphism between the two (see Proposition 3.13

below).

3.2 Preserving Constructions of Families

The goal of this section is to understand how SM (weak or strong) change

under linear constructions over M.
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Proposition 3.9. For every collection of familiesM1, . . . ,Mn ⊂ Lin(U, V ),

the product family M1 × . . .×Mn containing multichannel maps

S =
(
S1, . . . , Sn

)
∈ Lin(U, V n)

has the weak preserving set:

SM1×...×Mn(S) =
n⋂
i=1

SMi(Si) (3.5)

See proof in Appendix A.

In the special case where Mi are all copies of the same model, we get

SML(S) =

L⋂
i=1

SM(Si) (3.6)

The obvious corollary of (3.6) is that the preserving set of the multichannel

ML is smaller than each of its components. The conclusion is similar to the

one suggested previously in the parametric setup: increasing the channel

count of a family M is generally a good idea, and may sometimes decrease

the ambiguity of range identification.

LetM1, . . . ,Mn ⊂M be a collection of sub-families of some linear family

M. Let M′ be the minimal linear subspace of M containing all Mi

M′ = span{M1, . . . ,Mn} (3.7)

which is generated by all linear combinations of representatives from each

sub-family. We remark that if M1, . . . ,Mn are all linear families, then

M′ =M1 + . . .+Mn.

The set of pre-compositions preserving M′ within M is easy to describe,

as per the following proposition (see proof in Appendix A):

Proposition 3.10. For M′ in (3.7) we have

SM(M′) =
n⋂
i=1

SM(Mi) (3.8)

The implication of this proposition will be useful for linear systems, in

which studying SM will be equivalent to studying SM(Si) for each of the

basis elements of M (see Equation (3.9)).
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3.3 M-Preserving in the Linear Case

Assume now that M is a linear family with the standard parametrization

obtained by a basis {Sσ}, where M = kΣ and m(θ) =
∑

σ∈Σ θσSσ.

Proposition 3.11. Is M′ ⊂M is a linear sub-family, and S ∈M′, then

1. SM, SM(M′), and SM(S) are subspaces of Lin(U).

2. SM is a sub-algebra of Lin(U), thus M is a module over SM.

The proof can be found in Appendix A.

Recall that a linear M can be written as a linear variety in Lin(U, V ),

i.e. a zero set of a linear (polynomial) mapping p : Lin(U, V )→ kd. In that

case, SM(S) is also a linear variety, defined by the zeros of the mapping

q(A) = p(SA), and for a parametric case S =
∑

σ∈Σ θσSσ, this reads

q(A) =
∑
σ∈Σ

θσp(SσA)

The strong M-preserving set can be written as

SM =
⋂
σ∈Σ

SM(Sσ) =
⋂
S∈M

SM(S) (3.9)

for every basis {Sσ} of M.

Example 3.12. Consider the family m : C4×6 → C16×14 defined by embed-

ding blocks as depicted in Figure 3.3. For a random value of θ, the weak

preserving SM(m(θ)) is a linear space spanned by the 14×14 identity matrix

Id, and two other matrices (computed empirically) plotted in Figure 3.4.

3.3.1 Ambiguous Parameters and M-Preserving

We already established the relation between M�θ and SM(θ) by a poly-

nomial mapping. In particular, for a linear family m(θ), this correspon-

dence happens to be linear: one can always find a basis for M�θ in Mr̄,

(as the latter is dense in M�θ), denoted {θ = θ0, . . . , θK} ⊂ Mr̄, and let

{Id = A0, . . . ,AK} be their corresponding preserving pre-compositions, i.e.

m(θk) = m(θ0)Ak.

Proposition 3.13. There is a linear correspondence between ambiguous

parameters in M�θ and the pre-compositions in SM(θ). That is, for every
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Figure 3.3: Depiction of a matrix family defined by repeated blocks

Figure 3.4: Depiction of preserving pre-composition matrices (other
than identity)

ambiguous parameter θ with the coefficients {ck}Kk=1, the corresponding pre-

composition is given by the same coefficients with respect to the basis Ak:

m(
K∑
k=0

ckθk) = m(θ0)
K∑
k=0

ckAk

The proof is trivial, due to the linearity of m. Furthermore, if m is

injective on Lin(U, V ), as it certainly should, then {Ak}Kk=0 are linearly

independent (for every generating θ0 ∈ Mr̄), then we have the linear iso-

morphism SM(θ) ∼= M�θ (between the two, as vector spaces) given by the

mapping above.

3.3.2 Ambiguity in Linear Multichannel Extensions

The preserving structure of a multichannel extension (acting on a common

input) is related to the single-channel. For weak preserving sets, we reiterate
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the result of (3.6)

SMI (S) =
⋂
i∈I
SM(Si) (3.10)

Here Si are the different channel components of S. Surprisingly, the strong

preserving set of a family, is maintained for tensor extensions as well.

Proposition 3.14. For every finite I we have SMI = SM.

See proof in Appendix A. The relaxation for the case of a direct sum of

different families M1,M2 ⊂ Lin(U, V ) is the intersection

SM1⊕M2 = SM1 ∩ SM2 .

It has already been stated that more channels may decrease ambiguity.

As it turns out from the Theorem 3.15 below (see proof in Appendix A),

there is a bound for channel count, over which increasing has no effect, and

the intersection in (3.10) reaches its lowest possible limit - which is SM.

Channel Count Saturation

Theorem 3.15. Let MI be a multichannel model such that |I| =

dim(M). Then for a generic S ∈ MI one has SMI (S) = SM, that

is, the weak preserving set of a generic (multichannel) S is the strong

preserving set of the single-channel model M.

The theorem above has the corollary:

Corollary 3.16. If a multichannel model ML with L = dim(M) is

not identifiable, then it is not identifiable for any other value of L.

Such a model will be referred to as never-identifiable. Conversely, a

single-channel model M with trivial strong preserving SM is always

identifiable in a multichannel setup having L = dim(M) channels.

Example 3.17. Assume that we wish to identify a stack of L 2D discrete

FIRs of size 8× 8 followed by sampling P (fixed and operating concurrently

on all channels). If the system is not identifiable with 64 channels, then it

is never identifiable (even if we increase the number of channels). The lack

of identifiability is originated in P.
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3.4 Mosaic Families

A mosaic structure is a special case of linear families spanned by disjoint

indicator matrices (see Figure 3.5), for example, Toeplitz and Hankel ma-

trices are mosaic (sometimes known as structured matrix ). This model is

particularly useful for discrete filter identifiability analysis.

We are interested in characterizing the weak and strong preserving sets

of mosaic families. For the sake of the discussion, assume that U = kU and

V = kV for two finite set U and V, so that every operator is characterized

by a matrix in kV×U .

J0 a b J0

a

b

J0 c

Figure 3.5: Mosaic structure with three tiles

Indicator functions take only the values 0 and 1, usually indicating mem-

bership of an element to a set. We say that a matrix S is an indicator if all

its nonzero entries have the same value, i.e., Sv,u ∈ {0, α}. Such a matrix

can be thought of as an indicator function of a subset of V × U .

Definition 3.18. A mosaic on V × U consists of a collection {Jσ}σ∈Σ of

disjoint index subsets (called tiles) of V × U . We define the zero tile of a

mosaic as the collection of pairs in V × U uncovered by the rest of the tiles:

J0 :=V × U \
⊔
σ∈Σ

Jσ

For example, the mosaic in Figure 3.5 is defined on |V×U| = 4×4 and has

three tiles Σ = {a, b, c}. The sets {Jσ} do not necessarily partition V × U ,

unless J0 is included as a class:

Definition 3.19. The union {J0}∪{Jσ}σ∈Σ is a partition of V×U . We use

the notation ∼ to denote equivalence under this partition, namely, (v, u) ∼
(v′, u′) iff (v, u), (v′, u′) ∈ Jσ for some σ ∈ Σ or (v, u), (v′, u′) ∈ J̄ .
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Definition 3.20. An operator S ∈ Lin(U, V ) is structured with respect to

a mosaic {Jσ}σ∈Σ if the matrix values Sv,u := 〈v|S|u〉 are constant when

(v, u) ∈ Jσ and vanish on J0, namely:

Sv,u = Sv′,u′ (v, u) ∼ (v′, u′) (3.11)

Sv,u = 0 (v, u) ∈ J0 (3.12)

Note that whenever J0 is empty, then the condition (3.12) is void. Also, if

Jσ is a singleton, then the condition (3.11) is redundant for that Jσ. Another

way to interpret mosaic structures is the set of all functions whose level sets

are prescribed.

Mosaic operators constitute a linear subspace M ⊂ Lin(U, V ), which

is explicitly spanned by the operators {S(σ)}σ∈Σ that are indicators of

{Jσ}σ∈Σ:

S(σ) =
∑

(v,u)∈Jσ

|v〉 〈u| (3.13)

S =
∑
σ∈Σ

θσS
(σ) =

∑
σ∈Σ

∑
(v,u)∈Jσ

θσ |v〉 〈u| (3.14)

3.4.1 M-Preserving Pre-Compositions of Mosaic Families

We are interested in the constraints on A ∈ Lin(U) that preserve a mosaic

M (in both weak and strong senses). Plug the co-vector decomposition of

A, and the explicit sum of S in (3.14) and get

SA =

S︷ ︸︸ ︷∑
σ∈Σ

θσ
∑

(v,u)∈Jσ

|v〉 〈u|

A︷ ︸︸ ︷( ∑
u′∈U
|u′〉 〈u′|A

)
=
∑
σ∈Σ

∑
(v,u)∈Jσ

θσ |v〉
∑
u′∈U
〈u|u′〉︸ ︷︷ ︸
δu,u′

〈u′|A

=
∑
σ∈Σ

∑
(v,u)∈Jσ

θσ |v〉 〈u|A (3.15)

Evaluating SA specifically at entry (v′, u′) yields

(SA)v′,u′ =
∑
σ∈Σ

∑
(v,u)∈Jσ

θσδv′,v 〈u|A|u′〉 =
∑
σ∈Σ

∑
(v′,u)∈Jσ

θσAu,u′ (3.16)
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Plug (3.16) into (3.11) and (3.12) to determine constraints on A:

Weak Preserving Variety of Mosaic Structure

The pre-composition A is preserving a specific m(θ) inM whenever:

∑
σ∈Σ

θσ

 ∑
(v′,u′′)∈Jσ

Au′′,u′ −
∑

(v,u′′)∈Jσ

Au′′,u

 = 0 (v, u) ∼ (v′, u′)

∑
σ∈Σ

∑
(v,u′)∈Jσ

θσAu′,u = 0 (v, u) ∈ J0

and the strong condition

Strong Preserving Variety of Mosaic Structure

The pre-composition A is preserving M whenever for every σ ∈ Σ:∑
(v′,u′′)∈Jσ

Au′′,u′ =
∑

(v,u′′)∈Jσ

Au′′,u (v, u) ∼ (v′, u′),

∑
(v,u′)∈Jσ

Au′,u = 0 (v, u) ∈ J0

In Chapter 4, we will further characterize the strong and weak preserving

sets of mosaic families corresponding to FIR convolution operators, and

provide some examples for the weak and strong M-preserving equations.

This characterization is useful to study the identifiability (or lack thereof)

of uniformly down-sampled discrete systems.
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CHAPTER 4

DISCRETE FIR FILTERS

This chapter is devoted to study identifiability of discrete multichannel fi-

nite impulse response (FIR) convolutions subject to sampling, of the type

depicted in Example 1.1. This will be done both in the parameter space, as

well as M-preserving pre-composition. The identification guarantee will be

utilized to test identifiability of different sampling configurations. Then, we

will show that sub-sampling on index subgroups is never identifiable.

4.1 The Discrete FIR Model

We consider signals of the type x ∈ kT, here T is a discrete (finitely gen-

erated) Abelian group (for example: ZN or ZN ) to the field k. The signal

value at index t ∈ T will be denoted either x[t] or 〈t|x〉. The space kT is not

necessarily finite-dimensional (depending on the cardinality of the group T,

e.g. Z or Z2 often used in DSP are infinite). For an index subset I ⊂ T,

we let 〈I〉 ⊂ kT denote the subspace of all finitely supported functions with

support limited to I.

For any τ ∈ T, the shift operator ςT ∈ Lin(kT) if defined by

(ςτx)[t] := x[t+ τ ] (4.1)

and can be written also as ςτ =
∑

t∈T |t〉 〈t+ τ |. All shift operators commute

and have inverses, and form a group isomorphic to T (by τ 7→ ςτ ). Shifting

extends naturally to multichannel setup kL ⊗ kT by acting on all channels

simultaneously.

Every finitely supported h ∈ `0(kT) has a corresponding convolution op-

erator Ch ∈ Lin(kT) defined by the (finite) sum

Ch :=
∑
τ∈T

h[τ ]ς−τ (4.2)
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This definition extends seamlessly to multichannel FIR convolution, where

h ∈ kL ⊗ `0(kT), but then the operator maps between Ch : kT → kL ⊗ kT.

For an index subset I ⊂ T, the sampling operator DI : kT → kI is merely

the restriction on I:

DIx := x
∣∣
I

(4.3)

which is linear. Continuing along that line, we define the sampling projection

PI ∈ Lin(kT) as projection:

(PIx)[t] :=

x[t] t ∈ I

0 else
(4.4)

When kT has an inner product, it is easy to show that the conjugate

DI : kI → kT is the zero-padding operator

(D∗Iy)[t] :=

y[t] t ∈ I

0 else
(4.5)

and that in general PI = DID
∗
I .

For a multichannel tensor y ∈ kL ⊗ kT, the restriction/projection act on

all L channels simultaneously (i.e. DI maps into kL ⊗ kI).

xl h1

h1 ∗ xl sample
on Γ

yl,1

...

hL
hL ∗ xl sample

on Γ
yl,L

Figure 4.1: Multichannel convolution with sampling

Assume that a finite set of signals {yi}i∈E are outputs of samples multi-

channel FIR system (see Figure 4.1), that is,

yi = DΓChxi, i ∈ E (4.6)

Here the subset Γ ⊂ T (the sampling pattern) is finite, h ∈ kL ⊗ kT is an

unknown FIR sequence, and {xi}i∈E are some unknown input signals.

The recovery of h from the samples in (4.6) is known as the blind mul-

tichannel FIR identification problem, and the joint recovery of h and xα is

known as blind FIR deconvolution.
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Problem Statement

What filter values h and sampling patterns Γ can be identified by

output spans?

In this chapter we essentially answer this question by providing various

conditions (necessary or sufficient).

4.2 Restricted FIR Support Configurations

This problem can in fact be formulated as a special case of range-space based

system identification of the parametric model h 7→ DΓCh. Nevertheless, there

are two obstacles:

1. The dimension dim(kT) = |T| is not necessarily finite.

2. There is an inherent shift ambiguity: for every τ ∈ T one has Cςτh =

Chς
τ , thus Im(Ch) = Im(Cςτh) while usually h 6= ςτh.

Both issues can be addressed by restricting the support of h to a specified

finite domain

Σ ⊂ T (FIR Domain Restriction)

namely, h ∈ kL ⊗ 〈Σ〉. The space kL ⊗ 〈Σ〉 ∼= kL ⊗ kΣ is finite-dimensional,

and furthermore, the output DΓChx depends on the input x only on the

dilation (Minkowsky difference)

Γ− Σ := {γ − σ | σ ∈ Σ, γ ∈ Γ} (4.7)

so that

DΓCh = DΓChPΓ−Σ (4.8)

is a finite rank operator with input dimension |Γ−Σ| and output dimension

L× |Γ|, and fits the apparatus we have.

Our next step is to define a parametric family. Fix the parameter space

M = kL ⊗ kΣ. Every parameter θ ∈ kL ⊗ kΣ corresponds to a unique FIR

h(θ) ∈ kL ⊗ 〈Σ〉 (denoted just h) by the bijection

h[σ] = θ[σ] for all σ ∈ Σ
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The difference between h and θ is technical: the former is also defined outside

Σ, and vanish there. Then, define the parametric family as follows:

m(θ) : 〈Γ− Σ〉︸ ︷︷ ︸
U

→ kL ⊗ kΓ︸ ︷︷ ︸
V

m(θ) := DΓCh(θ) (4.9)

Equation (4.6) now becomes yi = m(θ)xi, and our goal is to identify θ.

Definition 4.1. We call the triplet (Σ,Γ, L) a an FIR configuration (or

just configuration), with a corresponding algebraic family (4.9).

4.2.1 Identifiability of Sampled FIR Configurations

Theorem 2.24 suggest that identifiability is a generic property (at least in

the complex case): if there is one identifiable FIR filter h, then almost all of

them are. Therefore, the term identifiable configuration is meaningful (in the

sense that the associated algebraic family is almost everywhere identifiable).

The choice of the configuration parameters affects identifiably as follows:

• The choice of FIR domain Σ: When Σ is too small then m is not

surjective on V , thus a solution h may not exist for a given subspace in

Gr(r, V ). For example, choosing Σ = {0} imposes h to be an impulse:

yi = h[0]DΓxi

This holds true only if {yi} are all co-linear. On the flip side, if Σ is

large enough so that Σ ⊃ Γ, then a solution always exists (pick h[t] =

y[t] and x[t] = δ0[t], a unit impulse at t = 0) but is not necessarily

unique, as Σ may support different shifts of h.

• The choice of output sampling pattern Γ: Identifiability is affect

by the size or structure of Γ. For T = Z (i.e. sequences) where Σ and Γ

are integer intervals, identifiability is determined by their lengths (see

[2] and [4]). In general, if Γ is decimated (subsample at a uniform rate)

then the identification always exhibits certain ambiguity (see [7] for

T = Z2, and Theorem 4.10 for more general index groups). Our work

extends the existing literature by allowing general (and unstructured)

sets Γ and Σ on general index groups, where studying identifiability

in terms of the structure of (Σ,Γ) is quite difficult.
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• The number of channels L: Generally, more channels mean less

ambiguity, up to the limit of L = |Σ|.

4.3 Searching for Identifiable Configurations

One of the basic problems motivating this research was to search for identi-

fiable configurations.

Testing for identifiability can be done using numerical guarantee derived

in Theorem 2.24 for a randomly selected parameter. An exhaustive search

of all patterns partial to a finite set Γ̄ ⊂ T has exponential complexity,

and amounts to testing 2|Γ̄| configurations (per fixed selection of Σ and L).

For example, an exhaustive search for identifiable configurations limited to

32× 32 pixels in Z2 has 21024 iterations, and is clearly impractical.

The good news is that testing every pattern is not necessary, nonetheless,

and many patterns can be sifted out by necessary conditions; for example

we can require

|Γ− Σ| < L · |Γ| (4.10)

for otherwise the algebraic condition of “tall” matrices is not satisfied. Also,

if Γ ⊂ Γ̃ for a non-identifiable configuration (Σ, Γ̃, L), less data is not going

to help (see Theorem 4.2).

Some manipulations of configurations maintain parameter identifiability,

as described in the following result (see proof in Appendix A).

Theorem 4.2. Let (Σ,Γ, L) be an identifiable configuration. Then the fol-

lowing configurations are identifiable:

1. Oversampling: (Σ, Γ̃, L) where Γ̃ ⊃ Γ.

2. Shifting: (τ + Σ, γ + Γ, L) for every τ, γ ∈ T.

3. Index Automorphisms: (ΦΣ,ΦΓ, L) where Φ : T → T is any group

automorphism.

See proof in Appendix A.

Thus, once a pattern Γ is pronounced identifiable, then all patterns con-

taining Γ are also identifiable. Likewise, all shifts of Γ are identifiable, and

all reflections/symmetries of Γ remain identifiable (for a given Σ, L).

50



Another way to rule out a configuration (Σ,Γ, L) is testing whether its

single-channel counterpart (Σ,Γ, L) is never identifiable, essentially by com-

puting the corresponding strong preserving family SM.

4.4 SM of Discrete FIR Families

We return to study SM corresponding to a FIR channel associated with

the configuration (Σ,Γ, L). Recall that if the strong preserving set SM 6=
span{Id} of the single-channel model, then no multichannel extension will

be identifiable. Having said that, we shall have a look at the structure of

SM for a single-channel configuration (Σ,Γ, 1)

Let M be the (single-channel) FIR model associated with (Σ,Γ). Recall

that A ∈ SM merely amounts to column operation on m(θ). A simple case of

A is just a column move from column τ1 ∈ Γ−Σ to another column τ2 ∈ Γ−
Σ. However, there is no guarantee that such simple moves preserve a sampled

FIR structure. Usually, preserving A involves a complex linear shuffle of the

columns of the operator m(θ). We will try to find a simple basis for SM,

comprised of preserving pre-compositions that are as close as possible to

column shuffle. This can be done thanks to the special Toeplitz structures of

FIR operators. Every FIR structure (generalized Toelitz), whether sampled

or not, is a mosaic.

Definition 4.3. A mosaic {Jσ} is called FIR mosaic if it corresponds to a

convolution operator.

All involved index sets Σ,U ,V of FIR-mosaic are subsets T (not necessar-

ily subgroups/cosets), where U = V −Σ (a Minkowski difference) and

Jσ = {(γ, v − σ) | v ∈ V} (4.11)

A slight relaxation of an FIR mosaic is an admissible mosaic:

Definition 4.4. A mosaic {Jσ} is admissible mosaic if:

1. Every tile Jσ ⊂ V × U is a graph of a one-to-one function in v:

Jσ = {(v, uσ(v)) | v ∈ V}

Here uσ : V → U is injective. Every v has exactly one paired u in Jσ

2. Every u ∈ U belongs to at least one tile Jσ.
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An admissible mosaic is fully characterized by the functions {uσ | σ ∈ Σ}.

The mosaic in Figure 4.2 is admissible. Each color represents a different

class in {Jσ}, and the white cells are J0. The mosaic in Figure 3.5 is not

admissible.

Figure 4.2: Admissible mosaic

We can easily show that FIR mosaics are also admissible (see proof in

Appendix A):

Proposition 4.5. An FIR mosaic is admissible.

The preserving pre-compositions of admissible mosaic families are fairly

simple to characterize. Equation (3.16) reduces to (SA)v,u =
∑

σ∈Σ θσAuσ(v),u

so the weak structure condition now becomes:∑
σ∈Σ

θσ
[
Auσ(v′),u′ −Auσ(v),u

]
= 0 (v, u) ∼ (v′, u′)∑

σ∈Σ

θσAuσ(v),u = 0 (v, u) ∈ J0

Furthermore, note that the condition (v, u) ∼ (v′, u′), can be replaced with

u = uσ(v) and u′ = uσ(v′) for some σ ∈ Σ, so in conclusion:

Weak Preserving Condition of Admissible Mosaic

For admissible mosaic family M, the weak SM(S) (a linear variety)

is characterized by all A satisfying∑
σ′∈Σ

θσ′
[
Auσ′ (v

′),uσ′ (v
′) −Auσ(v),uσ(v)

]
= 0 v, v′ ∈ V, σ ∈ Σ (4.12)∑

σ′∈Σ

θσ′Auσ′ (v),u = 0 (v, u) ∈ J0 (4.13)
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For the strong mosaic-preserving, we require that the latter holds for every

basis vector S = Sσ, and the equation becomes

Strong Preserving Condition of Admissible Mosaic

The strong preserving SM of an admissible mosaic M are all A s.t:

Auσ′ (v
′),uσ(v′) = Auσ′ (v),uσ(v) v, v′ ∈ V, σ′, σ ∈ Σ (4.14)

Auσ(v),u = 0 (v, u) ∈ J0, σ ∈ Σ (4.15)

The latter condition is in fact a mosaic condition:

Lemma 4.6. For an admissible mosaic structure M, the set SM of strong

preserving pre-compositions is itself a mosaic structure {J̃k} on U ×U . We

shall refer to {J̃k} as the pre-composition mosaic.

See Appendix A for proof. Figure 4.3 demonstrates a FIR mosaic family

and its corresponding strong pre-composition mosaic.

Figure 4.3: FIR mosaic (top) and its SM pre-composition mosaic (bottom)

We turn to study the tiles {J̃k}, whose corresponding mosaic operators

A(k) ∈ Lin(U) defined by A(k) :=
∑

(u,u′)∈J̃k |u〉 〈u
′| span SM. One can

think of A(k) as an adjacency matrix of a directed graph Gk := (U , Jk),
where the pair (u, u′) ∈ U2 is connected by u′ 7→ u, whenever (u, u′) ∈ Jk.

The implication of Lemma 4.6 is that for an admissible mosaic family

M, the space SM is spanned by indicator matrices. Any indicator pre-

composition A corresponds to a directed graph on the columns U .
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Finally, for FIR mosaic, we have the following:

Theorem 4.7. For an FIR mosaic {Jσ}, every nonzero tile of the pre-

composition mosaic J̃k (i.e. whose elements do not admit the zero con-

straint) has at most one class representative per entry, that is,

(u, u′), (u, u′′) ∈ J̃k ⇒ u′ = u′′ (4.16)

and (u′, u), (u′′, u) ∈ J̃k ⇒ u′ = u′′ (4.17)

See Appendix A for a proof.

A Basis for Strong FIR-Preserving Pre-compositions

Corollary 4.8. The space SM of (strong) preserving pre-composition

of an FIR model M is spanned by graphs whose nodes have degree 0

or 2, any edge is connected to exactly two nodes (allowing self-edges

u → u). Thus, to check whether some FIR model is identifiable, it

is sufficient to find which column moves of its matrix do not alter its

structure (hence keeping it in M).

Example 4.9. We demonstrate the Corollary 4.8 on the configuration Σ =

{0, . . . , 5}, Γ = {0, 3, 8}, and L = 6. Empirical testing of a random S0 shows

that dim(SM(S0)) = 4, with four basis matrices (see Figure 4.4). We shall

verify that result by the tedious combinatorial task of finding which column

shifts preserve the matrix structure. This process is similar to Example 3.6,

except that now we know that column shifts constitute a basis of SM.

Figure 4.4: Top: Matrix structure of the family in Example 4.9. Bottom:
Empirically computed basis for SM(S0)
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A column shift, denoted σ → σ′ where σ, σ′ ∈ Σ, is an edge in the di-

rected graph Σ × Σ. There are |Σ|2 = 36 possible moves in this example.1

Any column shift may entail other shifts, based on the connectivity graph

in Figure 4.5. Entailed moves that land outside Σ (denoted {σ → nil}) are

deemed invalid. Moves can be grouped into equivalence classes by entailment

relation, where a class is valid if all its moves are valid (see Table 4.1).

01

2

3 4

5

0 1 2 3 4 5

Figure 4.5: Connectivity graph of Σ in Example 4.9 (left), column shifts and
their entailed moves (right). Allowed moves in green, otherwise in red

Table 4.1: Attempted moves and entailed moves

Attempted Move Entailed Moves Validity

{0→ 1, . . . , 5} {5→ nil} not allowed

{1→ 0, 2} {4→ 3, 5} allowed

{1→ 3, 4, 5} {4→ nil} not allowed

{2→ 0, 1} {5→ 3, 4} ⇒ {0→ nil} not allowed

{2→ 3, 4, 5} {5→ nil} not allowed

{3→ 0, 1, 2} {0→ nil} not allowed

{3→ 4, 5} {0→ 1, 2} ⇒ {5→ nil} not allowed

{4→ 0, 1, 2} {1→ nil} not allowed

{4→ 3, 5} {1→ 0, 2} allowed

{5→ 0, . . . , 4} {0→ nil} not allowed

{0→ 0, 2→ 2, 3→ 3, 5→ 5} {0→ 0, 2→ 2, 3→ 3, 5→ 5} allowed

{1→ 1, 4→ 4} {1→ 1, 4→ 4} allowed

There are four valid classes in this example, two column shuffle classes

{1→ 0, 4→ 3} and {4→ 5, 1→ 2}, and two loop classes {1→ 1, 4→ 4}
and {0→ 0, 2→ 2, 3→ 3, 5→ 5}. Those four classes correspond to four

pre-compositions in SM, which constitute a basis for SM due to Corollary

4.8, hence dim(SM) = 4, conforming to the empirical test.

1For larger models, this process has been automated by a script written in Python.
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4.4.1 SM of Uniform Subsampling

Finally, we show that FIR systems followed by uniform sub-sampling are

never identifiable (algebraically).

Theorem 4.10. Let G ⊂ T be a proper subgroup. A configuration (Σ,Γ, L)

with non-singleton Σ and Γ ⊂ γ0 +G (a coset) is never identifiable (regard-

less of L). Furthermore, if the index of the subgroup (i.e. “sampling rate”)

satisfies 1 < [T : G] ≤ |Σ|, then dim(SM) ≥ [T : G]2.

The Case Against Uniform Sampling

The practical implication is that uniform sampling always produces

filter ambiguity. For example, sampling Z at rate d has quotient

group Z/dZ = Zd resulting with dim(SM) ≥ d2. Sampling Z2 at

rate d makes Z2/(dZ ⊕ dZ) = Zd ⊕ Zd so that the dimension of the

ambiguity is at least dim(SM) ≥ (d · d)2 = d4.

Proof. (Theorem 4.10) First note that (Σ,Γ, L) is identifiable if and only

if (Σ,Γ − γ0, L) is identifiable, so we can assume without loss of generality

that Γ is a subset of G, rather than the coset γ0 + G. The group T with a

subgroup G admits the decomposition

T ∼= P ⊕G

where the quotient P := T/G is itself an Abelian group. Every t ∈ T admits

a unique decomposition in P ⊕G given by

t = r + p, p ∈ P, r ∈ G (4.18)

Here p (“phase”) corresponds to the coset p+G ∈ P , and can be represented

by any arbitrary element of the p+G. This group decomposition gives rise to

the so-called polyphase decompositions sp, s̄p ∈ kG defined for every signal

s ∈ kT by the relations

sp[r] := s[r − p] (type I) (4.19)

s̄p[r] := s[r + p] (type II) (4.20)

for every r ∈ G and p ∈ P . The signal s[t] can be then expressed as:

s[t] =
∑
p∈P

sp[t+ p] =
∑
p∈P

s̄p[t− p]
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Note that if s[t] is finitely supported, then the polyphase components are

finitely supported as well, and vice versa. For τ ∈ G, substitute t = r + p

per (4.18) in the convolution sum, then expand to a double sum over P and

G, and plug in (4.19) and (4.20):

(Chx)[τ ] =
∑
t∈T

h[τ − t]x[t] =
∑
p∈P

∑
r∈G

h[

∈G︷ ︸︸ ︷
τ − r−p]︸ ︷︷ ︸
hp[τ−r]

x[r + p]︸ ︷︷ ︸
x̄p[r]

=
∑
p∈P

(hp ∗ x̄p)[τ ] =
∑
p∈P

(Chpxp)[τ ]

The convolution in the second line is done over the (discrete, Abelian) sub-

group G, i.e. Chp ∈ Lin(kT). For a nonsingular B ∈ kP×P and s ∈ kT,

define the polyphase shuffles ψB(s) and ψ̄B(s) as

(ψBs)p′ :=
∑
p∈P

Bp,p′sp (4.21)

(ψ̄Bs)p′ :=
∑
p∈P

Bp,p′ s̄p (4.22)

The mappings ψB and ψ̄B are linear and keep their argument support

(ψB 〈Σ〉 ⊂ 〈Σ〉). Let g = ψB(h) and x̃ = ψ̄B−1(x). It is easy to verify

that ∑
p∈P

hp ∗ x̄p =
∑
p∈P

gp ∗ x̃p

so that

DΓCh = DΓCgψ̄B−1 (4.23)

for every invertible B. In other words ψ̄B−1 ∈ SM is a nontrivial strong

M-preserving pre-composition, therefore such a system is never identifiable.

All that is needed to lose identifiability is a single B for which ψB(h) and h

are not proportional, which always happen unless Σ is a singleton.

Whenever N = |P | = [T : G] is finite, we have N2 invertible matrices

in kP×P that are linearly independent, leading to |N |2 linearly independent

pre-composition ψB, hence dim(SM) ≥ |N |2 whenever N ≤ |Σ|. Once N

hits the value |Σ|2, then the entire space Lin(U) makes M-preserving pre-

compositions.

Even if [T : G] is infinite one can apply similar transformations on any

finite subset of coordinates.
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4.5 FIR Identification with Input-Output Remapping

Previously, we discussed the detection of a single FIR channel h by sam-

pling small patches of neighboring data on Γ, and created input diversity by

shifting it all around the index group.

The operator model m(θ) = DΓChPΓ−Σ is usually not tall for a single-

channel h. For example, the single-channel two-tap filter m : C2 → C3×4

m(θ0, θ1) =

θ0 θ1 0 0

0 θ0 θ1 0

0 0 θ0 θ1

 (4.24)

is not identifiable. Increasing Γ over 3 would not help since inevitably the

number of columns |Σ−Γ| increases (the matrix above will forever be wide).

We mitigated that by extending the problem to multiple channels, i.e. iden-

tifying several systems working concurrently on the same input.

Another way to augment a system is by introducing known pre-filters

{Sγ} ⊂ Lin(U) and post-filters {Tγ} ⊂ Lin(V ). The augmented system

m̃ : U → ⊕γ∈Γ(TγV ) defined by

m̃(θ)γ = Tγm(θ)Sγ

can in fact be identifiable, even if m itself is not, as it increases the range

dimension without incurred increased input dimension.

There are various ways to choose Sγ , Tγ . An interesting class of linear fil-

ters is defined by index transformations of T. Let ϕ : T→ T (not necessarily

a group homomorphism), and define Sϕx = x◦ϕ. We already experimented

with shift ϕ = ςτ , but nothing prevents us from attempting other trans-

forms. For example, let ϕ : T → T be a group endomorphism onto T, and

let Ker(ϕ) denote its kernel. For every coset (“phase”) p ∈ T/Ker(T), define

the associated dilation Lϕ,p : V T → V T (or polyphase component) as

(Lϕ,px)[t] = x[ϕ(t) + p] (4.25)

Example 4.11. Let T = Z with the group homomorphism φ(n) = kn. The

set of all phases is Z/(kZ) which is Zk, and the dilation

(Lϕ,px)[n] = x[kn+ p]

is merely the p-th phase of the polyphase decomposition of x.
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Intuitively, dilations amount to zooming outside an input signal, flipping

it, or rotating it (if the group is rich enough).

Example 4.12. There is a noble identity h ∗ Lϕ,px = Lϕ,p(h̃ ∗ x) with a

choice of appropriate filter h̃ϕ:

(h ∗ Lϕ,px)[γ] =
∑
σ

h[σ](Lϕ,px)[γ − σ]

=
∑
σ

h[σ]x[ϕ(γ − σ) + p]

=
∑
σ∈ϕ∗Σ

h̃ϕ[σ]x[ϕ(γ)− σ + p]

= Lϕ,p(h̃ϕ ∗ x)

Sampling DΓChLϕ,p entails sampling the input x on the domain ϕ(Γ−Σ)+p.

This materialize in practice by “spreading” the filter values differently across

the matrix, creating new sampling rows.

Consider the FIR in (4.24). Dilations of order 2 can give measurements

of the form [
θ0 0 θ1 0

0 θ0 0 θ1

]
(the first and second rows correspond to two different phases). Dilation of

order 3 gives the output [
θ0 0 0 θ1

]
Dilations of order 4 and above amount to scaling, i.e.

[
θ0 0 0 0

]
and

not very interesting.

The overall system of combined shifts and dilations L2 and L3 is

m(θ) =



θ0 θ1 0 0

0 θ0 θ1 0

0 0 θ0 θ1

θ0 0 θ1 0

0 θ0 0 θ1

θ0 0 0 θ1


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Testing it for identifiability can be done either by a random parameter e.g.

m((1, 0)) =



1 0 0 0

0 1 0 0

0 0 1 0

1 0 0 0

0 1 0 0

1 0 0 0


which numerically tests for a one-dimensional annihilator solution (hence

m is identifiable). Since m is a mosaic family, we can also test its M-

preserving structures. We have m(θ) = θ0S0 + θ1S1 with

S0 =



1 0 0 0

0 1 0 0

0 0 1 0

1 0 0 0

0 1 0 0

1 0 0 0


, S1 =



0 1 0 0

0 0 1 0

0 0 0 1

0 1 0 0

0 0 1 0

0 1 0 0


Computing the M preserving pre-compositions is fairly easy. Let ai denote

the rows of A.

• Compare S0A = m(θ0, θ1) (since A ∈ SM(S0))

S0A =



a1

a2

a3

a1

a2

a1


=



θ0 θ1 0 0

0 θ0 θ1 0

0 0 θ0 θ1

θ0 0 θ1 0

0 θ0 0 θ1

θ0 0 0 θ1


yields

SM(S0) =




β 0 0 0

0 β 0 0

0 0 β 0

a41 a42 a43 a44




• Similarly, S0A =
[
a2 a3 a4 a2 a4 a4

]T
comparing S1A = m(θ0, θ1)
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(since A ∈ SM(S1)) yields

SM(S1) =




a11 a12 a13 a14

0 β 0 0

0 0 β 0

0 0 0 β




The strong M-preserving here is the intersection

SM = SM(S0) ∩ SM(S1)

hence a41 = a42 = a43 = 0, a12 = a13 = a14 = 0 and β = a11 = a44, and so

SM = {λId}

consists only of scalar matrices, and thereby M is potentially identifiable.

4.6 Summary of Results for FIR Channel Identifiability

We conclude Chapter 4 with the following list of results concerning the

ambiguity of sampled multichannel FIR identification:

1. It is sufficient to test the identifiability of a configuration on a single

parameter value (following the genericity property).

2. To determine whether a configuration (Σ,Γ, L) is never-identifiable, it

is sufficient to test the single-channel case (Σ,Γ, 1) (either empirically

or by combinatorial means), by Theorem 3.15.

3. Configuration parameters affect identifiability as listed in Table 4.2

Table 4.2: Effects of configuration parameters on identifiability

Parameter Possible effect on

identifiability

Remarks

Domain Σ Decreases with |Σ| If Σ is too small then a solution may

be nonexistent

Pattern Γ Increases with |Γ| Decimation results with ambiguity

(Theorem 4.10)

Channels L Increases with L No improvement beyond L ≥ |Σ|
channels (Theorem 3.15)
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CHAPTER 5

ON THE SPATIAL STRUCTURE OF DATA

EIGEN-PATCHES

In Chapter 4, output data sample patches of the form

Xτ = DΓς
τ (h ∗ x) (5.1)

were used to identify the FIR h. That was achieved through computing the

space (or rather its ortho-complement) spanned by those patches subject to

the annihilator equation (2.13). An orthogonal basis to span{Xτ}τ∈E was

computed by solving the eigenvalue problem on the outer products Xτ ⊗X∗τ
(equivalently, the SVD of the data matrix), which happens to be known

as the principal components1 analysis of the data. It turns out that the

principal components of such sampled data have very compelling spatial

characteristics.

Assuming that h = δ, note that (5.1) can be written rather as a restriction

Xτ := DΓxτ , where xτ := ςτx (5.2)

Here xτ is merely a shifted version of x.

For the context of this work, principal components of a (finite) patch

collection {Xτ}τ∈E will be the eigenvectors of the (positive semidefinite)

sample auto-correlation operator

RE :=
1

|E|
∑
τ∈E

Xτ ⊗X∗τ (5.3)

where the scaling by the cardinality |E| is done for technical reasons. The

eigenvectors constitute an orthogonal basis for span{Xτ}τ∈E due to the pos-

itive semidefinite nature of RE (being a sum of outer products), and can be

sorted by their “contribution” weight (see discussion about Rayleigh quo-

tient in [20]).

1There are several variations of principal component analysis, most of which fit the
vectors into an affine space, and center the data around their mean as a preliminary step.
Since we fit the data patches in a linear space, the centering step was not performed.

62



In practice, the analysis is done by “flattening” Xτ averaging over its

outer products:

1 # X is of size [sample]x[N1]x[N2]...

2 num_samples = X.shape [0]

3 X_flat = reshape(X,( num_samples ,-1)) # Flatten other axes

4 PCA , P_values = eig(X_flat@X_flat.T)

After solving the eigenvalue problem the vector are then reshaped into their

original tensor form

1 # P_components is of size [data dimension]x[data dimension]

2 PCA_patches = reshape(PCA ,(data dimension , N1, N2...))

For example, RGB data patches on a domain would have RGB principal

components on the same domain.

In the following examples (see Figures 5.2, 5.3, 5.4, and 5.5), RE was

computed from empirical data from several photos and paintings, on circular

and square patches Γ. The offsets E were scattered in various ways: random,

and uniform with overlapping (compare the several modes in Figure 5.1).

The results on those data patches are stellar:

• The principal components of larger eigenvalues resemble harmonic

functions on the domain Γ, that is, solutions of the equation

∇2φ(t) = 0 t ∈ Γ (5.4)

Here Γ ⊂ R2 is a continuous version of the patch domain,

• Furthermore, the spectra of all sampling scenarios are nearly identical.

The aim of this chapter is to give this phenomenon a heuristic explanation.

Figure 5.1: Offset scatters (from left to right): random, uniform no overlap,
uniform 50% overlap, uniform 75% overlap
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Figure 5.2: Left: Wheatfield under Thunderclouds (Van Gogh, 1890), right:
a selection of sampled 20× 20 patches

Table 5.1: Various PCA results for the Van-Gogh’s painting

Sampling

Pattern
First 12 Principal Components Singular Values

Random

Uniform,

75% overlap

Uniform,

50% overlap

Uniform,

no overlap
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Figure 5.3: Left: Puerta Del Sol, Madrid (Elad Yarkony, 2014), right: a
selection of sampled circular 20× 20 patches

Table 5.2: Various PCA results for Puerta Del Sol photo

Sampling

Pattern
First 12 Principal Components Singular Values

Random

Uniform,

75% overlap

Uniform,

50% overlap

Uniform,

no overlap
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Figure 5.4: Left: Ramon crater (Elad Yarkony, 2011), right: a selection of
sampled 20× 20 patches

Table 5.3: Various PCA results for Ramon crater photo

Sampling

Pattern
First 12 Principal Components Singular Values

Random

Uniform,

75% overlap

Uniform,

50% overlap

Uniform,

no overlap

66



Figure 5.5: Left: MRI image (adapted from [21]), right: a selection of
sampled circular patches of radius 10

Table 5.4: Various PCA results for MRI image

Sampling

Pattern
First 12 Principal Components Singular Values

Random

Uniform,

75% overlap

Uniform,

50% overlap

Uniform,

no overlap
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This wave-like spatial shape of the principal components alludes to a

Toeplitz structure in RE , i.e.

〈s|RE |t〉 = 〈s+ τ |RE |t+ τ〉 (5.5)

for valid index shifts. Even if (5.5) holds by approximation rather than

equality, the invariant subspaces RE would be approximately the invari-

ant subspaces of the nearest Toeplitz operator, by perturbation theory for

symmetric matrices (see [22]). Indeed, examining the projection ratio to

the space of Toeplitz operators Ptl(RE) (see Table 5.5) is almost exclusively

around 1.0.

Table 5.5: Toeplitz score for several experimental results

Source Signal and Sampling Type Topelitz Score ‖Ptl(RE)‖
‖RE‖

Puerta Del Sol, random 0.9999730612861953

Ramon, uniform no overlap 0.9999912466644767

Van Gogh, uniform 1/2 overlap 0.9999868670715982

MRI, uniform 75% overlap 0.9999991347774677

While the Toeplitz structure has been observed in all examples, the au-

tocorrelation kernel r[t − s] is naturally affected by the image itself. An

image with prevalent horizontal features would have predominantly hori-

zontal principal components (as apparently, Van Gogh’s brush strokes are,

see Figure 5.6 and compare with the patches).

Figure 5.6: Autocorrelation kernel of Van-Gogh’s painting

We pose two separate questions:

• Why is the sampled RE Toepleitz?

• Why do the lower energy eigenvectors of RE resemble harmonic func-

tions on Γ?

We will try to provide answers the two question in Sections 5.1 and 5.1.2.
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5.1 The Toeplitz Nature of RE

To answer why RE has a Toeplitz kernel, we have to first understand the

process from which RE is computed. The short answer is that for random

patch scatter, RE is approximately (or exactly) Toeplitz, regardless of the

signal x, due to the strict stationarity of the signal xτ where τ is uniformly

distributed. For offsets E that are scattered on a lattice, though, the RE still

exhibits Toeplitz structure, which can be attributed to the signal x itself.

We will examine a generative patch model that is wide-sense stationary.

Examining empirical sum RE , shifted on the diagonals yields

〈s+ γ|RE |t+ γ〉 = 〈s|RE + γ|t〉 (5.6)

An approximated Toeplitz structure means that RE ≈ RE+γ for all γ.

In some cases, this approximation holds regardless of x. For example

when T is a finite group and E = T, then E = E + γ and RE = RE+γ . Even

if T is not a finite group, scattering τ uniformly on a large enough box E
will result with an approximated Toeplitz RE .

Assume the index group T has a shift-invariant measure (a Haar measure),

for which η(A+ t) = η(A) for every measurable A ⊂ T. On a discrete group,

it will be the counting measure. This gives a decomposition of RE to a

Toeplitz part plus a residual (see proof in Appendix A).

Lemma 5.1. We can write RE as the sum 〈s|RE |t〉 = R(t− s) + ε(t), where

ε(t) is bounded by

|ε(t)| ≤Mη((E + t)∆E)

η(E)

where A∆B = A\B+B\A is symmetric set-difference, and M is a constant

independent on t.

The residue ε(t) quantifies the “boundary” effect of the integration, and

in case it is small enough, then RE is approximately Toeplitz. This is not an

uncommon scenario, for example, when T = ZN (or a large discrete torus),

E = [a, b]N is a cube, and Γ ⊂ E is a much smaller cube.

On the other extreme, if E is chosen such that {τ + Γ} are pairwise dis-

joint for different values of τ , then RE could be any Hermitian matrix. For

example, if T = Z2 with E = {(10m, 10n), 0 ≤ m,n < N} and Γ = [0, 9]2.
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For any signal x that is 10 periodic, the outer product Xτ ⊗X∗τ is constant

(and not Toeplitz).

More generally, if E = τ0 +G is a coset of some subgroup G ⊂ T, then RE

is G-periodic on the diagonals (rather than constant) since E+g = E (which

is, to some degree, cyclo-stationarity). The examples above, however, show

that RE is close to Toeplitz even when the windows do not overlap, which

suggests that the underlying signal x itself is responsible for the structure of

RE . For that we will treat xτ as a random process (refer to Appendix B.2

for the probabilistic extension of the data model).

The analysis is, nonetheless, easier on compact tori rather than on free

index groups, since for the latter we can define a uniform probability dis-

tribution on the entire index group. Note that working with finite/compact

tori is not just a theoretical relaxation, but also has practical manifestation.

Some natural settings are better modeled on tori rather than Euclidean

spaces (e.g. optical lenses with spherical coordinates). Also, most prob-

lems involving physical signals call for a bounded support, which can be

embedded into a compact torus.

On a compact torus T we define uniform variables as follows:

Definition 5.2. A mapping τ : Ω→ T is called a uniform random variable

(denoted τ ∼ U(T)) if its probability measure is shift invariant, i.e. p(τ ∈
A) = p(t+ τ ∈ A) for all t ∈ T.

Since the Haar measure on a compact group T is unique up to scaling

(see [23]), there is a unique uniform probability measure on T, that we will

denote by p(τ).

The following result is central to this discussion (with surprisingly easy

proof, see Appendix A):

Lemma 5.3. Assuming that τ ∼ U(T) and that x is a random process

independent on τ , the process xτ [t] := x[t + τ ] is stationary in the strict

sense.

The extent of Lemma 5.3 is not limited for x with numerical values (i.e.

complex linear spaces), but rather to x values on in any measurable set. For

example, if τ ∼ U(T) is independent on a random mapping ψ : T→ T, then

ψ(t+ τ) is strictly stationary.
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Corollary 5.4. Let x be a random process indexed on T, taking values in

a Hilbert space V , and let τ ∼ U(T) be independent on x. Then the process

xτ = ςτx is stationary, and in particular WSS, with (constant) expectation

and autocorrelation

E(x[t+ τ ]) =

∫
T
E(x[τ ]|τ)dp(τ) (5.7)

r[t] := E(x[t+ τ ]x[τ ]) =

∫
T
E(x[t+ τ ]x[τ ]|τ)dp(τ) (5.8)

both are determined by integrating across the torus.

5.1.1 The Statistical Interpretation of RE

Once we assign a probability model to xτ , we can examine RE from a sta-

tistical point of view. The Toeplitz structure indicates that the sampled

process xτ [t] is wide-sense stationary with respect to the group index t (or

at least for shifts in Γ− Γ).

We consider both the case of x deterministic and τ ∈ U(T), as well as x

WSS and τ ∈ E for a large E . In both cases, we claim that RE is an unbiased

estimator of E(Xτ ⊗X∗τ ).

• If x[t] is random and WSS and E is finite then E(RE) is Toeplitz:

E(〈s+ γ|RE |t+ γ〉) =
1

|E|
∑
τ∈E

r[s+ γ − t− γ] = r[s− t]

• If x[t] is random or deterministic, and τ is an independent uniform shift

on T (on a large enough subset, that is), then xτ is strictly stationary,

and so E(〈s|RE |t〉) is Toeplitz.

Either way, RE is expected to be Toeplitz (or approximately so, if the

group is not a compact torus).

We need to weigh in the question of convergence mode and rate, which

is left out of this discussion because it veers into ergodic theory. We will

mention, however, that for independent samples, than standard strong laws

will suffice (and the model xτ for uniform τ delivers independent samples).
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5.1.2 A Generative Image and Patch Models

In the non-random scatter case RE , we will analyze RE with respect to a

generative patch model. Statistical modeling of natural images has been a

research topic for a long time (see [24] for a comprehensive survey of models).

We offer a generative model that mimics the appearance of prevalent

image patches successively overlaying layers on top of each other (see dead

leaves model [24]):

xn+1 = C(xn, ξn)

Here C(·, ·) will be defined below, but it is merely a convex combination of

the two layers. This model is paramount in optical image modeling: it is

how painters paint, and how 3D graphics engines produce projected images.

It can be used to generate individual patches Xτ , or an entire image from

which patches are sampled. In both cases, the resulting model is stationary.

To define overlay model, let f : T → V be some foreground signal, m :

T→ [0, 1] be an opacity mask (with m = 1 fully opaque, m = 0 transparent),

the complement transparency mask m̄(t) = 1−m(t), and ψ : T→ T be some

coordinate transform. Define the composition of f and b by

C(b, f) = b(t) · m̄(ψ(t)) + f(ψ(t)) ·m(ψ(t)) (5.9)

in which f(ψ(t)) overrides b on m(ψ(t)) (see Figure 5.7).

Figure 5.7: Dead leaves model (layer occlusion)
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The interesting thing about this model is its ability to produce stationary

signals, as long as the layers are shifted randomly i.e. ψ(t) = φ(t + τ) for

some uniform shift τ ∈ U(T):

Lemma 5.5. If the following hold:

1. b and f are independent processes indexed on T (representing back-

ground and foreground signals respectively).

2. b is wide-sense stationary.

3. ψ(t) = φ(t + τ) where τ ∼ U(T) and φ : T → T is random and

independent on τ .

then C(b, f) as defined in (5.9) is wide-sense stationary.

To conclude, one can generate a WSS signal by summing or overlaying

WSS components with random shifts on T. The remaining question is what

kind of (WSS) elements ξn one can throw into this construction process,

which can include virtually any planar shape filled with deterministic or

random textures.

One reasonable option is to take some shape (with some filling) rotate and

shift it on the domain, or in other words, perform a random rigid transforma-

tion (see Figure 5.8 for example). Affine-transformed template is anything

of the form

ξn(t) = f(R(t+ τ)) (5.10)

where R is a random matrix, τ ∼ U(T), and f is either deterministic or

random, where all random quantities are independent. The random shift

guarantees stationarity (due to Lemma 5.3).

Figure 5.8: Affine-transformed template
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In practice, rotations are performed in RD and mapped to the torus by

a quotient map. Unfortunately, rotations are not well behaved through the

quotient map (they are not invertible or associative as they would be on Rd).
If, however, we restrict our discussion to the unit ball B([−1, 1]D) which is

bounded by the flat torus [−1, 1]D, then we can safely write R1(R2x) =

(R1R2)x and RR∗x = R∗Rx = x for all x ∈ B([−1, 1]D).

An interesting observation about the model (5.10) is its radially symme-

try (it is easy to verify that every composition of radially symmetric layers

is radially symmetric as well). Empirically, it is apparent that the autocor-

relation kernel of the rotated horse template (Figure 5.8) depends on the

distance between indices E(x[t]x[s]) ≈ r(d(t, s)) rather than absolute loca-

tions s, t or relative location s− t ∈ T. The autocorrelation as a function of

the distance is shown in Figure 5.9.

Figure 5.9: Autocorrelation of rigid-transformed template in Figure 5.8

We remark here that d(s, t) is well defined on the torus [−1, 1]D by

geodesics, but for the sake of this discussion we assume that s, t ∈ Γ where

Γ is small enough to approximate d(s, t) ≈ ‖s− t‖ here ‖ · ‖ is the Euclidean

norm in RD.

Modeling such processes with radially symmetric autocorrelation calls for

the notion of locally rotation invariant processes on T.

Definition 5.6. We say that a process x : T→ V is rotation invariant (lo-

cally, on Γ) if the joint probability distribution of x is fixed under rotations,

i.e. for every finite collection K ⊂ Γ one has

p(DKx ∈ A) = p(DQKx ∈ A)

Here Q is a rotation on [−1, 1]D, and D is the sampling/restriction operator.
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Informally, it means that the joint statistics of x, when sampled on a small

enough patch (able to rotate freely in the torus) is invariant under rotations.

Lemma 5.7. Let y be a random process defined on [−1, 1]D supported on

Γ ⊂ B(RD) (note that rotating Γ keeps it inside [−1, 1]D). Then the process

x(t) = y(Rt) where R ∈ RD×D is a rotation drawn from uniform distribution

is locally radially symmetric on Γ.

Therefore, composing a uniform rotation to any process makes it (locally)

isotropic, and so y(Rt) (the un-shifted template) has distributions that are

invariant to rotations.

Lemma 5.8. Let y(t) be locally radially symmetric on Γ. Then the (sta-

tionary) process x(t) = y(t+ τ) has an autocorrelation kernel that is locally

isotropic.

Proof. Due to the stationarity, we have E(x(t)x(s)) = E(x(t − s)x(0)) =

r(s − t). Nevertheless, the joint distribution of x(t − s) and x(0) is con-

stant under rotations, and so the expectation r(t− s) is also constant under

rotations:

r(t− s) =

∫
x(t− s)x(0)dp(ω)

=

∫
Ω
x(Q(t− s))x(Q0)dp(ω)

= r(Q(t− s))

The latter is obtained by invoking Lemma 5.7 with K = {0, t − s}, which

completes the proof.

To complete the discussion, we note that whenever r is restricted to Γ

where d(s, t) ≈ ‖s− t‖, there exists some function ρ : R+ → C such that

r(s− t) ≈ ρ(‖s− t‖)

where ρ(d) = r(dê) for any unit vector ê ∈ B(RD) ⊂ [−1, 1]D.

There is a bound on the autocorrelation for generative models. Let βR(d)

denote the cap volume of the canonical R-radius ball in Rd intersected with

the plane x1 = d, which is generally a decreasing function with βR(0) max-

imal value (and equals half of the overall volume), and βR(2R) = 0.

Lemma 5.9. Assume that y is deterministic and bounded by M , whose

support is bounded by B = BR([−1, 1]D) with R ≤ 1
2 . Then the process
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x(t) = y(R(t+ τ)) is WSS with radial autocorrelation bounded by

|r(t)| ≤ 2M2βR(‖t‖) (5.11)

For example, on the two-dimensional torus [−1, 1]2 we have

|r(t)| ≤ 2M2

[
R2arccos(

‖r‖
2R

)− 1

2
‖t‖
√

4R2 − ‖t‖2
]

This is a useful measure of how two neighboring pixels are correlated

depending on their distance.

5.2 The Eigenvalue Problem of Symmetric Toeplitz
Operators

The first few eigen-patches of RE look a lot like low-energy solutions of a

harmonic problem on the patch domain. Those are solutions of an eigenvalue

problem of a Toeplitz and symmetric R:

Rφ = λφ (5.12)

where φ ∈ CΓ⊗CL. If we can embed Γ in a sufficiently large group T, R can

be written in terms of convolution on T followed by restriction: R = DΓCrD
∗
Γ,

where r[τ ] = 〈τ |RE |0〉 for τ ∈ Γ − Γ (differences taken on T), and padded

with zeros elsewhere. Thus, the eigenvalue problem in R can be written as

a generalized eigenvalue problem augmented on T:

r ∗ ψ = λPΓψ (5.13)

Here ψ ∈ CT ⊗ CL.

Unfortunately, no general solution for (5.13) has been offered (to this

date). In the one-dimensional case, it has been shown that discrete cosine

transform can approximately diagonalize R, see e.g. [25], which belongs in

a larger class of solutions relying on circulant approximations.

One thing to note is that R has the structure of a difference equation with

boundary condition. Let Θ denote the (symmetric) support of r[s]. By the

symmetry r[s] = r[−s] we can write the autocorrelation as

R =
1

2

∑
s∈Θ

r[s]DΓ(ςs + ς−s)D∗Γ =
1

2

∑
s∈Θ

r[s]Ls
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where Ls = DΓ(σs + σ−s)D∗Γ is the symmetric truncated Laplace operator of

order s. The equation Rφ = λφ can be broken into a difference equation on

the erosion set∑
s∈Θ

r[s](φ[t+ s] + φ[t− s]) = λψ[t] t ∈ Γ�Θ

with the boundary condition zeroing φ[t± s] whenever t /∈ Γ�Θ.

The analogy to Laplace partial difference equation ends at this point,

since Ls cannot be written as a polynomial of shifts, and approximating Ls

that way has failed. To illustrate the departure from difference equations,

consider the one-dimensional case CN , Ls = J + J∗, where J is a Jordan

block with 1 on the super-diagonal, we have L2
s = J2 + (J∗)2 + 2(JJ∗).

The matrix JJ∗ is diagonal with 1 on all elements except the first and last,

setting it apart from the identity, therefore L2
s 6= J2 + (J∗)2 + Id, and so

eigenvectors of Ls and L2
s are not necessarily the same (and the difference

will grow with higher powers of Ls).

Another potential direction (that has not been fully exploited) is to com-

pare the quadratic form RE with a quadratic form of a harmonic problem,

which has very similar waveform eigenvectors. Assume that Γ is a discrete

lattice on R2, and Γ̃ ⊂ R2 is a simply connected domain containing Γ. Define

the quadratic form associated with the positive definite kernel r by

Q(φ) = 〈Rφ, φ〉 =
∑
s,t∈Γ

r[s− t]φ(s)φ(t)

(this samples φ on the lattice). Also, define the quadratic form

Q(φ) =

∫
Γ̃
‖∇φ‖2dt

The unit eigenvectors φ1, . . . , φk of Q, corresponding to the lowest eigenval-

ues Q(φk) (i.e. low-frequency sinusoids), were empirically found to be the

highest eigenvectors of the Q. This means, quantitatively, that Q and Q
share common eigenvectors φk with reciprocal eigenvalues, i.e.

Q(φk)Q(φk) ≈ ck

This similarity is likely due to the properties of the kernel r, at least when it

is a radially-symmetric decreasing function. This direction requires further

study, and makes a possible future development of this research.
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APPENDIX A

PROOFS

A.1 Proofs for Chapter 2

Lemma 2.13

Proof. Since X is irreducible, so is the Cartesian square X2. Define the set

of all ambiguous parameter pairs:

R =
{

(θ, θ′)
∣∣∣ p(θ) = p(θ′)

}
⊂ X2 (A.1)

containing all pairs drawn from X that are mapped to the same value of p

(hence indistinguishable). The diagonal of all the pairs (θ, θ),

∆ = {(θ, θ) | θ ∈ X} ⊂ R (A.2)

naturally embedded into R (as clearly p(θ) = p(θ)), and should be removed

from it. We are left with the complement set

Rp := R \∆ ⊆ R ⊂ X2 (A.3)

The set X= of all parameters with nontrivial ambiguous pairings can be

written as

X= := π(Rp) (A.4)

where π : X2 → X is the projection to the first factor

π(θ1, θ2) := θ1 (A.5)

The Zarisky closure X= ⊂ X is algebraic (see [18]), which is either equal to

X (in which case X= is dense in X), or nowhere dense in X (in which case

X= is nowhere dense in X), which concludes the proof for X=.
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For the proportional ambiguity claim on X∝ define the polynomial map-

ping q(θ1, θ2) : X2 → Cn(n−1)/2 taking 2× 2 determinantal values∣∣∣∣∣pk(θ1) pk(θ2)

pj(θ1) pj(θ2)

∣∣∣∣∣
which is also the exterior product p(θ1) ∧ p(θ2). Then, having X∝ = π(Rq)

the rest of the proof is the same.

Lemma 2.20

Proof.

• For parts (1) and (2), if the range of m̃ is the same for θ and θ̃, i.e.

Im(Tm(θ)S) = Im(Tm(θ̃)S), then

Tm(θ)S = Tm(θ̃)SK

for some K ∈ Lin(Ũ). Applying the right and left inverses of S and T

respectively, results in

m(θ) = m(θ̃)SKS†

so that ρ(θ) ⊂ ρ(θ̃), and by symmetry we can show that ρ(θ) ⊃ ρ(θ̃),

and deduce (as m is range-identifiable) that θ = θ̃. Note that m and

m̃ maintain the same rank stratification in M, as rk(m) = rk(m̃).

• Part (3) is immediate, as ρ = ρ ◦ f ◦ f−1.

Lemma 2.27

Proof. Consider the subspace given by intersection

Ws =
⋂
θ∈M

Ker(m(θ)) =
n⋂
i=1

Ker(Si) ⊂ U

containing all nullvectors in U common to all θ. Let S be comprised of

columns that are orthonormal basis vectors for W⊥s (such that if W = {0},
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then S is just identity). Similarly, let

Wt =
⋂
θ∈M

Ker(m(θ)∗) =
n⋂
i=1

Ker(S∗i ) ⊂ V

be the set of all common null co-vectors, and likewise define T whose columns

are an orthonormal basis for W⊥t . As SS∗ and TT ∗ are projections on the

common domain and co-domain, we have

m(θ) = T T ∗m(θ)S︸ ︷︷ ︸
m̃(θ)

S∗

The mapping m̃(θ) := T ∗m(θ)S ∈ Lin(colsp(S), colsp(T )) has full typical

rank, for otherwise there would be a linear combination of the basis elements

{Si} that has left and right nullvectors left out of S and T .

A.2 Proofs for Chapter 3

Proposition 3.5

Proof. The leftmost inclusionM(αId) ⊂M is trivial (S(αId) = αS). Next,

if MA ⊂ M, then M′A ⊂ M for every subset M′ ⊂ M, proving SM ⊂
SM(M′). Finally, for A that satisfies M′A ⊂ M, also satisfies SA ∈ M
for all S ∈M′, proving that SM(M′) ⊂ SM(S) for every S.

Proposition 3.9

Proof. We have A ∈
⋂n
i=1 SMi(Si), iff

SiA ∈Mi for all 1 ≤ i ≤ n

or SA ∈ M1 × . . . × Mn, or A ∈ SM1×...×Mn(S), which concludes the

proof.

Proposition 3.10

Proof. For the ⊂ direction, let A ∈ SM(M′), so clearly any linear combi-

nation of representatives ofMi is sent by A toM. In particularMiA ⊂M
for every 1 ≤ i ≤ n, which proves the ⊂ inclusion as required.

80



For the ⊃ direction, let A ∈
⋂n
i=1 SM(Mi) so that MiA ⊂ M for all

i = 1, . . . , n. Every combination in M′

S =

n∑
i=1

αiSi ∈M′

(where Si ∈Mi) has SiA ∈M, and overall

SA =
n∑
i=1

αi SiA︸︷︷︸
∈M

∈M

which concludes the proof.

Proposition 3.11

Proof.

1. Let M′ ⊂M and A1,A2 ∈ S(M′), then

M′(αA1 + βA2) =M+M =M

so that SM(M′) is a linear space. As a special case, we have SM(S) =

SM(span(S)).

2. From the last part we established that SM is a linear space (by taking

M′ =M). For multiplication, every A1,A2 ∈M satisfy

MA1A2 ⊂MA2 ⊂M

which completes the proof.

Proposition 3.14

Proof. Let A ∈ SM. For every S ∈MI we have

(SA)i = SiA︸︷︷︸
∈M

for all i ∈ I

so that SA ∈ MI , and then MIA ⊂ MI , or A ∈ SMI , proving that

SMI ⊃ SM. Conversely, if A ∈ SMI , then for every S ∈MI we have

SA ∈MI
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Let S0 ∈ M, and define Si0 = S0 and Si := 0 for all other i 6= i0. Since

SA ∈ MI , then SA ∈ M, hence MA ⊂ M which proves the opposite

inclusion.

Theorem 3.15

Proof. A generic S ∈ MI has linearly independent components Si, hence

span{Si}i∈I = M (i.e. each channel corresponds to a basis vector of M).

Next, let A ∈ SMI (S), that is, SA ∈MI , or SiA ∈M for all i ∈ I. Then

A ∈ ∩i∈ISM(SiA) = SM(span{Si}i∈I) = SM(M) = SM

or SMI (S) ⊂ SM. The converse is immediate

SM = SMI ⊂ SMI (S)

and we prove the lemma by mutual inclusion.

A.3 Proofs for Chapter 4

Theorem 4.2

Proof. 1. Whenever Ω ⊂ Ω̃ we have DΩ = DΩDΩ̃ so m has the factorization

m(θ) = DΓCh = DΓDΓ̃Ch = DΓm̃(θ)

Since DΓ is surjective and m(θ) is identifiable, then m̃(θ) is identifi-

able according to Theorem 2.20. The corresponding family has the

same parameter space M, but the domain and co-domain become

Ũ =
〈

Γ̃− Σ
〉

, Ṽ = kL ⊗
〈

Γ̃
〉

.

2. The parameter space M̃ = kL⊗kτ+Σ is isomorphic to M = kL⊗kΣ by

mere shift. The domain and co-domain spaces are Ũ = 〈γ + Γ− Σ− τ〉,
Ṽ = kL ⊗ 〈γ + Γ〉. Let (ςτx)[t] := x[t − τ ] denote the shift opera-

tor on kT (which extends to any subspaces and tensor products). If

h ∈ kL ⊗ 〈Σ〉, then ςτh ∈ kL ⊗ 〈τ + Σ〉. Using the identity

Dt+Ω = ςtDΩς
−t (A.6)
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(shift, sample, and shift back) one can write

m̃(θ) = Dγ+ΓCςτhDγ−τ+Γ−Σ = ςγDΓσ
−γCςτhDγ−τ+Γ−Σ

= ςγDΓChς
τ−γDγ−τ+Γ−Σ

= σγDΓChDΓ−Σς
γ−τ = ςγm(θ)ςγ−τ

so that m̃ is a composition of an identifiable m(θ) with invertible linear

maps, and must be identifiable due to Theorem 2.20.

3. For the group automorphism, the convolutions writes

(h ∗ x) ◦ Φ = (h ◦ Φ) ∗ (x ◦ Φ)

so

DΦΓCh = CTΦhTΦ

Here Tφx := x ◦ φ. Consider the parametric model:

m̃(θ) := DΦΓCh◦Φ−1 = DΓCTΦhhTΦ

which is, again, identifiable due to Theorem 2.20.

Proposition 4.5

Proof. Firstly, sampled FIR operator Sh has the form of a sum of indicators

Sh =
∑
σ∈Σ

∑
γ∈Γ

h[σ] |γ〉 〈γ − σ| =
∑
σ∈Σ

h[σ]Sσ

where Sσ :=
∑

γ∈Γ |γ〉 〈γ − σ| are indicators, making it a mosaic on the sets

Jσ := {(γ, γ − σ)} ⊂ V × U

This is also a admissible mosaic:

• For σ 6= σ′ we have Jσ′ ∩ Jσ = ∅.

• The mapping v := γ 7→ u := γ − σ is an injective function.

• The union over all
⊔
σ∈Σ Jσ covers all possible coordinates in U .
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Lemma 4.6

Proof. From (4.14) we define the sets {Uσ,σ′} and Ū on U × U :

Uσ,σ′ =
{(
uσ′(v), uσ(v)

)
| v ∈ V

}
(A.7)

U0 =
{(
uσ(v), u

)
| u ∈ U , v ∈ V, σ ∈ Σ

}
(A.8)

Due to (4.14) and (4.15), the value Au,u′ is constant along (u, u′) ∈ Uσ,σ′ or

(u, u′) ∈ U0. However, those sets in (A.7) may intersect with each other or

with (A.8). Then the values of A should be constant on any collection of

intersecting tiles.

Our next step is to define an undirected graph G = ({0} ∪ Σ2, E). The

nodes of this graph are pronounced connected if whenever they intersect:

{(σ1, σ
′
1), (σ2, σ

′
2)} ∈ E if Uσ1,σ′1 ∩ Uσ2,σ′2 6= ∅

{(σ, σ′), 0} ∈ E if Uσ,σ′ ∩ U0 6= ∅

Let {Ck} be the connected components of G, containing all connected pairs,

and let C0 be the class connected to U0. We define the mosaic {J̃k} on U×U
by those connectivity classes of G:

J̃k :=
⋃

(σ,σ′)∈Ck

Uσ,σ′

Subject to this definition, the value of Au,u′ is constant for all (u, u′)

belonging to connected components of G, and vanish on J̃0, that is,

Au,u′ = Au,u′′ (u, u′), (u, u′′) ∈ J̃k
Au,u′ = 0 (u, u′) ∈ J̃0

which is a mosaic as required.

Theorem 4.7

In order to prove Theorem 4.7, we first state the following lemma:

Lemma A.1. Let {Jσ} be a FIR mosaic. If two pre-composition tiles Uσ1,σ′1

and Uσ2,σ′2 (as defined in Equation (A.7)) are connected (i.e. intersect),

then σ1 − σ2 = σ′1 − σ′2.

Proof. (Lemma A.1) We first assume two neighboring (intersecting) Uσ1,σ′1

84



and Uσ2,σ′2 . In this case, there exists some γ1, γ2 ∈ V such that

(γ1 − σ1, γ1 − σ′1) = (γ2 − σ2, γ2 − σ′2)

so each coordinate equates:

γ1 − σ1 = γ2 − σ2 γ1 − σ′1 = γ2 − σ′2

from which we deduce (by subtracting indices) σ1−σ2 = σ′1−σ′2 as required.

Every two connected sets have a path {(σi, σ′i), i = 1, . . . , N}, such that

every two consecutive nodes are intersecting, hence:

σ1 − σ2 = σ′1 − σ′2
...

σi − σi+1 = σ′i − σ′i+1

...

σN−1 − σN = σ′N−1 − σ′N

If we combine all the above, we get a telescopic sum:

σ1 − σN = σ′1 − σ′N

Proof. (Theorem 4.7) We will prove (4.16), and then (4.17) will follow due

to symmetry. Let (u, u′), (u, u′′) ∈ J̃k (i.e. connected nodes), such that

(u, u′) ∈ Uσ1,σ′1 and (u, u′′) ∈ Uσ2,σ′2 . We then have:

u = v1 − σ1 = v2 − σ2

u′ = v1 − σ′1
u′′ = v2 − σ′2

Subtract u′ − u′′ and substitute v1 − v2:

u′ − u′′ = v1 − v2 − (σ′1 − σ′2) = σ1 − σ2 − (σ′1 − σ′2) = 0

due to Lemma A.1, and u′ = u′′.
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A.4 Proofs for Chapter 5

Lemma 5.1

Proof. Since η(E) is finite, we can re-write RE+γ as a Haar integral:

〈s|RE |t〉 =
1

η(E)

∫
E
x[s+ τ ]x∗[t+ τ ]dη(τ)

=
1

η(E)

∫
E+t

x[s− t+ τ ]x∗[τ ]dη(τ − t) (Haar invariance)

=
1

η(E)

∫
E+t

x[s− t+ τ ]x∗[τ ]dη(τ) = (∗)

The integrand fs−t(τ) = x[s−t+τ ]x∗[τ ] depends on s−t, alas, the integration

domain depends on t solely. Recall however, that in general, for A,B ⊂ T
we have ∫

B
fdη =

∫
A
fdη +

[∫
B\A

fdη −
∫
A\B

fdη

]

so that

(∗) =
1

η(E)

∫
E
fs−t(τ)dη(τ) + ε(t) = R(s− t) + ε(t)

with the residual

ε(t) =
1

η(E)

[∫
(E+t)\E

fs−t(τ)dη −
∫
E\(E+t)

fs−t(τ)dη

]

If fs−t is bounded by M , then we can bound the boundary residue by

|ε(t)| ≤Mµ((E + t)∆E)

µ(E)
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5.3

Proof. Let K ⊂ T be a finite collection of indices. The joint distribution of

any finite sampling DK satisfies

p(Dt+Kxτ ∈ A) =

∫
T

p(Dt+Kς
τx ∈ A|τ)dp(τ)

=

∫
T

p(DKς
τx ∈ A|τ)dp(τ − t) (shift invariance)

=

∫
T

p(DKς
τx ∈ A|τ)dp(τ)

= p(DKxτ ∈ A)

The deterministic case is treated by setting p(DKx ∈ A) = 1A(DKx).

Lemma 5.5

Proof. First note that ψ(t) is strictly stationary due to Lemma 5.3, and so

are m(ψ(t)), m̄(ψ(t)), and f(ψ(t)). The two added components in C(b, f)

are WSS, since

b(t) · m̄(ψ(t))

is a product of two independent WSS processes, and

f(ψ(t)) ·m(ψ(t))

is stationary, again by Lemma 5.3.

In order for their sum to be WSS, they need to be jointly WSS. Their

cross-correlation can be written (due to the independence of b) as

E {b(t) · m̄(ψ(t))f(ψ(s)) ·m(ψ(s))} = E(b(t))E(f(τ)),

where

f(τ) = m̄(ψ(t)) · f(ψ(s)) ·m(ψ(s)) = m̄(φ(t+ τ)) · f(ψ(s+ τ)) ·m(ψ(s+ τ))

Since f(τ) is stationary (which is again, are corollary of Lemma 5.3), its

expectation is constant, and so overall C(f, b) is a sum of two jointly WSS

processes and thus WSS on its own.
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Lemma 5.7

Proof. Let Q ∈ RD×D be a rotation matrix. Note that the probability

measure of R is invariant under further rotations, dp(R) = dp(RQ) for all

rotations Q. Furthermore, under B(RD), we have associativity (RQ)K =

R(QK) (which is not true in general as rotation outside B(RD) might warp

on the torus [−1, 1]D).

p(DQKx ∈ A) = p(DR(QK)y ∈ A) (RQ)K = R(QK), K ⊂ B(RD)

=

∫
p(D(RQ)Ky ∈ A|R)dp(R) R̃ = RQ

=

∫
p(DR̃Ky ∈ A|R̃)dp(R̃Q∗) (Rotation invariance)

=

∫
p(DR̃Ky ∈ A|R̃)dp(R̃)

= p(DRKy ∈ A)

= p(DKx ∈ A)

which completes the proof.

A.4.1 Lemma 5.9

Proof. Note that |y(t)| ≤ M1B(t) where 1B(t) indicates BR([−1, 1]D), and

1B(Rt) = 1B(t) for all R (since B is within the unit ball). The process

x(t) = y(R(t+ τ)) is WSS with radial symmetry (due to Lemma 5.7) and

r(t) = E(x(t)x(0)) =

∫ ∫
y(R(t+ τ))y(Rτ)dp(τ)dp(R)

Note that

|r(t)| ≤
∫ ∫

|y(R(t+ τ))||y(Rτ)|dp(τ)dp(R)

≤M2

∫ ∫
1B(R(t+ τ))1B(Rτ)dp(τ)dp(R) 1B(Rt) = 1B(t)

= M2

∫ ∫
1B(t+ τ)1(τ)dp(τ)dp(R)

= M2p(B ∩ (B + t))

= 2M2βR(‖t‖)
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APPENDIX B

MATHEMATICAL PRIMER

B.1 Function Modules and Spaces

An important construction in signal processing is the module of functions

from some set A to a ring R (commutative, with a unit, usually a field k):

Definition B.1 (module of R-valued functions). The function module be-

tween A to R is the set comprised of all functions from A to R:

RA := {f : A→ R}

along with a natural R-linear structure of entry-wise linear combinations:

(αf + βg)[u] := αf [u] + βg[u]

where f [u] denotes the value of f at index u ∈ A.

The dual module (see [26]) is M∨ the module of all R-linear functionals

from M to R. Of course, whenever R = k is a field, then kA is a vector

space, and its dual will be denoted with an asterisk. Many results from

linear algebra of vector spaces hold for modules over commutative rings.

We define the impulse function δu0 ∈ RA as

δu′ [u] :=

1 u = u′

0 else
(B.1)

The valuation functional δ∗ux ∈M∨ is respective defined as

δ∗ux := x[u] (B.2)

for every x ∈ RA.

The support of a function f ∈ RA will be the space of all finitely supported
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functions as:

supp(f) = {u ∈ A : f [u] 6= 0} (B.3)

`0(RA) = {f ∈ RA : supp(f) is a finite set } (B.4)

Clearly `0(RA) is a submodule of RA (every finitely supported function is

a function). However, if B ⊂ A, the RB is technically not a submodule of

RA, but naturally embedded by the so-called zero-padding T : RB ↪→ RA:

(Tv)[u] :=

v[u] u ∈ B

0 u ∈ A \B
.

The module RA is an excellent tool to theoretically analyze R-values sig-

nals that are indexed by A, but rather impractical when A is infinite. This

is where we result to

Definition B.2 (Generated Function Space). Fix some index set A. For

every B ⊆ A define

〈B〉 :=

{
N∑
k=1

αkδuk

∣∣∣ α1, . . . αN ∈ R
u1, . . . uN ∈ B

, N ≥ 1

}
⊂ RA (B.5)

Now we have 〈B〉 ⊂ 〈A〉 whenever B ⊂ A, and also when B is a finite

subset of A, every vector in 〈B〉 is a sum of finite basis elements. The

drawback is loss of topological completeness (signal sequences may converge

to limits outside 〈B〉). Note that for every B ⊆ A we have

`0(RB) = 〈B〉 (B.6)

Also, whenever A is finite, then

`0(RA) = RA ∼= R|A| (B.7)

(here Rn is just the direct sum of R with itself n times). For example, if

A = {a1, . . . , an} then 〈A〉 ∼= Rn, where the elements of A are usually indices

for elements in 〈A〉.

An alternative notation (and mostly cosmetic) for δu and δ∗u are the Dirac

notations: for u ∈ A define a corresponding ket vector and bra functional:

|u〉 := δu ∈ 〈A〉 〈u| := δ∗u ∈ 〈A〉
∨ (B.8)
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as defined above.

B.1.1 The Standard Inner and Scalar Products

The module 〈A〉 has a natural standard scalar product:

〈f, g〉 =
∑
u∈A

f [u]g[u] (B.9)

which is a bi-linear symmetric form over 〈A〉 × 〈A〉 (for R = C we modify

the definition to an inner product, using g[u]). Of course, the sum (B.9) is

finite and well defined.

The Dirac notation system has been originally used in Hilbert spaces,

where every vector |u〉 has a unique dual (functional), denoted 〈u|. Inner

product is the concatenation:

〈u|u′〉 := |u′〉∗ (|u〉) (B.10)

Much of the elegance of the Dirac notation system carries on to general

fields with scalar product, leaving out properties unique to inner products

(i.e. positive definiteness). Nevertheless, the notion of orthogonality persists:

two vectors |u〉 , |u′〉 ∈ U are said to be orthogonal if 〈u|u′〉 = δu,u′ , with the

caveat that nonzero vectors can be orthogonal to themselves if char(k) > 0.

The standard basis of 〈A〉, which is {|u〉 | u ∈ A}, is orthogonal by

construction with respect to the (standard) scalar product:

〈u|u′〉 = δu,u′ :=

1 u = u′

0 else
(B.11)

The resolution of identity is the decomposition of the identity map on 〈A〉:

I =
∑
u∈A
|u〉 〈u| (B.12)

B.1.2 Spaces of Linear Operators

Consider a pair (U, V ) of finite dimensional linear spaces over k. We denote

Lin(U, V ) := Homk(U, V ) = V ⊗ U∗
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the (linear) space of k-linear maps from U to V . For convenience, we denote

the endomorphism space (self-mappings) by Lin(U) := Lin(U,U).

Operators in Lin(U, V ) are uniquely characterized by matrices, given fixed

bases for U and V . Let U and V be two finite index sets for the bases

{|u〉}u∈U and {|v〉}∈V of U = kU , V = kV .

Using the resolution of identity (B.12), we infer that every linear opera-

tor S ∈ Lin(U, V ) can be represented in various ways by decomposing the

identities on U an V :

S =
∑
v,u

Sv,u |v〉 〈u| bow-tie sum (B.13)

=
∑
v∈V
|v〉 · 〈v|S covector sum (B.14)

=
∑
u∈U

S |u〉 · 〈u| vector sum (B.15)

The matrix (rank 2 tensor) Sv,u : V × U → k given by

Sv,u = 〈v|S|u〉 (B.16)

is the so-called matrix representation of S with respect to the bases |u〉
and |v〉. The space of complex matrices (functions) indexed by U × V is

isomorphic to Lin(U, V ). The outer products |v〉 〈u| define a standard basis

of Lin(U, V ) with respect to the bases {|u〉}, {|v〉}. From now on, we will

use the terms matrix and operator interchangeably as the bases |v〉 and |u〉
are fixed.

The first thing we note about Lin(U, V ) is it linear structure over k, with

the linear combinations defined by

(αS1 + βS2) |u〉 := αS1 |u〉+ βS2 |u〉

If U ∼= ks, V ∼= kt, there is a natural isomorphism

Lin(U, V ) ∼= 〈V × U〉 ∼= kV×U ∼= kt×s

and of course, affine varieties are naturally defined on Lin(U, V ) through

polynomials in k[V × U ].

An operator A ∈ Lin(U, V ) is said to be of finite rank if its range is

a finite dimensional subspace of V (which is granted whenever V is finite
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dimensional itself). In a Hilbert space and finite dimensional spaces, a finite

rank operator of rank n has a normal form given by the finite sum

A =

n∑
i=1

|vi〉 〈ui| (B.17)

B.2 Random Extensions of Deterministic Hilbert Spaces

Data samples live in a Hilbert space V , measurable with Borel sets naturally

defined by open sets in V . Making samples in V random vectors is as

simple as attaching a probability space (Ω,F ,p) to them: a random data

vector/process in V is merely a measurable mapping x : Ω→ V . Therefore

x(ω) ∈ V is a realization vector. For the sake of consistency with previous

notations, x[t] will denote the random variable at a fixed index t ∈ T when

V = CT ⊗ CL leaving the random coordinate ω undetermined.

B.2.1 Moments and Geometry on Random Extensions

The notion of expectation (or sometimes called mean) is naturally defined

on random vectors in V , as the mapping E of a process x : Ω → V to a

vector E(x) ∈ V defined by

Expectation: E(x) :=

∫
Ω
x(ω)dp(ω) ∈ V (B.18)

The probabilistic extension holds for tensor builds over V . Every random

vector x has an associate random co-vector x∗ naturally defined on u ∈ V
by (x∗u)(ω) := x∗(ω)u. The space V ⊗ V ∗ ∼= Lin(V ) extends by taking two

processes x, y : Ω → V into (x ⊗ y∗)(ω) := x(ω) ⊗ y∗(ω). This is merely

an abstraction of the column-by-row matrix product, and is useful to define

the auto-correlation operator as below:

Auto-Correlation: Rx := E(x⊗ x∗) ∈ Lin(V )

Cross-Correlation: Rxy := E(x⊗ y∗) ∈ Lin(V )

The autocorrelation is self-adjoint and positive-semidefinite in the Hilbert

context of V , so that all its eigenvalues are non-negative and its eigenvectors

are orthogonal and span V .

A linear mapping T : V → U , acting point-wise (Tx)(ω) := x(ω) maps
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the autocorrelation and mean as follows

µTx = Tµx ∈ U RTx = TRxT
∗ ∈ Lin(U)

The probabilistic extension of V has similar geometry to V , provided by

the inner product

Inner-Product: 〈x, y〉 := E
(
〈x(ω), y(ω)〉

)
= tr(Rxy)

which in turn endows orthogonality, norm (hence distance), which is crucial

for statistical analysis on V . We denote by L2(V ) the collection of all random

vectors of induced finite norm.

Laws of large numbers manifest the relation between statistical and prob-

abilistic quantities. Given the samples {Xτ}τ∈E ⊂ V drawn from the same

distribution (independently, or with partial dependence), as |E| → ∞, under

certain conditions we might have

µE :=
1

|E|
∑
τ∈E

Xτ → E(Xτ )

RE :=
1

|E|
∑
τ∈E

Xτ ⊗X∗τ → E(Xτ ⊗X∗τ )

with convergence depending on the context (mean squared convergence is

perhaps the most convenient to work with in the Hilbert settings). The

eigenvalue problem of E(Xτ ⊗X∗τ ) (known as the Karhunen-Loeve decom-

position of random vectors) is the limit case of PCA.

B.2.2 Stationarity

For signals with spatial coordinate e.g. V = CT ⊗ CL, the expectation and

auto-correlation tensors have explicit representations:

µx[t] := E(x[t]) ∈ CL

Rx[t, s] := E(x[t]⊗ x[s]∗) ∈ Lin(CL)

Note: For a multichannel signal Rx[t, s] is a matrix rather than a scalar.

The group structure of T gives meaning to the index difference s− t, and

the notion of stationarity extends directly from the classical one-dimensional

case:
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Definition B.3 (Stationary). A process x on T is said to be

1. Stationary if the joint probability measure is shift invariant, i.e. for

every finite Γ and every τ ∈ T one has p(DΓx) = p(DΓς
τx)

2. Wide sense stationary (WSS) if its first and second moments are shift-

invariant, that is, for all τ ∈ T one has

E(ςτx) = E(x) Rxς
τ = ςτRx

Stationary implies WSS, but not vice versa:

E(ςτx) =

∫
Ω
ςτxdp(x) =

∫
Ω
xdp(ς−τx) =

∫
Ω
xdp(x) = E(x)

The proof for the autocorrelation is similar.

B.3 Polynomial Algebra

In this section we formalize the concept of a polynomial mapping acting

between free vector spaces, which generalized multivariate polynomials.

Let Σ = {σ1, . . . , σn} be a finite set of indices, and let

X = {Xσ}σ∈Σ

be a finite set of formal variables associated with Σ.

Definition B.4 (Polynomial Ring). The multivariate polynomial ring k[Σ]

with coefficients in k is defined as the collection of finite formal sums:

k[X] :=

{∑
α

cα
∏
σ∈Σ

Xασ
σ , cα ∈ k

}
(B.19)

where α : Σ → N are the corresponding powers (assuming commutativity

between the elements of X), and by convention X0
σ = 1, the unit of k.

Every polynomial p ∈ k[X] defines a polynomial mapping

p : kΣ → k

obtained by plugging the values of the input in kΣ into their corresponding

generators xσ.
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Traditionally, the set Σ are the ordinal integers (such that kΣ is a Carte-

sian space), but this is by no means a requirement - polynomial maps can

be natively defined on kΣ to k without resorting to Cartesian space k|Σ|.

The definition in (B.19) seamlessly extends to vector-valued coefficients

Definition B.5 (Modules of Polynomial). Let M be a finite dimensional

vector space over k; we define the set

M [X] :=

{∑
α

cα
∏
σ∈Σ

xασσ , cα ∈M

}

which is a linear space over k and a module of k[X].

Whenever M is an algebra (for example - endomorphisms Lin(U,U)), then

M [X] is a module over M .

By abuse of notations we will write k[Σ] and M [Σ] rather than k[X] and

M [X], carrying every index σ ∈ Σ is carries an appropriate generator Xσ.

There is a canonical isomorphism

M[X] ∼= k[X]⊗M (B.20)

(see [27]), which in simple words, means that we can think of elements of

M [X] both as “tensor of polynomials” as well as “polynomials with tensor

coefficients”.

Polynomial mappings are well defined between linear spaces, even without

a specified basis.

Definition B.6 (Polynomial Mapping). Let U = kΣ and V = kV be two

linear finite dimensional spaces.

A mapping p : U → V is said to be polynomial if the coefficient 〈v|p(θ)| is

polynomials in the coefficients {〈σ|θ|}. This characterization does not alter

under change of basis.

B.3.1 Affine and Homogeneous Varieties

Affine varieties in kΣ correspond to the zero sets of collections of polynomials

in k[X]. We can “pack” a collection of K polynomials to a mapping in the

module kK [X] (or any K-dimensional vector space).
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Definition B.7 (Affine Variety). For a polynomial mapping p ∈M [X] then

V(p) := {θ ∈ kΣ : p(θ) = 0M} (B.21)

Another important concept is homogeneity:

Definition B.8 (Homogeneous Polynomial and Variety). We say that p ∈
M[X] is homogeneous if there exists some integer d > 0 such that

p(λθ) = λdp(θ) for all θ ∈ kΣ, λ ∈ k

An affine varietyM = V(p) is said to be homogeneous if p is a homogeneous

polynomial, or equivalently

λM⊆M

for all λ ∈ k.

Definition B.9 (Coordinate Ring). For a given affine variety V ∈ kD, the

coordinate ring is the quotient ring

k[V ] := k[x1, . . . , xd]/I(V )

Alternatively, it can be thought of as the set of all k-valued polynomial func-

tions defined over V .

Definition B.10. An algebraic variety V is said to be reducible if it can be

represented as a union of two other varieties.

Algebraic varieties define a topology in kD by closed sets, known as Zariski

topology: a set X ⊂ kD is closed if X is an affine variety (hence X is open

if its complement is a variety).

B.4 Grassmanians

For the analysis of range-space based identification, we will need to appeal

to a structure containing all linear spaces of a given dimension, known as a

Grassman set (or a Grassmanian).

Let U be a n-dimensional vector space over k. The set of all r-dimensional

linear subspaces U is known as the Grassmanian (see [28] for more details):

Gr(U, r) := {V ⊂ U : dim(V ) = r}
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The set Gr(U, r) can be given several different structures: a topological

space (metric space in fact, and even a smooth manifold), and affine/pro-

jective algebraic variety.

B.4.1 Grassmanian as an Algebraic Variety

The Grassmanian possesses a structure of an algebraic variety - a nullset of

polynomials, given by the renowned Plücker embedding. The idea is to map

any arbitrary basis to its the exterior product:

V 7→ {v1, . . . , vr} 7→ v1 ∧ v2 ∧ · · · ∧ vr

For any other basis of V , the wedge product would alter only by a scalar,

and in particular

ṽk =
n∑

m=1

amkvm

then

ṽ1 ∧ · · · ∧ ṽs = det(A)v1 ∧ · · · ∧ vr

Here A = (amk) is the non-signular square basis-change matrix, so that

spank{vk} is identified with the wedge product of its various bases (up to a

scalar).

The embedding ψ : Gr(U, r) ↪→ P(
∧r U) is well defined by

ψ(V ) := [v1 ∧ v2 ∧ · · · ∧ vr] (B.22)

where {v1, . . . , vs} is an arbitrary basis of V , and the square bracket denotes

to the projective class in the projectivized wedge product.

B.4.2 Grassmanian as a Smooth Topological Manifold

Topology on the Grassmanian enables concepts such as continuity and sep-

arability. Whenever k = R or k = C, we can equip Gr(U, r) with a metric

(making it a topological space thereof), for example, for V1, V2 ∈ Gr(U, r)

we define their distance as:

d(V1, V2) := sup
v1∈B1

inf
v2∈V2

‖v2 − v1‖ (B.23)

where ‖ · ‖ is the standard Cartesian norm on U , and B1 is the unit sphere

of V1 with regard to this norm.
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Furthermore, under this assumption, the Grassmanian is also a smooth

manifold (as any projective variety is) of dimension r(t− r)
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